Science.gov

Sample records for marine ecosystems climatic

  1. Climate variability and the Icelandic marine ecosystem

    NASA Astrophysics Data System (ADS)

    Astthorsson, Olafur S.; Gislason, Astthor; Jonsson, Steingrimur

    2007-11-01

    This paper describes the main features of the Icelandic marine ecosystem and its response to climate variations during the 20th century. The physical oceanographic character and faunal composition in the southern and western parts of the Icelandic marine ecosystem are different from those in the northern and the eastern areas. The former areas are more or less continuously bathed by warm and saline Atlantic water while the latter are more variable and influenced by Atlantic, Arctic and even Polar water masses to different degrees. Mean annual primary production is higher in the Atlantic water than in the more variable waters north and east of Iceland, and higher closer to land than farther offshore. Similarly, zooplankton production is generally higher in the Atlantic water than in the waters north and east of Iceland. The main spawning grounds of most of the exploited fish stocks are in the Atlantic water south of the country while nursery grounds are off the north coast. In the recent years the total catch of fish and invertebrates has been in the range of 1.6-2.4 million ton. Capelin ( Mallotus villosus) is the most important pelagic stock and cod ( Gadus morhua) is by far the most important demersal fish stock. Whales are an important component of the Icelandic marine ecosystem, and Icelandic waters are an important habitat for some of the largest seabird populations in the Northeast Atlantic. In the waters to the north and east of Iceland, available information suggests the existence of a simple bottom-up controlled food chain from phytoplankton through Calanus, capelin and to cod. Less is known about the structure of the more complex southern part of the ecosystem. The Icelandic marine ecosystem is highly sensitive to climate variations as demonstrated by abundance and distribution changes of many species during the warm period in the 1930s, the cold period in the late 1960s and warming observed during the recent years. Some of these are highlighted in the

  2. Climate Change Impacts on Marine Ecosystems

    NASA Astrophysics Data System (ADS)

    Doney, Scott C.; Ruckelshaus, Mary; Emmett Duffy, J.; Barry, James P.; Chan, Francis; English, Chad A.; Galindo, Heather M.; Grebmeier, Jacqueline M.; Hollowed, Anne B.; Knowlton, Nancy; Polovina, Jeffrey; Rabalais, Nancy N.; Sydeman, William J.; Talley, Lynne D.

    2012-01-01

    In marine ecosystems, rising atmospheric CO2 and climate change are associated with concurrent shifts in temperature, circulation, stratification, nutrient input, oxygen content, and ocean acidification, with potentially wide-ranging biological effects. Population-level shifts are occurring because of physiological intolerance to new environments, altered dispersal patterns, and changes in species interactions. Together with local climate-driven invasion and extinction, these processes result in altered community structure and diversity, including possible emergence of novel ecosystems. Impacts are particularly striking for the poles and the tropics, because of the sensitivity of polar ecosystems to sea-ice retreat and poleward species migrations as well as the sensitivity of coral-algal symbiosis to minor increases in temperature. Midlatitude upwelling systems, like the California Current, exhibit strong linkages between climate and species distributions, phenology, and demography. Aggregated effects may modify energy and material flows as well as biogeochemical cycles, eventually impacting the overall ecosystem functioning and services upon which people and societies depend.

  3. Climate projections for selected large marine ecosystems

    NASA Astrophysics Data System (ADS)

    Wang, Muyin; Overland, James E.; Bond, Nicholas A.

    2010-02-01

    In preparation for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) modeling centers from around the world carried out sets of global climate simulations under various emission scenarios with a total of 23 coupled atmosphere-ocean general circulation models. We evaluated the models' 20th century hindcasts of selected variables relevant to several large marine ecosystems and examined 21st century projections by a subset of these models under the A1B (middle range) emission scenario. In general we find that a subset (about half) of the models are able to simulate large-scale aspects of the historical observations reasonably well, which provides some confidence in their application for projections of ocean conditions into the future. Over the North Pacific by the mid-21st century, the warming due to the trend in wintertime sea surface temperature (SST) will be 1°-1.5 °C, which is as large as the amplitude of the major mode of variability, the Pacific Decadal Oscillation (PDO). For areas northwest of the Hawaiian Islands, these models projected a steady increase of 1.2 °C in summer SST over the period from 2000 to 2050. For the Bering and Barents seas, a subset of models selected on the basis of their ability to simulate sea-ice area in late 20th century yield an average decrease in sea-ice coverage of 43% and 36%, respectively, by the decade centered on 2050 with a reasonable degree of consistency. On the other hand, model simulations of coastal upwelling for the California, Canary and Humboldt Currents, and of bottom temperatures in the Barents Sea, feature a relatively large degree of uncertainty. These results illustrate that 21st century projections for marine ecosystems in certain regions using present-generation climate models require additional analysis.

  4. Effect of climate change on marine ecosystems

    NASA Astrophysics Data System (ADS)

    Vikebo, F. B.; Sundby, S.; Aadlandsvik, B.; Fiksen, O.

    2003-04-01

    As a part of the INTEGRATION project, headed by Potsdam Institute for Climate Impact Research, funded by the German Research Council, the impact of climate change scenarios on marine fish populations will be addressed on a spesific population basis and will focus on fish populations in the northern North Atlantic with special emphasis on cod. The approach taken will mainly be a modelling study supported by analysis of existing data on fish stocks and climate. Through down-scaling and nesting techniques, various climate change scenarios with reduced THC in the North Atlantic will be investigated with higher spatial resolution for selected shelf areas. The hydrodynamical model used for the regional ocean modeling is ROMS (http://marine.rutgers.edu/po/models/roms/). An individual based model will be implemented into the larval drift module to simulate growth of the larvae along the drift paths.

  5. Impacts of climate change on marine organisms and ecosystems.

    PubMed

    Brierley, Andrew S; Kingsford, Michael J

    2009-07-28

    Human activities are releasing gigatonnes of carbon to the Earth's atmosphere annually. Direct consequences of cumulative post-industrial emissions include increasing global temperature, perturbed regional weather patterns, rising sea levels, acidifying oceans, changed nutrient loads and altered ocean circulation. These and other physical consequences are affecting marine biological processes from genes to ecosystems, over scales from rock pools to ocean basins, impacting ecosystem services and threatening human food security. The rates of physical change are unprecedented in some cases. Biological change is likely to be commensurately quick, although the resistance and resilience of organisms and ecosystems is highly variable. Biological changes founded in physiological response manifest as species range-changes, invasions and extinctions, and ecosystem regime shifts. Given the essential roles that oceans play in planetary function and provision of human sustenance, the grand challenge is to intervene before more tipping points are passed and marine ecosystems follow less-buffered terrestrial systems further down a spiral of decline. Although ocean bioengineering may alleviate change, this is not without risk. The principal brake to climate change remains reduced CO(2) emissions that marine scientists and custodians of the marine environment can lobby for and contribute to. This review describes present-day climate change, setting it in context with historical change, considers consequences of climate change for marine biological processes now and in to the future, and discusses contributions that marine systems could play in mitigating the impacts of global climate change.

  6. How do polar marine ecosystems respond to rapid climate change?

    PubMed

    Schofield, Oscar; Ducklow, Hugh W; Martinson, Douglas G; Meredith, Michael P; Moline, Mark A; Fraser, William R

    2010-06-18

    Climate change will alter marine ecosystems; however, the complexity of the food webs, combined with chronic undersampling, constrains efforts to predict their future and to optimally manage and protect marine resources. Sustained observations at the West Antarctic Peninsula show that in this region, rapid environmental change has coincided with shifts in the food web, from its base up to apex predators. New strategies will be required to gain further insight into how the marine climate system has influenced such changes and how it will do so in the future. Robotic networks, satellites, ships, and instruments mounted on animals and ice will collect data needed to improve numerical models that can then be used to study the future of polar ecosystems as climate change progresses.

  7. Resilience to climate change in coastal marine ecosystems.

    PubMed

    Bernhardt, Joanna R; Leslie, Heather M

    2013-01-01

    Ecological resilience to climate change is a combination of resistance to increasingly frequent and severe disturbances, capacity for recovery and self-organization, and ability to adapt to new conditions. Here, we focus on three broad categories of ecological properties that underlie resilience: diversity, connectivity, and adaptive capacity. Diversity increases the variety of responses to disturbance and the likelihood that species can compensate for one another. Connectivity among species, populations, and ecosystems enhances capacity for recovery by providing sources of propagules, nutrients, and biological legacies. Adaptive capacity includes a combination of phenotypic plasticity, species range shifts, and microevolution. We discuss empirical evidence for how these ecological and evolutionary mechanisms contribute to the resilience of coastal marine ecosystems following climate change-related disturbances, and how resource managers can apply this information to sustain these systems and the ecosystem services they provide.

  8. The impact of climate change on the world's marine ecosystems.

    PubMed

    Hoegh-Guldberg, Ove; Bruno, John F

    2010-06-18

    Marine ecosystems are centrally important to the biology of the planet, yet a comprehensive understanding of how anthropogenic climate change is affecting them has been poorly developed. Recent studies indicate that rapidly rising greenhouse gas concentrations are driving ocean systems toward conditions not seen for millions of years, with an associated risk of fundamental and irreversible ecological transformation. The impacts of anthropogenic climate change so far include decreased ocean productivity, altered food web dynamics, reduced abundance of habitat-forming species, shifting species distributions, and a greater incidence of disease. Although there is considerable uncertainty about the spatial and temporal details, climate change is clearly and fundamentally altering ocean ecosystems. Further change will continue to create enormous challenges and costs for societies worldwide, particularly those in developing countries.

  9. Climate-driven regime shift of a temperate marine ecosystem.

    PubMed

    Wernberg, Thomas; Bennett, Scott; Babcock, Russell C; de Bettignies, Thibaut; Cure, Katherine; Depczynski, Martial; Dufois, Francois; Fromont, Jane; Fulton, Christopher J; Hovey, Renae K; Harvey, Euan S; Holmes, Thomas H; Kendrick, Gary A; Radford, Ben; Santana-Garcon, Julia; Saunders, Benjamin J; Smale, Dan A; Thomsen, Mads S; Tuckett, Chenae A; Tuya, Fernando; Vanderklift, Mathew A; Wilson, Shaun

    2016-07-08

    Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.

  10. Interdependency of tropical marine ecosystems in response to climate change

    NASA Astrophysics Data System (ADS)

    Saunders, Megan I.; Leon, Javier X.; Callaghan, David P.; Roelfsema, Chris M.; Hamylton, Sarah; Brown, Christopher J.; Baldock, Tom; Golshani, Aliasghar; Phinn, Stuart R.; Lovelock, Catherine E.; Hoegh-Guldberg, Ove; Woodroffe, Colin D.; Mumby, Peter J.

    2014-08-01

    Ecosystems are linked within landscapes by the physical and biological processes they mediate. In such connected landscapes, the response of one ecosystem to climate change could have profound consequences for neighbouring systems. Here, we report the first quantitative predictions of interdependencies between ecosystems in response to climate change. In shallow tropical marine ecosystems, coral reefs shelter lagoons from incoming waves, allowing seagrass meadows to thrive. Deepening water over coral reefs from sea-level rise results in larger, more energetic waves traversing the reef into the lagoon, potentially generating hostile conditions for seagrass. However, growth of coral reef such that the relative water depth is maintained could mitigate negative effects of sea-level rise on seagrass. Parameterizing physical and biological models for Lizard Island, Great Barrier Reef, Australia, we find negative effects of sea-level rise on seagrass before the middle of this century given reasonable rates of reef growth. Rates of vertical carbonate accretion typical of modern reef flats (up to 3 mm yr-1) will probably be insufficient to maintain suitable conditions for reef lagoon seagrass under moderate to high greenhouse gas emissions scenarios by 2100. Accounting for interdependencies in ecosystem responses to climate change is challenging, but failure to do so results in inaccurate predictions of habitat extent in the future.

  11. Climate warming and estuarine and marine coastal ecosystems

    SciTech Connect

    Kennedy, V.S.

    1994-12-31

    Estuaries are physically controlled, resilient coastal ecosystems harboring environmentally tolerant species in diluted seawater. Marine coastal systems are less stressed physically and contain some environmentally less tolerant species. Both systems are biologically productive and economically significant. Because of their complex structure and function, it is difficult to predict accurately the effects of climate change, but some broad generalizations can be made. If climate warming occurs, it will raise sea-level, heat shallow waters, and modify precipitation, wind, and water circulation patterns. Rapid sea-level rise could cause the loss of salt marshes, mangrove swamps, and coral reefs, thus diminishing the ecological roles of these highly productive systems. Warmer waters could eliminate heat-sensitive species from part of their geographical range while allowing heat-tolerant species to expand their range, depending on their ability to disperse. Most thermally influenced losses of species will probably only be local, but changed distributions may lead to changed community function. It is more difficult to predict the effects of modified precipitation, wind, and water circulation patterns, but changes could affect organisms dependent on such patterns for food production (e.g., in upwelling regions) or for retention in estuaries. Aquacultural and fishery-related enterprises would be affected negatively in some regions and positively in others. 73 refs.

  12. Natural variability of marine ecosystems inferred from a coupled climate to ecosystem simulation

    NASA Astrophysics Data System (ADS)

    Le Mézo, Priscilla; Lefort, Stelly; Séférian, Roland; Aumont, Olivier; Maury, Olivier; Murtugudde, Raghu; Bopp, Laurent

    2016-01-01

    This modeling study analyzes the simulated natural variability of pelagic ecosystems in the North Atlantic and North Pacific. Our model system includes a global Earth System Model (IPSL-CM5A-LR), the biogeochemical model PISCES and the ecosystem model APECOSM that simulates upper trophic level organisms using a size-based approach and three interactive pelagic communities (epipelagic, migratory and mesopelagic). Analyzing an idealized (e.g., no anthropogenic forcing) 300-yr long pre-industrial simulation, we find that low and high frequency variability is dominant for the large and small organisms, respectively. Our model shows that the size-range exhibiting the largest variability at a given frequency, defined as the resonant range, also depends on the community. At a given frequency, the resonant range of the epipelagic community includes larger organisms than that of the migratory community and similarly, the latter includes larger organisms than the resonant range of the mesopelagic community. This study shows that the simulated temporal variability of marine pelagic organisms' abundance is not only influenced by natural climate fluctuations but also by the structure of the pelagic community. As a consequence, the size- and community-dependent response of marine ecosystems to climate variability could impact the sustainability of fisheries in a warming world.

  13. Climate change, coral reef ecosystems, and management options for marine protected areas.

    PubMed

    Keller, Brian D; Gleason, Daniel F; McLeod, Elizabeth; Woodley, Christa M; Airamé, Satie; Causey, Billy D; Friedlander, Alan M; Grober-Dunsmore, Rikki; Johnson, Johanna E; Miller, Steven L; Steneck, Robert S

    2009-12-01

    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more "traditional" stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation.

  14. Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas

    NASA Astrophysics Data System (ADS)

    Keller, Brian D.; Gleason, Daniel F.; McLeod, Elizabeth; Woodley, Christa M.; Airamé, Satie; Causey, Billy D.; Friedlander, Alan M.; Grober-Dunsmore, Rikki; Johnson, Johanna E.; Miller, Steven L.; Steneck, Robert S.

    2009-12-01

    Marine protected areas (MPAs) provide place-based management of marine ecosystems through various degrees and types of protective actions. Habitats such as coral reefs are especially susceptible to degradation resulting from climate change, as evidenced by mass bleaching events over the past two decades. Marine ecosystems are being altered by direct effects of climate change including ocean warming, ocean acidification, rising sea level, changing circulation patterns, increasing severity of storms, and changing freshwater influxes. As impacts of climate change strengthen they may exacerbate effects of existing stressors and require new or modified management approaches; MPA networks are generally accepted as an improvement over individual MPAs to address multiple threats to the marine environment. While MPA networks are considered a potentially effective management approach for conserving marine biodiversity, they should be established in conjunction with other management strategies, such as fisheries regulations and reductions of nutrients and other forms of land-based pollution. Information about interactions between climate change and more “traditional” stressors is limited. MPA managers are faced with high levels of uncertainty about likely outcomes of management actions because climate change impacts have strong interactions with existing stressors, such as land-based sources of pollution, overfishing and destructive fishing practices, invasive species, and diseases. Management options include ameliorating existing stressors, protecting potentially resilient areas, developing networks of MPAs, and integrating climate change into MPA planning, management, and evaluation.

  15. Rapid emergence of climate change in environmental drivers of marine ecosystems

    PubMed Central

    Henson, Stephanie A.; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G.; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L.

    2017-01-01

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a ‘business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike. PMID:28267144

  16. Rapid emergence of climate change in environmental drivers of marine ecosystems

    NASA Astrophysics Data System (ADS)

    Henson, Stephanie A.; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G.; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L.

    2017-03-01

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a `business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike.

  17. Rapid emergence of climate change in environmental drivers of marine ecosystems.

    PubMed

    Henson, Stephanie A; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L

    2017-03-07

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a 'business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike.

  18. Variability in biomass yields of large marine ecosystems (LMEs) during climate change

    SciTech Connect

    Sherman, K. )

    1993-06-01

    Results of ecosystem studies relating to variations in biomass yields are examined in relation to principle driving forces including climate change, coastal pollution, habitat degradation, and overexploitation of living marine resources. Among the ecosystems compared with regard to the different prime driving forces, affecting sustainability of biomass yields, are the Black Sea, the Baltic Sea, the Barents Sea, Kuroshio Current, California Current, Great Barrier Reef, Gulf of Mexico, Yellow Sea, Icelandic Shelf, and Northeast US Shelf ecosystems. The designation and management of large marine ecosystems (LMEs) is, at present, an evolving scientific and geopolitical process. Sufficient progress has been made to allow for useful comparisons among different processes influencing large-scale changes in the biomass yields of LMEs. The most severely impacted LMEs are off the coasts of the continents.

  19. Invasive species: an increasing threat to marine ecosystems under climate change?

    NASA Astrophysics Data System (ADS)

    Artioli, Yuri; Galienne, Chris; Holt, Jason; Wakelin, Sarah; Butenschön, Momme; Schrum, Corinna; Daewel, Ute; Pushpadas, Dhania; Cannaby, Heather; Salihoglu, Baris; Zavatarelli, Marco; Clementi, Emanuela; Olenin, Sergej; Allen, Icarus

    2013-04-01

    Planktonic Non-Indigenous Species (NIS) are a potential threat to marine ecosystems: a successful invasion of such organisms can alter significantly the ecosystem structure with shift in species composition that can affect different levels of the trophic network and also with local extinction of native species in the more extreme cases. Such changes will also impact some ecosystem functions like primary and secondary production or nutrient cycling, and services, like fishery, aquaculture or carbon sequestration. Understanding how climate change influences the susceptibility of a marine ecosystem to invasion is challenging as the success and the impact of an invasion depend on many different factors all tightly interconnected (e.g. time of the invasion, location, state of the ecosystem…). Here we present DivERSEM, a new version of the biogeochemical model ERSEM modified in order to account for phytoplankton diversity. With such a model, we are able to simulate invasion from phytoplankton NIS, to assess the likelihood of success of such an invasion and to estimate the potential impact on ecosystem structure, using indicator like the Biopollution index. In the MEECE project (www.meece.eu), the model has been coupled to a 1D water column model (GOTM) in two different climate scenarios (present day and the IPCC SRES A1B scenario for 2100) in 4 different European shelf seas (North Sea, Baltic Sea, Black Sea and Adriatic Sea). The model has been forced with atmospheric data coming from the IPSL climate model, and nutrient concentration extracted from a set of 3D biogeochemical models running under the same climate scenario. The response of the ecosystem susceptibility to invasion to climate change has been analysed comparing the successfulness of invasions in the two time slices and its impact on community structure and ecosystem functions. At the same time, the comparison among the different basins allowed to highlight some of the characteristics that make the

  20. Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web.

    PubMed

    Niiranen, Susa; Yletyinen, Johanna; Tomczak, Maciej T; Blenckner, Thorsten; Hjerne, Olle; Mackenzie, Brian R; Müller-Karulis, Bärbel; Neumann, Thomas; Meier, H E Markus

    2013-11-01

    Changes in climate, in combination with intensive exploitation of marine resources, have caused large-scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed to persistent eutrophication, intensive fishing, and one of the world's fastest rates of warming in the last two decades of the 20th century, accelerated climate change including atmospheric warming and changes in precipitation is projected for this region during the 21st century. Here, we used a new multimodel approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient-climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future of the Baltic Sea ecosystem. By the end of the 21st century, for example, the combination of intensive cod fishing and high nutrient loads projected a strongly eutrophicated and sprat-dominated ecosystem, whereas low cod fishing in combination with low nutrient loads resulted in a cod-dominated ecosystem with eutrophication levels close to present. Also, nonlinearities were observed in the sensitivity of different trophic groups to nutrient loads or fishing depending on the combination of the two. Finally, many climate variables and species biomasses were projected to levels unseen in the past. Hence, the risk for ecological surprises needs to be addressed, particularly when the results are discussed in the ecosystem-based management context.

  1. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    PubMed

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems.

  2. Impacts of Interannual Climate Variability on Agricultural and Marine Ecosystems

    NASA Technical Reports Server (NTRS)

    Cane, M. A.; Zebiak, S.; Kaplan, A.; Chen, D.

    2001-01-01

    The El Nino - Southern Oscillation (ENSO) is the dominant mode of global interannual climate variability, and seems to be the only mode for which current prediction methods are more skillful than climatology or persistence. The Zebiak and Cane intermediate coupled ocean-atmosphere model has been in use for ENSO prediction for more than a decade, with notable success. However, the sole dependence of its original initialization scheme and the improved initialization on wind fields derived from merchant ship observations proved to be a liability during 1997/1998 El Nino event: the deficiencies of wind observations prevented the oceanic component of the model from reaching the realistic state during the year prior to the event, and the forecast failed. Our work on the project was concentrated on the use of satellite data for improving various stages of ENSO prediction technology: model initialization, bias correction, and data assimilation. Close collaboration with other teams of the IDS project was maintained throughout.

  3. Synchronous response of marine plankton ecosystems to climate in the Northeast Atlantic and the North Sea

    NASA Astrophysics Data System (ADS)

    Goberville, Eric; Beaugrand, Gregory; Edwards, Martin

    2014-01-01

    Over the last few decades, global warming has accelerated both the rate and magnitude of changes observed in many functional units of the Earth System. In this context, plankton are sentinel organisms because they are sensitive to subtle levels of changes in temperature and might help in identifying the current effects of climate change on pelagic ecosystems. In this paper, we performed a comparative approach in two regions of the North Atlantic (i.e. the Northeast Atlantic and the North Sea) to explore the relationships between changes in marine plankton, the regional physico-chemical environment and large-scale hydro-climatic forcing using four key indices: the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the East Atlantic (EA) pattern and Northern Hemisphere Temperature (NHT) anomalies. Our analyses suggest that long-term changes in the states of the two ecosystems were synchronous and correlated to the same large-scale hydro-climatic variables: NHT anomalies, the AMO and to a lesser extent the EA pattern. No significant correlation was found between long-term ecosystem modifications and the state of the NAO. Our results suggest that the effect of climate on these ecosystems has mainly occurred in both regions through the modulation of the thermal regime.

  4. Evidence for climate-driven synchrony of marine and terrestrial ecosystems in northwest Australia.

    PubMed

    Ong, Joyce J L; Rountrey, Adam N; Zinke, Jens; Meeuwig, Jessica J; Grierson, Pauline F; O'Donnell, Alison J; Newman, Stephen J; Lough, Janice M; Trougan, Mélissa; Meekan, Mark G

    2016-08-01

    The effects of climate change are difficult to predict for many marine species because little is known of their response to climate variations in the past. However, long-term chronologies of growth, a variable that integrates multiple physical and biological factors, are now available for several marine taxa. These allow us to search for climate-driven synchrony in growth across multiple taxa and ecosystems, identifying the key processes driving biological responses at very large spatial scales. We hypothesized that in northwest (NW) Australia, a region that is predicted to be strongly influenced by climate change, the El Niño Southern Oscillation (ENSO) phenomenon would be an important factor influencing the growth patterns of organisms in both marine and terrestrial environments. To test this idea, we analyzed existing growth chronologies of the marine fish Lutjanus argentimaculatus, the coral Porites spp. and the tree Callitris columellaris and developed a new chronology for another marine fish, Lethrinus nebulosus. Principal components analysis and linear model selection showed evidence of ENSO-driven synchrony in growth among all four taxa at interannual time scales, the first such result for the Southern Hemisphere. Rainfall, sea surface temperatures, and sea surface salinities, which are linked to the ENSO system, influenced the annual growth of fishes, trees, and corals. All four taxa had negative relationships with the Niño-4 index (a measure of ENSO status), with positive growth patterns occurring during strong La Niña years. This finding implies that future changes in the strength and frequency of ENSO events are likely to have major consequences for both marine and terrestrial taxa. Strong similarities in the growth patterns of fish and trees offer the possibility of using tree-ring chronologies, which span longer time periods than those of fish, to aid understanding of both historical and future responses of fish populations to climate variation.

  5. Exploring confidence and uncertainty in projections of potential marine ecosystem stressors under climate change

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Rodgers, K. B.; Stock, C. A.; Cheung, W. W. L.

    2016-02-01

    Marine ecosystems are increasingly stressed by human-induced climate change affecting their physical and biogeochemical environment. Future projections of potential marine ecosystem stressors - including warming, acidification, nutrient availability and declining oxygen levels-are inherently uncertain, however, complicating assessments of climate change impacts. Here we combine data from a novel 30-member ensemble simulation from the GFDL's Earth System Model with data from CMIP5 Earth System models that were run under a high- and low-carbon-emissions scenario to assess the different sources of uncertainty (internal, model and scenario) in projections of marine ecosystem drivers.We show that the uncertainty in century-scale global and regional surface pH projections is dominated by scenario uncertainty, highlighting the critical importance of policy decisions on carbon emissions. In contrast, uncertainty in century-scale sea surface temperature projections in polar regions, oxygen levels in low oxygen waters, and regional nutrient availability is dominated by model uncertainty, underscoring that overcoming deficiencies in scientific understanding and improved process representation in Earth System Models are critical for making more robust predictions. For smaller spatial and temporal scales, uncertainty associated with internal variability also constitutes an important source of uncertainty, suggesting irreducible uncertainty inherent in these projections. We also show that changes in the combined multiple ecosystem drivers emerges from the noise in 44% of the ocean in the next decade and in 57% of the ocean by the end of the century following a high carbon emissions scenario. Changes in pH and sea surface temperature can be reduced substantially and rapidly by the end of 21st century with aggressive carbon emission mitigation, but only marginally for oxygen and net primary productivity. Implications for downscaling of Earth system model output and for projecting

  6. Climate change. Six centuries of variability and extremes in a coupled marine-terrestrial ecosystem.

    PubMed

    Black, Bryan A; Sydeman, William J; Frank, David C; Griffin, Daniel; Stahle, David W; García-Reyes, Marisol; Rykaczewski, Ryan R; Bograd, Steven J; Peterson, William T

    2014-09-19

    Reported trends in the mean and variability of coastal upwelling in eastern boundary currents have raised concerns about the future of these highly productive and biodiverse marine ecosystems. However, the instrumental records on which these estimates are based are insufficiently long to determine whether such trends exceed preindustrial limits. In the California Current, a 576-year reconstruction of climate variables associated with winter upwelling indicates that variability increased over the latter 20th century to levels equaled only twice during the past 600 years. This modern trend in variance may be unique, because it appears to be driven by an unprecedented succession of extreme, downwelling-favorable, winter climate conditions that profoundly reduce productivity for marine predators of commercial and conservation interest.

  7. When 1+1 can be >2: Uncertainties compound when simulating climate, fisheries and marine ecosystems

    NASA Astrophysics Data System (ADS)

    Evans, Karen; Brown, Jaclyn N.; Sen Gupta, Alex; Nicol, Simon J.; Hoyle, Simon; Matear, Richard; Arrizabalaga, Haritz

    2015-03-01

    Multi-disciplinary approaches that combine oceanographic, biogeochemical, ecosystem, fisheries population and socio-economic models are vital tools for modelling whole ecosystems. Interpreting the outputs from such complex models requires an appreciation of the many different types of modelling frameworks being used and their associated limitations and uncertainties. Both users and developers of particular model components will often have little involvement or understanding of other components within such modelling frameworks. Failure to recognise limitations and uncertainties associated with components and how these uncertainties might propagate throughout modelling frameworks can potentially result in poor advice for resource management. Unfortunately, many of the current integrative frameworks do not propagate the uncertainties of their constituent parts. In this review, we outline the major components of a generic whole of ecosystem modelling framework incorporating the external pressures of climate and fishing. We discuss the limitations and uncertainties associated with each component of such a modelling system, along with key research gaps. Major uncertainties in modelling frameworks are broadly categorised into those associated with (i) deficient knowledge in the interactions of climate and ocean dynamics with marine organisms and ecosystems; (ii) lack of observations to assess and advance modelling efforts and (iii) an inability to predict with confidence natural ecosystem variability and longer term changes as a result of external drivers (e.g. greenhouse gases, fishing effort) and the consequences for marine ecosystems. As a result of these uncertainties and intrinsic differences in the structure and parameterisation of models, users are faced with considerable challenges associated with making appropriate choices on which models to use. We suggest research directions required to address these uncertainties, and caution against overconfident predictions

  8. Climate Warming, Marine Protected Areas and the Ocean-Scale Integrity of Coral Reef Ecosystems

    PubMed Central

    Graham, Nicholas A. J.; McClanahan, Tim R.; MacNeil, M. Aaron; Wilson, Shaun K.; Polunin, Nicholas V. C.; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D.; Letourneur, Yves; Bigot, Lionel; Galzin, René; Öhman, Marcus C.; Garpe, Kajsa C.; Edwards, Alasdair J.; Sheppard, Charles R. C.

    2008-01-01

    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change. PMID:18728776

  9. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.

    PubMed

    Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C

    2008-08-27

    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.

  10. Climate change alters stability and species potential interactions in a large marine ecosystem.

    PubMed

    Griffith, Gary P; Strutton, Peter G; Semmens, Jayson M

    2017-09-04

    We have little empirical evidence of how large-scale overlaps between large numbers of marine species may have altered in response to human impacts. Here, we synthesized all available distribution data (>1 million records) since 1992 for 61 species of the East Australian marine ecosystem, a global hot spot of ocean warming and continuing fisheries exploitation. Using a novel approach, we constructed networks of the annual changes in geographical overlaps between species. Using indices of changes in species overlap, we quantified changes in the ecosystem stability, species robustness, species sensitivity and structural keystone species. We then compared the species overlap indices with environmental and fisheries data to identify potential factors leading to the changes in distributional overlaps between species. We found that the structure of the ecosystem has changed with a decrease in asymmetrical geographical overlaps between species. This suggests that the ecosystem has become less stable and potentially more susceptible to environmental perturbations. Most species have shown a decrease in overlaps with other species. The greatest decrease in species overlap robustness and sensitivity to the loss of other species has occurred in the pelagic community. Some demersal species have become more robust and less sensitive. Pelagic structural keystone species, predominately the tunas and billfish, have been replaced by demersal fish species. The changes in species overlap were strongly correlated with regional oceanographic changes, in particular increasing ocean warming and the southward transport of warmer and saltier water with the East Australian Current (EAC), but less correlated with fisheries catch. Our study illustrates how large-scale multispecies distribution changes can help identify structural changes in marine ecosystems associated with climate change. This article is protected by copyright. All rights reserved. This article is protected by copyright. All

  11. THE RESPONSE OF MARINE ECOSYSTEMS TO CLIMATE VARIABILITY ASSOCIATED WITH THE NORTH ATLANTIC OSCILLATION

    EPA Science Inventory

    A strong association is documented between variability of the North Atlantic Oscillation (NAO) and changes in various trophic levels of the marine ecosystems of the North Atlantic. Examples are presented for phytoplankton, zooplankton, benthos, fish, marine diseases, whales and s...

  12. THE RESPONSE OF MARINE ECOSYSTEMS TO CLIMATE VARIABILITY ASSOCIATED WITH THE NORTH ATLANTIC OSCILLATION

    EPA Science Inventory

    A strong association is documented between variability of the North Atlantic Oscillation (NAO) and changes in various trophic levels of the marine ecosystems of the North Atlantic. Examples are presented for phytoplankton, zooplankton, benthos, fish, marine diseases, whales and s...

  13. Climatic regime shifts and their impacts on marine ecosystem and fisheries resources in Korean waters

    NASA Astrophysics Data System (ADS)

    Zhang, Chang Ik; Lee, Jae Bong; Kim, Suam; Oh, Jai-Ho

    2000-10-01

    There were climatic regime shifts over the North Pacific in 1976 and 1988 which affected the dynamics of the marine ecosystem and fisheries resources in Korean waters. Precipitation in Korean waters showed a decadal scale climatic jump, especially of Ullungdo Island, reflecting the regime shift that occurred in the North Pacific. The variation was also detected in East Asian atmospheric systems. The Aleutian Low and North Pacific High Pressure Systems showed substantial changes in 1976 and around 1987-89. 1976 was an unusually warm year for Korea; mean sea surface temperature (SST) was higher than ‘normal’ and was accompanied by a northward shift in the thermal front. Post 1976, the volume transport of the Kuroshio Current increased and higher seawater and air temperatures persisted until 1988. Other shifts occurred after 1976 such as an increase in mixed layer depth (MLD) and biological changes in the ecosystem of Korean waters including decreases in spring primary production and an increase in autumn primary production. Primary production increased again after 1988, and was followed by a significant increase in zooplankton biomass after 1991. The 1976 regime shift was manifested by a decreased biomass and production of saury, but an increase in biomass and production of sardine and filefish in Korean waters. After 1988, recruitment, biomass, and production of sardine collapsed while those of mackerel substantially increased. Based on these observations, hypotheses on the relationship between the climate-driven oceanic changes and changes in fisheries resources were developed and are discussed.

  14. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota.

    PubMed

    Constable, Andrew J; Melbourne-Thomas, Jessica; Corney, Stuart P; Arrigo, Kevin R; Barbraud, Christophe; Barnes, David K A; Bindoff, Nathaniel L; Boyd, Philip W; Brandt, Angelika; Costa, Daniel P; Davidson, Andrew T; Ducklow, Hugh W; Emmerson, Louise; Fukuchi, Mitsuo; Gutt, Julian; Hindell, Mark A; Hofmann, Eileen E; Hosie, Graham W; Iida, Takahiro; Jacob, Sarah; Johnston, Nadine M; Kawaguchi, So; Kokubun, Nobuo; Koubbi, Philippe; Lea, Mary-Anne; Makhado, Azwianewi; Massom, Rob A; Meiners, Klaus; Meredith, Michael P; Murphy, Eugene J; Nicol, Stephen; Reid, Keith; Richerson, Kate; Riddle, Martin J; Rintoul, Stephen R; Smith, Walker O; Southwell, Colin; Stark, Jonathon S; Sumner, Michael; Swadling, Kerrie M; Takahashi, Kunio T; Trathan, Phil N; Welsford, Dirk C; Weimerskirch, Henri; Westwood, Karen J; Wienecke, Barbara C; Wolf-Gladrow, Dieter; Wright, Simon W; Xavier, Jose C; Ziegler, Philippe

    2014-10-01

    Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed. © 2014 John Wiley & Sons Ltd.

  15. Climate change and the marine ecosystem of the western Antarctic Peninsula

    PubMed Central

    Clarke, Andrew; Murphy, Eugene J; Meredith, Michael P; King, John C; Peck, Lloyd S; Barnes, David K.A; Smith, Raymond C

    2006-01-01

    The Antarctic Peninsula is experiencing one of the fastest rates of regional climate change on Earth, resulting in the collapse of ice shelves, the retreat of glaciers and the exposure of new terrestrial habitat. In the nearby oceanic system, winter sea ice in the Bellingshausen and Amundsen seas has decreased in extent by 10% per decade, and shortened in seasonal duration. Surface waters have warmed by more than 1 K since the 1950s, and the Circumpolar Deep Water (CDW) of the Antarctic Circumpolar Current has also warmed. Of the changes observed in the marine ecosystem of the western Antarctic Peninsula (WAP) region to date, alterations in winter sea ice dynamics are the most likely to have had a direct impact on the marine fauna, principally through shifts in the extent and timing of habitat for ice-associated biota. Warming of seawater at depths below ca 100 m has yet to reach the levels that are biologically significant. Continued warming, or a change in the frequency of the flooding of CDW onto the WAP continental shelf may, however, induce sublethal effects that influence ecological interactions and hence food-web operation. The best evidence for recent changes in the ecosystem may come from organisms which record aspects of their population dynamics in their skeleton (such as molluscs or brachiopods) or where ecological interactions are preserved (such as in encrusting biota of hard substrata). In addition, a southwards shift of marine isotherms may induce a parallel migration of some taxa similar to that observed on land. The complexity of the Southern Ocean food web and the nonlinear nature of many interactions mean that predictions based on short-term studies of a small number of species are likely to be misleading. PMID:17405211

  16. Climate change and the marine ecosystem of the western Antarctic Peninsula.

    PubMed

    Clarke, Andrew; Murphy, Eugene J; Meredith, Michael P; King, John C; Peck, Lloyd S; Barnes, David K A; Smith, Raymond C

    2007-01-29

    The Antarctic Peninsula is experiencing one of the fastest rates of regional climate change on Earth, resulting in the collapse of ice shelves, the retreat of glaciers and the exposure of new terrestrial habitat. In the nearby oceanic system, winter sea ice in the Bellingshausen and Amundsen seas has decreased in extent by 10% per decade, and shortened in seasonal duration. Surface waters have warmed by more than 1 K since the 1950s, and the Circumpolar Deep Water (CDW) of the Antarctic Circumpolar Current has also warmed. Of the changes observed in the marine ecosystem of the western Antarctic Peninsula (WAP) region to date, alterations in winter sea ice dynamics are the most likely to have had a direct impact on the marine fauna, principally through shifts in the extent and timing of habitat for ice-associated biota. Warming of seawater at depths below ca 100 m has yet to reach the levels that are biologically significant. Continued warming, or a change in the frequency of the flooding of CDW onto the WAP continental shelf may, however, induce sublethal effects that influence ecological interactions and hence food-web operation. The best evidence for recent changes in the ecosystem may come from organisms which record aspects of their population dynamics in their skeleton (such as molluscs or brachiopods) or where ecological interactions are preserved (such as in encrusting biota of hard substrata). In addition, a southwards shift of marine isotherms may induce a parallel migration of some taxa similar to that observed on land. The complexity of the Southern Ocean food web and the nonlinear nature of many interactions mean that predictions based on short-term studies of a small number of species are likely to be misleading.

  17. Climate change impacts on U.S. coastal and marine ecosystems

    USGS Publications Warehouse

    Scavia, Donald; Field, John C.; Boesch, Donald F.; Buddemeier, Robert W.; Burkett, Virginia; Cayan, Daniel R.; Fogarty, Michael; Harwell, Mark A.; Howarth, Robert W.; Mason, Curt; Reed, Denise J.; Royer, Thomas C.; Sallenger, Asbury H.; Titus, James G.

    2002-01-01

    Increases in concentrations of greenhouse gases projected for the 21st century are expected to lead to increased mean global air and ocean temperatures. The National Assessment of Potential Consequences of Climate Variability and Change (NAST 2001) was based on a series of regional and sector assessments. This paper is a summary of the coastal and marine resources sector review of potential impacts on shorelines, estuaries, coastal wetlands, coral reefs, and ocean margin ecosystems. The assessment considered the impacts of several key drivers of climate change: sea level change; alterations in precipitation patterns and subsequent delivery of freshwater, nutrients, and sediment; increased ocean temperature; alterations in circulation patterns; changes in frequency and intensity of coastal storms; and increased levels of atmospheric CO2. Increasing rates of sea-level rise and intensity and frequency of coastal storms and hurricanes over the next decades will increase threats to shorelines, wetlands, and coastal development. Estuarine productivity will change in response to alteration in the timing and amount of freshwater, nutrients, and sediment delivery. Higher water temperatures and changes in freshwater delivery will alter estuarine stratification, residence time, and eutrophication. Increased ocean temperatures are expected to increase coral bleaching and higher CO2 levels may reduce coral calcification, making it more difficult for corals to recover from other disturbances, and inhibiting poleward shifts. Ocean warming is expected to cause poleward shifts in the ranges of many other organisms, including commercial species, and these shifts may have secondary effects on their predators and prey. Although these potential impacts of climate change and variability will vary from system to system, it is important to recognize that they will be superimposed upon, and in many cases intensify, other ecosystem stresses (pollution, harvesting, habitat destruction

  18. [Modulating marine ecosystem by marine viruses--a review].

    PubMed

    Wang, Hui; Bai, Shijie; Cai, Wenwei; Zheng, Tianling

    2009-05-01

    Marine viruses play great roles in the marine ecological system such as modulating the biodiversity and species population, regulating the nutrient cycling, intervening gene transfer and influencing climate changes. Recent research achievements on marine viruses were reviewed in this paper. We focused on the modulating role of marine viruses in marine ecosystem and discussed future research perspectives.

  19. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management.

    PubMed

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T

    2016-07-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring.

  20. The Mediterranean climate as a template for Mediterranean marine ecosystems: the example of the northeast Spanish littoral

    NASA Astrophysics Data System (ADS)

    Duarte, Carlos M.; Agustí, Susana; Kennedy, Hilary; Vaqué, Dolors

    1999-08-01

    The Mediterranean climate exerts a major influence on the basic properties of the Mediterranean Sea, which constrains the structure and dynamics of the ecosystem. Seasonal variations in the marine climate follow the expected unimodal seasonality only for temperature, while most other forcing factors show a complex variance structure, with dominant time scales of 50-100 days (e.g. wave action), and with some of the factors acting as random factors (‘white noise’) at the annual scale (e.g. rainfall), thereby limiting the predictability of the system. The resulting ecosystem seasonality is unconventional and poorly linked to temperature. The prolonged period of high atmospheric pressure and associated high irradiance and calm waters in late winter is the main seasonal trigger in the NW Mediterranean Sea, setting the development of a phytoplankton bloom, as well as the recruitment of the benthos. Decadal changes in the Mediterranean marine climate are characterized by the dominance of oscillations with a 22-year period, suggesting an important solar forcing on the climate. This forcing masks the monotonous trends, such as the warming and increased sea level in the Mediterranean, expected from anthropogenic forcing. Records of decadal changes in the ecosystem often display a monotonous trend in the deterioration of water quality, indicative of human effects as the main forcing agent, while climatic forcing, which displays oscillatory variation, is of secondary importance. The paucity of long-term records precludes a robust analysis of ecosystem response to decadal climatic forcing. This absence can be partially remediated by the ability to interrogate the long-lived organisms that represent an important, albeit endangered component of Mediterranean biodiversity, to extract records (e.g. growth, temperature, changes in the nature of the dissolved inorganic carbon pool) of the changes they have witnessed.

  1. Marine Ecosystem Response to Rapid Climate Warming on the West Antarctic Peninsula (Invited)

    NASA Astrophysics Data System (ADS)

    Ducklow, H.; Baker, K. S.; Doney, S. C.; Fraser, B.; Martinson, D. G.; Meredith, M. P.; Montes-Hugo, M. A.; Sailley, S.; Schofield, O.; Sherrell, R. M.; Stammerjohn, S. E.; Steinberg, D. K.

    2010-12-01

    The Palmer, Antarctica LTER builds on meteorological, ocean color and seabird observations since the late 1970s. It occupies annually in summer a regional-scale grid extending 700 km northward from Charcot Island to Anvers Island, and 200 km cross-shelf from the coast to the shelfbreak. In addition to routine CTD profiles and zooplankton tows throughout the grid, the observing system also includes Slocum Glider surveys and thermistor moorings. Geophysical changes include +6C atmospheric warming in winter since 1950, a 20% increase in heat content over the continental shelf since 1990, a surface ocean warming of +1C since 1950, an 83-day reduction in sea ice duration (advance 48 days later, retreat 35 days earlier) over the greater southern Bellingshausen Sea region from 1979-2007, intensification of westerly winds and differential changes in cloudiness. In response to these large changes in the regional climate, the marine ecosystem of the western Peninsula is changing at all trophic levels from diatoms to penguins. Ocean color indicates differential changes in phytoplankton stocks in response to regional decreases in sea ice cover. Surface chlorophyll has declined 89% in the north and increased 67% in the south. Antarctic krill and salps have declined and increased in our study area, respectively. Penguin diet sampling suggests changes in populations or distributions of the Antarctic Silverfish in the Anvers Island vicinity, possibly in response to ocean warming. Adélie penguins have declined 75% from 15000 to <3000 pairs at since 1975 in response to changes in food availability and increased late spring snow accumulation. Changes in pygoscelid penguin breeding populations in the Anvers Island vicinity of the West Antarctic Peninsula

  2. the response of marine ecosystems to climate variability associated with the North Atlantic Oscillation

    NASA Astrophysics Data System (ADS)

    Drinkwater, Kenneth F.; Belgrano, Andrea; Borja, Angel; Conversi, Alessandra; Edwards, Martin; Greene, Charles H.; Ottersen, Geir; Pershing, Andrew J.; Walker, Henry

    A strong association is documented between variability of the North Atlantic Oscillation (NAO) and changes in various trophic levels of the marine ecosystems of the North Atlantic. Examples are presented for phytoplankton, zoopiankton, benthos, fish, marine diseases, whales and seabirds. NAO variability is shown to influence abundance, biomass, distribution, species assemblages, growth rates, and survival rates. Examples are drawn from across the North Atlantic. The impacts of the NAO are generally mediated through local changes in the physical environment, such as winds, ocean temperatures, and circulation patterns. The spatial variability in the physical oceanographic responses to NAO forcing leads to spatial differences in biological responses.

  3. Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate.

    PubMed

    van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B

    2017-07-01

    Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.

  4. Development of an Online Climate and Fisheries Data Dashboard for Stakeholders in the Northeast Shelf Large Marine Ecosystem

    NASA Astrophysics Data System (ADS)

    Young Morse, R.

    2016-12-01

    Fisheries managers make decisions that shape the future of ecosystems and the communities that depend on them. These decisions are often made without reference to environmental conditions, or are made assuming that past conditions (physical conditions, productivity, and species distributions) will persist. The rapid changes experienced in the Northeast Shelf Large Marine Ecosystem (NES LME), as well as the high degree of natural variability in this system, are prompting new discussions about how to incorporate environmental information into fisheries policy and management and into the industry. Through this project, we are facilitating access to fisheries and climate data for fisheries stakeholders in the Northeast through the creation of an online dynamic data dashboard. The primary goal is to make complex climate-relevant data accessible and easy to understand. Information on past, present, and future environmental conditions in the NES LME are presented in the context of fisheries dependent data. Working with marine fisheries stakeholders, including fisheries management council members, industry leaders and non-profits, we have developed a suite of open source processes and tools to acquire and subset climate relevant data from a variety of sources (satellites, sensors, models), develop long range climatologies, and display through dynamically updated interactive data visualizations. The resulting dashboard allows users to quickly assess conditions in the ocean and evaluate them in the context of past and projected change.

  5. Climate change and marine vertebrates.

    PubMed

    Sydeman, William J; Poloczanska, Elvira; Reed, Thomas E; Thompson, Sarah Ann

    2015-11-13

    Climate change impacts on vertebrates have consequences for marine ecosystem structures and services. We review marine fish, mammal, turtle, and seabird responses to climate change and discuss their potential for adaptation. Direct and indirect responses are demonstrated from every ocean. Because of variation in research foci, observed responses differ among taxonomic groups (redistributions for fish, phenology for seabirds). Mechanisms of change are (i) direct physiological responses and (ii) climate-mediated predator-prey interactions. Regional-scale variation in climate-demographic functions makes range-wide population dynamics challenging to predict. The nexus of metabolism relative to ecosystem productivity and food webs appears key to predicting future effects on marine vertebrates. Integration of climate, oceanographic, ecosystem, and population models that incorporate evolutionary processes is needed to prioritize the climate-related conservation needs for these species. Copyright © 2015, American Association for the Advancement of Science.

  6. Impacts of climate change on marine ecosystem production in societies dependent on fisheries

    NASA Astrophysics Data System (ADS)

    Barange, M.; Merino, G.; Blanchard, J. L.; Scholtens, J.; Harle, J.; Allison, E. H.; Allen, J. I.; Holt, J.; Jennings, S.

    2014-03-01

    Growing human populations and changing dietary preferences are increasing global demands for fish, adding pressure to concerns over fisheries sustainability. Here we develop and link models of physical, biological and human responses to climate change in 67 marine national exclusive economic zones, which yield approximately 60% of global fish catches, to project climate change yield impacts in countries with different dependencies on marine fisheries. Predicted changes in fish production indicate increased productivity at high latitudes and decreased productivity at low/mid latitudes, with considerable regional variations. With few exceptions, increases and decreases in fish production potential by 2050 are estimated to be <10% (mean +3.4%) from present yields. Among the nations showing a high dependency on fisheries, climate change is predicted to increase productive potential in West Africa and decrease it in South and Southeast Asia. Despite projected human population increases and assuming that per capita fish consumption rates will be maintained, ongoing technological development in the aquaculture industry suggests that projected global fish demands in 2050 could be met, thus challenging existing predictions of inevitable shortfalls in fish supply by the mid-twenty-first century. This conclusion, however, is contingent on successful implementation of strategies for sustainable harvesting and effective distribution of wild fish products from nations and regions with a surplus to those with a deficit. Changes in management effectiveness and trade practices will remain the main influence on realized gains or losses in global fish production.

  7. Implications of climate change for northern Canada: freshwater, marine, and terrestrial ecosystems.

    PubMed

    Prowse, Terry D; Furgal, Chris; Wrona, Fred J; Reist, James D

    2009-07-01

    Climate variability and change is projected to have significant effects on the physical, chemical, and biological components of northern Canadian marine, terrestrial, and freshwater systems. As the climate continues to change, there will be consequences for biodiversity shifts and for the ranges and distribution of many species with resulting effects on availability, accessibility, and quality of resources upon which human populations rely. This will have implications for the protection and management of wildlife, fish, and fisheries resources; protected areas; and forests. The northward migration of species and the disruption and competition from invading species are already occurring and will continue to affect marine, terrestrial, and freshwater communities. Shifting environmental conditions will likely introduce new animal-transmitted diseases and redistribute some existing diseases, affecting key economic resources and some human populations. Stress on populations of iconic wildlife species, such as the polar bear, ringed seals, and whales, will continue as a result of changes in critical sea-ice habitat interactions. Where these stresses affect economically and culturally important species, they will have significant effects on people and regional economies. Further integrated, field-based monitoring and research programs, and the development of predictive models are required to allow for more detailed and comprehensive projections of change to be made, and to inform the development and implementation of appropriate adaptation, wildlife, and habitat conservation and protection strategies.

  8. Paleoecological studies on variability in marine fish populations: A long-term perspective on the impacts of climatic change on marine ecosystems

    NASA Astrophysics Data System (ADS)

    Finney, Bruce P.; Alheit, Jürgen; Emeis, Kay-Christian; Field, David B.; Gutiérrez, Dimitri; Struck, Ulrich

    2010-02-01

    reorganizations in the earth's climate system. Additional sedimentary records of marine fish abundance and corresponding paleoenvironmental conditions are likely to further enhance our understanding of marine ecosystem dynamics.

  9. Climate Action Benefits: Ecosystems

    EPA Pesticide Factsheets

    This page provides background on the relationship between ecosystems and climate change and describes what the CIRA Ecosystems analyses cover. It provides links to the subsectors Coral Reefs, Shellfish, Freshwater Fish, Wildfire, and Carbon Storage.

  10. RETRACTED: Impacts of past climate variability on marine ecosystems: Lessons from sediment records

    NASA Astrophysics Data System (ADS)

    Emeis, Kay-Christian; Finney, Bruce P.; Ganeshram, Raja; Gutiérrez, Dimitri; Poulsen, Bo; Struck, Ulrich

    2010-02-01

    This article has been retracted at the request of the Editor-in-Chief and Author. Please see Elsevier Policy on Article Withdrawal ( http://www.elsevier.com/locate/withdrawalpolicy). Reason: Paragraph 3.3 of this article contains text (verbatim) that had already appeared in a book chapter "Variability from scales in marine sediments and other historical records" by David B. Field, Tim R. Baumgartner, Vicente Ferreira, Dimitri Gutierrez, Hector Lozano-Montes, Renato Salvatteci and Andy Soutar. The book is entitled "Climate Change and Small Pelagic Fish", 2009, edited by Dave Checkley, Claude Roy, Jurgen Alheit, and Yoshioki Oozeki (Cambridge University Press; 2009).The authors would like to apologize for this administrative error on their part.

  11. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts

    PubMed Central

    Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.

    2014-01-01

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065

  12. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts.

    PubMed

    Vergés, Adriana; Steinberg, Peter D; Hay, Mark E; Poore, Alistair G B; Campbell, Alexandra H; Ballesteros, Enric; Heck, Kenneth L; Booth, David J; Coleman, Melinda A; Feary, David A; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M; Mizerek, Toni; Mumby, Peter J; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K

    2014-08-22

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to 'barrens' when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs.

  13. Potential consequences of climate change for primary production and fish production in large marine ecosystems

    PubMed Central

    Blanchard, Julia L.; Jennings, Simon; Holmes, Robert; Harle, James; Merino, Gorka; Allen, J. Icarus; Holt, Jason; Dulvy, Nicholas K.; Barange, Manuel

    2012-01-01

    Existing methods to predict the effects of climate change on the biomass and production of marine communities are predicated on modelling the interactions and dynamics of individual species, a very challenging approach when interactions and distributions are changing and little is known about the ecological mechanisms driving the responses of many species. An informative parallel approach is to develop size-based methods. These capture the properties of food webs that describe energy flux and production at a particular size, independent of species' ecology. We couple a physical–biogeochemical model with a dynamic, size-based food web model to predict the future effects of climate change on fish biomass and production in 11 large regional shelf seas, with and without fishing effects. Changes in potential fish production are shown to most strongly mirror changes in phytoplankton production. We project declines of 30–60% in potential fish production across some important areas of tropical shelf and upwelling seas, most notably in the eastern Indo-Pacific, the northern Humboldt and the North Canary Current. Conversely, in some areas of the high latitude shelf seas, the production of pelagic predators was projected to increase by 28–89%. PMID:23007086

  14. Emergence of modern marine ecosystems.

    PubMed

    Hull, Pincelli M

    2017-06-05

    The structure and function of marine ecosystems are not fixed. Instead, major innovations - from the origin of oxygenic photosynthesis, to the evolution of reefs or of deep bioturbation, to the rise of pelagic calcifiers - have changed biogeochemical cycles and ecosystem dynamics. As a result, modern marine ecosystems are fundamentally different from those in the distant past. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Climate change is projected to reduce carrying capacity and redistribute species richness in North Pacific pelagic marine ecosystems.

    PubMed

    Woodworth-Jefcoats, Phoebe A; Polovina, Jeffrey J; Drazen, Jeffrey C

    2017-03-01

    Climate change is expected to impact all aspects of marine ecosystems, including fisheries. Here, we use output from a suite of 11 earth system models to examine projected changes in two ecosystem-defining variables: temperature and food availability. In particular, we examine projected changes in epipelagic temperature and, as a proxy for food availability, zooplankton density. We find that under RCP8.5, a high business-as-usual greenhouse gas scenario, increasing temperatures may alter the spatial distribution of tuna and billfish species richness across the North Pacific basin. Furthermore, warmer waters and declining zooplankton densities may act together to lower carrying capacity for commercially valuable fish by 2-5% per decade over the 21st century. These changes have the potential to significantly impact the magnitude, composition, and distribution of commercial fish catch across the pelagic North Pacific. Such changes will in turn ultimately impact commercial fisheries' economic value. Fishery managers should anticipate these climate impacts to ensure sustainable fishery yields and livelihoods. © 2016 John Wiley & Sons Ltd.

  16. Information Needs Assessment for Coastal and Marine Management and Policy: Ecosystem Services Under Changing Climatic, Land Use, and Demographic Conditions

    NASA Astrophysics Data System (ADS)

    Goldsmith, Kaitlin A.; Granek, Elise F.; Lubitow, Amy

    2015-12-01

    Changing climatic, demographic, and land use conditions are projected to alter the provisioning of ecosystem services in estuarine, coastal, and nearshore marine ecosystems, necessitating mitigation and adaptation policies and management. The current paradigm of research efforts occurring in parallel to, rather than in collaboration with, decision makers will be insufficient for the rapid responses required to adapt to and mitigate for projected changing conditions. Here, we suggest a different paradigm: one where research begins by engaging decision makers in the identification of priority data needs (biophysical, economic, and social). This paper uses synthesized interview data to provide insight into the varied demands for scientific research as described by decision makers working on coastal issues in Oregon, USA. The findings highlight the need to recognize (1) the differing framing of ecosystem services by decision makers versus scientists; and (2) the differing data priorities relevant to inland versus coastal decision makers. The findings further serve to highlight the need for decision makers, scientists, and funders to engage in increased communication. This research is an important first step in advancing efforts toward evidence-based decision making in Oregon and provides a template for further research across the US.

  17. Information Needs Assessment for Coastal and Marine Management and Policy: Ecosystem Services Under Changing Climatic, Land Use, and Demographic Conditions.

    PubMed

    Goldsmith, Kaitlin A; Granek, Elise F; Lubitow, Amy

    2015-12-01

    Changing climatic, demographic, and land use conditions are projected to alter the provisioning of ecosystem services in estuarine, coastal, and nearshore marine ecosystems, necessitating mitigation and adaptation policies and management. The current paradigm of research efforts occurring in parallel to, rather than in collaboration with, decision makers will be insufficient for the rapid responses required to adapt to and mitigate for projected changing conditions. Here, we suggest a different paradigm: one where research begins by engaging decision makers in the identification of priority data needs (biophysical, economic, and social). This paper uses synthesized interview data to provide insight into the varied demands for scientific research as described by decision makers working on coastal issues in Oregon, USA. The findings highlight the need to recognize (1) the differing framing of ecosystem services by decision makers versus scientists; and (2) the differing data priorities relevant to inland versus coastal decision makers. The findings further serve to highlight the need for decision makers, scientists, and funders to engage in increased communication. This research is an important first step in advancing efforts toward evidence-based decision making in Oregon and provides a template for further research across the US.

  18. Linking climate to population variability in marine ecosystems characterized by non-simple dynamics: Conceptual templates and schematic constructs

    NASA Astrophysics Data System (ADS)

    Bakun, Andrew

    2010-02-01

    The ability to abstract and symbolize ideas and knowledge as simplified schematic constructs is an important element of scientific creativity and communication. Availability of such generalized symbolic constructs may be particularly important when addressing a complex adaptive system such as a marine ecosystem. Various examples have appeared in the climate-fisheries literature, each more or less effectively integrating hypothesized effects of several interacting environmental and/or biological processes in controlling population dynamics of exploited fish species. A selection of these are herein presented and reviewed, including match-mismatch, connectivity, school trap, loopholes, ocean triads, stable ocean hypothesis, several classes of nonlinear feedback loops (e.g., ' P2P', school-mix feedback, predator pit), as well as several prominent large-scale integrative climatic index series ( SOI, NAO, PDO). The importance of considering the potential for adaptation and/or rapid evolution is stressed. An argument is offered for the potential utility of such widely recognizable schematic concepts in offering relatively well-understood, fairly well-defined frameworks for comparative identification and elaboration of important mechanistic linkages between climate variability and fishery dynamics, as well as in easing effective communication among scientists from different regions and disciplinary backgrounds. Certain difficulties in the application of the comparative method are discussed. It is suggested that alleviation of such difficulties may be one of the major benefits of international collaborative programs such as GLOBEC and IMBER.

  19. Towards end-to-end models for investigating the effects of climate and fishing in marine ecosystems

    NASA Astrophysics Data System (ADS)

    Travers, M.; Shin, Y.-J.; Jennings, S.; Cury, P.

    2007-12-01

    End-to-end models that represent ecosystem components from primary producers to top predators, linked through trophic interactions and affected by the abiotic environment, are expected to provide valuable tools for assessing the effects of climate change and fishing on ecosystem dynamics. Here, we review the main process-based approaches used for marine ecosystem modelling, focusing on the extent of the food web modelled, the forcing factors considered, the trophic processes represented, as well as the potential use and further development of the models. We consider models of a subset of the food web, models which represent the first attempts to couple low and high trophic levels, integrated models of the whole ecosystem, and size spectrum models. Comparisons within and among these groups of models highlight the preferential use of functional groups at low trophic levels and species at higher trophic levels and the different ways in which the models account for abiotic processes. The model comparisons also highlight the importance of choosing an appropriate spatial dimension for representing organism dynamics. Many of the reviewed models could be extended by adding components and by ensuring that the full life cycles of species components are represented, but end-to-end models should provide full coverage of ecosystem components, the integration of physical and biological processes at different scales and two-way interactions between ecosystem components. We suggest that this is best achieved by coupling models, but there are very few existing cases where the coupling supports true two-way interaction. The advantages of coupling models are that the extent of discretization and representation can be targeted to the part of the food web being considered, making their development time- and cost-effective. Processes such as predation can be coupled to allow the propagation of forcing factors effects up and down the food web. However, there needs to be a stronger focus

  20. Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem.

    PubMed

    Jochum, Malte; Schneider, Florian D; Crowe, Tasman P; Brose, Ulrich; O'Gorman, Eoin J

    2012-11-05

    Climate change has complex structural impacts on coastal ecosystems. Global warming is linked to a widespread decline in body size, whereas increased flood frequency can amplify nutrient enrichment through enhanced run-off. Altered population body-size structure represents a disruption in top-down control, whereas eutrophication embodies a change in bottom-up forcing. These processes are typically studied in isolation and little is known about their potential interactive effects. Here, we present the results of an in situ experiment examining the combined effects of top-down and bottom-up forces on the structure of a coastal marine community. Reduced average body mass of the top predator (the shore crab, Carcinus maenas) and nutrient enrichment combined additively to alter mean community body mass. Nutrient enrichment increased species richness and overall density of organisms. Reduced top-predator body mass increased community biomass. Additionally, we found evidence for an allometrically induced trophic cascade. Here, the reduction in top-predator body mass enabled greater biomass of intermediate fish predators within the mesocosms. This, in turn, suppressed key micrograzers, which led to an overall increase in microalgal biomass. This response highlights the possibility for climate-induced trophic cascades, driven by altered size structure of populations, rather than species extinction.

  1. Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem

    PubMed Central

    Jochum, Malte; Schneider, Florian D.; Crowe, Tasman P.; Brose, Ulrich; O'Gorman, Eoin J.

    2012-01-01

    Climate change has complex structural impacts on coastal ecosystems. Global warming is linked to a widespread decline in body size, whereas increased flood frequency can amplify nutrient enrichment through enhanced run-off. Altered population body-size structure represents a disruption in top-down control, whereas eutrophication embodies a change in bottom-up forcing. These processes are typically studied in isolation and little is known about their potential interactive effects. Here, we present the results of an in situ experiment examining the combined effects of top-down and bottom-up forces on the structure of a coastal marine community. Reduced average body mass of the top predator (the shore crab, Carcinus maenas) and nutrient enrichment combined additively to alter mean community body mass. Nutrient enrichment increased species richness and overall density of organisms. Reduced top-predator body mass increased community biomass. Additionally, we found evidence for an allometrically induced trophic cascade. Here, the reduction in top-predator body mass enabled greater biomass of intermediate fish predators within the mesocosms. This, in turn, suppressed key micrograzers, which led to an overall increase in microalgal biomass. This response highlights the possibility for climate-induced trophic cascades, driven by altered size structure of populations, rather than species extinction. PMID:23007084

  2. Marine ecosystem responses to Cenozoic global change.

    PubMed

    Norris, R D; Turner, S Kirtland; Hull, P M; Ridgwell, A

    2013-08-02

    The future impacts of anthropogenic global change on marine ecosystems are highly uncertain, but insights can be gained from past intervals of high atmospheric carbon dioxide partial pressure. The long-term geological record reveals an early Cenozoic warm climate that supported smaller polar ecosystems, few coral-algal reefs, expanded shallow-water platforms, longer food chains with less energy for top predators, and a less oxygenated ocean than today. The closest analogs for our likely future are climate transients, 10,000 to 200,000 years in duration, that occurred during the long early Cenozoic interval of elevated warmth. Although the future ocean will begin to resemble the past greenhouse world, it will retain elements of the present "icehouse" world long into the future. Changing temperatures and ocean acidification, together with rising sea level and shifts in ocean productivity, will keep marine ecosystems in a state of continuous change for 100,000 years.

  3. Anthropogenic impacts on marine ecosystems in Antarctica.

    PubMed

    Aronson, Richard B; Thatje, Sven; McClintock, James B; Hughes, Kevin A

    2011-03-01

    Antarctica is the most isolated continent on Earth, but it has not escaped the negative impacts of human activity. The unique marine ecosystems of Antarctica and their endemic faunas are affected on local and regional scales by overharvesting, pollution, and the introduction of alien species. Global climate change is also having deleterious impacts: rising sea temperatures and ocean acidification already threaten benthic and pelagic food webs. The Antarctic Treaty System can address local- to regional-scale impacts, but it does not have purview over the global problems that impinge on Antarctica, such as emissions of greenhouse gases. Failure to address human impacts simultaneously at all scales will lead to the degradation of Antarctic marine ecosystems and the homogenization of their composition, structure, and processes with marine ecosystems elsewhere.

  4. Constructing an Eocene Marine Ecosystem Sensitivity Scale

    NASA Astrophysics Data System (ADS)

    D'haenens, S.; Bornemann, A.; Speijer, R. P.; Hull, P. M.

    2014-12-01

    A key question in the face of current global environmental change is how marine ecosystems will respond and evolve in the future. To answer this, we first need to understand the relationship between environmental and ecosystem change - i.e., the ecosystem sensitivity. Addressing this question requires understanding of how biota respond to (a succession of) sudden environmental perturbations of varying sizes and durations in varying background conditions (i.e., climatic, oceanographic, biotic). Here, we compare new and published data from the Early to Middle Eocene greenhouse world to understand the sensitivity of marine ecosystems to background environmental change and hyperthermal events. This work focuses on the early Paleogene, because it is considered to be a good analog for a future high CO2 world. Newly generated high-resolution multiproxy datasets based on northern Atlantic DSDP Leg 48 and IODP Leg 342 material will allow us to compare the marine ecosystem responses (including bentho-pelagic systems) to abiotic drivers across climatic disruptions of differing magnitude. Initial results of a benthic foraminiferal community comparison including the PETM and ETM2 hyperthermals in the northeastern Atlantic DSDP sites 401 and 5501 suggest that benthic ecosystem sensitivity may actually be non-linearly linked to background climate states as reflected by a range of geochemical proxies (XRF, TOC, CaCO3, grain sizes, XRD clay mineralogy and foraminiferal δ18O, δ13C, Mg/Ca)2,3, in contrast to planktic communities4. Testing the type of scaling across different taxa, communities, initial background conditions and time scales may be the first big step to disentangle the often synergistic effects of environmental change on ecosystems5. References: 1D'haenens et al., 2012, in prep. 2Bornemann et al., 2014, EPSL 3D'haenens et al., 2014, PA 4Gibbs et al., 2012, Biogeosc. 5 Norris et al., 2013, Science

  5. Tipping elements in the Arctic marine ecosystem.

    PubMed

    Duarte, Carlos M; Agustí, Susana; Wassmann, Paul; Arrieta, Jesús M; Alcaraz, Miquel; Coello, Alexandra; Marbà, Núria; Hendriks, Iris E; Holding, Johnna; García-Zarandona, Iñigo; Kritzberg, Emma; Vaqué, Dolors

    2012-02-01

    The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.

  6. Climate Variability and Ecosystem Response

    Treesearch

    David Greenland; Lloyd W. Swift; [Editors

    1990-01-01

    Nine papers describe studies of climate variability and ecosystem response. The studies were conducted at LTER (Long-Term Ecological Research) sites representing forest, agricultural, and aquatic ecosystems and systems in which extreme climates limit vegetational cover. An overview paper prepared by the LTER Climate Committee stresses the importance of (1) clear...

  7. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems.

    PubMed

    Pörtner, H-O

    2010-03-15

    The concept of oxygen- and capacity-dependent thermal tolerance in aquatic ectotherms has successfully explained climate-induced effects of rising temperatures on species abundance in the field. Oxygen supply to tissues and the resulting aerobic performance characters thus form a primary link between organismal fitness and its role and functioning at the ecosystem level. The thermal window of performance in water breathers matches their window of aerobic scope. Loss of performance reflects the earliest level of thermal stress, caused by hypoxaemia and the progressive mismatch of oxygen supply and demand at the borders of the thermal envelope. Oxygen deficiency elicits the transition to passive tolerance and associated systemic and cellular stress signals like hormonal responses or oxidative stress as well as the use of protection mechanisms like heat shock proteins at thermal extremes. Thermal acclimatization between seasons or adaptation to a climate regime involves shifting thermal windows and adjusting window widths. The need to specialize on a limited temperature range results from temperature-dependent trade-offs at several hierarchical levels, from molecular structure to whole-organism functioning, and may also support maximized energy efficiency. Various environmental factors like CO(2) (ocean acidification) and hypoxia interact with these principal relationships. Existing knowledge suggests that these factors elicit metabolic depression supporting passive tolerance to thermal extremes. However, they also exacerbate hypoxaemia, causing a narrowing of thermal performance windows and prematurely leading the organism to the limits of its thermal acclimation capacity. The conceptual analysis suggests that the relationships between energy turnover, the capacities of activity and other functions and the width of thermal windows may lead to an integrative understanding of specialization on climate and, as a thermal matrix, of sensitivity to climate change and the

  8. Marine pelagic ecosystems: the west Antarctic Peninsula.

    PubMed

    Ducklow, Hugh W; Baker, Karen; Martinson, Douglas G; Quetin, Langdon B; Ross, Robin M; Smith, Raymond C; Stammerjohn, Sharon E; Vernet, Maria; Fraser, William

    2007-01-29

    The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba. Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 2 degrees C increase in the annual mean temperature and a 6 degrees C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.6 degrees C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in icedependent Adélie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate

  9. Marine pelagic ecosystems: the West Antarctic Peninsula

    PubMed Central

    Ducklow, Hugh W; Baker, Karen; Martinson, Douglas G; Quetin, Langdon B; Ross, Robin M; Smith, Raymond C; Stammerjohn, Sharon E; Vernet, Maria; Fraser, William

    2006-01-01

    The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba. Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 2°C increase in the annual mean temperature and a 6°C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.6°C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in ice-dependent Adélie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate/ecological gradients

  10. Ecotoxicology of tropical marine ecosystems

    SciTech Connect

    Peters, E.C.; Gassman, N.J.; Firman, J.C.; Richmond, R.H.; Power, E.A.

    1997-01-01

    The negative effects of chemical contaminants on tropical marine ecosystems are of increasing concern as human populations expand adjacent to these communities. Watershed streams and ground water carry a variety of chemicals from agricultural, industrial, and domestic activities, while winds and currents transport pollutants from atmospheric and oceanic sources to these coastal ecosystems. The implications of the limited information available on impacts of chemical stressors on mangrove forests, seagrass meadows, and coral reefs are discussed in the context of ecosystem management and ecological risk assessment. Three classes of pollutants have received attention: heavy metals, petroleum, and synthetic organics. Heavy metals have been detected in all three ecosystems, causing physiological stress, reduced reproductive success, and outright mortality in associated invertebrates and fishes. Oil spills have been responsible for the destruction of entire coastal shallow-water communities, with recovery requiring years. Herbicides are particularly detrimental to mangroves and seagrasses and adversely affect the animal-algal symbioses in corals. Pesticides interfere with chemical cues responsible for key biological processes, including reproduction and recruitment of a variety of organisms. Information is lacking with regard to long-term recovery, indicator species, and biomarkers for tropical communities. Critical areas that are beginning to be addressed include the development of appropriate benchmarks for risk assessment, baseline monitoring criteria, and effective management strategies to protect tropical marine ecosystems in the face of mounting anthropogenic disturbance.

  11. Marine biodiversity, ecosystem functioning, and carbon cycles.

    PubMed

    Beaugrand, Grégory; Edwards, Martin; Legendre, Louis

    2010-06-01

    Although recent studies suggest that climate change may substantially accelerate the rate of species loss in the biosphere, only a few studies have focused on the potential consequences of a spatial reorganization of biodiversity with global warming. Here, we show a pronounced latitudinal increase in phytoplanktonic and zooplanktonic biodiversity in the extratropical North Atlantic Ocean in recent decades. We also show that this rise in biodiversity paralleled a decrease in the mean size of zooplanktonic copepods and that the reorganization of the planktonic ecosystem toward dominance by smaller organisms may influence the networks in which carbon flows, with negative effects on the downward biological carbon pump and demersal Atlantic cod (Gadus morhua). Our study suggests that, contrary to the usual interpretation of increasing biodiversity being a positive emergent property promoting the stability/resilience of ecosystems, the parallel decrease in sizes of planktonic organisms could be viewed in the North Atlantic as reducing some of the services provided by marine ecosystems to humans.

  12. From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots.

    PubMed

    Popova, Ekaterina; Yool, Andrew; Byfield, Valborg; Cochrane, Kevern; Coward, Andrew C; Salim, Shyam S; Gasalla, Maria A; Henson, Stephanie A; Hobday, Alistair J; Pecl, Gretta T; Sauer, Warwick H; Roberts, Michael J

    2016-06-01

    climate change impacting marine ecosystems in these areas. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  13. Marine viruses and global climate change.

    PubMed

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'anno, Antonio; Fuhrman, Jed A; Middelburg, Jack J; Noble, Rachel T; Suttle, Curtis A

    2011-11-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface oceans. Changing climate has direct and indirect consequences on marine viruses, including cascading effects on biogeochemical cycles, food webs, and the metabolic balance of the ocean. We discuss here a range of case studies of climate change and the potential consequences on virus function, viral assemblages and virus-host interactions. In turn, marine viruses influence directly and indirectly biogeochemical cycles, carbon sequestration capacity of the oceans and the gas exchange between the ocean surface and the atmosphere. We cannot yet predict whether the viruses will exacerbate or attenuate the magnitude of climate changes on marine ecosystems, but we provide evidence that marine viruses interact actively with the present climate change and are a key biotic component that is able to influence the oceans' feedback on climate change. Long-term and wide spatial-scale studies, and improved knowledge of host-virus dynamics in the world's oceans will permit the incorporation of the viral component into future ocean climate models and increase the accuracy of the predictions of the climate change impacts on the function of the oceans.

  14. Observational information on a temperate reef community helps understanding the marine climate and ecosystem shift of the 1980-90s.

    PubMed

    Gatti, Giulia; Bianchi, Carlo Nike; Montefalcone, Monica; Venturini, Sara; Diviacco, Giovanni; Morri, Carla

    2017-01-15

    The dearth of long-time series hampers the measurement of the ecosystem change that followed the global marine climate shift of the 1980-90s. The sessile communities of Portofino Promontory reefs (Ligurian Sea, NW Mediterranean) have been discontinuously studied since the 1950s. Collating information from various sources, three periods of investigations have been distinguished: 1) 1950-70s; 2) 1980-90s; 3) 2000-10s. A cooler phase in time 1 was followed by a rapid warming in time 2, to stabilize at about 0.5°C higher in time 3. Human pressure grew impressively, especially after the establishment of a MPA in 1999. Multivariate analyses evidenced a major change of community composition in time 2. Some species disappeared or got rarer, many found refuge at depth, and among the newcomers there were recently introduced alien species. This study demonstrated the importance of descriptive historical data to understand magnitude and pattern of change in the long term evolution of marine ecosystems.

  15. Marine ecology: gelatinous bells may ring change in marine ecosystems.

    PubMed

    Hay, Steve

    2006-09-05

    Gelatinous plankton are critical components of marine ecosystems. Recent studies are providing evidence of increased population outbursts of such species. Jellyfish seem to respond when an ecosystem is over-fished, and their ecology is under-researched.

  16. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models

    NASA Astrophysics Data System (ADS)

    Cabré, Anna; Marinov, Irina; Leung, Shirley

    2015-09-01

    We analyze for the first time all 16 Coupled Model Intercomparison Project Phase 5 models with explicit marine ecological modules to identify the common mechanisms involved in projected phytoplankton biomass, productivity, and organic carbon export changes over the twenty-first century in the RCP8.5 scenario (years 2080-2099) compared to the historical scenario (years 1980-1999). All models predict decreases in primary and export production globally of up to 30 % of the historical value. We divide the ocean into biomes using upwelling velocities, sea-ice coverage, and maximum mixed layer depths. Models generally show expansion of subtropical, oligotrophic biomes and contraction of marginal sea-ice biomes. The equatorial and subtropical biomes account for 77 % of the total modern oceanic primary production (PP), but contribute 117 % to the global drop in PP, slightly compensated by an increase in PP in high latitudes. The phytoplankton productivity response to climate is surprisingly similar across models in low latitude biomes, indicating a common set of modeled processes controlling productivity changes. Ecological responses are less consistent across models in the subpolar and sea-ice biomes. Inter-hemispheric asymmetries in physical drivers result in stronger climate-driven relative decreases in biomass, productivity, and export of organic matter in the northern compared to the southern hemisphere low latitudes. The export ratio, a measure of the efficiency of carbon export to the deep ocean, decreases across low and mid-latitude biomes and models with more than one phytoplankton type, particularly in the northern hemisphere. Inter-model variability is much higher for biogeochemical than physical variables in the historical period, but is very similar among predicted 100-year biogeochemical and physical changes. We include detailed biome-by-biome analyses, discuss the decoupling between biomass, productivity and export across biomes and models, and present

  17. Endolithic fungi in marine ecosystems.

    PubMed

    Golubic, Stjepko; Radtke, Gudrun; Le Campion-Alsumard, Therese

    2005-05-01

    Fungi are an important constituent of microbial endolithic assemblages in marine ecosystems. As euendoliths, they penetrate limestone, mollusk shells and other carbonate substrates, where they can exploit mineralized organic matter, attack their hosts, or engage in symbiotic relationships. They leave specific boring traces, which can be identified in the fossil record and described as trace fossils. Their distribution is independent of light and extends from the intertidal ranges to abyssal oceanic depths. Important, but insufficiently studied, is the role of aggressive endolithic fungi in skeletons of corals where they are ubiquitous and globally distributed. In healthy growing reef corals, the relationship between the coral coelenterate, endolithic algae and fungi is in a state of equilibrium, but can turn detrimental to coral health when reefs are exposed to environmental stress.

  18. Climate change and marine life.

    PubMed

    Richardson, Anthony J; Brown, Christopher J; Brander, Keith; Bruno, John F; Buckley, Lauren; Burrows, Michael T; Duarte, Carlos M; Halpern, Benjamin S; Hoegh-Guldberg, Ove; Holding, Johnna; Kappel, Carrie V; Kiessling, Wolfgang; Moore, Pippa J; O'Connor, Mary I; Pandolfi, John M; Parmesan, Camille; Schoeman, David S; Schwing, Frank; Sydeman, William J; Poloczanska, Elvira S

    2012-12-23

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC) process, and to strengthen research into ecological impacts of climate change.

  19. Marine biodiversity, ecosystem functioning, and carbon cycles

    PubMed Central

    Beaugrand, Grégory; Edwards, Martin; Legendre, Louis

    2010-01-01

    Although recent studies suggest that climate change may substantially accelerate the rate of species loss in the biosphere, only a few studies have focused on the potential consequences of a spatial reorganization of biodiversity with global warming. Here, we show a pronounced latitudinal increase in phytoplanktonic and zooplanktonic biodiversity in the extratropical North Atlantic Ocean in recent decades. We also show that this rise in biodiversity paralleled a decrease in the mean size of zooplanktonic copepods and that the reorganization of the planktonic ecosystem toward dominance by smaller organisms may influence the networks in which carbon flows, with negative effects on the downward biological carbon pump and demersal Atlantic cod (Gadus morhua). Our study suggests that, contrary to the usual interpretation of increasing biodiversity being a positive emergent property promoting the stability/resilience of ecosystems, the parallel decrease in sizes of planktonic organisms could be viewed in the North Atlantic as reducing some of the services provided by marine ecosystems to humans. PMID:20479247

  20. [Management of large marine ecosystem based on ecosystem approach].

    PubMed

    Chu, Jian-song

    2011-09-01

    Large marine ecosystem (LME) is a large area of ocean characterized by distinct oceanology and ecology. Its natural characteristics require management based on ecosystem approach. A series of international treaties and regulations definitely or indirectly support that it should adopt ecosystem approach to manage LME to achieve the sustainable utilization of marine resources. In practices, some countries such as Canada, Australia, and U.S.A. have adopted ecosystem-based approach to manage their oceans, and some international organizations such as global environment fund committee have carried out a number of LME programs based on ecosystem approach. Aiming at the sustainable development of their fisheries, the regional organizations such as Caribbean Community have established regional fisheries mechanism. However, the adoption of ecosystem approach to manage LME is not only a scientific and legal issue, but also a political matter largely depending on the political will and the mutual cooperation degree of related countries.

  1. Interractions between Atmosphere,Ecosystem and Marine environment in Nigeria.

    NASA Astrophysics Data System (ADS)

    Salami, Tairu

    Over the past decades we have witnessed extra-ordinary natural and anthropogenically-driven changes in Ocean Biogeochemical composition.Most of atmospheric and oceanic climatic variability have been related to interaction between Ecosystem,Atmosphere and Marine environment. Between 2004-2006 we studied the Interconnection and Teleconnection between ecosystem,atmosphere and marine environment.We noted that critical imput of nutrients by Riverine and increase in Green house gases caused significant changes in Biogeochemical properties of ocean around Lagos area of Nigeria.In turn, the feedback to local communities has resulted in changes in their economies and diets. More practical issues will be presented.

  2. Terrestrial ecosystems and climatic change

    SciTech Connect

    Emanuel, W.R. ); Schimel, D.S. . Natural Resources Ecology Lab.)

    1990-01-01

    The structure and function of terrestrial ecosystems depend on climate, and in turn, ecosystems influence atmospheric composition and climate. A comprehensive, global model of terrestrial ecosystem dynamics is needed. A hierarchical approach appears advisable given currently available concepts, data, and formalisms. The organization of models can be based on the temporal scales involved. A rapidly responding model describes the processes associated with photosynthesis, including carbon, moisture, and heat exchange with the atmosphere. An intermediate model handles subannual variations that are closely associated with allocation and seasonal changes in productivity and decomposition. A slow response model describes plant growth and succession with associated element cycling over decades and centuries. These three levels of terrestrial models are linked through common specifications of environmental conditions and constrain each other. 58 refs.

  3. Marine regime shifts: drivers and impacts on ecosystems services

    PubMed Central

    Rocha, J.; Yletyinen, J.; Biggs, R.; Blenckner, T.; Peterson, G.

    2015-01-01

    Marine ecosystems can experience regime shifts, in which they shift from being organized around one set of mutually reinforcing structures and processes to another. Anthropogenic global change has broadly increased a wide variety of processes that can drive regime shifts. To assess the vulnerability of marine ecosystems to such shifts and their potential consequences, we reviewed the scientific literature for 13 types of marine regime shifts and used networks to conduct an analysis of co-occurrence of drivers and ecosystem service impacts. We found that regime shifts are caused by multiple drivers and have multiple consequences that co-occur in a non-random pattern. Drivers related to food production, climate change and coastal development are the most common co-occurring causes of regime shifts, while cultural services, biodiversity and primary production are the most common cluster of ecosystem services affected. These clusters prioritize sets of drivers for management and highlight the need for coordinated actions across multiple drivers and scales to reduce the risk of marine regime shifts. Managerial strategies are likely to fail if they only address well-understood or data-rich variables, and international cooperation and polycentric institutions will be critical to implement and coordinate action across the scales at which different drivers operate. By better understanding these underlying patterns, we hope to inform the development of managerial strategies to reduce the risk of high-impact marine regime shifts, especially for areas of the world where data are not available or monitoring programmes are not in place.

  4. The influence of climate regime shifts on the marine environment and ecosystems in the East Asian Marginal Seas and their mechanisms

    NASA Astrophysics Data System (ADS)

    Kun Jung, Hae; Rahman, SM Mustafizur; Kang, Chang-Keun; Park, Se-Young; Heon Lee, Sang; Je Park, Hyun; Kim, Hyun-Woo; Il Lee, Chung

    2017-09-01

    Step changes to seawater temperature (SWT) in the East Asian marginal seas (EAMS) are associated with three recent climate regime shifts (CRS) occurring in the mid-1970s, late 1980s, and late 1990s, but the responses of the ocean conditions and marine ecosystems had regional differences. A step change in SWT in the East China Sea (ECS) was detected after the CRS of the 1970s as were step changes in the North Pacific Index (NPI), Pacific Decadal Oscillation Index (PDOI), and East Asian Winter Monsoon Index (EAWMI). SWT in the ECS decreased with decreasing warm water volume transport into the EAMS and a strong monsoon, but step changes in SWT in other regions were not detected as clearly. After the CRS of the 1980s, SWT in all EAMS increased rapidly with step changes detected in all five climate indices examined. These changes were associated with a weak winter monsoon, increasing surface air temperature (SAT), and increasing warm water volume transport into the EAMS. However, after the CRS of the 1990s, a decrease in SWT around the EAMS was detected in the northern part of East China Sea (NECS), and the ECS with step changes also in the EAWMI and the Arctic Oscillation Index (AOI). In contrast, SWT in the East Sea/Sea of Japan (EJS) and the Yellow Sea (YS) continuously increased during this time. Long-term changes in zooplankton biomass were affected by regional differences in the responses of atmospheric and oceanic variability to CRSs. Specifically, long-term changes in the timing of peaks in zooplankton abundances exhibited differences. During warm periods (e.g. after the 1980s CRS) in the EJS, the amount of zooplankton biomass in October increased, while in February it decreased. On the contrary, in the YS and the NECS, the peaks of October and June in zooplankton biomass occurred during cold periods (after the 1970s and 1990s CRS). Major fisheries resources also responded to the three CRSs, although warm and cold water species responded differently to changes

  5. Climatic Impacts and resilience of coastal ecosystems and fisheries

    NASA Astrophysics Data System (ADS)

    Micheli, F.

    2012-12-01

    Marine and coastal ecosystems and human communities around the world are impacted by local anthropogenic pressures and by climate change, resulting in decreased ocean productivity, altered food web dynamics, habitat degradation, economic losses, and health and safety risks as a consequence of the changing and more variable climate. Climatic impacts occur both through altered physical conditions and variability, e.g., seawater temperature and sea level, and through a suite of chemical changes, including ocean acidification and hypoxia. In particular, time series analyses have highlighted declines in dissolved oxygen (DO) concentration in the ocean over the last several decades. In addition to these global trends of decreasing DO, hypoxic conditions have been documented at several coastal locations within productive upwelling-driven ecosystems, including the California Current region, resulting in high mortality of ecologically and commercially important nearshore marine species and significant economic losses. The capacity of local ecosystems and associated human communities to adapt to these pressures depends on their resilience, that is the ability of ecosystems to absorb disturbance while retaining function and continuing to provide ecosystem services, and the ability of people to adapt to change in their environment by altering their behaviors and interactions. I will present global assessments of the cumulative impacts of climatic and local anthropogenic pressures on marine ecosystems, and results of interdisciplinary research investigating the current impacts of climate change on coastal marine ecosystems and human communities of the Pacific coast of Baja California, Mexico, and the influences of local and global feedbacks on the resilience and adaptive capacity of these systems.

  6. Middle Atlantic Bight Marine Ecosystem: A Regional Forecast Model Study

    NASA Astrophysics Data System (ADS)

    Kim, H.; Coles, V. J.; Garraffo, Z. D.

    2011-12-01

    Changes in basin scale climate patterns can drive changes in mesoscale physical oceanographic processes and subsequent alterations of ecosystem states. Climatic variability can be induced in the northeastern shelfbreak large marine ecosystem by climate oscillations, such as North Atlantic Oscillation, Atlantic Multidecadal Oscillation; and long-term trends, such as a warming pattern. Short term variability can be induced by changes in the water masses in the northern and southern boundaries, by Gulf Stream path and transport variations, and by local mesoscale and submesoscale features. A coupled bio-physical model (HYbrid Coordinate Ocean Model) is being used to forecast the evolution of the frontal and current systems of the shelf and Gulf Stream, and subsequent changes in thermal conditions and ecosystem structure over the Middle Atlantic Bight (MAB). This study aims to forecast the ocean state and nutrients in the MAB, and to investigate how cross-shelf exchanges of different water masses could affect nutrient budgets, primary and secondary production, and fish populations in coastal and shelf marine ecosystems. Preliminary results are shown for a regional MAB model nested to the global 1/12o HYCOM run at NOAA/NCEP/EMC using Naval Oceanographic Office (NAVO) daily initialization. Elements of this simulation are nutrient influx condition at the northern and southern boundaries through regression to ocean thermodynamic variables, and nutrient input at the river mouths.

  7. Climate of the Arctic marine environment.

    PubMed

    Walsh, John E

    2008-03-01

    The climate of the Arctic marine environment is characterized by strong seasonality in the incoming solar radiation and by tremendous spatial variations arising from a variety of surface types, including open ocean, sea ice, large islands, and proximity to major landmasses. Interannual and decadal-scale variations are prominent features of Arctic climate, complicating the distinction between natural and anthropogenically driven variations. Nevertheless, climate models consistently indicate that the Arctic is the most climatically sensitive region of the Northern Hemisphere, especially near the sea ice margins. The Arctic marine environment has shown changes over the past several decades, and these changes are part of a broader global warming that exceeds the range of natural variability over the past 1000 years. Record minima of sea ice coverage during the past few summers and increased melt from Greenland have important implications for the hydrographic regime of the Arctic marine environment. The recent changes in the atmosphere (temperature, precipitation, pressure), sea ice, and ocean appear to be a coordinated response to systematic variations of the large-scale atmospheric circulation, superimposed on a general warming that is likely associated with increasing greenhouse gases. The changes have been sufficiently large in some sectors (e.g., the Bering/Chukchi Seas) that consequences for marine ecosystems appear to be underway. Global climate models indicate an additional warming of several degrees Celsius in much of the Arctic marine environment by 2050. However, the warming is seasonal (largest in autumn and winter), spatially variable, and closely associated with further retreat of sea ice. Additional changes predicted for 2050 are a general decrease of sea level pressure (largest in the Bering sector) and an increase of precipitation. While predictions of changes in storminess cannot be made with confidence, the predicted reduction of sea ice cover will

  8. Emergent Properties Delineate Marine Ecosystem Perturbation and Recovery.

    PubMed

    Link, Jason S; Pranovi, Fabio; Libralato, Simone; Coll, Marta; Christensen, Villy; Solidoro, Cosimo; Fulton, Elizabeth A

    2015-11-01

    Whether there are common and emergent patterns from marine ecosystems remains an important question because marine ecosystems provide billions of dollars of ecosystem services to the global community, but face many perturbations with significant consequences. Here, we develop cumulative trophic patterns for marine ecosystems, featuring sigmoidal cumulative biomass (cumB)-trophic level (TL) and 'hockey-stick' production (cumP)-cumB curves. The patterns have a trophodynamic theoretical basis and capitalize on emergent, fundamental, and invariant features of marine ecosystems. These patterns have strong global support, being observed in over 120 marine ecosystems. Parameters from these curves elucidate the direction and magnitude of marine ecosystem perturbation or recovery; if biomass and productivity can be monitored effectively over time, such relations may prove to be broadly useful. Curve parameters are proposed as possible ecosystem thresholds, perhaps to better manage the marine ecosystems of the world.

  9. Terrestrial ecosystems under warmer and drier climates

    NASA Astrophysics Data System (ADS)

    Pan, Y.

    2016-12-01

    Future warmer and drier climates will likely affect many of the world's terrestrial ecosystems. These changes will fundamentally reshape terrestrial systems through their components and across organization levels. However, it is unclear to what extent terrestrial ecosystems would be resilient enough to stay put to increased temperature and water stress by only adjusting carbon fluxes and water balances? And to what extent it would reach the thresholds at which terrestrial ecosystems were forced to alter species compositions and ecosystem structures for adapting to newer climates? The energy balance of terrestrial ecosystems link thermal and water conditions to defines terrestrial carbon processes and feedbacks to climate, which will inevitably change under warmer and drier climates. Recent theoretical studies provide a new framework, suggesting that terrestrial ecosystems were capable of balancing costs of carbon gain and water transport to achieve optimums for functioning and distribution. Such a paradigm is critical for understanding the dynamics of future terrestrial ecosystems under climate changes, and facilitate modeling terrestrial ecosystems which needs generalized principles for formulating ecosystem behaviors. This study aims to review some recent studies that explore responses of terrestrial ecosystems to rather novel climate conditions, such as heat-induced droughts, intending to provide better comprehension of complex carbon-water interactions through plants to an ecosystem, and relevant factors that may alleviate or worsen already deteriorated climates such as elevated CO2 and soil conditions.

  10. Recovery of marine animal populations and ecosystems.

    PubMed

    Lotze, Heike K; Coll, Marta; Magera, Anna M; Ward-Paige, Christine; Airoldi, Laura

    2011-11-01

    Many marine populations and ecosystems have experienced strong historical depletions, yet reports of recoveries are increasing. Here, we review the growing research on marine recoveries to reveal how common recovery is, its magnitude, timescale and major drivers. Overall, 10-50% of depleted populations and ecosystems show some recovery, but rarely to former levels of abundance. In addition, recovery can take many decades for long-lived species and complex ecosystems. Major drivers of recovery include the reduction of human impacts, especially exploitation, habitat loss and pollution, combined with favorable life-history and environmental conditions. Awareness, legal protection and enforcement of management plans are also crucial. Learning from historical recovery successes and failures is essential for implementing realistic conservation goals and promising management strategies.

  11. Bringing the ecosystem services concept into marine management decisions, supporting ecosystems-based management.

    NASA Astrophysics Data System (ADS)

    Tweddle, J. F.; Byg, A.; Davies, I.; Gubbins, M.; Irvine, K.; Kafas, A.; Kenter, J.; MacDonald, A.; Murray, R. B. O.; Potts, T.; Slater, A. M.; Wright, K.; Scott, B. E.

    2016-12-01

    The marine environment is under increasing use, putting pressure on marine ecosystems and increasing competition for space. New activities (e.g. renewable energy developments), evolving marine policies (e.g. implementation of marine protected areas), and climate change may drive changes in biodiversity and resulting ecosystem services (ES) that society and business utilise from coastal and marine systems. A process is needed that integrates ecological assessment of changes with stakeholder perceptions and valuation of ES, whilst balancing ease of application with the ability to deal with complex social-economic-ecological issues. The project "Cooperative participatory assessment of the impact of renewable technology on ecosystem services: CORPORATES" involved natural and social scientists, law and policy experts, and marine managers, with the aim of promoting more integrated decision making using ES concepts in marine management. CORPORATES developed a process to bring ES concepts into stakeholders' awareness. The interactive process, involving 2 workshops, employs interludes of knowledge exchange by experts on ecological processes underpinning ES and on law and policy. These enable mapping of benefits linked to activities, participatory system modelling, and deliberation of policy impacts on different sectors. The workshops were attended by industry representatives, regulatory/advisory partners, and other stakeholders (NGOs, SMEs, recreationalists, local government). Mixed sector groups produced new insights into links between activities and ES, and highlighted cross-sector concerns. Here we present the aspects of the process that successfully built shared understanding between industry and stakeholders of inter-linkages and interactions between ES, benefits, activities, and economic and cultural values. These methods provide an ES-based decision-support model for exchanging societal-ecological knowledge and providing stakeholder interaction in marine planning

  12. Bringing the ecosystem services concept into marine management decisions, supporting ecosystems-based management.

    NASA Astrophysics Data System (ADS)

    Tweddle, J. F.; Byg, A.; Davies, I.; Gubbins, M.; Irvine, K.; Kafas, A.; Kenter, J.; MacDonald, A.; Murray, R. B. O.; Potts, T.; Slater, A. M.; Wright, K.; Scott, B. E.

    2016-02-01

    The marine environment is under increasing use, putting pressure on marine ecosystems and increasing competition for space. New activities (e.g. renewable energy developments), evolving marine policies (e.g. implementation of marine protected areas), and climate change may drive changes in biodiversity and resulting ecosystem services (ES) that society and business utilise from coastal and marine systems. A process is needed that integrates ecological assessment of changes with stakeholder perceptions and valuation of ES, whilst balancing ease of application with the ability to deal with complex social-economic-ecological issues. The project "Cooperative participatory assessment of the impact of renewable technology on ecosystem services: CORPORATES" involved natural and social scientists, law and policy experts, and marine managers, with the aim of promoting more integrated decision making using ES concepts in marine management. CORPORATES developed a process to bring ES concepts into stakeholders' awareness. The interactive process, involving 2 workshops, employs interludes of knowledge exchange by experts on ecological processes underpinning ES and on law and policy. These enable mapping of benefits linked to activities, participatory system modelling, and deliberation of policy impacts on different sectors. The workshops were attended by industry representatives, regulatory/advisory partners, and other stakeholders (NGOs, SMEs, recreationalists, local government). Mixed sector groups produced new insights into links between activities and ES, and highlighted cross-sector concerns. Here we present the aspects of the process that successfully built shared understanding between industry and stakeholders of inter-linkages and interactions between ES, benefits, activities, and economic and cultural values. These methods provide an ES-based decision-support model for exchanging societal-ecological knowledge and providing stakeholder interaction in marine planning

  13. Climatic Effects of Marine Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Xu, J.; Meskhidze, N.; Zhang, Y.; Gantt, B.; Ghan, S. J.; Nenes, A.; Liu, X.; Easter, R. C.; Zaveri, R. A.

    2009-12-01

    associated with cloud properties increase short wave cloud forcing by -0.4W/m2 to -0.7W/m2. By using different emission scenarios and droplet activation parameterizations as well as considering surfactant effects of marine organic aerosols, this study quantifies a possible range for climatic effects of ocean ecosystem.

  14. Marine Heat Waves and Their Impacts on Fisheries and Marine Ecosystems

    NASA Astrophysics Data System (ADS)

    Bond, N. A.

    2016-12-01

    Recent years have featured some prominent warm ocean events, also known as marine heat waves. Notable examples occurred in the northwest Atlantic in 2012, in the northeast Pacific in 2014-16, and of course, in the tropical Pacific in association with the 2015-16 El Nino. These episodic events can have profound impacts on marine ecosystems, with implications for fisheries. This paper will review the mechanistic linkages between marine heat waves and living marine resources drawing mostly on examples from the Pacific Ocean. Typically these events cause changes at lower-trophic levels that then ripple through the food web, i.e., are cases of bottom-up forcing. But how this happens varies regionally with the background oceanography, and the oceanographic properties crucial to the ecosystem. Because the effects of warm episodes can be substantial, their ramifications on ecosystems and fisheries are important from a host of perspectives (economic, conservation, cultural, etc.). In addition, to a certain extent they can provide insight into how marine ecosystems are liable to respond to global climate change.

  15. Introduction to the symposium "New frontiers from marine snakes to marine ecosystems".

    PubMed

    Lillywhite, Harvey B; Brischoux, François

    2012-08-01

    Interest in sea snakes and mythological "sea serpents" dates to ancient times and is represented in the writings of Aristotle, early voyagers, and explorers, and references in the Bible. Since then, awareness of the myriad species of snakes inhabiting the oceans has grown at a gradual pace. Scientific investigations into the biology of marine snakes-especially those in behavior, physiology, and other disciplines requiring living animals or tissues-have been comparatively challenging owing to difficulties in acquiring, transporting, handling, and husbanding these secondarily marine vertebrates. A broadening perspective with increasing interest in these animals peaked during the 1960s and 1970s, and literature from this period contributed to a growing knowledge that marine snakes comprise a very diverse fauna and are a significant part of marine ecosystems. Two persons figured prominently as influential drivers of research on sea snakes during this period, namely William Dunson and Harold Heatwole, and this symposium recognizes the contributions of these two individuals. Following a decline in scientific publications on sea snakes during the 1980s and 1990s, there has been a renaissance of scientific interest in recent years, and a wealth of new research findings has improved the understanding of phylogeny and diversity of marine snakes while simultaneously recognizing threats to marine ecosystems arising from climate change and other anthropogenic causes. The purposes of the symposium are to (1) illustrate the importance and relevance of sea snakes as contributors to better understanding a range of issues in marine biology, (2) establish and promote the use of marine systems as models for investigating conceptual issues related to environment, changing climate, and persistence of biological communities, with focus on marine snakes as novel or useful examples, (3) promote interest in sea snakes as useful organisms for study by scientists in a range of disciplines who

  16. Sunnyvale Marine Climate Deep Retrofit

    SciTech Connect

    German, A.; Siddiqui, A.; Dakin, B.

    2014-11-01

    The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America (BA) program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, upgrading the heating and cooling system, and installing.

  17. Sunnyvale Marine Climate Deep Retrofit

    SciTech Connect

    German, A.; Siddiqui, A.; Dakin, B.

    2014-11-01

    The Alliance for Residential Building Innovation (ARBI) and Allen Gilliland of One Sky Homes collaborated on a marine climate retrofit project designed to meet both Passive House (PH) and Building America program standards. The scope included sealing, installing wall, roof and floor insulation (previously lacking), replacing windows, upgrading the heating and cooling system, and installing mechanical ventilation.

  18. Unlocking the climate riddle in forested ecosystems

    Treesearch

    Greg C. Liknes; Christopher W. Woodall; Brian F. Walters; Sara A. Goeking

    2012-01-01

    Climate information is often used as a predictor in ecological studies, where temporal averages are typically based on climate normals (30-year means) or seasonal averages. While ensemble projections of future climate forecast a higher global average annual temperature, they also predict increased climate variability. It remains to be seen whether forest ecosystems...

  19. Characterising meso-marine ecosystems of the North Pacific

    NASA Astrophysics Data System (ADS)

    Batten, Sonia D.; David Hyrenbach, K.; Sydeman, William J.; Morgan, Ken H.; Henry, Michael F.; Yen, Peggy P. Y.; Welch, David W.

    2006-02-01

    To delineate mesoscale variability in marine ecosystems of the subarctic North Pacific and identify "hotspots" of biological activity, we conducted contemporaneous surveys of plankton and avifaunal communites in 2000-2003. Plankton samples were collected with a continuous plankton recorder (CPR) towed by a commercial vessel while a trained observer recorded marine bird distributions using strip-transect techniques. Near- and sub-surface physical oceanographic properties and productivity patterns were measured using a temperature data logger and satellite-derived chlorophyll a concentrations. We identified 10 distinct biological communities across the North Pacific, which we refer to as 'meso-marine ecosystems' (MME). We examined the characteristics of MME over multiple years to assess temporal persistence. MME were associated with different bathymetric domains and current systems. MME differed in the overall abundance and species composition of their fauna and, therefore, almost certainly in productivity. Regular monitoring of the spatial and temporal variability of MME will enhance our ability to detect and understand coupled climate-ecosystem responses, and, in turn, help guide ecosystem-based fisheries and wildlife management.

  20. Response of seafloor ecosystems to abrupt global climate change.

    PubMed

    Moffitt, Sarah E; Hill, Tessa M; Roopnarine, Peter D; Kennett, James P

    2015-04-14

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mL⋅L(-1) [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  1. Response of seafloor ecosystems to abrupt global climate change

    NASA Astrophysics Data System (ADS)

    Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.

    2015-04-01

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mLṡL-1 [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  2. Response of seafloor ecosystems to abrupt global climate change

    PubMed Central

    Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.

    2015-01-01

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mL⋅L−1 [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems. PMID:25825727

  3. Invertebrates, ecosystem services and climate change.

    PubMed

    Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A

    2013-05-01

    The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  4. Climate impacts on global hot spots of marine biodiversity

    PubMed Central

    Ramírez, Francisco; Afán, Isabel; Davis, Lloyd S.; Chiaradia, André

    2017-01-01

    Human activities drive environmental changes at scales that could potentially cause ecosystem collapses in the marine environment. We combined information on marine biodiversity with spatial assessments of the impacts of climate change to identify the key areas to prioritize for the conservation of global marine biodiversity. This process identified six marine regions of exceptional biodiversity based on global distributions of 1729 species of fish, 124 marine mammals, and 330 seabirds. Overall, these hot spots of marine biodiversity coincide with areas most severely affected by global warming. In particular, these marine biodiversity hot spots have undergone local to regional increasing water temperatures, slowing current circulation, and decreasing primary productivity. Furthermore, when we overlapped these hot spots with available industrial fishery data, albeit coarser than our estimates of climate impacts, they suggest a worrying coincidence whereby the world’s richest areas for marine biodiversity are also those areas mostly affected by both climate change and industrial fishing. In light of these findings, we offer an adaptable framework for determining local to regional areas of special concern for the conservation of marine biodiversity. This has exposed the need for finer-scaled fishery data to assist in the management of global fisheries if the accumulative, but potentially preventable, effect of fishing on climate change impacts is to be minimized within areas prioritized for marine biodiversity conservation. PMID:28261659

  5. Climate impacts on global hot spots of marine biodiversity.

    PubMed

    Ramírez, Francisco; Afán, Isabel; Davis, Lloyd S; Chiaradia, André

    2017-02-01

    Human activities drive environmental changes at scales that could potentially cause ecosystem collapses in the marine environment. We combined information on marine biodiversity with spatial assessments of the impacts of climate change to identify the key areas to prioritize for the conservation of global marine biodiversity. This process identified six marine regions of exceptional biodiversity based on global distributions of 1729 species of fish, 124 marine mammals, and 330 seabirds. Overall, these hot spots of marine biodiversity coincide with areas most severely affected by global warming. In particular, these marine biodiversity hot spots have undergone local to regional increasing water temperatures, slowing current circulation, and decreasing primary productivity. Furthermore, when we overlapped these hot spots with available industrial fishery data, albeit coarser than our estimates of climate impacts, they suggest a worrying coincidence whereby the world's richest areas for marine biodiversity are also those areas mostly affected by both climate change and industrial fishing. In light of these findings, we offer an adaptable framework for determining local to regional areas of special concern for the conservation of marine biodiversity. This has exposed the need for finer-scaled fishery data to assist in the management of global fisheries if the accumulative, but potentially preventable, effect of fishing on climate change impacts is to be minimized within areas prioritized for marine biodiversity conservation.

  6. Large-scale marine ecosystem change and the conservation of marine mammals

    USGS Publications Warehouse

    O'Shea, T.J.; Odell, D.K.

    2008-01-01

    Papers in this Special Feature stem from a symposium on large-scale ecosystem change and the conservation of marine mammals convened at the 86th Annual Meeting of the American Society of Mammalogists in June 2006. Major changes are occurring in multiple aspects of the marine environment at unprecedented rates, within the life spans of some individual marine mammals. Drivers of change include shifts in climate, acoustic pollution, disturbances to trophic structure, fisheries interactions, harmful algal blooms, and environmental contaminants. This Special Feature provides an in-depth examination of 3 issues that are particularly troublesome. The 1st article notes the huge spatial and temporal scales of change to which marine mammals are showing ecological responses, and how these species can function as sentinels of such change. The 2nd paper describes the serious problems arising from conflicts with fisheries, and the 3rd contribution reviews the growing issues associated with underwater noise. ?? 2008 American Society of Mammalogists.

  7. Marine Arctic Ecosystem Study (MARES): Pilot Project - Marine Mammal Tagging and Tracking

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Marine Arctic Ecosystem Study (MARES): Pilot Project...inter-relationships of biophysical and chemical parameters on living resources, including marine mammals that use this ecosystem . This larger picture

  8. Ocean acidification and its potential effects on marine ecosystems.

    PubMed

    Guinotte, John M; Fabry, Victoria J

    2008-01-01

    Ocean acidification is rapidly changing the carbonate system of the world oceans. Past mass extinction events have been linked to ocean acidification, and the current rate of change in seawater chemistry is unprecedented. Evidence suggests that these changes will have significant consequences for marine taxa, particularly those that build skeletons, shells, and tests of biogenic calcium carbonate. Potential changes in species distributions and abundances could propagate through multiple trophic levels of marine food webs, though research into the long-term ecosystem impacts of ocean acidification is in its infancy. This review attempts to provide a general synthesis of known and/or hypothesized biological and ecosystem responses to increasing ocean acidification. Marine taxa covered in this review include tropical reef-building corals, cold-water corals, crustose coralline algae, Halimeda, benthic mollusks, echinoderms, coccolithophores, foraminifera, pteropods, seagrasses, jellyfishes, and fishes. The risk of irreversible ecosystem changes due to ocean acidification should enlighten the ongoing CO(2) emissions debate and make it clear that the human dependence on fossil fuels must end quickly. Political will and significant large-scale investment in clean-energy technologies are essential if we are to avoid the most damaging effects of human-induced climate change, including ocean acidification.

  9. Impacts of Climate Change on Ecosystem Services

    USDA-ARS?s Scientific Manuscript database

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This techn...

  10. Sensitivity and uncertainty analysis of regional marine ecosystem services value

    NASA Astrophysics Data System (ADS)

    Shi, Honghua; Zheng, Wei; Wang, Zongling; Ding, Dewen

    2009-06-01

    Marine ecosystem services are the benefits which people obtain from the marine ecosystem, including provisioning services, regulating services, cultural services and supporting services. The human species, while buffered against environmental changes by culture and technology, is fundamentally dependent on the flow of ecosystem services. Marine ecosystem services become increasingly valuable as the terrestrial resources become scarce. The value of marine ecosystem services is the monetary flow of ecosystem services on specific temporal and spatial scales, which often changes due to the variation of the goods prices, yields and the status of marine exploitation. Sensitivity analysis is to study the relationship between the value of marine ecosystem services and the main factors which affect it. Uncertainty analysis based on varying prices, yields and status of marine exploitation was carried out. Through uncertainty analysis, a more credible value range instead of a fixed value of marine ecosystem services was obtained in this study. Moreover, sensitivity analysis of the marine ecosystem services value revealed the relative importance of different factors.

  11. Marine reserves help coastal ecosystems cope with extreme weather.

    PubMed

    Olds, Andrew D; Pitt, Kylie A; Maxwell, Paul S; Babcock, Russell C; Rissik, David; Connolly, Rod M

    2014-10-01

    Natural ecosystems have experienced widespread degradation due to human activities. Consequently, enhancing resilience has become a primary objective for conservation. Nature reserves are a favored management tool, but we need clearer empirical tests of whether they can impart resilience. Catastrophic flooding in early 2011 impacted coastal ecosystems across eastern Australia. We demonstrate that marine reserves enhanced the capacity of coral reefs to withstand flood impacts. Reserve reefs resisted the impact of perturbation, whilst fished reefs did not. Changes on fished reefs were correlated with the magnitude of flood impact, whereas variation on reserve reefs was related to ecological variables. Herbivory and coral recruitment are critical ecological processes that underpin reef resilience, and were greater in reserves and further enhanced on reserve reefs near mangroves. The capacity of reserves to mitigate external disturbances and promote ecological resilience will be critical to resisting an increased frequency of climate-related disturbance. © 2014 John Wiley & Sons Ltd.

  12. Terrestrial ecosystem feedbacks to global climate change

    SciTech Connect

    Lashof, D.A.; DeAngelo, B.J.; Saleska, S.R.; Harte, J.

    1997-12-31

    Anthropogenic greenhouse gases are expected to induce changes in global climate that can alter ecosystems in ways that, in turn, may further affect climate. Such climate-ecosystem interactions can generate either positive or negative feedbacks to the climate system, thereby either enhancing or diminishing the magnitude of global climate change. Important terrestrial feedback mechanisms include CO{sub 2} fertilization (negative feedbacks), carbon storage in vegetation and soils (positive and negative feedbacks), vegetation albedo (positive feedbacks), and peatland methane emissions (positive and negative feedbacks). While the processes involved are complex, not readily quantifiable, and demonstrate both positive and negative feedback potential, the authors conclude that the combined effect of the feedback mechanisms reviewed here will likely amplify climate change relative to current projections that have not yet adequately incorporated these mechanisms. 162 refs., 7 figs., 3 tabs.

  13. Upgrading Marine Ecosystem Restoration Using Ecological-Social Concepts.

    PubMed

    Abelson, Avigdor; Halpern, Benjamin S; Reed, Daniel C; Orth, Robert J; Kendrick, Gary A; Beck, Michael W; Belmaker, Jonathan; Krause, Gesche; Edgar, Graham J; Airoldi, Laura; Brokovich, Eran; France, Robert; Shashar, Nadav; de Blaeij, Arianne; Stambler, Noga; Salameh, Pierre; Shechter, Mordechai; Nelson, Peter A

    2016-02-01

    Conservation and environmental management are principal countermeasures to the degradation of marine ecosystems and their services. However, in many cases, current practices are insufficient to reverse ecosystem declines. We suggest that restoration ecology, the science underlying the concepts and tools needed to restore ecosystems, must be recognized as an integral element for marine conservation and environmental management. Marine restoration ecology is a young scientific discipline, often with gaps between its application and the supporting science. Bridging these gaps is essential to using restoration as an effective management tool and reversing the decline of marine ecosystems and their services. Ecological restoration should address objectives that include improved ecosystem services, and it therefore should encompass social-ecological elements rather than focusing solely on ecological parameters. We recommend using existing management frameworks to identify clear restoration targets, to apply quantitative tools for assessment, and to make the re-establishment of ecosystem services a criterion for success.

  14. Upgrading Marine Ecosystem Restoration Using Ecological‐Social Concepts

    PubMed Central

    Abelson, Avigdor; Halpern, Benjamin S.; Reed, Daniel C.; Orth, Robert J.; Kendrick, Gary A.; Beck, Michael W.; Belmaker, Jonathan; Krause, Gesche; Edgar, Graham J.; Airoldi, Laura; Brokovich, Eran; France, Robert; Shashar, Nadav; de Blaeij, Arianne; Stambler, Noga; Salameh, Pierre; Shechter, Mordechai; Nelson, Peter A.

    2015-01-01

    Conservation and environmental management are principal countermeasures to the degradation of marine ecosystems and their services. However, in many cases, current practices are insufficient to reverse ecosystem declines. We suggest that restoration ecology, the science underlying the concepts and tools needed to restore ecosystems, must be recognized as an integral element for marine conservation and environmental management. Marine restoration ecology is a young scientific discipline, often with gaps between its application and the supporting science. Bridging these gaps is essential to using restoration as an effective management tool and reversing the decline of marine ecosystems and their services. Ecological restoration should address objectives that include improved ecosystem services, and it therefore should encompass social–ecological elements rather than focusing solely on ecological parameters. We recommend using existing management frameworks to identify clear restoration targets, to apply quantitative tools for assessment, and to make the re-establishment of ecosystem services a criterion for success. PMID:26977115

  15. Recent climate extremes alter alpine lake ecosystems

    PubMed Central

    Parker, Brian R.; Vinebrooke, Rolf D.; Schindler, David W.

    2008-01-01

    Here, we show that alpine lake ecosystems are responsive to interannual variation in climate, based on long-term limnological and meteorological data from the Canadian Rockies. In the 2000s, in years with colder winter temperatures, higher winter snowfall, later snowmelt, shorter ice-free seasons, and dryer summers, relative to the 1990s, alpine lakes became clearer, warmer, and mixed to deeper depths. Further, lakes became more dilute and nutrient-poor, the latter leading to significant declines in total phytoplankton biomass. However, increased concentrations of dissolved organic carbon in lake water stimulated the appearance of small mixotrophic algal species, partially offsetting the decline in autotrophic phytoplankton biomass and increasing algal species richness. The climate regime in the 2000s altered the physical, chemical, and biological character and the function of high-elevation aquatic ecosystems. Forecasts of increased climatic variability in the future pose serious ramifications for both the biodiversity and ecosystem function of high-elevation lakes. PMID:18725641

  16. Major pathways by which climate may force marine fish populations

    NASA Astrophysics Data System (ADS)

    Ottersen, Geir; Kim, Suam; Huse, Geir; Polovina, Jeffrey J.; Stenseth, Nils Chr.

    2010-02-01

    Climate may affect marine fish populations through many different pathways, operating at a variety of temporal and spatial scales. Climate impacts may work their way bottom up through the food web or affect higher trophic levels more directly. In this review we try to disentangle and summarize some of the current knowledge made available through the rapidly increasing literature on the topic, with particular emphasis on the work within the Global Ocean Ecosystems Dynamics (GLOBEC) programme. We first consider different classification schemes and hypotheses relating climate through physical features of the ocean to population patterns. The response of a population or community to climate may be linear or non-linear, direct or indirect. The hypotheses may be classified according to the form of physical features in operation as being related to mixing, advection or temperature. The bulk of the paper is devoted to a region-by-region presentation and discussion of examples relating climate variability to marine fish populations. It is slanted towards the North Atlantic and North Pacific, but the tropical Pacific is also covered. By means of different categorization methods we compare climate responses between ecosystems. We conclude that the use of such classification schemes allows for a more precise description of the various ecosystems particular properties and facilitates inter-regional comparison.

  17. How Does Climate Change Affect the Bering Sea Ecosystem?

    NASA Astrophysics Data System (ADS)

    Sigler, Michael F.; Harvey, H. Rodger; Ashjian, Carin J.; Lomas, Michael W.; Napp, Jeffrey M.; Stabeno, Phyllis J.; Van Pelt, Thomas I.

    2010-11-01

    The Bering Sea is one of the most productive marine ecosystems in the world, sustaining nearly half of U.S. annual commercial fish catches and providing food and cultural value to thousands of coastal and island residents. Fish and crab are abundant in the Bering Sea; whales, seals, and seabirds migrate there every year. In winter, the topography, latitude, atmosphere, and ocean circulation combine to produce a sea ice advance in the Bering Sea unmatched elsewhere in the Northern Hemisphere, and in spring the retreating ice; longer daylight hours; and nutrient-rich, deep-ocean waters forced up onto the broad continental shelf result in intense marine productivity (Figure 1). This seasonal ice cover is a major driver of Bering Sea ecology, making this ecosystem particularly sensitive to changes in climate. Predicted changes in ice cover in the coming decades have intensified concern about the future of this economically and culturally important region. In response, the North Pacific Research Board (NPRB) and the U.S. National Science Foundation (NSF) entered into a partnership in 2007 to support the Bering Sea Project, a comprehensive $52 million investigation to understand how climate change is affecting the Bering Sea ecosystem, ranging from lower trophic levels (e.g., plankton) to fish, seabirds, marine mammals, and, ultimately, humans. The project integrates two research programs, the NSF Bering Ecosystem Study (BEST) and the NPRB Bering Sea Integrated Ecosystem Research Program (BSIERP), with substantial in-kind contributions from the U.S. National Oceanic and Atmospheric Administration (NOAA) and the U.S. Fish and Wildlife Service.

  18. Can schooling regulate marine populations and ecosystems?

    NASA Astrophysics Data System (ADS)

    Maury, Olivier

    2017-08-01

    Schools, shoals and swarms are pervasive in the oceans. They have to provide very strong advantages to have been selected and generalized in the course of evolution. Auto-organized groups are usually assumed to provide facilitated encounters of reproduction partners, improved protection against predation, better foraging efficiency, and hydrodynamic gains. However, present theories regarding their evolutionary advantages do not provide an unambiguous explanation to their universality. In particular, the mechanisms commonly proposed to explain grouping provide little support to the formation of very large groups that are common in the sea (e.g. Rieucau et al., 2014). From literature review, data analysis and using a simple mathematical model, I show that large auto-organized groups appear at high population density while only small groups or dispersed individuals remain at low population density. Following, an analysis of tuna tagging data and simple theoretical developments show that large groups are likely to expose individuals to a dramatic decrease of individual foraging success and simultaneous increase of predatory and disease mortality, while small groups avoid those adverse feedbacks and provide maximum foraging success and protection against predation, as it is usually assumed. This would create an emergent density-dependent regulation of marine populations, preventing them from outbursts at high density, and protecting them at low density. This would be a major contribution to their resilience and a crucial process of ecosystems dynamics. A two-step evolutionary process acting at the individual level is proposed to explain how this apparently suicidal behaviour could have been selected and generalized. It explains how grouping would have permitted the emergence of extremely high fecundity life histories, despite their notorious propensity to destabilize populations. The potential implications of the ;grouping feedback; on population resilience, ecosystem

  19. Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change.

    PubMed

    Boulton, Chris A; Lenton, Timothy M

    2015-09-15

    Marine ecosystems are sensitive to stochastic environmental variability, with higher-amplitude, lower-frequency--i.e., "redder"--variability posing a greater threat of triggering large ecosystem changes. Here we show that fluctuations in the Pacific Decadal Oscillation (PDO) index have slowed down markedly over the observational record (1900-present), as indicated by a robust increase in autocorrelation. This "reddening" of the spectrum of climate variability is also found in regionally averaged North Pacific sea surface temperatures (SSTs), and can be at least partly explained by observed deepening of the ocean mixed layer. The progressive reddening of North Pacific climate variability has important implications for marine ecosystems. Ecosystem variables that respond linearly to climate forcing will have become prone to much larger variations over the observational record, whereas ecosystem variables that respond nonlinearly to climate forcing will have become prone to more frequent "regime shifts." Thus, slowing down of North Pacific climate variability can help explain the large magnitude and potentially the quick succession of well-known abrupt changes in North Pacific ecosystems in 1977 and 1989. When looking ahead, despite model limitations in simulating mixed layer depth (MLD) in the North Pacific, global warming is robustly expected to decrease MLD. This could potentially reverse the observed trend of slowing down of North Pacific climate variability and its effects on marine ecosystems.

  20. An Integrated Multivariable Visualization Tool for Marine Sanctuary Climate Assessments

    NASA Astrophysics Data System (ADS)

    Shein, K. A.; Johnston, S.; Stachniewicz, J.; Duncan, B.; Cecil, D.; Ansari, S.; Urzen, M.

    2012-12-01

    The comprehensive development and use of ecological climate impact assessments by ecosystem managers can be limited by data access and visualization methods that require a priori knowledge about the various large and complex climate data products necessary to those impact assessments. In addition, it can be difficult to geographically and temporally integrate climate and ecological data to fully characterize climate-driven ecological impacts. To address these considerations, we have enhanced and extended the functionality of the NOAA National Climatic Data Center's Weather and Climate Toolkit (WCT). The WCT is a freely available Java-based tool designed to access and display NCDC's georeferenced climate data products (e.g., satellite, radar, and reanalysis gridded data). However, the WCT requires users already know how to obtain the data products, which products are preferred for a given variable, and which products are most relevant to their needs. Developed in cooperation with research and management customers at the Gulf of the Farallones National Marine Sanctuary, the Integrated Marine Protected Area Climate Tools (IMPACT) modification to the WCT simplifies or eliminates these requirements, while simultaneously adding core analytical functionality to the tool. Designed for use by marine ecosystem managers, WCT-IMPACT accesses a suite of data products that have been identified as relevant to marine ecosystem climate impact assessments, such as NOAA's Climate Data Records. WCT-IMPACT regularly crops these products to the geographic boundaries of each included marine protected area (MPA), and those clipped regions are processed to produce MPA-specific analytics. The tool retrieves the most appropriate data files based on the user selection of MPA, environmental variable(s), and time frame. Once the data are loaded, they may be visualized, explored, analyzed, and exported to other formats (e.g., Google KML). Multiple variables may be simultaneously visualized using

  1. Deep time ocean hypoxia: The impact on Jurassic marine ecosystems

    NASA Astrophysics Data System (ADS)

    Caswell, B. A.; Frid, C. L. J.

    2016-02-01

    In order to understand how the environment will change over the next 100-1000 years and how this will impact the biosphere we need long-term data from a range of scenarios. This long-term perspective can be achieved by looking at periods of comparable environmental change in Earth history. Two past periods of ocean deoxygenation, 150 and 183 million years ago, are compared: (1) a period of global climate change, analogous to that occurring today, and (2) a period of regional hypoxia associated with changing circulation and nutrient supply. Palaeoecological changes in populations, communities, and seafloor functioning were investigated using data spanning millions of years at high resolution (100s-1000s years). Large shifts in biodiversity, body-size and the population-size of the dominant benthic taxa occurred in response to ocean anoxia. Ecological change spanned multiple trophic levels and suggest that changes in primary productivity impacted macrobenthos and their pelagic predators resulting in biogeographic range shifts. Quantitative analyses of changes in biological traits and core ecosystem functions show changes in nutrient regeneration, food web dynamics, and benthic-pelagic coupling. During ocean deoxygenation Jurassic ecosystems showed functional resilience and redundancy, but ultimately functioning collapsed. Quantification of the relationships between ecological change and various proxies for palaeoenvironmental change show that both hypoxia and primary productivity were important drivers. Environmental thresholds for local ecosystem change are identified. The patterns of Jurassic ecosystem change share many similarities with present-day hypoxic systems. Critically, the recovery from global anoxia was very slow and connectivity, with potential sources of new recruits, was an important contributor to ecosystem recovery. This emphasises the risks of relying on patterns of short-term and small-scale resilience when managing modern marine systems.

  2. Evidence that marine reserves enhance resilience to climatic impacts.

    PubMed

    Micheli, Fiorenza; Saenz-Arroyo, Andrea; Greenley, Ashley; Vazquez, Leonardo; Espinoza Montes, Jose Antonio; Rossetto, Marisa; De Leo, Giulio A

    2012-01-01

    Establishment of marine protected areas, including fully protected marine reserves, is one of the few management tools available for local communities to combat the deleterious effect of large scale environmental impacts, including global climate change, on ocean ecosystems. Despite the common hope that reserves play this role, empirical evidence of the effectiveness of local protection against global problems is lacking. Here we show that marine reserves increase the resilience of marine populations to a mass mortality event possibly caused by climate-driven hypoxia. Despite high and widespread adult mortality of benthic invertebrates in Baja California, Mexico, that affected populations both within and outside marine reserves, juvenile replenishment of the species that supports local economies, the pink abalone Haliotis corrugata, remained stable within reserves because of large body size and high egg production of the protected adults. Thus, local protection provided resilience through greater resistance and faster recovery of protected populations. Moreover, this benefit extended to adjacent unprotected areas through larval spillover across the edges of the reserves. While climate change mitigation is being debated, coastal communities have few tools to slow down negative impacts of global environmental shifts. These results show that marine protected areas can provide such protection.

  3. Evidence That Marine Reserves Enhance Resilience to Climatic Impacts

    PubMed Central

    Micheli, Fiorenza; Saenz-Arroyo, Andrea; Greenley, Ashley; Vazquez, Leonardo; Espinoza Montes, Jose Antonio; Rossetto, Marisa; De Leo, Giulio A.

    2012-01-01

    Establishment of marine protected areas, including fully protected marine reserves, is one of the few management tools available for local communities to combat the deleterious effect of large scale environmental impacts, including global climate change, on ocean ecosystems. Despite the common hope that reserves play this role, empirical evidence of the effectiveness of local protection against global problems is lacking. Here we show that marine reserves increase the resilience of marine populations to a mass mortality event possibly caused by climate-driven hypoxia. Despite high and widespread adult mortality of benthic invertebrates in Baja California, Mexico, that affected populations both within and outside marine reserves, juvenile replenishment of the species that supports local economies, the pink abalone Haliotis corrugata, remained stable within reserves because of large body size and high egg production of the protected adults. Thus, local protection provided resilience through greater resistance and faster recovery of protected populations. Moreover, this benefit extended to adjacent unprotected areas through larval spillover across the edges of the reserves. While climate change mitigation is being debated, coastal communities have few tools to slow down negative impacts of global environmental shifts. These results show that marine protected areas can provide such protection. PMID:22855690

  4. Influence of Sea Ice on Arctic Marine Sulfur Biogeochemistry in the Community Climate System Model

    SciTech Connect

    Deal, Clara; Jin, Meibing

    2013-06-30

    Global climate models (GCMs) have not effectively considered how responses of arctic marine ecosystems to a warming climate will influence the global climate system. A key response of arctic marine ecosystems that may substantially influence energy exchange in the Arctic is a change in dimethylsulfide (DMS) emissions, because DMS emissions influence cloud albedo. This response is closely tied to sea ice through its impacts on marine ecosystem carbon and sulfur cycling, and the ice-albedo feedback implicated in accelerated arctic warming. To reduce the uncertainty in predictions from coupled climate simulations, important model components of the climate system, such as feedbacks between arctic marine biogeochemistry and climate, need to be reasonably and realistically modeled. This research first involved model development to improve the representation of marine sulfur biogeochemistry simulations to understand/diagnose the control of sea-ice-related processes on the variability of DMS dynamics. This study will help build GCM predictions that quantify the relative current and possible future influences of arctic marine ecosystems on the global climate system. Our overall research objective was to improve arctic marine biogeochemistry in the Community Climate System Model (CCSM, now CESM). Working closely with the Climate Ocean Sea Ice Model (COSIM) team at Los Alamos National Laboratory (LANL), we added 1 sea-ice algae and arctic DMS production and related biogeochemistry to the global Parallel Ocean Program model (POP) coupled to the LANL sea ice model (CICE). Both CICE and POP are core components of CESM. Our specific research objectives were: 1) Develop a state-of-the-art ice-ocean DMS model for application in climate models, using observations to constrain the most crucial parameters; 2) Improve the global marine sulfur model used in CESM by including DMS biogeochemistry in the Arctic; and 3) Assess how sea ice influences DMS dynamics in the arctic marine

  5. Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems

    PubMed Central

    Flynn, James D.; Hirayama, Hisako; Sakai, Yasuyoshi; Dunfield, Peter F.; Knief, Claudia; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Khmelenina, Valentina N.; Trotsenko, Yuri A.; Murrell, J. Colin; Semrau, Jeremy D.; Svenning, Mette M.; Stein, Lisa Y.; Kyrpides, Nikos; Shapiro, Nicole; Woyke, Tanja; Bringel, Françoise; Vuilleumier, Stéphane; DiSpirito, Alan A.

    2016-01-01

    The genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems. PMID:26798114

  6. Communicating Climate and Ecosystem Change in the Arctic

    NASA Astrophysics Data System (ADS)

    Soreide, N. N.; Overland, J. E.; Calder, J. A.; Rodionov, S.

    2005-12-01

    There is an explosion of interest in Northern Hemisphere climate, highlighting the importance of recent changes in the Arctic on mid-latitude climate and its impact on marine and terrestrial ecosystems. Traditional sea ice and tundra dominated arctic ecosystems are being reorganizing into warmer sub-arctic ecosystem types. Over the previous two years we have developed a comprehensive, near real-time arctic change detection protocol to track physical and biological changes for presentation on the web: http://www.arctic.noaa.gov/detect. The effort provides a continuous update to the Arctic Climate Impact Assessment (ACIA) Report, released in November 2004. Principles for the protocol include an accessible narrative style, scientifically credible and objective indicators, notes multiple uses for the information, acknowledges uncertainties, and balances having too many indicators-which leads to information overload-and too few-which does not capture the complexity of the system. Screening criteria include concreteness, public awareness, being understandable, availability of historical time series, and sensitivity. The site provides sufficient information for an individual to make their own assessment regarding the balance of the evidence for tracking change. The product provides an overview, recent news, links to many arctic websites, and highlights climate, global impacts, land and marine ecosystems, and human consequences. Since its inception a year ago, it has averaged about 9000 hits an day on the web, and is a major information source as determined by Google search. The future direction focuses on understanding the causes for change. In spring 2005 we also presented a near real-time ecological and climatic surveillance website for the Bering Sea: www.beringclimate.noaa.gov. The site provides up-to-date information which ties northward shifts of fish, invertebrate and marine mammal populations to physical changes in the Arctic. This site is more technical than the

  7. Decadal-Scale Forecasting of Climate Drivers for Marine Applications.

    PubMed

    Salinger, J; Hobday, A J; Matear, R J; O'Kane, T J; Risbey, J S; Dunstan, P; Eveson, J P; Fulton, E A; Feng, M; Plagányi, É E; Poloczanska, E S; Marshall, A G; Thompson, P A

    Climate influences marine ecosystems on a range of time scales, from weather-scale (days) through to climate-scale (hundreds of years). Understanding of interannual to decadal climate variability and impacts on marine industries has received less attention. Predictability up to 10 years ahead may come from large-scale climate modes in the ocean that can persist over these time scales. In Australia the key drivers of climate variability affecting the marine environment are the Southern Annular Mode, the Indian Ocean Dipole, the El Niño/Southern Oscillation, and the Interdecadal Pacific Oscillation, each has phases that are associated with different ocean circulation patterns and regional environmental variables. The roles of these drivers are illustrated with three case studies of extreme events-a marine heatwave in Western Australia, a coral bleaching of the Great Barrier Reef, and flooding in Queensland. Statistical and dynamical approaches are described to generate forecasts of climate drivers that can subsequently be translated to useful information for marine end users making decisions at these time scales. Considerable investment is still needed to support decadal forecasting including improvement of ocean-atmosphere models, enhancement of observing systems on all scales to support initiation of forecasting models, collection of important biological data, and integration of forecasts into decision support tools. Collaboration between forecast developers and marine resource sectors-fisheries, aquaculture, tourism, biodiversity management, infrastructure-is needed to support forecast-based tactical and strategic decisions that reduce environmental risk over annual to decadal time scales. © 2016 Elsevier Ltd. All rights reserved.

  8. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic.

    PubMed

    Beaugrand, Grégory; Edwards, Martin; Brander, Keith; Luczak, Christophe; Ibanez, Frederic

    2008-11-01

    Warming of the global climate is now unequivocal and its impact on Earth' functional units has become more apparent. Here, we show that marine ecosystems are not equally sensitive to climate change and reveal a critical thermal boundary where a small increase in temperature triggers abrupt ecosystem shifts seen across multiple trophic levels. This large-scale boundary is located in regions where abrupt ecosystem shifts have been reported in the North Atlantic sector and thereby allows us to link these shifts by a global common phenomenon. We show that these changes alter the biodiversity and carrying capacity of ecosystems and may, combined with fishing, precipitate the reduction of some stocks of Atlantic cod already severely impacted by exploitation. These findings offer a way to anticipate major ecosystem changes and to propose adaptive strategies for marine exploited resources such as cod in order to minimize social and economic consequences.

  9. The role of sustained observations in tracking impacts of environmental change on marine biodiversity and ecosystems.

    PubMed

    Mieszkowska, N; Sugden, H; Firth, L B; Hawkins, S J

    2014-09-28

    Marine biodiversity currently faces unprecedented threats from multiple pressures arising from human activities. Global drivers such as climate change and ocean acidification interact with regional eutrophication, exploitation of commercial fish stocks and localized pressures including pollution, coastal development and the extraction of aggregates and fuel, causing alteration and degradation of habitats and communities. Segregating natural from anthropogenically induced change in marine ecosystems requires long-term, sustained observations of marine biota. In this review, we outline the history of biological recording in the coastal and shelf seas of the UK and Ireland and highlight where sustained observations have contributed new understanding of how anthropogenic activities have impacted on marine biodiversity. The contributions of sustained observations, from those collected at observatories, single station platforms and multiple-site programmes to the emergent field of multiple stressor impacts research, are discussed, along with implications for management and sustainable governance of marine resources in an era of unprecedented use of the marine environment.

  10. The role of sustained observations in tracking impacts of environmental change on marine biodiversity and ecosystems

    PubMed Central

    Mieszkowska, N.; Sugden, H.; Firth, L. B.; Hawkins, S. J.

    2014-01-01

    Marine biodiversity currently faces unprecedented threats from multiple pressures arising from human activities. Global drivers such as climate change and ocean acidification interact with regional eutrophication, exploitation of commercial fish stocks and localized pressures including pollution, coastal development and the extraction of aggregates and fuel, causing alteration and degradation of habitats and communities. Segregating natural from anthropogenically induced change in marine ecosystems requires long-term, sustained observations of marine biota. In this review, we outline the history of biological recording in the coastal and shelf seas of the UK and Ireland and highlight where sustained observations have contributed new understanding of how anthropogenic activities have impacted on marine biodiversity. The contributions of sustained observations, from those collected at observatories, single station platforms and multiple-site programmes to the emergent field of multiple stressor impacts research, are discussed, along with implications for management and sustainable governance of marine resources in an era of unprecedented use of the marine environment. PMID:25157190

  11. Integration of Biogeochemistry and Marine Ecosystem Model in Mercator-Ocean Systems

    NASA Astrophysics Data System (ADS)

    El Moussaoui, Abdelali; Dombrowsky, Eric; Moulin, Cyril; Bopp, Laurent; Aumont, Olivier

    2010-05-01

    Accounting for ocean biogeochemistry and marine ecosystem dynamic is of strong interest in the context of Earth System modelling to better represent the marine component to the global atmospheric cycle of greenhouse gazes that influence climate as CO2. Furthermore, treating the ocean as a whole is also the way to address large anthropogenic impacts on marine systems as climate change, nutrients loading, acidification, and eventually overfishing and habitat destructuring. To forecast how interactions between marine biogeochemical cycles and ecosystems respond to and force global change, several efforts have been promoted on biogeochemical integration into operational Mercator Ocean systems. The aim of this work is to implement a marine biogeochemical and ecosystem component at global scale into the MERCATOR operational system, using first PSY3 analysis at 1/4° then PSY4 at 1/12°. Previous works have conducted successfully the integration of a multi-nutrient and multi-plankton biogeochemical model (PISCES, N5P2Z2D2 type) into MERCATOR system. This allowed the use of MERCATOR operational analyses to drive near real time forecast of marine primary production. Results will be shown and advances on biogeochemical model integration within Mercator Systems will be discussed.

  12. The influence of terrestrial ecosystems on climate.

    PubMed

    Meir, Patrick; Cox, Peter; Grace, John

    2006-05-01

    Terrestrial ecosystems influence climate by affecting how much solar energy is absorbed by the land surface and by exchanging climatically important gases with the atmosphere. Recent model analyses show widespread qualitative agreement that terrestrial ecological processes will have a net positive feedback effect on 21st-century global warming, and, therefore, cannot be ignored in climate-change projections. However, the quantitative uncertainty in the net feedback is large. The uncertainty in 21st-century carbon dioxide emissions resulting from terrestrial carbon cycle-climate feedbacks is second in magnitude only to the uncertainty in anthropogenic emissions. We estimate that this translates into an uncertainty in global warming owing to the land surface of 1.5 degrees C by 2100. We also emphasise the need to improve our understanding of terrestrial ecological processes that influence land-atmosphere interactions at relatively long timescales (decadal-century) as well as at shorter intervals (e.g. hourly).

  13. Climate and fishing steer ecosystem regeneration to uncertain economic futures.

    PubMed

    Blenckner, Thorsten; Llope, Marcos; Möllmann, Christian; Voss, Rudi; Quaas, Martin F; Casini, Michele; Lindegren, Martin; Folke, Carl; Chr Stenseth, Nils

    2015-03-22

    Overfishing of large predatory fish populations has resulted in lasting restructurings of entire marine food webs worldwide, with serious socio-economic consequences. Fortunately, some degraded ecosystems show signs of recovery. A key challenge for ecosystem management is to anticipate the degree to which recovery is possible. By applying a statistical food-web model, using the Baltic Sea as a case study, we show that under current temperature and salinity conditions, complete recovery of this heavily altered ecosystem will be impossible. Instead, the ecosystem regenerates towards a new ecological baseline. This new baseline is characterized by lower and more variable biomass of cod, the commercially most important fish stock in the Baltic Sea, even under very low exploitation pressure. Furthermore, a socio-economic assessment shows that this signal is amplified at the level of societal costs, owing to increased uncertainty in biomass and reduced consumer surplus. Specifically, the combined economic losses amount to approximately 120 million € per year, which equals half of today's maximum economic yield for the Baltic cod fishery. Our analyses suggest that shifts in ecological and economic baselines can lead to higher economic uncertainty and costs for exploited ecosystems, in particular, under climate change.

  14. Climate and fishing steer ecosystem regeneration to uncertain economic futures

    PubMed Central

    Blenckner, Thorsten; Llope, Marcos; Möllmann, Christian; Voss, Rudi; Quaas, Martin F.; Casini, Michele; Lindegren, Martin; Folke, Carl; Chr. Stenseth, Nils

    2015-01-01

    Overfishing of large predatory fish populations has resulted in lasting restructurings of entire marine food webs worldwide, with serious socio-economic consequences. Fortunately, some degraded ecosystems show signs of recovery. A key challenge for ecosystem management is to anticipate the degree to which recovery is possible. By applying a statistical food-web model, using the Baltic Sea as a case study, we show that under current temperature and salinity conditions, complete recovery of this heavily altered ecosystem will be impossible. Instead, the ecosystem regenerates towards a new ecological baseline. This new baseline is characterized by lower and more variable biomass of cod, the commercially most important fish stock in the Baltic Sea, even under very low exploitation pressure. Furthermore, a socio-economic assessment shows that this signal is amplified at the level of societal costs, owing to increased uncertainty in biomass and reduced consumer surplus. Specifically, the combined economic losses amount to approximately 120 million € per year, which equals half of today's maximum economic yield for the Baltic cod fishery. Our analyses suggest that shifts in ecological and economic baselines can lead to higher economic uncertainty and costs for exploited ecosystems, in particular, under climate change. PMID:25694626

  15. Comparative analysis of marine ecosystems: international production modelling workshop.

    PubMed

    Link, Jason S; Megrey, Bernard A; Miller, Thomas J; Essington, Tim; Boldt, Jennifer; Bundy, Alida; Moksness, Erlend; Drinkwater, Ken F; Perry, R Ian

    2010-12-23

    Understanding the drivers that dictate the productivity of marine ecosystems continues to be a globally important issue. A vast literature identifies three main processes that regulate the production dynamics of such ecosystems: biophysical, exploitative and trophodynamic. Exploring the prominence among this 'triad' of drivers, through a synthetic analysis, is critical for understanding how marine ecosystems function and subsequently produce fisheries resources of interest to humans. To explore this topic further, an international workshop was held on 10-14 May 2010, at the National Academy of Science's Jonsson Center in Woods Hole, MA, USA. The workshop compiled the data required to develop production models at different hierarchical levels (e.g. species, guild, ecosystem) for many of the major Northern Hemisphere marine ecosystems that have supported notable fisheries. Analyses focused on comparable total system biomass production, functionally equivalent species production, or simulation studies for 11 different marine fishery ecosystems. Workshop activities also led to new analytical tools. Preliminary results suggested common patterns driving overall fisheries production in these ecosystems, but also highlighted variation in the relative importance of each among ecosystems.

  16. Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities.

    PubMed

    Micheli, Fiorenza; Halpern, Benjamin S; Walbridge, Shaun; Ciriaco, Saul; Ferretti, Francesco; Fraschetti, Simonetta; Lewison, Rebecca; Nykjaer, Leo; Rosenberg, Andrew A

    2013-01-01

    Management of marine ecosystems requires spatial information on current impacts. In several marine regions, including the Mediterranean and Black Sea, legal mandates and agreements to implement ecosystem-based management and spatial plans provide new opportunities to balance uses and protection of marine ecosystems. Analyses of the intensity and distribution of cumulative impacts of human activities directly connected to the ecological goals of these policy efforts are critically needed. Quantification and mapping of the cumulative impact of 22 drivers to 17 marine ecosystems reveals that 20% of the entire basin and 60-99% of the territorial waters of EU member states are heavily impacted, with high human impact occurring in all ecoregions and territorial waters. Less than 1% of these regions are relatively unaffected. This high impact results from multiple drivers, rather than one individual use or stressor, with climatic drivers (increasing temperature and UV, and acidification), demersal fishing, ship traffic, and, in coastal areas, pollution from land accounting for a majority of cumulative impacts. These results show that coordinated management of key areas and activities could significantly improve the condition of these marine ecosystems.

  17. Cumulative Human Impacts on Mediterranean and Black Sea Marine Ecosystems: Assessing Current Pressures and Opportunities

    PubMed Central

    Micheli, Fiorenza; Halpern, Benjamin S.; Walbridge, Shaun; Ciriaco, Saul; Ferretti, Francesco; Fraschetti, Simonetta; Lewison, Rebecca; Nykjaer, Leo; Rosenberg, Andrew A.

    2013-01-01

    Management of marine ecosystems requires spatial information on current impacts. In several marine regions, including the Mediterranean and Black Sea, legal mandates and agreements to implement ecosystem-based management and spatial plans provide new opportunities to balance uses and protection of marine ecosystems. Analyses of the intensity and distribution of cumulative impacts of human activities directly connected to the ecological goals of these policy efforts are critically needed. Quantification and mapping of the cumulative impact of 22 drivers to 17 marine ecosystems reveals that 20% of the entire basin and 60–99% of the territorial waters of EU member states are heavily impacted, with high human impact occurring in all ecoregions and territorial waters. Less than 1% of these regions are relatively unaffected. This high impact results from multiple drivers, rather than one individual use or stressor, with climatic drivers (increasing temperature and UV, and acidification), demersal fishing, ship traffic, and, in coastal areas, pollution from land accounting for a majority of cumulative impacts. These results show that coordinated management of key areas and activities could significantly improve the condition of these marine ecosystems. PMID:24324585

  18. Marine mammals' influence on ecosystem processes affecting fisheries in the Barents Sea is trivial.

    PubMed

    Corkeron, Peter J

    2009-04-23

    Some interpretations of ecosystem-based fishery management include culling marine mammals as an integral component. The current Norwegian policy on marine mammal management is one example. Scientific support for this policy includes the Scenario Barents Sea (SBS) models. These modelled interactions between cod, Gadus morhua, herring, Clupea harengus, capelin, Mallotus villosus and northern minke whales, Balaenoptera acutorostrata. Adding harp seals Phoca groenlandica into this top-down modelling approach resulted in unrealistic model outputs. Another set of models of the Barents Sea fish-fisheries system focused on interactions within and between the three fish populations, fisheries and climate. These model key processes of the system successfully. Continuing calls to support the SBS models despite their failure suggest a belief that marine mammal predation must be a problem for fisheries. The best available scientific evidence provides no justification for marine mammal culls as a primary component of an ecosystem-based approach to managing the fisheries of the Barents Sea.

  19. Marine mammals' influence on ecosystem processes affecting fisheries in the Barents Sea is trivial

    PubMed Central

    Corkeron, Peter J.

    2009-01-01

    Some interpretations of ecosystem-based fishery management include culling marine mammals as an integral component. The current Norwegian policy on marine mammal management is one example. Scientific support for this policy includes the Scenario Barents Sea (SBS) models. These modelled interactions between cod, Gadus morhua, herring, Clupea harengus, capelin, Mallotus villosus and northern minke whales, Balaenoptera acutorostrata. Adding harp seals Phoca groenlandica into this top-down modelling approach resulted in unrealistic model outputs. Another set of models of the Barents Sea fish–fisheries system focused on interactions within and between the three fish populations, fisheries and climate. These model key processes of the system successfully. Continuing calls to support the SBS models despite their failure suggest a belief that marine mammal predation must be a problem for fisheries. The best available scientific evidence provides no justification for marine mammal culls as a primary component of an ecosystem-based approach to managing the fisheries of the Barents Sea. PMID:19126534

  20. Marine reserves can mitigate and promote adaptation to climate change.

    PubMed

    Roberts, Callum M; O'Leary, Bethan C; McCauley, Douglas J; Cury, Philippe Maurice; Duarte, Carlos M; Lubchenco, Jane; Pauly, Daniel; Sáenz-Arroyo, Andrea; Sumaila, Ussif Rashid; Wilson, Rod W; Worm, Boris; Castilla, Juan Carlos

    2017-06-13

    Strong decreases in greenhouse gas emissions are required to meet the reduction trajectory resolved within the 2015 Paris Agreement. However, even these decreases will not avert serious stress and damage to life on Earth, and additional steps are needed to boost the resilience of ecosystems, safeguard their wildlife, and protect their capacity to supply vital goods and services. We discuss how well-managed marine reserves may help marine ecosystems and people adapt to five prominent impacts of climate change: acidification, sea-level rise, intensification of storms, shifts in species distribution, and decreased productivity and oxygen availability, as well as their cumulative effects. We explore the role of managed ecosystems in mitigating climate change by promoting carbon sequestration and storage and by buffering against uncertainty in management, environmental fluctuations, directional change, and extreme events. We highlight both strengths and limitations and conclude that marine reserves are a viable low-tech, cost-effective adaptation strategy that would yield multiple cobenefits from local to global scales, improving the outlook for the environment and people into the future.

  1. Climate change, cranes, and temperate floodplain ecosystems

    USGS Publications Warehouse

    King, Sammy L.

    2010-01-01

    Floodplain ecosystems provide important habitat to cranes globally. Lateral, longitudinal, vertical, and temporal hydrologic connectivity in rivers is essential to maintaining the functions and values of these systems. Agricultural development, flood control, water diversions, dams, and other anthropogenic activities have greatly affected hydrologic connectivity of river systems worldwide and altered the functional capacity of these systems. Although the specific effects of climate change in any given area are unknown, increased intensity and frequency of flooding and droughts and increased air and water temperatures are among many potential effects that can act synergistically with existing human modifications in these systems to create even greater challenges in maintaining ecosystem productivity. In this paper, I review basic hydrologic and geomorphic processes of river systems and use three North American rivers (Guadalupe, Platte, and Rio Grande) that are important to cranes as case studies to illustrate the challenges facing managers tasked with balancing the needs of cranes and people in the face of an uncertain climatic future. Each river system has unique natural and anthropogenic characteristics that will affect conservation strategies. Mitigating the effects of climate change on river systems necessitates an understanding of river/floodplain/landscape linkages, which include people and their laws as well as existing floodplain ecosystem conditions.

  2. Antarctic climate cooling and terrestrial ecosystem response.

    PubMed

    Doran, Peter T; Priscu, John C; Lyons, W Berry; Walsh, John E; Fountain, Andrew G; McKnight, Diane M; Moorhead, Daryl L; Virginia, Ross A; Wall, Diana H; Clow, Gary D; Fritsen, Christian H; McKay, Christopher P; Parsons, Andrew N

    2002-01-31

    The average air temperature at the Earth's surface has increased by 0.06 degrees C per decade during the 20th century, and by 0.19 degrees C per decade from 1979 to 1998. Climate models generally predict amplified warming in polar regions, as observed in Antarctica's peninsula region over the second half of the 20th century. Although previous reports suggest slight recent continental warming, our spatial analysis of Antarctic meteorological data demonstrates a net cooling on the Antarctic continent between 1966 and 2000, particularly during summer and autumn. The McMurdo Dry Valleys have cooled by 0.7 degrees C per decade between 1986 and 2000, with similar pronounced seasonal trends. Summer cooling is particularly important to Antarctic terrestrial ecosystems that are poised at the interface of ice and water. Here we present data from the dry valleys representing evidence of rapid terrestrial ecosystem response to climate cooling in Antarctica, including decreased primary productivity of lakes (6-9% per year) and declining numbers of soil invertebrates (more than 10% per year). Continental Antarctic cooling, especially the seasonality of cooling, poses challenges to models of climate and ecosystem change.

  3. Transnational Corporations as ‘Keystone Actors’ in Marine Ecosystems

    PubMed Central

    Österblom, Henrik; Jouffray, Jean-Baptiste; Folke, Carl; Crona, Beatrice; Troell, Max; Merrie, Andrew; Rockström, Johan

    2015-01-01

    Keystone species have a disproportionate influence on the structure and function of ecosystems. Here we analyze whether a keystone-like pattern can be observed in the relationship between transnational corporations and marine ecosystems globally. We show how thirteen corporations control 11-16% of the global marine catch (9-13 million tons) and 19-40% of the largest and most valuable stocks, including species that play important roles in their respective ecosystem. They dominate all segments of seafood production, operate through an extensive global network of subsidiaries and are profoundly involved in fisheries and aquaculture decision-making. Based on our findings, we define these companies as keystone actors of the Anthropocene. The phenomenon of keystone actors represents an increasingly important feature of the human-dominated world. Sustainable leadership by keystone actors could result in cascading effects throughout the entire seafood industry and enable a critical transition towards improved management of marine living resources and ecosystems. PMID:26017777

  4. Spatial patterns and predictors of trophic control in marine ecosystems.

    PubMed

    Boyce, Daniel G; Frank, Kenneth T; Worm, Boris; Leggett, William C

    2015-10-01

    A key question in ecology is under which conditions ecosystem structure tends to be controlled by resource availability vs. consumer pressure. Several hypotheses derived from theory, experiments and observational field studies have been advanced, yet a unified explanation remains elusive. Here, we identify common predictors of trophic control in a synthetic analysis of 52 observational field studies conducted within marine ecosystems across the Northern Hemisphere and published between 1951 and 2014. Spatial regression analysis of 45 candidate variables revealed temperature to be the dominant predictor, with unimodal effects on trophic control operating both directly (r(2) = 0.32; P < 0.0001) and indirectly through influences on turnover rate and quality of primary production, biodiversity and omnivory. These findings indicate that temperature is an overarching determinant of the trophic dynamics of marine ecosystems, and that variation in ocean temperature will affect the trophic structure of marine ecosystems through both direct and indirect mechanisms. © 2015 John Wiley & Sons Ltd/CNRS.

  5. Transnational corporations as 'keystone actors' in marine ecosystems.

    PubMed

    Österblom, Henrik; Jouffray, Jean-Baptiste; Folke, Carl; Crona, Beatrice; Troell, Max; Merrie, Andrew; Rockström, Johan

    2015-01-01

    Keystone species have a disproportionate influence on the structure and function of ecosystems. Here we analyze whether a keystone-like pattern can be observed in the relationship between transnational corporations and marine ecosystems globally. We show how thirteen corporations control 11-16% of the global marine catch (9-13 million tons) and 19-40% of the largest and most valuable stocks, including species that play important roles in their respective ecosystem. They dominate all segments of seafood production, operate through an extensive global network of subsidiaries and are profoundly involved in fisheries and aquaculture decision-making. Based on our findings, we define these companies as keystone actors of the Anthropocene. The phenomenon of keystone actors represents an increasingly important feature of the human-dominated world. Sustainable leadership by keystone actors could result in cascading effects throughout the entire seafood industry and enable a critical transition towards improved management of marine living resources and ecosystems.

  6. The impacts of climate change in coastal marine systems.

    PubMed

    Harley, Christopher D G; Randall Hughes, A; Hultgren, Kristin M; Miner, Benjamin G; Sorte, Cascade J B; Thornber, Carol S; Rodriguez, Laura F; Tomanek, Lars; Williams, Susan L

    2006-02-01

    Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few 'leverage species' may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations' ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.

  7. Marine taxa track local climate velocities.

    PubMed

    Pinsky, Malin L; Worm, Boris; Fogarty, Michael J; Sarmiento, Jorge L; Levin, Simon A

    2013-09-13

    Organisms are expected to adapt or move in response to climate change, but observed distribution shifts span a wide range of directions and rates. Explanations often emphasize biological distinctions among species, but general mechanisms have been elusive. We tested an alternative hypothesis: that differences in climate velocity-the rate and direction that climate shifts across the landscape-can explain observed species shifts. We compiled a database of coastal surveys around North America from 1968 to 2011, sampling 128 million individuals across 360 marine taxa. Climate velocity explained the magnitude and direction of shifts in latitude and depth much more effectively than did species characteristics. Our results demonstrate that marine species shift at different rates and directions because they closely track the complex mosaic of local climate velocities.

  8. North Pacific Gyre Oscillation links ocean climate and ecosystem change

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, E.; Schneider, N.; Cobb, K. M.; Franks, P. J. S.; Chhak, K.; Miller, A. J.; McWilliams, J. C.; Bograd, S. J.; Arango, H.; Curchitser, E.; Powell, T. M.; Rivière, P.

    2008-04-01

    Decadal fluctuations in salinity, nutrients, chlorophyll, a variety of zooplankton taxa, and fish stocks in the Northeast Pacific are often poorly correlated with the most widely-used index of large-scale climate variability in the region - the Pacific Decadal Oscillation (PDO). We define a new pattern of climate change, the North Pacific Gyre Oscillation (NPGO) and show that its variability is significantly correlated with previously unexplained fluctuations of salinity, nutrients and chlorophyll. Fluctuations in the NPGO are driven by regional and basin-scale variations in wind-driven upwelling and horizontal advection - the fundamental processes controlling salinity and nutrient concentrations. Nutrient fluctuations drive concomitant changes in phytoplankton concentrations, and may force similar variability in higher trophic levels. The NPGO thus provides a strong indicator of fluctuations in the mechanisms driving planktonic ecosystem dynamics. The NPGO pattern extends beyond the North Pacific and is part of a global-scale mode of climate variability that is evident in global sea level trends and sea surface temperature. Therefore the amplification of the NPGO variance found in observations and in global warming simulations implies that the NPGO may play an increasingly important role in forcing global-scale decadal changes in marine ecosystems.

  9. Shifting seasons, climate change and ecosystem consequences

    NASA Astrophysics Data System (ADS)

    Thackeray, Stephen; Henrys, Peter; Hemming, Deborah; Huntingford, Chris; Bell, James; Leech, David; Wanless, Sarah

    2014-05-01

    In recent decades, the seasonal timing of many biological events (e.g. flowering, breeding, migration) has shifted. These phenological changes are believed to be one of the most conspicuous biological indicators of climate change. Rates and directions of phenological change have differed markedly among species, potentially threatening the seasonal synchrony of key species interactions and ultimately ecosystem functioning. Differences in phenological change among-species at different trophic levels, and with respect to other broad species traits, are likely to be driven by variations in the climatic sensitivity of phenological events. However, as yet, inconsistencies in analytical methods have hampered broad-scale assessments of variation in climate sensitivity among taxonomic and functional groups of organisms. In this presentation, results will be presented from a current collaborative project (http://www.ceh.ac.uk/sci_programmes/shifting-seasons-uk.html) in which many UK long-term data sets are being integrated in order to assess relationships between temperature/precipitation, and the timing of seasonal events for a wide range of plants and animals. Our aim is to assess which organism groups (in which locations/habitats) are most sensitive to climate. Furthermore, the role of anthropogenic climate change as a driver of phenological change is being assessed.

  10. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    PubMed

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  11. Interactive effects of global climate change and pollution on marine microbes: the way ahead

    PubMed Central

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Ângela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-01-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future. PMID:23789087

  12. Biodiversity increases the resistance of ecosystem productivity to climate extremes

    USDA-ARS?s Scientific Manuscript database

    It remains unclear whether biodiversity buffers ecosystems against extreme climate events, which are becoming increasingly frequent worldwide. Although early results suggested that biodiversity might provide both resistance and resilience (sensu rapid recovery) of ecosystem productivity to drought, ...

  13. A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems.

    PubMed

    Donnelly, Alison; Caffarra, Amelia; O'Neill, Bridget F

    2011-11-01

    Mismatches in phenology between mutually dependent species, resulting from climate change, can have far-reaching consequences throughout an ecosystem at both higher and lower trophic levels. Rising temperatures, due to climate warming, have resulted in advances in development and changes in behaviour of many organisms around the world. However, not all species or phenophases are responding to this increase in temperature at the same rate, thus creating a disruption to previously synchronised interdependent key life-cycle stages. Mismatches have been reported between plants and pollinators, predators and prey, and pests and hosts. Here, we review mismatches between interdependent phenophases at different trophic levels resulting from climate change. We categorized the studies into (1) terrestrial (natural and agricultural) ecosystems, and (2) aquatic (freshwater and marine) ecosystems. As expected, we found reports of 'winners' and 'losers' in each system, such as earlier emergence of prey enabling partial avoidance of predators, potential reductions in crop yield if herbivore pests emerge before their predators and possible declines in marine biodiversity due to disruption in plankton-fish phenologies. Furthermore, in the marine environment rising temperatures have resulted in synchrony in a previously mismatched prey and predator system, resulting in an abrupt population decline in the prey species. The examples reviewed suggest that more research into the complex interactions between species in terrestrial and aquatic ecosystems is necessary to make conclusive predictions of how climate warming may impact the fragile balances within ecosystems in future.

  14. [Effects of fishing on the marine ecosystem of Beibu Gulf].

    PubMed

    Chen, Zuo-Zhi; Qiu, Yong-Song; Jia, Xiao-Ping; Zhong, Zhi-Hui

    2008-07-01

    By using Ecopath with Ecosim 5.1 software, the Ecosim model of Beibu Gulf marine ecosystem in 1959-1960 was constructed, which included about 20 functional groups such as fishery, marine mammals, sea-birds, sharks, pelagic fishes, demersal fishes, and benthic crustaceans, etc. Through the comparison with the investigation data in 1997-1999, the effects of fishing on the structure and function of Beibu Gulf marine ecosystem were analyzed. The results indicated that with the increasing fishing pressure in past forty years, the ecosystem structure and function shifted drastically, with the biomass of long-lived, high trophic level and piscivorous fishes declined while short-lived and small fishes and benthic invertebrates dominated gradually. The biomass of piscivorous species in 1999 was only 6% of that in 1960, while cephalopods increased 2.7 times or more. The trophic level of the catch declined from 3.2 in 1960 to 2.98 in 1999, which fitted the rule of "fishing down the food web" and suggested that the present exploitation patterns were unsustainable. Based on the data of the 1990s, the changes of the ecosystem under decreasing fishing pressure were predicted. This study validated the feasibility of Ecosim model in predicting the effects of fishing pressure on marine ecosystem.

  15. Arctic ecosystems in a changing climate: An ecophysiological perspective

    SciTech Connect

    Chapin, F.S. III; Jefferies, R.L.; Reynolds, J.F.; Shaver, G.R.; Svoboda, J.

    1992-01-01

    This book is an international synthesis of studies on arctic ecosystems, a region where climatic change is greatest, presenting the interrelationship between climate change and ecosystems. In addition to chapters dealing specifically with climatic change issues, important background information on arctic ecosystems and vegetation is given. Individual contributions are arranged into four parts: The Arctic System; Carbon Balance; Water and Nutrient Balance; and Interactions. An brief introduction, summary, and a useful index are also included.

  16. Conservation of Arctic marine mammals faced with climate change.

    PubMed

    Ragen, Timothy J; Huntington, Henry P; Hovelsrud, Grete K

    2008-03-01

    On a daily basis, societies are making decisions that will influence the effects of climate change for decades or even centuries to come. To promote informed management of the associated risks, we review available conservation measures for Arctic marine mammals, a group that includes some of the most charismatic species on earth. The majority of available conservation measures (e.g., restrictions on hunting, protection of essential habitat areas from development, reduction of incidental take) are intended to address the effects of increasing human activity in the Arctic that are likely to follow decreasing sea ice and rising temperatures. As important as those measures will be in the effort to conserve Arctic marine mammals and ecosystems, they will not address the primary physical manifestations of climate change, such as loss of sea ice. Short of actions to prevent climate change, there are no known conservation measures that can be used to ensure the long-term persistence of these species and ecosystems as we know them today.

  17. Marine mycoflora in backwater ecosystem of Kerala, India.

    PubMed

    Nambiar, Gayatri R; Raveendran, K

    2009-09-01

    Back water system of Kerala is well known for its fertility. Fungi play a vital role in detritus decomposition, nutrient cycling and energy flow in marine food web including backwater ecosystem. Present investigation on the diversity of marine fungi from two back waters of Kerala resulted in the isolation of 20 marine fungi. These include 11 Ascomycetes, 1 Basidiomycete and 8 Mitosporic fungi. In terms of percent frequency of occurrence the most common species obtained were Aniptodera chesapeakensis, Verruculina enalia, Savoryella lignicola and Clavatospora bulbosa. Ascochyta sp. was represented by only a single isolate.

  18. Microbial Dysbiosis: Rethinking Disease in Marine Ecosystems.

    PubMed

    Egan, Suhelen; Gardiner, Melissa

    2016-01-01

    With growing environmental pressures placed on our marine habitats there is concern that the prevalence and severity of diseases affecting marine organisms will increase. Yet relative to terrestrial systems, we know little about the underlying causes of many of these diseases. Moreover, factors such as saprophytic colonizers and a lack of baseline data on healthy individuals make it difficult to accurately assess the role of specific microbial pathogens in disease states. Emerging evidence in the field of medicine suggests that a growing number of human diseases result from a microbiome imbalance (or dysbiosis), questioning the traditional view of a singular pathogenic agent. Here we discuss the possibility that many diseases seen in marine systems are, similarly, the result of microbial dysbiosis and the rise of opportunistic or polymicrobial infections. Thus, understanding and managing disease in the future will require us to also rethink definitions of disease and pathogenesis for marine systems. We suggest that a targeted, multidisciplinary approach that addresses the questions of microbial symbiosis in both healthy and diseased states, and at that the level of the holobiont, will be key to progress in this area.

  19. Microbial Dysbiosis: Rethinking Disease in Marine Ecosystems

    PubMed Central

    Egan, Suhelen; Gardiner, Melissa

    2016-01-01

    With growing environmental pressures placed on our marine habitats there is concern that the prevalence and severity of diseases affecting marine organisms will increase. Yet relative to terrestrial systems, we know little about the underlying causes of many of these diseases. Moreover, factors such as saprophytic colonizers and a lack of baseline data on healthy individuals make it difficult to accurately assess the role of specific microbial pathogens in disease states. Emerging evidence in the field of medicine suggests that a growing number of human diseases result from a microbiome imbalance (or dysbiosis), questioning the traditional view of a singular pathogenic agent. Here we discuss the possibility that many diseases seen in marine systems are, similarly, the result of microbial dysbiosis and the rise of opportunistic or polymicrobial infections. Thus, understanding and managing disease in the future will require us to also rethink definitions of disease and pathogenesis for marine systems. We suggest that a targeted, multidisciplinary approach that addresses the questions of microbial symbiosis in both healthy and diseased states, and at that the level of the holobiont, will be key to progress in this area. PMID:27446031

  20. Climate change, marine environments, and the US Endangered species act.

    PubMed

    Seney, Erin E; Rowland, Melanie J; Lowery, Ruth Ann; Griffis, Roger B; McClure, Michelle M

    2013-12-01

    Climate change is expected to be a top driver of global biodiversity loss in the 21st century. It poses new challenges to conserving and managing imperiled species, particularly in marine and estuarine ecosystems. The use of climate-related science in statutorily driven species management, such as under the U.S. Endangered Species Act (ESA), is in its early stages. This article provides an overview of ESA processes, with emphasis on the mandate to the National Marine Fisheries Service (NMFS) to manage listed marine, estuarine, and anadromous species. Although the ESA is specific to the United States, its requirements are broadly relevant to conservation planning. Under the ESA, species, subspecies, and "distinct population segments" may be listed as either endangered or threatened, and taking of most listed species (harassing, harming, pursuing, wounding, killing, or capturing) is prohibited unless specifically authorized via a case-by-case permit process. Government agencies, in addition to avoiding take, must ensure that actions they fund, authorize, or conduct are not likely to jeopardize a listed species' continued existence or adversely affect designated critical habitat. Decisions for which climate change is likely to be a key factor include: determining whether a species should be listed under the ESA, designating critical habitat areas, developing species recovery plans, and predicting whether effects of proposed human activities will be compatible with ESA-listed species' survival and recovery. Scientific analyses that underlie these critical conservation decisions include risk assessment, long-term recovery planning, defining environmental baselines, predicting distribution, and defining appropriate temporal and spatial scales. Although specific guidance is still evolving, it is clear that the unprecedented changes in global ecosystems brought about by climate change necessitate new information and approaches to conservation of imperiled species. El

  1. Marine Socio-Environmental Covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies.

    PubMed

    Yeager, Lauren A; Marchand, Philippe; Gill, David A; Baum, Julia K; McPherson, Jana M

    2017-07-01

    Biophysical conditions, including climate, environmental stress, and habitat availability, are key drivers of many ecological processes (e.g., community assembly and productivity) and associated ecosystem services (e.g., carbon sequestration and fishery production). Furthermore, anthropogenic impacts such as coastal development and fishing can have drastic effects on the structure and function of marine ecosystems. Scientists need to account for environmental variation and human impacts to accurately model, manage, and conserve marine ecosystems. Although there are many types of environmental data available from global remote sensing and open-source data products, some are inaccessible to potential end-users because they exist as global layers in high temporal and spatial resolutions which require considerable computational power to process. Additionally, coastal locations often suffer from missing data or data quality issues which limit the utility of some global marine products for coastal sites. Herein we present the Marine Socio-Environmental Covariates dataset for the global oceans, which consists of environmental and anthropogenic variables summarized in ecologically relevant ways. The dataset includes four sets of environmental variables related to biophysical conditions (net primary productivity models corrected for shallow-water reflectance, wave energy including sheltered-coastline corrections) and landscape context (coral reef and land cover within varying radii). We also present two sets of anthropogenic variables, human population density (within varying radii) and distance to large population center, which can serve as indicators of local human impacts. We have paired global, summarized layers available for download with an online data querying platform that allows users to extract data for specific point locations with finer control of summary statistics. In creating these global layers and online platform, we hope to make the data accessible to a

  2. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems

    NASA Astrophysics Data System (ADS)

    Cheung, William W. L.; Sarmiento, Jorge L.; Dunne, John; Frölicher, Thomas L.; Lam, Vicky W. Y.; Deng Palomares, M. L.; Watson, Reg; Pauly, Daniel

    2013-03-01

    Changes in temperature, oxygen content and other ocean biogeochemical properties directly affect the ecophysiology of marine water-breathing organisms. Previous studies suggest that the most prominent biological responses are changes in distribution, phenology and productivity. Both theory and empirical observations also support the hypothesis that warming and reduced oxygen will reduce body size of marine fishes. However, the extent to which such changes would exacerbate the impacts of climate and ocean changes on global marine ecosystems remains unexplored. Here, we employ a model to examine the integrated biological responses of over 600 species of marine fishes due to changes in distribution, abundance and body size. The model has an explicit representation of ecophysiology, dispersal, distribution, and population dynamics. We show that assemblage-averaged maximum body weight is expected to shrink by 14-24% globally from 2000 to 2050 under a high-emission scenario. About half of this shrinkage is due to change in distribution and abundance, the remainder to changes in physiology. The tropical and intermediate latitudinal areas will be heavily impacted, with an average reduction of more than 20%. Our results provide a new dimension to understanding the integrated impacts of climate change on marine ecosystems.

  3. Biodiversity increases the resistance of ecosystem productivity to climate extremes.

    PubMed

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Niklaus, Pascal A; Polley, H Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, Nico

    2015-10-22

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  4. Biodiversity increases the resistance of ecosystem productivity to climate extremes

    NASA Astrophysics Data System (ADS)

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T. Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N.; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T.; Mori, Akira S.; Naeem, Shahid; Niklaus, Pascal A.; Polley, H. Wayne; Reich, Peter B.; Roscher, Christiane; Seabloom, Eric W.; Smith, Melinda D.; Thakur, Madhav P.; Tilman, David; Tracy, Benjamin F.; van der Putten, Wim H.; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W.; Wilsey, Brian; Eisenhauer, Nico

    2015-10-01

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  5. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    USGS Publications Warehouse

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  6. Fish, human health and marine ecosystem health: policies in collision.

    PubMed

    Brunner, Eric J; Jones, Peter J S; Friel, Sharon; Bartley, Mel

    2009-02-01

    Health recommendations advocating increased fish consumption need to be placed in the context of the potential collapse of global marine capture fisheries. Literature overview. In economically developed countries, official healthy eating advice is to eat more fish, particularly that rich in omega-3 oils. In many less economically developed countries, fish is a key human health asset, contributing >20% of animal protein intake for 2.6 billion people. Marine ecologists predict on current trends that fish stocks are set to collapse in 40 years, and propose increased restrictions on fishing, including no-take zones, in order to restore marine ecosystem health. Production of fishmeal for aquaculture and other non-food uses (22 MT in 2003) appears to be unsustainable. Differences in fish consumption probably contribute to within-country and international health inequalities. Such inequalities are likely to increase if fish stocks continue to decline, while increasing demand for fish will accelerate declines in fish stocks and the health of marine ecosystems. Urgent national and international action is necessary to address the tensions arising from increasing human demand for fish and seafood, and rapidly declining marine ecosystem health.

  7. Extremophiles in an Antarctic Marine Ecosystem

    PubMed Central

    Dickinson, Iain; Goodall-Copestake, William; Thorne, Michael A.S.; Schlitt, Thomas; Ávila-Jiménez, Maria L.; Pearce, David A.

    2016-01-01

    Recent attempts to explore marine microbial diversity and the global marine microbiome have indicated a large proportion of previously unknown diversity. However, sequencing alone does not tell the whole story, as it relies heavily upon information that is already contained within sequence databases. In addition, microorganisms have been shown to present small-to-large scale biogeographical patterns worldwide, potentially making regional combinations of selection pressures unique. Here, we focus on the extremophile community in the boundary region located between the Polar Front and the Southern Antarctic Circumpolar Current in the Southern Ocean, to explore the potential of metagenomic approaches as a tool for bioprospecting in the search for novel functional activity based on targeted sampling efforts. We assessed the microbial composition and diversity from a region north of the current limit for winter sea ice, north of the Southern Antarctic Circumpolar Front (SACCF) but south of the Polar Front. Although, most of the more frequently encountered sequences  were derived from common marine microorganisms, within these dominant groups, we found a proportion of genes related to secondary metabolism of potential interest in bioprospecting. Extremophiles were rare by comparison but belonged to a range of genera. Hence, they represented interesting targets from which to identify rare or novel functions. Ultimately, future shifts in environmental conditions favoring more cosmopolitan groups could have an unpredictable effect on microbial diversity and function in the Southern Ocean, perhaps excluding the rarer extremophiles. PMID:27681902

  8. Extremophiles in an Antarctic Marine Ecosystem.

    PubMed

    Dickinson, Iain; Goodall-Copestake, William; Thorne, Michael A S; Schlitt, Thomas; Ávila-Jiménez, Maria L; Pearce, David A

    2016-01-11

    Recent attempts to explore marine microbial diversity and the global marine microbiome have indicated a large proportion of previously unknown diversity. However, sequencing alone does not tell the whole story, as it relies heavily upon information that is already contained within sequence databases. In addition, microorganisms have been shown to present small-to-large scale biogeographical patterns worldwide, potentially making regional combinations of selection pressures unique. Here, we focus on the extremophile community in the boundary region located between the Polar Front and the Southern Antarctic Circumpolar Current in the Southern Ocean, to explore the potential of metagenomic approaches as a tool for bioprospecting in the search for novel functional activity based on targeted sampling efforts. We assessed the microbial composition and diversity from a region north of the current limit for winter sea ice, north of the Southern Antarctic Circumpolar Front (SACCF) but south of the Polar Front. Although, most of the more frequently encountered sequences  were derived from common marine microorganisms, within these dominant groups, we found a proportion of genes related to secondary metabolism of potential interest in bioprospecting. Extremophiles were rare by comparison but belonged to a range of genera. Hence, they represented interesting targets from which to identify rare or novel functions. Ultimately, future shifts in environmental conditions favoring more cosmopolitan groups could have an unpredictable effect on microbial diversity and function in the Southern Ocean, perhaps excluding the rarer extremophiles.

  9. Squid as nutrient vectors linking Southwest Atlantic marine ecosystems

    NASA Astrophysics Data System (ADS)

    Arkhipkin, Alexander I.

    2013-10-01

    Long-term investigations of three abundant nektonic squid species from the Southwest Atlantic, Illex argentinus, Doryteuthis gahi and Onykia ingens, permitted to estimate important population parameters including individual growth rates, duration of ontogenetic phases and mortalities. Using production model, the productivity of squid populations at different phases of their life cycle was assessed and the amount of biomass they convey between marine ecosystems as a result of their ontogenetic migrations was quantified. It was found that squid are major nutrient vectors and play a key role as transient 'biological pumps' linking spatially distinct marine ecosystems. I. argentinus has the largest impact in all three ecosystems it encounters due to its high abundance and productivity. The variable nature of squid populations increases the vulnerability of these biological conveyers to overfishing and environmental change. Failure of these critical biological pathways may induce irreversible long-term consequences for biodiversity, resource abundance and spatial availability in the world ocean.

  10. Sources of uncertainties in 21st century projections of marine ecosystem drivers

    NASA Astrophysics Data System (ADS)

    Froelicher, T. L.; Rodgers, K. B.; Stock, C. A.; Cheung, W. W. L.

    2015-12-01

    Marine ecosystems are increasingly stressed by human-induced climate change affecting their physical and biogeochemical environment. At present, future projections of marine ecosystem drivers are inherently uncertain, complicating assessments of climate change impacts. Here we evaluate the relative importance of specific sources of uncertainties in projections of marine ecosystem drivers (warming, acidification, nutrient availability and declining oxygen levels) as a function of prediction lead-time and spatial scales. We show that the uncertainty in century-scale global and regional surface pH projections is dominated by scenario uncertainty, highlighting the critical importance of policy decisions on carbon emissions. In contrast, uncertainty in century-scale sea surface temperature projections in polar regions, oxygen levels in low oxygen waters, and regional nutrient availability is dominated by model uncertainty, underscoring that overcoming deficiencies in scientific understanding and improved process representation in Earth system models are critical for making more robust predictions. For smaller spatial and temporal scales, uncertainty associated with internal variability also constitutes an important source of uncertainty, suggesting irreducible uncertainty inherent in these projections. We also show that changes in the combined multiple ecosystem drivers emerges from the noise in 44% of the ocean in the next decade and in 57% of the ocean by the end of the century following a high carbon emissions scenario. Changes in pH and sea surface temperature can be reduced substantially and rapidly with aggressive carbon emissions mitigation, but only marginally for oxygen and net primary productivity. The broader scientific implications, including downscaling of Earth system model output for large marine ecosystem regions and for impact assessment models, will also be discussed.

  11. Forest ecosystems, disturbance, and climate change in Washington State, USA

    Treesearch

    Jeremy S. Littell; Elaine E. Oneil; Donald McKenzie; Jeffrey A. Hicke; James A. Lutz; Robert A. Norheim; Marketa M. Elsner

    2010-01-01

    Climatic change is likely to affect Pacific Northwest (PNW) forests in several important ways. In this paper, we address the role of climate in four forest ecosystem processes and project the effects of future climatic change on these processes across Washington State. First, we relate Douglas-fir growth to climatic limitation and suggest that where Douglas-fir is...

  12. Ecophysiology. Climate change tightens a metabolic constraint on marine habitats.

    PubMed

    Deutsch, Curtis; Ferrel, Aaron; Seibel, Brad; Pörtner, Hans-Otto; Huey, Raymond B

    2015-06-05

    Warming of the oceans and consequent loss of dissolved oxygen (O2) will alter marine ecosystems, but a mechanistic framework to predict the impact of multiple stressors on viable habitat is lacking. Here, we integrate physiological, climatic, and biogeographic data to calibrate and then map a key metabolic index-the ratio of O2 supply to resting metabolic O2 demand-across geographic ranges of several marine ectotherms. These species differ in thermal and hypoxic tolerances, but their contemporary distributions are all bounded at the equatorward edge by a minimum metabolic index of ~2 to 5, indicative of a critical energetic requirement for organismal activity. The combined effects of warming and O2 loss this century are projected to reduce the upper ocean's metabolic index by ~20% globally and by ~50% in northern high-latitude regions, forcing poleward and vertical contraction of metabolically viable habitats and species ranges.

  13. Ecosystem productivity is associated with bacterial phylogenetic distance in surface marine waters.

    PubMed

    Galand, Pierre E; Salter, Ian; Kalenitchenko, Dimitri

    2015-12-01

    Understanding the link between community diversity and ecosystem function is a fundamental aspect of ecology. Systematic losses in biodiversity are widely acknowledged but the impact this may exert on ecosystem functioning remains ambiguous. There is growing evidence of a positive relationship between species richness and ecosystem productivity for terrestrial macro-organisms, but similar links for marine micro-organisms, which help drive global climate, are unclear. Community manipulation experiments show both positive and negative relationships for microbes. These previous studies rely, however, on artificial communities and any links between the full diversity of active bacterial communities in the environment, their phylogenetic relatedness and ecosystem function remain hitherto unexplored. Here, we test the hypothesis that productivity is associated with diversity in the metabolically active fraction of microbial communities. We show in natural assemblages of active bacteria that communities containing more distantly related members were associated with higher bacterial production. The positive phylogenetic diversity-productivity relationship was independent of community diversity calculated as the Shannon index. From our long-term (7-year) survey of surface marine bacterial communities, we also found that similarly, productive communities had greater phylogenetic similarity to each other, further suggesting that the traits of active bacteria are an important predictor of ecosystem productivity. Our findings demonstrate that the evolutionary history of the active fraction of a microbial community is critical for understanding their role in ecosystem functioning. © 2015 John Wiley & Sons Ltd.

  14. Ecosystem Services and Climate Change Considerations for ...

    EPA Pesticide Factsheets

    Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change encompass numerous stressors of potential exposure, including the introduction of toxic contaminants, invasive species, and disease in addition to physical drivers such as temperature and hydrologic regime. A systems approach that includes the scientific and technologic basis of assessing the health of ecosystems is needed to effectively protect human health and the environment. The Integrated Environmental Modeling Framework “iemWatersheds” has been developed as a consistent and coherent means of forecasting the cumulative impact of co-occurring stressors. The Framework consists of three facilitating technologies: Data for Environmental Modeling (D4EM) that automates the collection and standardization of input data; the Framework for Risk Assessment of Multimedia Environmental Systems (FRAMES) that manages the flow of information between linked models; and the Supercomputer for Model Uncertainty and Sensitivity Evaluation (SuperMUSE) that provides post-processing and analysis of model outputs, including uncertainty and sensitivity analysis. Five models are linked within the Framework to provide multimedia simulation capabilities for hydrology and water quality processes: the Soil Water

  15. Climate change in size-structured ecosystems

    PubMed Central

    Brose, Ulrich; Dunne, Jennifer A.; Montoya, Jose M.; Petchey, Owen L.; Schneider, Florian D.; Jacob, Ute

    2012-01-01

    One important aspect of climate change is the increase in average temperature, which will not only have direct physiological effects on all species but also indirectly modifies abundances, interaction strengths, food-web topologies, community stability and functioning. In this theme issue, we highlight a novel pathway through which warming indirectly affects ecological communities: by changing their size structure (i.e. the body-size distributions). Warming can shift these distributions towards dominance of small- over large-bodied species. The conceptual, theoretical and empirical research described in this issue, in sum, suggests that effects of temperature may be dominated by changes in size structure, with relatively weak direct effects. For example, temperature effects via size structure have implications for top-down and bottom-up control in ecosystems and may ultimately yield novel communities. Moreover, scaling up effects of temperature and body size from physiology to the levels of populations, communities and ecosystems may provide a crucially important mechanistic approach for forecasting future consequences of global warming. PMID:23007078

  16. Organization of marine phenology data in support of planning and conservation in ocean and coastal ecosystems

    USGS Publications Warehouse

    Thomas, Kathryn A.; Fornwall, Mark D.; Weltzin, Jake F.; Griffis, R.B.

    2014-01-01

    Among the many effects of climate change is its influence on the phenology of biota. In marine and coastal ecosystems, phenological shifts have been documented for multiple life forms; however, biological data related to marine species' phenology remain difficult to access and is under-used. We conducted an assessment of potential sources of biological data for marine species and their availability for use in phenological analyses and assessments. Our evaluations showed that data potentially related to understanding marine species' phenology are available through online resources of governmental, academic, and non-governmental organizations, but appropriate datasets are often difficult to discover and access, presenting opportunities for scientific infrastructure improvement. The developing Federal Marine Data Architecture when fully implemented will improve data flow and standardization for marine data within major federal repositories and provide an archival repository for collaborating academic and public data contributors. Another opportunity, largely untapped, is the engagement of citizen scientists in standardized collection of marine phenology data and contribution of these data to established data flows. Use of metadata with marine phenology related keywords could improve discovery and access to appropriate datasets. When data originators choose to self-publish, publication of research datasets with a digital object identifier, linked to metadata, will also improve subsequent discovery and access. Phenological changes in the marine environment will affect human economics, food systems, and recreation. No one source of data will be sufficient to understand these changes. The collective attention of marine data collectors is needed—whether with an agency, an educational institution, or a citizen scientist group—toward adopting the data management processes and standards needed to ensure availability of sufficient and useable marine data to understand

  17. Increased sensitivity to climate change in disturbed ecosystems.

    PubMed

    Kröel-Dulay, György; Ransijn, Johannes; Schmidt, Inger Kappel; Beier, Claus; De Angelis, Paolo; de Dato, Giovanbattista; Dukes, Jeffrey S; Emmett, Bridget; Estiarte, Marc; Garadnai, János; Kongstad, Jane; Kovács-Láng, Edit; Larsen, Klaus Steenberg; Liberati, Dario; Ogaya, Romà; Riis-Nielsen, Torben; Smith, Andrew R; Sowerby, Alwyn; Tietema, Albert; Penuelas, Josep

    2015-03-24

    Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem, with recently disturbed sites responding to treatments. Furthermore, most of these responses are not rapid (2-5 years) but emerge over a longer term (7-14 years). These results suggest that successional state influences the sensitivity of ecosystems to climate change, and that ecosystems recovering from disturbances may be sensitive to even modest climatic changes. A research bias towards undisturbed ecosystems might thus lead to an underestimation of the impacts of climate change.

  18. Quantifying the Climate Regulation Values of Ecosystems Globally

    NASA Astrophysics Data System (ADS)

    Anderson-Teixeira, K. J.; DeLucia, E. H.; Snyder, P. K.; LeBauer, D.; Long, S.

    2014-12-01

    Terrestrial ecosystems play an important role in the climate system, regulating climate through both biogeochemical (greenhouse-gas regulation) and biophysical (regulation of water and energy) mechanisms. However, initiatives aimed at climate protection through land management account only for biogeochemical mechanisms. By ignoring biophysical processes, these initiatives risk promoting suboptimal solutions. Our recently proposed metric for the climate regulation value (CRV) of ecosystems provides one potential approach to quantifying how biogeochemical and biophysical effects combine to determine the climate services of terrestrial ecosystems. In order to provide broadly accessible estimates of CRV for ecosystems worldwide, we have created an online ecosystem climate regulation services calculator with global coverage. The CRV calculator incorporates global maps of climatically significant ecosystem properties (for example, biomass, soil carbon, and evapotranspiration) to provide location-specific CRV estimates. We use this calculator to derive values for forests globally, revealing that CRV commonly differs meaningfully from values derived based purely on carbon storage. In the face of increasing land-use pressures and the increasingly urgent need for climate change mitigation, the CRV calculator has the potential to facilitate improved quantification of ecosystem climate regulation services by scientists, conservationists, policy makers, and the private sector.

  19. Testing paradigms of ecosystem change under climate warming in Antarctica.

    PubMed

    Melbourne-Thomas, Jessica; Constable, Andrew; Wotherspoon, Simon; Raymond, Ben

    2013-01-01

    Antarctic marine ecosystems have undergone significant changes as a result of human activities in the past and are now responding in varied and often complicated ways to climate change impacts. Recent years have seen the emergence of large-scale mechanistic explanations-or "paradigms of change"-that attempt to synthesize our understanding of past and current changes. In many cases, these paradigms are based on observations that are spatially and temporally patchy. The West Antarctic Peninsula (WAP), one of Earth's most rapidly changing regions, has been an area of particular research focus. A recently proposed mechanistic explanation for observed changes in the WAP region relates changes in penguin populations to variability in krill biomass and regional warming. While this scheme is attractive for its simplicity and chronology, it may not account for complex spatio-temporal processes that drive ecosystem dynamics in the region. It might also be difficult to apply to other Antarctic regions that are experiencing some, though not all, of the changes documented for the WAP. We use qualitative network models of differing levels of complexity to test paradigms of change for the WAP ecosystem. Importantly, our approach captures the emergent effects of feedback processes in complex ecological networks and provides a means to identify and incorporate uncertain linkages between network elements. Our findings highlight key areas of uncertainty in the drivers of documented trends, and suggest that a greater level of model complexity is needed in devising explanations for ecosystem change in the Southern Ocean. We suggest that our network approach to evaluating a recent and widely cited paradigm of change for the Antarctic region could be broadly applied in hypothesis testing for other regions and research fields.

  20. Testing Paradigms of Ecosystem Change under Climate Warming in Antarctica

    PubMed Central

    Melbourne-Thomas, Jessica; Constable, Andrew; Wotherspoon, Simon; Raymond, Ben

    2013-01-01

    Antarctic marine ecosystems have undergone significant changes as a result of human activities in the past and are now responding in varied and often complicated ways to climate change impacts. Recent years have seen the emergence of large-scale mechanistic explanations–or “paradigms of change”–that attempt to synthesize our understanding of past and current changes. In many cases, these paradigms are based on observations that are spatially and temporally patchy. The West Antarctic Peninsula (WAP), one of Earth’s most rapidly changing regions, has been an area of particular research focus. A recently proposed mechanistic explanation for observed changes in the WAP region relates changes in penguin populations to variability in krill biomass and regional warming. While this scheme is attractive for its simplicity and chronology, it may not account for complex spatio-temporal processes that drive ecosystem dynamics in the region. It might also be difficult to apply to other Antarctic regions that are experiencing some, though not all, of the changes documented for the WAP. We use qualitative network models of differing levels of complexity to test paradigms of change for the WAP ecosystem. Importantly, our approach captures the emergent effects of feedback processes in complex ecological networks and provides a means to identify and incorporate uncertain linkages between network elements. Our findings highlight key areas of uncertainty in the drivers of documented trends, and suggest that a greater level of model complexity is needed in devising explanations for ecosystem change in the Southern Ocean. We suggest that our network approach to evaluating a recent and widely cited paradigm of change for the Antarctic region could be broadly applied in hypothesis testing for other regions and research fields. PMID:23405116

  1. Marine biodiversity-ecosystem functions under uncertain environmental futures.

    PubMed

    Bulling, Mark T; Hicks, Natalie; Murray, Leigh; Paterson, David M; Raffaelli, Dave; White, Piran C L; Solan, Martin

    2010-07-12

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.

  2. Marine biodiversity–ecosystem functions under uncertain environmental futures

    PubMed Central

    Bulling, Mark T.; Hicks, Natalie; Murray, Leigh; Paterson, David M.; Raffaelli, Dave; White, Piran C. L.; Solan, Martin

    2010-01-01

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty. PMID:20513718

  3. Eutrophication of freshwater and marine ecosystems

    USGS Publications Warehouse

    Smith, Val H.; Joye, Samantha B.; Howarth, Robert W.

    2006-01-01

    Initial understanding of the links between nutrients and aquatic productivity originated in Europe in the early 1900s, and our knowledge base has expanded greatly during the past 40 yr. This explosion of eutrophication-related research has made it unequivocally clear that a comprehensive strategy to prevent excessive amounts of nitrogen and phosphorus from entering our waterways is needed to protect our lakes, rivers, and coasts from water quality deterioration. However, despite these very significant advances, cultural eutrophication remains one of the foremost problems for protecting our valuable surface water resources. The papers in this special issue provide a valuable cross section and synthesis of our current understanding of both freshwater and marine eutrophication science. They also serve to identify gaps in our knowledge and will help to guide future research.

  4. Viral metabolic reprogramming in marine ecosystems.

    PubMed

    Hurwitz, Bonnie L; U'Ren, Jana M

    2016-06-01

    Marine viruses often contain host-derived metabolic genes (i.e., auxiliary metabolic genes; AMGs), which are hypothesized to increase viral replication by augmenting key steps in host metabolism. Currently described AMGs encompass a wide variety of metabolic functions, including amino acid and carbohydrate metabolism, energy production, and iron-sulfur cluster assembly and modification, and their community-wide gene content and abundance vary as a function of environmental conditions. Here, we describe different AMGs classes, their hypothesized role in redirecting host carbon metabolism, and their ecological importance. Focusing on metagenomic ocean surveys, we propose a new model where a suite of phage-encoded genes activate host pathways that respond rapidly to environmental cues, presumably resulting in rapid changes to host metabolic flux for phage production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Soil Moisture-Ecosystem-Climate Interactions in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Seneviratne, S. I.; Davin, E.; Hirschi, M.; Mueller, B.; Orlowsky, B.; Teuling, A.

    2011-12-01

    Soil moisture is a key variable of the climate system. It constrains plant transpiration and photosynthesis in several regions of the world, with consequent impacts on the water, energy and biogeochemical cycles (e.g. Seneviratne et al. 2010). Moreover it is a storage component for precipitation and radiation anomalies, inducing persistence in the climate system. Finally, it is involved in a number of feedbacks at the local, regional and global scales, and plays a major role in climate-change projections. This presentation will provide an overview on these interactions, based on several recent publications (e.g. Seneviratne et al. 2006, Orlowsky and Seneviratne 2010, Teuling et al. 2010, Hirschi et al. 2011). In particular, it will highlight possible impacts of soil moisture-ecosystem coupling for climate extremes such as heat waves and droughts, and the resulting interconnections between biophysical and biogeochemical feedbacks in the context of climate change. Finally, it will also address recent regional- to global-scale trends in land hydrology and ecosystem functioning, as well as issues and potential avenues for investigating these trends (e.g. Jung et al. 2010, Mueller et al. 2011). References Hirschi, M., S.I. Seneviratne, V. Alexandrov, F. Boberg, C. Boroneant, O.B. Christensen, H. Formayer, B. Orlowsky, and P. Stepanek, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geoscience, 4, 17-21, doi:10.1038/ngeo1032. Jung, M., et al., 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951-954. doi:10.1038/nature09396 Mueller, B., S.I. Seneviratne, et al.: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations, Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230 Orlowsky, B., and S.I. Seneviratne, 2010: Statistical analyses of land-atmosphere feedbacks and their possible pitfalls. J. Climate, 23(14), 3918

  6. Marine Chemical Ecology: Chemical Signals and Cues Structure Marine Populations, Communities, and Ecosystems

    PubMed Central

    Hay, Mark E.

    2012-01-01

    Chemical cues constitute much of the language of life in the sea. Our understanding of biotic interactions and their effects on marine ecosystems will advance more rapidly if this language is studied and understood. Here, I review how chemical cues regulate critical aspects of the behavior of marine organisms from bacteria to phytoplankton to benthic invertebrates and water column fishes. These chemically mediated interactions strongly affect population structure, community organization, and ecosystem function. Chemical cues determine foraging strategies, feeding choices, commensal associations, selection of mates and habitats, competitive interactions, and transfer of energy and nutrients within and among ecosystems. In numerous cases, the indirect effects of chemical signals on behavior have as much or more effect on community structure and function as the direct effects of consumers and pathogens. Chemical cues are critical for understanding marine systems, but their omnipresence and impact are inadequately recognized. PMID:21141035

  7. The Future of Marine Biogeochemistry, Ecosystems, and Societies

    NASA Astrophysics Data System (ADS)

    Bundy, Alida; Liu, Kon-Kee; Thomas, Helmuth

    2013-05-01

    The international project Integrated Marine Biogeochemistry and Ecosystem Research (IMBER) convenes an IMBIZO (a Zulu word meaning "a gathering") biennially, with a format of three concurrent, interacting workshops designed to synthesize information on topical research areas in marine science. IMBIZO III, held at the National Institute of Oceanography in Goa, India, focused on multidimensional approaches to challenges of global change in continental margins (CM), open ocean systems, and dependent human societies. More than 120 participants from 29 nations attended the meeting; the smaller workshop groups allowed in-depth discussions, and daily plenary sessions facilitated discussion among interdisciplinary experts.

  8. Modelling marine ecosystems as a discipline in Earth Science

    NASA Astrophysics Data System (ADS)

    Nihoul, Jacques C. J.

    1998-07-01

    Faced with the imperatives of sustainable development, Earth Science must open to the study of ecosystems and their interactions with a multiscale geophysical environment. The indispensable development of interdisciplinary Earth Science models requires that the crafts and skills of physicists, chemists and biologists merge and cross-fertilize, with often a long way to go for each discipline to win over the others. This paper contains the reflections, queries and suggestions of a marine hydrodynamicist trying to develop coupled physical, chemical and biological marine models and negotiating admittance in the Biogeochemistry Club.

  9. Climate change and tropical marine agriculture.

    PubMed

    Crabbe, M James C

    2009-01-01

    The coral reef ecosystem forms part of a 'seascape' that includes land-based ecosystems such as mangroves and forests, and ideally should form a complete system for conservation and management. Aquaculture, including artisanal fishing for fish and invertebrates, shrimp farming, and seaweed farming, is a major part of the farming and gleaning practices of many tropical communities, particularly on small islands, and depends upon the integrity of the reefs. Climate change is making major impacts on these communities, not least through global warming and high CO(2) concentrations. Corals grow within very narrow limits of temperature, provide livelihoods for millions of people in tropical areas, and are under serious threat from a variety of environmental and climate extremes. Corals survive and grow through a symbiotic relationship with photosynthetic algae: zooxanthellae. Such systems apply highly co-operative regulation to minimize the fluctuation of metabolite concentration profiles in the face of transient perturbations. This review will discuss research on how climate influences reef ecosystems, and how science can lead to conservation actions, with benefits for the human populations reliant on the reefs for their survival.

  10. Spreading dead zones and consequences for marine ecosystems.

    PubMed

    Diaz, Robert J; Rosenberg, Rutger

    2008-08-15

    Dead zones in the coastal oceans have spread exponentially since the 1960s and have serious consequences for ecosystem functioning. The formation of dead zones has been exacerbated by the increase in primary production and consequent worldwide coastal eutrophication fueled by riverine runoff of fertilizers and the burning of fossil fuels. Enhanced primary production results in an accumulation of particulate organic matter, which encourages microbial activity and the consumption of dissolved oxygen in bottom waters. Dead zones have now been reported from more than 400 systems, affecting a total area of more than 245,000 square kilometers, and are probably a key stressor on marine ecosystems.

  11. Ecosystem-Based Management and the Sustainable Delivery of Marine Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Fogarty, M.; Schwing, F. B.

    2016-02-01

    Ecosystem-Based Management can provide an essential framework for the sustainable delivery of a broad spectrum of marine Ecosystem Services (ES) essential to human well being. Key elements of the approach involve the specification of clearly articulated goals for EBM; the development of an accompanying Marine Ecosystem Services Assessment (MESA) designed to evaluate the status of delivery of these services; and strategies for the implementation of management options designed to achieve the stated goals of the program. The specification of goals is the purview of managers. In the United States under the provisions of the National Ocean Policy, Regional Planning Bodies are charged with the responsibility of articulating goals and developing strategies to meet these goals. Government agencies, in concert with the broader scientific community, hold the responsibility for assessing the status of the delivery of ecosystem services in relation to designated objectives and advising on appropriate management strategies. In this presentation, I will illustrate the specification of a MESA for the Northwest U.S Continental Shelf Large Marine Ecosystem (NES LME). The approach focuses on the evaluation of ES indicators and additional metrics related to threats and impacts to the sustainable delivery of these services. Results are combined into an overall index of status of the NES LME.

  12. Ecosystem-Based Management and the Sustainable Delivery of Marine Ecosystem Services

    NASA Astrophysics Data System (ADS)

    Fogarty, M.; Schwing, F. B.

    2016-12-01

    Ecosystem-Based Management can provide an essential framework for the sustainable delivery of a broad spectrum of marine Ecosystem Services (ES) essential to human well being. Key elements of the approach involve the specification of clearly articulated goals for EBM; the development of an accompanying Marine Ecosystem Services Assessment (MESA) designed to evaluate the status of delivery of these services; and strategies for the implementation of management options designed to achieve the stated goals of the program. The specification of goals is the purview of managers. In the United States under the provisions of the National Ocean Policy, Regional Planning Bodies are charged with the responsibility of articulating goals and developing strategies to meet these goals. Government agencies, in concert with the broader scientific community, hold the responsibility for assessing the status of the delivery of ecosystem services in relation to designated objectives and advising on appropriate management strategies. In this presentation, I will illustrate the specification of a MESA for the Northwest U.S Continental Shelf Large Marine Ecosystem (NES LME). The approach focuses on the evaluation of ES indicators and additional metrics related to threats and impacts to the sustainable delivery of these services. Results are combined into an overall index of status of the NES LME.

  13. Merging Marine Ecosystem Models and Genomics

    NASA Astrophysics Data System (ADS)

    Coles, V.; Hood, R. R.; Stukel, M. R.; Moran, M. A.; Paul, J. H.; Satinsky, B.; Zielinski, B.; Yager, P. L.

    2015-12-01

    oceanography. One of the grand challenges of oceanography is to develop model techniques to more effectively incorporate genomic information. As one approach, we developed an ecosystem model whose community is determined by randomly assigning functional genes to build each organism's "DNA". Microbes are assigned a size that sets their baseline environmental responses using allometric response cuves. These responses are modified by the costs and benefits conferred by each gene in an organism's genome. The microbes are embedded in a general circulation model where environmental conditions shape the emergent population. This model is used to explore whether organisms constructed from randomized combinations of metabolic capability alone can self-organize to create realistic oceanic biogeochemical gradients. Realistic community size spectra and chlorophyll-a concentrations emerge in the model. The model is run repeatedly with randomly-generated microbial communities and each time realistic gradients in community size spectra, chlorophyll-a, and forms of nitrogen develop. This supports the hypothesis that the metabolic potential of a community rather than the realized species composition is the primary factor setting vertical and horizontal environmental gradients. Vertical distributions of nitrogen and transcripts for genes involved in nitrification are broadly consistent with observations. Modeled gene and transcript abundance for nitrogen cycling and processing of land-derived organic material match observations along the extreme gradients in the Amazon River plume, and they help to explain the factors controlling observed variability.

  14. Marine proxy evidence linking decadal North Pacific and Atlantic climate

    NASA Astrophysics Data System (ADS)

    Mecking, J.; Hetzinger, S.; Halfar, J.; Keenlyside, N. S.; Kronz, A.; Steneck, R. S.; Adey, W. H.; Lebednik, P. A.

    2011-12-01

    Decadal- to multidecadal variability in the extra-tropical North Pacific is evident in 20th century instrumental records and has significant impacts on Northern Hemisphere climate and marine ecosystems. Several studies have discussed a potential linkage between North Pacific and Atlantic climate on various time scales. On decadal time scales no relationship could be confirmed, potentially due to sparse instrumental observations before 1950. Proxy data are limited and no multi-centennial high-resolution marine geochemical proxy records are available from the subarctic North Pacific. Here we present an annually-resolved record (1818-1967) of Mg/Ca variations from a North Pacific/ Bering Sea coralline alga that extends our knowledge in this region beyond available data. It shows for the first time a statistically significant link between decadal fluctuations in sea-level pressure (SLP) in the North Pacific and North Atlantic. The record is a lagged proxy for decadal-scale variations of the Aleutian Low. It is significantly related to regional sea surface temperature (SST) and the North Atlantic Oscillation (NAO) index in late boreal winter on these time scales. Our data show that on decadal time scales a weaker Aleutian Low precedes a negative NAO by several years. This atmospheric link can explain the coherence of decadal North Pacific and Atlantic Multidecadal Variability (AMV), as suggested by earlier studies using climate models and limited instrumental data.

  15. Climate velocity and the future global redistribution of marine biodiversity

    NASA Astrophysics Data System (ADS)

    García Molinos, Jorge; Halpern, Benjamin S.; Schoeman, David S.; Brown, Christopher J.; Kiessling, Wolfgang; Moore, Pippa J.; Pandolfi, John M.; Poloczanska, Elvira S.; Richardson, Anthony J.; Burrows, Michael T.

    2016-01-01

    Anticipating the effect of climate change on biodiversity, in particular on changes in community composition, is crucial for adaptive ecosystem management but remains a critical knowledge gap. Here, we use climate velocity trajectories, together with information on thermal tolerances and habitat preferences, to project changes in global patterns of marine species richness and community composition under IPCC Representative Concentration Pathways (RCPs) 4.5 and 8.5. Our simple, intuitive approach emphasizes climate connectivity, and enables us to model over 12 times as many species as previous studies. We find that range expansions prevail over contractions for both RCPs up to 2100, producing a net local increase in richness globally, and temporal changes in composition, driven by the redistribution rather than the loss of diversity. Conversely, widespread invasions homogenize present-day communities across multiple regions. High extirpation rates are expected regionally (for example, Indo-Pacific), particularly under RCP8.5, leading to strong decreases in richness and the anticipated formation of no-analogue communities where invasions are common. The spatial congruence of these patterns with contemporary human impacts highlights potential areas of future conservation concern. These results strongly suggest that the millennial stability of current global marine diversity patterns, against which conservation plans are assessed, will change rapidly over the course of the century in response to ocean warming.

  16. Climate change, ecosystem impacts, and management for Pacific salmon

    Treesearch

    D.E. Schindler; X. Augerot; E. Fleishman; N.J. Mantua; B. Riddell; M. Ruckelshaus; J. Seeb; M. Webster

    2008-01-01

    As climate change intensifies, there is increasing interest in developing models that reduce uncertainties in projections of global climate and refine these projections to finer spatial scales. Forecasts of climate impacts on ecosystems are far more challenging and their uncertainties even larger because of a limited understanding of physical controls on biological...

  17. Coastal Ecosystems and Climate Change: Is Modeling and Monitoring Enough?

    NASA Astrophysics Data System (ADS)

    Cronin, T. M.; Walker, H. A.

    2005-05-01

    Many coastal ecosystems are severely degraded due to a variety of human factors, requiring large and expensive monitoring and modeling efforts for restoration and management. Climate variability, including abrupt climate change, is seldom factored into coastal ecosystem management despite growing evidence for climate forcing of precipitation, river discharge, water quality, salinity, turbidity, faunal and phytoplankton dynamics, dissolved oxygen, and other ecosystem processes. We will review evidence from long-term monitoring records, multi-proxy paleoclimatic and paleoecological records, and climatic modeling that suggests that the effects of climate can override local and regional human activities and may potentially diminish the success of restoration efforts. Because ecosystem restoration often involves long-term objectives requiring decades to achieve, our focus will be on examples from sub-tropical and temperate estuaries in North America that show ecosystem response over decadal timescales to variability related to El Niño-Southern Oscillation, the Pacific Decadal Oscillation and the North Atlantic Oscillation. Climatic variability evident from paleo-records of the past few centuries exceeds that recorded in most 20th century monitoring records. This raises issues about the efficacy of local and regional ecosystem and hydrodynamic models designed to simulate ecosystem response to anthropogenic changes in sediment and nutrient input, fresh-water discharge, and land-use because such models, though tested with rigorous validation procedures, use calibration data sets limited to a few years. Thus, they might not be appropriate for simulating response to climatic extremes on the scale and duration of past events outside their calibration range. Understanding the complexities of ecosystem response to climatic forcing, especially in the context of local and regional ecosystem disturbance, raises formidable challenges, but attempts to integrate climate

  18. Climate change impacts on potential recruitment in an ecosystem engineer.

    PubMed

    Morgan, Emer; O' Riordan, Ruth M; Culloty, Sarah C

    2013-03-01

    Climate variability and the rapid warming of seas undoubtedly have huge ramifications for biological processes such as reproduction. As such, gametogenesis and spawning were investigated at two sites over 200 km apart on the south coast of Ireland in an ecosystem engineer, the common cockle, Cerastoderma edule. Both sites are classed as Special Areas of Conservation (SACs), but are of different water quality. Cerastoderma edule plays a significant biological role by recycling nutrients and affecting sediment structure, with impacts upon assemblage biomass and functional diversity. It plays a key role in food webs, being a common foodstuff for a number of marine birds including the oystercatcher. Both before and during the study (early 2010-mid 2011), Ireland experienced its two coldest winters for 50 years. As the research demonstrated only slight variation in the spawning period between sites, despite site differences in water and environmental quality, temperature and variable climatic conditions were the dominant factor controlling gametogenesis. The most significant finding was that the spawning period in the cockle extended over a greater number of months compared with previous studies and that gametogenesis commenced over winter rather than in spring. Extremely cold winters may impact on the cockle by accelerating and extending the onset and development of gametogenesis. Whether this impact is positive or negative would depend on the associated events occurring on which the cockle depends, that is, presence of primary producers and spring blooms, which would facilitate conversion of this extended gametogenesis into successful recruitment.

  19. Climate change impacts on potential recruitment in an ecosystem engineer

    PubMed Central

    Morgan, Emer; O' Riordan, Ruth M; Culloty, Sarah C

    2013-01-01

    Climate variability and the rapid warming of seas undoubtedly have huge ramifications for biological processes such as reproduction. As such, gametogenesis and spawning were investigated at two sites over 200 km apart on the south coast of Ireland in an ecosystem engineer, the common cockle, Cerastoderma edule. Both sites are classed as Special Areas of Conservation (SACs), but are of different water quality. Cerastoderma edule plays a significant biological role by recycling nutrients and affecting sediment structure, with impacts upon assemblage biomass and functional diversity. It plays a key role in food webs, being a common foodstuff for a number of marine birds including the oystercatcher. Both before and during the study (early 2010–mid 2011), Ireland experienced its two coldest winters for 50 years. As the research demonstrated only slight variation in the spawning period between sites, despite site differences in water and environmental quality, temperature and variable climatic conditions were the dominant factor controlling gametogenesis. The most significant finding was that the spawning period in the cockle extended over a greater number of months compared with previous studies and that gametogenesis commenced over winter rather than in spring. Extremely cold winters may impact on the cockle by accelerating and extending the onset and development of gametogenesis. Whether this impact is positive or negative would depend on the associated events occurring on which the cockle depends, that is, presence of primary producers and spring blooms, which would facilitate conversion of this extended gametogenesis into successful recruitment. PMID:23532482

  20. Climate change impacts on marine water quality: The case study of the Northern Adriatic sea.

    PubMed

    Rizzi, J; Torresan, S; Critto, A; Zabeo, A; Brigolin, D; Carniel, S; Pastres, R; Marcomini, A

    2016-01-30

    Climate change is posing additional pressures on coastal ecosystems due to variations in water biogeochemical and physico-chemical parameters (e.g., pH, salinity) leading to aquatic ecosystem degradation. With the main aim of analyzing the potential impacts of climate change on marine water quality, a Regional Risk Assessment methodology was developed and applied to coastal marine waters of the North Adriatic. It integrates the outputs of regional biogeochemical and physico-chemical models considering future climate change scenarios (i.e., years 2070 and 2100) with site-specific environmental and socio-economic indicators. Results showed that salinity and temperature will be the main drivers of changes, together with macronutrients, especially in the area of the Po' river delta. The final outputs are exposure, susceptibility and risk maps supporting the communication of the potential consequences of climate change on water quality to decision makers and stakeholders and provide a basis for the definition of adaptation and management strategies.

  1. Obstacles to bottom-up implementation of marine ecosystem management.

    PubMed

    Evans, Kirsten E; Klinger, Terrie

    2008-10-01

    Ecosystem management (EM) offers a means to address multiple threats to marine resources. Despite recognition of the importance of stakeholder involvement, most efforts to implement EM in marine systems are the product of top-down regulatory control. We describe a rare, stakeholder-driven attempt to implement EM from the bottom up in San Juan County, Washington (U.S.A.). A citizens advisory group led a 2-year, highly participatory effort to develop an ecosystem-based management plan, guided by a preexisting conservation-planning framework. A key innovation was to incorporate social dimensions by designating both sociocultural and biodiversity targets in the planning process. Multiple obstacles hindered implementation of EM in this setting. Despite using a surrogate scheme, the information-related transaction costs of planning were substantial: information deficits prevented assessment of some biodiversity targets and insufficient resources combined with information deficits prevented scientific assessment of the sociocultural targets. Substantial uncertainty, practical constraints to stakeholder involvement, and the existence of multiple, potentially conflicting, objectives increased negotiation-related costs. Although information deficits and uncertainty, coupled with underinvestment in the transaction costs of planning, could reduce the long-term effectiveness of the plan itself, the social capital and momentum developed through the planning process could yield unforeseeable future gains in protection of marine resources. The obstacles we identified here will require early and sustained attention in efforts to implement ecosystem management in other grassroots settings.

  2. Evaluation of ecosystem services for good balance between climate change prevention and biodiversity conservation

    NASA Astrophysics Data System (ADS)

    Ito, A.; Adachi, M.; Yamagata, Y.; Suzuki, R.; Saigusa, N.; Sekine, H.

    2011-12-01

    For appropriate decision making in ecosystem management for global warming prevention and biodiversity conservation, a reliable and practical method to evaluate ecosystem services is necessary. For this purpose, we are conducting a project focusing on the evaluation of ecosystem services with a financial support from the Ministry of Environment, Japan, during the period from 2011 to 2013. The project is titled "Development of a method for evaluation of ecosystem services aiming at trade-off mitigation between climate change prevention and biodiversity conservation" (Environmental Research Fund, No. F-1101) and jointly conducted through collaboration among: the National Institute for Environmental Studies, the Japan-Agency for Marine-Earth Science and Technology, and Mitsubishi Research Institute. The objectives of the project include: (1) integration of observational data from field sites and satellites related to ecosystem functions, (2) development of a practical evaluation method of ecosystem services, and (3) contribution to mitigate conflicts between environmental mitigation options such as climate change prevention and biodiversity conservation. In this project, we have a couple of candidate sites in Asian region to conduct field studies including in situ observation of forest biomass, leaf area index, canopy structure, in conjunction with corresponding satellite observations. These data on functional traits will be related with important ecosystem services such as carbon sequestration and climate regulation, water supply, and genetic resource stemming from biodiversity.

  3. Tool kit development to refine and visualize essential climate data and information for marine protected areas

    NASA Astrophysics Data System (ADS)

    Cecil, L.; Stachniewicz, J.; Shein, K. A.; Ansari, S.; Jarvis, C.

    2013-05-01

    Marine ecosystem responses to climate variability and change such as changing water temperature, water chemistry (e.g., pH, salinity), water level, or storminess may result in adverse impacts including mass mortality, loss of habitat, increased disease susceptibility, and trophic cascade feedbacks. Unfortunately, while marine ecosystem resource managers are aware of these threats, they often lack sufficient expertise with identifying, accessing and using the many large and complex climate data products that would inform ecosystem-scale climate impact assessments. NOAA's National Climatic Data Center (NCDC) has been working with the Gulf of the Farallones National Marine Sanctuary Ocean Climate Center to enhance and expand the functionality of NCDC's Weather and Climate Toolkit (WCT) to begin to address this limitation. The WCT is a freely available, Java-based user interface (http://www.ncdc.noaa.gov/oa/wct/) designed to access, analyze, and display a variety of NCDC's georeferenced climate data products (e.g., satellite data, radar, reanalysis datasets, in-situ observations). However, the WCT requires the user to have already identified a data set of interest and gained access to it. This can limit its utility by users who are not knowledgeable about which data sets are relevant to their needs and where those data sets can be found. The Integrated Marine Protected Area Climate Tools (IMPACT) prototype modification to the WCT addresses those requirements through an iterative process between climate scientists and resource managers. The WCT-IMPACT prototype couples a user query approach with a quasi-expert system that determines, retrieves, and loads the appropriate data products for visualization and analysis by the user. Relevant data products are identified based on the environmental variables in which ecosystem managers have indicated an importance to their ecosystems. To improve response time, the user, through the WCT-IMPACT interface, crops (or subsets) the

  4. Recreational impacts on the fauna of Australian coastal marine ecosystems.

    PubMed

    Hardiman, Nigel; Burgin, Shelley

    2010-11-01

    This paper reviews recent research into the ecological impacts of recreation and tourism on coastal marine fauna in Australia. Despite the high and growing importance of water-based recreation to the Australian economy, and the known fragility of many Australian ecosystems, there has been relatively limited research into the effects of marine tourism and recreation, infrastructure and activities, on aquatic resources. In this paper we have reviewed the ecological impacts on fauna that are caused by outdoor recreation (including tourism) in Australian coastal marine ecosystems. We predict that the single most potentially severe impact of recreation may be the introduction and/or dispersal of non-indigenous species of marine organisms by recreational vessels. Such introductions, together with other impacts due to human activities have the potential to increasingly degrade recreation destinations. In response, governments have introduced a wide range of legislative tools (e.g., impact assessment, protected area reservation) to manage the recreational industry. It would appear, however, that these instruments are not always appropriately applied.

  5. Human activities change marine ecosystems by altering predation risk.

    PubMed

    Madin, Elizabeth M P; Dill, Lawrence M; Ridlon, April D; Heithaus, Michael R; Warner, Robert R

    2016-01-01

    In ocean ecosystems, many of the changes in predation risk - both increases and decreases - are human-induced. These changes are occurring at scales ranging from global to local and across variable temporal scales. Indirect, risk-based effects of human activity are known to be important in structuring some terrestrial ecosystems, but these impacts have largely been neglected in oceans. Here, we synthesize existing literature and data to explore multiple lines of evidence that collectively suggest diverse human activities are changing marine ecosystems, including carbon storage capacity, in myriad ways by altering predation risk. We provide novel, compelling evidence that at least one key human activity, overfishing, can lead to distinct, cascading risk effects in natural ecosystems whose magnitude exceeds that of presumed lethal effects and may account for previously unexplained findings. We further discuss the conservation implications of human-caused indirect risk effects. Finally, we provide a predictive framework for when human alterations of risk in oceans should lead to cascading effects and outline a prospectus for future research. Given the speed and extent with which human activities are altering marine risk landscapes, it is crucial that conservation and management policy considers the indirect effects of these activities in order to increase the likelihood of success and avoid unfortunate surprises.

  6. Damped trophic cascades driven by fishing in model marine ecosystems.

    PubMed

    Andersen, K H; Pedersen, M

    2010-03-07

    The largest perturbation on upper trophic levels of many marine ecosystems stems from fishing. The reaction of the ecosystem goes beyond the trophic levels directly targeted by the fishery. This reaction has been described either as a change in slope of the overall size spectrum or as a trophic cascade triggered by the removal of top predators. Here we use a novel size- and trait-based model to explore how marine ecosystems might react to perturbations from different types of fishing pressure. The model explicitly resolves the whole life history of fish, from larvae to adults. The results show that fishing does not change the overall slope of the size spectrum, but depletes the largest individuals and induces trophic cascades. A trophic cascade can propagate both up and down in trophic levels driven by a combination of changes in predation mortality and food limitation. The cascade is damped as it comes further away from the perturbed trophic level. Fishing on several trophic levels leads to a disappearance of the signature of the trophic cascade. Differences in fishing patterns among ecosystems might influence whether a trophic cascade is observed.

  7. Global change and marine communities: alien species and climate change.

    PubMed

    Occhipinti-Ambrogi, Anna

    2007-01-01

    Anthropogenic influences on the biosphere since the advent of the industrial age are increasingly causing global changes. Climatic change and the rising concentration of greenhouse gases in the atmosphere are ranking high in scientific and public agendas, and other components of global change are also frequently addressed, among which are the introductions of non indigenous species (NIS) in biogeographic regions well separated from the donor region, often followed by spectacular invasions. In the marine environment, both climatic change and spread of alien species have been studied extensively; this review is aimed at examining the main responses of ecosystems to climatic change, taking into account the increasing importance of biological invasions. Some general principles on NIS introductions in the marine environment are recalled, such as the importance of propagule pressure and of development stages during the time course of an invasion. Climatic change is known to affect many ecological properties; it interacts also with NIS in many possible ways. Direct (proximate) effects on individuals and populations of altered physical-chemical conditions are distinguished from indirect effects on emergent properties (species distribution, diversity, and production). Climatically driven changes may affect both local dispersal mechanisms, due to the alteration of current patterns, and competitive interactions between NIS and native species, due to the onset of new thermal optima and/or different carbonate chemistry. As well as latitudinal range expansions of species correlated with changing temperature conditions, and effects on species richness and the correlated extinction of native species, some invasions may provoke multiple effects which involve overall ecosystem functioning (material flow between trophic groups, primary production, relative extent of organic material decomposition, extent of benthic-pelagic coupling). Some examples are given, including a special

  8. Climate change impacts on groundwater and dependent ecosystems

    NASA Astrophysics Data System (ADS)

    Kløve, Bjørn; Ala-Aho, Pertti; Bertrand, Guillaume; Gurdak, Jason J.; Kupfersberger, Hans; Kværner, Jens; Muotka, Timo; Mykrä, Heikki; Preda, Elena; Rossi, Pekka; Uvo, Cintia Bertacchi; Velasco, Elzie; Pulido-Velazquez, Manuel

    2014-10-01

    Aquifers and groundwater-dependent ecosystems (GDEs) are facing increasing pressure from water consumption, irrigation and climate change. These pressures modify groundwater levels and their temporal patterns and threaten vital ecosystem services such as arable land irrigation and ecosystem water requirements, especially during droughts. This review examines climate change effects on groundwater and dependent ecosystems. The mechanisms affecting natural variability in the global climate and the consequences of climate and land use changes due to anthropogenic influences are summarised based on studies from different hydrogeological strata and climate zones. The impacts on ecosystems are discussed based on current findings on factors influencing the biodiversity and functioning of aquatic and terrestrial ecosystems. The influence of changes to groundwater on GDE biodiversity and future threats posed by climate change is reviewed, using information mainly from surface water studies and knowledge of aquifer and groundwater ecosystems. Several gaps in research are identified. Due to lack of understanding of several key processes, the uncertainty associated with management techniques such as numerical modelling is high. The possibilities and roles of new methodologies such as indicators and modelling methods are discussed in the context of integrated groundwater resources management. Examples are provided of management impacts on groundwater, with recommendations on sustainable management of groundwater.

  9. Sensitivity and Thresholds of Ecosystems to Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Peteet, D. M.; Peteet, D. M.

    2001-12-01

    Rapid vegetational change is a hallmark of past abrupt climate change, as evidenced from Younger Dryas records in Europe, eastern North America, and the Pacific North American rim. The potential response of future ecosystems to abrupt climate change is targeted, with a focus on particular changes in the hydrological cycle. The vulnerability of ecosystems is notable when particular shifts cross thresholds of precipitation and temperature, as many plants and animals are adapted to specific climatic "windows". Significant forest species compositional changes occur at ecotonal boundaries, which are often the first locations to record a climatic response. Historical forest declines have been linked to stress, and even Pleistocene extinctions have been associated with human interaction at times of rapid climatic shifts. Environmental extremes are risky for reproductive stages, and result in nonlinearities. The role of humans in association with abrupt climate change suggests that many ecosystems may cross thresholds from which they will find it difficult to recover. Sectors particularly vulnerable will be reviewed.

  10. Arctic marine mammals and climate change: impacts and resilience.

    PubMed

    Moore, Sue E; Huntington, Henry P

    2008-03-01

    Evolutionary selection has refined the life histories of seven species (three cetacean [narwhal, beluga, and bowhead whales], three pinniped [walrus, ringed, and bearded seals], and the polar bear) to spatial and temporal domains influenced by the seasonal extremes and variability of sea ice, temperature, and day length that define the Arctic. Recent changes in Arctic climate may challenge the adaptive capability of these species. Nine other species (five cetacean [fin, humpback, minke, gray, and killer whales] and four pinniped [harp, hooded, ribbon, and spotted seals]) seasonally occupy Arctic and subarctic habitats and may be poised to encroach into more northern latitudes and to remain there longer, thereby competing with extant Arctic species. A synthesis of the impacts of climate change on all these species hinges on sea ice, in its role as: (1) platform, (2) marine ecosystem foundation, and (3) barrier to non-ice-adapted marine mammals and human commercial activities. Therefore, impacts are categorized for: (1) ice-obligate species that rely on sea ice platforms, (2) ice-associated species that are adapted to sea ice-dominated ecosystems, and (3) seasonally migrant species for which sea ice can act as a barrier. An assessment of resilience is far more speculative, as any number of scenarios can be envisioned, most of them involving potential trophic cascades and anticipated human perturbations. Here we provide resilience scenarios for the three ice-related species categories relative to four regions defined by projections of sea ice reductions by 2050 and extant shelf oceanography. These resilience scenarios suggest that: (1) some populations of ice-obligate marine mammals will survive in two regions with sea ice refugia, while other stocks may adapt to ice-free coastal habitats, (2) ice-associated species may find suitable feeding opportunities within the two regions with sea ice refugia and, if capable of shifting among available prey, may benefit from

  11. The importance of within-system spatial variation in drivers of marine ecosystem regime shifts

    PubMed Central

    Fisher, J. A. D.; Casini, M.; Frank, K. T.; Möllmann, C.; Leggett, W. C.; Daskalov, G.

    2015-01-01

    Comparative analyses of the dynamics of exploited marine ecosystems have led to differing hypotheses regarding the primary causes of observed regime shifts, while many ecosystems have apparently not undergone regime shifts. These varied responses may be partly explained by the decade-old recognition that within-system spatial heterogeneity in key climate and anthropogenic drivers may be important, as recent theoretical examinations have concluded that spatial heterogeneity in environmental characteristics may diminish the tendency for regime shifts. Here, we synthesize recent, empirical within-system spatio-temporal analyses of some temperate and subarctic large marine ecosystems in which regime shifts have (and have not) occurred. Examples from the Baltic Sea, Black Sea, Bengula Current, North Sea, Barents Sea and Eastern Scotian Shelf reveal the largely neglected importance of considering spatial variability in key biotic and abiotic influences and species movements in the context of evaluating and predicting regime shifts. We highlight both the importance of understanding the scale-dependent spatial dynamics of climate influences and key predator–prey interactions to unravel the dynamics of regime shifts, and the utility of spatial downscaling of proposed mechanisms (as evident in the North Sea and Barents Sea) as a means of evaluating hypotheses originally derived from among-system comparisons.

  12. Drivers and uncertainties of future global marine primary production in marine ecosystem models

    NASA Astrophysics Data System (ADS)

    Laufkötter, C.; Vogt, M.; Gruber, N.; Aita-Noguchi, M.; Aumont, O.; Bopp, L.; Buitenhuis, E.; Doney, S. C.; Dunne, J.; Hashioka, T.; Hauck, J.; Hirata, T.; John, J.; Le Quéré, C.; Lima, I. D.; Nakano, H.; Seferian, R.; Totterdell, I.; Vichi, M.; Völker, C.

    2015-12-01

    Past model studies have projected a global decrease in marine net primary production (NPP) over the 21st century, but these studies focused on the multi-model mean rather than on the large inter-model differences. Here, we analyze model-simulated changes in NPP for the 21st century under IPCC's high-emission scenario RCP8.5. We use a suite of nine coupled carbon-climate Earth system models with embedded marine ecosystem models and focus on the spread between the different models and the underlying reasons. Globally, NPP decreases in five out of the nine models over the course of the 21st century, while three show no significant trend and one even simulates an increase. The largest model spread occurs in the low latitudes (between 30° S and 30° N), with individual models simulating relative changes between -25 and +40 %. Of the seven models diagnosing a net decrease in NPP in the low latitudes, only three simulate this to be a consequence of the classical interpretation, i.e., a stronger nutrient limitation due to increased stratification leading to reduced phytoplankton growth. In the other four, warming-induced increases in phytoplankton growth outbalance the stronger nutrient limitation. However, temperature-driven increases in grazing and other loss processes cause a net decrease in phytoplankton biomass and reduce NPP despite higher growth rates. One model projects a strong increase in NPP in the low latitudes, caused by an intensification of the microbial loop, while NPP in the remaining model changes by less than 0.5 %. While models consistently project increases NPP in the Southern Ocean, the regional inter-model range is also very substantial. In most models, this increase in NPP is driven by temperature, but it is also modulated by changes in light, macronutrients and iron as well as grazing. Overall, current projections of future changes in global marine NPP are subject to large uncertainties and necessitate a dedicated and sustained effort to improve

  13. CLIMATE CHANGE AND ECOSYSTEMS OF THE MID-ATLANTIC REGION

    EPA Science Inventory

    This paper discusses the current status of forested, wetland, freshwater and coastal ecosystems; the combined impacts of habitat alteration, pollution and non-native invasive species on those systems; how climatic changes could interact with existing stresses; potential managemen...

  14. CLIMATE CHANGE AND ECOSYSTEMS OF THE MID-ATLANTIC REGION

    EPA Science Inventory

    This paper discusses the current status of forested, wetland, freshwater and coastal ecosystems; the combined impacts of habitat alteration, pollution and non-native invasive species on those systems; how climatic changes could interact with existing stresses; potential managemen...

  15. Resilience and stability of a pelagic marine ecosystem.

    PubMed

    Lindegren, Martin; Checkley, David M; Ohman, Mark D; Koslow, J Anthony; Goericke, Ralf

    2016-01-13

    The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been reached regarding the positive BEF relationship, a number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which diversity increases resilience and community stability, particularly the relative importance of statistical averaging and functional complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset covering multiple trophic levels, we show that the pronounced multi-decadal variability of the Southern California Current System (SCCS) does not represent fundamental changes in ecosystem functioning, but a linear response to key environmental drivers channelled through bottom-up and physical control. Furthermore, we show strong temporal asynchrony between key species or functional groups within multiple trophic levels caused by opposite responses to these drivers. We argue that functional complementarity is the primary mechanism reducing community variability and promoting resilience and stability in the SCCS.

  16. Perceptions of rule-breaking related to marine ecosystem health.

    PubMed

    Slater, Matthew J; Mgaya, Yunus D; Stead, Selina M

    2014-01-01

    Finding effective solutions to manage marine resources is high on political and conservation agendas worldwide. This is made more urgent by the rate of increase in the human population and concomitant resource pressures in coastal areas. This paper links empirical socio-economic data about perceptions of marine resource health to the breaking of marine management rules, using fisheries as a case study. The relationship between perceived rule-breaking (non-compliance with regulations controlling fishing) and perceived health of inshore marine environments was investigated through face-to-face interviews with 299 heads of households in three Tanzanian coastal communities in November and December 2011. Awareness of rules controlling fishing activity was high among all respondents. Fishers were able to describe more specific rules controlling fishing practices than non-fishers (t = 3.5, df = 297, p<0.01). Perceived breaking of fishing regulations was reported by nearly half of all respondents, saying "some" (32% of responses) or "most" (15% of responses) people break fishing rules. Ordinal regression modelling revealed a significant linkage (z= -3.44, p<0.001) in the relationship between respondents' perceptions of deteriorating marine health and their perception of increased rule-breaking. In this paper, inferences from an empirical study are used to identify and argue the potential for using perceptions of ecosystem health and level of rule-breaking as a means to guide management measures. When considering different management options (e.g. Marine Protected Areas), policy makers are advised to take account of and utilise likely egoistic or altruistic decision-making factors used by fishers to determine their marine activities.

  17. Perceptions of Rule-Breaking Related to Marine Ecosystem Health

    PubMed Central

    Slater, Matthew J.; Mgaya, Yunus D.; Stead, Selina M.

    2014-01-01

    Finding effective solutions to manage marine resources is high on political and conservation agendas worldwide. This is made more urgent by the rate of increase in the human population and concomitant resource pressures in coastal areas. This paper links empirical socio-economic data about perceptions of marine resource health to the breaking of marine management rules, using fisheries as a case study. The relationship between perceived rule-breaking (non-compliance with regulations controlling fishing) and perceived health of inshore marine environments was investigated through face-to-face interviews with 299 heads of households in three Tanzanian coastal communities in November and December 2011. Awareness of rules controlling fishing activity was high among all respondents. Fishers were able to describe more specific rules controlling fishing practices than non-fishers (t = 3.5, df = 297, p<0.01). Perceived breaking of fishing regulations was reported by nearly half of all respondents, saying “some” (32% of responses) or “most” (15% of responses) people break fishing rules. Ordinal regression modelling revealed a significant linkage (z = −3.44, p<0.001) in the relationship between respondents' perceptions of deteriorating marine health and their perception of increased rule-breaking. In this paper, inferences from an empirical study are used to identify and argue the potential for using perceptions of ecosystem health and level of rule-breaking as a means to guide management measures. When considering different management options (e.g. Marine Protected Areas), policy makers are advised to take account of and utilise likely egoistic or altruistic decision-making factors used by fishers to determine their marine activities. PMID:24586558

  18. The role of large marine vertebrates in the assessment of the quality of pelagic marine ecosystems.

    PubMed

    Fossi, Maria Cristina; Casini, Silvia; Caliani, Ilaria; Panti, Cristina; Marsili, Letizia; Viarengo, Aldo; Giangreco, Roberto; Notarbartolo di Sciara, Giuseppe; Serena, Fabrizio; Ouerghi, Atef; Depledge, Michael H

    2012-06-01

    The Marine Strategy Framework Directive (MSFD) establishing a framework for community action in the field of marine environmental policy has been developed and is being implemented, with the objective to deliver "Good Environmental Status" by 2020. A pragmatic way forward has been achieved through the development of 11 "qualitative descriptors". In an attempt to identify gaps in MSFD, regarding the data on large marine vertebrates, the SETAC--Italian Branch organised a workshop in Siena (IT). Particular attention was paid to the qualitative descriptors 8 (contaminants and pollution effects) and 10 (marine litter). The specific remit was to discuss the potential use of large marine vertebrates (from large pelagic fish, sea turtles, sea birds and cetaceans) in determining the environmental status of pelagic marine ecosystems. During the workshop it emerged that large pelagic fish may be especially useful for monitoring short- to medium-term changes in pelagic ecosystems, while cetaceans provided a more integrated view over the long-term. A theme that strongly emerged was the broad recognition that biomarkers offer real potential for the determination of good ecological status detecting the "undesirable biological effects" (indicator for descriptor 8). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Marine mammal strandings and environmental changes: a 15-year study in the St. Lawrence ecosystem.

    PubMed

    Truchon, Marie-Hélène; Measures, Lena; L'Hérault, Vincent; Brêthes, Jean-Claude; Galbraith, Peter S; Harvey, Michel; Lessard, Sylvie; Starr, Michel; Lecomte, Nicolas

    2013-01-01

    Understanding the effects of climatic variability on marine mammals is challenging due to the complexity of ecological interactions. We used general linear models to analyze a 15-year database documenting marine mammal strandings (1994-2008; n = 1,193) and nine environmental parameters known to affect marine mammal survival, from regional (sea ice) to continental scales (North Atlantic Oscillation, NAO). Stranding events were more frequent during summer and fall than other seasons, and have increased since 1994. Poor ice conditions observed during the same period may have affected marine mammals either directly, by modulating the availability of habitat for feeding and breeding activities, or indirectly, through changes in water conditions and marine productivity (krill abundance). For most species (75%, n = 6 species), a low volume of ice was correlated with increasing frequency of stranding events (e.g. R(2)adj = 0.59, hooded seal, Cystophora cristata). This likely led to an increase in seal mortality during the breeding period, but also to increase habitat availability for seasonal migratory cetaceans using ice-free areas during winter. We also detected a high frequency of stranding events for mysticete species (minke whale, Balaenoptera acutorostrata) and resident species (beluga, Delphinapterus leucas), correlated with low krill abundance since 1994. Positive NAO indices were positively correlated with high frequencies of stranding events for resident and seasonal migratory cetaceans, as well as rare species (R(2)adj = 0.53, 0.81 and 0.34, respectively). This contrasts with seal mass stranding numbers, which were negatively correlated with a positive NAO index. In addition, an unusual multiple species mortality event (n = 114, 62% of total annual mortality) in 2008 was caused by a harmful algal bloom. Our findings provide an empirical baseline in understanding marine mammal survival when faced with climatic variability. This is a promising

  20. Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems.

    PubMed

    Hylland, Ketil

    2006-01-08

    Low levels of oil and hence polycyclic aromatic hydrocarbons (PAHs) are naturally present in the marine environment, although levels have increased significantly following human extraction and use of oil and gas. Other major anthropogenic sources of PAHs include smelters, the use of fossil fuels in general, and various methods of waste disposal, especially incineration. There are two major sources for PAHs to marine ecosystems in Norway: the inshore smelter industry, and offshore oil and gas production activities. A distinction is generally made between petrogenic (oil-derived) and pyrogenic (combustion-derived) PAHs. Although petrogenic PAHs appear to be bioavailable to a large extent, pyrogenic PAHs are often associated with soot particles and less available for uptake into organisms. There is extensive evidence linking sediment-associated PAHs to induction of phase-I enzymes, development of DNA adducts, and eventually neoplastic lesions in fish. Most studies have focused on high-molecular-weight, carcinogenic PAHs such as benzo[a]pyrene. It is less clear how two- and three-ring PAHs affect fish, and there is even experimental evidence to indicate that these chemicals may inhibit some components of the phase I system rather than produce induction. There is a need for increased research efforts to clarify biological effects of two- and three-ring PAHs, PAH mixtures, and adaptation processes in marine ecosystems.

  1. Biomass yields and geography of large marine ecosystems

    SciTech Connect

    Sherman, K.; Alexander, L.M.

    1989-01-01

    Large Marine Ecosystems (LMEs) regions with unique hydrographic regimes, submarine topography, productivity, and trophically dependent populations. Over the past several decades, some populations of organisms within LMEs have increased and others declined amidst a background of natural environmental perturbation, disposal of urban wastes, aerosol contamination, spills of petrogenic hydrocarbons, overexploitation of fisheries resources, and growing evidence of global changes in atmospheric levels of carbon dioxide, methane, and ozone. The paper presented at the symposium, with appropriate revision based on peer- review, are given in this volume. Participants were encouraged to synthesize scattered information on biological, physical, and chemical processes affecting decadal fluctuations in biomass yields for LMEs including the Huanghai (Yellow) Sea, Kuroshio Current, Oyashio Current, Gulf of Thailand, and the Great Barrier Reef ecosystem around the Pacific basin, and for the Barents Sea, Gulf of Mexico, the Iberian coastal and Benguela Current ecosystems around the margins of the Atlantic. Participants also provided the results of studies of the geographic extent and boundaries of LMEs and the legal basis for the management of marine resources within LMEs.

  2. Assessing climate-sensitive ecosystems in the southeastern United States

    USGS Publications Warehouse

    Costanza, Jennifer; Beck, Scott; Pyne, Milo; Terando, Adam; Rubino, Matthew J.; White, Rickie; Collazo, Jaime

    2016-08-11

    Climate change impacts ecosystems in many ways, from effects on species to phenology to wildfire dynamics. Assessing the potential vulnerability of ecosystems to future changes in climate is an important first step in prioritizing and planning for conservation. Although assessments of climate change vulnerability commonly are done for species, fewer have been done for ecosystems. To aid regional conservation planning efforts, we assessed climate change vulnerability for ecosystems in the Southeastern United States and Caribbean.First, we solicited input from experts to create a list of candidate ecosystems for assessment. From that list, 12 ecosystems were selected for a vulnerability assessment that was based on a synthesis of available geographic information system (GIS) data and literature related to 3 components of vulnerability—sensitivity, exposure, and adaptive capacity. This literature and data synthesis comprised “Phase I” of the assessment. Sensitivity is the degree to which the species or processes in the ecosystem are affected by climate. Exposure is the likely future change in important climate and sea level variables. Adaptive capacity is the degree to which ecosystems can adjust to changing conditions. Where available, GIS data relevant to each of these components were used. For example, we summarized observed and projected climate, protected areas existing in 2011, projected sea-level rise, and projected urbanization across each ecosystem’s distribution. These summaries were supplemented with information in the literature, and a short narrative assessment was compiled for each ecosystem. We also summarized all information into a qualitative vulnerability rating for each ecosystem.Next, for 2 of the 12 ecosystems (East Gulf Coastal Plain Near-Coast Pine Flatwoods and Nashville Basin Limestone Glade and Woodland), the NatureServe Habitat Climate Change Vulnerability Index (HCCVI) framework was used as an alternative approach for assessing

  3. A probabilistic model of ecosystem response to climate change

    SciTech Connect

    Shevliakova, E.; Dowlatabadi, H.

    1994-12-31

    Anthropogenic activities are leading to rapid changes in land cover and emissions of greenhouse gases into the atmosphere. These changes can bring about climate change typified by average global temperatures rising by 1--5 C over the next century. Climate change of this magnitude is likely to alter the distribution of terrestrial ecosystems on a large scale. Options available for dealing with such change are abatement of emissions, adaptation, and geoengineering. The integrated assessment of climate change demands that frameworks be developed where all the elements of the climate problem are present (from economic activity to climate change and its impacts on market and non-market goods and services). Integrated climate assessment requires multiple impact metrics and multi-attribute utility functions to simulate the response of different key actors/decision-makers to the actual physical impacts (rather than a dollar value) of the climate-damage vs. policy-cost debate. This necessitates direct modeling of ecosystem impacts of climate change. The authors have developed a probabilistic model of ecosystem response to global change. This model differs from previous efforts in that it is statistically estimated using actual ecosystem and climate data yielding a joint multivariate probability of prevalence for each ecosystem, given climatic conditions. The authors expect this approach to permit simulation of inertia and competition which have, so far, been absent in transfer models of continental-scale ecosystem response to global change. Thus, although the probability of one ecotype will dominate others at a given point, others would have the possibility of establishing an early foothold.

  4. RESTORING COASTAL ECOSYSTEMS: ABRUPT CLIMATE CHANGE

    EPA Science Inventory

    Consensus exists that U.S. coastal ecosystems are severely degraded due to a variety of human-factors requiring large financial expenditures to restore and manage. Yet, even as controversy surrounds human factors in ecosystem degradation in the Gulf of Mexico, Chesapeake Bay, an...

  5. Baltic Sea ecosystem-based management under climate change: Synthesis and future challenges.

    PubMed

    Blenckner, Thorsten; Österblom, Henrik; Larsson, Per; Andersson, Agneta; Elmgren, Ragnar

    2015-06-01

    Ecosystem-based management (EBM) has emerged as the generally agreed strategy for managing ecosystems, with humans as integral parts of the managed system. Human activities have substantial effects on marine ecosystems, through overfishing, eutrophication, toxic pollution, habitat destruction, and climate change. It is important to advance the scientific knowledge of the cumulative, integrative, and interacting effects of these diverse activities, to support effective implementation of EBM. Based on contributions to this special issue of AMBIO, we synthesize the scientific findings into four components: pollution and legal frameworks, ecosystem processes, scale-dependent effects, and innovative tools and methods. We conclude with challenges for the future, and identify the next steps needed for successful implementation of EBM in general and specifically for the Baltic Sea.

  6. Taking the pulse of mountains: Ecosystem responses to climatic variability

    USGS Publications Warehouse

    Fagre, D.B.; Peterson, D.L.; Hessl, A.E.

    2003-01-01

    An integrated program of ecosystem modeling and field studies in the mountains of the Pacific Northwest (U.S.A.) has quantified many of the ecological processes affected by climatic variability. Paleoecological and contemporary ecological data in forest ecosystems provided model parameterization and validation at broad spatial and temporal scales for tree growth, tree regeneration and treeline movement. For subalpine tree species, winter precipitation has a strong negative correlation with growth; this relationship is stronger at higher elevations and west-side sites (which have more precipitation). Temperature affects tree growth at some locations with respect to length of growing season (spring) and severity of drought at drier sites (summer). Furthermore, variable but predictable climate-growth relationships across elevation gradients suggest that tree species respond differently to climate at different locations, making a uniform response of these species to future climatic change unlikely. Multi-decadal variability in climate also affects ecosystem processes. Mountain hemlock growth at high-elevation sites is negatively correlated with winter snow depth and positively correlated with the winter Pacific Decadal Oscillation (PDO) index. At low elevations, the reverse is true. Glacier mass balance and fire severity are also linked to PDO. Rapid establishment of trees in subalpine ecosystems during this century is increasing forest cover and reducing meadow cover at many subalpine locations in the western U.S.A. and precipitation (snow depth) is a critical variable regulating conifer expansion. Lastly, modeling potential future ecosystem conditions suggests that increased climatic variability will result in increasing forest fire size and frequency, and reduced net primary productivity in drier, east-side forest ecosystems. As additional empirical data and modeling output become available, we will improve our ability to predict the effects of climatic change

  7. Experimenting with ecosystem interaction networks in search of threshold potentials in real-world marine ecosystems.

    PubMed

    Thrush, Simon F; Hewitt, Judi E; Parkes, Samantha; Lohrer, Andrew M; Pilditch, Conrad; Woodin, Sarah A; Wethey, David S; Chiantore, Mariachiara; Asnaghi, Valentina; De Juan, Silvia; Kraan, Casper; Rodil, Ivan; Savage, Candida; Van Colen, Carl

    2014-06-01

    Thresholds profoundly affect our understanding and management of ecosystem dynamics, but we have yet to develop practical techniques to assess the risk that thresholds will be crossed. Combining ecological knowledge of critical system interdependencies with a large-scale experiment, we tested for breaks in the ecosystem interaction network to identify threshold potential in real-world ecosystem dynamics. Our experiment with the bivalves Macomona liliana and Austrovenus stutchburyi on marine sandflats in New Zealand demonstrated that reductions in incident sunlight changed the interaction network between sediment biogeochemical fluxes, productivity, and macrofauna. By demonstrating loss of positive feedbacks and changes in the architecture of the network, we provide mechanistic evidence that stressors lead to break points in dynamics, which theory predicts predispose a system to a critical transition.

  8. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    USGS Publications Warehouse

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The

  9. Committed ecosystem changes and contributions to climate recovery

    NASA Astrophysics Data System (ADS)

    Jones, C. D.; Lowe, J. A.; Liddicoat, S. K.; Betts, R. A.

    2009-04-01

    Future climate change and the carbon cycle are tightly coupled. Many studies have now shown positive feedbacks which amplify climate change, reduce the natural uptake of carbon and influence global emissions pathways to stabilisation. On the timescale of 1 or 2 centuries, this feedback is mainly due to the terrestrial biosphere. Here we assess to what extent the biosphere contributes to recovery of CO2 levels after a cessation of carbon emissions. We find that when significant climate change has weakened natural terrestrial carbon sinks, these sinks do not recover after a stop of emissions and thus recovery of CO2 (and hence climate) is slow. Further, we find that the terrestrial biosphere exhibits significant inertia and can continue to respond to climate changes decades after stabilisation of climate. This has serious implications for definitions of dangerous climate change based simply on stabilisation temperature as the absence of significant biome changes at the time of stabilisation does not preclude significant and potentially detrimental changes in subsequent decades. Assessments of targets for stabilising climate change often consider the impacts of different levels of global warming. These assessments usually consider impacts that would occur at the time of reaching a particular level of warming. However, global terrestrial ecosystems continue to respond over longer timescales. Here we introduce the concept of "committed ecosystem changes" analogous to climate warming commitments and committed sea-level rise due to thermal inertia. The true impact of climate change on ecosystems will not be revealed for many decades after stabilising temperatures. Further, we suggest that ecosystems may become committed to substantial damage long before any is observable. For example, significant loss of forest cover in Amazonia may become inevitable significantly below a global warming of 2K. When defining dangerous climate change, and forming policy to avoid it, such

  10. Typology and indicators of ecosystem services for marine spatial planning and management.

    PubMed

    Böhnke-Henrichs, Anne; Baulcomb, Corinne; Koss, Rebecca; Hussain, S Salman; de Groot, Rudolf S

    2013-11-30

    The ecosystem services concept provides both an analytical and communicative tool to identify and quantify the link between human welfare and the environment, and thus to evaluate the ramifications of management interventions. Marine spatial planning (MSP) and Ecosystem-based Management (EBM) are a form of management intervention that has become increasingly popular and important globally. The ecosystem service concept is rarely applied in marine planning and management to date which we argue is due to the lack of a well-structured, systematic classification and assessment of marine ecosystem services. In this paper we not only develop such a typology but also provide guidance to select appropriate indicators for all relevant ecosystem services. We apply this marine-specific ecosystem service typology to MSP and EBM. We thus provide not only a novel theoretical construct but also show how the ecosystem services concept can be used in marine planning and management.

  11. Differences in biomass structure between oligotrophic and eutrophic marine ecosystems

    NASA Astrophysics Data System (ADS)

    Dortch, Quay; Packard, Theodore T.

    1989-02-01

    A normal trophic pyramid, with most living biomass comprised of plants, is widely assumed to represent marine ecosystems. Oligotrophic and eutrophic environments differ markedly in phytoplankton biomass, but, due to difficulties sampling and quantifying the small, non-plant organisms, it has been difficult to determine the relative plant and non-plant biomass. In eutrophic areas the chlorophyll α/protein ratio (Chl/Pr) of particulate matter, a relative index of phytoplankton to total biomass, approaches that of pure phytoplankton cultures, suggesting that plants constitute most of the biomass. In contrast, in oligotrophic areas the Chl/Pr ratio is low, indicating that most of the biomass consists of bacteria and zooplankton and that an inverted biomass pyramid better describes the system. Thus, ecosystem structure must be fundamentally different between eutrophic and oligotrophic areas.

  12. The Large Marine Ecosystem Approach for 21st Century Ocean Health and International Sustainable Development

    NASA Astrophysics Data System (ADS)

    Honey, K. T.

    2014-12-01

    The global coastal ocean and watersheds are divided into 66 Large Marine Ecosystems (LMEs), which encompass regions from river basins, estuaries, and coasts to the seaward boundaries of continental shelves and margins of major currents. Approximately 80% of global fisheries catch comes from LME waters. Ecosystem goods and services from LMEs contribute an estimated US 18-25 trillion dollars annually to the global economy in market and non-market value. The critical importance of these large-scale systems, however, is threatened by human populations and pressures, including climate change. Fortunately, there is pragmatic reason for optimism. Interdisciplinary frameworks exist, such as the Large Marine Ecosystem (LME) approach for adaptive management that can integrate both nature-centric and human-centric views into ecosystem monitoring, assessment, and adaptive management practices for long-term sustainability. Originally proposed almost 30 years ago, the LME approach rests on five modules are: (i) productivity, (ii) fish and fisheries, (iii) pollution and ecosystem health, (iv) socioeconomics, and (v) governance for iterative adaptive management at a large, international scale of 200,000 km2 or greater. The Global Environment Facility (GEF), World Bank, and United Nations agencies recognize and support the LME approach—as evidenced by over 3.15 billion in financial assistance to date for LME projects. This year of 2014 is an exciting milestone in LME history, after 20 years of the United Nations and GEF organizations adopting LMEs as a unit for ecosystem-based approaches to management. The LME approach, however, is not perfect. Nor is it immutable. Similar to the adaptive management framework it propones, the LME approach itself must adapt to new and emerging 21st Century technologies, science, and realities. The LME approach must further consider socioeconomics and governance. Within the socioeconomics module alone, several trillion-dollar opportunities exist

  13. Extinction and ecosystem function in the marine benthos.

    PubMed

    Solan, Martin; Cardinale, Bradley J; Downing, Amy L; Engelhardt, Katharina A M; Ruesink, Jennifer L; Srivastava, Diane S

    2004-11-12

    Rapid changes in biodiversity are occurring globally, yet the ecological impacts of diversity loss are poorly understood. Here we use data from marine invertebrate communities to parameterize models that predict how extinctions will affect sediment bioturbation, a process vital to the persistence of aquatic communities. We show that species extinction is generally expected to reduce bioturbation, but the magnitude of reduction depends on how the functional traits of individual species covary with their risk of extinction. As a result, the particular cause of extinction and the order in which species are lost ultimately govern the ecosystem-level consequences of biodiversity loss.

  14. Impacts of marine-derived nutrients on stream ecosystem functioning.

    PubMed Central

    Zhang, Yixin; Negishi, Junjiro N; Richardson, John S; Kolodziejczyk, Renata

    2003-01-01

    Energy and nutrient subsidies transported across ecosystem boundaries are increasingly appreciated as key drivers of consumer-resource dynamics. As purveyors of pulsed marine-derived nutrients (MDN), spawning salmon are one such cross-ecosystem subsidy to freshwaters connected to the north Pacific. We examined how salmon carcasses influenced detrital processing in an oligotrophic stream. Experimental manipulations of MDN inputs revealed that salmon carcasses indirectly reduced detrital processing in streams through temporarily decoupling the detrital resource-consumer relationship, in which detrital consumers shifted their diet to the high-nutrient resource, i.e. salmon carcasses. The average decomposition rate of alder leaves with salmon carcass addition was significantly lower than that without the carcass, which was associated with lower abundance and biomass of detritivorous Trichoptera on the carcass-treated leaves. There were generally larger in size Trichopteran detritivores on the carcasses than on leaves. These results imply that cross-boundary MDN subsidies indirectly retard the ecosystem processing of leaf litter within the short term, but may enhance those food-limited detritivorous consumers. Because unproductive freshwaters in the Pacific northwest are highly dependent upon the organic matter inputs from surrounding forests, this novel finding has implications for determining conservation and management strategies of salmon-related aquatic ecosystems, in terms of salmon habitat protection and fisheries exploitation. PMID:14561274

  15. Adapting California’s ecosystems to a changing climate

    USGS Publications Warehouse

    Elizabeth Chornesky,; David Ackerly,; Paul Beier,; Frank Davis,; Flint, Lorraine E.; Lawler, Joshua J.; Moyle, Peter B.; Moritz, Max A.; Scoonover, Mary; Byrd, Kristin B.; Alvarez, Pelayo; Heller, Nicole E.; Micheli, Elisabeth; Weiss, Stuart

    2017-01-01

    Significant efforts are underway to translate improved understanding of how climate change is altering ecosystems into practical actions for sustaining ecosystem functions and benefits. We explore this transition in California, where adaptation and mitigation are advancing relatively rapidly, through four case studies that span large spatial domains and encompass diverse ecological systems, institutions, ownerships, and policies. The case studies demonstrate the context specificity of societal efforts to adapt ecosystems to climate change and involve applications of diverse scientific tools (e.g., scenario analyses, downscaled climate projections, ecological and connectivity models) tailored to specific planning and management situations (alternative energy siting, wetland management, rangeland management, open space planning). They illustrate how existing institutional and policy frameworks provide numerous opportunities to advance adaptation related to ecosystems and suggest that progress is likely to be greatest when scientific knowledge is integrated into collective planning and when supportive policies and financing enable action.

  16. Abyssal food limitation, ecosystem structure and climate change.

    PubMed

    Smith, Craig R; De Leo, Fabio C; Bernardino, Angelo F; Sweetman, Andrew K; Arbizu, Pedro Martinez

    2008-09-01

    The abyssal seafloor covers more than 50% of the Earth and is postulated to be both a reservoir of biodiversity and a source of important ecosystem services. We show that ecosystem structure and function in the abyss are strongly modulated by the quantity and quality of detrital food material sinking from the surface ocean. Climate change and human activities (e.g. successful ocean fertilization) will alter patterns of sinking food flux to the deep ocean, substantially impacting the structure, function and biodiversity of abyssal ecosystems. Abyssal ecosystem response thus must be considered in assessments of the environmental impacts of global warming and ocean fertilization.

  17. Marine ecosystem modeling beyond the box: using GIS to study carbon fluxes in a coastal ecosystem.

    PubMed

    Wijnbladh, Erik; Jönsson, Bror Fredrik; Kumblad, Linda

    2006-12-01

    Studies of carbon fluxes in marine ecosystems are often done by using box model approaches with basin size boxes, or highly resolved 3D models, and an emphasis on the pelagic component of the ecosystem. Those approaches work well in the ocean proper, but can give rise to considerable problems when applied to coastal systems, because of the scale of certain ecological niches and the fact that benthic organisms are the dominant functional group of the ecosystem. In addition, 3D models require an extensive modeling effort. In this project, an intermediate approach based on a high resolution (20x20 m) GIS data-grid has been developed for the coastal ecosystem in the Laxemar area (Baltic Sea, Sweden) based on a number of different site investigations. The model has been developed in the context of a safety assessment project for a proposed nuclear waste repository, in which the fate of hypothetically released radionuclides from the planned repository is estimated. The assessment project requires not only a good understanding of the ecosystem dynamics at the site, but also quantification of stocks and flows of matter in the system. The data-grid was then used to set up a carbon budget describing the spatial distribution of biomass, primary production, net ecosystem production and thus where carbon sinks and sources are located in the area. From these results, it was clear that there was a large variation in ecosystem characteristics within the basins and, on a larger scale, that the inner areas are net producing and the outer areas net respiring, even in shallow phytobenthic communities. Benthic processes had a similar or larger influence on carbon fluxes as advective processes in inner areas, whereas the opposite appears to be true in the outer basins. As many radionuclides are expected to follow the pathways of organic matter in the environment, these findings enhance our abilities to realistically describe and predict their fate in the ecosystem.

  18. Climate-driven regime shifts in Arctic marine benthos

    PubMed Central

    Kortsch, Susanne; Primicerio, Raul; Beuchel, Frank; Renaud, Paul E.; Rodrigues, João; Lønne, Ole Jørgen; Gulliksen, Bjørn

    2012-01-01

    Climate warming can trigger abrupt ecosystem changes in the Arctic. Despite the considerable interest in characterizing and understanding the ecological impact of rapid climate warming in the Arctic, few long time series exist that allow addressing these research goals. During a 30-y period (1980–2010) of gradually increasing seawater temperature and decreasing sea ice cover in Svalbard, we document rapid and extensive structural changes in the rocky-bottom communities of two Arctic fjords. The most striking component of the benthic reorganization was an abrupt fivefold increase in macroalgal cover in 1995 in Kongsfjord and an eightfold increase in 2000 in Smeerenburgfjord. Simultaneous changes in the abundance of benthic invertebrates suggest that the macroalgae played a key structuring role in these communities. The abrupt, substantial, and persistent nature of the changes observed is indicative of a climate-driven ecological regime shift. The ecological processes thought to drive the observed regime shifts are likely to promote the borealization of these Arctic marine communities in the coming years. PMID:22891319

  19. Climate-driven regime shifts in Arctic marine benthos.

    PubMed

    Kortsch, Susanne; Primicerio, Raul; Beuchel, Frank; Renaud, Paul E; Rodrigues, João; Lønne, Ole Jørgen; Gulliksen, Bjørn

    2012-08-28

    Climate warming can trigger abrupt ecosystem changes in the Arctic. Despite the considerable interest in characterizing and understanding the ecological impact of rapid climate warming in the Arctic, few long time series exist that allow addressing these research goals. During a 30-y period (1980-2010) of gradually increasing seawater temperature and decreasing sea ice cover in Svalbard, we document rapid and extensive structural changes in the rocky-bottom communities of two Arctic fjords. The most striking component of the benthic reorganization was an abrupt fivefold increase in macroalgal cover in 1995 in Kongsfjord and an eightfold increase in 2000 in Smeerenburgfjord. Simultaneous changes in the abundance of benthic invertebrates suggest that the macroalgae played a key structuring role in these communities. The abrupt, substantial, and persistent nature of the changes observed is indicative of a climate-driven ecological regime shift. The ecological processes thought to drive the observed regime shifts are likely to promote the borealization of these Arctic marine communities in the coming years.

  20. Ecosystem vulnerability to climate change in the southeastern United States

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Costanza, Jennifer

    2016-08-11

    Two recent investigations of climate-change vulnerability for 19 terrestrial, aquatic, riparian, and coastal ecosystems of the southeastern United States have identified a number of important considerations, including potential for changes in hydrology, disturbance regimes, and interspecies interactions. Complementary approaches using geospatial analysis and literature synthesis integrated information on ecosystem biogeography and biodiversity, climate projections, vegetation dynamics, soil and water characteristics, anthropogenic threats, conservation status, sea-level rise, and coastal flooding impacts. Across a diverse set of ecosystems—ranging in size from dozens of square meters to thousands of square kilometers—quantitative and qualitative assessments identified types of climate-change exposure, evaluated sensitivity, and explored potential adaptive capacity. These analyses highlighted key gaps in scientific understanding and suggested priorities for future research. Together, these studies help create a foundation for ecosystem-level analysis of climate-change vulnerability to support effective biodiversity conservation in the southeastern United States.

  1. Climate change-contaminant interactions in marine food webs: Toward a conceptual framework.

    PubMed

    Alava, Juan José; Cheung, William W L; Ross, Peter S; Sumaila, U Rashid

    2017-10-01

    Climate change is reshaping the way in which contaminants move through the global environment, in large part by changing the chemistry of the oceans and affecting the physiology, health, and feeding ecology of marine biota. Climate change-associated impacts on structure and function of marine food webs, with consequent changes in contaminant transport, fate, and effects, are likely to have significant repercussions to those human populations that rely on fisheries resources for food, recreation, or culture. Published studies on climate change-contaminant interactions with a focus on food web bioaccumulation were systematically reviewed to explore how climate change and ocean acidification may impact contaminant levels in marine food webs. We propose here a conceptual framework to illustrate the impacts of climate change on contaminant accumulation in marine food webs, as well as the downstream consequences for ecosystem goods and services. The potential impacts on social and economic security for coastal communities that depend on fisheries for food are discussed. Climate change-contaminant interactions may alter the bioaccumulation of two priority contaminant classes: the fat-soluble persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), as well as the protein-binding methylmercury (MeHg). These interactions include phenomena deemed to be either climate change dominant (i.e., climate change leads to an increase in contaminant exposure) or contaminant dominant (i.e., contamination leads to an increase in climate change susceptibility). We illustrate the pathways of climate change-contaminant interactions using case studies in the Northeastern Pacific Ocean. The important role of ecological and food web modeling to inform decision-making in managing ecological and human health risks of chemical pollutants contamination under climate change is also highlighted. Finally, we identify the need to develop integrated policies that manage the

  2. Modelling the interactions between DOM and bacteria in marine ecosystems: state of the art and future prospective

    NASA Astrophysics Data System (ADS)

    polimene, Luca

    2014-05-01

    Marine dissolved organic matter (DOM) is the main source of carbon, nutrients and energy for marine prokaryotes, the most abundant life form in the oceans. Only a fraction of assimilated DOM is used by prokaryotes to synthesise new biomass (particulate organic matter, POM), while the rest is used for respiration or is excreted back into the environment as recalcitrant DOM (RDOM). The relative proportions of assimilated DOM that is distributed either to POM, respiration or RDOM is not constant but highly variable depending on the environmental conditions (e.g. nutrient availability, quality/quantity of DOM, temperature). This metabolic plasticity allows bacteria to shape the biogeochemistry of the surrounding waters by modulating three key carbon/energy fluxes fundamental for the functioning of the marine ecosystem: i) the transition from DOM to POM, ii) the remineralisation of carbon and nutrients, and iii) the transformation of labile DOM into recalcitrant DOM. The explicit representation of these processes (and their relative efficiency) in marine ecosystem models is a crucial (and challenging) issue which cannot be overlooked if we want to properly simulate marine biogeochemical cycles under present and climate changing conditions. This talk will provide an overview of how state of the art marine ecosystem models represent the interactions between DOM and bacteria, highlighting strengths and limits of the approaches currently used. A summary of future developments along with issues still open on the topic will also be presented and discussed.

  3. Marine ecosystem response to the Atlantic Multidecadal Oscillation.

    PubMed

    Edwards, Martin; Beaugrand, Gregory; Helaouët, Pierre; Alheit, Jürgen; Coombs, Stephen

    2013-01-01

    Against the backdrop of warming of the Northern Hemisphere it has recently been acknowledged that North Atlantic temperature changes undergo considerable variability over multidecadal periods. The leading component of natural low-frequency temperature variability has been termed the Atlantic Multidecadal Oscillation (AMO). Presently, correlative studies on the biological impact of the AMO on marine ecosystems over the duration of a whole AMO cycle (∼60 years) is largely unknown due to the rarity of continuously sustained biological observations at the same time period. To test whether there is multidecadal cyclic behaviour in biological time-series in the North Atlantic we used one of the world's longest continuously sustained marine biological time-series in oceanic waters, long-term fisheries data and historical records over the last century and beyond. Our findings suggest that the AMO is far from a trivial presence against the backdrop of continued temperature warming in the North Atlantic and accounts for the second most important macro-trend in North Atlantic plankton records; responsible for habitat switching (abrupt ecosystem/regime shifts) over multidecadal scales and influences the fortunes of various fisheries over many centuries.

  4. Seasonality in marine ecosystems: Peruvian seabirds, anchovy, and oceanographic conditions.

    PubMed

    Passuni, Giannina; Barbraud, Christophe; Chaigneau, Alexis; Demarcq, Hervé; Ledesma, Jesus; Bertrand, Arnaud; Castillo, Ramiro; Perea, Angel; Mori, Julio; Viblanc, Vincent A; Torres-MaitaA, Jose; Bertrand, Sophie

    2016-01-01

    In fluctuating environments, matching breeding timing to periods of high resource availability is crucial for the fitness of many vertebrate species, and may have major consequences on population health. Yet, our understanding of the proximate environmental cues driving seasonal breeding is limited. This is particularly the case in marine ecosystems, where key environmental factors and prey abundance and availability are seldom quantified. The Northern Humboldt Current System (NHCS) is a highly productive, low-latitude ecosystem of moderate seasonality. In this ecosystem, three tropical seabird species (the Guanay Cormorant Phalacrocorax bougainvillii, the Peruvian Booby Sula variegata, and the Peruvian Pelican Pelecanus thagus) live in sympatry and prey almost exclusively on anchovy, Engraulis ringens. From January 2003 to December 2012, we monitored 31 breeding sites along the Peruvian coast to investigate the breeding cycle of these species. We tested for relationships between breeding timing, oceanographic conditions, and prey availability using occupancy models. We found that all three seabird species exhibited seasonal breeding patterns, with marked interspecific differences. Whereas breeding mainly started during the austral winter/early spring and ended in summer/early fall, this pattern was stronger in boobies and pelicans than in cormorants. Breeding onset mainly occurred when upwelling was intense but ecosystem productivity was below its annual maxima, and when anchovy were less available and in poor physiological condition. Conversely, the abundance and availability of anchovy improved during chick rearing and peaked around the time of fledging. These results suggest that breeding timing is adjusted so that fledging may occur under optimal environmental conditions, rather than being constrained by nutritional requirements during egg laying. Adjusting breeding time so that fledglings meet optimal conditions at independence is unique compared with other

  5. Seasonality in marine ecosystems: Peruvian seabirds, anchovy, and oceanographic conditions.

    PubMed

    Passuni, Giannina; Barbraud, Christophe; Chaigneau, Alexis; Demarcq, Hervé; Ledesma, Jesus; Bertrand, Arnaud; Castillo, Ramiro; Perea, Angel; Mori, Julio; Viblanc, Vincent A; Torres-Maita, Jose; Bertrand, Sophie

    2016-01-01

    In fluctuating environments, matching breeding timing to periods of high resource availability is crucial for the fitness of many vertebrate species, and may have major consequences on population health. Yet, our understanding of the proximate environmental cues driving seasonal breeding is limited. This is particularly the case in marine ecosystems, where key environmental factors and prey abundance and availability are seldom quantified. The Northern Humboldt Current System (NHCS) is a highly productive, low-latitude ecosystem of moderate seasonality. In this ecosystem, three tropical seabird species (the Guanay Cormorant Phalacrocorax bougainvillii, the Peruvian Booby Sula variegata, and the Peruvian Pelican Pelecanus thagus) live in sympatry and prey almost exclusively on anchovy, Engraulis ringens. From January 2003 to December 2012, we monitored 31 breeding sites along the Peruvian coast to investigate the breeding cycle of these species. We tested for relationships between breeding timing, oceanographic conditions, and prey availability using occupancy models. We found that all three seabird species exhibited seasonal breeding patterns, with marked interspecific differences. Whereas breeding mainly started during the austral winter/early spring and ended in summer/early fall, this pattern was stronger in boobies and pelicans than in cormorants. Breeding onset mainly occurred when upwelling was intense but ecosystem productivity was below its annual maxima, and when anchovy were less available and in poor physiological condition. Conversely, the abundance and availability of anchovy improved during chick rearing and peaked around the time of fledging. These results suggest that breeding timing is adjusted so that fledging may occur under optimal environmental conditions, rather than being constrained by nutritional requirements during egg laying. Adjusting breeding time so that fledglings meet optimal conditions at independence is unique compared with other

  6. Reviews and syntheses: parameter identification in marine planktonic ecosystem modelling

    NASA Astrophysics Data System (ADS)

    Schartau, Markus; Wallhead, Philip; Hemmings, John; Löptien, Ulrike; Kriest, Iris; Krishna, Shubham; Ward, Ben A.; Slawig, Thomas; Oschlies, Andreas

    2017-03-01

    To describe the underlying processes involved in oceanic plankton dynamics is crucial for the determination of energy and mass flux through an ecosystem and for the estimation of biogeochemical element cycling. Many planktonic ecosystem models were developed to resolve major processes so that flux estimates can be derived from numerical simulations. These results depend on the type and number of parameterizations incorporated as model equations. Furthermore, the values assigned to respective parameters specify a model's solution. Representative model results are those that can explain data; therefore, data assimilation methods are utilized to yield optimal estimates of parameter values while fitting model results to match data. Central difficulties are (1) planktonic ecosystem models are imperfect and (2) data are often too sparse to constrain all model parameters. In this review we explore how problems in parameter identification are approached in marine planktonic ecosystem modelling. We provide background information about model uncertainties and estimation methods, and how these are considered for assessing misfits between observations and model results. We explain differences in evaluating uncertainties in parameter estimation, thereby also discussing issues of parameter identifiability. Aspects of model complexity are addressed and we describe how results from cross-validation studies provide much insight in this respect. Moreover, approaches are discussed that consider time- and space-dependent parameter values. We further discuss the use of dynamical/statistical emulator approaches, and we elucidate issues of parameter identification in global biogeochemical models. Our review discloses many facets of parameter identification, as we found many commonalities between the objectives of different approaches, but scientific insight differed between studies. To learn more from results of planktonic ecosystem models we recommend finding a good balance in the level

  7. Climate legacies drive global soil carbon stocks in terrestrial ecosystems.

    PubMed

    Delgado-Baquerizo, Manuel; Eldridge, David J; Maestre, Fernando T; Karunaratne, Senani B; Trivedi, Pankaj; Reich, Peter B; Singh, Brajesh K

    2017-04-01

    Climatic conditions shift gradually over millennia, altering the rates at which carbon (C) is fixed from the atmosphere and stored in the soil. However, legacy impacts of past climates on current soil C stocks are poorly understood. We used data from more than 5000 terrestrial sites from three global and regional data sets to identify the relative importance of current and past (Last Glacial Maximum and mid-Holocene) climatic conditions in regulating soil C stocks in natural and agricultural areas. Paleoclimate always explained a greater amount of the variance in soil C stocks than current climate at regional and global scales. Our results indicate that climatic legacies help determine global soil C stocks in terrestrial ecosystems where agriculture is highly dependent on current climatic conditions. Our findings emphasize the importance of considering how climate legacies influence soil C content, allowing us to improve quantitative predictions of global C stocks under different climatic scenarios.

  8. Climate legacies drive global soil carbon stocks in terrestrial ecosystems

    PubMed Central

    Delgado-Baquerizo, Manuel; Eldridge, David J.; Maestre, Fernando T.; Karunaratne, Senani B.; Trivedi, Pankaj; Reich, Peter B.; Singh, Brajesh K.

    2017-01-01

    Climatic conditions shift gradually over millennia, altering the rates at which carbon (C) is fixed from the atmosphere and stored in the soil. However, legacy impacts of past climates on current soil C stocks are poorly understood. We used data from more than 5000 terrestrial sites from three global and regional data sets to identify the relative importance of current and past (Last Glacial Maximum and mid-Holocene) climatic conditions in regulating soil C stocks in natural and agricultural areas. Paleoclimate always explained a greater amount of the variance in soil C stocks than current climate at regional and global scales. Our results indicate that climatic legacies help determine global soil C stocks in terrestrial ecosystems where agriculture is highly dependent on current climatic conditions. Our findings emphasize the importance of considering how climate legacies influence soil C content, allowing us to improve quantitative predictions of global C stocks under different climatic scenarios. PMID:28439540

  9. Marine ecosystem dynamics, ocean circulation and horizontal stirring

    NASA Astrophysics Data System (ADS)

    Rossi, V.; Tewkai, E.; López, C.; Sudre, J.; Hernández-García, E.; Garcon, V.

    2009-04-01

    The oceanic submeso and mesoscale circulation and its eddies, filaments, meanders play a major role in marine ecosystems dynamics from the lower trophic levels to the marine top predators. We study here the interplay between turbulence in fluid dynamics on these scales and biological activity at different trophic levels using two cases study. The first example focuses on the four eastern boundary upwelling zones, the Canary, Benguela, California and Humboldt upwelling systems which constitute the largest contribution to the world ocean productivity. These areas are spatially heterogeneous, populated with a large variety of mesoscale and sub-mesoscale structures such as filaments, plumes and eddies, which control exchange processes between the shelf and open ocean and play a major role in modulating the biomass, rates and structure of marine ecosystems. We will present here results from a lagrangian approach based on Finite Size Lyapunov Exponents (FSLE) using altimetric and scatterometric data to estimate the spatial and temporal variations in the lateral stirring and mixing of tracers in the upper ocean within the four areas. When investigating links with chlorophyll a concentration as a proxy for biological activity in these upwelling systems, results show that surface horizontal stirring and mixing vary inversely with chlorophyll standing stocks. FSLEs lead to a clear clustering of the systems suggesting that one may use them as integrated and comparative indices for characterizing horizontal dynamical features in all eastern boundary upwellings. Then we investigate the role of submesoscale structures in the Mozambique Channel on the distribution of a top marine predator, the Great Frigatebird. Using similar dynamical concept, the FSLE, we have identified Lagrangian Coherent Structures (LCSs) present in the surface flow in the Channel. By comparing seabirds' satellite positions with LCSs locations, we demonstrate that frigatebirds track precisely these

  10. Improving the interpretability of climate landscape metrics: An ecological risk analysis of Japan's Marine Protected Areas.

    PubMed

    García Molinos, Jorge; Takao, Shintaro; Kumagai, Naoki H; Poloczanska, Elvira S; Burrows, Michael T; Fujii, Masahiko; Yamano, Hiroya

    2017-10-01

    Conservation efforts strive to protect significant swaths of terrestrial, freshwater and marine ecosystems from a range of threats. As climate change becomes an increasing concern, these efforts must take into account how resilient-protected spaces will be in the face of future drivers of change such as warming temperatures. Climate landscape metrics, which signal the spatial magnitude and direction of climate change, support a convenient initial assessment of potential threats to and opportunities within ecosystems to inform conservation and policy efforts where biological data are not available. However, inference of risk from purely physical climatic changes is difficult unless set in a meaningful ecological context. Here, we aim to establish this context using historical climatic variability, as a proxy for local adaptation by resident biota, to identify areas where current local climate conditions will remain extant and future regional climate analogues will emerge. This information is then related to the processes governing species' climate-driven range edge dynamics, differentiating changes in local climate conditions as promoters of species range contractions from those in neighbouring locations facilitating range expansions. We applied this approach to assess the future climatic stability and connectivity of Japanese waters and its network of marine protected areas (MPAs). We find 88% of Japanese waters transitioning to climates outside their historical variability bounds by 2035, resulting in large reductions in the amount of available climatic space potentially promoting widespread range contractions and expansions. Areas of high connectivity, where shifting climates converge, are present along sections of the coast facilitated by the strong latitudinal gradient of the Japanese archipelago and its ocean current system. While these areas overlap significantly with areas currently under significant anthropogenic pressures, they also include much of the MPA

  11. Not just about sunburn--the ozone hole's profound effect on climate has significant implications for Southern Hemisphere ecosystems.

    PubMed

    Robinson, Sharon A; Erickson, David J

    2015-02-01

    Climate scientists have concluded that stratospheric ozone depletion has been a major driver of Southern Hemisphere climate processes since about 1980. The implications of these observed and modelled changes in climate are likely to be far more pervasive for both terrestrial and marine ecosystems than the increase in ultraviolet-B radiation due to ozone depletion; however, they have been largely overlooked in the biological literature. Here, we synthesize the current understanding of how ozone depletion has impacted Southern Hemisphere climate and highlight the relatively few documented impacts on terrestrial and marine ecosystems. Reviewing the climate literature, we present examples of how ozone depletion changes atmospheric and oceanic circulation, with an emphasis on how these alterations in the physical climate system affect Southern Hemisphere weather, especially over the summer season (December-February). These potentially include increased incidence of extreme events, resulting in costly floods, drought, wildfires and serious environmental damage. The ecosystem impacts documented so far include changes to growth rates of South American and New Zealand trees, decreased growth of Antarctic mosses and changing biodiversity in Antarctic lakes. The objective of this synthesis was to stimulate the ecological community to look beyond ultraviolet-B radiation when considering the impacts of ozone depletion. Such widespread changes in Southern Hemisphere climate are likely to have had as much or more impact on natural ecosystems and food production over the past few decades, than the increased ultraviolet radiation due to ozone depletion. © 2014 John Wiley & Sons Ltd.

  12. Managing living marine resources in a dynamic environment: The role of seasonal to decadal climate forecasts

    NASA Astrophysics Data System (ADS)

    Tommasi, Desiree; Stock, Charles A.; Hobday, Alistair J.; Methot, Rick; Kaplan, Isaac C.; Eveson, J. Paige; Holsman, Kirstin; Miller, Timothy J.; Gaichas, Sarah; Gehlen, Marion; Pershing, Andrew; Vecchi, Gabriel A.; Msadek, Rym; Delworth, Tom; Eakin, C. Mark; Haltuch, Melissa A.; Séférian, Roland; Spillman, Claire M.; Hartog, Jason R.; Siedlecki, Samantha; Samhouri, Jameal F.; Muhling, Barbara; Asch, Rebecca G.; Pinsky, Malin L.; Saba, Vincent S.; Kapnick, Sarah B.; Gaitan, Carlos F.; Rykaczewski, Ryan R.; Alexander, Michael A.; Xue, Yan; Pegion, Kathleen V.; Lynch, Patrick; Payne, Mark R.; Kristiansen, Trond; Lehodey, Patrick; Werner, Francisco E.

    2017-03-01

    Recent developments in global dynamical climate prediction systems have allowed for skillful predictions of climate variables relevant to living marine resources (LMRs) at a scale useful to understanding and managing LMRs. Such predictions present opportunities for improved LMR management and industry operations, as well as new research avenues in fisheries science. LMRs respond to climate variability via changes in physiology and behavior. For species and systems where climate-fisheries links are well established, forecasted LMR responses can lead to anticipatory and more effective decisions, benefitting both managers and stakeholders. Here, we provide an overview of climate prediction systems and advances in seasonal to decadal prediction of marine-resource relevant environmental variables. We then describe a range of climate-sensitive LMR decisions that can be taken at lead-times of months to decades, before highlighting a range of pioneering case studies using climate predictions to inform LMR decisions. The success of these case studies suggests that many additional applications are possible. Progress, however, is limited by observational and modeling challenges. Priority developments include strengthening of the mechanistic linkages between climate and marine resource responses, development of LMR models able to explicitly represent such responses, integration of climate driven LMR dynamics in the multi-driver context within which marine resources exist, and improved prediction of ecosystem-relevant variables at the fine regional scales at which most marine resource decisions are made. While there are fundamental limits to predictability, continued advances in these areas have considerable potential to make LMR managers and industry decision more resilient to climate variability and help sustain valuable resources. Concerted dialog between scientists, LMR managers and industry is essential to realizing this potential.

  13. The developing framework of marine ecotoxicology: Pollutants as a variable in marine ecosystems?

    USGS Publications Warehouse

    Luoma, Samuel N.

    1996-01-01

    Marine ecosystems include a subset in which at least some interrelated geochemical, biochemical, physiological, population and community characteristics are changed by pollutants. Moderate contamination is relatively widespread in coastal and estuarine ecosystems, so the subset of ecosystems with at least some processes affected could be relatively large. Pollutant influences have changed and will probably continue to change on time scales of decades. Biological exposures and dose in such ecosystems are species-specific and determined by how the species is exposed to different environmental media and the geochemistry of individual pollutants within those media. Bioaccumulation models offer significant promise for interpreting such exposures. Biological responses to pollutants need to be more directly linked to exposure and dose. At the level of the individual this might be improved by better understanding relationships between tissue concentrations of pollutants and responses to pollutants. Multi-discipline field and laboratory studies combined with advanced understanding of some basic processes have reduced the ambiguities in interpreting a few physiological/organismic responses to pollutants in nature. Recognition of pollutant-induced patterns in population responses could lead to similar advances. A rational framework for ecotoxicology is developing, but its further advance is dependent upon better integration of ecotoxicology with basic marine ecology and biology.

  14. Provenance for actionable data products and indicators in marine ecosystem assessments

    NASA Astrophysics Data System (ADS)

    Beaulieu, S. E.; Maffei, A. R.; Fox, P. A.; West, P.; Di Stefano, M.; Hare, J. A.; Fogarty, M.

    2013-12-01

    Ecosystem-based management of Large Marine Ecosystems (LMEs) involves the sharing of data and information products among a diverse set of stakeholders - from environmental and fisheries scientists to policy makers, commercial entities, nonprofits, and the public. Often the data products that are shared have resulted from a number of processing steps and may also have involved the combination of a number of data sources. The traceability from an actionable data product or indicator back to its original data source(s) is important not just for trust and understanding of each final data product, but also to compare with similar data products produced by the different stakeholder groups. For a data product to be traceable, its provenance, i.e., lineage or history, must be recorded and preferably machine-readable. We are collaborating on a use case to develop a software framework for the bi-annual Ecosystem Status Report (ESR) for the U.S. Northeast Shelf LME. The ESR presents indicators of ecosystem status including climate forcing, primary and secondary production, anthropogenic factors, and integrated ecosystem measures. Our software framework retrieves data, conducts standard analyses, provides iterative and interactive visualization, and generates final graphics for the ESR. The specific process for each data and information product is updated in a metadata template, including data source, code versioning, attribution, and related contextual information suitable for traceability, repeatability, explanation, verification, and validation. Here we present the use of standard metadata for provenance for data products in the ESR, in particular the W3C provenance (PROV) family of specifications, including the PROV-O ontology which maps the PROV data model to RDF. We are also exploring extensions to PROV-O in development (e.g., PROV-ES for Earth Science Data Systems, D-PROV for workflow structure). To associate data products in the ESR to domain-specific ontologies we are

  15. Summertime CO2 fluxes and ecosystem respiration from marine animal colony tundra in maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Zhu, Renbin; Bao, Tao; Wang, Qing; Xu, Hua; Liu, Yashu

    2014-12-01

    Net ecosystem CO2 exchange (NEE) and ecosystem respiration (ER) were investigated at penguin, seal and skua colony tundra and the adjacent animal-lacking tundra sites in maritime Antarctica. Net CO2 fluxes showed a large difference between marine animal colonies and animal-lacking tundra sites. The mean NEE from penguin, seal and skua colony tundra sites ranged from -37.2 to 5.2 mg CO2 m-2 h-1, whereas animal-lacking tundra sites experienced a larger net gain of CO2 with the mean flux range from -85.6 to -23.9 mg CO2 m-2 h-1. Ecosystem respiration rates at penguin colony tundra sites (mean 201.3 ± 31.4 mg CO2 m-2 h-1) were significantly higher (P < 0.01) than those at penguin-lacking tundra sites (64.0-87.1 mg CO2 m-2 h-1). The gross photosynthesis (Pg) showed a consistent trend to ER with the highest mean Pg (219.7 ± 34.5 mg CO2 m-2 h-1) at penguin colony tundra sites. When all the data were combined from different types of tundra ecosystems, summertime tundra NEE showed a weak or strong positive correlation with air temperature, 0-10 cm soil temperature or precipitation. The NEE from marine animal colony and animal-lacking tundra was significantly positively correlated (P < 0.001) with soil organic carbon (SOC), total nitrogen (TN) contents and C:N ratios. The ER showed a significant exponential correlation (P < 0.01) with mean 0-15 cm soil temperature, and much higher Q10 value (9.97) was obtained compared with other terrestrial ecosystems, indicating greater temperature sensitivity of tundra ecosystem respiration. Our results indicate that marine animals and the deposition of their excreta might have an important effect on tundra CO2 exchanges and ecosystem respiration, and current climate warming will further decrease tundra CO2 sink in maritime Antarctica.

  16. Integrating Climate Change Resilience Features into the Incremental Refinement of an Existing Marine Park

    PubMed Central

    Beckley, Lynnath E.; Kobryn, Halina T.; Lombard, Amanda T.; Radford, Ben; Heyward, Andrew

    2016-01-01

    Marine protected area (MPA) designs are likely to require iterative refinement as new knowledge is gained. In particular, there is an increasing need to consider the effects of climate change, especially the ability of ecosystems to resist and/or recover from climate-related disturbances, within the MPA planning process. However, there has been limited research addressing the incorporation of climate change resilience into MPA design. This study used Marxan conservation planning software with fine-scale shallow water (<20 m) bathymetry and habitat maps, models of major benthic communities for deeper water, and comprehensive human use information from Ningaloo Marine Park in Western Australia to identify climate change resilience features to integrate into the incremental refinement of the marine park. The study assessed the representation of benthic habitats within the current marine park zones, identified priority areas of high resilience for inclusion within no-take zones and examined if any iterative refinements to the current no-take zones are necessary. Of the 65 habitat classes, 16 did not meet representation targets within the current no-take zones, most of which were in deeper offshore waters. These deeper areas also demonstrated the highest resilience values and, as such, Marxan outputs suggested minor increases to the current no-take zones in the deeper offshore areas. This work demonstrates that inclusion of fine-scale climate change resilience features within the design process for MPAs is feasible, and can be applied to future marine spatial planning practices globally. PMID:27529820

  17. Impacts of Climate and UV Change on Arctic Freshwater Ecosystems

    NASA Astrophysics Data System (ADS)

    Wrona, F. J.; Prowse, T. D.; Reist, J. D.

    2004-05-01

    An overview is provided of the key findings of the Arctic Climate Impact Assessment (ACIA), which is an international project of the Arctic Council and the International Arctic Science Committee (IASC), to evaluate and synthesize knowledge on climate variability, climate change, and increased ultraviolet radiation and their consequences. Predicted changes in climate and UV in the Arctic are expected to have far-reaching impacts on the hydrology and ecology of freshwater ecosystems. Key effects include changes in the distribution, abundance and ecology of aquatic species in various trophic levels, dramatic alterations in the physical environment that makes up their habitat, changes to the chemical properties of that environment, and alterations to the processes that act on and within freshwater ecosystems. Interactions of climatic variables, such as temperature and precipitation, with freshwater ecosystems are highly complex and hence can be propagated through ecosystems in ways that are often difficult to predict. This is partly because of our still relatively poor understanding of the structure and function of arctic freshwater systems and their basic interrelationships with climate and other environmental variables, as well as by a paucity of long-term freshwater monitoring sites and integrated hydro-ecological research programs in the Arctic. Predictions of hydro-ecological impacts are further complicated by synergistic and cumulative effects.

  18. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    NASA Astrophysics Data System (ADS)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  19. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    PubMed Central

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-01-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes. PMID:26506134

  20. Large-scale climatic anomalies affect marine predator foraging behaviour and demography.

    PubMed

    Bost, Charles A; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-27

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  1. [Effects of artificial reef construction to marine ecosystem services value: a case of Yang-Meikeng artificial reef region in Shenzhen].

    PubMed

    Qin, Chuan-xin; Chem, Pi-mao; Jia, Xiao-ping

    2011-08-01

    Based on the researches and statistic data of Yangmeikeng artificial reef region in Shenzhen in 2008 and by the method of ecosystem services value, this paper analyzed the effects of artificial reef construction in the region on the marine ecosystem services. After the artificial reef construction, the tourism service value in the region decreased from 87% to 42%, food supply service value increased from 7% to 27%, and the services value of raw material supply, climatic regulation, air quality regulation, water quality regulation, harmful organism and disease regulation, and knowledge expansion had a slight increase, as compared to the surrounding coastal areas. The total services value per unit area of Yangmeikeng artificial reef region in 2008 was 1714.7 x 10(4) yuan x km(-2), far higher than the mean services value of coastal marine ecosystem in the surrounding areas of Shenzhen and in the world. Artificial reef construction affected and altered the structure of regional marine ecosystem services value, and improved the regional ecosystem services value, being of significance for the rational exploitation and utilization of marine resources and the successful recovery of damaged marine eco-environment and fish resources. Utilizing the method of ecosystem services value to evaluate artificial reef construction region could better elucidate the benefits of artificial reef construction, effectively promote the development of our artificial reef construction, and improve the management of marine ecosystem.

  2. Challenges for Ecosystem Services Provided by Coral Reefs In the Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Kikuchi, R. K.; Elliff, C. I.

    2014-12-01

    to increase resilience and guarantee the adaptation of this ecosystem to climate change. Thus, considering that the majority of the marine ecosystem services we benefit from are provided from coastal habitats, of which coral reefs play an important role, the challenge at hand is in fact the interaction between local factors and climate change

  3. Bubble Stripping as a Tool to Reduce High Dissolved CO2 in Coastal Marine Ecosystems

    NASA Astrophysics Data System (ADS)

    Koweek, D.; Mucciarone, D. A.; Dunbar, R. B.

    2016-02-01

    High dissolved CO2 concentrations in coastal ecosystems are a common occurrence due to a combination of large ecosystem metabolism and long residence times. Many of the socially, commercially, and recreationally important species may have adapted to this natural variability over time. However, eutrophication and ocean acidification may be perturbing the water chemistry beyond the bounds of tolerance for these organisms. We are currently limited in our ability to deal with the geochemical changes unfolding in our coastal ocean. This study helps to address this deficit of solutions by introducing bubble stripping as a novel geochemical engineering approach to reducing high CO2 in coastal marine ecosystems. We use an empirically validated numerical model to find that air/sea gas exchange rates within a bubbled system are 1-2 orders of magnitude higher than within a non-bubbled system. By coupling bubbling-enhanced ventilation to a coastal ecosystem metabolism model, we demonstrate that strategically timed bubble plumes can mitigate exposure to high CO2 under present-day conditions and that exposure mitigation is enhanced in the more acidic conditions predicted by the end of the century. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change emphasizes the need to both adapt to and mitigate the effects of climate change and ocean acidification. We believe shallow water bubble stripping could be one approach for reducing high CO2 conditions in coastal ecosystems and should be added to the growing list of engineering approaches intended to increase coastal resilience in a changing ocean.

  4. Criteria for assessing climate change impacts on ecosystems

    PubMed Central

    Loehle, Craig

    2011-01-01

    There is concern about the potential impacts of climate change on species and ecosystems. To address this concern, a large body of literature has developed in which these impacts are assessed. In this study, criteria for conducting reliable and useful assessments of impacts of future climate are suggested. The major decisions involve: clearly defining an emissions scenario; selecting a climate model; evaluating climate model skill and bias; quantifying General Circulation Model (GCM) between-model variability; selecting an ecosystem model and assessing uncertainty; properly considering transient versus equilibrium responses; including effects of CO2 on plant response; evaluating implications of simplifying assumptions; and considering animal linkage with vegetation. A sample of the literature was surveyed in light of these criteria. Many of the studies used climate simulations that were >10 years old and not representative of best current models. Future effects of elevated CO2 on plant drought resistance and productivity were generally included in growth model studies but not in niche (habitat suitability) studies, causing the latter to forecast greater future adverse impacts. Overly simplified spatial representation was frequent and caused the existence of refugia to be underestimated. Few studies compared multiple climate simulations and ecosystem models (including parametric uncertainty), leading to a false impression of precision and potentially arbitrary results due to high between-model variance. No study assessed climate model retrodictive skill or bias. Overall, most current studies fail to meet all of the proposed criteria. Suggestions for improving assessments are provided. PMID:22393483

  5. Biological Invasions Impact Ecosystem Properties and can Affect Climate Predictions

    NASA Astrophysics Data System (ADS)

    Gonzalez-Meler, M.; Matamala, R.; Cook, D. R.; Graham, S.; Fan, Z.; Gomez-Casanovas, N.

    2012-12-01

    Climate change models vary widely in their predictions of the effects of climate forcing, in part because of difficulties in assigning sources of uncertainties and in simulating changes in the carbon source/sink status and climate-carbon cycle feedbacks of terrestrial ecosystems. We studied the impacts of vegetation and weather variations on carbon and energy fluxes at a restored tallgrass prairie in Illinois. The prairie was a strong carbon sink, despite a prolonged drought period and vegetation changes due to the presence of a non-native biennial plant. A model considering the combined effects of air temperature, precipitation, RH, incoming solar radiation, and vegetation was also developed and used to describe net ecosystem exchange for all years. The vegetation factor was represented in the model with summer albedo and/or NDVI. Results showed that the vegetation factor was more important than abiotic factors in describing changes in C and energy fluxes in ecosystems under disturbances. Changes from natives to a non-native forbs species had the strongest effect in reducing net ecosystem production and increasing sensible heat flux and albedo, which may result in positive feedbacks on warming. Here we show that non-native species invasions can alter the ecosystem sensitivity to climatic factors often construed in models.

  6. Physical processes mediating climate change impacts on regional sea ecosystems

    NASA Astrophysics Data System (ADS)

    Holt, J.; Schrum, C.; Cannaby, H.; Daewel, U.; Allen, I.; Artioli, Y.; Bopp, L.; Butenschon, M.; Fach, B. A.; Harle, J.; Pushpadas, D.; Salihoglu, B.; Wakelin, S.

    2014-02-01

    Regional seas are exceptionally vulnerable to climate change, yet are the most directly societally important regions of the marine environment. The combination of widely varying conditions of mixing, forcing, geography (coastline and bathymetry) and exposure to the open-ocean makes these seas subject to a wide range of physical processes that mediates how large scale climate change impacts on these seas' ecosystems. In this paper we explore these physical processes and their biophysical interactions, and the effects of atmospheric, oceanic and terrestrial change on them. Our aim is to elucidate the controlling dynamical processes and how these vary between and within regional seas. We focus on primary production and consider the potential climatic impacts: on long term changes in elemental budgets, on seasonal and mesoscale processes that control phytoplankton's exposure to light and nutrients, and briefly on direct temperature response. We draw examples from the MEECE FP7 project and five regional models systems using ECOSMO, POLCOMS-ERSEM and BIMS_ECO. These cover the Barents Sea, Black Sea, Baltic Sea, North Sea, Celtic Seas, and a region of the Northeast Atlantic, using a common global ocean-atmosphere model as forcing. We consider a common analysis approach, and a more detailed analysis of the POLCOMS-ERSEM model. Comparing projections for the end of the 21st century with mean present day conditions, these simulations generally show an increase in seasonal and permanent stratification (where present). However, the first order (low- and mid-latitude) effect in the open ocean projections of increased permanent stratification leading to reduced nutrient levels, and so to reduced primary production, is largely absent, except in the NE Atlantic. Instead, results show a highly heterogeneous picture of positive and negative change arising from the varying mixing and circulation conditions. Even in the two highly stratified, deep water seas (Black and Baltic Seas) the

  7. Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation.

    PubMed

    Schmittner, Andreas

    2005-03-31

    Reorganizations of the Atlantic meridional overturning circulation were associated with large and abrupt climatic changes in the North Atlantic region during the last glacial period. Projections with climate models suggest that similar reorganizations may also occur in response to anthropogenic global warming. Here I use ensemble simulations with a coupled climate-ecosystem model of intermediate complexity to investigate the possible consequences of such disturbances to the marine ecosystem. In the simulations, a disruption of the Atlantic meridional overturning circulation leads to a collapse of the North Atlantic plankton stocks to less than half of their initial biomass, owing to rapid shoaling of winter mixed layers and their associated separation from the deep ocean nutrient reservoir. Globally integrated export production declines by more than 20 per cent owing to reduced upwelling of nutrient-rich deep water and gradual depletion of upper ocean nutrient concentrations. These model results are consistent with the available high-resolution palaeorecord, and suggest that global ocean productivity is sensitive to changes in the Atlantic meridional overturning circulation.

  8. Climate and ecosystem linkages explain widespread declines in North American Atlantic salmon populations.

    PubMed

    Mills, Katherine E; Pershing, Andrew J; Sheehan, Timothy F; Mountain, David

    2013-10-01

    North American Atlantic salmon (Salmo salar) populations experienced substantial declines in the early 1990s, and many populations have persisted at low abundances in recent years. Abundance and productivity declined in a coherent manner across major regions of North America, and this coherence points toward a potential shift in marine survivorship, rather than local, river-specific factors. The major declines in Atlantic salmon populations occurred against a backdrop of physical and biological shifts in Northwest Atlantic ecosystems. Analyses of changes in climate, physical, and lower trophic level biological factors provide substantial evidence that climate conditions directly and indirectly influence the abundance and productivity of North American Atlantic salmon populations. A major decline in salmon abundance after 1990 was preceded by a series of changes across multiple levels of the ecosystem, and a subsequent population change in 1997, primarily related to salmon productivity, followed an unusually low NAO event. Pairwise correlations further demonstrate that climate and physical conditions are associated with changes in plankton communities and prey availability, which are ultimately linked to Atlantic salmon populations. Results suggest that poor trophic conditions, likely due to climate-driven environmental factors, and warmer ocean temperatures throughout their marine habitat area are constraining the productivity and recovery of North American Atlantic salmon populations. © 2013 John Wiley & Sons Ltd.

  9. MAREDAT: towards a world atlas of MARine Ecosystem DATa

    NASA Astrophysics Data System (ADS)

    Buitenhuis, E. T.; Vogt, M.; Moriarty, R.; Bednaršek, N.; Doney, S. C.; Leblanc, K.; Le Quéré, C.; Luo, Y.-W.; O'Brien, C.; O'Brien, T.; Peloquin, J.; Schiebel, R.; Swan, C.

    2013-07-01

    We present a summary of biomass data for 11 plankton functional types (PFTs) plus phytoplankton pigment data, compiled as part of the MARine Ecosystem biomass DATa (MAREDAT) initiative. The goal of the MAREDAT initiative is to provide, in due course, global gridded data products with coverage of all planktic components of the global ocean ecosystem. This special issue is the first step towards achieving this. The PFTs presented here include picophytoplankton, diazotrophs, coccolithophores, Phaeocystis, diatoms, picoheterotrophs, microzooplankton, foraminifers, mesozooplankton, pteropods and macrozooplankton. All variables have been gridded onto a World Ocean Atlas (WOA) grid (1° × 1° × 33 vertical levels × monthly climatologies). The results show that abundance is much better constrained than their carbon content/elemental composition, and coastal seas and other high productivity regions have much better coverage than the much larger volumes where biomass is relatively low. The data show that (1) the global total heterotrophic biomass (2.0-4.6 Pg C) is at least as high as the total autotrophic biomass (0.5-2.4 Pg C excluding nanophytoplankton and autotrophic dinoflagellates); (2) the biomass of zooplankton calcifiers (0.03-0.67 Pg C) is substantially higher than that of coccolithophores (0.001-0.03 Pg C); (3) patchiness of biomass distribution increases with organism size; and (4) although zooplankton biomass measurements below 200 m are rare, the limited measurements available suggest that Bacteria and Archaea are not the only important heterotrophs in the deep sea. More data will be needed to characterise ocean ecosystem functioning and associated biogeochemistry in the Southern Hemisphere and below 200 m. Future efforts to understand marine ecosystem composition and functioning will be helped both by further archiving of historical data and future sampling at new locations. Microzooplankton database:

  10. Mammoth ecosystem: Climatic areal, animal's density and cause of extinctions

    NASA Astrophysics Data System (ADS)

    Zimov, S.; Zimov, N.; Zimova, G.; Chapin, S. F.

    2008-12-01

    During the last glaciations Mammoth Ecosystem (ME) occupied territory from present-day France to Canada and from the Arctic islands to China. This ecosystem played major role in global carbon cycle and human settling around the planet. Causes of extinction of this ecosystem are debatable. Analyses of hundreds of radiocarbon dates of ME animal fossil remains showed that warming and moistening of climate wasn't accompanied by animal extinction. On the opposite, on the north right after the warming rise of herbivore population was observed. Reconstruction of ME climatic areal showed that its climatic optimum lies within range of annual precipitation of 200-350 mm and average summer temperatures of +8-+12oC which corresponds with modern climate of Northern Siberia. Analyses of bones and skeletons concentrations in permafrost of Northern Siberia showed that animal density in ME was similar to African savannah. That was a high productive ecosystem that could sustain in wide variety of climates because numerous herbivores maintained there pastures themselves.

  11. Coupled climate-fire-ecosystem dynamics from decades to millennia

    NASA Astrophysics Data System (ADS)

    Higuera, P. E.

    2016-12-01

    Studying the causes and ecosystem consequences of wildfire and shifting fire regimes is challenging, because of the slowly varying (centennial-scale) processes involved. This is particularly true in stand-replacing fire regimes, where mean return intervals exceed 100 years. Advances in paleoecology continue to improve our understanding of the patterns and drivers of wildfire regimes, highlighting the overarching role of climate in shaping fire from decadal to millennial time scales. The inferred mechanisms involve direct links between climate and fuel moisture, and indirect links whereby climate influences fire regimes by altering vegetation and landscape flammability. This presentation highlights these themes by drawing on recent paleoecological studies from Alaskan arctic and boreal ecosystems, and the Rocky Mountains subalpine forests. In parallel to the development of fire history records, paleoecologists are increasingly studying the impacts of forest disturbances on biogeochemical processes. Fire effects on ecosystem pools and fluxes can be inferred across a range of time scales, including short-term impacts and potential feedbacks among disturbance, vegetation change, and key ecosystem properties (e.g., C and N cycling). The second part of the presentation highlights recent and ongoing work investigating the biogeochemical impacts of wildfires and fire-regime variability, utilizing paleoecological proxies in combination with ecosystem modeling. Work from Rocky Mountain subalpine forest highlights the relevance of centennial- and millennial-scale variability in fire activity for understanding modern and constraining future ecosystem C and N stocks. The paleo record further suggests that incorporating this fire-regime variability into ecosystem models is critical for accurately projecting ecosystem impacts of future fire activity.

  12. Climate impact on plankton ecosystems in the Northeast Atlantic.

    PubMed

    Richardson, Anthony J; Schoeman, David S

    2004-09-10

    It is now widely accepted that global warming is occurring, yet its effects on the world's largest ecosystem, the marine pelagic realm, are largely unknown. We show that sea surface warming in the Northeast Atlantic is accompanied by increasing phytoplankton abundance in cooler regions and decreasing phytoplankton abundance in warmer regions. This impact propagates up the food web (bottom-up control) through copepod herbivores to zooplankton carnivores because of tight trophic coupling. Future warming is therefore likely to alter the spatial distribution of primary and secondary pelagic production, affecting ecosystem services and placing additional stress on already-depleted fish and mammal populations.

  13. Effects of Ocean Acidification on Temperate Coastal Marine Ecosystems and Fisheries in the Northeast Pacific

    PubMed Central

    Haigh, Rowan; Ianson, Debby; Holt, Carrie A.; Neate, Holly E.; Edwards, Andrew M.

    2015-01-01

    As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2–3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty. PMID

  14. Effects of ocean acidification on temperate coastal marine ecosystems and fisheries in the northeast Pacific.

    PubMed

    Haigh, Rowan; Ianson, Debby; Holt, Carrie A; Neate, Holly E; Edwards, Andrew M

    2015-01-01

    As the oceans absorb anthropogenic CO2 they become more acidic, a problem termed ocean acidification (OA). Since this increase in CO2 is occurring rapidly, OA may have profound implications for marine ecosystems. In the temperate northeast Pacific, fisheries play key economic and cultural roles and provide significant employment, especially in rural areas. In British Columbia (BC), sport (recreational) fishing generates more income than commercial fishing (including the expanding aquaculture industry). Salmon (fished recreationally and farmed) and Pacific Halibut are responsible for the majority of fishery-related income. This region naturally has relatively acidic (low pH) waters due to ocean circulation, and so may be particularly vulnerable to OA. We have analyzed available data to provide a current description of the marine ecosystem, focusing on vertical distributions of commercially harvested groups in BC in the context of local carbon and pH conditions. We then evaluated the potential impact of OA on this temperate marine system using currently available studies. Our results highlight significant knowledge gaps. Above trophic levels 2-3 (where most local fishery-income is generated), little is known about the direct impact of OA, and more importantly about the combined impact of multi-stressors, like temperature, that are also changing as our climate changes. There is evidence that OA may have indirect negative impacts on finfish through changes at lower trophic levels and in habitats. In particular, OA may lead to increased fish-killing algal blooms that can affect the lucrative salmon aquaculture industry. On the other hand, some species of locally farmed shellfish have been well-studied and exhibit significant negative direct impacts associated with OA, especially at the larval stage. We summarize the direct and indirect impacts of OA on all groups of marine organisms in this region and provide conclusions, ordered by immediacy and certainty.

  15. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    DOE PAGES

    Meskhidze, Nicholas; Nenes, Athanasios

    2010-01-01

    Using smore » atellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl- a ]) and liquid cloud effective radii over productive areas of the oceans varies between − 0.2 and − 0.6 . Special attention is given to identifying (and addressing) problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AOD diff ) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AOD diff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl- a ] over the productive waters of the Southern Ocean. Since [Chl- a ] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.« less

  16. Functional consequences of realistic biodiversity changes in a marine ecosystem.

    PubMed

    Bracken, Matthew E S; Friberg, Sara E; Gonzalez-Dorantes, Cirse A; Williams, Susan L

    2008-01-22

    Declines in biodiversity have prompted concern over the consequences of species loss for the goods and services provided by natural ecosystems. However, relatively few studies have evaluated the functional consequences of realistic, nonrandom changes in biodiversity. Instead, most designs have used randomly selected assemblages from a local species pool to construct diversity gradients. It is therefore difficult, based on current evidence, to predict the functional consequences of realistic declines in biodiversity. In this study, we used tide pool microcosms to demonstrate that the effects of real-world changes in biodiversity may be very different from those of random diversity changes. Specifically, we measured the relationship between the diversity of a seaweed assemblage and its ability to use nitrogen, a key limiting nutrient in nearshore marine systems. We quantified nitrogen uptake using both experimental and model seaweed assemblages and found that natural increases in diversity resulted in enhanced rates of nitrogen use, whereas random diversity changes had no effect on nitrogen uptake. Our results suggest that understanding the real-world consequences of declining biodiversity will require addressing changes in species performance along natural diversity gradients and understanding the relationships between species' susceptibility to loss and their contributions to ecosystem functioning.

  17. Regularity underlies erratic population abundances in marine ecosystems.

    PubMed

    Sun, Jie; Cornelius, Sean P; Janssen, John; Gray, Kimberly A; Motter, Adilson E

    2015-06-06

    The abundance of a species' population in an ecosystem is rarely stationary, often exhibiting large fluctuations over time. Using historical data on marine species, we show that the year-to-year fluctuations of population growth rate obey a well-defined double-exponential (Laplace) distribution. This striking regularity allows us to devise a stochastic model despite seemingly irregular variations in population abundances. The model identifies the effect of reduced growth at low population density as a key factor missed in current approaches of population variability analysis and without which extinction risks are severely underestimated. The model also allows us to separate the effect of demographic stochasticity and show that single-species growth rates are dominantly determined by stochasticity common to all species. This dominance-and the implications it has for interspecies correlations, including co-extinctions-emphasizes the need for ecosystem-level management approaches to reduce the extinction risk of the individual species themselves. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  18. Ediacaran Marine Redox Heterogeneity and Early Animal Ecosystems.

    PubMed

    Li, Chao; Planavsky, Noah J; Shi, Wei; Zhang, Zihu; Zhou, Chuanming; Cheng, Meng; Tarhan, Lidya G; Luo, Genming; Xie, Shucheng

    2015-11-24

    Oxygenation has widely been viewed as a major factor driving the emergence and diversification of animals. However, links between early animal evolution and shifts in surface oxygen levels have largely been limited to extrapolation of paleoredox conditions reconstructed from unfossiliferous strata to settings in which contemporaneous fossils were preserved. Herein, we present a multi-proxy paleoredox study of late Ediacaran (ca. 560-551 Ma) shales hosting the Miaohe Konservat-Lagerstätte of South China and, for comparison, equivalent non-fossil-bearing shales at adjacent sections. For the fossiliferous strata at Miaohe there is geochemical evidence for anoxic conditions, but paleontological evidence for at least episodically oxic conditions. An oxygen-stressed environment is consistent with the low diversity and simple morphology of Miaohe Biota macrofossils. However, there is no evidence for euxinic (anoxic and sulphidic) conditions for the fossiliferous strata at Miaohe, in contrast to adjacent unfossiliferous sections. Our results indicate that Ediacaran marine redox chemistry was highly heterogeneous, even at the kilometre-scale. Therefore, our study provides direct-rather than inferred-evidence that anoxia played a role in shaping a landmark Ediacaran ecosystem. If the anoxic conditions characteristic of the studied sections were widespread in the late Neoproterozoic, environmental stress would have hindered the development of complex ecosystems.

  19. Ediacaran Marine Redox Heterogeneity and Early Animal Ecosystems

    NASA Astrophysics Data System (ADS)

    Li, Chao; Planavsky, Noah J.; Shi, Wei; Zhang, Zihu; Zhou, Chuanming; Cheng, Meng; Tarhan, Lidya G.; Luo, Genming; Xie, Shucheng

    2015-11-01

    Oxygenation has widely been viewed as a major factor driving the emergence and diversification of animals. However, links between early animal evolution and shifts in surface oxygen levels have largely been limited to extrapolation of paleoredox conditions reconstructed from unfossiliferous strata to settings in which contemporaneous fossils were preserved. Herein, we present a multi-proxy paleoredox study of late Ediacaran (ca. 560-551 Ma) shales hosting the Miaohe Konservat-Lagerstätte of South China and, for comparison, equivalent non-fossil-bearing shales at adjacent sections. For the fossiliferous strata at Miaohe there is geochemical evidence for anoxic conditions, but paleontological evidence for at least episodically oxic conditions. An oxygen-stressed environment is consistent with the low diversity and simple morphology of Miaohe Biota macrofossils. However, there is no evidence for euxinic (anoxic and sulphidic) conditions for the fossiliferous strata at Miaohe, in contrast to adjacent unfossiliferous sections. Our results indicate that Ediacaran marine redox chemistry was highly heterogeneous, even at the kilometre-scale. Therefore, our study provides direct—rather than inferred—evidence that anoxia played a role in shaping a landmark Ediacaran ecosystem. If the anoxic conditions characteristic of the studied sections were widespread in the late Neoproterozoic, environmental stress would have hindered the development of complex ecosystems.

  20. Ediacaran Marine Redox Heterogeneity and Early Animal Ecosystems

    PubMed Central

    Li, Chao; Planavsky, Noah J.; Shi, Wei; Zhang, Zihu; Zhou, Chuanming; Cheng, Meng; Tarhan, Lidya G.; Luo, Genming; Xie, Shucheng

    2015-01-01

    Oxygenation has widely been viewed as a major factor driving the emergence and diversification of animals. However, links between early animal evolution and shifts in surface oxygen levels have largely been limited to extrapolation of paleoredox conditions reconstructed from unfossiliferous strata to settings in which contemporaneous fossils were preserved. Herein, we present a multi-proxy paleoredox study of late Ediacaran (ca. 560-551 Ma) shales hosting the Miaohe Konservat-Lagerstätte of South China and, for comparison, equivalent non-fossil-bearing shales at adjacent sections. For the fossiliferous strata at Miaohe there is geochemical evidence for anoxic conditions, but paleontological evidence for at least episodically oxic conditions. An oxygen-stressed environment is consistent with the low diversity and simple morphology of Miaohe Biota macrofossils. However, there is no evidence for euxinic (anoxic and sulphidic) conditions for the fossiliferous strata at Miaohe, in contrast to adjacent unfossiliferous sections. Our results indicate that Ediacaran marine redox chemistry was highly heterogeneous, even at the kilometre-scale. Therefore, our study provides direct—rather than inferred—evidence that anoxia played a role in shaping a landmark Ediacaran ecosystem. If the anoxic conditions characteristic of the studied sections were widespread in the late Neoproterozoic, environmental stress would have hindered the development of complex ecosystems. PMID:26597559

  1. Marine Mammal Impacts in Exploited Ecosystems: Would Large Scale Culling Benefit Fisheries?

    PubMed Central

    Morissette, Lyne; Christensen, Villy; Pauly, Daniel

    2012-01-01

    Competition between marine mammals and fisheries for marine resources—whether real or perceived—has become a major issue for several countries and in international fora. We examined trophic interactions between marine mammals and fisheries based on a resource overlap index, using seven Ecopath models including marine mammal groups. On a global scale, most food consumed by marine mammals consisted of prey types that were not the main target of fisheries. For each ecosystem, the primary production required (PPR) to sustain marine mammals was less than half the PPR to sustain fisheries catches. We also developed an index representing the mean trophic level of marine mammal's consumption (TLQ) and compared it with the mean trophic level of fisheries' catches (TLC). Our results showed that overall TLQ was lower than TLC (2.88 versus 3.42). As fisheries increasingly exploit lower-trophic level species, the competition with marine mammals may become more important. We used mixed trophic impact analysis to evaluate indirect trophic effects of marine mammals, and in some cases found beneficial effects on some prey. Finally, we assessed the change in the trophic structure of an ecosystem after a simulated extirpation of marine mammal populations. We found that this lead to alterations in the structure of the ecosystems, and that there was no clear and direct relationship between marine mammals' predation and the potential catch by fisheries. Indeed, total biomass, with no marine mammals in the ecosystem, generally remained surprisingly similar, or even decreased for some species. PMID:22970153

  2. Solutions for ecosystem-level protection of ocean systems under climate change.

    PubMed

    Queirós, Ana M; Huebert, Klaus B; Keyl, Friedemann; Fernandes, Jose A; Stolte, Willem; Maar, Marie; Kay, Susan; Jones, Miranda C; Hamon, Katell G; Hendriksen, Gerrit; Vermard, Youen; Marchal, Paul; Teal, Lorna R; Somerfield, Paul J; Austen, Melanie C; Barange, Manuel; Sell, Anne F; Allen, Icarus; Peck, Myron A

    2016-12-01

    The Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta-analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co-mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem-level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long-term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate-ready and ecosystem-level policy options for conservation, suitable for changing oceans. © 2016 John Wiley & Sons Ltd.

  3. Critical indirect effects of climate change on sub-Antarctic ecosystem functioning.

    PubMed

    Louise Allan, E; William Froneman, P; Durgadoo, Jonathan V; McQuaid, Christopher D; Ansorge, Isabelle J; Richoux, Nicole B

    2013-09-01

    Sub-Antarctic islands represent critical breeding habitats for land-based top predators that dominate Southern Ocean food webs. Reproduction and molting incur high energetic demands that are sustained at the sub-Antarctic Prince Edward Islands (PEIs) by both inshore (phytoplankton blooms; "island mass effect"; autochthonous) and offshore (allochthonous) productivity. As the relative contributions of these sustenance pathways are, in turn, affected by oceanographic conditions around the PEIs, we address the consequences of climatically driven changes in the physical environment on this island ecosystem. We show that there has been a measurable long-term shift in the carbon isotope signatures of the benthos inhabiting the shallow shelf region of the PEIs, most likely reflecting a long-term decline in enhanced phytoplankton productivity at the islands in response to a climate-driven shift in the position of the sub-Antarctic Front. Our results indicate that regional climate change has affected the balance between allochthonous and autochthonous productivity at the PEIs. Over the last three decades, inshore-feeding top predators at the islands have shown a marked decrease in their population sizes. Conversely, population sizes of offshore-feeding predators that forage over great distances from the islands have remained stable or increased, with one exception. Population decline of predators that rely heavily on organisms inhabiting the inshore region strongly suggest changes in prey availability, which are likely driven by factors such as fisheries impacts on some prey populations and shifts in competitive interactions among predators. In addition to these local factors, our analysis indicates that changes in prey availability may also result indirectly through regional climate change effects on the islands' marine ecosystem. Most importantly, our results indicate that a fundamental shift in the balance between allochthonous and autochthonous trophic pathways within

  4. Developing climate change indicators and a climate change monitoring plan for decision-makers at a National Marine Sanctuary

    NASA Astrophysics Data System (ADS)

    Duncan, B.; Higgason, K.; Suchanek, T.; Stachowicz, J.; Cayan, D. R.

    2012-12-01

    Changes in physical and biological components of the ecosystem along the North-central California coast have been identified as likely regional impacts of global climate change. To better monitor and address these impacts, physical and biological climate change indicators are identified for the region stretching from Bodega Head to Año Nuevo. This effort is based at the Gulf of the Farallones National Marine Sanctuary, and it is the first of its kind within the National Marine Sanctuary system. The set of climate change indicators is developed following a rigorous and collaborative process that incorporates an extensive literature review, a large workshop with regional research scientists and managers, statistical downscaling of available general circulation model and regional climate model output, and analysis of available indicator data. Work is underway to incorporate the final set of climate change indicators into a comprehensive climate change monitoring inventory and plan, with significant input from a working group of regional scientific experts. The collaborative nature of this project helps to ensure that the chosen indicators can and will be used by scientists, natural resource managers, and state and municipal planners to monitor, track, mitigate, and develop adaptation strategies for the impacts of climate change on the North-central California coast.

  5. The costs of climate change: ecosystem services and wildland fires

    EPA Science Inventory

    In this paper we use Habitat Equivalency Analysis (HEA) to monetize the avoided ecosystem services losses due to climate change-induced wildland fires in the U.S. Specifically, we use the U.S. Forest Service’s MC1 dynamic global vegetation model to forecast changes in wildland fi...

  6. CLIMATE CHANGE EFFECTS ON ECOSYSTEM SERVICES AND HUMAN HEALTH

    EPA Science Inventory

    Human health and well-being are and will be affected by climate change, both directly through changes in extreme weather events and indirectly through weather induced changes in societal systems and their supporting ecosystems. The goal of this study was to develop and apply a b...

  7. CLIMATE CHANGE EFFECTS ON ECOSYSTEM SERVICES AND HUMAN HEALTH

    EPA Science Inventory

    Human health and well-being are and will be affected by climate change, both directly through changes in extreme weather events and indirectly through weather induced changes in societal systems and their supporting ecosystems. The goal of this study was to develop and apply a b...

  8. Climate change, soil health, and ecosystem goods and services

    USDA-ARS?s Scientific Manuscript database

    Worldwide, climate change is predicted to alter precipitation regimes, annual temperatures, and occurrence of severe weather events. These changes have important implications for soil health-- defined as the capacity of a soil to contribute to ecosystem function and sustain producers and consumers--...

  9. The costs of climate change: ecosystem services and wildland fires

    EPA Science Inventory

    In this paper we use Habitat Equivalency Analysis (HEA) to monetize the avoided ecosystem services losses due to climate change-induced wildland fires in the U.S. Specifically, we use the U.S. Forest Service’s MC1 dynamic global vegetation model to forecast changes in wildland fi...

  10. Global climate change and the evolutionary ecology of ecosystem functioning.

    PubMed

    Schmitz, Oswald J

    2013-09-01

    Environmental warming due to global climate change is an important stressor that stands to alter organismal physiology and, ultimately, carbon cycling in ecosystems. Yet the theoretical framework for predicting warming effects on whole-ecosystem carbon balance by way of changes in organismal physiology remains rudimentary. This is because ecosystem science has yet to embrace principles of evolutionary ecology that offer the means to explain how environmental stress on organisms mediates ecosystem carbon dynamics. Here, using selected case studies and a theoretical model, I sketch out one framework that shows how increases in animal metabolic rates in response to thermal stress lead to phenotypically plastic shifts in animal elemental demand, from nitrogen-rich proteins that support production to carbon-rich soluble carbohydrates that support elevated energy demands. I further show how such a switch in resource selection alters the fate of carbon between atmospheric versus animal, plant, and soil pools. The framework shows that animals, despite having relatively low biomass representation in ecosystems, can nonetheless have disproportionately larger effects on carbon cycling in ecosystems whose effects are exacerbated by environmental stressors like climate warming. © 2013 New York Academy of Sciences.

  11. Resilience of marine turtle regional management units to climate change.

    PubMed

    Fuentes, Mariana M P B; Pike, David A; Dimatteo, Andrew; Wallace, Bryan P

    2013-05-01

    Enhancing species resilience to changing environmental conditions is often suggested as a climate change adaptation strategy. To effectively achieve this, it is necessary first to understand the factors that determine species resilience, and their relative importance in shaping the ability of species to adjust to the complexities of environmental change. This is an extremely challenging task because it requires comprehensive information on species traits. We explored the resilience of 58 marine turtle regional management units (RMUs) to climate change, encompassing all seven species of marine turtles worldwide. We used expert opinion from the IUCN-SSC Marine Turtle Specialist Group (n = 33 respondents) to develop a Resilience Index, which considered qualitative characteristics of each RMU (relative population size, rookery vulnerability, and genetic diversity) and non climate-related threats (fisheries, take, coastal development, and pollution/pathogens). Our expert panel perceived rookery vulnerability (the likelihood of functional rookeries becoming extirpated) and non climate-related threats as having the greatest influence on resilience of RMUs to climate change. We identified the world's 13 least resilient marine turtle RMUs to climate change, which are distributed within all three major ocean basins and include six of the world's seven species of marine turtle. Our study provides the first look at inter- and intra-species variation in resilience to climate change and highlights the need to devise metrics that measure resilience directly. We suggest that this approach can be widely used to help prioritize future actions that increase species resilience to climate change.

  12. Polar Marine Microorganisms and Climate Change.

    PubMed

    Verde, C; Giordano, D; Bellas, C M; di Prisco, G; Anesio, A M

    2016-01-01

    The large diversity of marine microorganisms harboured by oceans plays an important role in planet sustainability by driving globally important biogeochemical cycles; all primary and most secondary production in the oceans is performed by microorganisms. The largest part of the planet is covered by cold environments; consequently, cold-adapted microorganisms have crucial functional roles in globally important environmental processes and biogeochemical cycles cold-adapted extremophiles are a remarkable model to shed light on the molecular basis of survival at low temperature. The indigenous populations of Antarctic and Arctic microorganisms are endowed with genetic and physiological traits that allow them to live and effectively compete at the temperatures prevailing in polar regions. Some genes, e.g. glycosyltransferases and glycosylsynthetases involved in the architecture of the cell wall, may have been acquired/retained during evolution of polar strains or lost in tropical strains. This present work focusses on temperature and its role in shaping microbial adaptations; however, in assessing the impacts of climate changes on microbial diversity and biogeochemical cycles in polar oceans, it should not be forgotten that physiological studies need to include the interaction of temperature with other abiotic and biotic factors. © 2016 Elsevier Ltd All rights reserved.

  13. Marine Mammal Strandings and Environmental Changes: A 15-Year Study in the St. Lawrence Ecosystem

    PubMed Central

    Truchon, Marie-Hélène; Measures, Lena; L’Hérault, Vincent; Brêthes, Jean-Claude; Galbraith, Peter S.; Harvey, Michel; Lessard, Sylvie; Starr, Michel; Lecomte, Nicolas

    2013-01-01

    Understanding the effects of climatic variability on marine mammals is challenging due to the complexity of ecological interactions. We used general linear models to analyze a 15-year database documenting marine mammal strandings (1994–2008; n = 1,193) and nine environmental parameters known to affect marine mammal survival, from regional (sea ice) to continental scales (North Atlantic Oscillation, NAO). Stranding events were more frequent during summer and fall than other seasons, and have increased since 1994. Poor ice conditions observed during the same period may have affected marine mammals either directly, by modulating the availability of habitat for feeding and breeding activities, or indirectly, through changes in water conditions and marine productivity (krill abundance). For most species (75%, n = 6 species), a low volume of ice was correlated with increasing frequency of stranding events (e.g. R2adj = 0.59, hooded seal, Cystophora cristata). This likely led to an increase in seal mortality during the breeding period, but also to increase habitat availability for seasonal migratory cetaceans using ice-free areas during winter. We also detected a high frequency of stranding events for mysticete species (minke whale, Balaenoptera acutorostrata) and resident species (beluga, Delphinapterus leucas), correlated with low krill abundance since 1994. Positive NAO indices were positively correlated with high frequencies of stranding events for resident and seasonal migratory cetaceans, as well as rare species (R2adj = 0.53, 0.81 and 0.34, respectively). This contrasts with seal mass stranding numbers, which were negatively correlated with a positive NAO index. In addition, an unusual multiple species mortality event (n = 114, 62% of total annual mortality) in 2008 was caused by a harmful algal bloom. Our findings provide an empirical baseline in understanding marine mammal survival when faced with climatic variability. This is a promising

  14. Speciation and stasis in marine Ostracoda: Climatic modulation of evolution

    USGS Publications Warehouse

    Cronin, T. M.

    1985-01-01

    Morphologic and paleozoogeographic analysis of Cenozoic marine Ostracoda from the Atlantic, Caribbean, and Pacific indicates that climatic change modulates evolution by disrupting long-term stasis and catalyzing speciation during sustained, unidirectional climatic transitions and, conversely, by maintaining morphologic stasis during rapid, high-frequency climatic osculations. In the middle Pliocene, 4 to 3 million years ago, at least six new species of Puriana suddenly appeared as the Isthmus of Panama closed, changing oceanographic circulation and global climate. Since then morphologic stasis has characterized ancestral and descendant species during many glacial-interglacial cycles. The frequency and duration of climatic events have more impact on ostracode evolution than the magnitude of climatic changes.

  15. Climate-ecosystem change off southern California: Time-dependent seabird predator-prey numerical responses

    NASA Astrophysics Data System (ADS)

    Sydeman, William J.; Thompson, Sarah Ann; Santora, Jarrod A.; Koslow, J. Anthony; Goericke, Ralf; Ohman, Mark D.

    2015-02-01

    Climate change may increase both stratification and upwelling in marine ecosystems, but these processes may affect productivity in opposing or complementary ways. For the Southern California region of the California Current Ecosystem (CCE), we hypothesized that changes in stratification and upwelling have affected marine bird populations indirectly through changes in prey availability. To test this hypothesis, we derived trends and associations between stratification and upwelling, the relative abundance of potential prey including krill and forage fish, and seabirds based on the long-term, multi-disciplinary CalCOFI/CCE-LTER program. Over the period 1987 through 2011, spring and summer seabird density (all species combined) declined by ~2% per year, mostly in the northern sector of the study region. Krill showed variable trends with two species increasing and one deceasing, resulting in community reorganization. Nearshore forage fish, dominated by northern anchovy (Engraulis mordax) as well as offshore mesopelagic species, show declines in relative abundance over this period. The unidirectional decline in springtime seabird density is largely explained by declining nearshore fish abundance in the previous season (winter). Interannual variability in seabird density, especially in the 2000s, is explained by variability in krill abundance. Changes in the numerical responses of seabirds to prey abundance correspond to a putative ecosystem shift in 1998-1999 and support aspects of optimal foraging (diet) theory. Predator-prey interactions and numerical responses clearly explain aspects of the upper trophic level patterns of change in the pelagic ecosystem off southern California.

  16. Assessing the trophic position and ecological role of squids in marine ecosystems by means of food-web models

    NASA Astrophysics Data System (ADS)

    Coll, Marta; Navarro, Joan; Olson, Robert J.; Christensen, Villy

    2013-10-01

    We synthesized available information from ecological models at local and regional scales to obtain a global picture of the trophic position and ecological role of squids in marine ecosystems. First, static food-web models were used to analyze basic ecological parameters and indicators of squids: biomass, production, consumption, trophic level, omnivory index, predation mortality diet, and the ecological role. In addition, we developed various dynamic temporal simulations using two food-web models that included squids in their parameterization, and we investigated potential impacts of fishing pressure and environmental conditions for squid populations and, consequently, for marine food webs. Our results showed that squids occupy a large range of trophic levels in marine food webs and show a large trophic width, reflecting the versatility in their feeding behaviors and dietary habits. Models illustrated that squids are abundant organisms in marine ecosystems, and have high growth and consumption rates, but these parameters are highly variable because squids are adapted to a large variety of environmental conditions. Results also show that squids can have a large trophic impact on other elements of the food web, and top-down control from squids to their prey can be high. In addition, some squid species are important prey of apical predators and may be keystone species in marine food webs. In fact, we found strong interrelationships between neritic squids and the populations of their prey and predators in coastal and shelf areas, while the role of squids in open ocean and upwelling ecosystems appeared more constrained to a bottom-up impact on their predators. Therefore, large removals of squids will likely have large-scale effects on marine ecosystems. In addition, simulations confirm that squids are able to benefit from a general increase in fishing pressure, mainly due to predation release, and quickly respond to changes triggered by the environment. Squids may thus

  17. Response of ocean ecosystems to climate warming

    NASA Astrophysics Data System (ADS)

    Sarmiento, J. L.; Slater, R.; Barber, R.; Bopp, L.; Doney, S. C.; Hirst, A. C.; Kleypas, J.; Matear, R.; Mikolajewicz, U.; Monfray, P.; Soldatov, V.; Spall, S. A.; Stouffer, R.

    2004-09-01

    We examine six different coupled climate model simulations to determine the ocean biological response to climate warming between the beginning of the industrial revolution and 2050. We use vertical velocity, maximum winter mixed layer depth, and sea ice cover to define six biomes. Climate warming leads to a contraction of the highly productive marginal sea ice biome by 42% in the Northern Hemisphere and 17% in the Southern Hemisphere, and leads to an expansion of the low productivity permanently stratified subtropical gyre biome by 4.0% in the Northern Hemisphere and 9.4% in the Southern Hemisphere. In between these, the subpolar gyre biome expands by 16% in the Northern Hemisphere and 7% in the Southern Hemisphere, and the seasonally stratified subtropical gyre contracts by 11% in both hemispheres. The low-latitude (mostly coastal) upwelling biome area changes only modestly. Vertical stratification increases, which would be expected to decrease nutrient supply everywhere, but increase the growing season length in high latitudes. We use satellite ocean color and climatological observations to develop an empirical model for predicting chlorophyll from the physical properties of the global warming simulations. Four features stand out in the response to global warming: (1) a drop in chlorophyll in the North Pacific due primarily to retreat of the marginal sea ice biome, (2) a tendency toward an increase in chlorophyll in the North Atlantic due to a complex combination of factors, (3) an increase in chlorophyll in the Southern Ocean due primarily to the retreat of and changes at the northern boundary of the marginal sea ice zone, and (4) a tendency toward a decrease in chlorophyll adjacent to the Antarctic continent due primarily to freshening within the marginal sea ice zone. We use three different primary production algorithms to estimate the response of primary production to climate warming based on our estimated chlorophyll concentrations. The three algorithms give

  18. Oceanic periglacial in the evolution of the Arctic marine ecosystem

    SciTech Connect

    Matishov, G.G.

    1996-12-31

    A study of the Arctic marine and land environment and biota is connected with the analysis of the global climatic changes and the general history of Arctic and subarctic ecological systems. Ancient glaciation not only influenced the geomorphology of landscapes, physical and chemical properties of the ocean and its seas, but also caused the global change of the morphoclimatic zonality in the ocean as a whole. Submarine and subaqual hydrological, geomorphological and biological processes on the shelves of polar and temperate latitudes had intensified especially during the melting of continental glaciers. The study of the periglacial problem consists, as a whole, in the research of the geological and biological phenomena which take place in the pelagial and the benthal outside the ice sheets and are connected with them by causal, spatial and temporal relations.

  19. Climate, carbon cycling, and deep-ocean ecosystems

    PubMed Central

    Smith, K. L.; Ruhl, H. A.; Bett, B. J.; Billett, D. S. M.; Lampitt, R. S.; Kaufmann, R. S.

    2009-01-01

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy ≈60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate. PMID:19901326

  20. Sensitivity of global terrestrial ecosystems to climate variability.

    PubMed

    Seddon, Alistair W R; Macias-Fauria, Marc; Long, Peter R; Benz, David; Willis, Kathy J

    2016-03-10

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  1. Climate, carbon cycling, and deep-ocean ecosystems.

    PubMed

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  2. Temperature-dependent remineralization in a warming ocean increases surface pCO2 through changes in marine ecosystem composition

    NASA Astrophysics Data System (ADS)

    Segschneider, Joachim; Bendtsen, Jørgen

    2014-05-01

    Temperature-dependent remineralization of organic matter is, in general, not included in marine biogeochemistry models currently used for Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections. Associated feedbacks with climate and the carbon cycle have therefore not been quantified. In this study we aim at investigating how temperature-dependent remineralization rates (Q10 = 2) in a warming ocean impact on the marine carbon cycle, and if this may weaken the oceanic sink for anthropogenic CO2. We perturb an Earth system model used for CMIP5 with temperature-dependent remineralization rates of organic matter using representative concentration pathway (RCP)8.5-derived oceanic temperature anomalies for 2100. The result is a modest change of organic carbon export but more important derived effects associated with feedback processes between changed nutrient concentrations and ecosystem structure. As more nutrients are recycled in the euphotic layer, increased primary production causes a depletion of silicate in the surface layer because opal is exported to depth more efficiently than particulate organic carbon. Shifts in the ecosystem occur as diatoms find less favorable conditions. Export production of calcite shells increases causing a decrease in alkalinity and higher surface pCO2. With regard to future climate projections, the results indicate a reduction of oceanic uptake of anthropogenic CO2 of about 0.2 PgC yr-1 towards the end of the 21st century. This is in addition to reductions caused by already identified climate-carbon cycle feedbacks. Similar shifts in the ecosystem as identified here, but driven by external forcing, have been proposed to drive glacial/interglacial changes in atmospheric pCO2. We propose a similar positive feedback between climate perturbations and the global carbon cycle but driven solely by internal marine biogeochemical processes.

  3. Predicting global microbial community structure and function from global climate- ecosystem models

    NASA Astrophysics Data System (ADS)

    Gilbert, J. A.; Larsen, P.; Mickelson, S. A.; Drewniak, B. A.; Jacob, R. L.

    2012-12-01

    Microbial ecology deals with the role of microbes in biogeochemical cycling and the interaction dynamics within the microbial biosphere. It is axiomatic that microbes strongly influence the cycling of carbon and nitrogen in terrestrial ecosystems. However, there has been little progress in understanding how microbes mediate these transformations and hence integration of microbial biodiversity and functional data into climate models has been limited. Here we present our current and ongoing work on the integration of microbial taxonomic and metabolic data in to global climate models, presenting the first total global map of microbial diversity and functional potential as it relates to climate change scenarios over the next 100 years. Utilizing existing tools developed to predict microbial assemblage structure (MAP) and to interpret metagenomic sequence data as metabolic turnover (PRMT) we demonstrate that output from the biogeochemistry components of climate models can be used to accurately predict these elements globally at one degree resolution including both marine and terrestrial sources. In addition we will explore ongoing efforts to capture the feedback mechanisms between changes in microbial metabolic turnover and variables in the climate model. These global resolution microbial models are relative, but highlight the potential for integrating microbial community structure, demonstrate that this improves predictions of actual CO2 fluxes, and can be used to focus quantitative efforts on particular metabolic pathways in specific ecosystems across the globe.

  4. Environmental controls on marine ecosystems during the early Toarcian extinction event

    NASA Astrophysics Data System (ADS)

    Danise, Silvia; Twitchett, Richard J.

    2015-04-01

    The fossil record has the potential to provide valuable insights into species response to past climate change if paleontological data are combined with appropriate proxies of environmental change. In the early Toarcian (Early Jurassic, ˜183Ma ago) rapid warming coincided with a main perturbation in the carbon cycle, seal level rise, widespread deposition of organic-rich, black shales under anoxic conditions, increased weathering rates and a biotic crisis in the marine realm, with the extinction of approximately 5% of families and 26% of genera. Because of this complex suite of inter-linked environmental and oceanographic changes, a key challenge is to determine which of these were most influential in controlling specific aspects of extinction and ecological collapse. In this study we combine high resolution palaeontological and palaeoenvironmental data from the coastal sections of the Whitby Mudstone Formation in North Yorkshire, UK, to reconstruct how climate changes controlled the structure of benthic and nektonic communities through the event, over a time period of ˜1.7 Ma. We show that benthic and nektonic ecosystems became decoupled and were driven by different environmental variables. Although rapid warming has been invoked as the main trigger of this event, the palaeotemperature proxy was a poor predictor of marine community dynamics, and abiotic factors indirectly linked to temperature, such as change in seawater dissolved oxygen concentration and nutrient inputs, were more important.

  5. High latitude changes in ice dynamics and their impact on polar marine ecosystems.

    PubMed

    Moline, Mark A; Karnovsky, Nina J; Brown, Zachary; Divoky, George J; Frazer, Thomas K; Jacoby, Charles A; Torres, Joseph J; Fraser, William R

    2008-01-01

    Polar regions have experienced significant warming in recent decades. Warming has been most pronounced across the Arctic Ocean Basin and along the Antarctic Peninsula, with significant decreases in the extent and seasonal duration of sea ice. Rapid retreat of glaciers and disintegration of ice sheets have also been documented. The rate of warming is increasing and is predicted to continue well into the current century, with continued impacts on ice dynamics. Climate-mediated changes in ice dynamics are a concern as ice serves as primary habitat for marine organisms central to the food webs of these regions. Changes in the timing and extent of sea ice impose temporal asynchronies and spatial separations between energy requirements and food availability for many higher trophic levels. These mismatches lead to decreased reproductive success, lower abundances, and changes in distribution. In addition to these direct impacts of ice loss, climate-induced changes also facilitate indirect effects through changes in hydrography, which include introduction of species from lower latitudes and altered assemblages of primary producers. Here, we review recent changes and trends in ice dynamics and the responses of marine ecosystems. Specifically, we provide examples of ice-dependent organisms and associated species from the Arctic and Antarctic to illustrate the impacts of the temporal and spatial changes in ice dynamics.

  6. Multi-level trophic cascades in a heavily exploited open marine ecosystem.

    PubMed

    Casini, Michele; Lövgren, Johan; Hjelm, Joakim; Cardinale, Massimiliano; Molinero, Juan-Carlos; Kornilovs, Georgs

    2008-08-07

    Anthropogenic disturbances intertwined with climatic changes can have a large impact on the upper trophic levels of marine ecosystems, which may cascade down the food web. So far it has been difficult to demonstrate multi-level trophic cascades in pelagic marine environments. Using field data collected during a 33-year period, we show for the first time a four-level community-wide trophic cascade in the open Baltic Sea. The dramatic reduction of the cod (Gadus morhua) population directly affected its main prey, the zooplanktivorous sprat (Sprattus sprattus), and indirectly the summer biomass of zooplankton and phytoplankton (top-down processes). Bottom-up processes and climate-hydrological forces had a weaker influence on sprat and zooplankton, whereas phytoplankton variation was explained solely by top-down mechanisms. Our results suggest that in order to dampen the occasionally harmful algal blooms of the Baltic, effort should be addressed not only to control anthropogenic nutrient inputs but also to preserve structure and functioning of higher trophic levels.

  7. [Values of marine ecosystem services in Sanggou Bay].

    PubMed

    Zhang, Zhao-hui; Lü, Ji-bin; Ye, Shu-feng; Zhu, Ming-yuan

    2007-11-01

    A valuation study was conducted in Sanggou Bay, a typical and intensive coastal aquaculture area in China Yellow Sea. The results showed that the total value of ecosystem services (VES) in Sanggou Bay was 6.07 x 10(8) Yen in 2003, with an average unit VES being 4.24 x 10(6) Yen x km(-2). Within the total VES, the provision services, regulation services, and culture services accounted for 51.29%, 17.34%, and 31.37%, respectively. Among the eight primary and secondary services valuated in Sanggou Bay, food provision services held the highest value (50.45%), followed by tourism and entertainment services (29.89%) and climate regulation services (9.18%). Harmful organism and disease control services have the lowest value (0.0017%). The aquaculture activities had greater contributions to the local social economy, environmental regulation, and social culture. Aquaculture activities, especially macro-algae farming, are of significance in maintaining and enhancing the ecosystem services.

  8. The role of a dominant predator in shaping biodiversity over space and time in a marine ecosystem.

    PubMed

    Ellingsen, Kari E; Anderson, Marti J; Shackell, Nancy L; Tveraa, Torkild; Yoccoz, Nigel G; Frank, Kenneth T

    2015-09-01

    1. Exploitation of living marine resources has resulted in major changes to populations of targeted species and functional groups of large-bodied species in the ocean. However, the effects of overfishing and collapse of large top predators on the broad-scale biodiversity of oceanic ecosystems remain largely unexplored. 2. Populations of the Atlantic cod (Gadus morhua) were overfished and several collapsed in the early 1990s across Atlantic Canada, providing a unique opportunity to study potential ecosystem-level effects of the reduction of a dominant predator on fish biodiversity, and to identify how such effects might interact with other environmental factors, such as changes in climate, over time. 3. We combined causal modelling with model selection and multimodel inference to analyse 41 years of fishery-independent survey data (1970-2010) and quantify ecosystem-level effects of overfishing and climate variation on the biodiversity of fishes across a broad area (172 000 km(2) ) of the Scotian Shelf. 4. We found that alpha and beta diversity increased with decreases in cod occurrence; fish communities were less homogeneous and more variable in systems where cod no longer dominated. These effects were most pronounced in the colder north-eastern parts of the Scotian Shelf. 5. Our results provide strong evidence that intensive harvesting (and collapse) of marine apex predators can have large impacts on biodiversity, with far-reaching consequences for ecological stability across an entire ecosystem.

  9. Impacts of fishing low-trophic level species on marine ecosystems.

    PubMed

    Smith, Anthony D M; Brown, Christopher J; Bulman, Catherine M; Fulton, Elizabeth A; Johnson, Penny; Kaplan, Isaac C; Lozano-Montes, Hector; Mackinson, Steven; Marzloff, Martin; Shannon, Lynne J; Shin, Yunne-Jai; Tam, Jorge

    2011-08-26

    Low-trophic level species account for more than 30% of global fisheries production and contribute substantially to global food security. We used a range of ecosystem models to explore the effects of fishing low-trophic level species on marine ecosystems, including marine mammals and seabirds, and on other commercially important species. In five well-studied ecosystems, we found that fishing these species at conventional maximum sustainable yield (MSY) levels can have large impacts on other parts of the ecosystem, particularly when they constitute a high proportion of the biomass in the ecosystem or are highly connected in the food web. Halving exploitation rates would result in much lower impacts on marine ecosystems while still achieving 80% of MSY.

  10. CLANIMAE: Climatic and Anthropogenic Impacts on African Ecosystems

    NASA Astrophysics Data System (ADS)

    Verschuren, D.; André, L.; Mahy, G.; Cocquyt, C.; Plisnier, P.-D.; Gelorini, V.; Rumes, B.; Lebrun, J.; Bock, L.; Marchant, R.

    2009-04-01

    Global studies of historical land use focusing on the large-scale landscape change that can potentially affect global climate (via effects on surface albedo, aerosols, and the carbon cycle) have concluded that the impact of pre-colonial East African cultures on regional ecosystems was limited, due to very low mean population density. This contrasts with the paradigm in East African archaeology and paleoecology that the onset of anthropogenic deforestation started at least 2500 years ago, following the introduction of iron metallurgy by Bantu immigrants. This conflict highlights the present lack of real data on historical climate-environment-human interactions in East Africa, which are eminently relevant to sustainable natural resource management and biodiversity conservation in a future of continued population growth and global climate change. CLANIMAE responds to the urgent need of a correct long-term perspective to today's climate-environment-human interactions in East Africa, by reconstructing simultaneously the histories of past climate change and of vegetation and water-quality changes over the last 2500 years, through multi-disciplinary analysis of dated lake-sediment records. The climate reconstructions integrate information on biological, geochemical and sedimentological indicators of past changes in the water balance of the study lakes, which cover the climatological gradient from (sub-)humid western Uganda to semi-arid eastern Kenya. Reconstruction of past terrestrial vegetation dynamics is based on analyses of fossil plant pollen and phytoliths, plus the fossil spores of fungi associated with the excrements of large domestic animals as indicators of lake use by pastoralists. The evolution of water quality through time is reconstructed using silicon isotopes in diatom algae as proxy indicator for past phytoplankton productivity, and paleoecological analyses of fossil diatoms and aquatic macrophytes, following calibration of diatom and macrophyte species

  11. A Decade in Climate Changes and Marine Fisheries: Assessing the Catchment Volume in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Kamal, A. H. M.

    2016-12-01

    Global climate change variations over the past 30 years have produced numerous impacts in the abundance and production performance of marine fish and fisheries worldwide. The consequences in terms of flooding of low-lying estuarine habitats due to over rainfall, fluctuation of temperature, dilution of water parameters, devastation of feeding and breeding habitats, salinity fluctuations and acidification of waters, high siltation in coastal area, changes in the sea water table and breeding triggers have raised serious concerns for the well-being of marine fisheries and their production. This study shows that the overall total catchment of marine fisheries was decreased 38% in 2009 compared to 1998 while considers the fishing gears and vessels number used in Peninsular Malaysia. Registered vessels number was increased up to 92% in 2009 compared to 1998 which eventually increased the total catchment volume of marine fisheries. In 2009, the catching efforts and performance was far low as per vessels compared to 1998. Analysis of climate change variables shows that temperature was decreased as rainfall was increased within the year from 1998 to 2009. However, it is still early to conclude that whether climate change variables could have unpleasant impacts on fish production in the tropical seas like Malaysia. In spite of that it is predicted that the prolong exists of monsoon and increases of rainfall in this area resulting the stresses and sometimes interfering on the habitat, reproductive cycle and their related ecosystems in this coastal marine environment in tropics.

  12. Understanding coupled climatic, hydrological, and ecosystem responses to global climate change in the Colorado Rockies

    SciTech Connect

    Stohlgren, T.J.; Baron, J. )

    1993-06-01

    A long-term research program to assess the potential effect of global climate change on the Front Range of the Colorado Rockies, including Rocky Mountain National Park is underway. Specifically, three integrated studies are designed to: (1) project future climate change for the Colorado Rockies using a mesoscale atmospheric model to downscale general circulation model results; (2) develop an understanding of the abiotic and biotic controls on forest distribution and productivity as a basis for assessing potential vegetation change for a range of projected climate scenarios; and (3) evaluate potential responses of hydrologic and aquatic ecosystem processes to climate change at watershed, drainage basin and regional scales. The synthesis of these studies will, in addition, assess the interaction between regional vegetation distribution, mesoscale climate, and hydrology. Our goal is to develop a better understanding of regional climate and hydrologic patterns and of species-environment relationships to determine which species and ecosystem processes are most sensitive to rapid environmental change.

  13. Marine Mammals and Climate Change in the Pacific Arctic: Impacts & Resilience

    NASA Astrophysics Data System (ADS)

    Moore, S. E.

    2014-12-01

    Extreme reductions in Arctic sea ice extent and thickness have become a hallmark of climate change, but impacts to the marine ecosystem are poorly understood. As top predators, marine mammals must adapt to biological responses to physical forcing and thereby become sentinels to ecosystem variability and reorganization. Recent sea ice retreats have influenced the ecology of marine mammals in the Pacific Arctic sector. Walruses now often haul out by the thousands along the NW Alaska coast in late summer, and reports of harbor porpoise, humpback, fin and minke whales in the Chukchi Sea demonstrate that these temperate species routinely occur there. In 2010, satellite tagged bowhead whales from Atlantic and Pacific populations met in the Northwest Passage, an overlap thought precluded by sea ice since the Holocene. To forage effectively, baleen whales must target dense patches of zooplankton and small fishes. In the Pacific Arctic, bowhead and gray whales appear to be responding to enhanced prey availability delivered both by new production and advection pathways. Two programs, the Distributed Biological Observatory (DBO) and the Synthesis of Arctic Research (SOAR), include tracking of marine mammal and prey species' responses to ecosystem shifts associated with sea ice loss. Both programs provide an integrated-ecosystem baseline in support of the development of a web-based Marine Mammal Health Map, envisioned as a component of the U.S. Integrated Ocean Observing System (IOOS). An overarching goal is to identify ecological patterns for marine mammals in the 'new' Arctic, as a foundation for integrative research, local response and adaptive management.

  14. Ecosystem recovery after climatic extremes enhanced by genotypic diversity

    PubMed Central

    Reusch, Thorsten B. H.; Ehlers, Anneli; Hämmerli, August; Worm, Boris

    2005-01-01

    Contemporary climate change is characterized both by increasing mean temperature and increasing climate variability such as heat waves, storms, and floods. How populations and communities cope with such climatic extremes is a question central to contemporary ecology and biodiversity conservation. Previous work has shown that species diversity can affect ecosystem functioning and resilience. Here, we show that genotypic diversity can replace the role of species diversity in a species-poor coastal ecosystem, and it may buffer against extreme climatic events. In a manipulative field experiment, increasing the genotypic diversity of the cosmopolitan seagrass Zostera marina enhanced biomass production, plant density, and faunal abundance, despite near-lethal water temperatures due to extreme warming across Europe. Net biodiversity effects were explained by genotypic complementarity rather than by selection of particularly robust genotypes. Positive effects on invertebrate fauna suggest that genetic diversity has second-order effects reaching higher trophic levels. Our results highlight the importance of maintaining genetic as well as species diversity to enhance ecosystem resilience in a world of increasing uncertainty. PMID:15710890

  15. Tropical rainforest response to marine sky brightening climate engineering

    NASA Astrophysics Data System (ADS)

    Muri, Helene; Niemeier, Ulrike; Kristjánsson, Jón Egill

    2015-04-01

    Tropical forests represent a major atmospheric carbon dioxide sink. Here the gross primary productivity (GPP) response of tropical rainforests to climate engineering via marine sky brightening under a future scenario is investigated in three Earth system models. The model response is diverse, and in two of the three models, the tropical GPP shows a decrease from the marine sky brightening climate engineering. Partial correlation analysis indicates precipitation to be important in one of those models, while precipitation and temperature are limiting factors in the other. One model experiences a reversal of its Amazon dieback under marine sky brightening. There, the strongest partial correlation of GPP is to temperature and incoming solar radiation at the surface. Carbon fertilization provides a higher future tropical rainforest GPP overall, both with and without climate engineering. Salt damage to plants and soils could be an important aspect of marine sky brightening.

  16. Uncovering the volatile nature of tropical coastal marine ecosystems in a changing world.

    PubMed

    Exton, Dan A; McGenity, Terry J; Steinke, Michael; Smith, David J; Suggett, David J

    2015-04-01

    Biogenic volatile organic compounds (BVOCs), in particular dimethyl sulphide (DMS) and isoprene, have fundamental ecological, physiological and climatic roles. Our current understanding of these roles is almost exclusively established from terrestrial or oceanic environments but signifies a potentially major, but largely unknown, role for BVOCs in tropical coastal marine ecosystems. The tropical coast is a transition zone between the land and ocean, characterized by highly productive and biodiverse coral reefs, seagrass beds and mangroves, which house primary producers that are amongst the greatest emitters of BVOCs on the planet. Here, we synthesize our existing understanding of BVOC emissions to produce a novel conceptual framework of the tropical marine coast as a continuum from DMS-dominated reef producers to isoprene-dominated mangroves. We use existing and previously unpublished data to consider how current environmental conditions shape BVOC production across the tropical coastal continuum, and in turn how BVOCs can regulate environmental stress tolerance or species interactions via infochemical networks. We use this as a framework to discuss how existing predictions of future tropical coastal BVOC emissions, and the roles they play, are effectively restricted to present day 'baseline' trends of BVOC production across species and environmental conditions; as such, there remains a critical need to focus research efforts on BVOC responses to rapidly accelerating anthropogenic impacts at local and regional scales. We highlight the complete lack of current knowledge required to understand the future ecological functioning of these important systems, and to predict whether feedback mechanisms are likely to regulate or exacerbate current climate change scenarios through environmentally and ecologically mediated changes to BVOC budgets at the ecosystem level. © 2014 John Wiley & Sons Ltd.

  17. Marine Organic Aerosols and Their Implication to Climate

    NASA Astrophysics Data System (ADS)

    Gannt, Brett Daniel

    Despite the fact that marine organic aerosols have been hypothesized to affect climate through their impact on cloud microphysical properties, emission parameterizations have only recently been available and have not undergone extensive model evaluation. In a literature review of the chemical and physical characteristics of marine organic aerosols, recent trends indicate that these aerosols are externally-mixed with sea-salt and can influence the size distribution towards larger and more numerous particles. Simulations of the emission of secondary and primary marine organic aerosols are performed using the Community Multiscale Air Quality (CMAQ) version 4.7 model, with primary organic aerosols (POA) having a much larger effect on surface aerosol mass concentrations. To develop an improved marine primary organic aerosol emission parameterization, observations of organic mass fraction of sea spray aerosol (OMSSA), chlorophyll-a concentration ([Chl-a]), and 10 meter wind speed (U10) at two coastal sites are used to multivariable size-resolved parameterization that has global emissions of 2.8 to 5.6 Tg C yr-1 whose seasonality is more consistent with observations. These emissions, as well as several previously published marine POA emission parameterizations, are evaluated within the GEOS-Chem modeling framework. From this evaluation, marine POA emissions directly related to [Chl-a] best predicted the seasonality of surface concentrations while no parameterization performed well predicting episodic events. The climate impact of marine organic aerosols is determined by implementation of their emissions into the Community Atmosphere Model version 5 (CAM5) with aerosol microphysics. The combination of marine secondary organic aerosols, methane sulfonate, and primary organic aerosol contribute up to 400 ng m -3 in annual average submicron organic aerosol mass concentration. Compared to the simulations without marine organic aerosols, the simulations with externally

  18. Arctic Ecosystem Integrated Survey (Arctic Eis): Marine ecosystem dynamics in the rapidly changing Pacific Arctic Gateway

    NASA Astrophysics Data System (ADS)

    Mueter, Franz J.; Weems, Jared; Farley, Edward V.; Sigler, Michael F.

    2017-01-01

    Arctic Marine Ecosystems are undergoing rapid changes associated with ice loss and surface warming resulting from human activities (IPCC, 2013). The most dramatic changes include an earlier ice retreat and a longer ice-free season, particularly on Arctic inflow shelves such as the Barents Sea in the Atlantic Arctic and the northern Bering Sea and Chukchi Sea in the Pacific Arctic, the two major gateways into the Arctic (Danielson et al., 2016; Frey et al., 2015; Serreze et al., 2007; Wood et al., 2015). The retreat of Arctic sea ice has opened access to the Arctic marine environment and its resources, particularly during summer, and among other changes has brought with it increased research activities. For the Pacific Arctic region, these activities have led to several recent compendiums examining physical, biogeochemical, and biological patterns and trends in this rapidly changing environment (Arrigo, 2015, 2016; Arrigo et al., 2014; Bluhm et al., 2010; Dunton et al., 2014; Grebmeier and Maslowski, 2014; Hopcroft and Day, 2013; Moore and Stabeno, 2015).

  19. Shallow marine ecosystem feedback to the Permian/Triassic mass extinction

    NASA Astrophysics Data System (ADS)

    Wang, Yongbiao; Meng, Zheng; Liao, Wei; Weng, Zeting; Yang, Hao

    2011-03-01

    Late Permian reefs developed widely on shallow marine carbonate platforms in South China but disappeared far below the main mass extinction level of the latest Permian. The collapse of reef ecosystem may be related to the enhanced volcanism at the end of Late Permian. Notably, some colony corals and reef-building sponges were found to occur near the mass extinction boundary, inferring the eclipse of reef ecosystem is ahead of the disappearance of reef-building organisms, and the triggers would be present long before the main mass extinction. As the primary producers, the calcareous algae are rich in platform limestones of Late Permian and played a very important role in maintaining the shallow benthic ecosystems. The calcareous algae were found to disappear synchronously with the great reduction of foraminifers, which were ecologically associated with these algae. The extinction of Late Permian calcareous algae greatly reduced the biodiversity of primary producers in the shallow marine environment and destroyed in part the structure and the base of the shallow marine ecosystems, which in turn cause the extinction of ecologically associated metazoan. Microbialites developed on carbonate platforms immediately after the end-Permian mass extinction, representing a simple and unique microbial ecosystem. Widespread occurrence of microbialites symbolized the deterioration of marine environmental conditions and the dramatic revolution of marine ecosystems. As the new primary producers instead of the extinguished calcareous algae, cyanobacteria in the microbialites were an important base of this peculiar ecosystem and contributed greatly to the survival of the remnant faunas after the mass extinction. Widespread occurrence of microbialites in shallow marine environment is suggested to be related to the elevated level of volcanism-induced greenhouse gases and enhanced evaporation and hypersaline condition in addition to the decrease of metazoan grazing pressure. The change

  20. Community and ecosystem responses to recent climate change

    PubMed Central

    Walther, Gian-Reto

    2010-01-01

    There is ample evidence for ecological responses to recent climate change. Most studies to date have concentrated on the effects of climate change on individuals and species, with particular emphasis on the effects on phenology and physiology of organisms as well as changes in the distribution and range shifts of species. However, responses by individual species to climate change are not isolated; they are connected through interactions with others at the same or adjacent trophic levels. Also from this more complex perspective, recent case studies have emphasized evidence on the effects of climate change on biotic interactions and ecosystem services. This review highlights the ‘knowns’ but also ‘unknowns’ resulting from recent climate impact studies and reveals limitations of (linear) extrapolations from recent climate-induced responses of species to expected trends and magnitudes of future climate change. Hence, there is need not only to continue to focus on the impacts of climate change on the actors in ecological networks but also and more intensively to focus on the linkages between them, and to acknowledge that biotic interactions and feedback processes lead to highly complex, nonlinear and sometimes abrupt responses. PMID:20513710

  1. Crab regulation of cross-ecosystem resource transfer by marine foraging fire ants.

    PubMed

    Garcia, Erica A; Bertness, Mark D; Alberti, Juan; Silliman, Brian R

    2011-08-01

    Permeability of boundaries in biological systems is regulated by biotic and/or abiotic factors. Despite this knowledge, the role of biotic factors in regulating resource transfer across ecosystem boundaries has received little study. Additionally, little is known about how cross-ecosystem resource transfer affects source populations. We used experiments, observations and stable isotopes, to evaluate: (1) the proportion of intertidal-foraging black fire ant (Solenopsis richteri) diet derived from marine sources, (2) how black fire ant cross-ecosystem resource transfer is altered by the dominant bioengineer in the intertidal, a burrowing crab (Neohelice granulata), (3) the top-down impact of these terrestrial ants on a marine resource, and (4) the effect of marine resources on recipient black fire ants. We found that more than 85% of the black fire ant diet is derived from marine sources, the number of intertidal foraging ants doubles in the absence of crab burrows, and that ants cause a 50% reduction in intertidal polychaetes. Also, ant mound density is three times greater adjacent to marine systems. This study reveals that cross-ecosystem foraging terrestrial ants can clearly have strong impacts on marine resources. Furthermore, ecosystem engineers that modify and occupy habitat in these ecosystem boundaries can strongly regulate the degree of cross-ecosystem resource transfer and resultant top down impacts.

  2. Future Evolution of Marine Heat Waves in the Mediterranean: Coupled Regional Climate Projections

    NASA Astrophysics Data System (ADS)

    Darmaraki, Sofia; Somot, Samuel; Sevault, Florence; Nabat, Pierre; Cavicchia, Leone; Djurdjevic, Vladimir; Cabos, William; Sein, Dmitry

    2017-04-01

    FUTURE EVOLUTION OF MARINE HEAT WAVES IN THE MEDITERRANEAN : COUPLED REGIONAL CLIMATE PROJECTIONS The Mediterranean area is identified as a « Hot Spot » region, vulnerable to future climate change with potentially strong impacts over the sea. By 2100, climate models predict increased warming over the sea surface, with possible implications on the Mediterranean thermohaline and surface circulation,associated also with severe impacts on the ecosystems (e.g. fish habitat loss, species extinction and migration, invasive species). However, a robust assesment of the future evolution of the extreme marine temperatures remains still an open issue of primary importance, under the anthropogenic pressure. In this context, we study here the probability and characteristics of marine heat wave (MHW) occurrence in the Mediterranean Sea in future climate projections. To this end, we use an ensemble of fully coupled regional climate system models (RCSM) from the Med- CORDEX initiative. This multi-model approach includes a high-resolution representation of the atmospheric, land and ocean component, with a free air-sea interface.Specifically, dedicated simulations for the 20th and the 21st century are carried out with respect to the different IPCC-AR5 socioeconomic scenarios (1950-2100, RCP8.5, RCP4.5, RCP2.6). Model evaluation for the historical period is performed using satellite and in situ data. Then, the variety of factors that can cause the MHW (e.g. direct radiative forcing, ocean advection, stratification change) are examined to disentangle the dominant driving force. Finally, the spatial variability and temporal evolution of MHW are analyzed on an annual basis, along with additional integrated indicators, useful for marine ecosystems.

  3. Spatially variable effects of a marine pest on ecosystem function.

    PubMed

    Ross, D Jeff; Longmore, Andy R; Keough, Michael J

    2013-06-01

    The broad spectrum of anthropogenic pressures on many of the world's coastal bays and estuaries rarely act in isolation, yet few studies have directly addressed the interactive effects of multiple pressures. Port Phillip Bay in southeastern Australia is a semi-enclosed bay in which nutrient management is a major concern. In recent years it has been heavily invaded by marine pests. We manipulated the density of one such invader, the European fanworm Sabella spallanzanii, and showed that it causes changes in the composition of macrofauna in the surrounding sediments, provides habitat for epibiota (both fauna and flora) on Sabella tubes, and reduces the biomass of microphytobenthos on the surrounding sediments. Of greatest concern, however, was the indirect impact on nutrient cycling. We suggest that the impacts on nutrient cycling are largely due to the feeding of Sabella and the epifauna on its tubes, capturing organic N before it reaches the sediment, excreting it back up into the water column as NH4, thereby bypassing sedimentary processes such as denitrification. Most notably, the efficiency of denitrification, the key ecosystem process that permanently removes N from the system, fell by 37-53 % in the presence of Sabella. Importantly though, this study also demonstrated significant spatial variability in fauna, geochemistry and the magnitude of Sabella effects. Given that the effect of Sabella is also likely to vary in time and with changes in density, all of these sources of variability need to be considered when incorporating the effects of Sabella in nutrient management strategies.

  4. Persistence of chlorinated hydrocarbon contamination in a California marine ecosystem

    SciTech Connect

    Young, D.R.; Gossett, R.W.; Heesen, T.C.

    1989-01-01

    Despite major reductions in the dominant DDT and polychlorinated biphenyls (PCB) input off Los Angeles (California, U.S.A.) in the early 1970s, the levels of these pollutants decreased only slightly from 1972 to 1975 both in surficial bottom sediments and in a flatfish bioindicator (Dover sole, Microstomus pacificus) collected near the submarine outfall. Concentrations of these pollutants in the soft tissues of the mussel Mytilus californianus, collected intertidally well inshore of the highly contaminated bottom sediments, followed much more closely the decreases in the outfall discharges. These observations suggest that contaminated sediments on the seafloor were the principal (although not necessarily direct) cause of the relatively high and persistent concentrations of DDT and PCB residues in tissues. The study indicated that residues of the higher-molecular-weight chlorinated hydrocarbons, such as DDT and PCB, can be highly persistent once released to coastal marine ecosystems and that their accumulation in surficial bottom sediments is the most likely cause of this persistence observed in the biota of the discharge zone.

  5. Sensitivity of global terrestrial ecosystems to climate variability

    NASA Astrophysics Data System (ADS)

    Seddon, Alistair W. R.; Macias-Fauria, Marc; Long, Peter R.; Benz, David; Willis, Kathy J.

    2016-03-01

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems—be they natural or with a strong anthropogenic signature—to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  6. Meeting report: Methylmercury in marine ecosystems--from sources to seafood consumers.

    PubMed

    Chen, Celia Y; Serrell, Nancy; Evers, David C; Fleishman, Bethany J; Lambert, Kathleen F; Weiss, Jeri; Mason, Robert P; Bank, Michael S

    2008-12-01

    Mercury and other contaminants in coastal and open-ocean ecosystems are an issue of great concern globally and in the United States, where consumption of marine fish and shellfish is a major route of human exposure to methylmercury (MeHg). A recent National Institute of Environmental Health Sciences-Superfund Basic Research Program workshop titled "Fate and Bioavailability of Mercury in Aquatic Ecosystems and Effects on Human Exposure," convened by the Dartmouth Toxic Metals Research Program on 15-16 November 2006 in Durham, New Hampshire, brought together human health experts, marine scientists, and ecotoxicologists to encourage cross-disciplinary discussion between ecosystem and human health scientists and to articulate research and monitoring priorities to better understand how marine food webs have become contaminated with MeHg. Although human health effects of Hg contamination were a major theme, the workshop also explored effects on marine biota. The workgroup focused on three major topics: a) the biogeochemical cycling of Hg in marine ecosystems, b) the trophic transfer and bioaccumulation of MeHg in marine food webs, and c) human exposure to Hg from marine fish and shellfish consumption. The group concluded that current understanding of Hg in marine ecosystems across a range of habitats, chemical conditions, and ocean basins is severely data limited. An integrated research and monitoring program is needed to link the processes and mechanisms of MeHg production, bioaccumulation, and transfer with MeHg exposure in humans.

  7. U.S. 2013 National Climate Assessment of Oceans and Marine Resources

    NASA Astrophysics Data System (ADS)

    Doney, S. C.; Rosenberg, A.

    2012-12-01

    We will discuss the key findings from the Oceans and Marine Resources chapter of the U.S. 2013 National Climate Assessment. As a nation, we depend on the ocean for seafood, recreation and tourism, cultural heritage, transportation of goods, and increasingly, energy and other critical resources. The U.S. ocean Exclusive Economic Zone extends 200 nautical miles seaward from the coast, spanning an area about 1.7 times the land area of the continental United States and encompassing waters along the U.S. east, west and Gulf coasts, around Alaska and Hawaii, and including the U.S. territories in the Pacific and Caribbean. This vast region is host to a rich diversity of marine plants and animals and a wide range of ecosystems from tropical coral reefs to sea-ice covered, polar waters in the Arctic. We will highlight the current state of knowledge on changing ocean climate conditions, such as warming, sea-ice retreat and ocean acidification, and how these may be impacting valuable marine ecosystems and the array of resources and services we derive from the sea now and into the future. We will also touch on the interaction of climate change impacts with other human factors including pollution and over-fishing.

  8. Potential climate change impacts on temperate forest ecosystem processes

    USGS Publications Warehouse

    Peters, Emily B.; Wythers, Kirk R.; Zhang, Shuxia; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Large changes in atmospheric CO2, temperature and precipitation are predicted by 2100, yet the long-term consequences for carbon, water, and nitrogen cycling in forests are poorly understood. We applied the PnET-CN ecosystem model to compare the long-term effects of changing climate and atmospheric CO2 on productivity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes forest types. We used two statistically downscaled climate projections, PCM B1 (warmer and wetter) and GFDL A1FI (hotter and drier), to represent two potential future climate and atmospheric CO2 scenarios. To separate the effects of climate and CO2, we ran PnET-CN including and excluding the CO2 routine. Our results suggest that, with rising CO2 and without changes in forest type, average regional productivity could increase from 67% to 142%, changes in evapotranspiration could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineralization could increase 10% to 12%. Ecosystem responses varied geographically and by forest type. Increased productivity was almost entirely driven by CO2 fertilization effects, rather than by temperature or precipitation (model runs holding CO2 constant showed stable or declining productivity). The relative importance of edaphic and climatic spatial drivers of productivity varied over time, suggesting that productivity in Great Lakes forests may switch from being temperature to water limited by the end of the century.

  9. Climate Change Altered Disturbance Regimes in High Elevation Pine Ecosystems

    NASA Astrophysics Data System (ADS)

    Logan, J. A.

    2004-12-01

    Insects in aggregate are the greatest cause of forest disturbance. Outbreaks of both native and exotic insects can be spectacular events in both their intensity and spatial extent. In the case of native species, forest ecosystems have co-evolved (or at least co-adapted) in ways that incorporate these disturbances into the normal cycle of forest maturation and renewal. The time frame of response to changing climate, however, is much shorter for insects (typically one year) than for their host forests (decades or longer). As a result, outbreaks of forest insects, particularly bark beetles, are occurring at unprecedented levels throughout western North America, resulting in the loss of biodiversity and potentially entire ecosystems. In this talk, I will describe one such ecosystem, the whitebark pine association at high elevations in the north-central Rocky Mountains of the United States. White bark pines are keystone species, which in consort with Clark's nutcracker, build entire ecosystems at high elevations. These ecosystems provide valuable ecological services, including the distribution and abundance of water resources. I will briefly describe the keystone nature of whitebark pine and the historic role of mountain pine beetle disturbance in these ecosystems. The mountain pine beetle is the most important outbreak insect in forests of the western United States. Although capable of spectacular outbreak events, in historic climate regimes, outbreak populations were largely restricted to lower elevation pines; for example, lodgepole and ponderosa pines. The recent series of unusually warm years, however, has allowed this insect to expand its range into high elevation, whitebark pine ecosystems with devastating consequences. The aspects of mountain pine beetle thermal ecology that has allowed it to capitalize so effectively on a warming climate will be discussed. A model that incorporates critical thermal attributes of the mountain pine beetle's life cycle was

  10. Projected future climate change and Baltic Sea ecosystem management

    NASA Astrophysics Data System (ADS)

    Andersson, Agneta

    2015-04-01

    Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4oC warming and 50-80% decreasing ice cover by 2100. Precipitation may increase ~30% in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants. Salinity will decrease by about 2 units. Coupled physical-biogeochemical models indicate that in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favoured by AOM while phytoplankton may become hampered. More trophic levels in the food web will increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider effects of climate change on the ecosystem dynamics and functions, as well as effects of anthrophogenic nutrient and pollutant load. Monitoring should have a holistic approach and encompass both autotrophic (phytoplankton) and heterotrophic (e.g. bacterial) processes.

  11. Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation

    NASA Astrophysics Data System (ADS)

    Schmittner, Andreas

    2005-03-01

    Reorganizations of the Atlantic meridional overturning circulation were associated with large and abrupt climatic changes in the North Atlantic region during the last glacial period. Projections with climate models suggest that similar reorganizations may also occur in response to anthropogenic global warming. Here I use ensemble simulations with a coupled climate-ecosytem model of intermediate complexity to investigate the possible consequences of such disturbances to the marine ecosystem. In the simulations, a disruption of the Atlantic meridional overturning circulation leads to a collapse of the North Atlantic plankton stocks to less than half of their initial biomass, owing to rapid shoaling of winter mixed layers and their associated separation from the deep ocean nutrient reservoir. Globally integrated export production declines by more than 20per cent owing to reduced upwelling of nutrient-rich deep water and gradual depletion of upper ocean nutrient concentrations. These model results are consistent with the available high-resolution palaeorecord, and suggest that global ocean productivity is sensitive to changes in the Atlantic meridional overturning circulation.

  12. River diversion could change climate in delta ecosystems

    NASA Astrophysics Data System (ADS)

    When humans divert excessive amounts of water from their natural courses, ensuing impacts on regional and global climate may threaten the fragile ecosystems around the mouths of rivers. David Smith, a geographer at the National Center for Atmospheric Research in Boulder, Colo., is researching this problem by concentrating on river deltas, which are recognized for their fertile soils and abundance of water. As a result, river deltas are also sites of intense agricultural production and high population density.

  13. Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems: TABLE 1 

    DOE PAGES

    Flynn, James D.; Hirayama, Hisako; Sakai, Yasuyoshi; ...

    2016-01-21

    The genome sequences ofMethylobacter marinusA45,Methylobactersp. strain BBA5.1, andMethylomarinum vadiIT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems.

  14. A probabilistic process model for pelagic marine ecosystems informed by Bayesian inverse analysis

    EPA Science Inventory

    Marine ecosystems are complex systems with multiple pathways that produce feedback cycles, which may lead to unanticipated effects. Models abstract this complexity and allow us to predict, understand, and hypothesize. In ecological models, however, the paucity of empirical data...

  15. A probabilistic process model for pelagic marine ecosystems informed by Bayesian inverse analysis

    EPA Science Inventory

    Marine ecosystems are complex systems with multiple pathways that produce feedback cycles, which may lead to unanticipated effects. Models abstract this complexity and allow us to predict, understand, and hypothesize. In ecological models, however, the paucity of empirical data...

  16. Characterizing driver-response relationships in marine pelagic ecosystems for improved ocean management.

    PubMed

    Hunsicker, Mary E; Kappel, Carrie V; Selkoe, Kimberly A; Halpern, Benjamin S; Scarborough, Courtney; Mease, Lindley; Amrhein, Alisan

    2016-04-01

    Scientists and resource managers often use methods and tools that assume ecosystem components respond linearly to environmental drivers and human stressors. However, a growing body of literature demonstrates that many relationships are-non-linear, where small changes in a driver prompt a disproportionately large ecological response. We aim to provide a comprehensive assessment of the relationships between drivers and ecosystem components to identify where and when non-linearities are likely to occur. We focused our analyses on one of the best-studied marine systems, pelagic ecosystems, which allowed us to apply robust statistical techniques on a large pool of previously published studies. In this synthesis, we (1) conduct a wide literature review on single driver-response relationships in pelagic systems, (2) use statistical models to identify the degree of non-linearity in these relationships, and (3) assess whether general patterns exist in the strengths and shapes of non-linear relationships across drivers. Overall we found that non-linearities are common in pelagic ecosystems, comprising at least 52% of all driver-response relation- ships. This is likely an underestimate, as papers with higher quality data and analytical approaches reported non-linear relationships at a higher frequency (on average 11% more). Consequently, in the absence of evidence for a linear relationship, it is safer to assume a relationship is non-linear. Strong non-linearities can lead to greater ecological and socioeconomic consequences if they are unknown (and/or unanticipated), but if known they may provide clear thresholds to inform management targets. In pelagic systems, strongly non-linear relationships are often driven by climate and trophodynamic variables but are also associated with local stressors, such as overfishing and pollution, that can be more easily controlled by managers. Even when marine resource managers cannot influence ecosystem change, they can use information

  17. Dom Export from Coastal Temperate Bog Forest Watersheds to Marine Ecosystems: Improving Understanding of Watershed Processes and Terrestrial-Marine Linkages on the Central Coast of British Columbia

    NASA Astrophysics Data System (ADS)

    Oliver, A. A.; Giesbrecht, I.; Tank, S. E.; Hunt, B. P.; Lertzman, K. P.

    2014-12-01

    The coastal temperate bog forests of British Columbia, Canada, export high amounts of dissolved organic matter (DOM) relative to the global average. Little is known about the factors influencing the quantity and quality of DOM exported from these forests or the role of this terrestrially-derived DOM in near-shore marine ecosystems. The objectives of this study are to better understand patterns and controls of DOM being exported from bog forest watersheds and its potential role in near-shore marine ecosystems. In 2013, the Kwakshua Watershed Ecosystems Study at Hakai Beach Institute (Calvert Island, BC) began year-round routine collection and analysis of DOM, nutrients, and environmental variables (e.g. conductivity, pH, temperature, dissolved oxygen) of freshwater grab samples from the outlets of seven watersheds draining directly to the ocean, as well as near-shore marine samples adjacent to freshwater outflows. Dissolved organic carbon (DOC) varied across watersheds (mean= 11.45 mg L-1, sd± 4.22) and fluctuated synchronously with seasons and storm events. In general, higher DOC was associated with lower specific UV absorbance (SUVA254; mean= 4.59 L mg-1 m-1, sd± 0.55). The relationship between DOC and SUVA254 differed between watersheds, suggesting exports in DOM are regulated by individual watershed attributes (e.g. landscape classification, flow paths) as well as precipitation. We are using LiDAR and other remote sensing data to examine watershed controls on DOC export. At near-shore marine sites, coupled CTD (Conductivity Temperature Depth) and optical measures (e.g. spectral slopes, slope ratios (SR), EEMs), showed a clear freshwater DOM signature within the system following rainfall events. Ongoing work will explore the relationship between bog forest watershed attributes and DOM flux and composition, with implications for further studies on biogeochemical cycling, carbon budgets, marine food webs, and climate change.

  18. Changes in Marine Environments and Responses of Ecosystem Dynamics in the East Asian Pacific

    NASA Astrophysics Data System (ADS)

    Ogawa, Hiroshi; Saito, Hiroaki; Ju, Se-Jong

    2014-02-01

    At an international symposium on the marine systems of the Pacific region of East Asia, scientists concluded that changes in the ocean environment are having a significant effect on biogeochemical cycles and ecosystems and, consequently, on humans and the food supply. The meeting, the 6th China-Japan-Korea (CJK) Integrated Marine Biogeochemistry and Ecosystem Research symposium, was held in Japan at the University of Tokyo.

  19. Climate change on arctic environment, ecosystem services and society (CLICHE)

    NASA Astrophysics Data System (ADS)

    Weckström, J.; Korhola, A.; Väliranta, M.; Seppä, H.; Luoto, M.; Tuittila, E.-S.; Leppäranta, M.; Kahilainen, K.; Saarinen, J.; Heikkinen, H.

    2012-04-01

    The predicted climate warming has raised many questions and concerns about its impacts on the environment and society. As a respond to the need of holistic studies comprising both of these areas, The Academy of Finland launched The Finnish Research Programme on Climate Change (FICCA 2011-2014) in spring 2010 with the main aim to focus on the interaction between the environment and society. Ultimately 11 national consortium projects were funded (total budget 12 million EUR). Here we shortly present the main objectives of the largest consortium project "Climate change on arctic environment, ecosystem services and society" (CLICHE). The CLICHE consortium comprises eight interrelated work packages (treeline, diversity, peatlands, snow, lakes, fish, tourism, and traditional livelihoods), each led by a prominent research group and a team leader. The research consortium has three main overall objectives: 1) Investigate, map and model the past, present and future climate change-induced changes in central ecosystems of the European Arctic with unprecedented precision 2) Deepen our understanding of the basic principles of ecosystem and social resilience and dynamics; identify key taxa, structures or processes that clearly indicate impending or realised global change through their loss, occurrence or behaviour, using analogues from the past (e.g. Holocene Thermal Maximum, Medieval Warm Period), experiments, observations and models 3) Develop adaptation and mitigation strategies to minimize the adverse effects of climate change on local communities, traditional livelihoods, fisheries, and tourism industry, and promote sustainable development of local community structures and enhance the quality of life of local human populations. As the project has started only recently no final results are available yet. However, the fieldwork as well as the co-operation between the research teams has thus far been very successful. Thus, the expectations for the final outcome of the project

  20. Impact of climate change on marine pelagic phenology and trophic mismatch.

    PubMed

    Edwards, Martin; Richardson, Anthony J

    2004-08-19

    Phenology, the study of annually recurring life cycle events such as the timing of migrations and flowering, can provide particularly sensitive indicators of climate change. Changes in phenology may be important to ecosystem function because the level of response to climate change may vary across functional groups and multiple trophic levels. The decoupling of phenological relationships will have important ramifications for trophic interactions, altering food-web structures and leading to eventual ecosystem-level changes. Temperate marine environments may be particularly vulnerable to these changes because the recruitment success of higher trophic levels is highly dependent on synchronization with pulsed planktonic production. Using long-term data of 66 plankton taxa during the period from 1958 to 2002, we investigated whether climate warming signals are emergent across all trophic levels and functional groups within an ecological community. Here we show that not only is the marine pelagic community responding to climate changes, but also that the level of response differs throughout the community and the seasonal cycle, leading to a mismatch between trophic levels and functional groups.

  1. Archaeology Meets Marine Ecology: The Antiquity of Maritime Cultures and Human Impacts on Marine Fisheries and Ecosystems

    NASA Astrophysics Data System (ADS)

    Erlandson, Jon M.; Rick, Torben C.

    2010-01-01

    Interdisciplinary study of coastal archaeological sites provides a wealth of information on the ecology and evolution of ancient marine animal populations, the structure of past marine ecosystems, and the history of human impacts on coastal fisheries. In this paper, we review recent methodological developments in the archaeology and historical ecology of coastal regions around the world. Using two case studies, we examine (a) a deep history of anthropogenic effects on the marine ecosystems of California's Channel Islands through the past 12,000 years and (b) geographic variation in the effects of human fishing on Pacific Island peoples who spread through Oceania during the late Holocene. These case studies—the first focused on hunter-gatherers, the second on maritime horticulturalists—provide evidence for shifting baselines and timelines, documenting a much deeper anthropogenic influence on many coastal ecosystems and fisheries than considered by most ecologists, conservation biologists, and fisheries managers.

  2. Archaeology meets marine ecology: the antiquity of maritime cultures and human impacts on marine fisheries and ecosystems.

    PubMed

    Erlandson, Jon M; Rick, Torben C

    2010-01-01

    Interdisciplinary study of coastal archaeological sites provides a wealth of information on the ecology and evolution of ancient marine animal populations, the structure of past marine ecosystems, and the history of human impacts on coastal fisheries. In this paper, we review recent methodological developments in the archaeology and historical ecology of coastal regions around the world. Using two case studies, we examine (a) a deep history of anthropogenic effects on the marine ecosystems of California's Channel Islands through the past 12,000 years and (b) geographic variation in the effects of human fishing on Pacific Island peoples who spread through Oceania during the late Holocene. These case studies--the first focused on hunter-gatherers, the second on maritime horticulturalists-provide evidence for shifting baselines and timelines, documenting a much deeper anthropogenic influence on many coastal ecosystems and fisheries than considered by most ecologists, conservation biologists, and fisheries managers.

  3. GENIES/SimCLIM Tools to Support Climate Change Information and Marine Resource Management

    NASA Astrophysics Data System (ADS)

    Li, Y.; Urich, P.; Yin, C.; Kouwenhoven, P.; CLIMsystems Team

    2013-05-01

    Climate change will significantly impact the global environment, and the faster the change, the greater the risk of damage. The natural environment will be assaulted by increases in sea surface temperature and changes in the biogeochemical cycles of ocean ecosystems. Marine resource managers have begun to realize that the projected impacts of climate change in coastal and marine environments are full of uncertainties, creating enormous challenges when it comes to climate change response planning. CMIP5 GCMs produced a large amount of climate and ocean biogeochemical data for different climate change scenarios, which can provide indispensable information for marine resource planning and decision making. However, for end users, climate and ocean information needs to be processed to make it usable while applying robust scientific methods to make that processing acceptable. SimCLIM/GENIES software provides a comprehensive climate information, data management, and impact assessment platform. The software system consists of historical data and projections for atmospheric and oceanic variables, including air-temperature, precipitation, wind speed, sea surface temperature, ocean primary production, pH, pCO2, DIO, and DIC, with the potential for other data layers. These data are pre-processed using different downscaling and pattern scaling approaches, and then stored in a compact format with a very high compression ratio, which makes them more transferable. Users can carry out statistical and ensemble analyses with the software in order to better understand uncertainties. Within the software system, historical climate data, a climate change scenario generator, and impact assessment tools are all integrated into a single platform. They are policy-maker and end-user oriented and present climate information in a friendly and easily understandable manner with excellent spatial visualization tools. Moreover, the system provided and released an ArcGIS/marine add-in, which allows

  4. General features of the arctic relevant to climate change in freshwater ecosystems.

    PubMed

    Prowse, Terry D; Wrona, Frederick J; Reist, James D; Hobbie, John E; Lévesque, Lucie M J; Vincent, Warwick F

    2006-11-01

    Large variations exist in the size, abundance and biota of the two principal categories of freshwater ecosystems, lotic (flowing water; e.g., rivers, streams, deltas and estuaries) and lentic (standing water; lakes, ponds and wetlands) found across the circumpolar Arctic. Arctic climate, many components of which exhibit strong variations along latitudinal gradients, directly affects a range of physical, chemical and biological processes in these aquatic systems. Furthermore, arctic climate creates additional indirect ecological effects through the control of terrestrial hydrologic systems and processes, particularly those associated with cryospheric components such as permafrost, freshwater ice and snow accumulation/ablation. The ecological structure and function of arctic freshwater systems are also controlled by external processes and conditions, particularly those in the headwaters of the major arctic rivers and in the adjacent marine environment. The movement of physical, chemical and biotic components through the interlinked lentic and lotic freshwater systems are major determinants of arctic freshwater ecology.

  5. Combined terrestrial and marine biomarker records from an Icelandic fjord: insights into Holocene climate drivers and marine/ terrestrial responses

    NASA Astrophysics Data System (ADS)

    Moossen, H. M.; Seki, O.; Quillmann, U.; Andrews, J. T.; Bendle, J. A.

    2012-12-01

    Holocene climate change has affected human cultures throughout at least the last 4000 years (D'Andrea et al., 2011). Today, studying Holocene climate variability is important, both to constrain the influence of climate change on ancient cultures and to place contemporary climate change in a historic context. Organic geochemical biomarkers are an ideal tool to study how climatic changes have affected terrestrial and marine ecosystems, as a host of different biomarker based climate proxies have emerged over recent years. Applying the available biomarker proxies on sediment cores from fjordic environments facilitates the study of how climate has affected terrestrial and marine ecosystems, and how these ecosystems have interacted. Ìsafjardardjúp fjord in Northwest Iceland is an ideal location to study North Atlantic Holocene climate change because the area is very sensitive to changes in the oceanic and atmospheric current systems (Hurrell, 1995; Quillmann et al., 2010). In this study we present high resolution (1 sample/30 calibrated years) terrestrial and marine biomarker records from a 38 m sediment core from Ìsafjardardjúp fjord covering the Holocene. We reconstruct sea surface temperature variations using the alkenone derived UK'37 proxy. Air temperature changes are reconstructed using the GDGT derived MBT/CBT palaeothermometer. We use the average chain length (ACL) variability of n-alkanes derived from terrestrial higher plant leaf waxes to reconstruct changing precipitation regimes. The relationship between ACL and precipitation is confirmed by comparing it with the δD signature of the C29 n-alkane and soil pH changes inferred by the CBT proxy. The combined sea surface and air temperature and precipitation records indicate that different climate changing drivers were dominant at different stages of the Holocene. Sea surface temperatures were strongly influenced by the melting of the remaining glaciers from the last glacial maximum throughout the early

  6. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    SciTech Connect

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the in-teractions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The actual formation, abundance, composition, and effects of biological aerosols and the atmospheric microbi-ome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research and highlights recent advances in terms of bioaerosol identification, characterization, transport, and transfor-mation processes, as well as their interactions with climate, health, and ecosystems, focus-ing on the role bioaerosols play in the Earth system.

  7. The impact of climate change on coastal ecosystems: chapter 6

    USGS Publications Warehouse

    Burkett, Virginia; Woodroffe, Colin D.; Nicholls, Robert J.; Forbes, Donald L.

    2014-01-01

    In this chapter we stress two important features of coasts and coastal ecosystems. First, these are dynamic systems which continually undergo adjustments, especially through erosion and re-deposition, in response to a range of processes. Many coastal ecosystems adjust naturally at a range of time scales and their potential for response is examined partly by reconstructing how such systems have coped with natural changes of climate and sea level in the geological past. Second, coasts have changed profoundly through the 20th Century due to the impacts of human development (such as urbanisation, port and industrial expansion, shore protection, and the draining and conversion of coastal wetlands), with these development-related drivers closely linked to a growing global population and economy. It remains a challenge to isolate the impacts of climate change and sea-level rise from either the natural trajectory of shoreline change, or the accelerated pathway resulting from other human-related stressors. There exists a danger of overstating the importance of climate change, or overlooking significant interactions of climate change with other drivers.

  8. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the interactions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The sources, abundance, composition, and effects of biological aerosols and the atmospheric microbiome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research, highlights recent advances, and outlines future perspectives in terms of bioaerosol identification, characterization, transport, and transformation processes, as well as their interactions with climate, health, and ecosystems, focusing on the role bioaerosols play in the Earth system.

  9. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa

    NASA Astrophysics Data System (ADS)

    O'Reilly, Catherine M.; Alin, Simone R.; Plisnier, Pierre-Denis; Cohen, Andrew S.; McKee, Brent A.

    2003-08-01

    Although the effects of climate warming on the chemical and physical properties of lakes have been documented, biotic and ecosystem-scale responses to climate change have been only estimated or predicted by manipulations and models. Here we present evidence that climate warming is diminishing productivity in Lake Tanganyika, East Africa. This lake has historically supported a highly productive pelagic fishery that currently provides 25-40% of the animal protein supply for the populations of the surrounding countries. In parallel with regional warming patterns since the beginning of the twentieth century, a rise in surface-water temperature has increased the stability of the water column. A regional decrease in wind velocity has contributed to reduced mixing, decreasing deep-water nutrient upwelling and entrainment into surface waters. Carbon isotope records in sediment cores suggest that primary productivity may have decreased by about 20%, implying a roughly 30% decrease in fish yields. Our study provides evidence that the impact of regional effects of global climate change on aquatic ecosystem functions and services can be larger than that of local anthropogenic activity or overfishing.

  10. Anticipated impacts of climate warming on ecosystems in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Douglas, T. A.; Liljedahl, A. K.; Astley, B. N.; Downer, C. W.; Jorgenson, T. T.; Bagley, C.; Burks-Copes, K.

    2011-12-01

    Future climate scenarios predict a roughly 5 degree increase in mean annual air temperatures for the Alaskan Interior over the next 80 years. This is expected to be enough to initiate permafrost degradation in Interior Alaska which could lead to widespread thermokarst and talik development and potentially a thicker seasonally thawed (active) layer. These changes could dramatically affect hydrology, ground surface topography and vegetation. Forecasting ecological responses to climate warming is complicated by many factors including variations in soil type, precipitation, surface and ground water hydrology, vegetation, slope, aspect, fire prevalence, and the thermal state of permafrost. We are making field measurements and time series repeat imagery at upland and lowland landscapes to determine where and what ecosystem processes may be most susceptible for rapid or unpredictable changes with climate warming or changing land use activities. By integrating existing cryospheric (permafrost and snow), hydrologic and vegetation succession modeling capabilities we hope to enhance our ability to predict how climate change and other stressors may affect ecosystem dynamics and fire susceptibility. We will include the effects of non-climate related anthropogenic stressors like changes in land use activities and infrastructure development. Numerous electrical resistivity geophysical measurements have been made across a variety of landscapes to investigate how vegetation, soils, and land use relates to permafrost distribution. Our project results will be synthesized into a spatially-explicit decision support system to assist with land use management decision-making for Interior Alaska. This Geographic Information Systems (GIS)-based tool is being developed through a combination of field work and modeling. We will identify challenges for management activities given the projected ecosystem response to anticipated climate change by the end-of-the century. This presentation will

  11. Tales from the Jungle: The Evolving Climate Services Ecosystem

    NASA Astrophysics Data System (ADS)

    Redmond, K. T.

    2015-12-01

    In 2001 the NRC Report "A Climate Services Vision: First Steps Toward the Future" examined the state and trends of climate services. That report included a definition of this term that has lost no relevance: "The timely production and delivery of useful climate data, information, and knowledge to decision makers." The original entities delivering such services, at the state level, are represented by the American Association of State Climatologists (AASC). In 1986 the NOAA Regional Climate Center program was initiated, followed in 1994 by the NOAA Regional Climate Sciences and Assessments. Since 2010 we have seen the establishment of the USDI Climate Science Centers and the Landscape Conservation Cooperatives, the NOAA Regional Climate Service Directors, and the USDA Regional Climate Hubs. The recent expansion of formal programs has essentially filled out the agency "niche space." Other non-governmental and private entities are also expanding into this space. The present profusion runs a risk of creating a perception of excessive duplication in some quarters, including those funding these enterprises. Collectively these activities form what can be thought of as an ecosystem of climate services. A certain amount of replication is desirable, healthy, and necessary, but beyond some point can be excessive unless the total capacity remains insufficient. Each component has come into existence for a different set of reasons. Since these components were invented by human beings, their subsequent evolution can in theory be guided by humans. The history and purpose of each component needs to be borne in mind, with capsule descriptions suitable for rapid delivery to the decision-makers who approve the support for the various components. Good communication among the components is therefore essential for a healthy and functional overall system. This in turn calls for the ability to adequately represent the role of each of those components, a purpose best informed through actual

  12. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change.

    PubMed

    Häder, D-P; Kumar, H D; Smith, R C; Worrest, R C

    2007-03-01

    Recent results continue to show the general consensus that ozone-related increases in UV-B radiation can negatively influence many aquatic species and aquatic ecosystems (e.g., lakes, rivers, marshes, oceans). Solar UV radiation penetrates to ecological significant depths in aquatic systems and can affect both marine and freshwater systems from major biomass producers (phytoplankton) to consumers (e.g., zooplankton, fish, etc.) higher in the food web. Many factors influence the depth of penetration of radiation into natural waters including dissolved organic compounds whose concentration and chemical composition are likely to be influenced by future climate and UV radiation variability. There is also considerable evidence that aquatic species utilize many mechanisms for photoprotection against excessive radiation. Often, these protective mechanisms pose conflicting selection pressures on species making UV radiation an additional stressor on the organism. It is at the ecosystem level where assessments of anthropogenic climate change and UV-related effects are interrelated and where much recent research has been directed. Several studies suggest that the influence of UV-B at the ecosystem level may be more pronounced on community and trophic level structure, and hence on subsequent biogeochemical cycles, than on biomass levels per se.

  13. Marine mammal impacts in exploited ecosystems: would large scale culling benefit fisheries?

    PubMed

    Morissette, Lyne; Christensen, Villy; Pauly, Daniel

    2012-01-01

    Competition between marine mammals and fisheries for marine resources-whether real or perceived-has become a major issue for several countries and in international fora. We examined trophic interactions between marine mammals and fisheries based on a resource overlap index, using seven Ecopath models including marine mammal groups. On a global scale, most food consumed by marine mammals consisted of prey types that were not the main target of fisheries. For each ecosystem, the primary production required (PPR) to sustain marine mammals was less than half the PPR to sustain fisheries catches. We also developed an index representing the mean trophic level of marine mammal's consumption (TL(Q)) and compared it with the mean trophic level of fisheries' catches (TL(C)). Our results showed that overall TL(Q) was lower than TL(C) (2.88 versus 3.42). As fisheries increasingly exploit lower-trophic level species, the competition with marine mammals may become more important. We used mixed trophic impact analysis to evaluate indirect trophic effects of marine mammals, and in some cases found beneficial effects on some prey. Finally, we assessed the change in the trophic structure of an ecosystem after a simulated extirpation of marine mammal populations. We found that this lead to alterations in the structure of the ecosystems, and that there was no clear and direct relationship between marine mammals' predation and the potential catch by fisheries. Indeed, total biomass, with no marine mammals in the ecosystem, generally remained surprisingly similar, or even decreased for some species.

  14. Coralline alga reveals first marine record of subarctic North Pacific climate change

    NASA Astrophysics Data System (ADS)

    Halfar, Jochen; Steneck, Robert; Schöne, Bernd; Moore, G. W. K.; Joachimski, Michael; Kronz, Andreas; Fietzke, Jan; Estes, James

    2007-04-01

    While recent changes in subarctic North Pacific climate had dramatic effects on ecosystems and fishery yields, past climate dynamics and teleconnection patterns are poorly understood due to the absence of century-long high-resolution marine records. We present the first 117-year long annually resolved marine climate history from the western Bering Sea/Aleutian Island region using information contained in the calcitic skeleton of the long-lived crustose coralline red alga Clathromorphum nereostratum, a previously unused climate archive. The skeletal δ 18O-time series indicates significant warming and/or freshening of surface waters after the middle of the 20th century. Furthermore, the time series is spatiotemporally correlated with Pacific Decadal Oscillation (PDO) and tropical El Niño-Southern Oscillation (ENSO) indices. Even though the western Bering Sea/Aleutian Island region is believed to be outside the area of significant marine response to ENSO, we propose that an ENSO signal is transmitted via the Alaskan Stream from the Eastern North Pacific, a region of known ENSO teleconnections.

  15. Coralline alga reveals first marine record of subarctic North Pacific climate change

    USGS Publications Warehouse

    Halfar, J.; Steneck, R.; Schone, B.; Moore, G.W.K.; Joachimski, M.; Kronz, A.; Fietzke, J.; Estes, James

    2007-01-01

    While recent changes in subarctic North Pacific climate had dramatic effects on ecosystems and fishery yields, past climate dynamics and teleconnection patterns are poorly understood due to the absence of century-long high-resolution marine records. We present the first 117-year long annually resolved marine climate history from the western Bering Sea/Aleutian Island region using information contained in the calcitic skeleton of the long-lived crustose coralline red alga Clathromorphum nereostratum, a previously unused climate archive. The skeletal ??18O-time series indicates significant warming and/or freshening of surface waters after the middle of the 20th century. Furthermore, the time series is spatiotemporally correlated with Pacific Decadal Oscillation (PDO) and tropical El Nio??-Southern Oscillation (ENSO) indices. Even though the western Bering Sea/Aleutian Island region is believed to be outside the area of significant marine response to ENSO, we propose that an ENSO signal is transmitted via the Alaskan Stream from the Eastern North Pacific, a region of known ENSO teleconnections. Copyright 2007 by the American Geophysical Union.

  16. Evidence and implications of recent and projected climate change in Alaska's forest ecosystems

    USGS Publications Warehouse

    Wolken, Jane M.; Hollingsworth, Teresa N.; Rupp, T. Scott; Chapin, Stuart III; Trainor, Sarah F.; Barrett, Tara M.; Sullivan, Patrick F.; McGuire, A. David; Euskirchen, Eugénie S.; Hennon, Paul E.; Beever, Erik A.; Conn, Jeff S.; Crone, Lisa K.; D'Amore, David V.; Fresco, Nancy; Hanley, Thomas A.; Kielland, Knut; Kruse, James J.; Patterson, Trista; Schuur, Edward A.G.; Verbyla, David L.; Yarie, John

    2011-01-01

    The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region. We developed a conceptual framework describing climate drivers, biophysical factors and types of change to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and indirectly to a changing climate. We then identify the regional and global implications to the climate system and associated socio-economic impacts, as presented in the current literature. Projections of temperature and precipitation suggest wildfire will continue to be the dominant biophysical factor in the Interior-boreal forest, leading to shifts from conifer- to deciduous-dominated forests. Based on existing research, projected increases in temperature in the Southcentral- and Kenai-boreal forests will likely increase the frequency and severity of insect outbreaks and associated wildfires, and increase the probability of establishment by invasive plant species. In the Coastal-temperate forest region snow and ice is regarded as the dominant biophysical factor. With continued warming, hydrologic changes related to more rapidly melting glaciers and rising elevation of the winter snowline will alter discharge in many rivers, which will have important consequences for terrestrial and marine ecosystem productivity. These climate-related changes will affect plant species distribution and wildlife habitat, which have regional societal consequences, and trace-gas emissions and radiation budgets, which are globally important. Our conceptual framework facilitates

  17. Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to fish and coasts to ocean

    NASA Astrophysics Data System (ADS)

    Holt, Jason; Icarus Allen, J.; Anderson, Thomas R.; Brewin, Robert; Butenschön, Momme; Harle, James; Huse, Geir; Lehodey, Patrick; Lindemann, Christian; Memery, Laurent; Salihoglu, Baris; Senina, Inna; Yool, Andrew

    2014-12-01

    It has long been recognised that there are strong interactions and feedbacks between climate, upper ocean biogeochemistry and marine food webs, and also that food web structure and phytoplankton community distribution are important determinants of variability in carbon production and export from the euphotic zone. Numerical models provide a vital tool to explore these interactions, given their capability to investigate multiple connected components of the system and the sensitivity to multiple drivers, including potential future conditions. A major driver for ecosystem model development is the demand for quantitative tools to support ecosystem-based management initiatives. The purpose of this paper is to review approaches to the modelling of marine ecosystems with a focus on the North Atlantic Ocean and its adjacent shelf seas, and to highlight the challenges they face and suggest ways forward. We consider the state of the art in simulating oceans and shelf sea physics, planktonic and higher trophic level ecosystems, and look towards building an integrative approach with these existing tools. We note how the different approaches have evolved historically and that many of the previous obstacles to harmonisation may no longer be present. We illustrate this with examples from the on-going and planned modelling effort in the Integrative Modelling Work Package of the EURO-BASIN programme.

  18. Environmental forcing and Southern Ocean marine predator populations: effects of climate change and variability.

    PubMed

    Trathan, P N; Forcada, J; Murphy, E J

    2007-12-29

    The Southern Ocean is a major component within the global ocean and climate system and potentially the location where the most rapid climate change is most likely to happen, particularly in the high-latitude polar regions. In these regions, even small temperature changes can potentially lead to major environmental perturbations. Climate change is likely to be regional and may be expressed in various ways, including alterations to climate and weather patterns across a variety of time-scales that include changes to the long interdecadal background signals such as the development of the El Niño-Southern Oscillation (ENSO). Oscillating climate signals such as ENSO potentially provide a unique opportunity to explore how biological communities respond to change. This approach is based on the premise that biological responses to shorter-term sub-decadal climate variability signals are potentially the best predictor of biological responses over longer time-scales. Around the Southern Ocean, marine predator populations show periodicity in breeding performance and productivity, with relationships with the environment driven by physical forcing from the ENSO region in the Pacific. Wherever examined, these relationships are congruent with mid-trophic-level processes that are also correlated with environmental variability. The short-term changes to ecosystem structure and function observed during ENSO events herald potential long-term changes that may ensue following regional climate change. For example, in the South Atlantic, failure of Antarctic krill recruitment will inevitably foreshadow recruitment failures in a range of higher trophic-level marine predators. Where predator species are not able to accommodate by switching to other prey species, population-level changes will follow. The Southern Ocean, though oceanographically interconnected, is not a single ecosystem and different areas are dominated by different food webs. Where species occupy different positions in

  19. Results of the 2004 Marine Corps Climate Surveys (MCCS): Management Report

    DTIC Science & Technology

    2006-11-01

    The 2004 Marine Corps Climate Surveys (MCCS) measure active duty and reserve members’ experiences regarding organizational climate issues...11 organizational climate areas. The climate modules were followed by items assessing racial/ethnic, gender and religious discrimination. The final

  20. Simple rules can guide whether land- or ocean-based conservation will best benefit marine ecosystems

    PubMed Central

    Bode, Michael; Atkinson, Scott; Klein, Carissa J.; Metaxas, Anna; Beher, Jutta; Beger, Maria; Mills, Morena; Giakoumi, Sylvaine; Tulloch, Vivitskaia; Possingham, Hugh P.

    2017-01-01

    Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effectiveness of marine- and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to 1 of 4 alternative conservation actions—protection on land, protection in the ocean, restoration on land, or restoration in the ocean—to maximise the extent of light-dependent marine benthic habitats across decadal timescales. We apply the model to a case study for a seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal timescales in this system, based on a conservative estimate of the rate at which seagrass can expand into a new habitat. The optimal decision will vary in different social–ecological contexts, but some basic information can guide optimal investments to counteract land- and ocean-based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is greater than 1:1.4, with terrestrial restoration typically the most cost-effective action; and (4) land protection should be prioritised if the catchment is relatively intact but the rate of vegetation decline is high. These rules of thumb illustrate how cost-effective conservation outcomes for connected land–ocean systems can proceed without complex modelling. PMID:28877168

  1. Simple rules can guide whether land- or ocean-based conservation will best benefit marine ecosystems.

    PubMed

    Saunders, Megan I; Bode, Michael; Atkinson, Scott; Klein, Carissa J; Metaxas, Anna; Beher, Jutta; Beger, Maria; Mills, Morena; Giakoumi, Sylvaine; Tulloch, Vivitskaia; Possingham, Hugh P

    2017-09-01

    Coastal marine ecosystems can be managed by actions undertaken both on the land and in the ocean. Quantifying and comparing the costs and benefits of actions in both realms is therefore necessary for efficient management. Here, we quantify the link between terrestrial sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effectiveness of marine- and land-based conservation actions. We use a dynamic land- and sea-scape model to determine whether limited funds should be directed to 1 of 4 alternative conservation actions-protection on land, protection in the ocean, restoration on land, or restoration in the ocean-to maximise the extent of light-dependent marine benthic habitats across decadal timescales. We apply the model to a case study for a seagrass meadow in Australia. We find that marine restoration is the most cost-effective action over decadal timescales in this system, based on a conservative estimate of the rate at which seagrass can expand into a new habitat. The optimal decision will vary in different social-ecological contexts, but some basic information can guide optimal investments to counteract land- and ocean-based stressors: (1) marine restoration should be prioritised if the rates of marine ecosystem decline and expansion are similar and low; (2) marine protection should take precedence if the rate of marine ecosystem decline is high or if the adjacent catchment is relatively intact and has a low rate of vegetation decline; (3) land-based actions are optimal when the ratio of marine ecosystem expansion to decline is greater than 1:1.4, with terrestrial restoration typically the most cost-effective action; and (4) land protection should be prioritised if the catchment is relatively intact but the rate of vegetation decline is high. These rules of thumb illustrate how cost-effective conservation outcomes for connected land-ocean systems can proceed without complex modelling.

  2. Effects of climate change on Arctic marine mammal health.

    PubMed

    Burek, Kathy A; Gulland, Frances M D; O'Hara, Todd M

    2008-03-01

    The lack of integrated long-term data on health, diseases, and toxicant effects in Arctic marine mammals severely limits our ability to predict the effects of climate change on marine mammal health. The overall health of an individual animal is the result of complex interactions among immune status, body condition, pathogens and their pathogenicity, toxicant exposure, and the various environmental conditions that interact with these factors. Climate change could affect these interactions in several ways. There may be direct effects of loss of the sea ice habitat, elevations of water and air temperature, and increased occurrence of severe weather. Some of the indirect effects of climate change on animal health will likely include alterations in pathogen transmission due to a variety of factors, effects on body condition due to shifts in the prey base/food web, changes in toxicant exposures, and factors associated with increased human habitation in the Arctic (e.g., chemical and pathogen pollution in the runoff due to human and domestic-animal wastes and chemicals and increased ship traffic with the attendant increased risks of ship strike, oil spills, ballast pollution, and possibly acoustic injury). The extent to which climate change will impact marine mammal health will also vary among species, with some species more sensitive to these factors than others. Baseline data on marine mammal health parameters along with matched data on the population and climate change trends are needed to document these changes.

  3. Climate change impacts on ecosystems and ecosystem services in the United States: Process and prospects for sustained assessment

    USGS Publications Warehouse

    Grimm, Nancy B.; Groffman, Peter M; Staudinger, Michelle D.; Tallis, Heather

    2016-01-01

    The third United States National Climate Assessment emphasized an evaluation of not just the impacts of climate change on species and ecosystems, but also the impacts of climate change on the benefits that people derive from nature, known as ecosystem services. The ecosystems, biodiversity, and ecosystem services component of the assessment largely drew upon the findings of a transdisciplinary workshop aimed at developing technical input for the assessment, involving participants from diverse sectors. A small author team distilled and synthesized this and hundreds of other technical input to develop the key findings of the assessment. The process of developing and ranking key findings hinged on identifying impacts that had particular, demonstrable effects on the U.S. public via changes in national ecosystem services. Findings showed that ecosystem services are threatened by the impacts of climate change on water supplies, species distributions and phenology, as well as multiple assaults on ecosystem integrity that, when compounded by climate change, reduce the capacity of ecosystems to buffer against extreme events. As ecosystems change, such benefits as water sustainability and protection from storms that are afforded by intact ecosystems are projected to decline across the continent due to climate change. An ongoing, sustained assessment that focuses on the co-production of actionable climate science will allow scientists from a range of disciplines to ascertain the capability of their forecasting models to project environmental and ecological change and link it to ecosystem services; additionally, an iterative process of evaluation, development of management strategies, monitoring, and reevaluation will increase the applicability and usability of the science by the U.S. public.

  4. The marine ecosystem off Peru: What are the secrets of its fishery productivity and what might its future hold?

    NASA Astrophysics Data System (ADS)

    Bakun, Andrew; Weeks, Scarla J.

    2008-10-01

    The marine ecosystem located off the coast of central and northern Peru has stood as the “world’s champion” producer, by far, of exploitable fish biomass, generally yielding more than 20 times the tonnage of fishery landings produced by other comparable regional large marine ecosystems of the world’s oceans that operate under similar dynamic contexts and are characterized by comparable, or even greater, basic primary production. Two potentially contributing aspects are discussed from a framework of interregional comparative pattern recognition: (1) the advantageous low-latitude situation that combines strong upwelling-based nutrient enrichment with low wind-induced turbulence generation and relatively extended mean “residence times” within the favorable upwelling-conditioned near-coastal habitat and (2) the cyclic “re-setting” of the system by ENSO perturbations that may tend to interrupt malignant growth of adverse self-amplifying feedback loops within the nonlinear biological dynamics of the ecosystem. There is a developing scientific consensus that one of the more probable consequences of impending global climate changes will be a general slowing of the equatorial Pacific Walker Circulation and a consequent weakening of the Pacific trade wind system. Since the upwelling-favorable winds off Peru tend to flow directly into the Pacific southeast trade winds, a question arises as to the likely effect on the upwelling-producing winds that power the productivity of the regional coastal ecosystems of the Peru-Humboldt Current zone. It is argued that the effects will in fact be decoupled to the extent that upwelling-favorable winds will actually tend to increase off Peru. Data demonstrative of this decoupling are presented. A tendency for less intense El Niño episodes in the future is also suggested. These conclusions provide a framework for posing certain imponderables as to the future character of the Peruvian marine ecosystem and of the fisheries it

  5. What did we learn from PEGASEAS forum "Science and Governance of the Channel Marine Ecosystem"?

    PubMed

    Evariste, Emmanuelle; Claquin, Pascal; Robin, Jean-Paul; Auber, Arnaud; McQuatters-Gollop, Abigail; Fletcher, Stephen; Glegg, Gillian; Dauvin, Jean-Claude

    2015-04-15

    As one of the busiest marine ecosystems in the world, the English Channel is subjected to strong pressures due to the human activities occurring within it. Effective governance is required to improve the combined management of different activities and so secure the benefits provided by the Channel ecosystem. In July 2014, a Cross-Channel Forum, entitled "Science and Governance of the Channel Marine Ecosystem", was held in Caen (France) as part of the INTERREG project "Promoting Effective Governance of the Channel Ecosystem" (PEGASEAS). Here we use outputs from the Forum as a framework for providing Channel-specific advice and recommendations on marine governance themes, including the identification of knowledge gaps, which may form the foundation of future projects for the next INTERREG project call (2015-2020). Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Persistence of trophic hotspots and relation to human impacts within an upwelling marine ecosystem.

    PubMed

    Santora, Jarrod A; Sydeman, William J; Schroeder, Isaac D; Field, John C; Miller, Rebecca R; Wells, Brian K

    2017-03-01

    Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted.

  7. Accelerated warming and emergent trends in fisheries biomass yields of the world's large marine ecosystems.

    PubMed

    Sherman, Kenneth; Belkin, Igor M; Friedland, Kevin D; O'Reilly, John; Hyde, Kimberly

    2009-06-01

    Information on the effects of global climate change on trends in global fisheries biomass yields has been limited in spatial and temporal scale. Results are presented of a global study of the impact of sea surface temperature (SST) changes over the last 25 years on the fisheries yields of 63 large marine ecosystems (LMEs) that annually produce 80% of the world's marine fisheries catches. Warming trends were observed in 61 LMEs around the globe. In 18 of the LMEs, rates of SST warming were two to four times faster during the past 25 years than the globally averaged rates of SST warming reported by the Intergovernmental Panel on Climate Change in 2007. Effects of warming on fisheries biomass yields were greatest in the fast-warming northern Northeast Atlantic LMEs, where increasing trends in fisheries biomass yields were related to zooplankton biomass increases. In contrast, fisheries biomass yields of LMEs in the fast-warming, more southerly reaches of the Northeast Atlantic were declining in response to decreases in zooplankton abundance. The LMEs around the margins of the Indian Ocean, where SSTs were among the world's slowest warming, revealed a consistent pattern of fisheries biomass increases during the past 25 years, driven principally by human need for food security from fisheries resources. As a precautionary approach toward more sustainable fisheries utilization, management measures to limit the total allowable catch through a cap-and-sustain approach are suggested for the developing nations recently fishing heavily on resources of the Agulhas Current, Somali Current, Arabian Sea, and Bay of Bengal LMEs.

  8. Climate and Soil Interactions in the Context of Climate, Water, Ecosystems and Food Systems

    NASA Astrophysics Data System (ADS)

    Hatfield, J.

    2015-12-01

    Soil as source of ecosystem services is a major component of climate resilience. Two of the critical ecosystem services derived from soil are water and nutrient cycling. High quality soils improve the capacity to absorb and retain precipitation leading to enhanced water availability to plants which increases climate resilience. The trend towards increasing variability in precipitation requires that the soil be capable of maintaining infiltration rates under extreme precipitation events. Climate resilience will occur when crop productivity is stabilized under more variable climate regimes and dependent upon having adequate soil water supplies to each crop. There is a direct relationship between soil quality and crop productivity and as the soil resource is degraded there is a greater gap between attainable and actual productivity of crop. As the soil is improved there is enhanced nutrient cycling which in turn increases nutrient availability to the crop and food security. Soil becomes the foundation of sustainable ecosystems and enhancing the quality of soil will have a benefit to food and water resources. Improving the soil will benefit humankind through multiple impacts on water, food, and ecosystems.

  9. Mismatch between marine plankton range movements and the velocity of climate change

    NASA Astrophysics Data System (ADS)

    Chivers, William J.; Walne, Anthony W.; Hays, Graeme C.

    2017-02-01

    The response of marine plankton to climate change is of critical importance to the oceanic food web and fish stocks. We use a 60-year ocean basin-wide data set comprising >148,000 samples to reveal huge differences in range changes associated with climate change across 35 plankton taxa. While the range of dinoflagellates and copepods tended to closely track the velocity of climate change (the rate of isotherm movement), the range of the diatoms moved much more slowly. Differences in range shifts were up to 900 km in a recent warming period, with average velocities of range movement between 7 km per decade northwards for taxa exhibiting niche plasticity and 99 km per decade for taxa exhibiting niche conservatism. The differing responses of taxa to global warming will cause spatial restructuring of the plankton ecosystem with likely consequences for grazing pressures on phytoplankton and hence for biogeochemical cycling, higher trophic levels and biodiversity.

  10. Mismatch between marine plankton range movements and the velocity of climate change.

    PubMed

    Chivers, William J; Walne, Anthony W; Hays, Graeme C

    2017-02-10

    The response of marine plankton to climate change is of critical importance to the oceanic food web and fish stocks. We use a 60-year ocean basin-wide data set comprising >148,000 samples to reveal huge differences in range changes associated with climate change across 35 plankton taxa. While the range of dinoflagellates and copepods tended to closely track the velocity of climate change (the rate of isotherm movement), the range of the diatoms moved much more slowly. Differences in range shifts were up to 900 km in a recent warming period, with average velocities of range movement between 7 km per decade northwards for taxa exhibiting niche plasticity and 99 km per decade for taxa exhibiting niche conservatism. The differing responses of taxa to global warming will cause spatial restructuring of the plankton ecosystem with likely consequences for grazing pressures on phytoplankton and hence for biogeochemical cycling, higher trophic levels and biodiversity.

  11. Pathogens trigger top-down climate forcing on ecosystem dynamics.

    PubMed

    Edeline, Eric; Groth, Andreas; Cazelles, Bernard; Claessen, David; Winfield, Ian J; Ohlberger, Jan; Asbjørn Vøllestad, L; Stenseth, Nils C; Ghil, Michael

    2016-06-01

    Evaluating the effects of climate variation on ecosystems is of paramount importance for our ability to forecast and mitigate the consequences of global change. However, the ways in which complex food webs respond to climate variations remain poorly understood. Here, we use long-term time series to investigate the effects of temperature variation on the intraguild-predation (IGP) system of Windermere (UK), a lake where pike (Esox lucius, top predator) feed on small-sized perch (Perca fluviatilis) but compete with large-sized perch for the same food sources. Spectral analyses of time series reveal that pike recruitment dynamics are temperature controlled. In 1976, expansion of a size-truncating perch pathogen into the lake severely impacted large perch and favoured pike as the IGP-dominant species. This pathogen-induced regime shift to a pike-dominated IGP apparently triggered a temperature-controlled trophic cascade passing through pike down to dissolved nutrients. In simple food chains, warming is predicted to strengthen top-down control by accelerating metabolic rates in ectothermic consumers, while pathogens of top consumers are predicted to dampen this top-down control. In contrast, the local IGP structure in Windermere made warming and pathogens synergistic in their top-down effects on ecosystem functioning. More generally, our results point to top predators as major mediators of community response to global change, and show that size-selective agents (e.g. pathogens, fishers or hunters) may change the topological architecture of food webs and alter whole ecosystem sensitivity to climate variation.

  12. Rising climate variability and synchrony in North Pacific ecosystems

    NASA Astrophysics Data System (ADS)

    Black, Bryan

    2017-04-01

    Rising climate variability and synchrony in North Pacific ecosystems Evidence is growing that climate variability of the northeast Pacific Ocean has increased over the last century, culminating in such events as the record-breaking El Niño years 1983, 1998, and 2016 and the unusually persistent 2014/15 North Pacific Ocean heat wave known as "The Blob." Of particular concern is that rising variability could increase synchrony within and among North Pacific ecosystems, which could reduce the diversity of biological responses to climate (i.e. the "portfolio effect"), diminish resilience, and leave populations more prone to extirpation. To test this phenomenon, we use a network of multidecadal fish otolith growth-increment chronologies that were strongly correlated to records of winter (Jan-Mar) sea level. These biological and physical datasets spanned the California Current through the Gulf of Alaska. Synchrony was quantified as directional changes in running (31-year window) mean pairwise correlation within sea level and then within otolith time series. Synchrony in winter sea level at the nine stations with the longest records has increased by more than 40% over the 1950-2015 interval. Likewise, synchrony among the eight longest otolith chronologies has increased more than 100% over a comparable time period. These directional changes in synchrony are highly unlikely due to chance alone, as confirmed by comparing trends in observed data to those in simulated data (n = 10,000 iterations) with time series of identical number, length, and autocorrelation. Ultimately, this trend in rising synchrony may be linked to increased impacts of the El Niño Southern Oscillation (ENSO) on mid-latitude ecosystems of North America, and may therefore reflect a much broader, global-scale signature.

  13. The Longterm Effects of Climate Change in European Shrubland Ecosystems

    NASA Astrophysics Data System (ADS)

    Emmett, B.; Sowerby, A.; Smith, A.; EU Increase-infrastructure Project Team

    2011-12-01

    Shrublands constitute significant and important parts of European landscapes providing a large number of important ecosystem services. Biogeochemical cycles in these ecosystems have gained little attention relative to forests and grassland systems. As climate change progresses the potential feedback from the biosphere to the atmosphere through changes in above and below-ground structure and functioning will become increasingly important. A series of replicate long term climate change experiments have been running for ca. 10 years in contrasting shrubland types across Europe to quantify; (a) the potential changes in carbon sequestration, GHG emissions and nutrient cycling, (b) the links to above and below-ground biodiversity, and (c) implications for water quality, in response to warming and repeated summer drought. Results indicate a relatively high rate of below-ground carbon allocation compared to forest systems and the importance of modifying factors such as past and current management, atmospheric deposition and soil type in determining resilience to change. Unexpectedly, sustained reduction in soil moisture over winter (between drought periods and despite major winter rainfall) was observed in the repeated summer drought treatment, along with a reduction in the maximum water-holding capacity attained. The persistent reduction in soil moisture throughout the year resulted in a year-round increase in soil respiration flux, a response that accelerated over time to 40% above control levels in the hydric, organic-rich UK system. As above-ground biomass, litter production and diversity was remarkably stable, changes in soil fungal communities and soil physical structure appear to be critical in driving changes in soil carbon fluxes in this organic-rich site. Current ecosystem models may under-estimate potential changes in carbon loss in response to climate change if changes in soil biological and physical properties are not included.

  14. Effects of climate change on forest ecosystems in Iceland

    NASA Astrophysics Data System (ADS)

    Kjartansson, Bjarki; Smith, Ben; Warlind, David; Olafsson, Haraldur

    2013-04-01

    The subartic region has been considered an area of high impact under future climate change senarios. We investigated the climatic effect on the change in potential forest distribution, structure and growth in Iceland from 1900 to 2100 by applying climatic time series to the dynamic vegetation model LPJ-GUESSN. For the historical period we utilized a combination of gridded climatic datasets to create a time series for monthly means of temperature, precipitation and radiation. These datasets where provided by the Icelandic Metrological office (IMO) and the Climatic research unit at East Anglia (CRU). For the future climate we added data from three different general circulation models (GCḾs) where each model had three different representative concentration pathways (RCP). In order to compensate for topographical differences within modeled grid cells we divide each grid cell into elevation zones with 50 meters vertical interval. Each elevation zone is modeled explicitly with downscaled temperature values adjusted for the elevation. This gave us the opportunity to observe different ecosystems with in each grid cell and how they developed over time both horizontally and vertically. We applied the climatic time series to drive the dynamic vegetation model LPJ-GUESSN. The model includes the features of the LPJ-GUESS model with added module where nitrogen is modeled explicitly. The addition of the nitrogen cycle allowed us to examine the nitrogen availability in soils and its effects on vegetation growth. Our results show that under the future scenario there is increased NPP under all RCṔs and GCḾs. We observe a general trend of increase in carbon pool buildup with varying degree around the island. There is an advance in forest limits into higher elevation areas. The lowland areas show a shift in species composition where conifers retreat upward from broadleaved species dominating the lower altitudes into the future. Increased temperature opens up areas in the

  15. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    PubMed

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2017-07-10

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  16. Ecosystems and Climate Change. Research Priorities for the U.S. Climate Change Science Program

    DTIC Science & Technology

    2006-06-01

    salinity or ice cover. Mismatches in the timing of growth or reproduction in relation to the availability of critical resources such as food or...ecosystems can store carbon and nitrogen as organic matter, or release them as greenhouse gases, depending on variations in loading, salinity , and...food webs including fish and marine mammals. Figure 9. September sea surface temperature, surface chlorophyll, and salinity from a 0.5-degree

  17. Past changes in Arctic terrestrial ecosystems, climate and UV radiation.

    PubMed

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus

    2004-11-01

    At the last glacial maximum, vast ice sheets covered many continental areas. The beds of some shallow seas were exposed thereby connecting previously separated landmasses. Although some areas were ice-free and supported a flora and fauna, mean annual temperatures were 10-13 degrees C colder than during the Holocene. Within a few millennia of the glacial maximum, deglaciation started, characterized by a series of climatic fluctuations between about 18,000 and 11,400 years ago. Following the general thermal maximum in the Holocene, there has been a modest overall cooling trend, superimposed upon which have been a series of millennial and centennial fluctuations in climate such as the "Little Ice Age spanning approximately the late 13th to early 19th centuries. Throughout the climatic fluctuations of the last 150,000 years, Arctic ecosystems and biota have been close to their minimum extent within the most recent 10,000 years. They suffered loss of diversity as a result of extinctions during the most recent large-magnitude rapid global warming at the end of the last glacial stage. Consequently, Arctic ecosystems and biota such as large vertebrates are already under pressure and are particularly vulnerable to current and projected future global warming. Evidence from the past indicates that the treeline will very probably advance, perhaps rapidly, into tundra areas, as it did during the early Holocene, reducing the extent of tundra and increasing the risk of species extinction. Species will very probably extend their ranges northwards, displacing Arctic species as in the past. However, unlike the early Holocene, when lower relative sea level allowed a belt of tundra to persist around at least some parts of the Arctic basin when treelines advanced to the present coast, sea level is very likely to rise in future, further restricting the area of tundra and other treeless Arctic ecosystems. The negative response of current Arctic ecosystems to global climatic conditions

  18. Effects of climate change on climatic water deficit and wildfire in Greater Yellowstone Ecosystem forests

    NASA Astrophysics Data System (ADS)

    Westerling, A. L.; Turner, M. G.; Lubetkin, K.

    2011-12-01

    Effects of climate change on climatic water deficit and wildfire in Greater Yellowstone Ecosystem forests Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. Westerling et al (2011) considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE), a large wildland ecosystem dominated by conifer forests and characterized by infrequent, high-severity fire. They developed statistical models that related climate data (1972-1999) to the occurrence and size of fires >200 ha in the northern Rocky Mountains. Cumulative deficit was particularly important for modeling extreme value distributions for fire size, and was also a statistically significant predictor of the occurrence and number of large fires. Most of the area burned in large fires in the GYE from 1972-99 occurred in 1988 in extremely large fires. Climate projections imply that conditions associated with extreme fires in the region will become more common in coming decades. Thus, in order to estimate climate change impacts on GYE fire regimes, it was imperative that models capture extremes in fire occurrence and particularly fire size distributions. We will discuss the role of cumulative deficit versus other climate variables and land-surface characteristics in modeling extremes in fire activity in the GYE and the Northern Rockies more generally. Westerling et al (2011) used their suite of models with downscaled climate projections from three global climate models to predict fire occurrence and area burned in the GYE through 2099. All models predicted substantial increases in fire by midcentury, with fire rotation reduced to <20 y from the historical 100-300 y for much of the GYE. Years without large fires were common historically but are expected to become rare as annual area burned and the frequency of regionally

  19. Effectiveness of marine protected areas in managing the drivers of ecosystem change: a case of Mnazi Bay Marine Park, Tanzania.

    PubMed

    Machumu, Milali Ernest; Yakupitiyage, Amararatne

    2013-04-01

    Marine protected areas (MPAs) are being promoted in Tanzania to mitigate the drivers of ecosystem change such as overfishing and other anthropogenic impacts on marine resources. The effectiveness of MPAs in managing those drivers was assessed in three ecological zones, seafront, mangrove, and riverine of Mnazi Bay Marine Park, using Participatory Community Analysis techniques, questionnaire survey, checklist and fishery resource assessment methods. Eleven major drivers of ecosystem change were identified. Resource dependence had a major effect in all ecological zones of the park. The results indicated that the park's legislations/regulations, management procedures, and conservation efforts are reasonably effective in managing its resources. The positive signs accrued from conservation efforts have been realized by the communities in terms of increased catch/income, awareness and compliance. However, some natural and anthropogenic drivers continued to threaten the park's sustainability. Furthermore, implementation of resource use and benefit sharing mechanisms still remained a considerable challenge to be addressed.

  20. Interplay between top-down, bottom-up, and wasp-waist control in marine ecosystems

    NASA Astrophysics Data System (ADS)

    Hunt, George L.; McKinnell, Skip

    2006-02-01

    In October 2004, the North Pacific Marine Science Organization (PICES) sponsored a symposium to consider “ Mechanisms that regulate North Pacific ecosystems: Bottom up, top down, or something else?” It sought to examine how marine populations, particularly the upper-trophic-level species, are regulated and to understand how energy flows through marine ecosystems. This introductory essay examines aspects of control mechanisms in pelagic marine ecosystems and some of the issues discussed during the symposium and in the 11 papers that were selected for this special issue. At global scales, the greatest biomass of fishes, seabirds and marine mammals tends to occur in regions of the world ocean with high primary production, e.g., the sub-arctic seas and up-welling regions of continental shelves. These large-scale animal distribution patterns are driven by food availability, not the absence of predators. At regional scales however, it is likely that current predation or past predation events have shaped local distributions, at least in marine birds and pinnipeds. Wasp-waist control occurs when one of the intermediate trophic levels is dominated by a single species, as occurs with small pelagic fishes of the world’s up-welling zones. Processes in these ecosystems may have features that result in a switch from bottom-up to top-down control.

  1. Abrupt climate change and collapse of deep-sea ecosystems

    USGS Publications Warehouse

    Yasuhara, Moriaki; Cronin, T. M.; Demenocal, P.B.; Okahashi, H.; Linsley, B.K.

    2008-01-01

    We investigated the deep-sea fossil record of benthic ostracodes during periods of rapid climate and oceanographic change over the past 20,000 years in a core from intermediate depth in the northwestern Atlantic. Results show that deep-sea benthic community "collapses" occur with faunal turnover of up to 50% during major climatically driven oceanographic changes. Species diversity as measured by the Shannon-Wiener index falls from 3 to as low as 1.6 during these events. Major disruptions in the benthic communities commenced with Heinrich Event 1, the Inter-Aller??d Cold Period (IACP: 13.1 ka), the Younger Dryas (YD: 12.9-11.5 ka), and several Holocene Bond events when changes in deep-water circulation occurred. The largest collapse is associated with the YD/IACP and is characterized by an abrupt two-step decrease in both the upper North Atlantic Deep Water assemblage and species diversity at 13.1 ka and at 12.2 ka. The ostracode fauna at this site did not fully recover until ???8 ka, with the establishment of Labrador Sea Water ventilation. Ecologically opportunistic slope species prospered during this community collapse. Other abrupt community collapses during the past 20 ka generally correspond to millennial climate events. These results indicate that deep-sea ecosystems are not immune to the effects of rapid climate changes occurring over centuries or less. ?? 2008 by The National Academy of Sciences of the USA.

  2. Abrupt climate change and collapse of deep-sea ecosystems.

    PubMed

    Yasuhara, Moriaki; Cronin, Thomas M; Demenocal, Peter B; Okahashi, Hisayo; Linsley, Braddock K

    2008-02-05

    We investigated the deep-sea fossil record of benthic ostracodes during periods of rapid climate and oceanographic change over the past 20,000 years in a core from intermediate depth in the northwestern Atlantic. Results show that deep-sea benthic community "collapses" occur with faunal turnover of up to 50% during major climatically driven oceanographic changes. Species diversity as measured by the Shannon-Wiener index falls from 3 to as low as 1.6 during these events. Major disruptions in the benthic communities commenced with Heinrich Event 1, the Inter-Allerød Cold Period (IACP: 13.1 ka), the Younger Dryas (YD: 12.9-11.5 ka), and several Holocene Bond events when changes in deep-water circulation occurred. The largest collapse is associated with the YD/IACP and is characterized by an abrupt two-step decrease in both the upper North Atlantic Deep Water assemblage and species diversity at 13.1 ka and at 12.2 ka. The ostracode fauna at this site did not fully recover until approximately 8 ka, with the establishment of Labrador Sea Water ventilation. Ecologically opportunistic slope species prospered during this community collapse. Other abrupt community collapses during the past 20 ka generally correspond to millennial climate events. These results indicate that deep-sea ecosystems are not immune to the effects of rapid climate changes occurring over centuries or less.

  3. Embedding ecosystem services into the Marine Strategy Framework Directive: Illustrated by eutrophication in the North Sea

    NASA Astrophysics Data System (ADS)

    O'Higgins, T. G.; Gilbert, A. J.

    2014-03-01

    The introduction of the Marine Strategy Framework Directive (MSFD) with its focus on an Ecosystem Approach places an emphasis on the human dimensions of environmental problems. Human activities may be the source of marine degradation, but may also be adversely affected should degradation compromise the provision of ecosystem services. The MSFD marks a shift away from management aiming to restore past, undegraded states toward management for Good Environmental Status (GEnS) based on delivery of marine goods and services. An example relating ecosystem services to criteria for Good Environmental Status is presented for eutrophication, a long recognised problem in many parts of Europe's seas and specifically targeted by descriptors for GEnS. Taking the North Sea as a case study the relationships between the eutrophication criteria of the MSFD and final and intermediate marine ecosystem services are examined. Ecosystem services are valued, where possible in monetary terms, in order to illustrate how eutrophication affects human welfare (economic externalities) through its multiple effects on ecosystem services.

  4. Predicting ecological changes on benthic estuarine assemblages through decadal climate trends along Brazilian Marine Ecoregions

    NASA Astrophysics Data System (ADS)

    Bernardino, Angelo F.; Netto, Sérgio A.; Pagliosa, Paulo R.; Barros, Francisco; Christofoletti, Ronaldo A.; Rosa Filho, José S.; Colling, André; Lana, Paulo C.

    2015-12-01

    Estuaries are threatened coastal ecosystems that support relevant ecological functions worldwide. The predicted global climate changes demand actions to understand, anticipate and avoid further damage to estuarine habitats. In this study we reviewed data on polychaete assemblages, as a surrogate for overall benthic communities, from 51 estuaries along five Marine Ecoregions of Brazil (Amazonia, NE Brazil, E Brazil, SE Brazil and Rio Grande). We critically evaluated the adaptive capacity and ultimately the resilience to decadal changes in temperature and rainfall of the polychaete assemblages. As a support for theoretical predictions on changes linked to global warming we compared the variability of benthic assemblages across the ecoregions with a 40-year time series of temperature and rainfall data. We found a significant upward trend in temperature during the last four decades at all marine ecoregions of Brazil, while rainfall increase was restricted to the SE Brazil ecoregion. Benthic assemblages and climate trends varied significantly among and within ecoregions. The high variability in climate patterns in estuaries within the same ecoregion may lead to correspondingly high levels of noise on the expected responses of benthic fauna. Nonetheless, we expect changes in community structure and productivity of benthic species at marine ecoregions under increasing influence of higher temperatures, extreme events and pollution.

  5. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem

    DOE PAGES

    Laufkotter, Charlotte; Vogt, Meike; Gruber, Nicolas; ...

    2016-07-14

    Here, accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralisation of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projectionsmore » in EP over the 21st century, generated by four marine ecosystem models under the high emission scenario Representative Concentration Pathways (RCP) 8.5 of the Intergovernmental Panel on Climate Change (IPCC), and determine the processes driving these changes. The models simulate small to modest decreases in global EP between -1 and -12%. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralisation is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralisation or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralisation. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (present-day) distribution of diatoms (between 11–94% in the Southern Ocean) and the diatom contribution to particle formation (0.6–3.8 times higher

  6. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem

    NASA Astrophysics Data System (ADS)

    Laufkötter, Charlotte; Vogt, Meike; Gruber, Nicolas; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Dunne, John P.; Hauck, Judith; John, Jasmin G.; Lima, Ivan D.; Seferian, Roland; Völker, Christoph

    2016-07-01

    Accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralisation of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projections in EP over the 21st century, generated by four marine ecosystem models under the high emission scenario Representative Concentration Pathways (RCP) 8.5 of the Intergovernmental Panel on Climate Change (IPCC), and determine the processes driving these changes. The models simulate small to modest decreases in global EP between -1 and -12 %. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralisation is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralisation or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralisation. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (present-day) distribution of diatoms (between 11-94 % in the Southern Ocean) and the diatom contribution to particle formation (0.6-3.8 times higher than their

  7. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem

    SciTech Connect

    Laufkotter, Charlotte; Vogt, Meike; Gruber, Nicolas; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Dunne, John P.; John, Jasmin G.; Seferian, Roland; Volker, Christoph

    2016-07-14

    Here, accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralisation of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projections in EP over the 21st century, generated by four marine ecosystem models under the high emission scenario Representative Concentration Pathways (RCP) 8.5 of the Intergovernmental Panel on Climate Change (IPCC), and determine the processes driving these changes. The models simulate small to modest decreases in global EP between -1 and -12%. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralisation is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralisation or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralisation. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (present-day) distribution of diatoms (between 11–94% in the Southern Ocean) and the diatom contribution to particle formation (0.6–3.8 times higher than

  8. Projected future climate change and Baltic Sea ecosystem management.

    PubMed

    Andersson, Agneta; Meier, H E Markus; Ripszam, Matyas; Rowe, Owen; Wikner, Johan; Haglund, Peter; Eilola, Kari; Legrand, Catherine; Figueroa, Daniela; Paczkowska, Joanna; Lindehoff, Elin; Tysklind, Mats; Elmgren, Ragnar

    2015-06-01

    Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4 °C warming and 50-80 % decrease in ice cover by 2100. Precipitation may increase ~30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity. Coupled physical-biogeochemical models indicate that, in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, thus promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favored by AOM, while phytoplankton production may be reduced. Extra trophic levels in the food web may increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider the effects of climate change on the ecosystem dynamics and functions, as well as the effects of anthropogenic nutrient and pollutant load. Monitoring should have a holistic approach, encompassing both autotrophic (phytoplankton) and heterotrophic (e.g., bacterial) processes.

  9. Thermal effect of climate change on groundwater-fed ecosystems

    USGS Publications Warehouse

    Burns, Erick; Zhu, Yonghui; Zhan, Hongbin; Manga, Michael; Williams, Colin F.; Ingebritsen, Steven E.; Dunham, Jason

    2017-01-01

    Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat-transport equations are used to identify key processes that control the long-term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land-surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater-dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land-surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years.

  10. Vulnerability of ecosystems to climate change moderated by habitat intactness.

    PubMed

    Eigenbrod, Felix; Gonzalez, Patrick; Dash, Jadunandan; Steyl, Ilse

    2015-01-01

    The combined effects of climate change and habitat loss represent a major threat to species and ecosystems around the world. Here, we analyse the vulnerability of ecosystems to climate change based on current levels of habitat intactness and vulnerability to biome shifts, using multiple measures of habitat intactness at two spatial scales. We show that the global extent of refugia depends highly on the definition of habitat intactness and spatial scale of the analysis of intactness. Globally, 28% of terrestrial vegetated area can be considered refugia if all natural vegetated land cover is considered. This, however, drops to 17% if only areas that are at least 50% wilderness at a scale of 48×48 km are considered and to 10% if only areas that are at least 50% wilderness at a scale of 4.8×4.8 km are considered. Our results suggest that, in regions where relatively large, intact wilderness areas remain (e.g. Africa, Australia, boreal regions, South America), conservation of the remaining large-scale refugia is the priority. In human-dominated landscapes, (e.g. most of Europe, much of North America and Southeast Asia), focusing on finer scale refugia is a priority because large-scale wilderness refugia simply no longer exist. Action to conserve such refugia is particularly urgent since only 1 to 2% of global terrestrial vegetated area is classified as refugia and at least 50% covered by the global protected area network. © 2014 John Wiley & Sons Ltd.

  11. Thermal effect of climate change on groundwater-fed ecosystems

    NASA Astrophysics Data System (ADS)

    Burns, Erick R.; Zhu, Yonghui; Zhan, Hongbin; Manga, Michael; Williams, Colin F.; Ingebritsen, Steven E.; Dunham, Jason B.

    2017-04-01

    Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat-transport equations are used to identify key processes that control the long-term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land-surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater-dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land-surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years.

  12. Aerosol climate change effects on land ecosystem services.

    PubMed

    Unger, N; Yue, X; Harper, K L

    2017-08-24

    A coupled global aerosol-carbon-climate model is applied to assess the impacts of aerosol physical climate change on the land ecosystem services gross primary productivity (GPP) and net primary productivity (NPP) in the 1996-2005 period. Aerosol impacts are quantified on an annual mean basis relative to the hypothetical aerosol-free world in 1996-2005, the global climate state in the absence of the historical rise in aerosol pollution. We examine the separate and combined roles of fast feedbacks associated with the land and slow feedbacks associated with the ocean. We consider all fossil fuel, biofuel and biomass burning aerosol emission sources as anthropogenic. The effective radiative forcing for aerosol-radiation interactions is -0.44 W m(-2) and aerosol-cloud interactions is -1.64 W m(-2). Aerosols cool and dry the global climate system by -0.8 °C and -0.08 mm per day relative to the aerosol-free world. Without aerosol pollution, human-induced global warming since the preindustrial would have already exceeded the 1.5 °C aspirational limit set in the Paris Agreement by the 1996-2005 decade. Aerosol climate impacts on the global average land ecosystem services are small due to large opposite sign effects in the tropical and boreal biomes. Aerosol slow feedbacks associated with the ocean strongly dominate impacts in the Amazon and North American Boreal. Aerosol cooling of the Amazon by -1.2 °C drives NPP increases of 8% or +0.76 ± 0.61 PgC per year, a 5-10 times larger impact than estimates of diffuse radiation fertilization by biomass burning aerosol in this region. The North American Boreal suffers GPP and NPP decreases of 35% due to aerosol-induced cooling and drying (-1.6 °C, -0.14 mm per day). Aerosol-land feedbacks play a larger role in the eastern US and Central Africa. Our study identifies an eco-climate teleconnection in the polluted earth system: the rise of the northern hemisphere mid-latitude reflective aerosol pollution layer causes long range

  13. Quantifying patterns of change in marine ecosystem response to multiple pressures.

    PubMed

    Large, Scott I; Fay, Gavin; Friedland, Kevin D; Link, Jason S

    2015-01-01

    The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator's variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response

  14. Quantifying Patterns of Change in Marine Ecosystem Response to Multiple Pressures

    PubMed Central

    Large, Scott I.; Fay, Gavin; Friedland, Kevin D.; Link, Jason S.

    2015-01-01

    The ability to understand and ultimately predict ecosystem response to multiple pressures is paramount to successfully implement ecosystem-based management. Thresholds shifts and nonlinear patterns in ecosystem responses can be used to determine reference points that identify levels of a pressure that may drastically alter ecosystem status, which can inform management action. However, quantifying ecosystem reference points has proven elusive due in large part to the multi-dimensional nature of both ecosystem pressures and ecosystem responses. We used ecological indicators, synthetic measures of ecosystem status and functioning, to enumerate important ecosystem attributes and to reduce the complexity of the Northeast Shelf Large Marine Ecosystem (NES LME). Random forests were used to quantify the importance of four environmental and four anthropogenic pressure variables to the value of ecological indicators, and to quantify shifts in aggregate ecological indicator response along pressure gradients. Anthropogenic pressure variables were critical defining features and were able to predict an average of 8-13% (up to 25-66% for individual ecological indicators) of the variation in ecological indicator values, whereas environmental pressures were able to predict an average of 1-5 % (up to 9-26% for individual ecological indicators) of ecological indicator variation. Each pressure variable predicted a different suite of ecological indicator’s variation and the shapes of ecological indicator responses along pressure gradients were generally nonlinear. Threshold shifts in ecosystem response to exploitation, the most important pressure variable, occurred when commercial landings were 20 and 60% of total surveyed biomass. Although present, threshold shifts in ecosystem response to environmental pressures were much less important, which suggests that anthropogenic pressures have significantly altered the ecosystem structure and functioning of the NES LME. Gradient response

  15. Ecosystem Feedbacks to Climate Change in California: Integrated Climate Forcing from Vegetation Redistribution, Using a New Regional Climate Model Configuration

    NASA Astrophysics Data System (ADS)

    Subin, Z. M.; Jin, J.; Kueppers, L. M.; Riley, W. J.; Svehla, D. M.; Torn, M. S.

    2008-12-01

    Changes in ecosystems due to climate change or from climate mitigation measures may trigger follow-on changes in regional climate. We applied a coupled mesoscale climate and land surface model (WRF-CLM) to evaluate potential climate-ecosystem feedbacks in California, quantifying the effects of predicted vegetation changes on California's climate. We investigated the sensitivity of regional climate predictions to vegetation change using three different vegetation distributions and a historical and future climate model scenario. Our results indicate that vegetation change alone can lead to temperature changes ranging from a 1° C decrease to a 3° C increase in snow-free regions, depending on location and vegetation-type change. For example, a shift from mixed grassland to C4 -dominated grassland in the northern Central Valley causes a 1-3° C increase in July afternoon temperatures, while a shift in northwest California from coniferous forest to mixed forest and xeromorphic woodland causes a cooling of 0.5-1° C. These effects result from a complex interplay of changes in the albedo, evapotranspiration, emissivity, surface roughness, and other vegetation characteristics. Moreover, our results suggest that expected vegetation change can cause substantial shifts in Sierra snow cover. Afforestation on the scale proposed by policy-makers may have effects on climate as well; our simulations indicate that replacing shrubland with forest can result in local temperature decreases of 2° C in snow-free regions but increases of comparable magnitude in regions of marginal snow cover. We conclude that the types of vegetation changes predicted to occur in California due to climate change and afforestation will modify predicted future climate in the State, potentially amplifying it in sensitive regions like the northern Central Valley. However, in relatively snow-free regions, afforestation may provide regional climate benefits by moderating future temperature increases.

  16. A holistic approach to marine eco-systems biology.

    PubMed

    Karsenti, Eric; Acinas, Silvia G; Bork, Peer; Bowler, Chris; De Vargas, Colomban; Raes, Jeroen; Sullivan, Matthew; Arendt, Detlev; Benzoni, Francesca; Claverie, Jean-Michel; Follows, Mick; Gorsky, Gaby; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Kandels-Lewis, Stefanie; Krzic, Uros; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stéphane; Reynaud, Emmanuel Georges; Sardet, Christian; Sieracki, Michael E; Speich, Sabrina; Velayoudon, Didier; Weissenbach, Jean; Wincker, Patrick

    2011-10-01

    The structure, robustness, and dynamics of ocean plankton ecosystems remain poorly understood due to sampling, analysis, and computational limitations. The Tara Oceans consortium organizes expeditions to help fill this gap at the global level.

  17. Ocean Acoustic Waveguide Remote Sensing (OAWRS) of Marine Ecosystems

    DTIC Science & Technology

    2009-12-03

    the ecosystem- based approach to fisheries management. KEY WORDS: Ecosystem · Acoustic sensing · Instantaneous wide-area · Continuous monitoring...technical description of the OAWRS approach appears in Appendices A to F. BACKGROUND The use of acoustics to detect oceanic fish dates back to the...scales  m; Freon & Misund 1999); large shoals (Fig. 2) are far more horizontally contiguous in 2D than was previ- ously believed based on 1D line

  18. Climate change, parasitism and the structure of intertidal ecosystems.

    PubMed

    Poulin, R; Mouritsen, K N

    2006-06-01

    Evidence is accumulating rapidly showing that temperature and other climatic variables are driving many ecological processes. At the same time, recent research has highlighted the role of parasitism in the dynamics of animal populations and the structure of animal communities. Here, the likely interactions between climate change and parasitism are discussed in the context of intertidal ecosystems. Firstly, using the soft-sediment intertidal communities of Otago Harbour, New Zealand, as a case study, parasites are shown to be ubiquitous components of intertidal communities, found in practically all major animal species in the system. With the help of specific examples from Otago Harbour, it is demonstrated that parasites can regulate host population density, influence the diversity of the entire benthic community, and affect the structure of the intertidal food web. Secondly, we document the extreme sensitivity of cercarial production in parasitic trematodes to increases in temperature, and discuss how global warming could lead to enhanced trematode infections. Thirdly, the results of a simulation model are used to argue that parasite-mediated local extinctions of intertidal animals are a likely outcome of global warming. Specifically, the model predicts that following a temperature increase of less than 4 degrees C, populations of the amphipod Corophium volutator, a hugely abundant tube-building amphipod on the mudflats of the Danish Wadden Sea, are likely to crash repeatedly due to mortality induced by microphallid trematodes. The available evidence indicates that climate-mediated changes in local parasite abundance will have significant repercussions for intertidal ecosystems. On the bright side, the marked effects of even slight increases in temperature on cercarial production in trematodes could form the basis for monitoring programmes, with these sensitive parasites providing early warning signals of the environmental impacts of global warming.

  19. Climate Change Has Cascading Ecological Effects on Mountain Ecosystems

    NASA Astrophysics Data System (ADS)

    Fagre, D. B.

    2007-12-01

    Evidence that ecosystems of the Northern Rocky Mountains are responding to climate change abounds. Alpine glaciers, as iconic landscape features, are disappearing rapidly with some glaciers losing one half of their area in five years. A model developed in the 1990s to predict future rates of melt has proved too conservative when compared to recent measurements. The largest glaciers in Glacier National Park are almost 10 years ahead of schedule in their retreat. The cascading ecological effects of losing glaciers in high-elevation watersheds includes shifts in distribution and dominance of temperature-sensitive stream macroinvertebrates as stream volume dwindles (or disappears) in later summer months and water temperatures increase. Critical spawning areas for threatened bull trout (Salvelinus confluentus) will be lost without the consistent supply of cold water that melting snow and ice provide and raise management questions regarding the efficacy of recovery efforts. Snowpacks are documented as becoming smaller and melting earlier in the spring, facilitating the invasion of subalpine meadows by trees and reducing habitat for current alpine wildlife. Even vital ecosystem disturbances, such as periodic snow avalanches that clear mountain slope forests, have been shown by tree-ring studies to be responsive to climatic trends and are likely to become less prevalent. Monitoring of high-elevation mountain environments is difficult and has largely been opportunistic despite the fact that these areas have experienced three times the temperature increases over the past century when compared to lowland environments. A system of alpine observatories is sorely needed. Tighter integration of mountains studies, and comparisons among diverse mountain systems of the western U.S. has been initiated by the USGS-sponsored Western Mountain Initiative and the Consortium for Integrated Climate Research in Western Mountains to begin addressing this need.

  20. An integrated approach to manage coastal ecosystems and prevent marine pollution effects

    NASA Astrophysics Data System (ADS)

    Marcelli, Marco; Bonamano, Simone; Carli, Filippo Maria; Giovacchini, Monica; Madonia, Alice; Mancini, Emanuele; Molino, Chiara; Piermattei, Viviana; Manfredi Frattarelli, Francesco

    2016-04-01

    This work focuses an integrated approach based on Sea-Use-Map (SUM), backed by a permanent monitoring system (C-CEMS-Civitavecchia Coastal Environmental Monitoring System). This tool supports the management of the marine coastal area, contributing substantially to ecosystem benefits evaluation and to minimize pollution impacts. Within the Blue Growth strategy, the protection of marine ecosystems is considered a priority for the sustainable growth of marine and maritime sectors. To face this issue, the European MSP and MSFD directives (2014/89/EU; 2008/56/EC) strongly promote the adoption of an ecosystem-based approach, paying particular attention to the support of monitoring networks that use L-TER (long-term ecological research) observations and integrate multi-disciplinary data sets. Although not largely used in Europe yet, the Environmental Sensitivity Index (ESI), developed in 1979 by NOAA (and promoted by IMO in 2010), can be considered an excellent example of ecosystem-based approach to reduce the environmental consequences of an oil spill event in a coastal area. SUM is an ecosystem oriented cartographic tool specifically designed to support the sustainable management of the coastal areas, such as the selection of the best sites for the introduction of new uses or the identification of the coastal areas subjected to potential impacts. It also enables a rapid evaluation of the benefits produced by marine areas as well as of their anthropogenic disturbance. SUM integrates C-CEMS dataset, geomorphological and ecological features and knowledge on the coastal and maritime space uses. The SUM appliance allowed to obtain relevant operational results in the Civitavecchia coastal area (Latium, Italy), characterized by high variability of marine and coastal environments, historical heritage and affected by the presence of a big harbour, relevant industrial infrastructures, and touristic features. In particular, the valuation of marine ecosystem services based on

  1. Climate change on the Shoshone National Forest, Wyoming: a synthesis of past climate, climate projections, and ecosystem implications

    Treesearch

    Janine Rice; Andrew Tredennick; Linda A. Joyce

    2012-01-01

    The Shoshone National Forest (Shoshone) covers 2.4 million acres of mountainous topography in northwest Wyoming and is a vital ecosystem that provides clean water, wildlife habitat, timber, grazing, recreational opportunities, and aesthetic value. The Shoshone has experienced and adapted to changes in climate for many millennia, and is currently experiencing a warming...

  2. Multiple stressors threatening the future of the Baltic Sea-Kattegat marine ecosystem: implications for policy and management actions.

    PubMed

    Jutterström, S; Andersson, H C; Omstedt, A; Malmaeus, J M

    2014-09-15

    The paper discusses the combined effects of ocean acidification, eutrophication and climate change on the Baltic Sea and the implications for current management strategies. The scientific basis is built on results gathered in the BONUS+ projects Baltic-C and ECOSUPPORT. Model results indicate that the Baltic Sea is likely to be warmer, more hypoxic and more acidic in the future. At present management strategies are not taking into account temporal trends and potential ecosystem change due to warming and/or acidification, and therefore fulfilling the obligations specified within the Marine Strategy Framework Directive, OSPAR and HELCOM conventions and national environmental objectives may become significantly more difficult. The paper aims to provide a basis for a discussion on the effectiveness of current policy instruments and possible strategies for setting practical environmental objectives in a changing climate and with multiple stressors.

  3. Late Holocene climate variability in the Sahel: inferences from a marine dust record offshore Senegal

    NASA Astrophysics Data System (ADS)

    Stuut, Jan-Berend; Mulitza, Stefan; Heslop, David; Pittauerova, Daniela; Fischer, Helmut; Zabel, Matthias; Collins, James; Kuhnert, Henning; Mollenhauer, Gesine; Meyer, Inka

    2010-05-01

    Societies and ecosystems in northern Africa are strongly affected by the availability of water. As a consequence, long-term absence of rainfall has very dear effects on the ecosystems, as was dramatically shown in the 70'ies and 80'ies of the 20 century. Recent high-resolution reconstructions of Sahel palaeoclimate allow for new insights into these drastic climate variations and to disentangle the effects of the different components of the climate system on African climate change. In this study we extend the instrumental record of climate variability using a marine sediment core that was retrieved off the coast of Senegal, northwest Africa. The 530-cm long record covers the last 4,000 years continuously. A Pb age model allows for a matching of the proxy record with instrumental data. Specifically, variations in the grain-size distributions of the terrigenous sediment fraction, deconvolved with an end-member modelling algorithm (Weltje, 1997) are used to reconstruct rainfall variability on land. In addition, chemical data are used to study the effect of human-induced dust production throughout the late Holocene. We show that dust deposition is closely related to monsoonal precipitation in West Africa until the 17th century AD, followed by a sharp increase in dust deposition at the beginning of the 18th century. We hypothesise that this increase in dust mobilisation is related to the advent of commercial agriculture in the Sahel region.

  4. Late Quaternary climate variability in the Sahel: inferences from marine dust records offshore Senegal

    NASA Astrophysics Data System (ADS)

    Stuut, J. W.; Meyer, I.; Fischer, H.; Mollenhauer, G.; Mulitza, S.; Pittauerova, D.; Zabel, M.; Schulz, M.

    2008-12-01

    Societies and ecosystems in northern Africa are strongly affected by the availability of water. As a consequence, long-term absence of rainfall has very dear effects on the ecosystems, as was dramatically shown in the 70'ies and 80'ies of the 20th century. Recent high-resolution reconstructions of Sahel palaeoclimate allow for new insights into these drastic climate variations and to disentangle the effects of the different components of the climate system on African climate change. In this study we extend the instrumental record of climate variability using marine sediment cores that were retrieved off the coast of Senegal, northwest Africa. The sediment records contain continuous high-resolution records of dust sedimentation ranging from about 4,000 to about 57,000 years. A 210Pb age model for the youngest sediments allows for a matching of the proxy rainfall record with instrumental precipitation data. Specifically, variations in the grain-size distributions of the terrigenous sediment fraction, deconvolved with an end-member modelling algorithm (Weltje, 1997) are used to reconstruct rainfall variability on land throughout the late Quaternary.

  5. Marine planktonic microbes survived climatic instabilities in the past

    PubMed Central

    Cermeño, Pedro

    2012-01-01

    In the geological past, changes in climate and tectonic activity are thought to have spurred the tempo of evolutionary change among major taxonomic groups of plants and animals. However, the extent to which these historical contingencies increased the risk of extinction of microbial plankton species remains largely unknown. Here, I analyse fossil records of marine planktonic diatoms and calcareous nannoplankton over the past 65 million years from the world oceans and show that the probability of species' extinction is not correlated with secular changes in climatic instability. Further supporting these results, analyses of genera survivorship curves based on fossil data concurred with the predictions of a birth–death model that simulates the extinction of genera through time assuming stochastically constant rates of speciation and extinction. However, my results also show that these marine microbes responded to exceptional climatic contingencies in a manner that appears to have promoted net diversification. These results highlight the ability of marine planktonic microbes to survive climatic instabilities in the geological past, and point to different mechanisms underlying the processes of speciation and extinction in these micro-organisms. PMID:21775329

  6. Enabling the Integrated Assessment of Large Marine Ecosystems: Informatics to the Forefront of Science-Based Decision Support

    NASA Astrophysics Data System (ADS)

    Di Stefano, M.; Fox, P. A.; Beaulieu, S. E.; Maffei, A. R.; West, P.; Hare, J. A.

    2012-12-01

    Integrated assessments of large marine ecosystems require the understanding of interactions between environmental, ecological, and socio-economic factors that affect production and utilization of marine natural resources. Assessing the functioning of complex coupled natural-human systems calls for collaboration between natural and social scientists across disciplinary and national boundaries. We are developing a platform to implement and sustain informatics solutions for these applications, providing interoperability among very diverse and heterogeneous data and information sources, as well as multi-disciplinary organizations and people. We have partnered with NOAA NMFS scientists to facilitate the deployment of an integrated ecosystem approach to management in the Northeast U.S. (NES) and California Current Large Marine Ecosystems (LMEs). Our platform will facilitate the collaboration and knowledge sharing among NMFS natural and social scientists, promoting community participation in integrating data, models, and knowledge. Here, we present collaborative software tools developed to aid the production of the Ecosystem Status Report (ESR) for the NES LME. The ESR addresses the D-P-S portion of the DPSIR (Driver-Pressure-State-Impact-Response) management framework: reporting data, indicators, and information products for climate drivers, physical and human (fisheries) pressures, and ecosystem state (primary and secondary production and higher trophic levels). We are developing our tools in open-source software, with the main tool based on a web application capable of providing the ability to work on multiple data types from a variety of sources, providing an effective way to share the source code used to generate data products and associated metadata as well as track workflow provenance to allow in the reproducibility of a data product. Our platform retrieves data, conducts standard analyses, reports data quality and other standardized metadata, provides iterative

  7. Valuing biodiversity and ecosystem services: a useful way to manage and conserve marine resources?

    PubMed Central

    Broszeit, Stefanie; Pilling, Graham M.; Grant, Susie M.; Austen, Melanie C.

    2016-01-01

    Valuation of biodiversity and ecosystem services (ES) is widely recognized as a useful, though often controversial, approach to conservation and management. However, its use in the marine environment, hence evidence of its efficacy, lags behind that in terrestrial ecosystems. This largely reflects key challenges to marine conservation and management such as the practical difficulties in studying the ocean, complex governance issues and the historically-rooted separation of biodiversity conservation and resource management. Given these challenges together with the accelerating loss of marine biodiversity (and threats to the ES that this biodiversity supports), we ask whether valuation efforts for marine ecosystems are appropriate and effective. We compare three contrasting systems: the tropical Pacific, Southern Ocean and UK coastal seas. In doing so, we reveal a diversity in valuation approaches with different rates of progress and success. We also find a tendency to focus on specific ES (often the harvested species) rather than biodiversity. In light of our findings, we present a new conceptual view of valuation that should ideally be considered in decision-making. Accounting for the critical relationships between biodiversity and ES, together with an understanding of ecosystem structure and functioning, will enable the wider implications of marine conservation and management decisions to be evaluated. We recommend embedding valuation within existing management structures, rather than treating it as an alternative or additional mechanism. However, we caution that its uptake and efficacy will be compromised without the ability to develop and share best practice across regions. PMID:27928037

  8. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis.

    PubMed

    Leduc, Antoine O H C; Munday, Philip L; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices.

  9. Valuing biodiversity and ecosystem services: a useful way to manage and conserve marine resources?

    PubMed

    Cavanagh, Rachel D; Broszeit, Stefanie; Pilling, Graham M; Grant, Susie M; Murphy, Eugene J; Austen, Melanie C

    2016-12-14

    Valuation of biodiversity and ecosystem services (ES) is widely recognized as a useful, though often controversial, approach to conservation and management. However, its use in the marine environment, hence evidence of its efficacy, lags behind that in terrestrial ecosystems. This largely reflects key challenges to marine conservation and management such as the practical difficulties in studying the ocean, complex governance issues and the historically-rooted separation of biodiversity conservation and resource management. Given these challenges together with the accelerating loss of marine biodiversity (and threats to the ES that this biodiversity supports), we ask whether valuation efforts for marine ecosystems are appropriate and effective. We compare three contrasting systems: the tropical Pacific, Southern Ocean and UK coastal seas. In doing so, we reveal a diversity in valuation approaches with different rates of progress and success. We also find a tendency to focus on specific ES (often the harvested species) rather than biodiversity. In light of our findings, we present a new conceptual view of valuation that should ideally be considered in decision-making. Accounting for the critical relationships between biodiversity and ES, together with an understanding of ecosystem structure and functioning, will enable the wider implications of marine conservation and management decisions to be evaluated. We recommend embedding valuation within existing management structures, rather than treating it as an alternative or additional mechanism. However, we caution that its uptake and efficacy will be compromised without the ability to develop and share best practice across regions.

  10. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis

    PubMed Central

    Leduc, Antoine O. H. C.; Munday, Philip L.; Brown, Grant E.; Ferrari, Maud C. O.

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices. PMID:23980246

  11. Ecosystem-Based Analysis of a Marine Protected Area Where Fisheries and Protected Species Coexist

    NASA Astrophysics Data System (ADS)

    Espinoza-Tenorio, Alejandro; Montaño-Moctezuma, Gabriela; Espejel, Ileana

    2010-04-01

    The Gulf of California Biosphere Reserve (UGC&CRDBR) is a Marine Protected Area that was established in 1993 with the aim of preserving biodiversity and remediating environmental impacts. Because remaining vigilant is hard and because regulatory measures are difficult to enforce, harvesting has been allowed to diminish poaching. Useful management strategies have not been implemented, however, and conflicts remain between conservation legislation and the fisheries. We developed a transdisciplinary methodological scheme (pressure-state-response, loop analysis, and Geographic Information System) that includes both protected species and fisheries modeled together in a spatially represented marine ecosystem. We analyzed the response of this marine ecosystem supposing that conservation strategies were successful and that the abundance of protected species had increased. The final aim of this study was to identify ecosystem-level management alternatives capable of diminishing the conflict between conservation measures and fisheries. This methodological integration aimed to understand the functioning of the UGC&CRDBR community as well as to identify implications of conservation strategies such as the recovery of protected species. Our results suggest research hypotheses related to key species that should be protected within the ecosystem, and they point out the importance of considering spatial management strategies. Counterintuitive findings underline the importance of understanding how the community responds to disturbances and the effect of indirect pathways on the abundance of ecosystem constituents. Insights from this research are valuable in defining policies in marine reserves where fisheries and protected species coexist.

  12. Ecosystem-based analysis of a marine protected area where fisheries and protected species coexist.

    PubMed

    Espinoza-Tenorio, Alejandro; Montaño-Moctezuma, Gabriela; Espejel, Ileana

    2010-04-01

    The Gulf of California Biosphere Reserve (UGC&CRDBR) is a Marine Protected Area that was established in 1993 with the aim of preserving biodiversity and remediating environmental impacts. Because remaining vigilant is hard and because regulatory measures are difficult to enforce, harvesting has been allowed to diminish poaching. Useful management strategies have not been implemented, however, and conflicts remain between conservation legislation and the fisheries. We developed a transdisciplinary methodological scheme (pressure-state-response, loop analysis, and Geographic Information System) that includes both protected species and fisheries modeled together in a spatially represented marine ecosystem. We analyzed the response of this marine ecosystem supposing that conservation strategies were successful and that the abundance of protected species had increased. The final aim of this study was to identify ecosystem-level management alternatives capable of diminishing the conflict between conservation measures and fisheries. This methodological integration aimed to understand the functioning of the UGC&CRDBR community as well as to identify implications of conservation strategies such as the recovery of protected species. Our results suggest research hypotheses related to key species that should be protected within the ecosystem, and they point out the importance of considering spatial management strategies. Counterintuitive findings underline the importance of understanding how the community responds to disturbances and the effect of indirect pathways on the abundance of ecosystem constituents. Insights from this research are valuable in defining policies in marine reserves where fisheries and protected species coexist.

  13. Comparative analysis of European wide marine ecosystem shifts: a large-scale approach for developing the basis for ecosystem-based management.

    PubMed

    Möllmann, Christian; Conversi, Alessandra; Edwards, Martin

    2011-08-23

    Abrupt and rapid ecosystem shifts (where major reorganizations of food-web and community structures occur), commonly termed regime shifts, are changes between contrasting and persisting states of ecosystem structure and function. These shifts have been increasingly reported for exploited marine ecosystems around the world from the North Pacific to the North Atlantic. Understanding the drivers and mechanisms leading to marine ecosystem shifts is crucial in developing adaptive management strategies to achieve sustainable exploitation of marine ecosystems. An international workshop on a comparative approach to analysing these marine ecosystem shifts was held at Hamburg University, Institute for Hydrobiology and Fisheries Science, Germany on 1-3 November 2010. Twenty-seven scientists from 14 countries attended the meeting, representing specialists from seven marine regions, including the Baltic Sea, the North Sea, the Barents Sea, the Black Sea, the Mediterranean Sea, the Bay of Biscay and the Scotian Shelf off the Canadian East coast. The goal of the workshop was to conduct the first large-scale comparison of marine ecosystem regime shifts across multiple regional areas, in order to support the development of ecosystem-based management strategies.

  14. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    NASA Technical Reports Server (NTRS)

    Vandyke, H.; Worrest, R. C.

    1976-01-01

    Data was provided to assess the potential impact upon marine ecosystems if space shuttle operations contribute to a reduction of the stratospheric ozone layer. The potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation was established. The sensitivity of key community components (the primary producers) to increased UV-B radiation was delineated.

  15. Global Sea Surface Temperature and Ecosystem Change Across the Mid-Miocene Climatic Optimum

    NASA Astrophysics Data System (ADS)

    Veenstra, T. J. T.; Bakker, V. B.; Sangiorgi, F.; Peterse, F.; Schouten, S.; Sluijs, A.

    2016-12-01

    Even though the term Mid-Miocene Climatic Optimum (MMCO; ca. 17 to 14 Ma) has been widely used in the literature since the early 1990's, almost no early-middle Miocene sea surface temperature (SST) proxy records have been published that support climate warming across its onset. Benthic (and diagenetically altered planktic) foram δ18O records show a decrease, suggesting (deep) ocean warming and/or Antarctic ice sheet melting. However, reliable absolute SST proxy records are absent from the tropics and very scarce in temperate and polar regions. This leaves the question if the warmth of the MMCO was truly global and how its onset relates to the widely recorded positive (Monterey) carbon isotope excursion and volcanism. Finally, it remains uncertain how marine ecosystems responded to this hypothesized warming. We present organic biomarker SST proxy records (Uk'37 and TEX86) spanning the MMCO for several locations in the Atlantic and Pacific Ocean along a pole-to-pole transect, including Ocean Drilling Program Site 959 in the eastern Tropical Atlantic, ODP Site 643 in the Norwegian Sea, ODP Site 1007 on the Great Bahama Bank and Integrated Ocean Drilling Program Site U1352 off New Zealand. Additionally, we use marine palynology (mostly dinoflagellate cysts) to assess ecosystem change at these locations. The resulting spatial reconstruction of SST change shows that Middle Miocene warming was global. Nevertheless, the records also show distinct regional variability, including relatively large warming in the Norwegian Sea and a damped signal in the southern hemisphere, suggesting pronounced changes in ocean circulation. The onset of the MMCO was marked by prominent changes in ecological and depositional setting at the studied sites, likely also related to ocean circulation changes.

  16. Soil ecosystem functioning under climate change: plant species and community effects

    SciTech Connect

    Kardol, Paul; Cregger, Melissa; Campany, Courtney E; Classen, Aimee T

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct

  17. The Southern Ocean ecosystem under multiple climate change stresses--an integrated circumpolar assessment.

    PubMed

    Gutt, Julian; Bertler, Nancy; Bracegirdle, Thomas J; Buschmann, Alexander; Comiso, Josefino; Hosie, Graham; Isla, Enrique; Schloss, Irene R; Smith, Craig R; Tournadre, Jean; Xavier, José C

    2015-04-01

    A quantitative assessment of observed and projected environmental changes in the Southern Ocean (SO) with a potential impact on the marine ecosystem shows: (i) large proportions of the SO are and will be affected by one or more climate change processes; areas projected to be affected in the future are larger than areas that are already under environmental stress, (ii) areas affected by changes in sea-ice in the past and likely in the future are much larger than areas affected by ocean warming. The smallest areas (<1% area of the SO) are affected by glacier retreat and warming in the deeper euphotic layer. In the future, decrease in the sea-ice is expected to be widespread. Changes in iceberg impact resulting from further collapse of ice-shelves can potentially affect large parts of shelf and ephemerally in the off-shore regions. However, aragonite undersaturation (acidification) might become one of the biggest problems for the Antarctic marine ecosystem by affecting almost the entire SO. Direct and indirect impacts of various environmental changes to the three major habitats, sea-ice, pelagic and benthos and their biota are complex. The areas affected by environmental stressors range from 33% of the SO for a single stressor, 11% for two and 2% for three, to <1% for four and five overlapping factors. In the future, areas expected to be affected by 2 and 3 overlapping factors are equally large, including potential iceberg changes, and together cover almost 86% of the SO ecosystem. © 2014 John Wiley & Sons Ltd.

  18. Terrestrial ecosystems response to climate and climate change: plant migration and the future of forested systems

    NASA Astrophysics Data System (ADS)

    Flanagan, S.; Hurtt, G. C.; Fisk, J.; Sahajpal, R.

    2013-12-01

    Climate change alters ecosystem structure and type. A robust understanding of climate-ecosystem relationships can be used to forecast ecosystem structure and distribution from climate change. However, current efforts to forecast future carbon sequestration rates often oversimplify or overlook the role of plant migration and focus on potential vegetation. The difficulty in accounting for landscape complexity, disturbance rates, species-specific interactions, and dispersal properties leads to this oversimplification or non-inclusion of migration when forecasting. Forest gap models can capture many of these processes, but are limited in the size of the domain they simulate because of computational time. For large scale simulations a gap model is often used to represent a much larger domain, potentially failing to capture a number of ecosystem processes as a 30m by 30m gap model may be used to represent a 0.5 x 0.5 degree site. Another method to model migration is to simply leave a fraction of every seed type in every site, which only generates scenarios that represent maximum migration rates. As a solution to these problems we introduced a migration function to the Ecosystem Demography (ED) model. ED is an individual tree based model that uses a size and age-structured approximation for the first moment of the stochastic ecosystem model. Hence it can simulate large domains without being too computational intensive. However, explicit locations of individual trees in a site are unknown, just the total number of trees in the site. Therefore, we developed a method to pseudo-spatially model migration. A simple simulator was built and it was shown that over a large number of runs expected migration rates can be reproduced. The simulator was placed into ED and climate change scenarios run. With fitted species-specific dispersal kernels the role that plant migration will play in the future of forested systems in North America was identified. Issues that still need to be

  19. Late Holocene interdecadal climate variability in the Sahel: inferences from a marine dust record offshore Senegal

    NASA Astrophysics Data System (ADS)

    Meyer, I.; Stuut, J.-B.; Mollenhauer, G.; Mulitza, S.; Zabel, M.

    2009-04-01

    Present-day climate in northwestern Africa strongly depends on the avaiability of water. At least since the Pliocene the Saharan Desert and the semiarid Sahel belt (tropical North Afrika) have been frequently affected by sudden shifts to more arid climate. The rate of change from arid to humid conditions is presently under heavy debate (e.g., deMenocal et al., 2001, Kröpelin et al., 2008). A recent example of abrupt droughts occurred in the early 70's and 80's of the last century. In this study we compare different high-resolution marine sediment records of Sahel climate variability from the Senegal mud belt, northwest Africa. Marine sediment cores show the variations of terrigenous input (both aeolian dust and fluvial matter) from the African continent. Due to their different distinctive grain-size distributions, aeolian dust and fluvial mud can be recognised and quantified in marine sediments (e.g., Stuut et al., 2002). Based on these variations in the grain-size distributions of the terrigenous sediment fraction, deconvolved with an end-member modelling algorithm (Weltje, 1997), are used to reconstruct rainfall variability and dust production on land for the last 4,000 years. References P. B. deMenocal, et al. (2001). Late Holocene Cultural Responses to Climate Change During the Holocene. Science 292, 667 S. Kröpelin, et al. (2008) Response to Comment on "Climate-Driven Ecosystem Succession in the Sahara: The Past 6000 Years" Science 322, 1326c G. J. Weltje (1997) End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem. Mathematical Geology 9, 4

  20. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation

    NASA Astrophysics Data System (ADS)

    Daines, Stuart J.; Lenton, Timothy M.

    2016-01-01

    The balance of evidence suggests that oxygenic photosynthesis had evolved by 3.0-2.7 Ga, several hundred million years prior to the Great Oxidation ≈2.4 Ga. Previous work has shown that if oxygenic photosynthesis spread globally prior to the Great Oxidation, this could have supported widespread aerobic ecosystems in the surface ocean, without oxidising the atmosphere. Here we use a suite of models to explore the implications for carbon cycling and the Great Oxidation. We find that recycling of oxygen and carbon within early aerobic marine ecosystems would have restricted the balanced fluxes of methane and oxygen escaping from the ocean, lowering the atmospheric concentration of methane in the Great Oxidation transition and its aftermath. This in turn would have minimised any bi-stability of atmospheric oxygen, by weakening a stabilising feedback on oxygen from hydrogen escape to space. The result would have been a more reversible and probably episodic rise of oxygen at the Great Oxidation transition, consistent with existing geochemical evidence. The resulting drop in methane levels to ≈10 ppm is consistent with climate cooling at the time but adds to the puzzle of what kept the rest of the Proterozoic warm. A key test of the scenario of abundant methanotrophy in oxygen oases before the Great Oxidation is its predicted effects on the organic carbon isotope (δ13Corg) record. Our open ocean general circulation model predicts δC13org ≈ - 30 to -45‰ consistent with most data from 2.65 to 2.45 Ga. However, values of δC13org ≈ - 50 ‰ require an extreme scenario such as concentrated methanotroph production where shelf-slope upwelling of methane-rich water met oxic shelf water.

  1. Functional diversity of marine ecosystems after the Late Permian mass extinction event

    NASA Astrophysics Data System (ADS)

    Foster, William J.; Twitchett, Richard J.

    2014-03-01

    The Late Permian mass extinction event about 252 million years ago was the most severe biotic crisis of the past 500 million years and occurred during an episode of global warming. The loss of around two-thirds of marine genera is thought to have had substantial ecological effects, but the overall impacts on the functioning of marine ecosystems and the pattern of marine recovery are uncertain. Here we analyse the fossil occurrences of all known benthic marine invertebrate genera from the Permian and Triassic periods, and assign each to a functional group based on their inferred lifestyle. We show that despite the selective extinction of 62-74% of these genera, all but one functional group persisted through the crisis, indicating that there was no significant loss of functional diversity at the global scale. In addition, only one new mode of life originated in the extinction aftermath. We suggest that Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed. Functional diversity was, however, reduced in particular regions and habitats, such as tropical reefs; at these smaller scales, recovery varied spatially and temporally, probably driven by migration of surviving groups. We find that marine ecosystems did not return to their pre-extinction state, and by the Middle Triassic greater functional evenness is recorded, resulting from the radiation of previously subordinate groups such as motile, epifaunal grazers.

  2. Reinvestigating an interval of the English Wealden (non-marine Lower Cretaceous): Integrated analysis for palaeoenvironmental and climate cyclicities

    NASA Astrophysics Data System (ADS)

    Sames, Benjamin

    2017-04-01

    Although increasing over the last years, relatively few studies on changing palaeoenvironments and climate cycles in non-marine archives of the Cretaceous greenhouse Earth do exist. This is primarily a result of the nature of non-marine or terrestrial deposits - strong lateral facies change on local scales and the strong local to regional control of deposition - as well as the lack of high-resolution stratigraphy and correlations to the marine record. On the other hand, major advances in the refinements of the Cretaceous timescale now facilitate the correlation and dating of short-term sea-level records and their supposable relation to climate and/or tectonic events with appropriate resolution, i.e. on Milankovitch scales. Innovations and progress in non-marine bio-, magneto- and chemostratigraphy as well as growing data on Lower and Upper Cretaceous non-marine successions are promising towards approaches for supraregional correlation of these deposits and their appropriate correlation to the Cretaceous marine standard sections. However, convincing evidence for orbitally (climate) driven cyclicity in non-marine Lower Cretaceous deposits is thus far sparse. The non-marine Wealden deposits of England have been used eponymous for widely distributed similar Lower Cretaceous non-marine facies, and they are a 'classical' example for a Mesozoic non-marine succession for which depositional cycles have been suggested since the 1970s, including the famous ostracod 'faunicycles' by F.W. Anderson, but so far lack convincing analyses and remain to be tested. The project 'Lower Cretaceous Climate and Non-marine Stratigraphy (LCCNS)' funded by the Austrian Science Fund (FWF) analyses a chosen interval of the English Wealden at the Clock House Brickworks pit (near Capel, Surrey, England, UK) for orbitally/climate driven cyclicities with an interdisciplinary methodology: micropalaeontology, sedimentology, and geochemistry. Ostracod (aquatic microcrustaceans with calcified shell

  3. An atmospheric-to-marine synoptic classification for statistical downscaling marine climate

    NASA Astrophysics Data System (ADS)

    Camus, Paula; Rueda, Ana; Méndez, Fernando J.; Losada, Iñigo J.

    2016-12-01

    A regression-guided classification is implemented in statistical downscaling models based on weather types for downscaling multivariate wave climate and modelling extreme events. The semi-supervised method classifies the atmospheric circulation conditions (predictor) and the estimations from a regression model linking the circulation with local marine climate (filtered predictand). A weighted factor controls the influence of the predictor and predictand in the weather patterns to improve the performance of the classification to reflect local marine climate characteristics. In addition to the analysis of the variance explained by the predictor and the predictand, the selection of the optimal value of the weighted factor is based on the predictand response in order to avoid subjectivity in the solution. The statistical models using the guided classification are applied in the North Atlantic. The new technique reduces the dispersion of the multivariate predictand within weather types and improves the model skill to downscale waves and to reproduce extremes.

  4. Hydrologically driven ecosystem processes determine the distribution and persistence of ecosystem-specialist predators under climate change.

    PubMed

    Carroll, Matthew J; Heinemeyer, Andreas; Pearce-Higgins, James W; Dennis, Peter; West, Chris; Holden, Joseph; Wallage, Zoe E; Thomas, Chris D

    2015-07-31

    Climate change has the capacity to alter physical and biological ecosystem processes, jeopardizing the survival of associated species. This is a particular concern in cool, wet northern peatlands that could experience warmer, drier conditions. Here we show that climate, ecosystem processes and food chains combine to influence the population performance of species in British blanket bogs. Our peatland process model accurately predicts water-table depth, which predicts abundance of craneflies (keystone invertebrates), which in turn predicts observed abundances and population persistence of three ecosystem-specialist bird species that feed on craneflies during the breeding season. Climate change projections suggest that falling water tables could cause 56-81% declines in cranefly abundance and, hence, 15-51% reductions in the abundances of these birds by 2051-2080. We conclude that physical (precipitation, temperature and topography), biophysical (evapotranspiration and desiccation of invertebrates) and ecological (food chains) processes combine to determine the distributions and survival of ecosystem-specialist predators.

  5. Hydrologically driven ecosystem processes determine the distribution and persistence of ecosystem-specialist predators under climate change

    PubMed Central

    Carroll, Matthew J.; Heinemeyer, Andreas; Pearce-Higgins, James W.; Dennis, Peter; West, Chris; Holden, Joseph; Wallage, Zoe E.; Thomas, Chris D.

    2015-01-01

    Climate change has the capacity to alter physical and biological ecosystem processes, jeopardizing the survival of associated species. This is a particular concern in cool, wet northern peatlands that could experience warmer, drier conditions. Here we show that climate, ecosystem processes and food chains combine to influence the population performance of species in British blanket bogs. Our peatland process model accurately predicts water-table depth, which predicts abundance of craneflies (keystone invertebrates), which in turn predicts observed abundances and population persistence of three ecosystem-specialist bird species that feed on craneflies during the breeding season. Climate change projections suggest that falling water tables could cause 56–81% declines in cranefly abundance and, hence, 15–51% reductions in the abundances of these birds by 2051–2080. We conclude that physical (precipitation, temperature and topography), biophysical (evapotranspiration and desiccation of invertebrates) and ecological (food chains) processes combine to determine the distributions and survival of ecosystem-specialist predators. PMID:26227623

  6. A conceptual model of plant responses to climate with implications for monitoring ecosystem change

    Treesearch

    C. David. Bertelsen

    2013-01-01

    Climate change is affecting natural systems on a global scale and is particularly rapid in the Southwest. It is important to identify impacts of a changing climate before ecosystems become unstable. Recognizing plant responses to climate change requires knowledge of both species present and plant responses to variable climatic conditions. A conceptual model derived...

  7. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem

    NASA Astrophysics Data System (ADS)

    Laufkötter, C.; Vogt, M.; Gruber, N.; Aumont, O.; Bopp, L.; Doney, S. C.; Dunne, J. P.; Hauck, J.; John, J. G.; Lima, I. D.; Seferian, R.; Völker, C.

    2015-12-01

    Accurate projections of marine particle export production (EP) are crucial for predicting the response of the marine carbon cycle to climate change, yet models show a wide range in both global EP and their responses to climate change. This is, in part, due to EP being the net result of a series of processes, starting with net primary production (NPP) in the sunlit upper ocean, followed by the formation of particulate organic matter and the subsequent sinking and remineralization of these particles, with each of these processes responding differently to changes in environmental conditions. Here, we compare future projections in EP over the 21st century, generated by four marine ecosystem models under IPCC's high emission scenario RCP8.5, and determine the processes driving these changes. The models simulate small to modest decreases in global EP between -1 and -12 %. Models differ greatly with regard to the drivers causing these changes. Among them, the formation of particles is the most uncertain process with models not agreeing on either magnitude or the direction of change. The removal of the sinking particles by remineralization is simulated to increase in the low and intermediate latitudes in three models, driven by either warming-induced increases in remineralization or slower particle sinking, and show insignificant changes in the remaining model. Changes in ecosystem structure, particularly the relative role of diatoms matters as well, as diatoms produce larger and denser particles that sink faster and are partly protected from remineralization. Also this controlling factor is afflicted with high uncertainties, particularly since the models differ already substantially with regard to both the initial (present-day) distribution of diatoms (between 11-94 % in the Southern Ocean) and the diatom contribution to particle formation (0.6-3.8 times lower/higher than their contribution to biomass). As a consequence, changes in diatom concentration are a strong driver

  8. Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability.

    PubMed

    Dieleman, Catherine M; Branfireun, Brian A; McLaughlin, James W; Lindo, Zoë

    2015-01-01

    The composition of a peatland plant community has considerable effect on a range of ecosystem functions. Peatland plant community structure is predicted to change under future climate change, making the quantification of the direction and magnitude of this change a research priority. We subjected intact, replicated vegetated poor fen peat monoliths to elevated temperatures, increased atmospheric carbon dioxide (CO2 ), and two water table levels in a factorial design to determine the individual and synergistic effects of climate change factors on the poor fen plant community composition. We identify three indicators of a regime shift occurring in our experimental poor fen system under climate change: nonlinear decline of Sphagnum at temperatures 8 °C above ambient conditions, concomitant increases in Carex spp. at temperatures 4 °C above ambient conditions suggesting a weakening of Sphagnum feedbacks on peat accumulation, and increased variance of the plant community composition and pore water pH through time. A temperature increase of +4 °C appeared to be a threshold for increased vascular plant abundance; however the magnitude of change was species dependent. Elevated temperature combined with elevated CO2 had a synergistic effect on large graminoid species abundance, with a 15 times increase as compared to control conditions. Community analyses suggested that the balance between dominant plant species was tipped from Sphagnum to a graminoid-dominated system by the combination of climate change factors. Our findings indicate that changes in peatland plant community composition are likely under future climate change conditions, with a demonstrated shift toward a dominance of graminoid species in poor fens.

  9. Using expert judgment to estimate marine ecosystem vulnerability in the California Current.

    PubMed

    Teck, Sarah J; Halpern, Benjamin S; Kappel, Carrie V; Micheli, Fiorenza; Selkoe, Kimberly A; Crain, Caitlin M; Martone, Rebecca; Shearer, Christine; Arvai, Joe; Fischhoff, Baruch; Murray, Grant; Neslo, Rabin; Cooke, Roger

    2010-07-01

    As resource management and conservation efforts move toward multi-sector, ecosystem-based approaches, we need methods for comparing the varying responses of ecosystems to the impacts of human activities in order to prioritize management efforts, allocate limited resources, and understand cumulative effects. Given the number and variety of human activities affecting ecosystems, relatively few empirical studies are adequately comprehensive to inform these decisions. Consequently, management often turns to expert judgment for information. Drawing on methods from decision science, we offer a method for eliciting expert judgment to (1) quantitatively estimate the relative vulnerability of ecosystems to stressors, (2) help prioritize the management of stressors across multiple ecosystems, (3) evaluate how experts give weight to different criteria to characterize vulnerability of ecosystems to anthropogenic stressors, and (4) identify key knowledge gaps. We applied this method to the California Current region in order to evaluate the relative vulnerability of 19 marine ecosystems to 53 stressors associated with human activities, based on surveys from 107 experts. When judging the relative vulnerability of ecosystems to stressors, we found that experts primarily considered two criteria: the ecosystem's resistance to the stressor and the number of species or trophic levels affected. Four intertidal ecosystems (mudflat, beach, salt marsh, and rocky intertidal) were judged most vulnerable to the suite of human activities evaluated here. The highest vulnerability rankings for coastal ecosystems were invasive species, ocean acidification, sea temperature change, sea level rise, and habitat alteration from coastal engineering, while offshore ecosystems were assessed to be most vulnerable to ocean acidification, demersal destructive fishing, and shipwrecks. These results provide a quantitative, transparent, and repeatable assessment of relative vulnerability across ecosystems to

  10. Climate Warming and Disease Risks for Terrestrial and Marine Biota

    NASA Astrophysics Data System (ADS)

    Harvell, C. Drew; Mitchell, Charles E.; Ward, Jessica R.; Altizer, Sonia; Dobson, Andrew P.; Ostfeld, Richard S.; Samuel, Michael D.

    2002-06-01

    Infectious diseases can cause rapid population declines or species extinctions. Many pathogens of terrestrial and marine taxa are sensitive to temperature, rainfall, and humidity, creating synergisms that could affect biodiversity. Climate warming can increase pathogen development and survival rates, disease transmission, and host susceptibility. Although most host-parasite systems are predicted to experience more frequent or severe disease impacts with warming, a subset of pathogens might decline with warming, releasing hosts from disease. Recently, changes in El Niño-Southern Oscillation events have had a detectable influence on marine and terrestrial pathogens, including coral diseases, oyster pathogens, crop pathogens, Rift Valley fever, and human cholera. To improve our ability to predict epidemics in wild populations, it will be necessary to separate the independent and interactive effects of multiple climate drivers on disease impact.