Science.gov

Sample records for marine green alga

  1. Phycobiliproteins: A Novel Green Tool from Marine Origin Blue-Green Algae and Red Algae.

    PubMed

    Chandra, Rashmi; Parra, Roberto; Iqbal, Hafiz M N

    2017-01-01

    Marine species are comprising about a half of the whole global biodiversity; the sea offers an enormous resource for novel bioactive compounds. Several of the marine origin species show multifunctional bioactivities and characteristics that are useful for a discovery and/or reinvention of biologically active compounds. For millennia, marine species that includes cyanobacteria (blue-green algae) and red algae have been targeted to explore their enormous potential candidature status along with a wider spectrum of novel applications in bio- and non-bio sectors of the modern world. Among them, cyanobacteria are photosynthetic prokaryotes, phylogenetically a primitive group of Gramnegative prokaryotes, ranging from Arctic to Antarctic regions, capable of carrying out photosynthesis and nitrogen fixation. In the recent decade, a great deal of research attention has been paid on the pronouncement of bio-functional proteins along with novel peptides, vitamins, fine chemicals, renewable fuel and bioactive compounds, e.g., phycobiliproteins from marine species, cyanobacteria and red algae. Interestingly, they are extensively commercialized for natural colorants in food and cosmetics, antimicrobial, antioxidant, anti-inflammatory, neuroprotective, hepatoprotective agents and fluorescent neo-glycoproteins as probes for single particle fluorescence imaging fluorescent applications in clinical and immunological analysis. However, a comprehensive knowledge and technological base for augmenting their commercial utilities are lacking. Therefore, this paper will provide an overview of the phycobiliproteins-based research literature from marine cyanobacteria and red algae. This review is also focused towards analyzing global and commercial activities with application oriented-based research. Towards the end, the information is also given on the potential biotechnological and biomedical applications of phycobiliproteins.

  2. Fitness Effects of Spontaneous Mutations in Picoeukaryotic Marine Green Algae

    PubMed Central

    Krasovec, Marc; Eyre-Walker, Adam; Grimsley, Nigel; Salmeron, Christophe; Pecqueur, David; Piganeau, Gwenael; Sanchez-Ferandin, Sophie

    2016-01-01

    Estimates of the fitness effects of spontaneous mutations are important for understanding the adaptive potential of species. Here, we present the results of mutation accumulation experiments over 265–512 sequential generations in four species of marine unicellular green algae, Ostreococcus tauri RCC4221, Ostreococcus mediterraneus RCC2590, Micromonas pusilla RCC299, and Bathycoccus prasinos RCC1105. Cell division rates, taken as a proxy for fitness, systematically decline over the course of the experiment in O. tauri, but not in the three other species where the MA experiments were carried out over a smaller number of generations. However, evidence of mutation accumulation in 24 MA lines arises when they are exposed to stressful conditions, such as changes in osmolarity or exposure to herbicides. The selection coefficients, estimated from the number of cell divisions/day, varies significantly between the different environmental conditions tested in MA lines, providing evidence for advantageous and deleterious effects of spontaneous mutations. This suggests a common environmental dependence of the fitness effects of mutations and allows the minimum mutation/genome/generation rates to be inferred at 0.0037 in these species. PMID:27175016

  3. Fitness Effects of Spontaneous Mutations in Picoeukaryotic Marine Green Algae.

    PubMed

    Krasovec, Marc; Eyre-Walker, Adam; Grimsley, Nigel; Salmeron, Christophe; Pecqueur, David; Piganeau, Gwenael; Sanchez-Ferandin, Sophie

    2016-07-07

    Estimates of the fitness effects of spontaneous mutations are important for understanding the adaptive potential of species. Here, we present the results of mutation accumulation experiments over 265-512 sequential generations in four species of marine unicellular green algae, Ostreococcus tauri RCC4221, Ostreococcus mediterraneus RCC2590, Micromonas pusilla RCC299, and Bathycoccus prasinos RCC1105. Cell division rates, taken as a proxy for fitness, systematically decline over the course of the experiment in O. tauri, but not in the three other species where the MA experiments were carried out over a smaller number of generations. However, evidence of mutation accumulation in 24 MA lines arises when they are exposed to stressful conditions, such as changes in osmolarity or exposure to herbicides. The selection coefficients, estimated from the number of cell divisions/day, varies significantly between the different environmental conditions tested in MA lines, providing evidence for advantageous and deleterious effects of spontaneous mutations. This suggests a common environmental dependence of the fitness effects of mutations and allows the minimum mutation/genome/generation rates to be inferred at 0.0037 in these species.

  4. Alkaloids in Marine Algae

    PubMed Central

    Güven, Kasım Cemal; Percot, Aline; Sezik, Ekrem

    2010-01-01

    This paper presents the alkaloids found in green, brown and red marine algae. Algal chemistry has interested many researchers in order to develop new drugs, as algae include compounds with functional groups which are characteristic from this particular source. Among these compounds, alkaloids present special interest because of their pharmacological activities. Alkaloid chemistry has been widely studied in terrestrial plants, but the number of studies in algae is insignificant. In this review, a detailed account of macro algae alkaloids with their structure and pharmacological activities is presented. The alkaloids found in marine algae may be divided into three groups: 1. Phenylethylamine alkaloids, 2. Indole and halogenated indole alkaloids, 3. Other alkaloids. PMID:20390105

  5. A novel ether-linked phytol-containing digalactosylglycerolipid in the marine green alga, Ulva pertusa

    SciTech Connect

    Ishibashi, Yohei; Nagamatsu, Yusuke; Miyamoto, Tomofumi; Matsunaga, Naoyuki; Okino, Nozomu; Yamaguchi, Kuniko; Ito, Makoto

    2014-10-03

    Highlights: • Alkaline-resistant galactolipid, AEGL, was found in marine algae. • The sugar moiety of AEGL is identical to that of digalactosyldiacylglycerol. • AEGL is the first identified glycolipid that possesses an ether-linked phytol. • AEGL is ubiquitously distributed in green, red and brown marine algae. - Abstract: Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria.

  6. Seawater-based methane production from blue-green algae biomass by marine bacteria coculture

    SciTech Connect

    Matsunaga, T.; Izumida, H.

    1984-01-01

    Marine-enriched culture NKM 004 produced methane from various carbohydrates, but methane production was inhibited by sulfate and acetate accumulated in the medium. On the other hand, marine methanogenic bacterium NKM 006 produced methane from acetate and methyltrophic substrates, and methane production was not inhibited by sulfate. The mixture of NKM 004 and NKM 006 continuously produced methane from marine blue-green algae Dermocarpa species NKBG 102B at 54 ..mu..mol/L medium/h for 200 h and the dry weight of the algal biomass was decreased to 25% of the initial weight in the natural seawater. Conversion of algal carbohydrate (glucose equivalent) to methane was 65%. Results indicate that this system is promising for methane production based on seawater and solar energy.

  7. Evidence for equal size cell divisions during gametogenesis in a marine green alga Monostroma angicava

    PubMed Central

    Togashi, Tatsuya; Horinouchi, Yusuke; Sasaki, Hironobu; Yoshimura, Jin

    2015-01-01

    In cell divisions, relative size of daughter cells should play fundamental roles in gametogenesis and embryogenesis. Differences in gamete size between the two mating types underlie sexual selection. Size of daughter cells is a key factor to regulate cell divisions during cleavage. In cleavage, the form of cell divisions (equal/unequal in size) determines the developmental fate of each blastomere. However, strict validation of the form of cell divisions is rarely demonstrated. We cannot distinguish between equal and unequal cell divisions by analysing only the mean size of daughter cells, because their means can be the same. In contrast, the dispersion of daughter cell size depends on the forms of cell divisions. Based on this, we show that gametogenesis in the marine green alga, Monostroma angicava, exhibits equal size cell divisions. The variance and the mean of gamete size (volume) of each mating type measured agree closely with the prediction from synchronized equal size cell divisions. Gamete size actually takes only discrete values here. This is a key theoretical assumption made to explain the diversified evolution of isogamy and anisogamy in marine green algae. Our results suggest that germ cells adopt equal size cell divisions during gametogenesis. PMID:26333414

  8. Effects of DCMU on chlorophyll fluorescence ratio F685/F735 in marine red, brown and green algae

    NASA Astrophysics Data System (ADS)

    Wu, Bao-Gan; Zuo, Dong-Mei; Zang, Ru-Bo

    1996-03-01

    The chlorophyll fluorescence ratio F685/F735 in vivo can be a useful indicator for stress detection in higher plants and seaweeds. DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethylurea] treatment influences this ratio. The effets of DCMU on F685/F735 of marine red, brown and green algae under excitation light of different wavelengths were investigated. In the brown algae, Laminaria japonica and Undaria pinnatifida, DCMU did not increase this ratio under blue light excitation but increased the ratio slightly under excitation by green light. For the red algae, Halymenia sinensis, DCMU increased the ratio markedly under both blue and green light excitation. The percentage increase could reach 50% (under green light excitation) and was due to unequal enhancement at the two emission maxima by DCMU. A fraction of chlorophyll which contributed to fluorescence in the 735 nm region was less sensitive to DCMU and was likely from photosystem I of red algae. In the green alga, Ulva pertusa, DCMU caused a slight increase in F685/F735 value under blue, green and red light. Green light excitation during DCMU treatment increased the ratio most (16%) but induced the lowest ratio in the control (without DCMU). It is proposed that a considerable fraction of fluorescence from the 735 nm region at room temperature may be emitted by the chlorophyll of photosystem I in red algae.

  9. Overview on Biological Activities and Molecular Characteristics of Sulfated Polysaccharides from Marine Green Algae in Recent Years

    PubMed Central

    Wang, Lingchong; Wang, Xiangyu; Wu, Hao; Liu, Rui

    2014-01-01

    Among the three main divisions of marine macroalgae (Chlorophyta, Phaeophyta and Rhodophyta), marine green algae are valuable sources of structurally diverse bioactive compounds and remain largely unexploited in nutraceutical and pharmaceutical areas. Recently, a great deal of interest has been developed to isolate novel sulfated polysaccharides (SPs) from marine green algae because of their numerous health beneficial effects. Green seaweeds are known to synthesize large quantities of SPs and are well established sources of these particularly interesting molecules such as ulvans from Ulva and Enteromorpha, sulfated rhamnans from Monostroma, sulfated arabinogalactans from Codium, sulfated galacotans from Caulerpa, and some special sulfated mannans from different species. These SPs exhibit many beneficial biological activities such as anticoagulant, antiviral, antioxidative, antitumor, immunomodulating, antihyperlipidemic and antihepatotoxic activities. Therefore, marine algae derived SPs have great potential for further development as healthy food and medical products. The present review focuses on SPs derived from marine green algae and presents an overview of the recent progress of determinations of their structural types and biological activities, especially their potential health benefits. PMID:25257786

  10. Biological importance of marine algae.

    PubMed

    El Gamal, Ali A

    2010-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry.

  11. Biosorptive removal of malachite green from aqueous solution using chemically modified brown marine alga Sargassum swartzii.

    PubMed

    Jerold, M; Sivasubramanian, V

    2017-02-01

    Sargassum swartzii, marine macro brown alga, showed a high malachite green (MG) biosorption capacity in batch mode of operation. The analytical evidence from Fourier transform infrared spectra confirmed the involvement of amine group in the biosorption of MG and electrostatic interaction type of mechanism was proposed to occur between the amine group of dye and the cationic MG dye solution. Scanning electron micrograph shows the morphological features and the attachment of dye onto the biosorbent. pH edge experiment shows that biosorption capacity was maximum at pH 10. The effect of biosorbent concentration, pH, temperature, adsorption time was studied for the biosorption of MG using S. swartzii. Langmuir, Freundlich and Temkin models were used to describe the isotherm data, of which Langmuir model described the isotherm data with high coefficient of determination R(2) = 0.999. The maximum dye uptake of 111.1 mg/g was reported at pH 10 based on Langmuir model. Kinetics and temperature profiles were evaluated and reported. Desorption study was carried out with 0.1 M HCl. Efforts were also made to continuously treat MG bearing wastewater using up-flow packed column. Investigations proved that S. swartzii is an excellent biosorbent for the sequestration of MG in aqueous media.

  12. Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column.

    PubMed

    Vijayaraghavan, K; Jegan, J; Palanivelu, K; Velan, M

    2005-07-01

    Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata were investigated in a packed bed up-flow column. The experiments were conducted to study the effect of important design parameters such as bed height and flow rate. At a bed height of 25 cm, the metal-uptake capacity of U. reticulata for copper, cobalt and nickel was found to be 56.3+/-0.24, 46.1+/-0.07 and 46.5+/-0.08 mgg(-1), respectively. The Bed Depth Service Time (BDST) model was used to analyze the experimental data. The computed sorption capacity per unit bed volume (N0) was 2580, 2245 and 1911 mgl(-1) for copper, cobalt and nickel, respectively. The rate constant (K(a)) was recorded as 0.063, 0.081 and 0.275 lmg(-1)h(-1) for copper, cobalt and nickel, respectively. In flow rate experiments, the results confirmed that the metal uptake capacity and the metal removal efficiency of U. reticulata decreased with increasing flow rate. The Thomas model was used to fit the column biosorption data at different flow rates and model constants were evaluated. The column regeneration studies were carried out for three sorption-desorption cycles. The elutant used for the regeneration of the biosorbent was 0.1 M CaCl2 at pH 3 adjusted using HCl. For all the metal ions, a decreased breakthrough time and an increased exhaustion time were observed as the regeneration cycles progressed, which also resulted in a broadened mass transfer zone. The pH variations during both sorption and desorption process have been reported.

  13. Kordia ulvae sp. nov., a bacterium isolated from the surface of green marine algae Ulva sp.

    PubMed

    Qi, Feng; Huang, Zhaobin; Lai, Qiliang; Li, Dengfeng; Shao, Zongze

    2016-04-20

    A novel bacterial strain SC2T was isolated from Ulva sp. a green marine algae. Strain SC2T was Gram-negative, aerobic, rod-shaped and had no flagellum. Oxidase and catalase were positive. Strain SC2T can degrade skim milk, agar, soluble starch, Tween 20 and Tween 80. The optimal salinity and temperature of strain SC2T were 2% and 30 °C, respectively. Phylogenetic analysis based on the 16S rRNA gene indicated that strain SC2T was affiliated to the genus Kordia, with highest sequence similarity to Kordia algicida OT-1T (97.23%), Kordia antarctica IMCC3317T (97.23%) and Kordia jejudonensis SSK3-3T (97.02%); other species of the genus Kordia shared 93.98%-95.78% sequence similarity. The ANI value and the DNA-DNA hybridization estimated value between strain SC2T and three type strains (K. algicida OT-1T, K. antarctica IMCC3317T and K. jejudonensis SSK3-3T) were found to be 79.4%-82.4% and 24.2%-27.0%, respectively. The predominant fatty acids (>5.0%) were C16:0, iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, summed feature 3 (comprised C16:1 ω7c/C16:1 ω6c), summed feature 8 (comprised C18:1 ω7c/C18:1 ω6c) and summed feature 9 (comprised iso-C17:1 ω9c/C16:0 10-methyl). The respiratory quinone was Menaquinone-6 (MK-6). The polar lipid profile consisted of four unknown lipids, three unidentified phospholipids, one unidentified aminolipid and one phosphatidylethanolamine. The G+C content of the genomic DNA was 34.5 mol%. The combined genotypic and phenotypic data showed that strain SC2T represents a novel species within the genus Kordia, for which the name Kordia ulvae sp. nov. is proposed, with the type strain SC2T (= KCTC 42872T = MCCC 1A01772T = LMG 29123T).

  14. De-eutrophication of effluent wastewater from fish aquaculture by using marine green alga Ulva pertusa

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Wang, Zengfu; Lin, Wei

    2010-03-01

    The de-eutrophication abilities and characteristics of Ulva pertusa, a marine green alga, were investigated in Qingdao Yihai Hatchery Center from spring to summer in 2005 by analyzing the dynamic changes in NH{4/+}, NO{3/-}, NO{2/-} as well as the total dissolved inorganic nitrogen (DIN). The results show that the effluent wastewater produced by fish aquaculture had typical eutrophication levels with an average of 34.3 μmol L-1 DIN. This level far exceeded the level IV quality of the national seawater standard and could easily lead to phytoplankton blooms in nature if discarded with no treatment. The de-eutrophication abilities of U. pertusa varied greatly and depended mainly on the original eutrophic level the U. pertusa material was derived from. U. pertusa used to living in low DIN conditions had poor DIN removal abilities, while materials cultured in DIN-enriched seawater showed strong de-eutrophication abilities. In other words, the de-eutrophication ability of U. pertusa was evidently induced by high DIN levels. The de-eutrophication capacity of U. pertusa seemed to also be light dependent, because it was weaker in darkness than under illumination. However, no further improvement in the de-eutrophication capacity of U. pertusa was observed once the light intensity exceeded 300 μmol M2 S-1. Results of semi-continuous wastewater replacement experiments showed that U. pertusa permanently absorbed nutrients from eutrophicated wastewater at a mean rate of 299 mg/kg fresh weight per day (126 mg/kg DIN during the night, 173 mg/kg in daytime). Based on the above results, engineered de-eutrophication of wastewater by using a U. pertusa filter system seems feasible. The algal quantity required to purify all the eutrophicated outflow wastewater from the Qingdao Yihai Hatchery Center into oligotrophic level I clean seawater was also estimated using the daily discharged wastewater, the average DIN concentration released and the de-eutrophication capacity of U. pertusa.

  15. Immunological cross-reactions between P700 chlorophyll-proteins isolated from two marine green algae and one higher plant

    NASA Astrophysics Data System (ADS)

    Wu, Xiaonan; Zhou, Baicheng; Tseng, C. K.

    1991-06-01

    P700 Chl-protein was isolated from a marine green alga Bryopsis corticulans with SDS-resolved thylakoid membranes by SDS-PAGE. After elution from the gel, the recovered protein revealed a 100 KD polypeptide by re-electrophoresis. The same SDS-PAGE procedure was used to isolate P700 Chl-proteins from spinach ( Spinacea oleracea) and another marine green alga Codium fragile. Polyclonal antibodies to Bryopsis P700 protein were raised in rabbits. The antibodies were shown to cross-react with P700 Chl-protein and Chl-protein complexes containing P700 protein from B. Corticulans, C. f ragile, and even spinach. Results indicate similarity of the amino acid sequences of the P700 Chl-proteins and the highly conserved structure of the apoproteins of phylogenetically distant species over evolution. The antibodies cross-react with none of the components of PSII in the species tested, indicating an independent pathway of evolution of photosystem I and photosystem II of later origin.

  16. Biological importance of marine algae

    PubMed Central

    El Gamal, Ali A.

    2009-01-01

    Marine organisms are potentially prolific sources of highly bioactive secondary metabolites that might represent useful leads in the development of new pharmaceutical agents. Algae can be classified into two main groups; first one is the microalgae, which includes blue green algae, dinoflagellates, bacillariophyta (diatoms)… etc., and second one is macroalgae (seaweeds) which includes green, brown and red algae. The microalgae phyla have been recognized to provide chemical and pharmacological novelty and diversity. Moreover, microalgae are considered as the actual producers of some highly bioactive compounds found in marine resources. Red algae are considered as the most important source of many biologically active metabolites in comparison to other algal classes. Seaweeds are used for great number of application by man. The principal use of seaweeds as a source of human food and as a source of gums (phycocollides). Phycocolloides like agar agar, alginic acid and carrageenan are primarily constituents of brown and red algal cell walls and are widely used in industry. PMID:23960716

  17. Hydrogen production from salt water by Marine blue green algae and solar radiation

    NASA Technical Reports Server (NTRS)

    Mitsui, A.; Rosner, D.; Kumazawa, S.; Barciela, S.; Phlips, E.

    1985-01-01

    Two marine bluegreen algae, Oscillatoria sp. Miami BG 7 and Synechococcus sp Miami 041511 have been selected as the result of over 10 years continuous and intensive effort of isolation, growth examination, and the screening of hydrogen photoproduction capability in this laboratory. Both strains photoproduced hydrogen for several days at high rates and a quantity of hydrogen was accumulated in a closed vessel. Overall hydrogen donor substance of the hydrogen photoproduction was found to be salt water. Using strain Miami BG 7, a two step method of hydrogen photoproduction from salt water was successfully developed and this was recycled several times over a one month period using both free cells and immobilized cells in both indoor and outdoor under natural sunlight. According to these experiments, a prototype floating hydrogen production system was designed for further development of the biosolar hydrogen production system.

  18. Screening and isolation of the algicidal compounds from marine green alga Ulva intestinalis

    NASA Astrophysics Data System (ADS)

    Sun, Xue; Jin, Haoliang; Zhang, Lin; Hu, Wei; Li, Yahe; Xu, Nianjun

    2016-07-01

    Twenty species of seaweed were collected from the coast of Zhejiang, China, extracted with ethanol, and screened for algicidal activity against red tide microalgae Heterosigma akashiwo and Prorocentrum micans. Inhibitory effects of fresh and dried tißsues of green alga Ulva intestinalis were assessed and the main algicidal compounds were isolated, purified, and identified. Five seaweed species, U. intestinalis, U. fasciata, Grateloupia romosissima, Chondria crassicaulis, and Gracilariopsis lemaneiformis, were investigated for their algicidal activities. Fresh tissues of 8.0 and 16.0 mg/mL of U. intestinalis dissolved in media significantly inhibited growth of H. akashiwo and P. micans, respectively. Dried tissue and ethyl acetate (EtOAc) extracts of U. intestinalis at greater than 1.2 and 0.04 mg/mL, respectively, were fatal to H. akashiwo, while its water and EtOAc extracts in excess of 0.96 and 0.32 mg/mL, respectively, were lethal to P. micans. Three algicidal compounds in the EtOAc extracts were identified as 15-ethoxy-(6z,9z,12z)-hexadecatrienoic acid (I), (6E,9E,12E)-(2-acetoxy- β-D-glucose)-octadecatrienoic acid ester (II) and hexadecanoic acid (III). Of these, compound II displayed the most potent algicidal activity with IC50 values of 4.9 and 14.1 µg/mL for H. akashiwo and P. micans, respectively. Compound I showed moderate algicidal activity with IC50 values of 13.4 and 24.7 µg/mL for H. akashiwo and P. micans, respectively. These findings suggested that certain macroalgae or products therefrom could be used as effective biological control agents against red tide algae.

  19. An original adaptation of photosynthesis in the marine green alga Ostreococcus.

    PubMed

    Cardol, Pierre; Bailleul, Benjamin; Rappaport, Fabrice; Derelle, Evelyne; Béal, Daniel; Breyton, Cécile; Bailey, Shaun; Wollman, Francis André; Grossman, Arthur; Moreau, Hervé; Finazzi, Giovanni

    2008-06-03

    Adaptation of photosynthesis in marine environment has been examined in two strains of the green, picoeukaryote Ostreococcus: OTH95, a surface/high-light strain, and RCC809, a deep-sea/low-light strain. Differences between the two strains include changes in the light-harvesting capacity, which is lower in OTH95, and in the photoprotection capacity, which is enhanced in OTH95. Furthermore, RCC809 has a reduced maximum rate of O(2) evolution, which is limited by its decreased photosystem I (PSI) level, a possible adaptation to Fe limitation in the open oceans. This decrease is, however, accompanied by a substantial rerouting of the electron flow to establish an H(2)O-to-H(2)O cycle, involving PSII and a potential plastid plastoquinol terminal oxidase. This pathway bypasses electron transfer through the cytochrome b(6)f complex and allows the pumping of "extra" protons into the thylakoid lumen. By promoting the generation of a large DeltapH, it facilitates ATP synthesis and nonphotochemical quenching when RCC809 cells are exposed to excess excitation energy. We propose that the diversion of electrons to oxygen downstream of PSII, but before PSI, reflects a common and compulsory strategy in marine phytoplankton to bypass the constraints imposed by light and/or nutrient limitation and allow successful colonization of the open-ocean marine environment.

  20. Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species.

    PubMed

    Vanegas, C H; Bartlett, J

    2013-01-01

    Marine algae have emerged as an alternative feedstock for the production of a number of renewable fuels, including biogas. In addition to energy potential, other characteristics make them attractive as an energy source, including their ability to absorb carbon dioxide (CO2), higher productivity rates than land-based crops and the lack of water use or land competition. For Ireland, biofuels from marine algae can play an important role by reducing imports of fossil fuels as well as providing the necessary energy in rural communities. In this study, five potential seaweed species common in Irish waters, Saccorhiza polyschides, Ulva sp., Laminaria digitata, Fucus serratus and Saccharina latissima, were co-digested individually with bovine slurry. Batch reactors of 120ml and 1000ml were set up and incubated at 35 degrees C to investigate their suitability for production of biogas. Digesters fed with S. latissima produced the maximum methane yield (335 ml g volatile solids(-1) (g(VS)(-1) followed by S. polyschides with 255 ml g(VS)(-1). L. digitata produced 246ml g(VS)(-1) and the lowest yields were from the green seaweed Ulva sp. 191ml g(VS)(-1). The methane and CO2 percentages ranged between 50-72% and 10-45%, respectively. The results demonstrated that the seaweed species investigated are good feedstocks candidates for the production of biogas and methane as a source of energy. Their use on a large-scale process will require further investigation to increase yields and reduce production costs.

  1. Vulnerability of marine habitats to the invasive green alga Caulerpa racemosa var. cylindracea within a marine protected area.

    PubMed

    Katsanevakis, Stelios; Issaris, Yiannis; Poursanidis, Dimitris; Thessalou-Legaki, Maria

    2010-08-01

    The relative vulnerability of various habitat types to Caulerpa racemosa var. cylindracea invasion was investigated in the National Marine Park of Zakynthos (Ionian Sea, Greece). The density of C. racemosa fronds was modelled with generalized additive models for location, scale and shape (GAMLSS), based on an information theory approach. The species was present in as much as 33% of 748 randomly placed quadrats, which documents its aggressive establishment in the area. The probability of presence of the alga within randomly placed 20 x 20 cm quadrats was 83% on 'matte morte' (zones of fibrous remnants of a former Posidonia oceanica bed), 69% on rocky bottoms, 86% along the margins of P. oceanica meadows, 10% on sandy/muddy substrates, and 6% within P. oceanica meadows. The high frond density on 'matte morte' and rocky bottoms indicates their high vulnerability. The lowest frond density was observed within P. oceanica meadows. However, on the margins of P. oceanica meadows and within gaps in fragmented meadows relative high C. racemosa densities were observed. Such gaps within meadows represent spots of high vulnerability to C. racemosa invasion.

  2. Interaction of CdSe/ZnS quantum dots with the marine diatom Phaeodactylum tricornutum and the green alga Dunaliella tertiolecta: a biophysical approach.

    PubMed

    Morelli, Elisabetta; Salvadori, Elisa; Bizzarri, Ranieri; Cioni, Patrizia; Gabellieri, Edi

    2013-12-01

    In this study, we investigated the interaction of nanoparticles, such as CdSe/ZnS quantum dots (QDs), with the marine diatom Phaeodactylum tricornutum and the green alga Dunaliella tertiolecta, as biological models in the marine environment. Fluorescence kinetics measurements indicated that 30min after dispersion in seawater QDs lost the 60% of the initial emission intensity, possibly due to the occurrence of aggregation processes. However, the presence of algae seemed to mitigate this effect. By using confocal microscopy, we highlighted the presence of QDs adsorbed on the surface of both algae, but not inside the cells. The toxicity of QDs was evaluated in terms of inhibition of growth rate, oxidative stress, and lipid peroxidation. QDs in the range of 1-2.5nM gradually inhibited the growth rate of P. tricornutum and increased the oxidative stress, as evinced by the increase in lipid peroxidation, reactive oxygen species (ROS) production and activity of two main antioxidant enzymes (superoxide dismutase and catalase). On the contrary, QDs did not inhibit the growth rate of D. tertiolecta, at most a modest stimulation was observed in the range of 0.5-2nM, suggesting a hormetic response. No effect in the parameters indicating oxidative stress was observed in the green alga. In conclusion our results showed that the biological effects were species-specific.

  3. Neuroprotective Effects of Marine Algae

    PubMed Central

    Pangestuti, Ratih; Kim, Se-Kwon

    2011-01-01

    The marine environment is known as a rich source of chemical structures with numerous beneficial health effects. Among marine organisms, marine algae have been identified as an under-exploited plant resource, although they have long been recognized as valuable sources of structurally diverse bioactive compounds. Presently, several lines of studies have provided insight into biological activities and neuroprotective effects of marine algae including antioxidant, anti-neuroinflammatory, cholinesterase inhibitory activity and the inhibition of neuronal death. Hence, marine algae have great potential to be used for neuroprotection as part of pharmaceuticals, nutraceuticals and functional foods. This contribution presents an overview of marine algal neuroprotective effects and their potential application in neuroprotection. PMID:21673890

  4. Studies on marine algae for haemagglutinic activity.

    PubMed

    Alam, M T; Usmanghani, K

    1994-07-01

    Lectins (agglutinins) are important in medical and immunological applications. Phytohaemagglutinins have been found useful in blood banking. Keeping in view of these facts, the marine algae found at Karachi coastal region have been screened for agglutinic activity by using human erythrocytes of A, B, AB and 0 group. Altogether 53 algal samples were collected and subjected to extraction, fractionation serial dilution and titre determinations. The total marine algae screened for haemagglutinic activity were 44 out of these 14, 13 and 17 belonged to Chlorophyta, Phaeophyta, and Rhodophyta respectively. Among these three groups the Rhodophyta showed the highest number of lytic activity. The green marine alga Valoniopsis pachynema showed a titre value between 2(2) and 2(3), which is statistically significant. In case of brown marine algae Colpomenia sinuosa was found to be active (titre 2(3)), while Dictyota dichotoma, D. indica and Iyengaria stellata, furnished week titre value as 2(2). The red marine algae screened were 17, out of these 4 spp. showed significant activity (titre 2(3)), and these are Gelidium usmanghani, Gracilaria foliifera Hypnea pannosa and Hynea valentiae. While Scinaia fascicularis, Scinaia indica and Champia parvula were found to be weak in their onset on human erythrocytes. The results obtained were quite in agreement with those reported in the literature.

  5. Sulfated polysaccharides as bioactive agents from marine algae.

    PubMed

    Ngo, Dai-Hung; Kim, Se-Kwon

    2013-11-01

    Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae.

  6. Halogenated Compounds from Marine Algae

    PubMed Central

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-01-01

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds. PMID:20948909

  7. Halogenated compounds from marine algae.

    PubMed

    Cabrita, Maria Teresa; Vale, Carlos; Rauter, Amélia Pilar

    2010-08-09

    Marine algae produce a cocktail of halogenated metabolites with potential commercial value. Structures exhibited by these compounds go from acyclic entities with a linear chain to complex polycyclic molecules. Their medical and pharmaceutical application has been investigated for a few decades, however other properties, such as antifouling, are not to be discarded. Many compounds were discovered in the last years, although the need for new drugs keeps this field open as many algal species are poorly screened. The ecological role of marine algal halogenated metabolites has somehow been overlooked. This new research field will provide valuable and novel insight into the marine ecosystem dynamics as well as a new approach to comprehending biodiversity. Furthermore, understanding interactions between halogenated compound production by algae and the environment, including anthropogenic or global climate changes, is a challenging target for the coming years. Research of halogenated metabolites has been more focused on macroalgae than on phytoplankton. However, phytoplankton could be a very promising material since it is the base of the marine food chain with quick adaptation to environmental changes, which undoubtedly has consequences on secondary metabolism. This paper reviews recent progress on this field and presents trends on the role of marine algae as producers of halogenated compounds.

  8. Marine green algae Codium iyengarii as a good bio-sorbent for elimination of reactive black 5 from aqueous solution.

    PubMed

    Azmat, Rafia

    2014-09-01

    The green seaweeds Codium iyengarii (C. iyengarii) was used to prepare as an adsorbent surface for the deletion of Reactive Black 5 (RB 5) from aqueous solution via adsorption. The batch technique was adopted under the optimal condition of amount of adsorbent, agitation time, concentration of dye, and at neutral and low pH. The depletion in concentration of the dye was monitored by Schimadzo 180 AUV/Visible spectrophotometer. It was initially monolayer adsorption, which showed multilayered formation later on with the passage of time at low and neutral pH. The Results displayed that adsorptive ability of C. iyengarii was 1.95-3.82mg/g with an elevation in primary application of dye contents (50ppm-70 ppm). The elimination data were well stable into the Langmuir and Freundlich adsorption isotherm equations. The Langmuir (R2=0.9848) and Freundlich (R2=0.9441) constants for biosorption of RB 5 on green algae were determined. The coefficient relation values suggested that the Langmuir isotherm was well fitted. It explained the interaction of surface molecules, which helps in well organization of dye molecules in a monolayer formation initially on algal biomass. The pseudo first and second order rate equations were applied to link the investigational statistics and found that the second order rate expression was found to be more suitable for both the models. The absorption spectrum of RB 5 before and after adsorption with respect to time was monitored which clearly indicate that C. iyengarii was much effective surface at very low quantity.

  9. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens

    NASA Astrophysics Data System (ADS)

    Kathiraven, T.; Sundaramanickam, A.; Shanmugam, N.; Balasubramanian, T.

    2015-04-01

    We present the synthesis and antibacterial activity of silver nanoparticles using Caulerpa racemosa, a marine algae. Fresh C. racemosa was collected from the Gulf of Mannar, Southeast coast of India. The seaweed extract was used for the synthesis of AgNO3 at room temperature. UV-visible spectrometry study revealed surface plasmon resonance at 413 nm. The characterization of silver nanoparticle was carried out using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and transmission electron microscope (TEM). FT-IR measurements revealed the possible functional groups responsible for reduction and stabilization of the nanoparticles. X-ray diffraction analysis showed that the particles were crystalline in nature with face-centered cubic geometry.TEM micrograph has shown the formation of silver nanoparticles with the size in the range of 5-25 nm. The synthesized AgNPs have shown the best antibacterial activity against human pathogens such as Staphylococcus aureus and Proteus mirabilis. The above eco-friendly synthesis procedure of AgNPs could be easily scaled up in future for the industrial and therapeutic needs.

  10. PPR proteins of green algae

    PubMed Central

    Tourasse, Nicolas J; Choquet, Yves; Vallon, Olivier

    2013-01-01

    Using the repeat finding algorithm FT-Rep, we have identified 154 pentatricopeptide repeat (PPR) proteins in nine fully sequenced genomes from green algae (with a total of 1201 repeats) and grouped them in 47 orthologous groups. All data are available in a database, PPRdb, accessible online at http://giavap-genomes.ibpc.fr/ppr. Based on phylogenetic trees generated from the repeats, we propose evolutionary scenarios for PPR proteins. Two PPRs are clearly conserved in the entire green lineage: MRL1 is a stabilization factor for the rbcL mRNA, while HCF152 binds in plants to the psbH-petB intergenic region. MCA1 (the stabilization factor for petA) and PPR7 (a short PPR also acting on chloroplast mRNAs) are conserved across the entire Chlorophyta. The other PPRs are clade-specific, with evidence for gene losses, duplications, and horizontal transfer. In some PPR proteins, an additional domain found at the C terminus provides clues as to possible functions. PPR19 and PPR26 possess a methyltransferase_4 domain suggesting involvement in RNA guanosine methylation. PPR18 contains a C-terminal CBS domain, similar to the CBSPPR1 protein found in nucleoids. PPR16, PPR29, PPR37, and PPR38 harbor a SmR (MutS-related) domain similar to that found in land plants pTAC2, GUN1, and SVR7. The PPR-cyclins PPR3, PPR4, and PPR6, in addition, contain a cyclin domain C-terminal to their SmR domain. PPR31 is an unusual PPR-cyclin containing at its N terminus an OctotricoPeptide Repeat (OPR) and a RAP domain. We consider the possibility that PPR proteins with a SmR domain can introduce single-stranded nicks in the plastid chromosome. PMID:24021981

  11. New records of marine algae in Vietnam

    NASA Astrophysics Data System (ADS)

    Le Hau, Nhu; Ly, Bui Minh; Van Huynh, Tran; Trung, Vo Thanh

    2015-06-01

    In May, 2013, a scientific expedition was organized by the Vietnam Academy of Science and Technology (VAST) and the Far Eastern Branch of the Russian Academy of Sciences (FEBRAS) through the frame of the VAST-FEBRAS International Collaboration Program. The expedition went along the coast of Vietnam from Quang Ninh to Kien Giang. The objective was to collect natural resources to investigate the biological and biochemical diversity of the territorial waters of Vietnam. Among the collected algae, six taxa are new records for the Vietnam algal flora. They are the red algae Titanophora pikeana (Dickie) Feldmann from Cu Lao Xanh Island, Laurencia natalensis Kylin from Tho Chu Island, Coelothrix irregularis (Harvey) Børgesen from Con Dao Island, the green algae Caulerpa oligophylla Montagne, Caulerpa andamanensis (W.R. Taylor) Draisma, Prudhomme et Sauvage from Phu Quy Island, and Caulerpa falcifolia Harvey & Bailey from Ly Son Island. The seaweed flora of Vietnam now counts 833 marine algal taxa, including 415 Rhodophyta, 147 Phaeophyceae, 183 Chlorophyta, and 88 Cyanobacteria.

  12. Cultivation of macroscopic marine algae

    SciTech Connect

    Ryther, J.H.

    1982-11-01

    The red alga Gracilaria tikvahiae may be grown outdoors year-round in central Florida with yields averaging 35.5 g dry wt/m/sup 2/.day, greater than the most productive terrestrial plants. This occurs only when the plants are in a suspended culture, with vigorous aeration and an exchange of 25 or more culture volumes of enriched seawater per day, which is not cost-effective. A culture system was designed in which Gracilaria, stocked at a density of 2 kg wet wt/m/sup 2/, grows to double its biomass in one to two weeks; it is then harvested to its starting density, and anaerobically digested to methane. The biomass is soaked for 6 hours in the digester residue, storing enough nutrients for two weeks' growth in unenriched seawater. The methane is combusted for energy and the waste gas is fed to the culture to provide mixing and CO/sub 2/, eliminating the need for aeration and seawater exchange. The green alga Ulva lactuca, unlike Gracilaria, uses bicarbonate as a photosynthesis carbon source, and can grow at high pH, with little or no free CO/sub 2/. It can therefore produce higher yields than Gracilaria in low water exchange conditions. It is also more efficiently converted to methane than is Gracilaria, but cannot tolerate Florida's summer temperatures so cannot be grown year-round. Attempts are being made to locate or produce a high-temperature tolerant strain.

  13. Advances in genetic engineering of marine algae.

    PubMed

    Qin, Song; Lin, Hanzhi; Jiang, Peng

    2012-01-01

    Algae are a component of bait sources for animal aquaculture, and they produce abundant valuable compounds for the chemical industry and human health. With today's fast growing demand for algae biofuels and the profitable market for cosmetics and pharmaceuticals made from algal natural products, the genetic engineering of marine algae has been attracting increasing attention as a crucial systemic technology to address the challenge of the biomass feedstock supply for sustainable industrial applications and to modify the metabolic pathway for the more efficient production of high-value products. Nevertheless, to date, only a few marine algae species can be genetically manipulated. In this article, an updated account of the research progress in marine algal genomics is presented along with methods for transformation. In addition, vector construction and gene selection strategies are reviewed. Meanwhile, a review on the progress of bioreactor technologies for marine algae culture is also revisited.

  14. [Marine algae of Baja California Sur, Mexico: nutritional value].

    PubMed

    Carrillo Domínguez, Silvia; Casas Valdez, Margarita; Ramos Ramos, Felipe; Pérez-Gil, Fernando; Sánchez Rodríguez, Ignacio

    2002-12-01

    The Baja California Peninsula is one of the richest regions of seaweed resources in México. The objective of this study was to determine the chemical composition of some marine algae species of Baja California Sur, with an economical potential due to their abundance and distribution, and to promote their use as food for human consumption and animal feeding. The algae studied were Green (Ulva spp., Enteromorpha intestinalis, Caulerpa sertularoides, Bryopsis hypnoides), Red (Laurencia johnstonii, Spyridia filamentosa, Hypnea valentiae) and Brown (Sargassum herporizum, S. sinicola, Padina durvillaei, Hydroclathrus clathrathus, Colpomenia sinuosa). The algae were dried and ground before analysis. In general, the results showed that algae had a protein level less than 11%, except L. johnstonii with 18% and low energy content. The ether extract content was lower than 1%. However, the algae were a good source of carbohydrates and inorganic matter.

  15. Collection, Isolation and Culture of Marine Algae.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  16. Recovery of algal oil from marine green macro-algae Enteromorpha intestinalis by acidic-hydrothermal process.

    PubMed

    Jeong, Gwi-Taek; Hong, Yong-Ki; Lee, Hyung-Ho; Kong, In-Soo; Kim, Joong Kyun; Park, Nam Gyu; Kim, Sung-Koo; Park, Don-Hee

    2014-09-01

    In this study, the recovery of algal oil from Enteromorpha intestinalis based on an acidic-hydrothermal reaction was investigated. Overall, the algal oil yield after the acidic-hydrothermal reaction was increased under the conditions of high reaction temperature, high catalyst concentration, and long reaction time within the tested ranges. Significantly, catalyst concentration, compared with reaction temperature and time, less affected algal oil recovery. The optimal acidic-hydrothermal reaction conditions for production of algal oil from E. intestinalis were as follows-200 °C reaction temperature, 2.92 % catalyst concentration, 54 min reaction time. Under these conditions, an 18.6 % algal oil yield was obtained. By increasing the combined severity factor, the algae oil recovery yield linearly increased.

  17. Bromophenols in Marine Algae and Their Bioactivities

    PubMed Central

    Liu, Ming; Hansen, Poul Erik; Lin, Xiukun

    2011-01-01

    Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antioxidant, antimicrobial, anticancer, anti-diabetic, and anti-thrombotic effects. Here, we briefly review the recent progress of these marine algal biomaterials, with respect to structure, bioactivities, and their potential application as pharmaceuticals. PMID:21822416

  18. Hydrogen production by photosynthetic green algae.

    PubMed

    Ghirardi, Maria L

    2006-08-01

    Oxygenic photosynthetic organisms such as cyanobacteria, green algae and diatoms are capable of absorbing light and storing up to 10-13% of its energy into the H-H bond of hydrogen gas. This process, which takes advantage of the photosynthetic apparatus of these organisms to convert sunlight into chemical energy, could conceivably be harnessed for production of significant amounts of energy from a renewable resource, water. The harnessed energy could then be coupled to a fuel cell for electricity generation and recycling of water molecules. In this review, current biochemical understanding of this reaction in green algae, and some of the major challenges facing the development of future commercial algal photobiological systems for H2 production have been discussed.

  19. Plasticity predicts evolution in a marine alga.

    PubMed

    Schaum, C Elisa; Collins, Sinéad

    2014-10-22

    Under global change, populations have four possible responses: 'migrate, acclimate, adapt or die' (Gienapp et al. 2008 Climate change and evolution: disentangling environmental and genetic response. Mol. Ecol. 17, 167-178. (doi:10.1111/j.1365-294X.2007.03413.x)). The challenge is to predict how much migration, acclimatization or adaptation populations are capable of. We have previously shown that populations from more variable environments are more plastic (Schaum et al. 2013 Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nature 3, 298-230. (doi:10.1038/nclimate1774)), and here we use experimental evolution with a marine microbe to learn that plastic responses predict the extent of adaptation in the face of elevated partial pressure of CO2 (pCO2). Specifically, plastic populations evolve more, and plastic responses in traits other than growth can predict changes in growth in a marine microbe. The relationship between plasticity and evolution is strongest when populations evolve in fluctuating environments, which favour the evolution and maintenance of plasticity. Strikingly, plasticity predicts the extent, but not direction of phenotypic evolution. The plastic response to elevated pCO2 in green algae is to increase cell division rates, but the evolutionary response here is to decrease cell division rates over 400 generations until cells are dividing at the same rate their ancestors did in ambient CO2. Slow-growing cells have higher mitochondrial potential and withstand further environmental change better than faster growing cells. Based on this, we hypothesize that slow growth is adaptive under CO2 enrichment when associated with the production of higher quality daughter cells.

  20. Plasticity predicts evolution in a marine alga

    PubMed Central

    Schaum, C. Elisa; Collins, Sinéad

    2014-01-01

    Under global change, populations have four possible responses: ‘migrate, acclimate, adapt or die’ (Gienapp et al. 2008 Climate change and evolution: disentangling environmental and genetic response. Mol. Ecol. 17, 167–178. (doi:10.1111/j.1365-294X.2007.03413.x)). The challenge is to predict how much migration, acclimatization or adaptation populations are capable of. We have previously shown that populations from more variable environments are more plastic (Schaum et al. 2013 Variation in plastic responses of a globally distributed picoplankton species to ocean acidification. Nature 3, 298–230. (doi:10.1038/nclimate1774)), and here we use experimental evolution with a marine microbe to learn that plastic responses predict the extent of adaptation in the face of elevated partial pressure of CO2 (pCO2). Specifically, plastic populations evolve more, and plastic responses in traits other than growth can predict changes in growth in a marine microbe. The relationship between plasticity and evolution is strongest when populations evolve in fluctuating environments, which favour the evolution and maintenance of plasticity. Strikingly, plasticity predicts the extent, but not direction of phenotypic evolution. The plastic response to elevated pCO2 in green algae is to increase cell division rates, but the evolutionary response here is to decrease cell division rates over 400 generations until cells are dividing at the same rate their ancestors did in ambient CO2. Slow-growing cells have higher mitochondrial potential and withstand further environmental change better than faster growing cells. Based on this, we hypothesize that slow growth is adaptive under CO2 enrichment when associated with the production of higher quality daughter cells. PMID:25209938

  1. Antioxidant Activity of Hawaiian Marine Algae

    PubMed Central

    Kelman, Dovi; Posner, Ellen Kromkowski; McDermid, Karla J.; Tabandera, Nicole K.; Wright, Patrick R.; Wright, Anthony D.

    2012-01-01

    Marine algae are known to contain a wide variety of bioactive compounds, many of which have commercial applications in pharmaceutical, medical, cosmetic, nutraceutical, food and agricultural industries. Natural antioxidants, found in many algae, are important bioactive compounds that play an important role against various diseases and ageing processes through protection of cells from oxidative damage. In this respect, relatively little is known about the bioactivity of Hawaiian algae that could be a potential natural source of such antioxidants. The total antioxidant activity of organic extracts of 37 algal samples, comprising of 30 species of Hawaiian algae from 27 different genera was determined. The activity was determined by employing the FRAP (Ferric Reducing Antioxidant Power) assays. Of the algae tested, the extract of Turbinaria ornata was found to be the most active. Bioassay-guided fractionation of this extract led to the isolation of a variety of different carotenoids as the active principles. The major bioactive antioxidant compound was identified as the carotenoid fucoxanthin. These results show, for the first time, that numerous Hawaiian algae exhibit significant antioxidant activity, a property that could lead to their application in one of many useful healthcare or related products as well as in chemoprevention of a variety of diseases including cancer. PMID:22412808

  2. [Allelopathic effect of artemisinin on green algae].

    PubMed

    Wu, Ye-Kuan; Yuan, Ling; Huang, Jian-Guo; Li, Long-Yun

    2013-05-01

    To study the growth effects of differing concentrations of artemisinin on green algae and to evaluate the ecological risk. The effects of artemisinin on the growth and the content change of chlorophyll, protein, oxygen, conductivity, SOD, CAT, MDA in Chlorella pyrenoidosa and Scenedesmus oblique were studied through 96 h toxicity tests. Artemisinin accelerated the growth of algae at a lower concentration ( <40 microg . L-1) with content increase of chlorophyll or protein and so on, and it inhibited the growth of algae at higher concentration ( >80 microg . L-1). The content of chlorophyll or protein in algae cells reduced with the increasing concentration of artemisinin, exhibiting the good concentration-effect relationship. SOD and CAT activity was stimulated at low concentrations ( <40 microg . L-1 ) and inhibited at high concentrations ( >80 microg . L- 1). However, MDA content increased significantly with the increase of concentration. According to the seven kinds of indicators changes, the time-response and dose-response suggested that the surfactant first hurt in Ch. pyrenoidosa was damaging membrane by changing membrane lipid molecules soluble. And primary mechanism on Chlorophyta cells might be related to the oxidation damage of lipid and other biological large molecules caused by artemisinin. The large-scale intensive planting of Artemisia annua may reduce the surrounding water productivity.

  3. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity▿†

    PubMed Central

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan; Harder, Tilmann; Gram, Lone

    2011-01-01

    The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so

  4. Chloroplast Phylogenomic Inference of Green Algae Relationships.

    PubMed

    Sun, Linhua; Fang, Ling; Zhang, Zhenhua; Chang, Xin; Penny, David; Zhong, Bojian

    2016-02-05

    The green algal phylum Chlorophyta has six diverse classes, but the phylogenetic relationship of the classes within Chlorophyta remains uncertain. In order to better understand the ancient Chlorophyta evolution, we have applied a site pattern sorting method to study compositional heterogeneity and the model fit in the green algal chloroplast genomic data. We show that the fastest-evolving sites are significantly correlated with among-site compositional heterogeneity, and these sites have a much poorer fit to the evolutionary model. Our phylogenomic analyses suggest that the class Chlorophyceae is a monophyletic group, and the classes Ulvophyceae, Trebouxiophyceae and Prasinophyceae are non-monophyletic groups. Our proposed phylogenetic tree of Chlorophyta will offer new insights to investigate ancient green algae evolution, and our analytical framework will provide a useful approach for evaluating and mitigating the potential errors of phylogenomic inferences.

  5. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    DTIC Science & Technology

    1990-05-01

    division Cyanophyta , commonly called blue -green algae cr cyanobacteria . Although cyanobacteria are found in almost any environment ranging from hot...p ecst Available Copy ~’ COPy Ni AD FRESHWATER CYANOBACTERIA ( BLUE -GREEN ALGAE ) TOXINS:’ I ISOLATION AND CHARACTERIZATION < DTIC ANNUAL/FINAL...AA I 78 11. TITLE (In•.ju . ’,curry Ci.si fication) Freshwater Cyanobacteria ( blue -green algae ) Toxins: Isolatior and CharacteriZation 12. PERSONAL

  6. Freshwater Cyanobacteria (Blue-Green Algae) Toxins: Isolation and Characterization

    DTIC Science & Technology

    1989-01-15

    exclusively caused by strains of species that are members of the L division Cyanophyta , commonly called blue -green algae or cyanobacteria . Although...0 0 Lfl (NAD FRESHWATER CYANOBACTERIA ( BLUE -GREEN ALGAE ) TOXINS: ISOLATION AND CHARACTERIZATION ANNCUAL REPORT Wayne W. Carmichael Sarojini Bose...Frederick, Maryland 21701-5012 62770A 6277GA871 AA 378 11 TITLE &who* Secwn~y C11mrfaon) Freshwater Cyanobacteria ( blue -green algae ) Toxins: Isolation

  7. Sterol chemotaxonomy of marine pelagophyte algae.

    PubMed

    Giner, José-Luis; Zhao, Hui; Boyer, Gregory L; Satchwell, Michael F; Andersen, Robert A

    2009-07-01

    Several marine algae of the class Pelagophyceae produce the unusual marine sterol 24-propylidenecholesterol, mainly as the (24E)-isomer. The (24Z)-isomer had previously been considered as a specific biomarker for Aureococcus anophagefferens, the 'brown tide' alga of the Northeast coast of the USA. To test this hypothesis and to generate chemotaxonomic information, the sterol compositions of 42 strains of pelagophyte algae including 17 strains of Aureococcus anophagefferens were determined by GC analysis. A more comprehensive sterol analysis by HPLC and (1)H-NMR was obtained for 17 selected pelagophyte strains. All strains analyzed contained 24-propylidenecholesterol. In all strains belonging to the order Sarcinochrysidales, this sterol was found only as the (E)-isomer, while all strains in the order Pelagomonadales contained the (Z)-isomer, either alone or together with the (E)-isomer. The occurrence of Delta(22) and 24alpha-sterols was limited to the Sarcinochrysidales. The first occurrence of Delta(22)-24-propylcholesterol in an alga, CCMP 1410, was reported. Traces of the rare sterol 26,26-dimethyl-24-methylenecholesterol were detected in Aureococcus anophagefferens, and the (25R)-configuration was proposed, based on biosynthetic considerations. Traces of a novel sterol, 24-propylidenecholesta-5,25-dien-3beta-ol, were detected in several species.

  8. Selenium Uptake and Volatilization by Marine Algae

    NASA Astrophysics Data System (ADS)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  9. Antibody Production in Plants and Green Algae.

    PubMed

    Yusibov, Vidadi; Kushnir, Natasha; Streatfield, Stephen J

    2016-04-29

    Monoclonal antibodies (mAbs) have a wide range of modern applications, including research, diagnostic, therapeutic, and industrial uses. Market demand for mAbs is high and continues to grow. Although mammalian systems, which currently dominate the biomanufacturing industry, produce effective and safe recombinant mAbs, they have a limited manufacturing capacity and high costs. Bacteria, yeast, and insect cell systems are highly scalable and cost effective but vary in their ability to produce appropriate posttranslationally modified mAbs. Plants and green algae are emerging as promising production platforms because of their time and cost efficiencies, scalability, lack of mammalian pathogens, and eukaryotic posttranslational protein modification machinery. So far, plant- and algae-derived mAbs have been produced predominantly as candidate therapeutics for infectious diseases and cancer. These candidates have been extensively evaluated in animal models, and some have shown efficacy in clinical trials. Here, we review ongoing efforts to advance the production of mAbs in plants and algae.

  10. Bromophenols from marine algae with potential anti-diabetic activities

    NASA Astrophysics Data System (ADS)

    Lin, Xiukun; Liu, Ming

    2012-12-01

    Marine algae contain various bromophenols with a variety of biological activities, including antimicrobial, anticancer, and anti-diabetic effects. Here, we briefly review the recent progress in researches on the biomaterials from marine algae, emphasizing the relationship between the structure and the potential anti-diabetic applications. Bromophenols from marine algae display their hyperglycemic effects by inhibiting the activities of protein tyrosine phosphatase 1B, α-glucosidase, as well as other mechanisms.

  11. OPTIMIZATION OF SOME HEAVY METALS BIOSORPTION BY REPRESENTATIVE EGYPTIAN MARINE ALGAE(1).

    PubMed

    Elrefaii, Abdelmonem H; Sallam, Lotfy A; Hamdy, Abdelhamid A; Ahmed, Eman F

    2012-04-01

    Marine algae-as inexpensive and renewable natural biomass-have attracted the attention of many investigators to be used to preconcentrate and biosorb many heavy metal ions. Impressed by this concept, the metal uptake capacity of Egyptian marine algae was examined using representatives of green and brown algae, namely, Ulva lactuca L. and Sargassum latifolium (Turner) C. Agardh, respectively. The biosorption efficiencies of Cu(2+) , Co(2+) , Ni(2+) , Cd(2+) , Hg(2+) , Ag(2+) , and Pb(2+) ions seem to depend on the type of the algae used as well as the conditions under which the uptake processes were conducted. It was demonstrated that a pH range of 7.5-8.8 was optimum for the removal of the tested metals. Similarly, the uptake process was markedly accelerated during the first 2 h using relatively low metal level and sufficient amounts of the dried powdered tested algae.

  12. Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass.

    PubMed

    Bulgariu, Dumitru; Bulgariu, Laura

    2012-01-01

    The biosorption of Pb(II), Cd(II), and Co(II), respectively, from aqueous solution on green algae waste biomass was investigated. The green algae waste biomass was obtained from marine green algae after extraction of oil, and was used as low-cost biosorbent. Batch shaking experiments were performed to examine the effects of initial solution pH, contact time and temperature. The equilibrium biosorption data were analyzed using two isotherm models (Langmuir and Freundlich) and two kinetics models (pseudo-first order and pseudo-second order). The results indicate that Langmuir model provide best correlation of experimental data, and the pseudo-second order kinetic equation could best describe the biosorption kinetics of considered heavy metals.

  13. Phosphorus-Limited Growth of a Green Alga and a Blue-Green Alga

    PubMed Central

    Lang, Douglas S.; Brown, Edward J.

    1981-01-01

    The phosphorus-limited growth kinetics of the chlorophyte Scenedesmus quadricauda and the cyanophyte Synechococcus Nägeli were studied by using batch and continuous culturing techniques. The steady-state phosphate transport capability and the phosphorus storage capacity is higher in S. Nägeli than in S. quadricauda. Synechococcus Nägeli can also deplete phosphate to much lower levels than can S. quadricauda. These results, along with their morphological characteristics, were used to construct partial physiological profiles for each organism. The profiles indicate that this unicellular cyanophyte (cyanobacterium) is better suited for growth in phosphorus-limited oligotrophic niches than is this chlorophyte (green alga). PMID:16345896

  14. Phosphorus-limited growth of a green alga and a blue-green alga

    SciTech Connect

    Lang, D.S.; Brown, E.J.

    1981-12-01

    The phosphorus-limited growth kinetics of the chlorophyte Scenedesmus quadricauda and the cyanophyte Synechococcus Nageli were studied by using batch and continuous culturing techniques. The steady-state phosphate transport capability and the phosphorus storage capacity is higher in S. Nageli than in S. quadricauda. Synechococcus Nageli can also deplete phosphate to much lower levels than can S. quadricauda. These results, along with their morphological characteristics, were used to construct partial physiological profiles for each organism. The profiles indicate that this unicellular cyanophyte (cyanobacterium) is better suited for growth in phosphorus-limited oligotrophic niches than is this chlorophyte (green alga). (Refs. 44).

  15. Preliminary survey of fungistatic properties of marine algae.

    PubMed

    WELCH, A M

    1962-01-01

    Welch, Ann Marie (U. S. Veterans Administration Hospital, Durham, N. C.). Preliminary survey of fungistatic properties of marine algae. J. Bacteriol. 83:97-99. 1962-Homogenized preparations of 35 marine algae were tested for inhibitory activity against 6 pathogenic or opportunistically pathogenic fungi with saturated filter-paper discs on seeded Sabouraud agar plates; 11 of these preparations produced wide zones of inhibition against 1 or more test organisms, and at least 4 of the 11 are considered to be worthy of further study. The results indicated that further search should be made for antifungal substances from marine algae.

  16. Heavy metals in marine algae of the Kuwait coast

    SciTech Connect

    Buo-Olayan, A.H.; Subrahmanyam, M.N.V.

    1996-12-31

    Marine algae are considered as important primary producers in the coastal region. Several marine algal species are being considered as raw material for various economically important products and this has resulted in their increasing demand. Marine algal species also have been suggested to be the indicators of pollution. Keeping in view the importance of marine algal species for direct or indirect human and cattle consumption, it is necessary to monitor the bioaccumulation of certain elements in these species. This study was aimed at establishing the concentration levels of trace metals in marine algae of the Kuwait coast. 26 refs., 1 fig., 3 tabs.

  17. Temporal and spatial distributions of green algae micro-propagules in the coastal waters of the Subei Shoal, China

    NASA Astrophysics Data System (ADS)

    Song, Wei; Li, Yan; Fang, Song; Wang, Zongling; Xiao, Jie; Li, Ruixiang; Fu, Mingzhu; Zhu, Mingyuan; Zhang, Xuelei

    2015-09-01

    The blooms of large-scale green tides in the Yellow Sea have become a focus of marine research in China. Micro-propagules, as the propagule source of green algae, played an important role in the formation of green tides. In this study, monthly surveys in the coastal area of the Subei Shoal were conducted from October 2010 to October 2011. The temporal and spatial distributions of green algae micro-propagules in the water column and sediment were investigated. Green algae micro-propagules were widely distributed in the waters and sediments throughout the year, and their distribution significantly corresponded to Porphyra aquaculture activities. The abundance of the micro-propagules decreased gradually from inshore to offshore. The average number of micro-propagules reached a maximum in late April and was low during the winter and summer. The source of the micro-propagules was the green algae attached to the Porphyra aquaculture rafts. The green algae micro-propagules might serve as the seed stock of the raft-attached green algae and provide the initial conditions for the formation of green tides.

  18. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats.

    PubMed

    Holzinger, Andreas; Allen, Michael C; Deheyn, Dimitri D

    2016-09-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal objects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charophyte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorption spectra of these microalgae in the waveband of 400-900nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance between 400-550nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this high absorbance was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did hardly change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400-500nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation.

  19. Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats

    PubMed Central

    Holzinger, Andreas; Allen, Michael C.; Deheyn, Dimitri D.

    2016-01-01

    Snow algae and green algae living in aeroterrestrial habitats are ideal obbjects to study adaptation to high light irradiation. Here, we used a detailed description of the spectral properties as a proxy for photo-acclimation/protection in snow algae (Chlamydomonas nivalis, Chlainomonas sp. and Chloromonas sp.) and charopyhte green algae (Zygnema sp., Zygogonium ericetorum and Klebsormidium crenulatum). The hyperspectral microscopic mapping and imaging technique allowed us to acquire total absorbance spectra of these microalgae in the waveband of 400-900 nm. Particularly in Chlamydomonas nivalis and Chlainomonas sp., a high absorbance in the wave band of 400-550 nm was observed, due to naturally occurring secondary carotenoids; in Chloromonas sp. and in the charopyhte algae this was missing, the latter being close relatives to land plants. To investigate if cellular water loss has an influence on the spectral properties, the cells were plasmolysed in sorbitol or desiccated at ambient air. While in snow algae, these treatments did not change the spectral properties, in the charopyhte algae the condensation of the cytoplasm and plastids increased the absorbance in the lower waveband of 400 – 500 nm. These changes might be ecologically relevant and photoprotective, as aeroterrestrial algae are naturally exposed to occasional water limitation, leading to desiccation, which are conditions usually occurring together with higher irradiation. PMID:27442511

  20. Marine algae and land plants share conserved phytochrome signaling systems

    DOE PAGES

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; ...

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence ofmore » phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.« less

  1. Marine algae and land plants share conserved phytochrome signaling systems

    SciTech Connect

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee -Hong; Jimenez, Valeria; Rockwell, Nathan C.; Martin, Shelley S.; Ngan, Chew Yee; Reistetter, Emily N.; van Baren, Marijke J.; Price, Dana C.; Wei, Chia -Lin; Reyes-Prieto, Adrian; Lagarias, J. Clark; Worden, Alexandra Z.

    2014-09-29

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. The expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.

  2. Marine algae and land plants share conserved phytochrome signaling systems.

    PubMed

    Duanmu, Deqiang; Bachy, Charles; Sudek, Sebastian; Wong, Chee-Hong; Jiménez, Valeria; Rockwell, Nathan C; Martin, Shelley S; Ngan, Chew Yee; Reistetter, Emily N; van Baren, Marijke J; Price, Dana C; Wei, Chia-Lin; Reyes-Prieto, Adrian; Lagarias, J Clark; Worden, Alexandra Z

    2014-11-04

    Phytochrome photosensors control a vast gene network in streptophyte plants, acting as master regulators of diverse growth and developmental processes throughout the life cycle. In contrast with their absence in known chlorophyte algal genomes and most sequenced prasinophyte algal genomes, a phytochrome is found in Micromonas pusilla, a widely distributed marine picoprasinophyte (<2 µm cell diameter). Together with phytochromes identified from other prasinophyte lineages, we establish that prasinophyte and streptophyte phytochromes share core light-input and signaling-output domain architectures except for the loss of C-terminal response regulator receiver domains in the streptophyte phytochrome lineage. Phylogenetic reconstructions robustly support the presence of phytochrome in the common progenitor of green algae and land plants. These analyses reveal a monophyletic clade containing streptophyte, prasinophyte, cryptophyte, and glaucophyte phytochromes implying an origin in the eukaryotic ancestor of the Archaeplastida. Transcriptomic measurements reveal diurnal regulation of phytochrome and bilin chromophore biosynthetic genes in Micromonas. Expression of these genes precedes both light-mediated phytochrome redistribution from the cytoplasm to the nucleus and increased expression of photosynthesis-associated genes. Prasinophyte phytochromes perceive wavelengths of light transmitted farther through seawater than the red/far-red light sensed by land plant phytochromes. Prasinophyte phytochromes also retain light-regulated histidine kinase activity lost in the streptophyte phytochrome lineage. Our studies demonstrate that light-mediated nuclear translocation of phytochrome predates the emergence of land plants and likely represents a widespread signaling mechanism in unicellular algae.

  3. Evaluation of filamentous green algae as feedstocks for biofuel production.

    PubMed

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production.

  4. Algae.

    PubMed

    Raven, John A; Giordano, Mario

    2014-07-07

    Algae frequently get a bad press. Pond slime is a problem in garden pools, algal blooms can produce toxins that incapacitate or kill animals and humans and even the term seaweed is pejorative - a weed being a plant growing in what humans consider to be the wrong place. Positive aspects of algae are generally less newsworthy - they are the basis of marine food webs, supporting fisheries and charismatic marine megafauna from albatrosses to whales, as well as consuming carbon dioxide and producing oxygen. Here we consider what algae are, their diversity in terms of evolutionary origin, size, shape and life cycles, and their role in the natural environment and in human affairs.

  5. MicroRNAs in a multicellular green alga Volvox carteri.

    PubMed

    Li, Jingrui; Wu, Yang; Qi, Yijun

    2014-01-01

    microRNAs (miRNAs) have emerged as key components in the eukaryotic gene regulatory network. We and others have previously identified many miRNAs in a unicellular green alga, Chlamydomonas reinhardtii. To investigate whether miRNA-mediated gene regulation is a general mechanism in green algae and how miRNAs have been evolved in the green algal lineage, we examined small RNAs in Volvox carteri, a multicellular species in the same family with Chlamydomonas reinhardtii. We identified 174 miRNAs in Volvox, with many of them being highly enriched in gonidia or somatic cells. The targets of the miRNAs were predicted and many of them were subjected to miRNA-mediated cleavage in vivo, suggesting that miRNAs play regulatory roles in the biology of green algae. Our catalog of miRNAs and their targets provides a resource for further studies on the evolution, biological functions, and genomic properties of miRNAs in green algae.

  6. Carbon Partitioning in Green Algae (Chlorophyta) and the Enolase Enzyme

    PubMed Central

    Polle, Jürgen E. W.; Neofotis, Peter; Huang, Andy; Chang, William; Sury, Kiran; Wiech, Eliza M.

    2014-01-01

    The exact mechanisms underlying the distribution of fixed carbon within photoautotrophic cells, also referred to as carbon partitioning, and the subcellular localization of many enzymes involved in carbon metabolism are still unknown. In contrast to the majority of investigated green algae, higher plants have multiple isoforms of the glycolytic enolase enzyme, which are differentially regulated in higher plants. Here we report on the number of gene copies coding for the enolase in several genomes of species spanning the major classes of green algae. Our genomic analysis of several green algae revealed the presence of only one gene coding for a glycolytic enolase [EC 4.2.1.11]. Our predicted cytosolic localization would require export of organic carbon from the plastid to provide substrate for the enolase and subsequent re-import of organic carbon back into the plastids. Further, our comparative sequence study of the enolase and its 3D-structure prediction may suggest that the N-terminal extension found in green algal enolases could be involved in regulation of the enolase activity. In summary, we propose that the enolase represents one of the crucial regulatory bottlenecks in carbon partitioning in green algae. PMID:25093929

  7. Development of Green Fuels From Algae - The University of Tulsa

    SciTech Connect

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  8. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae).

    PubMed

    Melis, Anastasios

    2007-10-01

    Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis-respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature's most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand.

  9. Fatty acid amides from freshwater green alga Rhizoclonium hieroglyphicum.

    PubMed

    Dembitsky, V M; Shkrob, I; Rozentsvet, O A

    2000-08-01

    Freshwater green algae Rhizoclonium hieroglyphicum growing in the Ural Mountains were examined for their fatty acid amides using capillary gas chromatography-mass spectrometry (GC-MS). Eight fatty acid amides were identified by GC-MS. (Z)-9-octadecenamide was found to be the major component (2.26%).

  10. Oleosin of subcellular lipid droplets evolved in green algae.

    PubMed

    Huang, Nan-Lan; Huang, Ming-Der; Chen, Tung-Ling L; Huang, Anthony H C

    2013-04-01

    In primitive and higher plants, intracellular storage lipid droplets (LDs) of triacylglycerols are stabilized with a surface layer of phospholipids and oleosin. In chlorophytes (green algae), a protein termed major lipid-droplet protein (MLDP) rather than oleosin on LDs was recently reported. We explored whether MLDP was present directly on algal LDs and whether algae had oleosin genes and oleosins. Immunofluorescence microscopy revealed that MLDP in the chlorophyte Chlamydomonas reinhardtii was associated with endoplasmic reticulum subdomains adjacent to but not directly on LDs. In C. reinhardtii, low levels of a transcript encoding an oleosin-like protein (oleolike) in zygotes-tetrads and a transcript encoding oleosin in vegetative cells transferred to an acetate-enriched medium were found in transcriptomes and by reverse transcription-polymerase chain reaction. The C. reinhardtii LD fraction contained minimal proteins with no detectable oleolike or oleosin. Several charophytes (advanced green algae) possessed low levels of transcripts encoding oleosin but not oleolike. In the charophyte Spirogyra grevilleana, levels of oleosin transcripts increased greatly in cells undergoing conjugation for zygote formation, and the LD fraction from these cells contained minimal proteins, two of which were oleosins identified via proteomics. Because the minimal oleolike and oleosins in algae were difficult to detect, we tested their subcellular locations in Physcomitrella patens transformed with the respective algal genes tagged with a Green Fluorescent Protein gene and localized the algal proteins on P. patens LDs. Overall, oleosin genes having weak and cell/development-specific expression were present in green algae. We present a hypothesis for the evolution of oleosins from algae to plants.

  11. Effect of Interactions Among Algae on Nitrogen Fixation by Blue-Green Algae (Cyanobacteria) in Flooded Soils

    PubMed Central

    Wilson, John T.; Greene, Sarah; Alexander, Martin

    1979-01-01

    Nitrogen fixation (C2H2 reduction) by algae in flooded soil was limited by interactions within the algal community. Nitrogen fixation by either indigenous algae or Tolypothrix tenuis was reduced severalfold by a dense suspension of the green alga Nephrocytium sp. Similarly, interactions between the nitrogen-fixing alga (cyanobacterium) Aulosira 68 and natural densities of indigenous algae limited nitrogen-fixing activity in one of two soils examined. This was demonstrated by developing a variant of Aulosira 68 that was resistant to the herbicide simetryne at concentrations that prevented development of indigenous algae. More nitrogen was fixed by the resistant variant in flooded soil containing herbicide than was fixed in herbicide-free soil by either the indigenous algae or indigenous algae plus the parent strain of Aulosira. Interference from indigenous algae may hamper the development of nitrogen-fixing algae introduced into rice fields in attempts to increase biological nitrogen fixation. PMID:16345463

  12. Potential anti-inflammatory natural products from marine algae.

    PubMed

    Fernando, I P Shanura; Nah, Jae-Woon; Jeon, You-Jin

    2016-12-01

    Inflammatory diseases have become one of the leading causes of health issue throughout the world, having a considerable influence on healthcare costs. With the emerging developments in natural product, synthetic and combinatorial chemistry, a notable success has been achieved in discovering natural products and their synthetic structural analogs with anti-inflammatory activity. However, many of these therapeutics have indicated detrimental side effects upon prolonged usage. Marine algae have been identified as an underexplored reservoir of unique anti-inflammatory compounds. These include polyphenols, sulfated polysaccharides, terpenes, fatty acids, proteins and several other bioactives. Consumption of these marine algae could provide defense against the pathophysiology of many chronic inflammatory diseases. With further investigation, algal anti-inflammatory phytochemicals have the potential to be used as therapeutics or in the synthesis of structural analogs with profound anti-inflammatory activity with reduced side effects. The current review summarizes the latest knowledge about the potential anti-inflammatory compounds discovered from marine algae.

  13. Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue.

    PubMed

    Edison, Thomas Nesakumar Jebakumar Immanuel; Atchudan, Raji; Kamal, Chennappan; Lee, Yong Rok

    2016-09-01

    In this study, a simple and green method has been demonstrated for the synthesis of highly stable silver nanoparticles (AgNPs) using aqueous extract of Caulerpa racemosa (C. racemosa) as a reducing and capping agent. The formation and stability of AgNPs were studied using visual observation and UV-Visible (UV-Vis) spectroscopy. The stable AgNPs were further characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and high resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopic (EDS) methods. The biosynthesized AgNPs showed a sharp surface plasmon resonance peak at 441 nm in the visible region and they have extended stability which has been confirmed by the UV-Vis spectroscopic results. XRD result revealed the crystalline nature of synthesized AgNPs and they are mainly oriented in (111) plane. FT-IR studies proved that the phytoconstituents of C. racemosa protect the AgNPs from aggregation and also which are responsible for the high stability. The size of synthesized AgNPs was approximately 25 nm with distorted spherical shape, identified from the HR-TEM images. The synthesized AgNPs showed excellent catalytic activity towards degradation of methylene blue.

  14. A new model for the calcification of the green macro-alga Halimeda opuntia (Lamouroux)

    NASA Astrophysics Data System (ADS)

    Wizemann, André; Meyer, Friedrich W.; Westphal, Hildegard

    2014-12-01

    Halimeda opuntia is a cosmopolitan marine calcifying green alga in shallow tropical marine environments. Besides Halimeda's contribution to a diverse habitat, the alga is an important sediment producer. Fallen calcareous segments of Halimeda spp. are a major component of carbonate sediments in many tropical settings and play an important role in reef framework development and carbonate platform buildup. Consequently the calcification of H. opuntia accounts for large portions of the carbonate budget in tropical shallow marine ecosystems. Earlier studies investigating the calcification processes of Halimeda spp. have tended to focus on the microstructure or the physiology of the alga, thus overlooking the interaction of physiological and abiotic processes behind the formation of the skeleton. By analyzing microstructural skeletal features of Halimeda segments with the aid of scanning electron microscopy and relating their occurrence to known physiological processes, we have been able to identify the initiation of calcification within an organic matrix and demonstrate that biologically induced cementation is an important process in calcification. For the first time, we propose a model for the calcification of Halimeda spp. that considers both the alga's physiology and the carbon chemistry of the seawater with respect to the development of different skeletal features. The presence of an organic matrix and earlier detected external carbonic anhydrase activity suggest that Halimeda spp. exhibit biotic precipitation of calcium carbonate, as many other species of marine organisms do. On the other hand, it is the formation of micro-anhedral carbonate through the alga's metabolism that leads to a cementation of living segments. Precisely, this process allows H. opuntia to contribute substantial amounts of carbonate sediments to tropical shallow seas.

  15. Laser-fluorescence measurement of marine algae

    NASA Technical Reports Server (NTRS)

    Browell, E. V.

    1980-01-01

    Progress in remote sensing of algae by laser-induced fluorescence is subject of comprehensive report. Existing single-wavelength and four-wavelength systems are reviewed, and new expression for power received by airborne sensor is derived. Result differs by as much as factor of 10 from those previously reported. Detailed error analysis evluates factors affecting accuracy of laser-fluorosensor systems.

  16. Boron uptake, localization, and speciation in marine brown algae.

    PubMed

    Miller, Eric P; Wu, Youxian; Carrano, Carl J

    2016-02-01

    In contrast to the generally boron-poor terrestrial environment, the concentration of boron in the marine environment is relatively high (0.4 mM) and while there has been extensive interest in its use as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the relatively depth independent, and the generally non-nutrient-like concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the ocean. Among the marine plant-like organisms the brown algae (Phaeophyta) are one of only five lineages of photosynthetic eukaryotes to have evolved complex multicellularity. Many of unusual and often unique features of brown algae are attributable to this singular evolutionary history. These adaptations are a reflection of the marine coastal environment which brown algae dominate in terms of biomass. Consequently, brown algae are of fundamental importance to oceanic ecology, geochemistry, and coastal industry. Our results indicate that boron is taken up by a facilitated diffusion mechanism against a considerable concentration gradient. Furthermore, in both Ectocarpus and Macrocystis some boron is most likely bound to cell wall constituent alginate and the photoassimilate mannitol located in sieve cells. Herein, we describe boron uptake, speciation, localization and possible biological function in two species of brown algae, Macrocystis pyrifera and Ectocarpus siliculosus.

  17. The use of Design of Experiments and Response Surface Methodology to optimize biomass and lipid production by the oleaginous marine green alga, Nannochloropsis gaditana in response to light intensity, inoculum size and CO2.

    PubMed

    Hallenbeck, Patrick C; Grogger, Melanie; Mraz, Megan; Veverka, Donald

    2015-05-01

    Biodiesel produced from microalgal lipids is being considered as a potential source of renewable energy. However, a number of hurdles will have to be overcome if such a process is to become practical. One important factor is the volumetric production of biomass and lipid that can be achieved. The marine alga Nannochloropsis gaditana is under study since it is known to be highly oleaginous and has a number of other attractive properties. Factors that might be important in biomass and lipid production by this alga are light intensity, inoculum size and CO2. Here we have carried out for the first time a RSM-DOE study of the influence of these important culture variables and define conditions that maximize biomass production, lipid content (BODIPY® fluorescence) and total lipid production. Moreover, flow cytometry allowed the examination on a cellular level of changes that occur in cellular populations as they age and accumulate lipids.

  18. Green Algae as Model Organisms for Biological Fluid Dynamics.

    PubMed

    Goldstein, Raymond E

    2015-01-01

    In the past decade the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  19. Green Algae as Model Organisms for Biological Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    2015-01-01

    In the past decade, the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimeters), their geometric regularity, the ease with which they can be cultured, and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.

  20. Green Algae as Model Organisms for Biological Fluid Dynamics*

    PubMed Central

    Goldstein, Raymond E.

    2015-01-01

    In the past decade the volvocine green algae, spanning from the unicellular Chlamydomonas to multicellular Volvox, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 μm to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms. PMID:26594068

  1. The problems of Prochloron. [evolution of green algae

    NASA Technical Reports Server (NTRS)

    Lewin, R. A.

    1983-01-01

    Prokaryotic green algae (prochlorophytes), which contain chlorophylls a and b but no bilin pigments, may be phylogenetically related to ancestral chloroplasts if symbiogenesis occurred. They may be otherwise related to eukaryotic chlorophytes. They could have evolved from cyanophytes by loss of phycobilin and gain of chlorophyll b synthesis. These possibilities are briefly discussed. Relevant evidence from biochemical studies in many collaborative laboratories is now becoming available for the resolution of such questions.

  2. Multicellularity in green algae: upsizing in a walled complex

    PubMed Central

    Domozych, David S.; Domozych, Catherine E.

    2014-01-01

    Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous, and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix (ECM), most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In “ulvophytes,” uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays a critical role in cell adhesion in the multicellular complex. Cell walls are products of coordinated interaction of membrane trafficking, cytoskeletal dynamics and the cell’s signal transduction machinery responding both to precise internal clocks and external environmental cues. Most often, these activities must be synchronized with the secretion, deposition and remodeling of the polymers of the ECM. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of green algae will soon provide new insights into the evolution and subcellular processes leading to multicellularity. PMID:25477895

  3. Bioaccumulation and catabolism of prometryne in green algae.

    PubMed

    Jin, Zhen Peng; Luo, Kai; Zhang, Shuang; Zheng, Qi; Yang, Hong

    2012-04-01

    Investigation on organic xenobiotics bioaccumulation/biodegradation in green algae is of great importance from environmental point of view because widespread distribution of these compounds in agricultural areas has become one of the major problems in aquatic ecosystem. Also, new technology needs to be developed for environmental detection and re-usage of the compounds as bioresources. Prometryne as a herbicide is widely used for killing annual grasses in China and other developing countries. However, overuse of the pesticide results in high risks to contamination to aquatic environments. In this study, we focused on analysis of bioaccumulation and degradation of prometryne in Chlamydomonas reinhardtii, a green alga, along with its adaptive response to prometryne toxicity. C. reinhardtii treated with prometryne at 2.5-12.5 μg L(-1) for 4 d or 7.5 μg L(-1) for 1-6 d accumulated a large quantity of prometryne, with more than 2 mg kg(-1) fresh weight in cells exposed to 10 μg L(-1) prometryne. Moreover, it showed a great ability to degrade simultaneously the cell-accumulated prometryne. Such uptake and catabolism of prometryne led to the rapid removal of prometryne from media. Physiological and molecular analysis revealed that toxicology was associated with accumulation of prometryne in the cells. The biological processes of degradation can be interpreted as an internal tolerance mechanism. These results suggest that the green alga is useful in bioremediation of prometryne-contaminated aquatic ecosystems.

  4. Marine polysaccharides from algae with potential biomedical applications.

    PubMed

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-05-15

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.

  5. Marine Polysaccharides from Algae with Potential Biomedical Applications

    PubMed Central

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-01-01

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae. PMID:25988519

  6. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia.

    PubMed

    Al-Saif, Sarah Saleh Abdu-Llah; Abdel-Raouf, Nevein; El-Wazanani, Hend A; Aref, Ibrahim A

    2014-01-01

    Marine algae are known to produce a wide variety of bioactive secondary metabolites and several compounds have been derived from them for prospective development of novel drugs by the pharmaceutical industries. However algae of the Red sea have not been adequately explored for their potential as a source of bioactive substances. In this context Ulva reticulata, Caulerpa occidentalis, Cladophora socialis, Dictyota ciliolata, and Gracilaria dendroides isolated from Red sea coastal waters of Jeddah, Saudi Arabia, were evaluated for their potential for bioactivity. Extracts of the algae selected for the study were prepared using ethanol, chloroform, petroleum ether and water, and assayed for antibacterial activity against Escherichia coli ATCC 25322, Pseudomonas aeruginosa ATCC 27853, Stapylococcus aureus ATCC 29213, and Enterococcus faecalis ATCC 29212. It was found that chloroform was most effective followed by ethanol, petroleum ether and water for the preparation of algal extract with significant antibacterial activities, respectively. Results also indicated that the extracts of red alga G. dendroides were more efficient against the tested bacterial strains followed by green alga U. reticulata, and brown algae D. ciliolata. Chemical analyses showed that G. dendroides recorded the highest percentages of the total fats and total proteins, followed by U. reticulata, and D. ciliolate. Among the bioflavonoids determined Rutin, Quercetin and Kaempherol were present in high percentages in G. dendroides, U. reticulata, and D. ciliolate. Estimation of saturated and unsaturated fatty acids revealed that palmitic acid was present in highest percentage in all the algal species analyzed. Amino acid analyses indicated the presence of free amino acids in moderate contents in all the species of algae. The results indicated scope for utilizing these algae as a source of antibacterial substances.

  7. Sexual reproduction and sex determination in green algae.

    PubMed

    Sekimoto, Hiroyuki

    2017-02-10

    The sexual reproductive processes of some representative freshwater green algae are reviewed. Chlamydomonas reinhardtii is a unicellular volvocine alga having two mating types: mating type plus (mt(+)) and mating type minus (mt(-)), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt(+) and mt(-) mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular Chlamydomonas reinhardtii is conserved in the multicellular oogamous Volvox carteri. The sexual reproduction of the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.

  8. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae.

    PubMed

    Bi, Yan Fang; Miao, Shan Shan; Lu, Yi Chen; Qiu, Chong Bin; Zhou, You; Yang, Hong

    2012-12-01

    Isoproturon (IPU) is a pesticide used for protection of land crops from weed or pathogen attack. Recent survey shows that IPU has been detected as a contaminant in aquatic systems and may have negative impact on aquatic organisms. To understand the phytotoxicity and potential accumulation and degradation of IPU in algae, a comprehensive study was performed with the green alga Chlamydomonas reinhardtii. Algae exposed to 5-50 μg L(-1) IPU for 3d displayed progressive inhibition of cell growth and reduced chlorophyll fluorescence. Time-course experiments with 25 μg L(-1) IPU for 6d showed similar growth responses. The 72 h EC50 value for IPU was 43.25 μg L(-1), NOEC was 5 μg L(-1) and LOEC was 15 μg L(-1). Treatment with IPU induced oxidative stress. This was validated by a group of antioxidant enzymes, whose activities were promoted by IPU exposure. The up-regulation of several genes coding for the enzymes confirmed the observation. IPU was shown to be readily accumulated by C. reinhardtii. However, the alga showed a weak ability to degrade IPU accumulated in its cells, which was best presented at the lower concentration (5 μg L(-1)) of IPU in the medium. The imbalance of accumulation and degradation of IPU may be the cause that resulted in the detrimental growth and cellular damage.

  9. Lysis of Blue-Green Algae by Myxobacter

    PubMed Central

    Shilo, Miriam

    1970-01-01

    Enrichment from local fishponds led to the isolation of a bacterium capable of lysing many species of unicellular and filamentous blue-green algae, as well as certain bacteria. The isolate is an aflagellate, motile rod which moves in a gliding, flexuous manner; the organism is capable of digesting starch and agar, but not cellulose and gelatin. Its deoxyribonucleic acid base pair composition (per cent guanine plus cytosine ∼70) shows a close resemblance to that of the fruiting myxobacteria. Algae in lawns on agar plates were lysed rapidly by the myxobacter, but only limited and slow lysis occurred in liquid media, and no lysis took place when liquid cultures were shaken. No diffusible lytic factors would be demonstrated. Continuous observation of the lytic process under a phase-contrast microscope suggested that a close contact between the polar tip of the myxobacter and the alga is necessary for lysis. The lytic action is limited to the vegetative cells of the algae, whereas heterocysts are not affected. The gas vacuoles of the algal host are the only remnant visible after completion of digestion by the myxobacter. Images PMID:4990764

  10. The effects of graphene oxide on green algae Raphidocelis subcapitata.

    PubMed

    Nogueira, P F M; Nakabayashi, D; Zucolotto, V

    2015-09-01

    Graphene represents a new class of nanomaterials that has attracted great interest due to its unique electrical, thermal, and mechanical properties. Once disposed in the environment, graphene can interact with biological systems and is expected to exhibit toxicological effects. The ecotoxicity of graphene and its derivatives, viz.: graphene oxide (GO) depends on their physicochemical properties, including purity, diameter, length, surface charge, functionalization and aggregation state. In this study we evaluated the effects of graphene oxide (GO) on green algae Raphidocelis subcapitata. The algae were exposed to different concentrations of GO pre-equilibrated for 24h with oligotrophic freshwater medium (20ml) during incubation in a growth chamber under controlled conditions: 120μEm(-2)s(-1) illumination; 12:12h light dark cycle and constant temperature of 22±2°C. Algal growth was monitored daily for 96h by direct cell counting. Reactive oxygen species level (ROS), membrane damage (cell viability) and autofluorescence (chl-a fluorescence) were evaluated using fluorescent staining and further analyzed by flow cytometry. The toxic effects from GO, as observed in algal density and autofluorescence, started at concentrations from 20 and 10μgmL(-1), respectively. Such toxicity is probably the result of ROS generation and membrane damage (cell viability). The shading effect caused by GO agglomeration in culture medium may also contribute to reduce algal density. The results reported here provide knowledge regarding the GO toxicity on green algae, contributing to a better understanding of its environmental behavior and impacts.

  11. Biosorption of lead and nickel by biomass of marine algae

    SciTech Connect

    Holan, Z.R.; Volesky, B. . Dept. of Chemical Engineering)

    1994-05-01

    Screening tests of different marine algae biomass types revealed a high passive biosorptive uptake of lead up to 270 mg Pb/g of biomass in some brown marine algae. Members of the order Fucales performed particularly well in this descending sequence: Fucus > Ascophyllum > Sargassum. Although decreasing the swelling of wetted biomass particles, their reinforcement by crosslinking may significantly affect the biosorption performance. Lead uptakes up to 370 mg Pb/g were observed in crosslinked Fucus vesiculosus and Ascophyllum nodosum. At low equilibrium residual concentrations of lead in solution, however, ion exchange resin Amberlite IR-120 had a higher lead uptake than the biosorbent materials. An order-of-magnitude lower uptake of nickel was observed in all of the sorbent materials examined.

  12. Unearthing the molecular phylodiversity of desert soil green algae (Chlorophyta).

    PubMed

    Lewis, Louise A; Lewis, Paul O

    2005-12-01

    Deserts are not usually considered biodiversity hotspots, but desert microbiotic crust communities exhibit a rich diversity of both eukaryotic and prokaryotic life forms. Like many communities dominated by microscopic organisms, they defy characterization by traditional species-counting approaches to assessing biodiversity. Here we use exclusive molecular phylodiversity (E) to quantify the amount of evolutionary divergence unique to desert-dwelling green algae (Chlorophyta) in microbiotic crust communities. Given a phylogenetic tree with branch lengths expressed in units of expected substitutions per site, E is the total length of all tree segments representing exclusively desert lineages. Using MCMC to integrate over tree topologies and branch lengths provides 95% Bayesian credible intervals for phylodiversity measures. We found substantial exclusive molecular phylodiversity based on 18S rDNA data, showing that desert lineages are distantly related to their nearest aquatic relatives. Our results challenge conventional wisdom, which holds that there was a single origin of terrestrial green plants and that green algae are merely incidental visitors rather than indigenous components of desert communities. We identify examples of lineage diversification within deserts and at least 12 separate transitions from aquatic to terrestrial life apart from the most celebrated transition leading to the embryophyte land plants. [Bayesian phylogenetics; biodiversity; exclusive molecular phylodiversity; microbiotic crusts.].

  13. Exploitation of marine algae: biogenic compounds for potential antifouling applications.

    PubMed

    Bhadury, Punyasloke; Wright, Phillip C

    2004-08-01

    Marine algae are one of the largest producers of biomass in the marine environment. They produce a wide variety of chemically active metabolites in their surroundings, potentially as an aid to protect themselves against other settling organisms. These active metabolites, also known as biogenic compounds, produced by several species of marine macro- and micro-algae, have antibacterial, antialgal, antimacrofouling and antifungal properties, which are effective in the prevention of biofouling, and have other likely uses, e.g. in therapeutics. The isolated substances with potent antifouling activity belong to groups of fatty acids, lipopeptides, amides, alkaloids, terpenoids, lactones, pyrroles and steroids. These biogenic compounds have the potential to be produced commercially using metabolic engineering techniques. Therefore, isolation of biogenic compounds and determination of their structure could provide leads for future development of, for example, environmentally friendly antifouling paints. This paper mainly discusses the successes of such research, and the future applications in the context of understanding the systems biology of micro-algae and cyanobacteria.

  14. Interaction of organic solvents with the green alga Chlorella pyrenoidosa

    SciTech Connect

    Stratton, G.W.; Smith, T.M. )

    1988-06-01

    Solvents are often a component of bioassay systems when water-insoluble toxicants are being tested. These solvents must also be considered as xenobiotics and therefore, as potential toxicants in the bioassay. However, the effects of solvents on the organisms being tested and their possible interaction with the test compound are often overlooked by researchers. The purpose of the present study was to compare the inhibitory effects of six solvents commonly used in pesticide bioassays towards growth of the common green alga Chlorella pyrenoidosa, and to examine the occurrence of solvent-pesticide interactions with this organism.

  15. PCD and autophagy in the unicellular green alga Micrasterias denticulata.

    PubMed

    Affenzeller, Matthias Josef; Darehshouri, Anza; Andosch, Ancuela; Lütz, Cornelius; Lütz-Meindl, Ursula

    2009-08-01

    Programmed cell death (PCD) plays a central role in normal plant development and is also induced by various biotic and abiotic stress factors. In the unicellular freshwater green alga Micrasterias denticulata morphological and biochemical hallmarks such as the appearance of autophagosomes, increased production of ROS and degradation of genomic DNA into small fragments ("DNA laddering") indicate PCD. Our data not only demonstrate that Micrasterias is capable of performing PCD under salt stress, but also that it is triggered by the ionic and not osmotic component of salinity. Additionally, results from the present and previous studies suggest that different inducers may lead to different cell death pathways in one and the same organism.

  16. Sulfated phenolic acids from Dasycladales siphonous green algae.

    PubMed

    Kurth, Caroline; Welling, Matthew; Pohnert, Georg

    2015-09-01

    Sulfated aromatic acids play a central role as mediators of chemical interactions and physiological processes in marine algae and seagrass. Among others, Dasycladus vermicularis (Scopoli) Krasser 1898 uses a sulfated hydroxylated coumarin derivative as storage metabolite for a protein cross linker that can be activated upon mechanical disruption of the alga. We introduce a comprehensive monitoring technique for sulfated metabolites based on fragmentation patterns in liquid chromatography/mass spectrometry and applied it to Dasycladales. This allowed the identification of two new aromatic sulfate esters 4-(sulfooxy)phenylacetic acid and 4-(sulfooxy)benzoic acid. The two metabolites were synthesized to prove the mass spectrometry-based structure elucidation in co-injections. We show that both metabolites are transformed to the corresponding desulfated phenols by sulfatases of bacteria. In biofouling experiments with Escherichia coli and Vibrio natriegens the desulfated forms were more active than the sulfated ones. Sulfatation might thus represent a measure of detoxification that enables the algae to store inactive forms of metabolites that are activated by settling organisms and then act as defense.

  17. Solar-driven hydrogen production in green algae.

    PubMed

    Burgess, Steven J; Tamburic, Bojan; Zemichael, Fessehaye; Hellgardt, Klaus; Nixon, Peter J

    2011-01-01

    The twin problems of energy security and global warming make hydrogen an attractive alternative to traditional fossil fuels with its combustion resulting only in the release of water vapor. Biological hydrogen production represents a renewable source of the gas and can be performed by a diverse range of microorganisms from strict anaerobic bacteria to eukaryotic green algae. Compared to conventional methods for generating H(2), biological systems can operate at ambient temperatures and pressures without the need for rare metals and could potentially be coupled to a variety of biotechnological processes ranging from desalination and waste water treatment to pharmaceutical production. Photobiological hydrogen production by microalgae is particularly attractive as the main inputs for the process (water and solar energy) are plentiful. This chapter focuses on recent developments in solar-driven H(2) production in green algae with emphasis on the model organism Chlamydomonas reinhardtii. We review the current methods used to achieve sustained H(2) evolution and discuss possible approaches to improve H(2) yields, including the optimization of culturing conditions, reducing light-harvesting antennae and targeting auxiliary electron transport and fermentative pathways that compete with the hydrogenase for reductant. Finally, industrial scale-up is discussed in the context of photobioreactor design and the future prospects of the field are considered within the broader context of a biorefinery concept.

  18. Extracts of marine algae show inhibitory activity against osteoclast differentiation.

    PubMed

    Koyama, Tomoyuki

    2011-01-01

    Osteoclasts are multinucleated cells that play a crucial role in bone resorption. The imbalance between bone resorption and bone formation results in osteoporosis. Therefore, substances that can suppress osteoclast formation are potential candidate materials for drug development or functional foods. There have been reports that extracts or purified compounds from marine micro- and macroalgae can suppress osteoclast differentiation. Symbioimine, isolated from the cultured dinoflagellate Symbiodinium sp., had suppressive effects against osteoclast differentiation in osteoclast-like cells. Norzoanthamine, isolated from the colonial zoanthid Zoanthas sp., has been shown to have antiosteoporosis activity in ovariectomized mice. With regard to marine extracts, the fucoxanthin-rich component from brown algae has been shown to have suppressive effects against osteoclast differentiation. An extract of Sargassum fusiforme has recently been shown to have antiosteoporosis activity. This extract suppressed both osteoclast differentiation and accelerated osteoblast formation in separate in vitro experiments. It also showed antiosteoporosis activity in ovariectomized mice by regulating the balance between bone resorption and bone formation. These marine algae and their extracts may be sources of marine medicinal foods for the prevention of osteoporosis.

  19. Analytical approaches to photobiological hydrogen production in unicellular green algae.

    PubMed

    Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

    2009-01-01

    Several species of unicellular green algae, such as the model green microalga Chlamydomonas reinhardtii, can operate under either aerobic photosynthesis or anaerobic metabolism conditions. A particularly interesting metabolic condition is that of "anaerobic oxygenic photosynthesis", whereby photosynthetically generated oxygen is consumed by the cell's own respiration, causing anaerobiosis in the culture in the light, and induction of the cellular "hydrogen metabolism" process. The latter entails an alternative photosynthetic electron transport pathway, through the oxygen-sensitive FeFe-hydrogenase, leading to the light-dependent generation of molecular hydrogen in the chloroplast. The FeFe-hydrogenase is coupled to the reducing site of photosystem-I via ferredoxin and is employed as an electron-pressure valve, through which electrons are dissipated, thus permitting a sustained electron transport in the thylakoid membrane of photosynthesis. This hydrogen gas generating process in the cells offers testimony to the unique photosynthetic metabolism that can be found in many species of green microalgae. Moreover, it has attracted interest by the biotechnology and bioenergy sectors, as it promises utilization of green microalgae and the process of photosynthesis in renewable energy production. This article provides an overview of the principles of photobiological hydrogen production in microalgae and addresses in detail the process of induction and analysis of the hydrogen metabolism in the cells. Furthermore, methods are discussed by which the interaction of photosynthesis, respiration, cellular metabolism, and H(2) production in Chlamydomonas can be monitored and regulated.

  20. Defined Media for Growth and Gamete Production by the Green Alga, Oedogonium cardiacum.

    PubMed

    Hill, G J; Machlis, L

    1970-08-01

    Defined media consisting of inorganic salts and vitamin B(12) are described for the male and female filaments of the green alga, Oedogonium cardiacum. These media provide for a maximal growth rate and for the induction of oogonia and antheridia under the prescribed conditions. The maximal amounts of growth, based on dry weight measurements, compare favorably with other green algae.

  1. Developing Molecular Genetic Tools to Facilitate Economic Production in Green Algae

    DTIC Science & Technology

    2012-09-10

    species they are not readily available for algae that are being identified as potential biofuel production strains . Our work was focused on developing...the genetic tools required to enable green algae to become efficient biofuel production strains . Being able to efficiently apply genetic...transformation techniques to green algae species will allow us to generate strains that contain ideal traits for maximally efficient fuel production, and will

  2. Exudates of different marine algae promote growth and mediate trace metal binding in Phaeodactylum tricornutum.

    PubMed

    Vasconcelos, M Teresa S D; Leal, M Fernanda C

    2008-12-01

    Phaeodactylum tricornutum was grown in filtered natural seawater enriched with nitrate, phosphate, and silicate only (control) or with exudates from itself, from Emiliania huxleyi (a coccolithophore micro-alga), Porphyra spp. (a red macro-alga) or Enteromorpha spp. (a green macro-alga). Cathodic (and anodic) stripping voltammetry (C(A)SV) were used to determine the concentrations of trace metals, both in the medium and in the algae, as well as total Cu-complexing organic ligands in the medium and, among these, some thiols (compounds identified as cysteine- or as glutathione by CSV). Exudates of different marine micro- and macro-algae could cause allelopathic effects in P. tricornutum cultures. Cell yield of P. tricornutum was increasingly promoted by exudates of E. huxleyi >Porphyra >Enteromorpha. Although exudates strongly complex Cu (and probably other metals), their presence promoted Cu uptake. Significant changes of Ni, Cd, Fe, Zn and Mn uptake by P. tricornutum were also observed in the presence of exudates of different algal species. In addition, both intensity of production and nature of exudates released by P. tricornutum were markedly influenced by the presence of exudates of other algae, the allelopathic effects being very specific (variable from one species to another). Allelopathy will probably also occur in the aquatic environment, although to a lesser extent than in cultures, particularly during bloom events and may have effects on both chemical speciation and bioavailability of chemicals to phytoplanktonic species. Such changes might cause the predominance of some species over other species. Therefore, in future in vitro culture studies with the purpose of using them as models of the real environment, more attention should be paid to the role of algal exudates, in order to improve the environmental relevance and significance of the results.

  3. Occurrence of four species of algae in the marine water of Hong Kong.

    PubMed

    Chai, Yemao; Deng, Wen-Jing; Qin, Xing; Xu, Xiangrong

    2017-01-05

    Harmful algal blooms (HABs) have broken out frequently throughout the world in recent decades; they are caused by the rapid multiplication of algal cells in near-coastal waters polluted with nitrogen and phosphorus and greatly affect the quality of marine water and human health. Over the past several decades, climate change and increasing environmental degradation have provided favourable growth conditions for certain phytoplankton species. Therefore, it is essential to rapidly identify and enumerate harmful marine algae to control these species. In this study, quantitative PCR (qPCR) was used to detect four representative species of HABs that are widespread in the marine water of Hong Kong, namely, Alexandrium catenella, Pseudo-nitzschia spp., Karenia mikimotoi and Heterosigma akashiwo. We applied qPCR with the dye SYBR Green to detect Alexandrium spp. and Pseudo-nitzschia spp. and used TaqMan probe for the enumeration of Karenia mikimotoi and Heterosigma akashiwo. The total genomic DNA of these algae from Hong Kong marine water was extracted successfully using the CTAB method, and for each kind of alga, we constructed a ten-fold series of recombinant plasmid solutions containing certain gene fragments of 18S rDNA and ITS1-5.8S-ITS2 as standard samples. Ten-fold dilutions of the DNA of known numbers of the extracted algal cells were also used to create an additional standard curve. In this way, the relationship between the cell number and the related plasmid copy number was established. The qPCR assay displayed high sensitivity in monitoring marine water samples in which the low concentrations of harmful algae were not detected accurately by traditional methods. The results showed that the cell numbers of the four species were all in low abundance. For Alexandrium catenella, the cell abundances at 12 sites ranged from 3.8×10(2) to 4.3×10(3)cellsL(-1), while H. akashiwo, K. mikimotoi and Pseudo-nitzschia ranged from 1.1×10(2) to 1.3×10(3), from 23 to 6.5×10

  4. Cryopreservation of the unicellular marine alga, Nannochloropsis oculata.

    PubMed

    Poncet, Jean-Marc; Véron, Benoît

    2003-12-01

    In microalgal culture collections, as in many biological resource centres, cryoconservation is the most attractive method for the long-term, secure storage of living material. Nannochloropsis oculata, a marine unicellular alga, is of interest in the field of biotechnology due to its high lipid content. Of various cryoprotectants tested for their toxicity and for their ability to prevent cryoinjury, glycerol (final concentration 1.1 M) was the most efficient. When glycerol-treated cultures were submitted to a strictly regulated cooling rate (-3 degrees C min(-1)), they attained the control culture density within 13 d after thawing.

  5. Microwave-Assisted Extraction of Fucoidan from Marine Algae.

    PubMed

    Mussatto, Solange I

    2015-01-01

    Microwave-assisted extraction (MAE) is a technique that can be applied to extract compounds from different natural resources. In this chapter, the use of this technique to extract fucoidan from marine algae is described. The method involves a closed MAE system, ultrapure water as extraction solvent, and suitable conditions of time, pressure, and algal biomass/water ratio. By using this procedure under the specified conditions, the penetration of the electromagnetic waves into the material structure occurs in an efficient manner, generating a distributed heat source that promotes the fucoidan extraction from the algal biomass.

  6. Hydrocarbons in benthic marine algae of the Vestfold Hills, Antarctica

    SciTech Connect

    Dhargalkar, V.K.; Bhosle, N.B.

    1987-02-01

    Recently, Antarctic continent has been the center for diverse research activities. This has resulted in a large number of research and supply vessels visiting Antarctica, which may lead to the contamination of Antarctic environment due to unintentional release of petroleum products. It is, therefore, essential to monitor the concentration of various pollutants in water, sediment, flora and fauna of this region which may also serve as a baseline data for future comparison. With this in view, total hydrocarbon concentration in some marine benthic algae collected from the Vestfold Hills, Antarctica was studied using fluorescence spectroscopy.

  7. The auxin concentration in sixteen Chinese marine algae

    NASA Astrophysics Data System (ADS)

    Han, Lijun

    2006-09-01

    The author determined the occurrence of indole-3-acetic acid in sixteen Chinese marine algae collected from the east coast of China with fluorescence spectrophotometry (FS) and wheat coleoptile bioanalysis methods (WCB). The concentration of indole-3-acetic acid (IAA) presented was from 1.1 46.9 ng/g Fw (fresh weight) with FS and 5.3 110.2 ng/g Fw with WCB. The results by the two methods were in the orders of 10-3 103 ng/g Fw reported previously from multiple references.

  8. Cellular response of freshwater green algae to perfluorooctanoic acid toxicity.

    PubMed

    Xu, Dongmei; Li, Chandan; Chen, Hong; Shao, Bo

    2013-02-01

    Perfluorooctanoic acid (PFOA) is a kind of persistent organic pollutants and its aquatic eco-toxicity has attracted wide attention; however, the mechanism involved in its toxicity as well as the cell response against PFOA have not been well established. Herein, using single-celled green algae Chlorella pyrenoidosa and Selenastrum capricornutum at the logarithmic growth stage as test organisms, we studied the toxic effects of PFOA on the cell permeability, The 96 h-EC(50) values of PFOA for C. pyrenoidosa and S. capricornutum were 207.46 mg L(-1) and 190.99 mg L(-1), respectively, lower than the 96 h-EC(50) values reported in the literatures. After 96 h of PFOA exposure, the permeability of the cell membranes of both algae was significantly decreased, and the chlorophyll concentration mirrored the trends of algal growth. In both algal species, after a 192-h exposure to a low concentration of PFOA, the activities of superoxide dismutase and catalase were greater than those of the control. At higher concentrations of PFOA, activities of superoxide dismutase and catalase were strongly inhibited. These results indicate that long-term exposure to low levels of PFOA may induce excessive generation of reactive oxygen species in algal cells, causing oxidative damage to cells.

  9. Enhanced genetic tools for engineering multigene traits into green algae.

    PubMed

    Rasala, Beth A; Chao, Syh-Shiuan; Pier, Matthew; Barrera, Daniel J; Mayfield, Stephen P

    2014-01-01

    Transgenic microalgae have the potential to impact many diverse biotechnological industries including energy, human and animal nutrition, pharmaceuticals, health and beauty, and specialty chemicals. However, major obstacles to sophisticated genetic and metabolic engineering in algae have been the lack of well-characterized transformation vectors to direct engineered gene products to specific subcellular locations, and the inability to robustly express multiple nuclear-encoded transgenes within a single cell. Here we validate a set of genetic tools that enable protein targeting to distinct subcellular locations, and present two complementary methods for multigene engineering in the eukaryotic green microalga Chlamydomonas reinhardtii. The tools described here will enable advanced metabolic and genetic engineering to promote microalgae biotechnology and product commercialization.

  10. Amidic and acetonic cryoprotectants improve cryopreservation of volvocine green algae.

    PubMed

    Nakazawa, A; Nishii, I

    2012-01-01

    A number of volvocalean green algae species were subjected to a two-step cryopreservation protocol with various cryoprotectants. Potential cryoprotectants were methanol (DMSO), N,N-dimethylformamide (DMF), N,N-dimethylacetamide, N-methylformamide, and hydroxyacetone (HA). We confirmed prior reports that MeOH was effective for cryopreserving Chlamydomonas, but did not work well for larger volvocaleans such as Volvox. In contrast, DMF and HA were effective for both unicellular and multicellular representatives. When we used a cold-inducible transposon to probe Southern blots of Volvox DNA samples taken before and after storage for one month in LN, we could detect no differences, indicating that the genome had remained relatively stable and that the transposon had not been induced by the cryopreservation procedure. We believe these methods will facilitate long-term storage of several volvocine algal species, including Volvox strains harboring transposon-induced mutations of developmental interest.

  11. Uptake and distribution of technetium in several marine algae

    SciTech Connect

    Bonotto, S.; Gerber, G.B.; Garten, C.T. Jr.; Vandecasteele, C.M.; Myttenaere, C.; Van Baelen, J.; Cogneau, M.; van der Ben, D.

    1983-01-01

    The uptake or chemical form of technetium in different marine algae (Acetabularia, Cystoseira, Fucus) has been examined and a simple model to explain the uptake of technetium in the unicellular alga, Acetabularia, has been conceptualized. At low concentrations in the external medium, Acetabularia can rapidly concentrate technetium. Concentration factors in excess of 400 can be attained after a time of about 3 weeks. At higher mass concentrations in the medium, uptake of technetium by Acetabularia becomes saturated resulting in a decreased concentration factor (approximately 10 after 4 weeks). Approximately 69% of the total radioactivity present in /sup 95m/Tc labelled Acetabularia is found in the cell cytosol. In Fucus vesiculosus, labelled with /sup 95m/Tc, a high percentage of technetium is present in soluble ionic forms while approximately 40% is bound, in this brown alga, in proteins and polysaccharides associated with cell walls. In the algal cytosol of Fucus vesiculosus, about 45% of the /sup 95m/Tc appears to be present as anionic TcO/sup -//sub 4/ and the remainder is bound to small molecules. 8 references, 5 figures, 1 table.

  12. In vitro cytotoxicity assessment of ulvan, a polysaccharide extracted from green algae.

    PubMed

    Alves, Anabela; Sousa, Rui A; Reis, Rui L

    2013-08-01

    Sustainable exploitation and valorization of natural marine resources represents a highly interesting platform for the development of novel biomaterials, with both economic and environmental benefits. In this context, toxicity data is regarded as a crucial and fundamental knowledge prior to any advances in the application development of natural derived polymers. In the present work, cytotoxicity of ulvan extracted from green algae Ulva lactuca was assessed by means of standard in vitro cytotoxicity assays. Fibroblast-like cells were incubated in the presence of this green algae's polysaccharide, and cell viability was assayed through 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium test. In addition, double stranded DNA and total protein were quantified in order to assess cell number. In order to establish ulvan's non-cytotoxic behaviour, the effect of this polysaccharide on cellular metabolic activity and cell number was directly compared to hyaluronic acid (HA), used as a non-cytotoxic control material. In this study, ulvan demonstrated promising results in terms of cytotoxicity, comparable to the currently used HA, which suggests that ulvan can be considered as non-toxic in the range of concentrations studied.

  13. Structural characterization and anticoagulant activity of a sulfated polysaccharide from the green alga Codium divaricatum.

    PubMed

    Li, Na; Mao, Wenjun; Yan, Mengxia; Liu, Xue; Xia, Zheng; Wang, Shuyao; Xiao, Bo; Chen, Chenglong; Zhang, Lifang; Cao, Sujian

    2015-05-05

    A sulfated polysaccharide, designated CP2-1, was isolated from the green alga Codium divaricatum by water extraction and purified by anion-exchange and size-exclusion chromatography. CP2-1 is a galactan which is highly sulfated and substituted with pyruvic acid ketals. On the basis of chemical and spectroscopic analyses, the backbone of CP2-1 was mainly composed of (1→3)-β-d-galactopyranose residues, branched by single (1→)-β-d-galactopyranose units attached to the main chain at C-4 positions. The degree of branching was estimated to be about 12.2%. Sulfate groups were at C-4 of (1→3)-β-d-galactopyranose and C-6 of non-reducing terminal galactose residues. In addition, the ketals of pyruvic acid were found at 3,4- of non-reducing terminal galactose residues forming a five-membered ring. CP2-1 possessed a high anticoagulant activity as assessed by the activated partial thromboplastin time and thrombin time assays. The investigation demonstrated that CP2-1 was an anticoagulant-active sulfated polysaccharide distinguishing from other sulfated polysaccharides from marine green algae.

  14. Contribution of arsenic species in unicellular algae to the cycling of arsenic in marine ecosystems.

    PubMed

    Duncan, Elliott G; Maher, William A; Foster, Simon D

    2015-01-06

    This review investigates the arsenic species produced by and found in marine unicellular algae to determine if unicellular algae contribute to the formation of arsenobetaine (AB) in higher marine organisms. A wide variety of arsenic species have been found in marine unicellular algae including inorganic species (mainly arsenate--As(V)), methylated species (mainly dimethylarsenate (DMA)), arsenoribosides (glycerol, phosphate, and sulfate) and metabolites (dimethylarsenoethanol (DMAE)). Subtle differences in arsenic species distributions exist between chlorophyte and heterokontophyte species with As(V) commonly found in water-soluble cell fractions of chlorophyte species, while DMA is more common in heterokontophyte species. Additionally, different arsenoriboside species are found in each phyla with glycerol and phosphate arsenoribosides produced by chlorophytes, whereas glycerol, phosphate, and sulfate arsenoribosides are produced by heterokontophytes, which is similar to existing data for marine macro-algae. Although arsenoribosides are the major arsenic species in many marine unicellular algal species, AB has not been detected in unicellular algae which supports the hypothesis that AB is formed in marine animals via the ingestion and further metabolism of arsenoribosides. The observation of significant DMAE concentrations in some unicellular algal cultures suggests that unicellular algae-based detritus contains arsenic species that can be further metabolized to form AB in higher marine organisms. Future research establishing how environmental variability influences the production of arsenic species by marine unicellular algae and what effect this has on arsenic cycling within marine food webs is essential to clarify the role of these organisms in marine arsenic cycling.

  15. Culture observation and molecular phylogenetic analysis on the blooming green alga Chaetomorpha valida (Cladophorales, Chlorophyta) from China

    NASA Astrophysics Data System (ADS)

    Deng, Yunyan; Tang, Xiaorong; Zhan, Zifeng; Teng, Linhong; Ding, Lanping; Huang, Bingxin

    2013-05-01

    The marine green alga Chaetomorpha valida fouls aquaculture ponds along the coastal cities of Dalian and Rongcheng, China. Unialgal cultures were observed under a microscope to determine the developmental morphological characters of C. valida. Results reveal that gametophytic filaments often produce lateral branches under laboratory culture conditions, suggesting an atypical heteromorphic life cycle of C. valida between unbranched sporophytes and branched gametophytes, which differs from typical isomorphic alternation of Chaetomorpha species. The shape of the basal attachment cell, an important taxonomic character within the genus, was found variable depending on environmental conditions. The 18S rDNA and 28S rDNA regions were used to explore the phylogenetic affinity of the taxa. Inferred trees from 18S rDNA sequences revealed a close relationship between C. valida and Chaetomorpha moniligera. These results would enrich information in general biology and morphological plasticity of C. valida and provided a basis for future identification of green tide forming algae.

  16. Ocean acidification alters the calcareous microstructure of the green macro-alga Halimeda opuntia

    NASA Astrophysics Data System (ADS)

    Wizemann, André; Meyer, Friedrich W.; Hofmann, Laurie C.; Wild, Christian; Westphal, Hildegard

    2015-09-01

    Decreases in seawater pH and carbonate saturation state ( Ω) following the continuous increase in atmospheric CO2 represent a process termed ocean acidification, which is predicted to become a main threat to marine calcifiers in the near future. Segmented, tropical, marine green macro-algae of the genus Halimeda form a calcareous skeleton that involves biotically initiated and induced calcification processes influenced by cell physiology. As Halimeda is an important habitat provider and major carbonate sediment producer in tropical shallow areas, alterations of these processes due to ocean acidification may cause changes in the skeletal microstructure that have major consequences for the alga and its environment, but related knowledge is scarce. This study used scanning electron microscopy to examine changes of the CaCO3 segment microstructure of Halimeda opuntia specimens that had been exposed to artificially elevated seawater pCO2 of ~650 µatm for 45 d. In spite of elevated seawater pCO2, the calcification of needles, located at the former utricle walls, was not reduced as frequent initiation of new needle-shaped crystals was observed. Abundance of the needles was ~22 % µm-2 higher and needle crystal dimensions ~14 % longer. However, those needles were ~42 % thinner compared with the control treatment. Moreover, lifetime cementation of the segments decreased under elevated seawater pCO2 due to a loss in micro-anhedral carbonate as indicated by significantly thinner calcified rims of central utricles (35-173 % compared with the control treatment). Decreased micro-anhedral carbonate suggests that seawater within the inter-utricular space becomes CaCO3 undersaturated ( Ω < 1) during nighttime under conditions of elevated seawater pCO2, thereby favoring CaCO3 dissolution over micro-anhedral carbonate accretion. Less-cemented segments of H. opuntia may impair the environmental success of the alga, its carbonate sediment contribution, and the temporal storage of

  17. Evidence for methane production by the marine algae Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Lenhart, Katharina; Klintzsch, Thomas; Langer, Gerald; Nehrke, Gernot; Bunge, Michael; Schnell, Sylvia; Keppler, Frank

    2016-06-01

    Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters, but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, regional and temporal oversaturation of surface waters occurs frequently. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labeled carbon substrates, namely bicarbonate and a position-specific 13C-labeled methionine (R-S-13CH3). The CH4 production was 0.7 µg particular organic carbon (POC) g-1 d-1, or 30 ng g-1 POC h-1. After supplementation of the cultures with the 13C-labeled substrate, the isotope label was observed in headspace CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that the widespread marine algae Emiliania huxleyi might contribute to the observed spatially and temporally restricted CH4 oversaturation in ocean surface waters.

  18. Green Algae and the Origins of Multicellularity in the Plant Kingdom

    PubMed Central

    Umen, James G.

    2014-01-01

    The green lineage of chlorophyte algae and streptophytes form a large and diverse clade with multiple independent transitions to produce multicellular and/or macroscopically complex organization. In this review, I focus on two of the best-studied multicellular groups of green algae: charophytes and volvocines. Charophyte algae are the closest relatives of land plants and encompass the transition from unicellularity to simple multicellularity. Many of the innovations present in land plants have their roots in the cell and developmental biology of charophyte algae. Volvocine algae evolved an independent route to multicellularity that is captured by a graded series of increasing cell-type specialization and developmental complexity. The study of volvocine algae has provided unprecedented insights into the innovations required to achieve multicellularity. PMID:25324214

  19. [The cultivation of Vibrio cholerae with green algae in an experiment].

    PubMed

    Titova, S V

    2000-01-01

    Relationships between Vibrio cholerae of different origin and some serogroups with green algae Scenedesmus quadricauda in mineral medium at two temperatures have been experimentally studied. Differences in the relationships of various strains with green algae under the above-mentioned experimental conditions have been established. The study has shown that a decrease in the concentration and the death of vct+ and vct- vibrios of all strains under study occur in the linear phase of the development of algae. 3 V. cholerae strains, serogroups O139 (vct+) and O50 (vct-), have been shown to be capable of survival under the conditions mix cultivation with algae for 50-100 days. The perish of green algae is supposed to increase the survival time and multiplication of V. cholerae under experimental conditions.

  20. The Cell Walls of Green Algae: A Journey through Evolution and Diversity

    PubMed Central

    Domozych, David S.; Ciancia, Marina; Fangel, Jonatan U.; Mikkelsen, Maria Dalgaard; Ulvskov, Peter; Willats, William G. T.

    2012-01-01

    The green algae represent a large group of morphologically diverse photosynthetic eukaryotes that occupy virtually every photic habitat on the planet. The extracellular coverings of green algae including cell walls are also diverse. A recent surge of research in green algal cell walls fueled by new emerging technologies has revealed new and critical insight concerning these coverings. For example, the late divergent taxa of the Charophycean green algae possess cell walls containing assemblages of polymers with notable similarity to the cellulose, pectins, hemicelluloses, arabinogalactan proteins (AGPs), extensin, and lignin present in embryophyte walls. Ulvophycean seaweeds have cell wall components whose most abundant fibrillar constituents may change from cellulose to β-mannans to β-xylans and during different life cycle phases. Likewise, these algae produce complex sulfated polysaccharides, AGPs, and extensin. Chlorophycean green algae produce a wide array of walls ranging from cellulose–pectin complexes to ones made of hydroxyproline-rich glycoproteins. Larger and more detailed surveys of the green algal taxa including incorporation of emerging genomic and transcriptomic data are required in order to more fully resolve evolutionary trends within the green algae and in relationship with higher plants as well as potential applications of wall components in the food and pharmaceutical industries. PMID:22639667

  1. Marine Algae: a Source of Biomass for Biotechnological Applications.

    PubMed

    Stengel, Dagmar B; Connan, Solène

    2015-01-01

    Biomass derived from marine microalgae and macroalgae is globally recognized as a source of valuable chemical constituents with applications in the agri-horticultural sector (including animal feeds and health and plant stimulants), as human food and food ingredients as well as in the nutraceutical, cosmeceutical, and pharmaceutical industries. Algal biomass supply of sufficient quality and quantity however remains a concern with increasing environmental pressures conflicting with the growing demand. Recent attempts in supplying consistent, safe and environmentally acceptable biomass through cultivation of (macro- and micro-) algal biomass have concentrated on characterizing natural variability in bioactives, and optimizing cultivated materials through strain selection and hybridization, as well as breeding and, more recently, genetic improvements of biomass. Biotechnological tools including metabolomics, transcriptomics, and genomics have recently been extended to algae but, in comparison to microbial or plant biomass, still remain underdeveloped. Current progress in algal biotechnology is driven by an increased demand for new sources of biomass due to several global challenges, new discoveries and technologies available as well as an increased global awareness of the many applications of algae. Algal diversity and complexity provides significant potential provided that shortages in suitable and safe biomass can be met, and consumer demands are matched by commercial investment in product development.

  2. Health benefit of fucosterol from marine algae: a review.

    PubMed

    Abdul, Qudeer Ahmed; Choi, Ran Joo; Jung, Hyun Ah; Choi, Jae Sue

    2016-04-01

    Seaweeds belong to a group of marine plants known as algae, which are consumed as sea vegetables in several Asian countries. Recent studies have focused on the biological and pharmacological activities of seaweeds and their highly bioactive secondary metabolites because of their potential in the development of new pharmaceutical agents. Although several varieties of bioactive novel compounds such as phlorotannins, diterpenes and polysaccharides from seaweeds have already been well scrutinized, fucosterol as a phytosterol still needs to reinvent itself. Fucosterol (24-ethylidene cholesterol) is a sterol that can be isolated from algae, seaweed and diatoms. Fucosterol exhibits various biological therapeutics, including anticancer, antidiabetic, antioxidant, hepatoprotective, antihyperlipidemic, antifungal, antihistaminic, anticholinergic, antiadipogenic, antiphotodamaging, anti-osteoporotic, blood cholesterol reducing, blood vessel thrombosis preventive and butyrylcholinesterase inhibitory activities. In this review, we address some potential approaches for arbitrating novel fucosterol biologics in the medical field, focusing on the selection of personalized drug candidates and highlighting the challenges and opportunities regarding medical breakthroughs. We also highlight recent advances made in the design of this novel compound, as the significant health benefits from using these optimized applications apply to the nutraceutical and pharmaceutical fields.

  3. Aluminum bioavailability to the green alga Chlorella pyrenoidosa in acidified synthetic soft water

    SciTech Connect

    Parent, L.; Campbell, P.G.C. )

    1994-04-01

    A unicellular green alga, Chlorella pyrenoidosa, was exposed to inorganic Al under controlled experimental conditions to determine whether the biological response elicited by the dissolved metal could be predicted from the free-metal ion concentration, [Al[sup 3+

  4. Complete Chloroplast Genome Sequence of the Early Diverging Green Alga Palmophyllum crassum

    PubMed Central

    Furukawa, Ryo; Kunugi, Motoshi; Ihara, Kunio; Tanaka, Ayumi

    2017-01-01

    ABSTRACT Palmophyllum crassum is a little-known green alga, with a unique evolutionary position and distinctive photosynthetic features. Here, we present the complete chloroplast genome sequence of Palmophyllum crassum. PMID:28280029

  5. Grazing-activated chemical defence in a unicellular marine alga

    NASA Astrophysics Data System (ADS)

    Wolfe, Gordon V.; Steinke, Michael; Kirst, Gunter O.

    1997-06-01

    Marine plankton use a variety of defences against predators, some of which affect trophic structure and biogeochemistry. We have previously shown that, during grazing by the protozoan Oxyrrhis marina on the alga Emiliania huxleyi, dimethylsulphoniopropionate (DMSP) from the prey is converted to dimethyl sulphide (DMS) when lysis of ingested prey cells initiates mixing of algal DMSP and the enzyme DMSP lyase. Such a mechanism is similar to macrophyte defence reactions,. Here we show that this reaction deters protozoan herbivores, presumably through the production of highly concentrated acrylate, which has antimicrobial activity. Protozoan predators differ in their ability to ingest and survive on prey with high-activity DMSP lyase, but all grazers preferentially select strains with low enzyme activity when offered prey mixtures. This defence system involves investment in a chemical precursor, DMSP, which is not self-toxic and has other useful metabolic functions. We believe this is the first report of grazing-activated chemical defence in unicellular microorganisms.

  6. Production and release of selenocyanate by different green freshwater algae in environmental and laboratory samples.

    PubMed

    LeBlanc, Kelly L; Smith, Matthew S; Wallschläger, Dirk

    2012-06-05

    In a previous study, selenocyanate was tentatively identified as a biotransformation product when green algae were exposed to environmentally relevant concentrations of selenate. In this follow-up study, we confirm conclusively the presence of selenocyanate in Chlorella vulgaris culture medium by electrospray mass spectrometry, based on selenium's known isotopic pattern. We also demonstrate that the observed phenomenon extends to other green algae (Chlorella kesslerii and Scenedesmus obliquus) and at least one species of blue-green algae (Synechococcus leopoliensis). Further laboratory experiments show that selenocyanate production by algae is enhanced by addition of nitrate, which appears to serve as a source of cyanide produced in the algae. Ultimately, this biotransformation process was confirmed in field experiments where trace amounts of selenocyanate (0.215 ± 0.010 ppb) were observed in a eutrophic, selenium-impacted river with massive algal blooms, which consisted of filamentous green algae (Cladophora genus) and blue-green algae (Anabaena genus). Selenocyanate abundance was low despite elevated selenium concentrations, apparently due to suppression of selenate uptake by sulfate, and insufficient nitrogen concentrations. Finally, trace levels of several other unidentified selenium-containing compounds were observed in these river water samples; preliminary suggestions for their identities include thioselenate and small organic Se species.

  7. Visualization of nuclear localization of transcription factors with cyan and green fluorescent proteins in the red alga Porphyra yezoensis.

    PubMed

    Uji, Toshiki; Takahashi, Megumu; Saga, Naotsune; Mikami, Koji

    2010-04-01

    Transcription factors play a central role in expression of genomic information in all organisms. The objective of our study is to analyze the function of transcription factors in red algae. One way to analyze transcription factors in eukaryotic cells is to study their nuclear localization, as reported for land plants and green algae using fluorescent proteins. There is, however, no report documenting subcellular localization of transcription factors from red algae. In the present study, using the marine red alga Porphyra yezoensis, we confirmed for the first time successful expression of humanized fluorescent proteins (ZsGFP and ZsYFP) from a reef coral Zoanthus sp. and land plant-adapted sGFP(S65T) in gametophytic cells comparable to expression of AmCFP. Following molecular cloning and characterization of transcription factors DP-E2F-like 1 (PyDEL1), transcription elongation factor 1 (PyElf1) and multiprotein bridging factor 1 (PyMBF1), we then demonstrated that ZsGFP and AmCFP can be used to visualize nuclear localization of PyElf1 and PyMBF1. This is the first report to perform visualization of subcellular localization of transcription factors as genome-encoded proteins in red algae.

  8. Microfiltration for separation of green algae from water.

    PubMed

    Hung, M T; Liu, J C

    2006-08-15

    Cross-flow microfiltration was used for separation of green algae, Chlorella sp., from freshwater. The transmembrane pressure (TMP) was adjusted at 40, 50 and 60 kPa, respectively. The cross-flow velocity was set at 0.43 m/s for laminar flow and 0.84 m/s for turbulent flow, respectively. The results showed that flux increased as TMP increased from 40 to 50 kPa. But drastic flux decline was observed when operating at TMP of 60 kPa. Raising cross-flow velocity increased the initial flux of MF under TMP of 60 kPa. Nevertheless, implementing turbulent cross-flow did not improve the drastic flux decline under the highest TMP. Preozonation increased the dissolved organic carbon, decreased algal viability and made the size of algal cells smaller. It also increased dissolved polysaccharide that derived from extracellular organic matter (EOM). Different effects of preozonation on flux behavior of MF were observed when utilizing hydrophobic and hydrophilic membrane. Generally speaking, preozonation improved performance of microfiltration by reducing cake compressibility and the biomass loading when both membranes were used. However, dissolved polysaccharide released during preozonation was adsorbed onto the hydrophobic membrane. Consequently, fouling resistance of the hydrophobic membrane became higher. These arguments were verified by classification of hydrodynamic resistances.

  9. Penicillinase (beta-lactamase) formation by blue-green algae.

    PubMed

    Kushner, D J; Breuil, C

    1977-03-01

    Beta-Lactamase (penicillinase) activity was found in a number of strains of blue-green algea. In some cases, this enzyme permitted algae to overcome the inhibitory effects of penicillin. Production and localization of beta-lactamase were studied in a unicellular species, Coccochloris elabens (strain 7003), and in a filamentous, nitrogen-fixing Anabaena species (strain 7120). When cells were grown in a neutral medium with NaNO3 as N source, the pH rose during growth; at a pH of about 10, most of the enzyme was expressed equally well in intact or disrupted cells. If the pH was kept near neutrality during growth by gassing with CO2 in N2 or by growth under conditions of N2 fixation, the enzyme remained cell-bound and cryptic for most of the growth phase, being measurable only after cells were disrupted. The enzymes from strains 7003 and 7120 had greater activity on benzyl penicillin and other penicillins than on cephalosporins. Some differences were observed in the "substrate proliles" of penicillinases from the two strains against different penicillins.

  10. Homogentisate phytyltransferase from the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Gálvez-Valdivieso, Gregorio; Cardeñosa, Rosa; Pineda, Manuel; Aguilar, Miguel

    2015-09-01

    Homogentisate phytyltransferase (HPT) (EC 2.5.1.-) catalyzes the first committed step of tocopherol biosynthesis in all photosynthetic organisms. This paper presents the molecular characterization and expression analysis of HPT1 gene, and a study on the accumulation of tocopherols under different environmental conditions in the unicellular green alga Chlamydomonas reinhardtii. The Chlamydomonas HPT1 protein conserves all the prenylphosphate- and divalent cation-binding sites that are found in polyprenyltransferases and all the amino acids that are essential for its catalytic activity. Its hydrophobicity profile confirms that HPT is a membrane-bound protein. Chlamydomonas genomic DNA analysis suggests that HPT is encoded by a single gene, HPT1, whose promoter region contains multiple motifs related to regulation by jasmonate, abscisic acid, low temperature and light, and an ATCTA motif presents in genes involved in tocopherol biosynthesis and some photosynthesis-related genes. Expression analysis revealed that HPT1 is strongly regulated by dark and low-temperature. Under the same treatments, α-tocopherol increased in cultures exposed to darkness or heat, whereas γ-tocopherol did it in low temperature. The regulatory expression pattern of HPT1 and the changes of tocopherol abundance support the idea that different tocopherols play specific functions, and suggest a role for γ-tocopherol in the adaptation to growth under low-temperature.

  11. Production of carbonate sediments by a unicellular green alga

    USGS Publications Warehouse

    Yates, K.K.; Robbins, L.L.

    1998-01-01

    This study investigates the ability of the unicellular green alga Natmochloris atoimis to precipitate CaCO3, quantifies mineral precipitation rates, estimates sediment production in a N. atomiis bloom, and discusses the implications of microbial calcification for carbonate sediment deposition. A series of N. atomus cultures, isolated from Lake Reeve, Australia, were incubated at various pH and calcium concentrations to determine environmental parameters for calcification. Rates of calcification were calculated from initial and postincubation alkalinity, pH, and calcium measurements. Replicate experiments and controls consisting of non-calcifying cultures, uninoculated media, and dead cell cultures were performed using environmental culture parameters determined in series cultures. Average calcification rates from replicate experiments were used to predict daily sediment production rates in a small bloom of N. atomus. N. atomus precipitates 0.138 g/L of calcite in approximately 4 h when incubated at pH 8.5, 14.24 mM calcium concentration, 33 ??C, 100 ??E/m2/s light intensity, and a cell population density of 107 cells/mL. Assuming continuous precipitation, this corresponds to a maximum estimated sediment production rate of 1.6 ?? 106 kg of CaCO3, per 12 h day in a single bloom of 3.2 ?? 109 L. Our results suggest that microbial calcification contributes significantly to the carbonate sediment budget.

  12. Toxicity Assessment of Expired Pesticides to Green Algae Pseudokirchneriella subcapitata

    PubMed Central

    Satyavani, G.; Chandrasehar, G.; Varma, K. Krishna; Goparaju, A.; Ayyappan, S.; Reddy, P. Neelakanta; Murthy, P. Balakrishna

    2012-01-01

    In order to investigate the effect of expired pesticides on the yield and growth rate of green algae Pseudokirchneriella subcapitata, a study was conducted as per the Organisation for Economic Cooperation and Development (OECD) guideline number 201. Fifteen expired pesticide formulations, most commonly used in Indian agriculture, were tested in comparison with their unexpired counterparts. The expired pesticide formulations studied belonged to various class and functional groups: organophosphate, pyrethroid-based insecticides; azole-based fungicides; acetamide, propionate, acetic acid-based herbicides; fungicides mixtures containing two actives—azole and dithiocarbamate. The toxicity endpoints of yield (EyC50: 0–72 h) and growth rate (ErC50: 0–72 h) of Pseudokirchneriella subcapitata for each pesticide formulation (both expired and unexpired pesticides) were determined statistically using TOXSTAT 3.5 version software. The results pointed out that some expired pesticide formulations exhibited higher toxicity to tested algal species, as compared to the corresponding unexpired pesticides. These data thus stress the need for greater care to dispose expired pesticides to water bodies, to avoid the effects on aquatic ecospecies tested. PMID:23762633

  13. Phycobilisomes from Blue-Green and Red Algae

    PubMed Central

    Gantt, Elisabeth; Lipschultz, Claudia A.; Grabowski, Joseph; Zimmerman, Burke K.

    1979-01-01

    A general procedure for the isolation of functionally intact phycobilisomes was devised, based on modifications of previously used procedures. It has been successful with numerous species of red and blue-green algae (Anabaena variabilis, Anacystis nidulans, Agmenellum quadruplicatum, Fremyella diplosiphon, Glaucosphaera vacuolata, Griffithsia pacifica, Nemalion multifidum, Nostoc sp., Phormidium persicinum, Porphyridium cruentum, P. sordidum, P. aerugineum, Rhodosorus marinus). Isolation was carried out in 0.75 molar K-phosphate (pH 6.8 to 7.0) at 20 to 23 C on sucrose step gradients. Lower temperature (4 to 10 C) was usually unfavorable resulting in uncoupling of energy transfer and partial dissociation of the phycobilisomes, sometimes with complete loss of allophycocyanin. Intact phycobilisomes were characterized by fluorescence emission peaks of 670 to 675 nanometers at room temperature, and 678 to 685 nanometers at liquid nitrogen temperature. Uncoupling and subsequent dissociation of phycobilisomes, in lowered ionic conditions, varied with the species and the degree of dissociation but occurred preferentially between phycocyanin and allophycocyanin, or between phycocyanin and phycoerythrin. PMID:16660778

  14. Marine algae-derived bioactive peptides for human nutrition and health.

    PubMed

    Fan, Xiaodan; Bai, Lu; Zhu, Liang; Yang, Li; Zhang, Xuewu

    2014-09-24

    Within the parent protein molecule, most peptides are inactive, and they are released with biofunctionalities after enzymatic hydrolysis. Marine algae have high protein content, up to 47% of the dry weight, depending on the season and the species. Recently, there is an increasing interest in using marine algae protein as a source of bioactive peptides due to their health promotion and disease therapy potentials. This review presents an overview of marine algae-derived bioactive peptides and especially highlights some key issues, such as in silico proteolysis and quantitative structure-activity relationship studies, in vivo fate of bioactive peptides, and novel technologies in bioactive peptides studies and production.

  15. Chloroplast gene arrangement variation within a closely related group of green algae (Trebouxiophyceae, Chlorophyta).

    PubMed

    Letsch, Molly R; Lewis, Louise A

    2012-09-01

    The 22 published chloroplast genomes of green algae, representing sparse taxonomic sampling of diverse lineages that span over one billion years of evolution, each possess a unique gene arrangement. In contrast, many of the >190 published embryophyte (land plant) chloroplast genomes have relatively conserved architectures. To determine the phylogenetic depth at which chloroplast gene rearrangements occur in green algae, a 1.5-4 kb segment of the chloroplast genome was compared across nine species in three closely related genera of Trebouxiophyceae (Chlorophyta). In total, four distinct gene arrangements were obtained for the three genera Elliptochloris, Hemichloris, and Coccomyxa. In Elliptochloris, three distinct chloroplast gene arrangements were detected, one of which is shared with members of its sister genus Hemichloris. Both species of Coccomyxa examined share the fourth arrangement of this genome region, one characterized by very long spacers. Next, the order of genes found in this segment of the chloroplast genome was compared across green algae and land plants. As taxonomic ranks are not equivalent among different groups of organisms, the maximum molecular divergence among taxa sharing a common gene arrangement in this genome segment was compared. Well-supported clades possessing a single gene order had similar phylogenetic depth in green algae and embryophytes. When the dominant gene order of this chloroplast segment in embryophytes was assumed to be ancestral for land plants, the maximum molecular divergence was found to be over two times greater in embryophytes than in trebouxiophyte green algae. This study greatly expands information about chloroplast genome variation in green algae, is the first to demonstrate such variation among congeneric green algae, and further illustrates the fluidity of green algal chloroplast genome architecture in comparison to that of many embryophytes.

  16. Selenocystamine improves protein accumulation in chloroplasts of eukaryotic green algae.

    PubMed

    Ferreira-Camargo, Livia S; Tran, Miller; Beld, Joris; Burkart, Michael D; Mayfield, Stephen P

    2015-12-01

    Eukaryotic green algae have become an increasingly popular platform for recombinant proteins production. In particular, Chlamydomonas reinhardtii, has garnered increased attention for having the necessary biochemical machinery to produce vaccines, human antibodies and next generation cancer targeting immunotoxins. While it has been shown that chloroplasts contain chaperones, peptidyl prolylisomerases and protein disulfide isomerases that facilitate these complex proteins folding and assembly, little has been done to determine which processes serve as rate-limiting steps for protein accumulation. In other expression systems, as Escherichia coli, Chinese hamster ovary cells, and insect cells, recombinant protein accumulation can be hampered by cell's inability to fold the target polypeptide into the native state, resulting in aggregation and degradation. To determine if chloroplasts' ability to oxidize proteins that require disulfide bonds into a stable conformation is a rate-limiting step of protein accumulation, three recombinant strains, each expressing a different recombinant protein, were analyzed. These recombinant proteins included fluorescent GFP, a reporter containing no disulfide bonds; Gaussia princeps luciferase, a luminescent reporter containing disulfide bonds; and an immunotoxin, an antibody-fusion protein containing disulfide bonds. Each strain was analyzed for its ability to accumulate proteins when supplemented with selenocystamine, a small molecule capable of catalyzing the formation of disulfide bonds. Selenocystamine supplementation led to an increase in luciferase and immunotoxin but not GFP accumulation. These results demonstrated that selenocystamine can increase the accumulation of proteins containing disulfide bonds and suggests that a rate-limiting step in chloroplast protein accumulation is the disulfide bonds formation in recombinant proteins native structure.

  17. How the green alga Chlamydomonas reinhardtii keeps time.

    PubMed

    Schulze, Thomas; Prager, Katja; Dathe, Hannes; Kelm, Juliane; Kiessling, Peter; Mittag, Maria

    2010-08-01

    The unicellular green alga Chlamydomonas reinhardtii has two flagella and a primitive visual system, the eyespot apparatus, which allows the cell to phototax. About 40 years ago, it was shown that the circadian clock controls its phototactic movement. Since then, several circadian rhythms such as chemotaxis, cell division, UV sensitivity, adherence to glass, or starch metabolism have been characterized. The availability of its entire genome sequence along with homology studies and the analysis of several sub-proteomes render C. reinhardtii as an excellent eukaryotic model organism to study its circadian clock at different levels of organization. Previous studies point to several potential photoreceptors that may be involved in forwarding light information to entrain its clock. However, experimental data are still missing toward this end. In the past years, several components have been functionally characterized that are likely to be part of the oscillatory machinery of C. reinhardtii since alterations in their expression levels or insertional mutagenesis of the genes resulted in defects in phase, period, or amplitude of at least two independent measured rhythms. These include several RHYTHM OF CHLOROPLAST (ROC) proteins, a CONSTANS protein (CrCO) that is involved in parallel in photoperiodic control, as well as the two subunits of the circadian RNA-binding protein CHLAMY1. The latter is also tightly connected to circadian output processes. Several candidates including a significant number of ROCs, CrCO, and CASEIN KINASE1 whose alterations of expression affect the circadian clock have in parallel severe effects on the release of daughter cells, flagellar formation, and/or movement, indicating that these processes are interconnected in C. reinhardtii. The challenging task for the future will be to get insights into the clock network and to find out how the clock-related factors are functionally connected. In this respect, system biology approaches will certainly

  18. Assimilatory nitrate reductase from the green alga Ankistrodesmus braunii.

    PubMed

    De la Rosa, M A

    1983-01-01

    Assimilatory nitrate reductase (NAD(P)H-nitrate oxidoreductase, EC 1.6.6.2) from the green alga Ankistrodesmus braunii can be purified to homogeneity by dye-ligand chromatography on blue-Sepharose. The purified enzyme, whose turnover number is 623 s-1, presents an optimum pH of 7.5 and Km values of 13 microM, 23 microM and 0.15 mM for NADH, NADPH and nitrate, respectively. The NADH-nitrate reductase activity exhibits an iso ping pong bi bi kinetic mechanism. The molecular weight of the native nitrate reductase is 467 400, while that of its subunits is 58 750. These values suggest an octameric structure for the enzyme, which has been confirmed by electron microscopy. As deduced from spectrophotometric and fluorimetric studies, the enzyme contains FAD and cytochrome b-557 as prosthetic groups. FAD is not covalently bound to the protein and is easily dissociated in diluted solutions from the enzyme. Its apparent Km value is 4 nM, indicative of a high affinity of the enzyme for FAD. The results of the quantitative analyses of prosthetic groups indicate that nitrate reductase contains four molecules of flavin, four heme irons, and two atoms of molybdenum. The three components act sequentially transferring electrons from reduced pyridine nucleotides to nitrate, thus forming a short electron transport chain along the protein. A mechanism is proposed for the redox interconversion of the nitrate reductase activity. Inactivation seems to occur by formation of a stable complex of reduced enzyme with cyanide or superoxide, while reactivation is a consequence of reoxidation of the inactive enzyme. Both reactions imply the transfer of only one electron.

  19. Hidden genetic diversity in the green alga Spirogyra (Zygnematophyceae, Streptophyta)

    PubMed Central

    2012-01-01

    Background The unbranched filamentous green alga Spirogyra (Streptophyta, Zygnemataceae) is easily recognizable based on its vegetative morphology, which shows one to several spiral chloroplasts. This simple structure falsely points to a low genetic diversity: Spirogyra is commonly excluded from phylogenetic analyses because the genus is known as a long-branch taxon caused by a high evolutionary rate. Results We focused on this genetic diversity and sequenced 130 Spirogyra small subunit nuclear ribosomal DNA (SSU rDNA) strands of different origin. The resulting SSU rDNA sequences were used for phylogenetic analyses using complex evolutionary models (posterior probability, maximum likelihood, neighbor joining, and maximum parsimony methods). The sequences were between 1672 and 1779 nucleotides long. Sequence comparisons revealed 53 individual clones, but our results still support monophyly of the genus. Our data set did not contain a single slow-evolving taxon that would have been placed on a shorter branch compared to the remaining sequences. Out of 130 accessions analyzed, 72 showed a secondary loss of the 1506 group I intron, which formed a long-branched group within the genus. The phylogenetic relationship to the genus Spirotaenia was not resolved satisfactorily. The genetic distance within the genus Spirogyra exceeded the distances measured within any other genus of the remaining Zygnemataceae included in this study. Conclusion Overall, we define eight distinct clades of Spirogyra, one of them including the genus Sirogonium. A large number of non-homoplasious synapomorphies (NHS; 114 NHS in total) was found for Spirogyra (41 NHS) and for each clade (totaling 73 NHS). This emphasizes the high genetic diversity of this genus and the distance to the remaining Zygnematophyceae. PMID:22655677

  20. Development of Singlet Oxygen Luminescence Kinetics during the Photodynamic Inactivation of Green Algae.

    PubMed

    Bornhütter, Tobias; Pohl, Judith; Fischer, Christian; Saltsman, Irena; Mahammed, Atif; Gross, Zeev; Röder, Beate

    2016-04-13

    Recent studies show the feasibility of photodynamic inactivation of green algae as a vital step towards an effective photodynamic suppression of biofilms by using functionalized surfaces. The investigation of the intrinsic mechanisms of photodynamic inactivation in green algae represents the next step in order to determine optimization parameters. The observation of singlet oxygen luminescence kinetics proved to be a very effective approach towards understanding mechanisms on a cellular level. In this study, the first two-dimensional measurement of singlet oxygen kinetics in phototrophic microorganisms on surfaces during photodynamic inactivation is presented. We established a system of reproducible algae samples on surfaces, incubated with two different cationic, antimicrobial potent photosensitizers. Fluorescence microscopy images indicate that one photosensitizer localizes inside the green algae while the other accumulates along the outer algae cell wall. A newly developed setup allows for the measurement of singlet oxygen luminescence on the green algae sample surfaces over several days. The kinetics of the singlet oxygen luminescence of both photosensitizers show different developments and a distinct change over time, corresponding with the differences in their localization as well as their photosensitization potential. While the complexity of the signal reveals a challenge for the future, this study incontrovertibly marks a crucial, inevitable step in the investigation of photodynamic inactivation of biofilms: it shows the feasibility of using the singlet oxygen luminescence kinetics to investigate photodynamic effects on surfaces and thus opens a field for numerous investigations.

  1. An improved method for karyotype analyses of marine algae

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Dai, Jixun

    2008-05-01

    Modified carbol fuchsin staining method was successfully introduced into the karyotype analyses of marine algae, including Porphyra, Undaria pinnatifida and Laminaria japonica. Haploid chromosomes were numbered clearly in the vegetative, spermatangial and conchosporangial cells of P. haitanensis and P. yezoensis. Diploid chromosomes were observed and numbered in immature conchosporangial cells of P. haitanensis and P. yezoensis. Pit-connections of Porphyra were also clearly demonstrated. Prophase chromosomes of conchocelis cells were also clearly stained with modified carbol fuchsin. One molar per liter hydrochloric hydrolysis at 60°C for 7-8 min is necessary for getting transparent cytoplasm for conchosporangial karyotype analysis of Porphyra. Staining effects of the three methods using iron alum acetocarmine, aceto-iron-haematoxylin-chloral hydrate and modified carbol fuchsin were compared on the vegetative, spermatangial and conchosporangial cells of Porphyra and the gametophytes of U. pinnatifida and L. japonica. Among the three methods, the modified carbol fuchsin method gave the best result of deep staining and good contrast between nucleus and cytoplasm.

  2. Biosorption of cadmium by biomass of marine algae

    SciTech Connect

    Holan, Z.R.; Volesky, B.; Prasetyo, I. )

    1993-04-01

    Biomass of nonliving, dried brown marine algae Sargassum natans, Fucus vesiculosus, and Ascophyllum nodosum demonstrated high equilibrium uptake of cadmium from aqueous solutions. The metal uptake by these materials was quantitatively evaluated using sorption isotherms. Biomass of A. nodosum accumulated the highest amount of cadmium exceeding 100 mg Cd[sup 2+]/g (at the residual concentration of 100 mg Cd/L and pH 3.5), outperforming a commercial ion exchange resin DUOLITE GT-73. A new biosorbent material based on A. nodosum biomass was obtained by reinforcing the algal biomass by formaldehyde cross-linking. The prepared sorbent possessed good mechanical properties, chemical stability of the cell wall polysaccharides and low swelling volume. Desorption of deposited cadmium with 0.1-0.5 M HCl resulted in no changes of the biosorbent metal uptake capacity through five subsequent adsorption/desorption cycles. There was no damage to the biosorbent which retained its macroscopic appearance and performance in repeated metal uptake/elution cycles.

  3. Identifying Aspects of the Post-Transcriptional Program Governing the Proteome of the Green Alga Micromonas pusilla

    SciTech Connect

    Waltman, Peter H.; Guo, Jian; Reistetter, Emily Nahas; Purvine, Samuel; Ansong, Charles K.; van Baren, Marijke J.; Wong, Chee-Hong; Wei, Chia-Lin; Smith, Richard D.; Callister, Stephen J.; Stuart, Joshua M.; Worden, Alexandra Z.; Mills, Ken

    2016-07-19

    Micromonas is a unicellular green alga that belongs to the prasinophytes, a sister lineage to land plants. This picoeukaryotic (<2 μm diameter) alga is widespread in the marine environment but still not understood at the cellular level. Here, we examine the mRNA and protein level changes that take place over the course of the day-night cycle using mid-exponential nutrient replete cultures of Micromonas pusilla CCMP1545 grown and analyzed in biological triplicate. During the experiment, samples were collected at key transition points during the diel for evaluation using high-throughput LC-MS proteomics. We also sequenced matched mRNA samples from the same time points, using pair-ended directional Illumina RNA-Seq to investigate the dynamics and relationship between the mRNA and protein expression programs of M. pusilla. Similar to a prior study of the marine cyanobacterium Prochlorococcus, we found significant divergence in the mRNA and proteomics expression dynamics in response to the light:dark cycle. Additionally, expressional responses of genes and the proteins they encoded could also be variable within the same metabolic pathway, such as the oxygenic photosynthesis pathway. A regression framework was used to predict protein levels using both mRNA expression and gene-specific sequence-based features. Several features in the genome sequence were found to influence protein abundance including the codon usage and the length of the 3’ UTR. Collectively, our studies provide insights into the regulation of the proteome over a diel as relationships between the transcriptional and translational programs in the widespread marine green alga Micromonas.

  4. Cytoplasmic inheritance in green algae: patterns, mechanisms and relation to sex type.

    PubMed

    Miyamura, Shinichi

    2010-03-01

    Cytological and genetic investigations of two major groups of green algae, chlorophyte and streptophyte green algae, show a predominance of uniparental inheritance of the plastid and mitochondrial genomes in most species. However, in some crosses of isogamous species of Ulva compressa, these genomes are transmitted from mt+, mt(-), and both parents. In species with uniparental organelle inheritance, various mechanisms can eliminate organelles and their DNA during male gametogenesis or after fertilization. Concerning plastid inheritance, two major mechanisms are widespread in green algae: (1) digestion of plastid DNA during male gametogenesis, during fertilization, or after fertilization; and (2) disintegration or fusion of the plastid in the zygote. The first mechanism also eliminates the mitochondrial DNA in anisogamous and oogamous species. These mechanisms would ensure the predominantly uniparental inheritance of organelle genomes in green algae. To trace the evolutionary history of cytoplasmic inheritance in green algae, the relations between uniparental inheritance and sex type were considered in isogamous, anisogamous, and oogamous species using sex-specific features that might be nearly universal among Chlorophyta.

  5. Tracing floating green algae blooms in the Yellow Sea and the East China Sea using Lagrangian transport simulations

    NASA Astrophysics Data System (ADS)

    Park, Young-Gyu; Son, Young Baek; Choi, Byoung-Ju; Kim, Yong Hoon

    2014-05-01

    Lagrangian particle tracking experiments were conducted to understand the pathway of the floating green algae patches observed in the Yellow Sea (YS) and East China Sea (ECS) in summer 2011. The numerical simulation results indicated that dominant southerly winds during June and July 2011 were related to offshore movement of the floating green algae, especially their eastward extension in the YS/ECS. An infrequent and unusual event occurred in June 2011: a severe Tropical Strom MEARI, caused the green algae to detach from the coast and initiated movement to the east. After the typhoon event, sea surface temperature recovered rapidly enough to grow the floating green algae, and wind and local current controlled the movement of the massive floating algae patches (coastal accumulation or offshore advection in the area). Analysis of the floating green algae movement using satellite images during passage of Typhoon MAON in July 2011 revealed that the floating green algae patches were significantly controlled by both ocean currents and enhanced winds. These findings suggest that the floating green algae bloom off Qingdao, China and in the middle of the YS and ECS in the summer of 2011 occurred due to the combined effects of recent rapid expansion of seaweed aquaculture, strong winds, and the wind patterns in blooming regions. Our combined approach, using satellite data and numerical simulations, provides a robust estimate for tracing and monitoring changes in green algae blooms on a regional scale.

  6. Clinical and pathologic findings of blue-green algae (Microcystis aeruginosa) intoxication in a dog.

    PubMed

    DeVries, S E; Galey, F D; Namikoshi, M; Woo, J C

    1993-07-01

    A healthy dog developed signs of lethargy and vomiting after ingesting water from a tide pool containing blue-green algae. Fulminant hepatic failure occurred, and the dog was euthanized 52 hours later. At necropsy, the liver was large, friable, and discolored a dark red. Histopathology showed hepatocyte dissociation, degeneration, and necrosis. The alga was identified as Microcystis aeruginosa, a known hepatotoxin. The intraperitoneal administration of lyophilized cell material from the bloom caused hepatic necrosis in mice.

  7. Marine algae as a prospective source for antidiabetic compounds - A brief review.

    PubMed

    Unnikrishnan, S P; Jayasri, A M

    2016-12-29

    Diabetes mellitus (DM) is a metabolic disorder characterized by chronic hyperglycaemia, which is attributed by several life threatening complications including atherosclerosis, nephropathy, and retinopathy. The current therapies available for the management of DM mainly include oral antidiabetic drugs and insulin injections. However, continuous use of synthetic drugs provides lower healing with many side effects. Therefore, there is an urge for safe and efficient antidiabetic drugs for the management of DM. In the continuing search for effective antidiabetic drugs, marine algae (seaweeds) remains as a promising source with potent bioactivity. It is anticipated that the isolation, characterization, and pharmacological study of unexplored marine algae can be useful in the discovery of novel antidiabetic compounds with high biomedical value. Among marine algae, brown and red algae are reported to exhibit antidiabetic activity. Majority of the investigations on algal derived compounds controls the blood glucose levels through the inhbition of carbohydrate hydroloyzing enzymes and protein tyrosine phosphatase 1B enzymes, insulin sensitization, glucose uptake effect and other protective effects against diabetic complications. Based on the above perspective this review provides; profiles for various marine algae posessing antidiabetic activity. This study also highlights the therapeutic potential of compounds isolated from marine algae for the effective management of diabetes and its associated complications.

  8. Natural synchronisation for the study of cell division in the green unicellular alga Ostreococcus tauri.

    PubMed

    Farinas, Benoît; Mary, Camille; de O Manes, Carmem-Lara; Bhaud, Yvonne; Peaucellier, Gérard; Moreau, Hervé

    2006-01-01

    Ostreococcus tauri (Prasinophyceae) is a marine unicellular green alga which diverged early in the green lineage. The interest of O. tauri as a potential model to study plant cell division is based on its key phylogenetic position, its simple binary division, a very simple cellular organisation and now the availability of the full genome sequence. In addition O. tauri has a minimal yet complete set of cell cycle control genes. Here we show that division can be naturally synchronised by light/dark cycles and that organelles divide before the nucleus. This natural synchronisation, although being only partial, enables the study of the expression of CDKs throughout the cell cycle. The expression patterns of OtCDKA and OtCDKB were determined both at the mRNA and protein levels. The single OtCDKA gene is constantly expressed throughout the cell cycle, whereas OtCDKB is highly regulated and expressed only in S/G2/M phases. More surprisingly, OtCDKA is not phosphorylated at the tyrosine residue, in contrast to OtCDKB which is strongly phosphorylated during cell division. OtCDKA kinase activity appears before the S phase, indicating a possible role of this protein in the G1/S transition. OtCDKB kinase activity occurs later than OtCDKA, and its tyrosine phosphorylation is correlated to G2/M, suggesting a possible control of the mitotic activity. To our knowledge this is the first organism in the green lineage which showed CDKB tyrosine phosphorylation during cell cycle progression.

  9. Photosynthetic recovery following desiccation of desert green algae (Chlorophyta) and their aquatic relatives.

    PubMed

    Gray, Dennis W; Lewis, Louise A; Cardon, Zoe G

    2007-10-01

    Recent molecular data suggest that desert green algae have evolved from freshwater ancestors at least 14 times in three major classes (Chlorophyceae, Trebouxiophyceae and Charophyceae), offering a unique opportunity to study the adaptation of photosynthetic organisms to life on land in a comparative phylogenetic framework. We examined the photorecovery of phylogenetically matched desert and aquatic algae after desiccation in darkness and under illumination. Desert algae survived desiccation for at least 4 weeks when dried in darkness, and recovered high levels of photosynthetic quantum yield within 1 h of rehydration in darkness. However, when 4 weeks of desiccation was accompanied by illumination, three of six desert taxa lost their ability to recover quantum yield during rehydration in the dark. Aquatic algae, in contrast, recovered very little during dark rehydration following even just 24 h of desiccation. Re-illuminating rehydrated algae produced a nearly complete recovery of quantum yield in all desert and two of five aquatic taxa. These contrasts provide physiological evidence that desert green algae possess mechanisms for photosynthetic recovery after desiccation distinct from those in aquatic relatives, corroborating molecular evidence that they are not happenstance, short-term visitors from aquatic environments. Photosensitivity during desiccation among desert algae further suggests that they may reside in protected microsites within crusts, and species specificity of photosensitivity suggests that disturbances physically disrupting crusts could lead to shifts or losses of taxonomic diversity within these habitats.

  10. Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell.

    PubMed

    Yuan, Yong; Chen, Qing; Zhou, Shungui; Zhuang, Li; Hu, Pei

    2011-03-15

    Bioelectricity production from blue-green algae was examined in a single chamber tubular microbial fuel cell (MFC). The blue-green algae powered MFC produced a maximum power density of 11 4 mW/m(2) at a current density of 0.55 mA/m(2). Coupled with the bioenergy generation, high removal efficiencies of chemical oxygen demand (COD) and nitrogen were also achieved in MFCs. Over 78.9% of total chemical oxygen demand (TCOD), 80.0% of soluble chemical oxygen demand (SCOD), 91.0% of total nitrogen (total-N) and 96.8% ammonium-nitrogen (NH(3)-N) were removed under closed circuit conditions in 12 days, which were much more effective than those under open circuit and anaerobic reactor conditions. Most importantly, the MFC showed great ability to remove microcystins released from blue-green algae. Over 90.7% of MC-RR and 91.1% of MC-LR were removed under closed circuit conditions (500Ω). This study showed that the MFC could provide a potential means for electricity production from blue-green algae coupling algae toxins removal.

  11. Surface-bound iron: a metal ion buffer in the marine brown alga Ectocarpus siliculosus?

    PubMed

    Miller, Eric P; Böttger, Lars H; Weerasinghe, Aruna J; Crumbliss, Alvin L; Matzanke, Berthold F; Meyer-Klaucke, Wolfram; Küpper, Frithjof C; Carrano, Carl J

    2014-02-01

    Although the iron uptake and storage mechanisms of terrestrial/higher plants have been well studied, the corresponding systems in marine algae have received far less attention. Studies have shown that while some species of unicellular algae utilize unique mechanisms of iron uptake, many acquire iron through the same general mechanisms as higher plants. In contrast, the iron acquisition strategies of the multicellular macroalgae remain largely unknown. This is especially surprising since many of these organisms represent important ecological and evolutionary niches in the coastal marine environment. It has been well established in both laboratory and environmentally derived samples, that a large amount of iron can be 'non-specifically' adsorbed to the surface of marine algae. While this phenomenon is widely recognized and has prompted the development of experimental protocols to eliminate its contribution to iron uptake studies, its potential biological significance as a concentrated iron source for marine algae is only now being recognized. This study used an interdisciplinary array of techniques to explore the nature of the extensive and powerful iron binding on the surface of both laboratory and environmental samples of the marine brown alga Ectocarpus siliculosus and shows that some of this surface-bound iron is eventually internalized. It is proposed that the surface-binding properties of E. siliculosus allow it to function as a quasibiological metal ion 'buffer', allowing iron uptake under the widely varying external iron concentrations found in coastal marine environments.

  12. Surface-bound iron: a metal ion buffer in the marine brown alga Ectocarpus siliculosus?

    PubMed Central

    Carrano, Carl J.

    2014-01-01

    Although the iron uptake and storage mechanisms of terrestrial/higher plants have been well studied, the corresponding systems in marine algae have received far less attention. Studies have shown that while some species of unicellular algae utilize unique mechanisms of iron uptake, many acquire iron through the same general mechanisms as higher plants. In contrast, the iron acquisition strategies of the multicellular macroalgae remain largely unknown. This is especially surprising since many of these organisms represent important ecological and evolutionary niches in the coastal marine environment. It has been well established in both laboratory and environmentally derived samples, that a large amount of iron can be ‘non-specifically’ adsorbed to the surface of marine algae. While this phenomenon is widely recognized and has prompted the development of experimental protocols to eliminate its contribution to iron uptake studies, its potential biological significance as a concentrated iron source for marine algae is only now being recognized. This study used an interdisciplinary array of techniques to explore the nature of the extensive and powerful iron binding on the surface of both laboratory and environmental samples of the marine brown alga Ectocarpus siliculosus and shows that some of this surface-bound iron is eventually internalized. It is proposed that the surface-binding properties of E. siliculosus allow it to function as a quasibiological metal ion ‘buffer’, allowing iron uptake under the widely varying external iron concentrations found in coastal marine environments. PMID:24368501

  13. Comparative toxicity of nano ZnO and bulk ZnO towards marine algae Tetraselmis suecica and Phaeodactylum tricornutum.

    PubMed

    Li, Jiji; Schiavo, Simona; Rametta, Gabriella; Miglietta, Maria Lucia; La Ferrara, Vera; Wu, Changwen; Manzo, Sonia

    2017-01-10

    The wide use of ZnO nanoparticles in a number of products implies an increasing release into the marine environment, resulting in the need to evaluate the potential effects upon organisms, and particularly phytoplankton, being at the base of the throphic chain. To this aim, dose-response curves for the green alga Tetraselmis suecica and the diatom Phaeodactylum tricornutum derived from the exposure to nano ZnO (100 nm) were evaluated and compared with those obtained for bulk ZnO (200 nm) and ionic zinc. The toxic effects to both algae species were reported as no observable effect concentration (NOEC) of growth inhibition and as 1, 10, and 50% effect concentrations (EC1, EC10, and EC50). The toxicity decreased in the order nano ZnO > Zn(2+) > bulk ZnO. EC50 values for nano ZnO were 3.91 [3.66-4.14] mg Zn/L towards the green microalgae and 1.09 [0.96-1.57] mg Zn/L towards the diatom, indicating a higher sensitivity of P. tricornutum. The observed diverse effects can be ascribed to the interaction occurring between different algae and ZnO particles. Due to algae motility, ZnO particles were intercepted in different phases of aggregation and sedimentation processes, while algae morphology and size can influence the level of entrapment by NP aggregates.This underlines the need to take into account the peculiarity of the biological system in the assessment of NP toxicity.

  14. Marinagarivorans algicola gen. nov., sp. nov., isolated from marine algae.

    PubMed

    Guo, Ling-Yun; Li, Dong-Qi; Sang, Jin; Chen, Guan-Jun; Du, Zong-Jun

    2016-01-27

    Novel agar-degrading, Gram-staining-negative, motile, heterotrophic, facultatively anaerobic and pale yellow-pigmented bacterial strains, designated Z1T and JL1, were isolated from marine algae Gelidium amansii (Lamouroux) and Gracilaria verrucosa, respectively. Growth of the isolates was optimal at 28-30 °C, pH 7.0-7.5 and 1-3% (w/v) NaCl. Both strains contained Q-8 as the sole respiratory quinone. The major cellular fatty acids in strain Z1T were C18:1 ω7c, C16:0 and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH). The predominant polar lipids in strain Z1T were phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and aminolipid (AL). The genomic DNA G+C content of both strains was 45.1 mol%. Strains Z1T and JL1 were closely related, with 99.9% 16S rRNA gene sequence similarity. The average nucleotide identity (ANI) value between strains Z1T and JL1 was 99.3%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains Z1T and JL1 form a distinct phyletic line within the class Gammaproteobacteria, with less than 92.3% similarity to their closest relatives. Based on data from the current polyphasic study, the isolates are proposed to belong to a new genus and species designated Marinagarivorans algicola gen. nov., sp. nov. The type strain of Marinagarivorans algicola is Z1T (=ATCC BAA-2617T=CICC 10859T).

  15. Isolation of plasmid from the blue-green alga Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Qin, Song; Tong, Shun; Zhang, Peijun; Tseng, C. K.

    1993-09-01

    CCC plasmid was isolated from an economically important blue-green alga — Spirulina platensis (1.7×106 dalton from the S6 strain and 1.2×106 dalton from the F3 strain) using a rapid method based on ultrasonic disruption of algal cells and alkaline removal of chromosomal DNA. The difference in the molecular weight of the CCC DNAs from the two strains differing in form suggests that plasmid may be related with the differentiation of algal form. This modified method, which does not use any lysozyme, is a quick and effective method of plasmid isolation, especially for filamentous blue-green algae.

  16. High iron content and bioavailability in humans from four species of marine algae.

    PubMed

    García-Casal, Maria N; Pereira, Ana C; Leets, Irene; Ramírez, José; Quiroga, Maria F

    2007-12-01

    Searching for economical, nonconventional sources of iron is important in underdeveloped countries to combat iron deficiency and anemia. Our objective was to study iron, vitamin C, and phytic acid composition and also iron bioavailability from 4 species of marine algae included in a rice-based meal. Marine algae (Ulva sp, Sargassum sp, Porphyra sp, and Gracilariopsis sp) were analyzed for monthly variations in iron and for ascorbic acid and phytic acid concentrations. A total of 96 subjects received rice-based meals containing the 4 species of marine algae in different proportions, raw or cooked. All meals contained radioactive iron. Absorption was evaluated by calculating the radioactive iron incorporation in subjects' blood. Iron concentrations in algae were high and varied widely, depending on the species and time of year. The highest iron concentrations were found in Sargassum (157 mg/100 g) and Gracilariopsis (196 mg/100 g). Phytates were not detected in the algae and ascorbic acid concentration fluctuated between 38 microg/g dry weight (Ulva) and 362 microg/g dry weight (Sargassum). Algae significantly increased iron absorption in rice-based meals. Cooking did not affect iron absorption compared with raw algae. Results indicate that Ulva sp, Sargassum sp, Porphyra sp, and Gracilariopsis sp are good sources of ascorbic acid and bioavailable iron. The percentage of iron absorption was similar among all algae tested, although Sargassum sp resulted in the highest iron intake. Based on these results, and on the high reproduction rates of algae during certain seasons, promoting algae consumption in some countries could help to improve iron nutrition.

  17. The rapid quantitation of the filamentous blue-green alga plectonema boryanum by the luciferase assay for ATP

    NASA Technical Reports Server (NTRS)

    Bush, V. N.

    1974-01-01

    Plectonema boryanum is a filamentous blue green alga. Blue green algae have a procaryotic cellular organization similar to bacteria, but are usually obligate photoautotrophs, obtaining their carbon and energy from photosynthetic mechanism similar to higher plants. This research deals with a comparison of three methods of quantitating filamentous populations: microscopic cell counts, the luciferase assay for ATP and optical density measurements.

  18. Modeling the Role of Zebra Mussels in the Proliferation of Blue-green Algae in Saginaw Bay, Lake Huron

    EPA Science Inventory

    Under model assumptions from Saginaw Bay 1991, selective rejection of blue-green algae by zebra mussels appears to be a necessary factor in the enhancement of blue-green algae production in the presence of zebra mussels. Enhancement also appears to depend on the increased sedime...

  19. Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark.

    PubMed

    Lüttge, U; Büdel, B

    2010-05-01

    The rough bark of orchard trees (Malus) around Darmstadt is predominantly covered in red to purple-brown layers (biofilms) of epiphytic terrestrial alga of Trentepohlia umbrina. The smooth bark of forest trees (Fagus sylvatica L. and Acer sp.) in the same area is covered by bright green biofilms composed of the green algae Desmococcus, Apatococcus and Trebouxia, with a few cells of Coccomyxa and 'Chlorella' trebouxioides between them. These algae are desiccation tolerant. After samples of bark with the biofilms were kept in dry air in darkness for various periods of time, potential quantum yield of PSII, F(v)/F(m), recovered during rehydration upon rewetting. The kinetics and degree of recovery depended on the length of time that the algae were kept in dry air in the desiccated state. Recovery was better for green biofilm samples, i.e. quite good even after 80 days of desiccation (F(v)/F(m) = ca. 50% of initial value), than the red samples, where recovery was only adequate up to ca. 30-40 days of desiccation (F(v)/F(m) = ca. 20-55% of initial value). It is concluded that the different bark types constitute different ecophysiological niches that can be occupied by the algae and that can be distinguished by their capacity to recover from desiccation after different times in the dry state.

  20. Preliminary observations on the benthic marine algae of the Gorringe seabank (northeast Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Tittley, Ian; da Silva Vaz Álvaro, Nuno Miguel; de Melo Azevedo Neto, Ana Isabel

    2014-06-01

    Examination of marine samples collected in 2006 from the Gettysburg and Ormonde seamounts on the Gorringe seabank southwest of Portugal has revealed 29 benthic Chlorophyta, Phaeophyceae (Ochrophyta), and Rhodophyta that were identified provisionally to genus and to species. Combining lists for the present and a previous expedition brings the total of algae thus far recorded to 48. The brown alga Zonaria tournefourtii and the red alga Cryptopleura ramosa were the most abundant species in the present collections. The kelp Laminaria ochroleuca was present only in the Gettysburg samples while Saccorhiza polyschides was observed only on the Ormonde seamount. Comparisons with the benthic marine algae recorded on seamounts in the mid-Atlantic Azores archipelago show features in common, notably kelp forests of L. ochroleuca at depths below 30 m and Z. tournefortii dominance in shallower waters.

  1. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms.

    PubMed

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular

  2. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms

    PubMed Central

    Holzinger, Andreas; Karsten, Ulf

    2013-01-01

    Although most green algae typically occur in aquatic ecosystems, many species also live partly or permanently under aeroterrestrial conditions, where the cells are exposed to the atmosphere and hence regularly experience dehydration. The ability of algal cells to survive in an air-dried state is termed desiccation tolerance. The mechanisms involved in desiccation tolerance of green algae are still poorly understood, and hence the aim of this review is to summarize recent findings on the effects of desiccation and osmotic water loss. Starting from structural changes, physiological, and biochemical consequences of desiccation will be addressed in different green-algal lineages. The available data clearly indicate a range of strategies, which are rather different in streptophycean and non-streptophycean green algae. While members of the Trebouxiophyceae exhibit effective water loss-prevention mechanisms based on the biosynthesis and accumulation of particular organic osmolytes such as polyols, these compounds are so far not reported in representatives of the Streptophyta. In members of the Streptophyta such as Klebsormidium, the most striking observation is the appearance of cross-walls in desiccated samples, which are strongly undulating, suggesting a high degree of mechanical flexibility. This aids in maintaining structural integrity in the dried state and allows the cell to maintain turgor pressure for a prolonged period of time during the dehydration process. Physiological strategies in aeroterrestrial green algae generally include a rapid reduction of photosynthesis during desiccation, but also a rather quick recovery after rewetting, whereas aquatic species are sensitive to drying. The underlying mechanisms such as the affected molecular components of the photosynthetic machinery are poorly understood in green algae. Therefore, modern approaches based on transcriptomics, proteomics, and/or metabolomics are urgently needed to better understand the molecular

  3. Genome-wide analysis of tandem repeats in plants and green algae.

    PubMed

    Zhao, Zhixin; Guo, Cheng; Sutharzan, Sreeskandarajan; Li, Pei; Echt, Craig S; Zhang, Jie; Liang, Chun

    2014-01-10

    Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 (http://www.phytozome.net/), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among the 31 species, no significant correlation was detected between the TR density and genome size. Interestingly, green alga Chlamydomonas reinhardtii (42,059 bp/Mbp) and castor bean Ricinus communis (55,454 bp/Mbp) showed much higher TR densities than all other species (13,209 bp/Mbp on average). In the 29 land plants, including 22 dicots, 5 monocots, and 2 bryophytes, 5'-UTR and upstream intergenic 200-nt (UI200) regions had the first and second highest TR densities, whereas in the two green algae (C. reinhardtii and Volvox carteri) the first and second highest densities were found in intron and coding sequence (CDS) regions, respectively. In CDS regions, trinucleotide and hexanucleotide motifs were those most frequently represented in all species. In intron regions, especially in the two green algae, significantly more TRs were detected near the intron-exon junctions. Within intergenic regions in dicots and monocots, more TRs were found near both the 5' and 3' ends of genes. GO annotation in two green algae revealed that the genes with TRs in introns are significantly involved in transcriptional and translational processing. As the first systematic examination of TRs in plant and green algal genomes, our study showed that TRs displayed nonrandom distribution for both intragenic and intergenic regions, suggesting that they have potential roles in transcriptional or translational regulation in plants and green algae.

  4. Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action.

    PubMed

    Fu, Ling; Huang, Tao; Wang, Shuo; Wang, Xiaohong; Su, Limin; Li, Chao; Zhao, Yuanhui

    2017-02-01

    Although modes of action (MOAs) play a key role in the understanding of the toxic mechanism of chemicals, the MOAs have not been investigated for antibiotics to green algae. This paper is to discriminate excess toxicity from baseline level and investigate the MOAs of 13 different antibiotics to algae by using the determined toxicity values. Comparison of the toxicities shows that the inhibitors of protein synthesis to bacteria, such as azithromycin, doxycycline, florfenicol and oxytetracycline, exhibit significantly toxic effects to algae. On the other hand, the cell wall synthesis inhibitors, such as cefotaxime and amoxicillin, show relatively low toxic effects to the algae. The concentrations determined by HPLC indicate that quinocetone and amoxicillin can be easily photodegraded or hydrolyzed during the toxic tests. The toxic effects of quinocetone and amoxicillin to the algae are attributed to not only their parent compounds, but also their metabolites. Investigation on the mode of action shows that, except rifampicin, all the tested antibiotics exhibit excess toxicity to Pseudokirchneriella subcapitata (P. subcapitata). These antibiotics can be identified as reactive modes of action to the algae. They act as electrophilic mechanism of action to P. subcapitata. These results are valuable for the understanding of the toxic mechanism to algae.

  5. Harvesting green algae from eutrophic reservoir by electroflocculation and post-use for biodiesel production.

    PubMed

    Valero, Enrique; Álvarez, Xana; Cancela, Ángeles; Sánchez, Ángel

    2015-01-01

    Each year there are more frequent blooms of green algae and cyanobacteria, representing a serious environmental problem of eutrophication. Electroflocculation (EF) was studied to harvest the algae which are present in reservoirs, as well as different factors which may influence on the effectiveness of the process: the voltage applied to the culture medium, run times, electrodes separation and natural sedimentation. Finally, the viability of its use to obtain biodiesel was studied by direct transesterification. The EF process carried out at 10V for 1min, with an electrode separation of 5.5cm and a height of 4cm in culture vessel, obtained a recovery efficiency greater than 95%, and octadecenoic and palmitic acids were obtained as the fatty acid methyl esters (FAMEs). EF is an effective method to harvest green algae during the blooms, obtaining the greatest amount of biomass for subsequent use as a source of biodiesel.

  6. Oleosin of Subcellular Lipid Droplets Evolved in Green Algae1[W][OA

    PubMed Central

    Huang, Nan-Lan; Huang, Ming-Der; Chen, Tung-Ling L.; Huang, Anthony H.C.

    2013-01-01

    In primitive and higher plants, intracellular storage lipid droplets (LDs) of triacylglycerols are stabilized with a surface layer of phospholipids and oleosin. In chlorophytes (green algae), a protein termed major lipid-droplet protein (MLDP) rather than oleosin on LDs was recently reported. We explored whether MLDP was present directly on algal LDs and whether algae had oleosin genes and oleosins. Immunofluorescence microscopy revealed that MLDP in the chlorophyte Chlamydomonas reinhardtii was associated with endoplasmic reticulum subdomains adjacent to but not directly on LDs. In C. reinhardtii, low levels of a transcript encoding an oleosin-like protein (oleolike) in zygotes-tetrads and a transcript encoding oleosin in vegetative cells transferred to an acetate-enriched medium were found in transcriptomes and by reverse transcription-polymerase chain reaction. The C. reinhardtii LD fraction contained minimal proteins with no detectable oleolike or oleosin. Several charophytes (advanced green algae) possessed low levels of transcripts encoding oleosin but not oleolike. In the charophyte Spirogyra grevilleana, levels of oleosin transcripts increased greatly in cells undergoing conjugation for zygote formation, and the LD fraction from these cells contained minimal proteins, two of which were oleosins identified via proteomics. Because the minimal oleolike and oleosins in algae were difficult to detect, we tested their subcellular locations in Physcomitrella patens transformed with the respective algal genes tagged with a Green Fluorescent Protein gene and localized the algal proteins on P. patens LDs. Overall, oleosin genes having weak and cell/development-specific expression were present in green algae. We present a hypothesis for the evolution of oleosins from algae to plants. PMID:23391579

  7. Identifying Aspects of the Post-Transcriptional Program Governing the Proteome of the Green Alga Micromonas pusilla

    PubMed Central

    Waltman, Peter H.; Guo, Jian; Reistetter, Emily Nahas; Purvine, Samuel; Ansong, Charles K.; van Baren, Marijke J.; Wong, Chee-Hong; Wei, Chia-Lin; Smith, Richard D.; Callister, Stephen J.; Stuart, Joshua M.; Worden, Alexandra Z.

    2016-01-01

    Micromonas is a unicellular motile alga within the Prasinophyceae, a green algal group that is related to land plants. This picoeukaryote (<2 μm diameter) is widespread in the marine environment but is not well understood at the cellular level. Here, we examine shifts in mRNA and protein expression over the course of the day-night cycle using triplicated mid-exponential, nutrient replete cultures of Micromonas pusilla CCMP1545. Samples were collected at key transition points during the diel cycle for evaluation using high-throughput LC-MS proteomics. In conjunction, matched mRNA samples from the same time points were sequenced using pair-ended directional Illumina RNA-Seq to investigate the dynamics and relationship between the mRNA and protein expression programs of M. pusilla. Similar to a prior study of the marine cyanobacterium Prochlorococcus, we found significant divergence in the mRNA and proteomics expression dynamics in response to the light:dark cycle. Additionally, expressional responses of genes and the proteins they encoded could also be variable within the same metabolic pathway, such as we observed in the oxygenic photosynthesis pathway. A regression framework was used to predict protein levels from both mRNA expression and gene-specific sequence-based features. Several features in the genome sequence were found to influence protein abundance including codon usage as well as 3’ UTR length and structure. Collectively, our studies provide insights into the regulation of the proteome over a diel cycle as well as the relationships between transcriptional and translational programs in the widespread marine green alga Micromonas. PMID:27434306

  8. Identifying Aspects of the Post-Transcriptional Program Governing the Proteome of the Green Alga Micromonas pusilla.

    PubMed

    Waltman, Peter H; Guo, Jian; Reistetter, Emily Nahas; Purvine, Samuel; Ansong, Charles K; van Baren, Marijke J; Wong, Chee-Hong; Wei, Chia-Lin; Smith, Richard D; Callister, Stephen J; Stuart, Joshua M; Worden, Alexandra Z

    2016-01-01

    Micromonas is a unicellular motile alga within the Prasinophyceae, a green algal group that is related to land plants. This picoeukaryote (<2 μm diameter) is widespread in the marine environment but is not well understood at the cellular level. Here, we examine shifts in mRNA and protein expression over the course of the day-night cycle using triplicated mid-exponential, nutrient replete cultures of Micromonas pusilla CCMP1545. Samples were collected at key transition points during the diel cycle for evaluation using high-throughput LC-MS proteomics. In conjunction, matched mRNA samples from the same time points were sequenced using pair-ended directional Illumina RNA-Seq to investigate the dynamics and relationship between the mRNA and protein expression programs of M. pusilla. Similar to a prior study of the marine cyanobacterium Prochlorococcus, we found significant divergence in the mRNA and proteomics expression dynamics in response to the light:dark cycle. Additionally, expressional responses of genes and the proteins they encoded could also be variable within the same metabolic pathway, such as we observed in the oxygenic photosynthesis pathway. A regression framework was used to predict protein levels from both mRNA expression and gene-specific sequence-based features. Several features in the genome sequence were found to influence protein abundance including codon usage as well as 3' UTR length and structure. Collectively, our studies provide insights into the regulation of the proteome over a diel cycle as well as the relationships between transcriptional and translational programs in the widespread marine green alga Micromonas.

  9. Biological activities and potential health benefits of fucoxanthin derived from marine brown algae.

    PubMed

    Kim, Se-Kwon; Pangestuti, Ratih

    2011-01-01

    The importance of marine algae as sources of functional ingredients has been well recognized due to their valuable health beneficial effects. Therefore, isolation and investigation of novel bioactive ingredients with biological activities from marine algae have attracted great attention. Among functional ingredients identified from marine algae, fucoxanthin has received particular interest. Fucoxanthin has been attributed with extraordinary potential for protecting the organism against a wide range of diseases and has considerable potential and promising applications in human health. Fucoxanthin has been reported to exhibit various beneficial biological activities such as antioxidant, anticancer, anti-inflammatory, antiobesity, and neuroprotective activities. In this chapter, the currently available scientific literatures regarding the most significant activities of fucoxanthin are summarized.

  10. Evaluation of marine sediments as microbial sources for methane production from brown algae under high salinity.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2014-10-01

    Various marine sediments were evaluated as promising microbial sources for methane fermentation of Saccharina japonica, a brown alga, at seawater salinity. All marine sediments tested produced mainly acetate among volatile fatty acids. One marine sediment completely converted the produced volatile fatty acids to methane in a short period. Archaeal community analysis revealed that acetoclastic methanogens belonging to the Methanosarcina genus dominated after cultivation. Measurement of the specific conversion rate at each step of methane production under saline conditions demonstrated that the marine sediments had higher conversion rates of butyrate and acetate than mesophilic methanogenic granules. These results clearly show that marine sediments can be used as microbial sources for methane production from algae under high-salt conditions without dilution.

  11. Interactions between microbial biofilms and marine fouling algae: a mini review.

    PubMed

    Mieszkin, Sophie; Callow, Maureen E; Callow, James A

    2013-01-01

    Natural and artificial substrata immersed in the marine environment are typically colonized by microorganisms, which may moderate the settlement/recruitment of algal spores and invertebrate larvae of macrofouling organisms. This mini-review summarizes the major interactions occurring between microbial biofilms and marine fouling algae, including their effects on the settlement, growth and morphology of the adult plants. The roles of chemical compounds that are produced by both bacteria and algae and which drive the interactions are reviewed. The possibility of using such bioactive compounds to control macrofouling will be discussed.

  12. Comparative analysis of a CFo ATP synthase subunit II homologue derived from marine and fresh-water algae.

    PubMed

    Suda, Yoshito; Yoshikawa, Tomoaki; Okuda, Yuko; Tsunemoto, Mei; Matsuda, Yuri; Tanaka, Satoshi; Ikeda, Kazunori; Miyasaka, Hitoshi; Harada, Kazuo; Bamba, Takeshi; Hirata, Kazumasa

    2009-11-01

    Comparative analysis was performed with a CFo ATP synthase subunit II homologue (CFo-II) derived from marine or fresh-water algae. The marine algae-derived CFo-II-transformed Escherichia coli grew and accumulated ATP more vigorously in NaCl or Cadmium containing medium, suggesting that this gene was useful for the development of stress-tolerant plant.

  13. Grazing on green algae by the periwinkle Littorina littorea in the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Wilhelmsen, U.; Reise, K.

    1994-06-01

    On sedimentary tidal flats in the Wadden Sea near the Island of Sylt, the periwinkle Littorina littorea occurred preferentially on clusters and beds of mussels and on shell beds (100 to 350 m-2), achieved moderate densities on green algal patches or mats (20 to 50 m-2), and remained rare on bare sediments (<5 m-2). Green algae covering>10% of sediment surface appeared in summer on approximately one third of the tidal zone, mainly in the upper and sheltered parts and almost never on mussel and shell beds. In feeding experiments, L. littorea ingested more of the dominant alge, Enteromorpha, than of Ulva, irrespective of whether or not algae were fresh or decaying. The tough thalli of Chaetomorpha were hardly consumed. Snails feeding on Enteromorpha produced fecal pellets from which new growth of Enteromorpha started. In the absence of periwinkles, Enteromorpha developed on mussels and the attached fucoids. Experimentally increased snail densities on sediments prevented green algal development, but the snails were unable to graze down established algal mats. It is concluded that natural densities of L. littorea hardly affect the ephemeral mass development of green algae on sediments. However, where the snails occur at high densities, i.e. on mussel beds, green algal development may be prevented.

  14. Origin of land plants: Do conjugating green algae hold the key?

    PubMed Central

    2011-01-01

    Background The terrestrial habitat was colonized by the ancestors of modern land plants about 500 to 470 million years ago. Today it is widely accepted that land plants (embryophytes) evolved from streptophyte algae, also referred to as charophycean algae. The streptophyte algae are a paraphyletic group of green algae, ranging from unicellular flagellates to morphologically complex forms such as the stoneworts (Charales). For a better understanding of the evolution of land plants, it is of prime importance to identify the streptophyte algae that are the sister-group to the embryophytes. The Charales, the Coleochaetales or more recently the Zygnematales have been considered to be the sister group of the embryophytes However, despite many years of phylogenetic studies, this question has not been resolved and remains controversial. Results Here, we use a large data set of nuclear-encoded genes (129 proteins) from 40 green plant taxa (Viridiplantae) including 21 embryophytes and six streptophyte algae, representing all major streptophyte algal lineages, to investigate the phylogenetic relationships of streptophyte algae and embryophytes. Our phylogenetic analyses indicate that either the Zygnematales or a clade consisting of the Zygnematales and the Coleochaetales are the sister group to embryophytes. Conclusions Our analyses support the notion that the Charales are not the closest living relatives of embryophytes. Instead, the Zygnematales or a clade consisting of Zygnematales and Coleochaetales are most likely the sister group of embryophytes. Although this result is in agreement with a previously published phylogenetic study of chloroplast genomes, additional data are needed to confirm this conclusion. A Zygnematales/embryophyte sister group relationship has important implications for early land plant evolution. If substantiated, it should allow us to address important questions regarding the primary adaptations of viridiplants during the conquest of land. Clearly

  15. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    PubMed

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae.

  16. Relationship between water solubility of chlorobenzenes and their effects on a freshwater green alga

    SciTech Connect

    Wong, P.T.S.; Chau, Y.K.; Rhamey, J.S.; Docker, M.

    1984-01-01

    The effective concentrations of benzene and 12 chlorobenzenes that reduced 50% of the primary productivity (EC/sub 50/) of a freshwater green alga, Ankistrodesmus falcatus, were determined. Benzene was the least toxic chemical and the toxicity increased as the degree of chlorine substitution in the aromatic ring increased. No EC/sub 50/ value could be obtained for HCB. A quantitative relationship was found to exist between water solubility, lipophilicity and the EC/sub 50/. A good correlation was also observed between the EC/sub 50/ for this alga and other toxicity data for various aquatic biota.

  17. Mixotrophy in the terrestrial green alga Apatococcus lobatus (Trebouxiophyceae, Chlorophyta).

    PubMed

    Gustavs, Lydia; Schumann, Rhena; Karsten, Ulf; Lorenz, Maike

    2016-04-01

    The green microalga Apatococcus lobatus is widely distributed in terrestrial habitats throughout many climatic zones. It dominates green biofilms on natural and artificial substrata in temperate latitudes and is regarded as a key genus of obligate terrestrial consortia. Until now, its isolation, cultivation and application as a terrestrial model organism has been hampered by slow growth rates and low growth capacities. A mixotrophic culturing approach clearly enhanced the accumulation of biomass, thereby permitting the future application of A. lobatus in different types of bio-assays necessary for material and biofilm research. The ability of A. lobatus to grow mixotrophically is assumed as a competitive advantage in terrestrial habitats.

  18. [Evolutional relationships of endemic green algae Draparnaldioides simplex from Lake Baikal with nonbaicalian taxa of family Chaetoforaceae (Chlorophyta)].

    PubMed

    Mincheva, E V; Peretolchina, T E; Izhboldina, L A; Kravtsova, L S; Shcherbakov, D Iu

    2013-01-01

    Phylogenetic relationships between the endemic baicalian green algae Draparnaldioides simplex C. meyer et Skabitsch, 1976 and holarctic taxa of green algae were studied using the fragment of 18S rDNA and internal transcribed spacers ITS1 and ITS2 of nuclear DNA. We showed that the baicalian genus Draparnaldioides is a separate taxon. The genetic difference between Draparnaldioides and nonbaicalian taxa of the sister groups of the green algae are small enough to indicate relative youth of the genus Draparnaldioides and its recent radiation from a common ancestor with Draparnaldia and Chaetophora.

  19. The complete mitochondrial DNA sequences of Nephroselmis olivacea and Pedinomonas minor. Two radically different evolutionary patterns within green algae.

    PubMed Central

    Turmel, M; Lemieux, C; Burger, G; Lang, B F; Otis, C; Plante, I; Gray, M W

    1999-01-01

    Green plants appear to comprise two sister lineages, Chlorophyta (classes Chlorophyceae, Ulvophyceae, Trebouxiophyceae, and Prasinophyceae) and Streptophyta (Charophyceae and Embryophyta, or land plants). To gain insight into the nature of the ancestral green plant mitochondrial genome, we have sequenced the mitochondrial DNAs (mtDNAs) of Nephroselmis olivacea and Pedinomonas minor. These two green algae are presumptive members of the Prasinophyceae. This class is thought to include descendants of the earliest diverging green algae. We find that Nephroselmis and Pedinomonas mtDNAs differ markedly in size, gene content, and gene organization. Of the green algal mtDNAs sequenced so far, that of Nephroselmis (45,223 bp) is the most ancestral (minimally diverged) and occupies the phylogenetically most basal position within the Chlorophyta. Its repertoire of 69 genes closely resembles that in the mtDNA of Prototheca wickerhamii, a later diverging trebouxiophycean green alga. Three of the Nephroselmis genes (nad10, rpl14, and rnpB) have not been identified in previously sequenced mtDNAs of green algae and land plants. In contrast, the 25,137-bp Pedinomonas mtDNA contains only 22 genes and retains few recognizably ancestral features. In several respects, including gene content and rate of sequence divergence, Pedinomonas mtDNA resembles the reduced mtDNAs of chlamydomonad algae, with which it is robustly affiliated in phylogenetic analyses. Our results confirm the existence of two radically different patterns of mitochondrial genome evolution within the green algae. PMID:10488238

  20. MACROALGAL VOLUME: A SURROGATE FOR BIOMASS IN SOME GREEN ALGAE

    EPA Science Inventory

    Two green algal morphotypes, filamentous species (e.g., Chaetomorpha spp.) and flattened or tubular (e.g.,Ulva spp. and Enteromorpha spp.) were collected from 63 sites within the Yaquina Bay estuary (Newport, OR) and used to compare an in situ volumetric biomass estimator to the...

  1. The effect of low temperature on Antarctic endolithic green algae

    NASA Technical Reports Server (NTRS)

    Meyer, M. A.; Morris, G. J.; Friedmann, E. I.

    1988-01-01

    Laboratory experiments show that undercooling to about -5 degrees C occurs in colonized Beacon sandstones of the Ross Desert, Antarctica. High-frequency temperature oscillations between 5 degrees C and -5 degrees C or -10 degrees C (which occur in nature on the rock surface) did not damage Hemichloris antarctica. In a cryomicroscope, H. antarctica appeared to be undamaged after slow or rapid cooling to -50 degrees C. 14CO2 incorporation after freezing to -20 degrees C was unaffected in H. antarctica or in Trebouxia sp. but slightly depressed in Stichococcus sp. (isolated from a less extreme Antarctic habitat). These results suggest that the freezing regime in the Antarctic desert is not injurious to endolithic algae. It is likely that the freezing-point depression inside the rock makes available liquid water for metabolic activity at subzero temperatures. Freezing may occur more frequently on the rock surface and contribute to the abiotic nature of the surface.

  2. Antimicrobial, Antioxidant, and Anticancer Activities of Biosynthesized Silver Nanoparticles Using Marine Algae Ecklonia cava

    PubMed Central

    Venkatesan, Jayachandran; Kim, Se-Kwon; Shim, Min Suk

    2016-01-01

    Green synthesis of silver nanoparticles (AgNPs) has gained great interest as a simple and eco-friendly alternative to conventional chemical methods. In this study, AgNPs were synthesized by using extracts of marine algae Ecklonia cava as reducing and capping agents. The formation of AgNPs using aqueous extract of Ecklonia cava was confirmed visually by color change and their surface plasmon resonance peak at 418 nm, measured by UV-visible spectroscopy. The size, shape, and morphology of the biosynthesized AgNPs were observed by transmission electron microscopy and dynamic light scattering analysis. The biosynthesized AgNPs were nearly spherical in shape with an average size around 43 nm. Fourier transform-infrared spectroscopy (FTIR) analysis confirmed the presence of phenolic compounds in the aqueous extract of Ecklonia cava as reducing and capping agents. X-ray diffraction (XRD) analysis was also carried out to demonstrate the crystalline nature of the biosynthesized AgNPs. Antimicrobial results determined by an agar well diffusion assay demonstrated a significant antibacterial activity of the AgNPs against Escherichia coli and Staphylococcus aureus. Antioxidant results determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay revealed an efficient antioxidant activity of the biosynthesized AgNPs. The biosynthesized AgNPs also exhibited a strong apoptotic anticancer activity against human cervical cancer cells. Our findings demonstrate that aqueous extract of Ecklonia cava is an effective reducing agent for green synthesis of AgNPs with efficient antimicrobial, antioxidant, and anticancer activities. PMID:28335363

  3. New antitumour natural products from marine red algae: covering the period from 2003 to 2012.

    PubMed

    Pejin, Boris; Jovanovic, Katarina K; Savic, Aleksandar G

    2015-01-01

    This review covers the 2003-2012 literature data published for natural products originating from marine red algae. The focus is on new antitumour substances, together with details related to the organism sourced. It emphasises 14 promising compounds (isolated from 13 species) whose chemical structures are briefly discussed.

  4. Coralline algae as a globally significant pool of marine dimethylated sulfur

    NASA Astrophysics Data System (ADS)

    Burdett, Heidi L.; Hatton, Angela D.; Kamenos, Nicholas A.

    2015-10-01

    Marine algae are key sources of the biogenic sulfur compound dimethylsulphoniopropionate (DMSP), a vital component of the marine sulfur cycle. Autotrophic ecosystem engineers such as red coralline algae support highly diverse and biogeochemically active ecosystems and are known to be high DMSP producers, but their importance in the global marine sulfur cycle has not yet been appreciated. Using a global sampling approach, we show that red coralline algae are a globally significant pool of DMSP in the oceans, estimated to be ~110 × 1012 moles worldwide during the summer months. Latitude was a major driver of observed regional-scale variations, with peaks in polar and tropical climate regimes, reflecting the varied cellular functions for DMSP (e.g., as a cryoprotectant and antioxidant). A temperate coralline algal bed was investigated in more detail to also identify local-scale temporal variations. Here, water column DMSP was driven by water temperature, and to a lesser extent, cloud cover; two factors which are also vital in controlling coralline algal growth. This study demonstrates that coralline algae harbor a large pool of dimethylated sulfur, thereby playing a significant role in both the sulfur and carbon marine biogeochemical cycles. However, coralline algal habitats are severely threatened by projected climate change; a loss of this habitat may thus detrimentally impact oceanic sulfur and carbon biogeochemical cycling.

  5. Increased temperature mitigates the effects of ocean acidification in calcified green algae ( Halimeda spp.)

    NASA Astrophysics Data System (ADS)

    Campbell, Justin E.; Fisch, Jay; Langdon, Chris; Paul, Valerie J.

    2016-03-01

    The singular and interactive effects of ocean acidification and temperature on the physiology of calcified green algae ( Halimeda incrassata, H. opuntia, and H. simulans) were investigated in a fully factorial, 4-week mesocosm experiment. Individual aquaria replicated treatment combinations of two pH levels (7.6 and 8.0) and two temperatures (28 and 31 °C). Rates of photosynthesis, respiration, and calcification were measured for all species both prior to and after treatment exposure. Pre-treatment measurements revealed that H. incrassata displayed higher biomass-normalized rates of photosynthesis and calcification (by 55 and 81 %, respectively) relative to H. simulans and H. opuntia. Furthermore, prior to treatment exposure, photosynthesis was positively correlated to calcification, suggesting that the latter process may be controlled by photosynthetic activity in this group. After treatment exposure, net photosynthesis was unaltered by pH, yet significantly increased with elevated temperature by 58, 38, and 37 % for H. incrassata, H. simulans, and H. opuntia, respectively. Both pH and temperature influenced calcification, but in opposing directions. On average, calcification declined by 41 % in response to pH reduction, but increased by 49 % in response to elevated temperature. Within each pH treatment, elevated temperature increased calcification by 23 % (at pH 8.0) and 74 % (at pH 7.6). Interactions between pH, temperature, and/or species were not observed. This work demonstrates that, in contrast to prior studies, increased temperature may serve to enhance the metabolic performance (photosynthesis and calcification) of some marine calcifiers, despite elevated carbon dioxide concentrations. Thus, in certain cases, ocean warming may mitigate the negative effects of acidification.

  6. Effect of bacterial biofilms formed on fouling-release coatings from natural seawater and Cobetia marina, on the adhesion of two marine algae.

    PubMed

    Mieszkin, Sophie; Martin-Tanchereau, Pierre; Callow, Maureen E; Callow, James A

    2012-01-01

    Previous studies have shown that bacterial biofilms formed from natural seawater (NSW) enhance the settlement of spores of the green alga Ulva linza, while single-species biofilms may enhance or reduce settlement, or have no effect at all. However, the effect of biofilms on the adhesion strength of algae, and how that may be influenced by coating/surface properties, is not known. In this study, the effect of biofilms formed from natural seawater and the marine bacterium Cobetia marina, on the settlement and the adhesion strength of spores and sporelings of the macroalga U. linza and the diatom Navicula incerta, was evaluated on Intersleek(®) 700, Intersleek(®) 900, poly(dimethylsiloxane) and glass. The settlement and adhesion strength of these algae were strongly influenced by biofilms and their nature. Biofilms formed from NSW enhanced the settlement (attachment) of both algae on all the surfaces while the effect of biofilms formed from C. marina varied with the coating type. The adhesion strength of spores and sporelings of U. linza and diatoms was reduced on all the surfaces biofilmed with C. marina, while adhesion strength on biofilms formed from NSW was dependent on the alga (and on its stage of development in the case of U. linza), and coating type. The results illustrate the complexity of the relationships between fouling algae and bacterial biofilms and suggest the need for caution to avoid over-generalisation.

  7. Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae.

    PubMed Central

    Van de Peer, Y; Rensing, S A; Maier, U G; De Wachter, R

    1996-01-01

    Chlorarachniophytes are amoeboid algae with chlorophyll a and b containing plastids that are surrounded by four membranes instead of two as in plants and green algae. These extra membranes form important support for the hypothesis that chlorarachniophytes have acquired their plastids by the ingestion of another eukaryotic plastid-containing alga. Chlorarachniophytes also contain a small nucleus-like structure called the nucleomorph situated between the two inner and the two outer membranes surrounding the plastid. This nucleomorph is a remnant of the endosymbiont's nucleus and encodes, among other molecules, small subunit ribosomal RNA. Previous phylogenetic analyses on the basis of this molecule provided unexpected and contradictory evidence for the origin of the chlorarachniophyte endosymbiont. We developed a new method for measuring the substitution rates of the individual nucleotides of small subunit ribosomal RNA. From the resulting substitution rate distribution, we derived an equation that gives a more realistic relationship between sequence dissimilarity and evolutionary distance than equations previously available. Phylogenetic trees constructed on the basis of evolutionary distances computed by this new method clearly situate the chlorarachniophyte nucleomorphs among the green algae. Moreover, this relationship is confirmed by transversion analysis of the Chlorarachnion plastid small subunit ribosomal RNA. PMID:8755544

  8. A MOLECULAR PHYLOGENY OF ACROCHAETE AND OTHER ENDOPHYTIC GREEN ALGAE (ULVALES, CHLOROPHYTA)(1).

    PubMed

    Rinkel, Barbara E; Hayes, Paul; Gueidan, Cécile; Brodie, Juliet

    2012-08-01

    A molecular phylogeny was reconstructed from a culture collection of >150 isolates of epi-endophytic and endophytic green algae, based on nucleotide sequences of the plastid tufA and nuclear ITS2 loci. The cultures were isolated from a variety of algal hosts, notably the red algae Chondrus crispus, Mastocarpus stellatus, and Osmundea species, and the brown algae Chorda filum and Fucus serratus. The phylogeny revealed that in the Ulvales the majority of isolates fell into Acrochaete (Ulvellaceae), Ulva (Ulvaceae), Bolbocoleon (Bolbocoleaceae), and at least two unknown genera provisionally assigned to the Kornmanniaceae. Acrochaete was monophyletic. The genus was also more specious than previously described with 12 species, including up to six new species awaiting formal description. Isolates identified as Acrochaete repens, the type species of the genus, were polyphyletic. The remainder of the isolates were placed in the Ulotrichales. The results confirm that the endophytic habit supports a broad diversity of algal taxa and suggest that blade formation is a relatively recent innovation within the green algae.

  9. Strong tolerance of blue-green alga Microcystis flos-aquae to very high pressure

    NASA Astrophysics Data System (ADS)

    Ono, F.; Nishihira, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Saigusa, M.; Matsushima, Y.; Yamazaki, D.; Ito, E.

    2015-09-01

    It was shown in our previous reports that a few spores of moss Venturiella could tolerate the very high pressure of 20 GPa for 30 min and germinated a protonema to the length of 30 μm. However, these spores did not grow any further, and disappeared at around 30 days of incubation after seeded. On the other hand, colonies of blue-green alga Microcystis flos-aquae came to appear about 76 days after the moss spores were seeded. Many of these colonies appeared at the places where the moss spores had disappeared. These colonies were formed by the algae that had adhered to the spore cases of the moss and survived after exposure to the very high pressure of 20 GPa. Though the appearance of the colonies of high pressure exposed algae was delayed by about 50 days compared with that of the control group which was not exposed to high pressure, there seems no difference in their shape and color from those of the control group. The pressure tolerance of blue-green alga is found to be enormously strong, and it can survive after exposure to the high pressure which corresponds to the depth of about 550-600 km from the surface of the Earth, just above the lower mantle.

  10. The adsorption potential and recovery of thallium using green micro-algae from eutrophic water sources.

    PubMed

    Birungi, Z S; Chirwa, E M N

    2015-12-15

    Thallium (Tl) is a highly volatile and toxic heavy metal regarded to cause pollution even at very low concentrations of several parts per million. Despite the extremely high risk of Tl in the environment, limited information on removal/recovery exists. The study focussed on the use of green algae to determine the sorption potential and recovery of Tl. From the study, removal efficiency was achieved at 100% for lower concentrations of ≥150 mg/L of Tl. At higher concentrations in a range of 250-500 mg/L, the performance of algae was still higher with sorption capacity (qmax) between 830 and 1000 mg/g. Generally, Chlorella vulgaris was the best adsorbent with a high qmax and lower affinity of 1000 mg/g and 1.11 L/g, respectively. When compared to other studies on Tl adsorption, the tested algae showed a better qmax than most adsorbents. The kinetic studies showed better correlation co-efficient of ≤0.99 for Pseudo-second order model than the first order model. Recovery was achieved highest for C. vulgaris using nitric acid at 93.3%. The strongest functional groups responsible for Tl binding on the algal cell wall were carboxyl and phenols. Green algae from freshwater bodies showed significant potential for Tl removal/recovery from industrial wastewater.

  11. Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants.

    PubMed

    Otto, Benjamin; Beuchel, Carl; Liers, Christiane; Reisser, Werner; Harms, Hauke; Schlosser, Dietmar

    2015-06-01

    In order to explore the abundance and potential environmental functions of green algal laccases, we screened various algae for extracellular laccase-like activities, characterized basic features of these activities in selected species and exemplarily studied the transformation of environmental pollutants and complex natural compounds by the laccase of Tetracystis aeria. Oxidation of the classical laccase substrate ABTS was found to be widespread in chlorophycean algae. The oxidation activity detected in members of the 'Scenedesmus' clade was caused by an unknown thermostable low-molecular-mass compound. In contrast, species of the Moewusinia, including Chlamydomonas moewusii and T. aeria, excreted putative 'true' laccases. Phenolic substrates were oxidized by these enzymes optimally at neutral to alkaline pH. The Tetracystis laccase efficiently transformed bisphenol A, 17α-ethinylestradiol, nonylphenol and triclosan in the presence of ABTS as redox mediator, while anthracene, veratrylalcohol and adlerol were not attacked. Lignosulfonate and humic acid underwent slight (de)polymerization reactions in the presence of the laccase and mediator(s), probably involving the oxidation of phenolic constituents. Possible natural functions of the enzymes, such as the synthesis of complex polymers or detoxification processes, may assist the survival of the algae in adverse environments. In contaminated surface waters, laccase-producing green algae might contribute to the environmental breakdown of phenolic pollutants.

  12. Growth of Legionella pneumophila in association with blue-green algae (Cyanobacteria)

    SciTech Connect

    Tison, D.L.; Pope, D.H.; Cherry, W.B.; Fliermans, C.B.

    1980-02-01

    Legionella pneumophila (Legionnaires disease bacterium) of serogroup 1 was isolated from an algal-bacterial mat community growing at 45/sup 0/C in a man-made thermal effluent. This isolate was grown in mineral salts medium at 45/sup 0/C in association with the blue-green alga (cyanobacterium) Fischerella sp. over a pH range of 6.9 to 7.6. L. pneumophila was apparently using algal extracellular products as its carbon and energy sources. These observations indicate that the temperature, pH, and nutritional requirements of L. pneumophila are not as stringent as those previously observed when cultured on complex media. This association between L. pneumophila and certain blue-green algae suggests an explanation for the apparent widespread distribution of the bacterium in nature.

  13. ULTRASTRUCTURE OF MITOSIS AND CYTOKINESIS IN THE MULTINUCLEATE GREEN ALGA ACROSIPHONIA

    PubMed Central

    Hudson, Peggy R.; Waaland, J. Robert

    1974-01-01

    The processes of mitosis and cytokinesis in the multinucleate green alga Acrosiphonia have been examined in the light and electron microscopes. The course of events in division includes thickening of the chloroplast and migration of numerous nuclei and other cytoplasmic incusions to form a band in which mitosis occurs, while other nuclei in the same cell but not in the band do not divide. Centrioles and microtubules are associated with migrated and dividing nuclei but not with nonmigrated, nondividing nuclei. Cytokinesis is accomplished in the region of the band, by means of an annular furrow which is preceded by a hoop of microtubules. No other microtubules are associated with the furrow. Characteristics of nuclear and cell division in Acrosiphonia are compared with those of other multinucleate cells and with those of other green algae. PMID:4139161

  14. When the lights go out: the evolutionary fate of free-living colorless green algae.

    PubMed

    Figueroa-Martinez, Francisco; Nedelcu, Aurora M; Smith, David R; Adrian, Reyes-Prieto

    2015-05-01

    The endosymbiotic origin of plastids was a launching point for eukaryotic evolution. The autotrophic abilities bestowed by plastids are responsible for much of the eukaryotic diversity we observe today. But despite its many advantages, photosynthesis has been lost numerous times and in disparate lineages throughout eukaryote evolution. For example, among green algae, several groups have lost photosynthesis independently and in response to different selective pressures; these include the parasitic/pathogenic trebouxiophyte genera Helicosporidium and Prototheca, and the free-living chlamydomonadalean genera Polytomella and Polytoma. Here, we examine the published data on colorless green algae and argue that investigations into the different evolutionary routes leading to their current nonphotosynthetic lifestyles provide exceptional opportunities to understand the ecological and genomic factors involved in the loss of photosynthesis.

  15. Esfenvalerate toxicity to the cladoceran Ceriodaphnia dubia in the presence of green algae, Pseudokirchneriella subcapitata.

    PubMed

    Brander, Susanne M; Mosser, Christopher M; Geist, Juergen; Hladik, Michelle L; Werner, Inge

    2012-11-01

    The presence of phytoplankton, like other particulate organic matter, can interfere with the effects of hydrophobic contaminants such as pyrethroid pesticides. However, the reduction or elimination of toxicity by algae added as food during testing is not taken into account in standard US EPA whole effluent toxicity (WET) zooplankton tests. On the other hand, WET test conditions may overestimate toxicity of such compounds in highly productive surface waters with high concentrations of detritus and other particulate matter. In addition, WET tests do not measure impaired swimming ability or predator avoidance behavior as an indicator of increased mortality risk. This study used a modified version of the US EPA WET Ceriodaphnia dubia acute test to investigate the effects of phytoplankton on toxicity of the pyrethroid insecticide, esfenvalerate. Animals were exposed simultaneously to different concentrations of esfenvalerate and green algae (Pseudokirchneriella subcapitata). Mortality and predation risk were recorded after 4 and 24 h. Algae at or below concentrations specified in the WET protocol significantly reduced mortality. Regardless, organisms exposed to esfenvalerate were unable to avoid simulated predation in the presence of algae at any concentration. After 12 h, esfenvalerate adsorbed to algae represented 68-99 % of the total amount recovered. The proportion of algae-bound insecticide increased with algal concentration indicating that conclusions drawn from toxicity tests in which algae are added as food must be interpreted with caution as the dissolved fraction of such hydrophobic contaminants is reduced. Additionally, our results strongly suggest that the EPA should consider adding ecologically-relevant endpoints such as swimming behavior to standard WET protocols.

  16. A Green Algae Mixture of Scenedesmus and Schroederiella Attenuates Obesity-Linked Metabolic Syndrome in Rats

    PubMed Central

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    This study investigated the responses to a green algae mixture of Scenedesmus dimorphus and Schroederiella apiculata (SC) containing protein (46.1% of dry algae), insoluble fibre (19.6% of dry algae), minerals (3.7% of dry algae) and omega-3 fatty acids (2.8% of dry algae) as a dietary intervention in a high carbohydrate, high fat diet-induced metabolic syndrome model in four groups of male Wistar rats. Two groups were fed with a corn starch diet containing 68% carbohydrates as polysaccharides, while the other two groups were fed a diet high in simple carbohydrates (fructose and sucrose in food, 25% fructose in drinking water, total 68%) and fats (saturated and trans fats from beef tallow, total 24%). High carbohydrate, high fat-fed rats showed visceral obesity with hypertension, insulin resistance, cardiovascular remodelling, and nonalcoholic fatty liver disease. SC supplementation (5% of food) lowered total body and abdominal fat mass, increased lean mass, and attenuated hypertension, impaired glucose and insulin tolerance, endothelial dysfunction, infiltration of inflammatory cells into heart and liver, fibrosis, increased cardiac stiffness, and nonalcoholic fatty liver disease in the high carbohydrate, high fat diet-fed rats. This study suggests that the insoluble fibre or protein in SC helps reverse diet-induced metabolic syndrome. PMID:25875119

  17. Viruses of eukaryotic green algae. Final technical report, June 1, 1989--February 1, 1992

    SciTech Connect

    Van Etten, J.L.

    1992-12-31

    We have isolated and partially characterized many large, polyhedral, DNA containing, plaque forming viruses which infect certain unicellular, eukaryotic, chlorella-like green algae. These viruses have several unique features, including the fact that they code for DNA site-specific endonucleases and DNA methyltransferases. The primary objectives of this study were to identify, clone, and characterize some of the virus-encoded DNA methyltransferases and DNA restriction endonucleases in order to understand their biological function.

  18. Viruses of eukaryotic green algae. Progress report, August 1, 1982-July 1, 1984

    SciTech Connect

    Van Etten, J.L.

    1984-01-01

    The virus, PBCV-1, which infects the eukaryotic, green alga, Chlorella-NC64A has been characterized and we have begun to look at detailed events associated with its growth cycle. In addition, we have recently discovered other dsDNA viruses from natural sources which replicate in Chlorella NC64A. These viruses can be distinguished from PBCV-1 and from each other by plaque morphology, DNA restriction patterns, and by their resistance to certain restriction endonucleases.

  19. Production of Recombinant Proteins in the Chloroplast of the Green Alga Chlamydomonas reinhardtii.

    PubMed

    Guzmán-Zapata, Daniel; Macedo-Osorio, Karla Soledad; Almaraz-Delgado, Alma Lorena; Durán-Figueroa, Noé; Badillo-Corona, Jesus Agustín

    2016-01-01

    Chloroplast transformation in the green algae Chlamydomonas reinhardtii can be used for the production of valuable recombinant proteins. Here, we describe chloroplast transformation of C. reinhardtii followed by protein detection. Genes of interest integrate stably by homologous recombination into the chloroplast genome following introduction by particle bombardment. Genes are inherited and expressed in lines recovered after selection in the presence of an antibiotic. Recombinant proteins can be detected by conventional techniques like immunoblotting and purified from liquid cultures.

  20. Predicting the Physiological Role of Circadian Metabolic Regulation in the Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Voytsekh, Olga; Mittag, Maria; Schuster, Stefan

    2011-01-01

    Although the number of reconstructed metabolic networks is steadily growing, experimental data integration into these networks is still challenging. Based on elementary flux mode analysis, we combine sequence information with metabolic pathway analysis and include, as a novel aspect, circadian regulation. While minimizing the need of assumptions, we are able to predict changes in the metabolic state and can hypothesise on the physiological role of circadian control in nitrogen metabolism of the green alga Chlamydomonas reinhardtii. PMID:21887226

  1. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches

    PubMed Central

    Silva, Tiago H.; Alves, Anabela; Popa, Elena G.; Reys, Lara L.; Gomes, Manuela E.; Sousa, Rui A.; Silva, Simone S.; Mano, João F.; Reis, Rui L.

    2012-01-01

    Biomedical field is constantly requesting for new biomaterials, with innovative properties. Natural polymers appear as materials of election for this goal due to their biocompatibility and biodegradability. In particular, materials found in marine environment are of great interest since the chemical and biological diversity found in this environment is almost uncountable and continuously growing with the research in deeper waters. Moreover, there is also a slower risk of these materials to pose illnesses to humans. In particular, sulfated polysaccharides can be found in marine environment, in different algae species. These polysaccharides don’t have equivalent in the terrestrial plants and resembles the chemical and biological properties of mammalian glycosaminoglycans. In this perspective, are receiving growing interest for application on health-related fields. On this review, we will focus on the biomedical applications of marine algae sulfated polymers, in particular on the development of innovative systems for tissue engineering and drug delivery approaches. PMID:23507892

  2. Cell-cycle regulation in green algae dividing by multiple fission.

    PubMed

    Bišová, Kateřina; Zachleder, Vilém

    2014-06-01

    Green algae dividing by multiple fission comprise unrelated genera but are connected by one common feature: under optimal growth conditions, they can divide into more than two daughter cells. The number of daughter cells, also known as the division number, is relatively stable for most species and usually ranges from 4 to 16. The number of daughter cells is dictated by growth rate and is modulated by light and temperature. Green algae dividing by multiple fission can thus be used to study coordination of growth and progression of the cell cycle. Algal cultures can be synchronized naturally by alternating light/dark periods so that growth occurs in the light and DNA replication(s) and nuclear and cellular division(s) occur in the dark; synchrony in such cultures is almost 100% and can be maintained indefinitely. Moreover, the pattern of cell-cycle progression can be easily altered by differing growth conditions, allowing for detailed studies of coordination between individual cell-cycle events. Since the 1950s, green algae dividing by multiple fission have been studied as a unique model for cell-cycle regulation. Future sequencing of algal genomes will provide additional, high precision tools for physiological, taxonomic, structural, and molecular studies in these organisms.

  3. Heterotrimeric G proteins in green algae: an early innovation in the evolution of the plant lineage.

    PubMed

    Hackenberg, Dieter; Pandey, Sona

    2014-01-01

    Heterotrimeric G-proteins (G-proteins, hereafter) are important signaling components in all eukaryotes. The absence of these proteins in the sequenced genomes of Chlorophyaceaen green algae has raised questions about their evolutionary origin and prevalence in the plant lineage. The existence of G-proteins has often been correlated with the acquisition of embryophytic life-cycle and/or terrestrial habitats of plants which occurred around 450 million years ago. Our discovery of functional G-proteins in Chara braunii, a representative of the Charophycean green algae, establishes the existence of this conserved signaling pathway in the most basal plants and dates it even further back to 1-1.5 billion years ago. We have now identified the sequence homologs of G-proteins in additional algal families and propose that green algae represent a model system for one of the most basal forms of G-protein signaling known to exist to date. Given the possible differences that exist between plant and metazoan G-protein signaling mechanisms, such basal organisms will serve as important resources to trace the evolutionary origin of proposed mechanistic differences between the systems as well as their plant-specific functions.

  4. Bioactivities from Marine Algae of the Genus Gracilaria

    PubMed Central

    de Almeida, Cynthia Layse F.; Falcão, Heloina de S.; Lima, Gedson R. de M.; Montenegro, Camila de A.; Lira, Narlize S.; de Athayde-Filho, Petrônio F.; Rodrigues, Luis C.; de Souza, Maria de Fátima V.; Barbosa-Filho, José M.; Batista, Leônia M.

    2011-01-01

    Seaweeds are an important source of bioactive metabolites for the pharmaceutical industry in drug development. Many of these compounds are used to treat diseases like cancer, acquired immune-deficiency syndrome (AIDS), inflammation, pain, arthritis, as well as viral, bacterial, and fungal infections. This paper offers a survey of the literature for Gracilaria algae extracts with biological activity, and identifies avenues for future research. Nineteen species of this genus that were tested for antibacterial, antiviral, antifungal, antihypertensive, cytotoxic, spermicidal, embriotoxic, and anti-inflammatory activities are cited from the 121 references consulted. PMID:21845096

  5. Crystallization and preliminary X-ray diffraction analysis of HML, a lectin from the red marine alga Hypnea musciformis

    SciTech Connect

    Nagano, Celso S.; Gallego del Sol, Francisca; Cavada, Benildo S.; Nascimento, Kyria Santiago Do; Nunes, Eudismar Vale; Sampaio, Alexandre H.; Calvete, Juan J.

    2005-11-01

    The crystallization and preliminary X-ray diffraction analysis of a red marine alga lectin isolated from H. musciformis is reported. HML, a lectin from the red marine alga Hypnea musciformis, defines a novel lectin family. Orthorhombic crystals of HML belonging to space group P2{sub 1}2{sub 1}2{sub 1} grew within three weeks at 293 K using the hanging-drop vapour-diffusion method. A complete data set was collected at 2.4 Å resolution. HML is the first marine alga lectin to be crystallized.

  6. Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration.

    PubMed

    Cerff, Martin; Morweiser, Michael; Dillschneider, Robert; Michel, Aymeé; Menzel, Katharina; Posten, Clemens

    2012-08-01

    In this study, the focus is on magnetic separation of fresh water algae Chlamydomonas reinhardtii and Chlorella vulgaris as well as marine algae Phaeodactylum tricornutum and Nannochloropsis salina by means of silica-coated magnetic particles. Due to their small size and low biomass concentrations, harvesting algae by conventional methods is often inefficient and cost-consuming. Magnetic separation is a powerful tool to capture algae by adsorption to submicron-sized magnetic particles. Hereby, separation efficiency depends on parameters such as particle concentration, pH and medium composition. Separation efficiencies of >95% were obtained for all algae while maximum particle loads of 30 and 77 g/g were measured for C. reinhardtii and P. tricornutum at pH 8 and 12, respectively. This study highlights the potential of silica-coated magnetic particles for the removal of fresh water and marine algae by high gradient magnetic filtration and provides critical discussion on future improvements.

  7. Iron utilization in marine cyanobacteria and eukaryotic algae.

    PubMed

    Morrissey, Joe; Bowler, Chris

    2012-01-01

    Iron is essential for aerobic organisms. Additionally, photosynthetic organisms must maintain the iron-rich photosynthetic electron transport chain, which likely evolved in the iron-replete Proterozoic ocean. The subsequent rise in oxygen since those times has drastically decreased the levels of bioavailable iron, indicating that adaptations have been made to maintain sufficient cellular iron levels in the midst of scarcity. In combination with physiological studies, the recent sequencing of marine microorganism genomes and transcriptomes has begun to reveal the mechanisms of iron acquisition and utilization that allow marine microalgae to persist in iron limited environments.

  8. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae

    PubMed Central

    Jiao, Guangling; Yu, Guangli; Zhang, Junzeng; Ewart, H. Stephen

    2011-01-01

    Sulfated polysaccharides and their lower molecular weight oligosaccharide derivatives from marine macroalgae have been shown to possess a variety of biological activities. The present paper will review the recent progress in research on the structural chemistry and the bioactivities of these marine algal biomaterials. In particular, it will provide an update on the structural chemistry of the major sulfated polysaccharides synthesized by seaweeds including the galactans (e.g., agarans and carrageenans), ulvans, and fucans. It will then review the recent findings on the anticoagulant/antithrombotic, antiviral, immuno-inflammatory, antilipidemic and antioxidant activities of sulfated polysaccharides and their potential for therapeutic application. PMID:21566795

  9. COMPARISON OF METHODS TO DETECT ALLELOPATHIC EFFECTS OF SUBMERGED MACROPHYTES ON GREEN ALGAE(1).

    PubMed

    Hilt Nee Körner, Sabine; Beutler, Eike; Bauer, Nadine

    2012-02-01

    Detecting allelopathic inhibition of phytoplankton by submerged macrophytes in an ecologically meaningful way is not easy. Multiple-approach investigations from a laboratory scale to the ecosystem level have been recommended to overcome the shortcomings of individual methods. Whether results of different methods are qualitatively or quantitatively comparable has not yet been tested. Here, we compare the sensitivity of the green algae Desmodesmus subspicatus (Chodat) E. Hegewald et Ant. Schmidt and Stigeoclonium helveticum Vischer to the allelopathic effect of the submerged macrophyte Myriophyllum verticillatum L. The following three approaches were used: (i) coincubation of algae in dialysis membrane tubes in a lake inside and outside a M. verticillatum stand, (ii) coincubation of algae in dialysis membrane tubes in aquaria with and without M. verticillatum, and (iii) single additions of tannic acid (TA), an allelopathically active polyphenol present in this macrophyte, to the algae cultures. For each method, fluorescence-based (chl a, PSII activity) and particle-based (cell count, biovolume) parameters were compared after 48 h of incubation. Results revealed quantitative and qualitative differences between methods. Algae incubated in dialysis membrane tubes in aquaria showed a strong decrease in all parameters under the influence of macrophytes. In situ measurements were influenced by adverse growth conditions for the test algae and only detected significant reductions for biovolume. Single additions of TA induced a strong reduction of fluorescence-based parameters similar to aquarium results, but an increase in the cell count. Even the qualitative transfer of laboratory results to field conditions thus requires caution and a proper selection of parameters.

  10. Coral reef grazer-benthos dynamics complicated by invasive algae in a small marine reserve

    PubMed Central

    Stamoulis, Kostantinos A.; Friedlander, Alan M.; Meyer, Carl G.; Fernandez-Silva, Iria; Toonen, Robert J.

    2017-01-01

    Blooms of alien invasive marine algae have become common, greatly altering the health and stability of nearshore marine ecosystems. Concurrently, herbivorous fishes have been severely overfished in many locations worldwide, contributing to increases in macroalgal cover. We used a multi-pronged, interdisciplinary approach to test if higher biomass of herbivorous fishes inside a no-take marine reserve makes this area more resistant to invasive algal overgrowth. Over a two year time period, we (1) compared fish biomass and algal cover between two fished and one unfished patch reef in Hawai’i, (2) used acoustic telemetry to determine fidelity of herbivorous fishes to the unfished reef, and (3) used metabarcoding and next-generation sequencing to determine diet composition of herbivorous fishes. Herbivore fish biomass was significantly higher in the marine reserve compared to adjacent fished reefs, whereas invasive algal cover differed by species. Herbivorous fish movements were largely confined to the unfished patch reef where they were captured. Diet analysis indicated that the consumption of invasive algae varied among fish species, with a high prevalence of comparatively rare native algal species. Together these findings demonstrate that the contribution of herbivores to coral reef resilience, via resistance to invasive algae invasion, is complex and species-specific. PMID:28276458

  11. Coral reef grazer-benthos dynamics complicated by invasive algae in a small marine reserve.

    PubMed

    Stamoulis, Kostantinos A; Friedlander, Alan M; Meyer, Carl G; Fernandez-Silva, Iria; Toonen, Robert J

    2017-03-09

    Blooms of alien invasive marine algae have become common, greatly altering the health and stability of nearshore marine ecosystems. Concurrently, herbivorous fishes have been severely overfished in many locations worldwide, contributing to increases in macroalgal cover. We used a multi-pronged, interdisciplinary approach to test if higher biomass of herbivorous fishes inside a no-take marine reserve makes this area more resistant to invasive algal overgrowth. Over a two year time period, we (1) compared fish biomass and algal cover between two fished and one unfished patch reef in Hawai'i, (2) used acoustic telemetry to determine fidelity of herbivorous fishes to the unfished reef, and (3) used metabarcoding and next-generation sequencing to determine diet composition of herbivorous fishes. Herbivore fish biomass was significantly higher in the marine reserve compared to adjacent fished reefs, whereas invasive algal cover differed by species. Herbivorous fish movements were largely confined to the unfished patch reef where they were captured. Diet analysis indicated that the consumption of invasive algae varied among fish species, with a high prevalence of comparatively rare native algal species. Together these findings demonstrate that the contribution of herbivores to coral reef resilience, via resistance to invasive algae invasion, is complex and species-specific.

  12. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants

    DOE PAGES

    van Baren, Marijke J.; Bachy, Charles; Reistetter, Emily Nahas; ...

    2016-03-31

    Prasinophytes are widespread marine green algae that are related to plants. Abundance of the genus Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these organisms are important for marine ecology and understanding Virdiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb Micromonas commoda (RCC299) shows they share ≤ 8,142 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequencedmore » eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26%) GC splice donors. Micromonas has more genus-specific protein families (19%) than other genome sequenced prasinophytes (11%). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and most plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other claasses retain the entire PG pathway, like moss and glaucophyte algae. Multiple vascular plants that share a unique bi-domain protein also have the pathway, except the Penicillin-Binding-Protein. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in the PG-pathway retention and implicate a role in chloroplast structure of division in several extant Vridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore their extensive divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the

  13. Acute toxicity of live and decomposing green alga Ulva ( Enteromorpha) prolifera to abalone Haliotis discus hannai

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Yu, Rencheng; Zhou, Mingjiang

    2011-05-01

    From 2007 to 2009, large-scale blooms of green algae (the so-called "green tides") occurred every summer in the Yellow Sea, China. In June 2008, huge amounts of floating green algae accumulated along the coast of Qingdao and led to mass mortality of cultured abalone and sea cucumber. However, the mechanism for the mass mortality of cultured animals remains undetermined. This study examined the toxic effects of Ulva ( Enteromorpha) prolifera, the causative species of green tides in the Yellow Sea during the last three years. The acute toxicity of fresh culture medium and decomposing algal effluent of U. prolifera to the cultured abalone Haliotis discus hannai were tested. It was found that both fresh culture medium and decomposing algal effluent had toxic effects to abalone, and decomposing algal effluent was more toxic than fresh culture medium. The acute toxicity of decomposing algal effluent could be attributed to the ammonia and sulfide presented in the effluent, as well as the hypoxia caused by the decomposition process.

  14. Development of a UV laser-induced fluorescence lidar for monitoring blue-green algae in Lake Suwa.

    PubMed

    Saito, Yasunori; Takano, Kengo; Kobayashi, Fumitoshi; Kobayashi, Kazuki; Park, Ho-Dong

    2014-10-20

    We developed a UV (355 nm) laser-induced fluorescence (LIF) lidar for monitoring the real-time status of blue-green algae. Since the fluorescence spectrum of blue-green algae excited by 355 nm showed the specific fluorescence at 650 nm, the lidar was designed to be able to detect the 650 nm fluorescence as a surveillance method for the algae. The usefulness was confirmed by observation at Lake Suwa over four years (2005-2008). The detection limit of the LIF lidar was 16.65 mg/L for the blue-green algae, which is the range of concentrations in the safe level set by the World Health Organization.

  15. Impact of green algae on the measurement of Microcystis aeruginosa populations in lagoon-treated wastewater with an algae online analyser.

    PubMed

    Nguyen, Thang; Roddick, Felicity A; Fan, Linhua

    2015-01-01

    Tests on the algae online analyser (AOA) showed that there was a strong direct linear correlation between cell density and in vivo Chl-a concentration for M. aeruginosa over the range of interest for a biologically treated effluent at a wastewater treatment plant (25,000-65,000 cells mL(-1), equivalent to a biovolume of 2-6 mm3 L(-1)). However, the AOA can provide an overestimate or underestimate of M. aeruginosa populations when green algae are present in the effluent, depending on their species and relative numbers. The results from this study demonstrated that the green algae (e.g., Euglena gracilis, Chlorella sp.) in the field phytoplankton population should be considered during calibration. In summary, the AOA has potential for use as an alert system for the presence of M. aeruginosa, and thus potentially of cyanobacterial blooms, in wastewater stabilization ponds.

  16. Characterization and optimization of hydrogen production by a salt water blue-green alga Oscillatoria sp. Miami BG 7. II - Use of immobilization for enhancement of hydrogen production

    NASA Technical Reports Server (NTRS)

    Phlips, E. J.; Mitsui, A.

    1986-01-01

    The technique of cellular immobilization was applied to the process of hydrogen photoproduction of nonheterocystous, filamentous marine blue-green alga, Oscillatoria sp. Miami BG 7. Immobilization with agar significantly improved the rate and longevity of hydrogen production, compared to free cell suspensions. Rates of H2 production in excess of 13 microliters H2 mg dry/wt h were observed and hydrogen production was sustained for three weeks. Immobilization also provided some stabilization to environmental variability and was adaptable to outdoor light conditions. In general, immobilization provides significant advantages for the production and maintenance of hydrogen photoproduction for this strain.

  17. The Genome of the Alga-Associated Marine Flavobacterium Formosa agariphila KMM 3901T Reveals a Broad Potential for Degradation of Algal Polysaccharides

    PubMed Central

    Mann, Alexander J.; Hahnke, Richard L.; Huang, Sixing; Werner, Johannes; Xing, Peng; Barbeyron, Tristan; Huettel, Bruno; Stüber, Kurt; Reinhardt, Richard; Harder, Jens; Glöckner, Frank Oliver; Amann, Rudolf I.

    2013-01-01

    In recent years, representatives of the Bacteroidetes have been increasingly recognized as specialists for the degradation of macromolecules. Formosa constitutes a Bacteroidetes genus within the class Flavobacteria, and the members of this genus have been found in marine habitats with high levels of organic matter, such as in association with algae, invertebrates, and fecal pellets. Here we report on the generation and analysis of the genome of the type strain of Formosa agariphila (KMM 3901T), an isolate from the green alga Acrosiphonia sonderi. F. agariphila is a facultative anaerobe with the capacity for mixed acid fermentation and denitrification. Its genome harbors 129 proteases and 88 glycoside hydrolases, indicating a pronounced specialization for the degradation of proteins, polysaccharides, and glycoproteins. Sixty-five of the glycoside hydrolases are organized in at least 13 distinct polysaccharide utilization loci, where they are clustered with TonB-dependent receptors, SusD-like proteins, sensors/transcription factors, transporters, and often sulfatases. These loci play a pivotal role in bacteroidetal polysaccharide biodegradation and in the case of F. agariphila revealed the capacity to degrade a wide range of algal polysaccharides from green, red, and brown algae and thus a strong specialization of toward an alga-associated lifestyle. This was corroborated by growth experiments, which confirmed usage particularly of those monosaccharides that constitute the building blocks of abundant algal polysaccharides, as well as distinct algal polysaccharides, such as laminarins, xylans, and κ-carrageenans. PMID:23995932

  18. New records of benthic marine algae and Cyanobacteria for Costa Rica, and a comparison with other Central American countries

    NASA Astrophysics Data System (ADS)

    Bernecker, Andrea; Wehrtmann, Ingo S.

    2009-09-01

    We present the results of an intensive sampling program carried out from 2000 to 2007 along both coasts of Costa Rica, Central America. The presence of 44 species of benthic marine algae is reported for the first time for Costa Rica. Most of the new records are Rhodophyta (27 spp.), followed by Chlorophyta (15 spp.), and Heterokontophyta, Phaeophycea (2 spp.). Overall, the currently known marine flora of Costa Rica is comprised of 446 benthic marine algae and 24 Cyanobacteria. This species number is an under estimation, and will increase when species of benthic marine algae from taxonomic groups where only limited information is available (e.g., microfilamentous benthic marine algae, Cyanobacteria) are included. The Caribbean coast harbors considerably more benthic marine algae (318 spp.) than the Pacific coast (190 spp.); such a trend has been observed in all neighboring countries. Compared to other Central American countries, Costa Rica has the highest number of reported benthic marine algae; however, Panama may have a similarly high diversity after unpublished results from a Rhodophyta survey (Wysor, unpublished) are included. Sixty-two species have been found along both the Pacific and Caribbean coasts of Costa Rica; we discuss this result in relation to the emergence of the Central American Isthmus.

  19. Three novel species of coccoid green algae within the Watanabea clade (Trebouxiophyceae, Chlorophyta).

    PubMed

    Song, Huiyin; Hu, Yuxin; Zhu, Huan; Wang, Qinghua; Liu, Guoxiang; Hu, Zhengyu

    2016-12-01

    Coccoid green algae are extremely diverse despite their simple coccoid phenotype, a phenotype that may be the result of convergent evolution. In this study, we used a polyphasic approach combining molecular phylogenetic analyses, morphology and ultrastructure to investigate isolated coccoid strains from China, and our results reveal three new lineages of Trebouxiophyceae: the novel genus and species Mysteriochloris nanningensis gen. et sp. nov., and the two novel species Phyllosiphon coccidium sp. nov. and Desertella yichangensis sp. nov. (Trebouxiophyceae, Chlorophyta). We provide a detailed characterization of the novel microalgae which they are autosporic coccoid unicells and have parietal chloroplasts. In phylogenies based on 18S rDNA sequences and the chloroplast ribulose-bisphosphate carboxylase gene (rbcL), these three algae are nested within the Watanabea clade and are different from any known algae. M. nanningensis FACHB-1787 is not really close to any known algae within the Watanabea clade. Phyllosiphoncoccidium FACHB-2212 is within the Phyllosiphon lineages. D. yichangensis FACHB-1793 is closely related to Desertella californica and described as a representative of a novel species of the genus Desertella.

  20. Toxicity and bioaccumulation kinetics of arsenate in two freshwater green algae under different phosphate regimes.

    PubMed

    Wang, Ning-Xin; Li, Yan; Deng, Xi-Hai; Miao, Ai-Jun; Ji, Rong; Yang, Liu-Yan

    2013-05-01

    In the present study, the toxicity and bioaccumulation kinetics of arsenate in two green algae Chlamydomonas reinhardtii and Scenedesmus obliquus under phosphate-enriched (+P) and limited (-P) conditions were investigated. P-limitation was found to aggravate arsenate toxicity and S. obliquus was more tolerant than C. reinhardtii. Such phosphate-condition-dependent or algal-species-specific toxicity difference was narrowed when the relative inhibition of cell growth was plotted against intracellular arsenate content instead of its extracellular concentration. The discrepance was further reduced when the intracellular ratio of arsenic to phosphorus was applied. It suggests that both arsenate bioaccumulation and intracellular phosphorus played an important role in arsenate toxicity. On the other hand, arsenate uptake was induced by P-limitation and its variation with ambient arsenate concentration could be well fitted to the Michaelis-Menten model. Arsenate transporters of S. obliquus were found to have a higher affinity but lower capacity than those of C. reinhardtii, which explains its better regulation of arsenate accumulation than the latter species in the toxicity experiment. Further, arsenate depuration was facilitated and more was transformed to arsenite in C. reinhardtii or under -P condition. Intracellular proportion of arsenite was also increased after the algae were transferred from the long-term uptake media to a relatively clean solution in the efflux experiment. Both phenomena imply that algae especially the sensitive species could make physiological adjustments to alleviate the adverse effects of arsenate. Overall, our findings will facilitate the application of algae in arsenate remediation.

  1. The effect of natural organic matter on bioaccumulation and toxicity of chlorobenzenes to green algae.

    PubMed

    Zhang, Shuai; Lin, Daohui; Wu, Fengchang

    2016-07-05

    The effect of natural organic matter (NOM) on toxicity and bioavailability of hydrophobic organic contaminants (HOCs) to aquatic organisms has been investigated with conflicting results and undefined mechanisms, and few studies have been conducted on volatile HOCs. In this study, six volatile chlorobenzenes (CBs) with 1-6 chlorine substitutions were investigated for their bioaccumulation in an acute toxicity to a green alga (Chlorella pyrenoidosa) in the presence/absence of Suwannee River NOM (SRNOM). The fluorescence quenching efficiency of SRNOM increased as the number of chlorine substitutions of CBs increased. SRNOM increased the cell-surface hydrophobicity of algae and decreased the release rates of algae-accumulated CBs, thus increasing the concentration factor (CF) and accumulation of the CBs in the algae. SRNOM increased the toxicity of monochlorobenzene and 1,2-dichlorobenzene, decreased the toxicity of pentachlorobenzene and hexachlorobenzene, and had no significant effect on the toxicity of 1,2,3-trichlorobenzene and 1,2,3,4-tetrachlorobenzene. Relationships between the 96 h CF/IC50 (i.e., the CB concentration leading to a 50% algal growth reduction compared with the control) and physicochemical properties of CBs with/without SRNOM were established, providing reasonable explanations for the experimental results. These findings will help with the accurate assessment of ecological risks of organic pollutants in the presence of NOM.

  2. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri

    SciTech Connect

    Prochnik, Simon E.; Umen, James; Nedelcu, Aurora; Hallmann, Armin; Miller, Stephen M.; Nishii, Ichiro; Ferris, Patrick; Kuo, Alan; Mitros, Therese; Fritz-Laylin, Lillian K.; Hellsten, Uffe; Chapman, Jarrod; Simakov, Oleg; Rensing, Stefan A.; Terry, Astrid; Pangilinan, Jasmyn; Kapitonov, Vladimir; Jurka, Jerzy; Salamov, Asaf; Shapiro, Harris; Schmutz, Jeremy; Grimwood, Jane; Lindquist, Erika; Lucas, Susan; Grigoriev, Igor V.; Schmitt, Rudiger; Kirk, David; Rokhsar, Daniel S.

    2010-07-01

    Analysis of the Volvox carteri genome reveals that this green alga's increased organismal complexity and multicellularity are associated with modifications in protein families shared with its unicellular ancestor, and not with large-scale innovations in protein coding capacity. The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are uniquely suited for investigating the evolution of multicellularity and development. We sequenced the 138 Mb genome of V. carteri and compared its {approx}14,500 predicted proteins to those of its unicellular relative, Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials, and few species-specific protein-coding gene predictions. Interestingly, volvocine algal-specific proteins are enriched in Volvox, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.

  3. Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains.

    PubMed

    Lee, Soojin; Oh, Younghoon; Kim, Donghyun; Kwon, Doyeon; Lee, Choulgyun; Lee, Jinwon

    2011-07-01

    Marine algae, which make up about 80% of the world's living organisms, contain many energy sources, such as sugars and lipids. Therefore, the possibility of utilizing structural carbohydrates from marine algae for bioethanol production has been studied. In order to obtain monosaccharides, Undaria pinnatifida, Chlorella vulgaris, and Chlamydomonas reinhardtii were used for the saccharification experiments. The pretreatment was carried out by dilute acid hydrolysis and enzymatic treatment. To find the optimal conditions, experiments were performed at several temperatures, acid concentrations, pH conditions and durations. To test bioethanol production, several ethanolic E. coli W3110 strains, which were developed previously, were used. The maximum yield of bioethanol, 0.4 g ethanol/g biomass, was achieved with pretreated C. vulgaris and E. coli SJL2526, derived from wild-type E. coli W3110 and which includes the adhB, pdc, galP, and glk genes.

  4. Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications.

    PubMed

    Shannon, Emer; Abu-Ghannam, Nissreen

    2016-04-22

    The marine environment is home to a taxonomically diverse ecosystem. Organisms such as algae, molluscs, sponges, corals, and tunicates have evolved to survive the high concentrations of infectious and surface-fouling bacteria that are indigenous to ocean waters. Both macroalgae (seaweeds) and microalgae (diatoms) contain pharmacologically active compounds such as phlorotannins, fatty acids, polysaccharides, peptides, and terpenes which combat bacterial invasion. The resistance of pathogenic bacteria to existing antibiotics has become a global epidemic. Marine algae derivatives have shown promise as candidates in novel, antibacterial drug discovery. The efficacy of these compounds, their mechanism of action, applications as antibiotics, disinfectants, and inhibitors of foodborne pathogenic and spoilage bacteria are reviewed in this article.

  5. Antibacterial Derivatives of Marine Algae: An Overview of Pharmacological Mechanisms and Applications

    PubMed Central

    Shannon, Emer; Abu-Ghannam, Nissreen

    2016-01-01

    The marine environment is home to a taxonomically diverse ecosystem. Organisms such as algae, molluscs, sponges, corals, and tunicates have evolved to survive the high concentrations of infectious and surface-fouling bacteria that are indigenous to ocean waters. Both macroalgae (seaweeds) and microalgae (diatoms) contain pharmacologically active compounds such as phlorotannins, fatty acids, polysaccharides, peptides, and terpenes which combat bacterial invasion. The resistance of pathogenic bacteria to existing antibiotics has become a global epidemic. Marine algae derivatives have shown promise as candidates in novel, antibacterial drug discovery. The efficacy of these compounds, their mechanism of action, applications as antibiotics, disinfectants, and inhibitors of foodborne pathogenic and spoilage bacteria are reviewed in this article. PMID:27110798

  6. Electron microscopy study of biosorbents from marine macro alga Durvillaea potatorum.

    PubMed

    Yu, Q; Kaewsarn, P; Van Duong, L

    2000-08-01

    Biosorbents derived from the biomass of marine algae have shown to have high uptake capacities for heavy metals and the internal structure has been generally assumed to be pseudo-homogenous. In this paper, the microstructures of biosorbents derived from Australian marine alga Durvillaea poratorum were analysed using scanning electron microscopy. The structural components of the biosorbent resembled fiber-like cylinders. The internal structure was a highly connected network of cylinders with varying sizes. Methods of drying and pre-treatment of the biomass also affected the details of the internal structure. Calcium chloride followed by thermal treatment provided the most uniform cylinder networks for the biosorbents. Heavy metal Cu2+ and Cd2+ binding in the biomass was confirmed by using an electron probe microanalyser.

  7. Trace element content in marine algae species from the Black Sea, Turkey.

    PubMed

    Tuzen, Mustafa; Verep, Bulent; Ogretmen, A Omur; Soylak, Mustafa

    2009-04-01

    Trace element content of marine algae species collected from the Black Sea coasts were determined by atomic absorption spectroscopy after microwave digestion. Trace element content in marine algae species were 1.70-17.1 microg/g for copper, 3.64-64.8 microg/g for zinc, 9.98-285 microg/g for manganese, 99-3,949 microg/g for iron, 0.50-11.6 microg/g for chromium, 0.27-36.2 microg/g for nickel, 11-694 microg/kg for selenium, 0.50-44.6 microg/kg for cadmium, 1.54-3,969 microg/kg for lead, 1.56-81.9 microg/kg for cobalt. While iron was the highest trace element concentration, cadmium was the lowest in samples. Most of the analyzed samples were edible. The samples are consumed for human diet in several countries.

  8. Sedimentary 12-n-Propylcholestanes, Molecular Fossils Diagnostic of Marine Algae.

    PubMed

    Moldowan, J M; Fago, F J; Lee, C Y; Jacobson, S R; Watt, D S; Slougui, N E; Jeganathan, A; Young, D C

    1990-01-19

    Certain C(30)-steranes have been used for identifying sedimentary rocks and crude oils derived from organic matter deposited in marine environments. Analysis of a C(30)-sterane from Prudhoe Bay oil indicates that these C(30)-steranes are 24-n-propylcholestanes that apparently are derived from precursor sterols 24-n-propylidene-cholesterols and 24-n-propylcholesterol. These widely occurring sterols are biochemically synthesized in modern oceans by members of an order (Sarcinochrysidales) of chrysophyte algae. These data thus imply that C(30)-sterane biomarkers in sedimentary rocks and crude oils have a marine origin. Screening of a few organic-rich sedimentary rocks and oils from throughout the Phanerozoic suggests that these C(30)-steranes first appeared and, therefore, their source algae evolved between Early Ordovician and Devonian.

  9. Biochemical biomarkers in algae and marine pollution: a review.

    PubMed

    Torres, Moacir A; Barros, Marcelo P; Campos, Sara C G; Pinto, Ernani; Rajamani, Satish; Sayre, Richard T; Colepicolo, Pio

    2008-09-01

    Environmental pollution by organic compounds and metals became extensive as mining and industrial activities increased in the 19th century and have intensified since then. Environmental pollutants originating from diverse anthropogenic sources have been known to possess adverse values capable of degrading the ecological integrity of marine environment. The consequences of anthropogenic contamination of marine environments have been ignored or poorly characterized with the possible exception of coastal and estuarine waters close to sewage outlets. Monitoring the impact of pollutants on aquatic life forms is challenging due to the differential sensitivities of organisms to a given pollutant, and the inability to assess the long-term effects of persistent pollutants on the ecosystem as they are bio-accumulated at higher trophic levels. Marine microalgae are particularly promising indicator species for organic and inorganic pollutants since they are typically the most abundant life forms in aquatic environments and occupy the base of the food chain. We review the effects of pollutants on the cellular biochemistry of microalgae and the biochemical mechanisms that microalgae use to detoxify or modify pollutants. In addition, we evaluate the potential uses of microalgae as bioindicator species as an early sentinel in polluted sites.

  10. Diversity and oceanic distribution of prasinophytes clade VII, the dominant group of green algae in oceanic waters.

    PubMed

    Lopes Dos Santos, Adriana; Gourvil, Priscillia; Tragin, Margot; Noël, Mary-Hélène; Decelle, Johan; Romac, Sarah; Vaulot, Daniel

    2017-02-01

    Prasinophytes clade VII is a group of pico/nano-planktonic green algae (division Chlorophyta) for which numerous ribosomal RNA (rRNA) sequences have been retrieved from the marine environment in the last 15 years. A large number of strains have also been isolated but have not yet received a formal taxonomic description. A phylogenetic analysis of available strains using both the nuclear 18S and plastidial 16S rRNA genes demonstrates that this group composes at least 10 different clades: A1-A7 and B1-B3. Analysis of sequences from the variable V9 region of the 18S rRNA gene collected during the Tara Oceans expedition and in the frame of the Ocean Sampling Day consortium reveal that clade VII is the dominant Chlorophyta group in oceanic waters, replacing Mamiellophyceae, which have this role in coastal waters. At some location, prasinophytes clade VII can even be the dominant photosynthetic eukaryote representing up to 80% of photosynthetic metabarcodes overall. B1 and A4 are the overall dominant clades and different clades seem to occupy distinct niches, for example, A6 is dominant in surface Mediterranean Sea waters, whereas A4 extend to high temperate latitudes. Our work demonstrates that prasinophytes clade VII constitute a highly diversified group, which is a key component of phytoplankton in open oceanic waters but has been neglected in the conceptualization of marine microbial diversity and carbon cycle.

  11. Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri.

    PubMed

    Prochnik, Simon E; Umen, James; Nedelcu, Aurora M; Hallmann, Armin; Miller, Stephen M; Nishii, Ichiro; Ferris, Patrick; Kuo, Alan; Mitros, Therese; Fritz-Laylin, Lillian K; Hellsten, Uffe; Chapman, Jarrod; Simakov, Oleg; Rensing, Stefan A; Terry, Astrid; Pangilinan, Jasmyn; Kapitonov, Vladimir; Jurka, Jerzy; Salamov, Asaf; Shapiro, Harris; Schmutz, Jeremy; Grimwood, Jane; Lindquist, Erika; Lucas, Susan; Grigoriev, Igor V; Schmitt, Rüdiger; Kirk, David; Rokhsar, Daniel S

    2010-07-09

    The multicellular green alga Volvox carteri and its morphologically diverse close relatives (the volvocine algae) are well suited for the investigation of the evolution of multicellularity and development. We sequenced the 138-mega-base pair genome of V. carteri and compared its approximately 14,500 predicted proteins to those of its unicellular relative Chlamydomonas reinhardtii. Despite fundamental differences in organismal complexity and life history, the two species have similar protein-coding potentials and few species-specific protein-coding gene predictions. Volvox is enriched in volvocine-algal-specific proteins, including those associated with an expanded and highly compartmentalized extracellular matrix. Our analysis shows that increases in organismal complexity can be associated with modifications of lineage-specific proteins rather than large-scale invention of protein-coding capacity.

  12. Studies on the proteins of mass-cultivated, blue-green alga (Spirulina platensis)

    SciTech Connect

    Annusuyadevi, M.; Subbulakshmi, G.; Madhair'devi, K.; Venkalaramein, L.V.

    1981-05-01

    The characteristics of the protein of fresh-water, mass-cultured Spirulina platensis have been studied. The solubility of this algal protein in water and various aqueous solvents has been estimated. The total protein content of the blue-green algae was approximately 50-55% of which nearly 9.9% was nonprotein nitrogen. About 80% of the total protein nitrogen can be extracted by three successive extractions with water. Ths isoelectric point of this algal protein is found to be 3.0. The total proteins were characterized physicochemically by standard techniques. In the ultracentrifuge total proteins resolve into two major components with S20w values of 2.6 and 4.7 S. The polyacrylamide gel electrophoretic pattern of the total protein showed seven bands including three prominent ones. The in vitro digestibility of the total protein of fresh algae was found to be 85% when assayed with a pepsin-pancreatin system.

  13. Organelle genome complexity scales positively with organism size in volvocine green algae.

    PubMed

    Smith, David Roy; Hamaji, Takashi; Olson, Bradley J S C; Durand, Pierre M; Ferris, Patrick; Michod, Richard E; Featherston, Jonathan; Nozaki, Hisayoshi; Keeling, Patrick J

    2013-04-01

    It has been argued that for certain lineages, noncoding DNA expansion is a consequence of the increased random genetic drift associated with long-term escalations in organism size. But a lack of data has prevented the investigation of this hypothesis in most plastid-bearing protists. Here, using newly sequenced mitochondrial and plastid genomes, we explore the relationship between organelle DNA noncoding content and organism size within volvocine green algae. By looking at unicellular, colonial, and differentiated multicellular algae, we show that organelle DNA complexity scales positively with species size and cell number across the volvocine lineage. Moreover, silent-site genetic diversity data suggest that the volvocine species with the largest cell numbers and most bloated organelle genomes have the smallest effective population sizes. Together, these findings support the view that nonadaptive processes, like random genetic drift, promote the expansion of noncoding regions in organelle genomes.

  14. [New additions to the marine algae of Mochima National Park, Sucre, Venezuela].

    PubMed

    Silva, Soraida; Brito, Leonor; Lemus, Andrés

    2003-06-01

    The marine algal flora from the eastern coast of Mochima National Park, Sucre, Venezuela was studied with a total of 51 taxa identified, including eight new additions of red algae which are Erythrotrichia carnea (Dillwyn) J. Agardh, Sahlingia subintegra (Rosenvinge) Kornmann, Liagora ceranoides Lamouroux, Asparagopsis taxiformis (Delile) Trevisan, Dasya corymbifera J. Agardh, Chondria dasyphylla (Woodward) C. Agardh, Herposiphonia secunda f. tenella (C. Agardh) M.J. Wynne and Polysiphonia subtilissima Montagne. Morphological and anatomical aspects of the specimens are described and illustrated.

  15. DNA barcoding of a new record of epi-endophytic green algae Ulvella leptochaete (Ulvellaceae, Chlorophyta) in India.

    PubMed

    Bast, Felix; Bhushan, Satej; John, Aijaz Ahmad

    2014-09-01

    Epi-endophytic green algae comprise one of the most diverse and phylogenetically primitive groups of green algae and are considered to be ubiquitous in the world's oceans; however, no reports of these algae exist from India. Here we report the serendipitous discovery of Ulvella growing on intertidal green algae Cladophora glomerata and benthic red algae Laurencia obtusa collected from India. DNA barcodes at nuclear ribosomal DNA Internal Transcriber Spacer (nrDNA ITS) 1 and 2 regions for Indian isolates from the west and east coasts have been generated for the first time. Based on morphology and DNA barcoding, isolates were identified as Ulvella leptochaete. Phylogenetic reconstruction of concatenated dataset using Maximum Likelihood method differentiated Indian isolates from other accessions of this alga available in Genbank, albeit with low bootstrap support. Monophyly of Ulvella leptochaete was obvious in both of our phylogenetic analyses. With this first report of epi-endophytic algae from Indian territorial waters, the dire need to catalogue its cryptic diversity is highlighted and avenues of future research are discussed.

  16. Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae.

    PubMed

    Smith, Valerie J; Desbois, Andrew P; Dyrynda, Elisabeth A

    2010-04-14

    All eukaryotic organisms, single-celled or multi-cellular, produce a diverse array of natural anti-infective agents that, in addition to conventional antimicrobial peptides, also include proteins and other molecules often not regarded as part of the innate defences. Examples range from histones, fatty acids, and other structural components of cells to pigments and regulatory proteins. These probably represent very ancient defence factors that have been re-used in new ways during evolution. This review discusses the nature, biological role in host protection and potential biotechnological uses of some of these compounds, focusing on those from fish, marine invertebrates and marine micro-algae.

  17. In vitro anti-HMPV activity of meroditerpenoids from marine alga Stypopodium zonale (Dictyotales).

    PubMed

    Mendes, Gabriella; Soares, Angélica Ribeiro; Sigiliano, Lorena; Machado, Fernanda; Kaiser, Carlos; Romeiro, Nelilma; Gestinari, Lísia; Santos, Norma; Romanos, Maria Teresa Villela

    2011-10-10

    In this paper, we evaluated the antiviral activity against HMPV replication of crude extract of the marine algae Stypopodium zonale and of two meroditerpenoids obtained from it, atomaric acid and epitaondiol, and a methyl ester derivative of atomaric acid. Their selectivity indexes were 20.78, >56.81, 49.26 and 12.82, respectively. Compared to ribavirin, the substances showed a relatively low cytotoxicity on LLC-MK2 cells, with a significant antiviral activity, inhibiting at least 90% of viral replication in vitro, which demonstrates the potential of these marine natural products to combat infections caused by HMPV in vitro.

  18. Conventional and Unconventional Antimicrobials from Fish, Marine Invertebrates and Micro-algae

    PubMed Central

    Smith, Valerie J.; Desbois, Andrew P.; Dyrynda, Elisabeth A.

    2010-01-01

    All eukaryotic organisms, single-celled or multi-cellular, produce a diverse array of natural anti-infective agents that, in addition to conventional antimicrobial peptides, also include proteins and other molecules often not regarded as part of the innate defences. Examples range from histones, fatty acids, and other structural components of cells to pigments and regulatory proteins. These probably represent very ancient defence factors that have been re-used in new ways during evolution. This review discusses the nature, biological role in host protection and potential biotechnological uses of some of these compounds, focusing on those from fish, marine invertebrates and marine micro-algae. PMID:20479976

  19. A Lack of Parasitic Reduction in the Obligate Parasitic Green Alga Helicosporidium

    PubMed Central

    Pombert, Jean-François; Blouin, Nicolas Achille; Lane, Chris; Boucias, Drion; Keeling, Patrick J.

    2014-01-01

    The evolution of an obligate parasitic lifestyle is often associated with genomic reduction, in particular with the loss of functions associated with increasing host-dependence. This is evident in many parasites, but perhaps the most extreme transitions are from free-living autotrophic algae to obligate parasites. The best-known examples of this are the apicomplexans such as Plasmodium, which evolved from algae with red secondary plastids. However, an analogous transition also took place independently in the Helicosporidia, where an obligate parasite of animals with an intracellular infection mechanism evolved from algae with green primary plastids. We characterised the nuclear genome of Helicosporidium to compare its transition to parasitism with that of apicomplexans. The Helicosporidium genome is small and compact, even by comparison with the relatively small genomes of the closely related green algae Chlorella and Coccomyxa, but at the functional level we find almost no evidence for reduction. Nearly all ancestral metabolic functions are retained, with the single major exception of photosynthesis, and even here reduction is not complete. The great majority of genes for light-harvesting complexes, photosystems, and pigment biosynthesis have been lost, but those for other photosynthesis-related functions, such as Calvin cycle, are retained. Rather than loss of whole function categories, the predominant reductive force in the Helicosporidium genome is a contraction of gene family complexity, but even here most losses affect families associated with genome maintenance and expression, not functions associated with host-dependence. Other gene families appear to have expanded in response to parasitism, in particular chitinases, including those predicted to digest the chitinous barriers of the insect host or remodel the cell wall of Helicosporidium. Overall, the Helicosporidium genome presents a fascinating picture of the early stages of a transition from free

  20. Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri.

    PubMed

    Rathod, Jayant Pralhad; Prakash, Gunjan; Pandit, Reena; Lali, Arvind M

    2013-11-01

    Parachlorella kessleri is a unicellular alga which grows in fresh as well as marine water and is commercially important as biomass/lipid feedstock and in bioremediation. The present study describes the successful transformation of marine P. kessleri with the help of Agrobacterium tumefaciens. Transformed marine P. kessleri was able to tolerate more than 10 mg l(-1) hygromycin concentration. Co-cultivation conditions were modulated to allow the simultaneous growth of both marine P. kessleri and A. tumefaciens. For co-cultivation, P. kessleri was shifted from Walne's to tris acetate phosphate medium to reduce the antibiotic requirement during selection. In the present study, the transfer of T-DNA was successful without using acetosyringone. Biochemical and genetic analyses were performed for expression of transgenes by GUS assay and PCR in transformants. Establishment of this protocol would be useful in further genetic modification of oil-bearing Parachlorella species.

  1. Hylodesmus singaporensis gen. et sp. nov., a new autosporic subaerial green alga (Scenedesmaceae, Chlorophyta) from Singapore.

    PubMed

    Eliás, Marek; Nemcová, Yvonne; Skaloud, Pavel; Neustupa, Jirí; Kaufnerová, Veronika; Sejnohová, Lenka

    2010-05-01

    The algal flora of subaerial habitats in the tropics remains largely unexplored, despite the fact that it potentially encompasses a wealth of new evolutionary diversity. Here we present a detailed morphological and molecular characterization of an autosporic coccoid green alga isolated from decaying wood in a natural forest in Singapore. Depending on culture conditions, this alga formed globular to irregularly oval solitary cells. Autosporulation was the only mode of reproduction observed. The cell periphery was filled with numerous vacuoles, and a single parietal chloroplast contained a conspicuous pyrenoid surrounded by a bipartite starch envelope. The cell wall was composed of a thick inner layer and a thin trilaminar outer layer, and the cell surface was ornamented with a few delicate ribs. Phylogenetic analyses of 18S rRNA gene sequences placed our strain in the family Scenedesmaceae (Sphaeropleales, Chlorophyceae) as a strongly supported sister branch of the genus Desmodesmus. Analyses of an alternative phylogenetic marker widely used for the Scenedesmaceae, the ITS2 region, confirmed that the strain is distinct from any scenedesmacean alga sequenced to date, but is related to the genus Desmodesmus, despite lacking the defining phenotypic features of Desmodesmus (cell wall with four sporopolleninic layers ornamented with peculiar submicroscopic structures). Collectively, our results establish that we identified a novel, previously undocumented, evolutionary lineage of scenedesmacean algae necessitating its description as a new species in a new genus. We propose it be named Hylodesmus singaporensis gen. et sp. nov. A cryopreserved holotype specimen has been deposited into the Culture Collection of Algae of Charles University in Prague, Czech Republic (CAUP) as CAUP C-H8001.

  2. Photosynthetic unit size, carotenoids, and chlorophyll-protein composition of Prochloron sp., a prokaryotic green alga.

    PubMed

    Withers, N W; Alberte, R S; Lewin, R A; Thornber, J P; Britton, G; Goodwin, T W

    1978-05-01

    Six samples of the prokaryotic, unicellular algae Prochloron sp., which occur in association with didemnid ascidians, were collected from various localities in the tropical Pacific Ocean, and their pigments and chlorophyll-protein complexes were identified and characterized. No phycobilin pigments were detected in any of the species. Chlorophylls a and b were present in ratios of a/b = 4.4-6.9. The major carotenoids were beta-carotene (70%) and zeaxanthin (20%). Minor carotenoids of one isolate were identified as echinenone, cryptoxanthin, isocryptoxanthin, mutachrome, and trihydroxy-beta-carotene; no epsilon-ring carotenoids were found in any sample. Except for the absence of glycosidic carotenoids, the overall pigment composition is typical of cyanobacteria. A chlorophyll a/b-protein complex was present in Prochloron; it was electrophoretically and spectrally indistinguishable from the light-harvesting chlorophyll a/b-protein of higher plants and green algae. It accounted for 26% (compared to approximately 50% in green plants) of the total chlorophyll; 17% was associated with a P700-chlorophyll a-protein. The photosynthetic unit size of 240 +/- 10 chlorophylls per P700 in Prochloron was about half that of eukaryotic green plants. A model is proposed for the in vivo organization of chlorophyll in Prochloron.

  3. Common Ancestry Is a Poor Predictor of Competitive Traits in Freshwater Green Algae.

    PubMed

    Narwani, Anita; Alexandrou, Markos A; Herrin, James; Vouaux, Alaina; Zhou, Charles; Oakley, Todd H; Cardinale, Bradley J

    2015-01-01

    Phytoplankton species traits have been used to successfully predict the outcome of competition, but these traits are notoriously laborious to measure. If these traits display a phylogenetic signal, phylogenetic distance (PD) can be used as a proxy for trait variation. We provide the first investigation of the degree of phylogenetic signal in traits related to competition in freshwater green phytoplankton. We measured 17 traits related to competition and tested whether they displayed a phylogenetic signal across a molecular phylogeny of 59 species of green algae. We also assessed the fit of five models of trait evolution to trait variation across the phylogeny. There was no significant phylogenetic signal for 13 out of 17 ecological traits. For 7 traits, a non-phylogenetic model provided the best fit. For another 7 traits, a phylogenetic model was selected, but parameter values indicated that trait variation evolved recently, diminishing the importance of common ancestry. This study suggests that traits related to competition in freshwater green algae are not generally well-predicted by patterns of common ancestry. We discuss the mechanisms by which the link between phylogenetic distance and phenotypic differentiation may be broken.

  4. Recovery of photosynthesis and growth rate in green, blue-green, and diatom algae after exposure to atrazine.

    PubMed

    Brain, Richard A; Arnie, Joshua R; Porch, John R; Hosmer, Alan J

    2012-11-01

    We evaluated the recovery of photosynthesis and growth rate in green (Pseudokirchneriella subcapitata), blue-green (Anabaena flos-aquae), and diatom (Navicula pelliculosa) algae after pulsed exposure to atrazine. Subsequent to a grow-up period of 24 to 72 h to establish requisite cell density for adequate signal strength to measure photosystem II (PSII) quantum yield, algae were exposed to a pulse of atrazine for 48 h followed by a 48-h recovery period in control media. Photosynthesis was measured at 0, 3, 6, 12, 24, and 48 h of the exposure and recovery phases using pulse amplitude modulation fluorometry; growth rate and cell density were also concomitantly measured at these time points. Exposure to atrazine resulted in immediate, but temporary, inhibition of photosynthesis and growth; however, these effects were transient and fully reversible in the tested species of algae. For all three algal species, no statistically significant reductions (p ≤ 0.05) in growth rate or PSII quantum yield were detected at any of the treatment concentrations 48 h after atrazine was removed from the test system. Effects at test levels up to the highest tested exposure levels were consequently determined to be algistatic (reversible). Both biochemically and physiologically, recovery of photosynthesis and growth rate occur immediately, reaching control levels within hours following exposure. Therefore, pulsed exposure profiles of atrazine typically measured in Midwestern U.S. streams are unlikely to result in biologically meaningful changes in primary production given that the effects of atrazine are temporary and fully reversible in species representative of native populations.

  5. An antioxidant function for DMSP and DMS in marine algae

    NASA Astrophysics Data System (ADS)

    Sunda, W.; Kieber, D. J.; Kiene, R. P.; Huntsman, S.

    2002-07-01

    The algal osmolyte dimethylsulphoniopropionate (DMSP) and its enzymatic cleavage product dimethylsulphide (DMS) contribute significantly to the global sulphur cycle, yet their physiological functions are uncertain. Here we report results that, together with those in the literature, show that DMSP and its breakdown products (DMS, acrylate, dimethylsulphoxide, and methane sulphinic acid) readily scavenge hydroxyl radicals and other reactive oxygen species, and thus may serve as an antioxidant system, regulated in part by enzymatic cleavage of DMSP. In support of this hypothesis, we found that oxidative stressors, solar ultraviolet radiation, CO2 limitation, Fe limitation, high Cu2+ (ref. 9) and H2O2 substantially increased cellular DMSP and/or its lysis to DMS in marine algal cultures. Our results indicate direct links between such stressors and the dynamics of DMSP and DMS in marine phytoplankton, which probably influence the production of DMS and its release to the atmosphere. As oxidation of DMS to sulphuric acid in the atmosphere provides a major source of sulphate aerosols and cloud condensation nuclei, oxidative stressors-including solar radiation and Fe limitation-may be involved in complex ocean-atmosphere feedback loops that influence global climate and hydrological cycles.

  6. An antioxidant function for DMSP and DMS in marine algae.

    PubMed

    Sunda, W; Kieber, D J; Kiene, R P; Huntsman, S

    2002-07-18

    The algal osmolyte dimethylsulphoniopropionate (DMSP) and its enzymatic cleavage product dimethylsulphide (DMS) contribute significantly to the global sulphur cycle, yet their physiological functions are uncertain. Here we report results that, together with those in the literature, show that DMSP and its breakdown products (DMS, acrylate, dimethylsulphoxide, and methane sulphinic acid) readily scavenge hydroxyl radicals and other reactive oxygen species, and thus may serve as an antioxidant system, regulated in part by enzymatic cleavage of DMSP. In support of this hypothesis, we found that oxidative stressors, solar ultraviolet radiation, CO(2) limitation, Fe limitation, high Cu(2+) (ref. 9) and H(2)O(2) substantially increased cellular DMSP and/or its lysis to DMS in marine algal cultures. Our results indicate direct links between such stressors and the dynamics of DMSP and DMS in marine phytoplankton, which probably influence the production of DMS and its release to the atmosphere. As oxidation of DMS to sulphuric acid in the atmosphere provides a major source of sulphate aerosols and cloud condensation nuclei, oxidative stressors--including solar radiation and Fe limitation--may be involved in complex ocean atmosphere feedback loops that influence global climate and hydrological cycles.

  7. Marine bacteria associated with the Korean brown alga, Undaria pinnatifida.

    PubMed

    Lee, Yoo Kyung; Jung, Hyun Jung; Lee, Hong Kum

    2006-12-01

    Several marine bacterial strains were isolated from Undaria pinnatifida (Miyok in Korean). Sixty-six strains were isolated on R2A agar media at 10 degrees and identified by a phylogenetic analysis of the 16S rRNA gene sequences. They were grouped into 10 different sequence types based on the initial sequence analysis of the 5' domain of the gene (approximately 500 bp). Full sequences of 16S rRNA gene were obtained from one strain in each sequence type and the species-affiliation was determined using phylogenetic and sequence similarity analyses. The results of the analyses indicated that they were closely related to Psychrobacter aquimaris, P. celer, P. nivimaris, P. pulmonis, Psychromonas arctica or Bacillus psychrodurans. These bacteria are marine or psychrotrophic bacteria. Because the sporophytes of U.pinnatifida are cultured on the costal area during winter, the U. pinnatifida-associated bacteria appeared to grow at low temperatures. U. pinnatifida sporophytes can be a good source for the isolation of psychrotrophic bacteria.

  8. Protective effect of Dunaliella salina-A marine micro alga, against carbon tetrachloride-induced hepatotoxicity in rats.

    PubMed

    Chidambara Murthy, K N; Rajesha, J; Vanitha, A; Swamy, M Mahadeva; Ravishankar, G A

    2005-12-01

    This is the first report on the hepatoprotective potentials of marine micro algae Dunaliella species. Dunaliella salina, halotolarent green alga was cultivated in modified autotrophic medium. The alga was subjected to light and nutrient stress in order to accumulate (beta-carotene along with other carotenoids. Such beta-carotene enriched yellow cells were fed to rats by mixing with regular feed at the dose of 2.5 and of 5.0gkg(-1) b.w. for 2 weeks. The degree of hepatoprotection was measured up on challenging animals with toxin (2.0gkg(-1) of carbon tetrachloride) by estimation of biochemical parameters like, serum transaminases (serum aspartate transaminase (S)AST and serum alanine transaminase (S)ALT), serum alkaline phosphatase and total protein. The results were compared to animals on normal diet and with group fed with 100mugkg(-1) b.w. of standard all trans beta-carotene. Among the three test groups the group fed with algae of 5.0gkg(-1) body weight, showed maximum protection. The levels of (S)AST and (S)ALT was found to be 61.3+/-6.4 and 80.7+/-5.6%, against 90.8+/-10.5 and 144.7+/-13.9% in case of standard beta-carotene. The protein contents were increased in case of control to 6.1+/-0.7 and the same was found to be significantly less in case of 5.0gkg(-1)Dunaliella fed group, which shown 5.6+/-0.8% total protein. However, the activity of 2.5gkg(-1) was also significant comparatively (P<0.05). The results indicate that Dunaliella, which contains isomeric forms of beta-carotene can act as good antihepatotoxic when compared to synthetic all trans beta-carotene. Dunaliella has shown the presence of both cis and trans isomeric forms of beta-carotene, where as synthetic compounds contain only trans isomer. Hepatoprotectivity may be due to presence of various isomeric forms of carotene and other oxygenated carotenoids (xanthophylls) in algae.

  9. Distribution patterns and impact of transposable elements in genes of green algae.

    PubMed

    Philippsen, Gisele S; Avaca-Crusca, Juliana S; Araujo, Ana P U; DeMarco, Ricardo

    2016-12-05

    Transposable elements (TEs) are DNA sequences able to transpose in the host genome, a remarkable feature that enables them to influence evolutive trajectories of species. An investigation about the TE distribution and TE impact in different gene regions of the green algae species Chlamydomonas reinhardtii and Volvox carteri was performed. Our results indicate that TEs are very scarce near introns boundaries, suggesting that insertions in this region are negatively selected. This contrasts with previous results showing enrichment of tandem repeats in introns boundaries and suggests that different evolutionary forces are acting in these different classes of repeats. Despite the relatively low abundance of TEs in the genome of green algae when compared to mammals, the proportion of poly(A) sites derived from TEs found in C. reinhardtii was similar to that described in human and mice. This fact, associated with the enrichment of TEs in gene 5' and 3' flanks of C. reinhardtii, opens up the possibility that TEs may have considerably contributed for gene regulatory sequences evolution in this species. Moreover, it was possible identify several instances of TE exonization for C. reinhardtii, with a particularly interesting case from a gene coding for Condensin II, a protein involved in the maintenance of chromosomal structure, where the addition of a transposomal PHD finger may contribute to binding specificity of this protein. Taken together, our results suggest that the low abundance of TEs in green algae genomes is correlated with a strict negative selection process, combined with the retention of copies that contribute positively with gene structures.

  10. Abiotic Stress Tolerance of Charophyte Green Algae: New Challenges for Omics Techniques

    PubMed Central

    Holzinger, Andreas; Pichrtová, Martina

    2016-01-01

    Charophyte green algae are a paraphyletic group of freshwater and terrestrial green algae, comprising the classes of Chlorokybophyceae, Coleochaetophyceae, Klebsormidiophyceae, Zygnematophyceae, Mesostigmatophyceae, and Charo- phyceae. Zygnematophyceae (Conjugating green algae) are considered to be closest algal relatives to land plants (Embryophyta). Therefore, they are ideal model organisms for studying stress tolerance mechanisms connected with transition to land, one of the most important events in plant evolution and the Earth’s history. In Zygnematophyceae, but also in Coleochaetophyceae, Chlorokybophyceae, and Klebsormidiophyceae terrestrial members are found which are frequently exposed to naturally occurring abiotic stress scenarios like desiccation, freezing and high photosynthetic active (PAR) as well as ultraviolet (UV) irradiation. Here, we summarize current knowledge about various stress tolerance mechanisms including insight provided by pioneer transcriptomic and proteomic studies. While formation of dormant spores is a typical strategy of freshwater classes, true terrestrial groups are stress tolerant in vegetative state. Aggregation of cells, flexible cell walls, mucilage production and accumulation of osmotically active compounds are the most common desiccation tolerance strategies. In addition, high photophysiological plasticity and accumulation of UV-screening compounds are important protective mechanisms in conditions with high irradiation. Now a shift from classical chemical analysis to next-generation genome sequencing, gene reconstruction and annotation, genome-scale molecular analysis using omics technologies followed by computer-assisted analysis will give new insights in a systems biology approach. For example, changes in transcriptome and role of phytohormone signaling in Klebsormidium during desiccation were recently described. Application of these modern approaches will deeply enhance our understanding of stress reactions in an

  11. Langmuir-Blodgett film of phycobilisomes from blue-green alga Spirulina platensis.

    PubMed

    Chen, Chao; Zhang, Yu-Zhong; Chen, Xiu-Lan; Zhou, Bai-Cheng; Gao, Hong-Jun

    2003-10-01

    The phycobilisomes were isolated from blue-green alga Spirulina platensis, and could form monolayer film at air/water interface. The monolayer film of phycobilisomes was transferred to newly cleaved mica, and coated with gold. Scanning tunneling microscope was used to investigate the structure of the Langmuir-Blodgett film of phycobilisomes. It was shown that phycobilisomes in the monolayer arrayed in rows with core attaching on the substrate surface and rods radiating towards the air phase, this phenomenon was similar to the arrangement of phycobilisomes on cytoplasmic surface of thylakoid membrane in vivo. The possible applications of the Langmuir-Blodgett film of phycobilisomes were also discussed.

  12. Viruses of eukaryotic green algae. Progress report, August 1, 1984-March 1, 1986

    SciTech Connect

    Van Etten, J.L.

    1986-01-01

    PBCV-1 is a large dsDNA-containing, plaque forming virus that replicates in a unicellular, eukaryotic Chlorella-like green alga strain NC64A. We have discovered that PBCV-1 infection results in the appearance of a restriction and modification system in the host. Furthermore, we have isolated and partially characterized 30 additional large, dsDNA-containing viruses which replicate in the same host. Some, if not all, of these viruses probably induce the synthesis of modification and restriction systems which are different from that induced by PBCV-1. 16 refs.

  13. Identification of a copper-sensitive ascorbate peroxidase in the unicellular green alga Selenastrum capricornutum.

    PubMed

    Sauser, K R; Liu, J K; Wong, T Y

    1997-07-01

    Extracts from the unicellular green alga Selenastrum capricornutum exhibit high superoxide dismutase activity, but only traces of catalase activity. The excess hydrogen peroxide (H2O2) generated by the superoxide dismutase in S. capricornutum may be degraded by a unique peroxidase. This peroxidase has a high specificity for ascorbate as its electron donor. The enzyme has an optimum pH at 8, is insensitive to cyanide and is inhibited by oxine. Addition of low concentrations of copper to algal cultures stimulates the peroxidase activity threefold. This enzymatic system could be used as a sensitive bioindicator for copper in fresh water.

  14. Inhibitory effects of terpene alcohols and aldehydes on growth of green alga Chlorella pyrenoidosa

    SciTech Connect

    Ikawa, Miyoshi; Mosley, S.P.; Barbero, L.J. )

    1992-10-01

    The growth of the green alga Chlorella pyrenoidosa was inhibited by terpene alcohols and the terpene aldehyde citral. The strongest activity was shown by citral. Nerol, geraniol, and citronellol also showed pronounced activity. Strong inhibition was linked to acyclic terpenes containing a primary alcohol or aldehyde function. Inhibition appeared to be taking place through the vapor phase rather than by diffusion through the agar medium from the terpene-treated paper disks used in the system. Inhibition through agar diffusion was shown by certain aged samples of terpene hydrocarbons but not by recently purchased samples.

  15. Carbon Supply and Photoacclimation Cross Talk in the Green Alga Chlamydomonas reinhardtii1[OPEN

    PubMed Central

    Fristedt, Rikard; Dinc, Emine

    2016-01-01

    Photosynthetic organisms are exposed to drastic changes in light conditions, which can affect their photosynthetic efficiency and induce photodamage. To face these changes, they have developed a series of acclimation mechanisms. In this work, we have studied the acclimation strategies of Chlamydomonas reinhardtii, a model green alga that can grow using various carbon sources and is thus an excellent system in which to study photosynthesis. Like other photosynthetic algae, it has evolved inducible mechanisms to adapt to conditions where carbon supply is limiting. We have analyzed how the carbon availability influences the composition and organization of the photosynthetic apparatus and the capacity of the cells to acclimate to different light conditions. Using electron microscopy, biochemical, and fluorescence measurements, we show that differences in CO2 availability not only have a strong effect on the induction of the carbon-concentrating mechanisms but also change the acclimation strategy of the cells to light. For example, while cells in limiting CO2 maintain a large antenna even in high light and switch on energy-dissipative mechanisms, cells in high CO2 reduce the amount of pigments per cell and the antenna size. Our results show the high plasticity of the photosynthetic apparatus of C. reinhardtii. This alga is able to use various photoacclimation strategies, and the choice of which to activate strongly depends on the carbon availability. PMID:27637747

  16. Size-dependent ecotoxicity of barium titanate particles: the case of Chlorella vulgaris green algae.

    PubMed

    Polonini, Hudson C; Brandão, Humberto M; Raposo, Nádia R B; Brandão, Marcos Antônio F; Mouton, Ludovic; Couté, Alain; Yéprémian, Claude; Sivry, Yann; Brayner, Roberta

    2015-05-01

    Studies have been demonstrating that smaller particles can lead to unexpected and diverse ecotoxicological effects when compared to those caused by the bulk material. In this study, the chemical composition, size and shape, state of dispersion, and surface's charge, area and physicochemistry of micro (BT MP) and nano barium titanate (BT NP) were determined. Green algae Chlorella vulgaris grown in Bold's Basal (BB) medium or Seine River water (SRW) was used as biological indicator to assess their aquatic toxicology. Responses such as growth inhibition, cell viability, superoxide dismutase (SOD) activity, adenosine-5-triphosphate (ATP) content and photosynthetic activity were evaluated. Tetragonal BT (~170 nm, 3.24 m(2) g(-1) surface area) and cubic BT (~60 nm, 16.60 m(2) g(-1)) particles were negative, poorly dispersed, and readily aggregated. BT has a statistically significant effect on C. vulgaris growth since the lower concentration tested (1 ppm), what seems to be mediated by induced oxidative stress caused by the particles (increased SOD activity and decreased photosynthetic efficiency and intracellular ATP content). The toxic effects were more pronounced when the algae was grown in SRW. Size does not seem to be an issue influencing the toxicity in BT particles toxicity since micro- and nano-particles produced significant effects on algae growth.

  17. Volvoxrhodopsin, a light-regulated sensory photoreceptor of the spheroidal green alga Volvox carteri.

    PubMed Central

    Ebnet, E; Fischer, M; Deininger, W; Hegemann, P

    1999-01-01

    Somatic cells of the multicellular alga Volvox carteri contain a visual rhodopsin that controls the organism's phototactic behavior via two independent photoreceptor currents. Here, we report the identification of an opsinlike gene, designated as volvoxopsin (vop). The encoded protein exhibits homologies to the opsin of the unicellular alga Chlamydomonas reinhardtii (chlamyopsin) and to the entire animal opsin family, thus providing new perspectives on opsin evolution. Volvoxopsin accumulates within the eyes of somatic cells. However, the vop transcript is detectable only in the reproductive eyeless gonidia and embryos. vop mRNA levels increase 400-fold during embryogenesis, when embryos develop in darkness, whereas the vop transcript does not accumulate when embryos develop in the light. An antisense transformant, T3, was generated. This transformant produces 10 times less volvoxopsin than does the wild type. In T3, the vop transcript is virtually absent, whereas the antisense transcript is predominant and light regulated. It follows that vop expression is under light-dependent transcriptional control but that volvoxopsin itself is not the regulatory photoreceptor. Transformant T3 is phototactic, but its phototactic sensitivity is reduced 10-fold relative to the parental wild-type strain HK10. Thus, we offer definitive genetic evidence that a rhodopsin serves as the photoreceptor for phototaxis in a green alga. PMID:10449581

  18. (Carbon and hydrogen metabolism of green algae in light and dark)

    SciTech Connect

    Not Available

    1990-01-01

    The focus of this project was the elucidation of anaerobic metabolism in ecuaryotic green algae, chlamydomonas reinhardii. Chlamydomonas is a versatile organism that can grow under disparate conditions such as fresh water lakes and sewage ponds. The cell an photoassimilate CO{sub 2} aerobically and anaerobically, the latter after adaptation'' to a hydrogen metabolism. It can recall the knallgas or oxyhydrogen reaction and utilize hydrogen the simplest of all reducing agents for the dark assimilation of CO{sub 2} by the photosynthetic carbon reduction cycle. The dark reduction with hydrogen lies on the border line between autotrophic and heterotrophic carbon assimilation. Both autotrophic and heterotrophic bacteria are known in which molecular hydrogen can replace either inorganic or organic hydrogen donors. Here the dark reduction of CO{sub 2} acquires a particular importance since it occurs in the same cell that carries on photoreduction and photosynthesis. We will demonstrate here that the alga chloroplast possesses a respiratory capacity. It seems likely that Chlamydomonas may have retained the chloroplastic respiratory pathway because of the selective advantage provided to the algae under a wide range of environmental conditions that the cells experience in nature. The ability to cycle electrons and poise the reduction level of the photosynthetic apparatus under aerobic and microaerobic conditions could allow more efficient CO{sub 2} fixation and enhanced growth under unfavorable conditions or survival under more severe conditions.

  19. Molecular identification of green algae from the rafts based infrastructure of Porphyra yezoensis.

    PubMed

    Shen, Qi; Li, Hongye; Li, Yan; Wang, Zongling; Liu, Jiesheng; Yang, Weidong

    2012-10-01

    To provide more information on the origin of the Ulva prolifera bloom in Qingdao sea area in China from 2007 to 2011, the diversity of green algae growing on the rafts of Porphyra yezoensis on the coast in Jiangsu Province was investigated based on ITS, rbcL and 5S sequences. Eighty-four of green algal samples from various sites and cruises in 2010 and 2011 were collected. According to ITS and rbcL sequences, samples from the rafts of P. yezoensis fell into four clades: Ulva linza-procera-prolifera (LPP) complex, Ulva flexuosa, Blidingia sp. and Urospora spp. However, based on the 5S rDNA, a more resolved DNA marker, only one of the 84 samples belonged to U. prolifera. Combined with the previous reports, it is likely that U. prolifera bloom in Qingdao sea area might consist of more than one origin, and Porphyra cultivation rafts might be one of the causes.

  20. Requirement of low oxidation-reduction potential for photosynthesis in a blue-green alga (Phormidium sp.).

    PubMed

    Weller, D; Doemel, W; Brock, T D

    1975-06-20

    Photosynthesis in a Phormidium species which forms dense conical-shaped structures in thermal springs is strongly inhibited by aeration but is stimulated by sulfide and other agents (cysteine, thioglycolate, sulfite) which lower the oxidation-reduction potential. The compact structures which this alga forms in nature may restrict oxygen penetration from the enviroment so that the anaerobic or microaerophilic conditions necessary ofr photosynthesis can develop. The alga may be defective in a regulatory mechanism that controls the reoxidation of reduced pyridine nucleotides formed during photosynthesis. It is suggested that other mat-forming and benthic blue-green algae may also prefer anaerobib conditions for growth and photosynthesis.

  1. Determination of Volatile Compounds in Four Commercial Samples of Japanese Green Algae Using Solid Phase Microextraction Gas Chromatography Mass Spectrometry

    PubMed Central

    Yoshikawa, Keisuke; Fujita, Akira; Mase, Nobuyuki; Watanabe, Naoharu

    2014-01-01

    Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings. PMID:24592162

  2. Evaluation of the contamination of marine algae (seaweed) from the St. Lawrence River and likely to be consumed by humans

    SciTech Connect

    Phaneuf, D.; Cote, I.; Dumas, P.; Ferron, L.A.; LeBlanc, A.

    1999-02-01

    The goal of the study was to assess the contamination of marine algae (seaweeds) growing in the St. Lawrence River estuary and Gulf of St. Lawrence and to evaluate the risks to human health from the consumption of these algae. Algae were collected by hand at low tide. A total of 10 sites on the north and south shores of the St. Lawrence as well as in Baie des Chaleurs were sampled. The most frequently collected species of algae were Fucus vesiculosus, Ascophyllum nodosum, Laminaria Longicruris, Palmaria palmata, Ulva lactuca, and Fucus distichus. Alga samples were analyzed for metals iodine, and organochlorines. A risk assessment was performed using risk factors. In general, concentrations in St. Lawrence algae were not very high. Consequently, health risks associated with these compounds in St. Lawrence algae were very low. Iodine concentration, on the other hand, could be of concern with regard to human health. Regular consumption of algae, especially of Laminaria sp., could result in levels of iodine sufficient to cause thyroid problems. For regular consumers, it would be preferable to choose species with low iodine concentrations, such as U. lactuca and P. palmata, in order to prevent potential problems. Furthermore, it would also be important to assess whether preparation for consumption or cooking affects the iodine content of algae. Algae consumption may also have beneficial health effects. Scientific literature has shown that it is a good source of fiber and vitamins, especially vitamin B{sub 12}.

  3. The development of marine Toxicity Identification Evaluation (TIE) procedures using the unicellular alga Nitzschia closterium.

    PubMed

    Hogan, A C; Stauber, J L; Pablo, F; Adams, M S; Lim, R P

    2005-05-01

    Unicellular algae are highly sensitive to a wide range of toxicants and have been used extensively in ecotoxicological testing. This, along with their ability to grow in very small test volumes over short test durations, make them ideal test organisms for use in Toxicity Identification Evaluations (TIEs). Despite this, microalgae have not previously been used in marine TIE studies. In this study, the marine diatom Nitzschia closterium was shown to be a highly suitable test organism after modification of the standard test protocol to reduce test volumes to 6 mL and test duration to 48 h. The alga was tolerant to the chemicals used in phase I of the standard USEPA TIE protocol, and physical TIE manipulations had no effect on algal growth. The cation exchange procedure, however, inhibited algal growth, while the anion exchange procedure stimulated growth, making these two procedures unsuitable for use with this species. Of the buffers trialed for the graduated pH procedure, 0.01 M PIPES buffer was found to be suitable for buffering at pH 7 because it maintained the required pH over the duration of the test and did not affect the growth or sensitivity of the algae to one reference toxicant (copper). A trial TIE on a secondary-treated sewage effluent for discharge into coastal waters showed that the developed protocols could successfully be used to identify ammonia as the major toxicant in the effluent.

  4. Molecular characterization and expression analysis of sodium pump genes in the marine red alga Porphyra yezoensis.

    PubMed

    Uji, Toshiki; Hirata, Ryo; Mikami, Koji; Mizuta, Hiroyuki; Saga, Naotsune

    2012-08-01

    Sodium pumps (EC 3.6.3.9, Na(+)-ATPase), which mediate excretion of Na(+) from the cell, play a crucial role in Na(+) homeostasis in eukaryotic cells. The objective of this study is to understand the Na(+) efflux system in a marine red alga. We identified a novel sodium pump gene, PyKPA2, from the marine red alga Porphyra yezoensis. The amino acid sequence of PyKPA2 shares 65 % identity with PyKPA1, a previously identified P. yezoensis sodium pump. Similar to PyKPA1, PyKPA2 contains conserved sequences for functions such as phosphorylation, ATP binding, and cation binding. Phylogenetic analysis revealed that the two genes cluster with sodium pumps from algae. Reverse-transcription polymerase chain reaction (RT-PCR) analysis showed that PyKPA1 is expressed preferentially in sporophytes, whereas PyKPA2 is expressed specifically in gametophytes. RT-PCR and quantitative real-time PCR analysis revealed that PyKPA1 and PyKPA2 transcripts were upregulated and downregulated, respectively, in gametophytes during exposure to alkali stress. In addition, transcription of both genes in gametophytes was also induced by cold stress. These results suggest that PyKPA1 and PyKPA2 play an important role in alkali and cold stress tolerance.

  5. Larvicidal algae.

    PubMed

    Marten, Gerald G

    2007-01-01

    Although most algae are nutritious food for mosquito larvae, some species kill the larvae when ingested in large quantities. Cyanobacteria (blue-green algae) that kill larvae do so by virtue of toxicity. While blue-green algae toxins may offer possibilities for delivery as larvicides, the toxicity of live blue-green algae does not seem consistent enough for live algae to be useful for mosquito control. Certain species of green algae in the order Chlorococcales kill larvae primarily because they are indigestible. Where these algae are abundant in nature, larvae consume them to the exclusion of other food and then starve. Under the right circumstances, it is possible to introduce indigestible algae into a breeding habitat so they become abundant enough to render it unsuitable for mosquito production. The algae can persist for years, even if the habitat dries periodically. The main limitation of indigestible algae lies in the fact that, under certain conditions, they may not replace all the nutritious algae in the habitat. More research on techniques to ensure complete replacement will be necessary before indigestible algae can go into operational use for mosquito control.

  6. Quorum Sensing Inhibition by Asparagopsis taxiformis, a Marine Macro Alga: Separation of the Compound that Interrupts Bacterial Communication

    PubMed Central

    Jha, Bhavanath; Kavita, Kumari; Westphal, Jenny; Hartmann, Anton; Schmitt-Kopplin, Philippe

    2013-01-01

    The majority of the marine algal species, though completing their life cycle in seawater, are rarely susceptible to fouling, making them an important source of quorum sensing (QS) inhibitory substances. The separation and characterization of QS inhibitors are crucial for any potential application. Thirty marine macroalgae were tested for QS inhibition activity by using Chromobacterium violaceum CV026 as the reporter strain, and among them, Asparagopsis taxiformis showed antibacterial, as well as antiquorum, sensing activities. Cinnamaldehyde (75 mM) and methanol were used as positive and negative controls, respectively. The antiquorum sensing activity of A. taxiformis was further confirmed using the sensor strain, Serratia liquefaciens MG44, having green fluorescent protein (gfp). Methanolic extract of the alga was fractionated by solid phase extraction (SPE), and each fraction was tested for QS inhibition. Two types of activities were observed—zone of clearance (antibacterial activity) and zone of inhibition with or without finger-like projections (QS inhibition). Out of five SPE cartridges, Bond Elut PH showed clear separation of these two fractions. The Ion Cyclotron Resonance Fourier Transformation Mass Spectrometer (ICR-FT/MS) analysis of the fractions further supported the bioassay results. The presence of strong QS inhibitory compound in A. taxiformis indicates its potential use in antifouling preparations. PMID:23344114

  7. Combined exposure to hydrogen peroxide and light--selective effects on cyanobacteria, green algae, and diatoms.

    PubMed

    Drábková, Michaela; Admiraal, Wim; Marsálek, Blahoslav

    2007-01-01

    The selective toxicity of H2O2 was investigated to develop a potential tool for limiting cyanobacterial blooms and to better understand the occurrence of cyanobacteria and other phytoplankton species in relation to reactive oxygen species in surface waters. The cyanobacterium Microcystis aeruginosa, the green alga Pseudokirchneriella subcapitata, and the diatom Navicula seminulum were tested under pulse exposure to H202 in the dark and at various irradiances. H2O2 was decomposed at rates depending on algal species and was proportional to irradiance. The cyanobacterium was affected by H202 at 10 times lower concentrations than green alga and diatom, and a strong light-dependent toxicity enhanced the difference. The inhibition was measured as photosynthetic yield (Fv/Fm) in pulse amplitude modulated fluorometry, and was confirmed by changes in minimal fluorescence (F0) and photosynthetic oxygen evolution. Single doses of 0.27 mg L(-1) of H202 caused 50% inhibition to M. aeruginosa at high irradiance. Such concentration overlaps with the highest levels of 0.34 mg L(-1) observed in natural waters, suggesting that H202 may act as a limiting factor for cyanobacterial growth.

  8. Precambrian palaeontology in the light of molecular phylogeny - an example: the radiation of the green algae

    NASA Astrophysics Data System (ADS)

    Teyssèdre, B.

    2007-09-01

    The problem of the antiquity of the radiation of the green algae (phylum Viridiplantae) has been hotly debated and is still controversial today. A method combining Precambrian paleontology and molecular phylogeny is applied to shed light on this topic. As a critical method, molecular phylogeny is essential for avoiding taxonomic mistakes. As a heuristic method, it helps us to discern to what extent the presence of such and such clade is likely at such and such time, and it may even suggest the attribution of some fossil to a clade whose taxonomic position will be distinctly defined even though it has no previously known representative. Some well characterized Precambrian fossils of green algae are Palaeastrum and Proterocladus at Svanbergfjellet (ca. 750 Ma), Tasmanites and Pterospermella at Thule (ca. 1200 Ma), Spiromorpha at Ruyang (ca. 1200 Ma) and Leiosphaeridia crassa at Roper (ca. 1450 Ma). The position of these fossils in the taxonomy and the phylogeny of the Viriplantae is discussed. The conclusions are that the Chlorophyceae and the Ulvophyceae were separated long before 750 Ma, that the Chlorophyta and the Streptophyta were separated long before 1200 Ma and that the last common ancestor of the Viridiplantae and the Rhodophyta was possibly two billion years old.

  9. AGROBACTERIUM-MEDIATED TRANSFORMATION IN THE GREEN ALGA HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE, VOLVOCALES)(1).

    PubMed

    Kathiresan, S; Chandrashekar, A; Ravishankar, G A; Sarada, R

    2009-06-01

    The first successful Agrobacterium-mediated transformation of the green alga Haematococcus pluvialis Flot. using the binary vectors hosting the genes coding for GUS (β-glucuronidase), GFP (green fluorescent protein), and hpt (hygromycin phosphotransferase) is reported here. Colonies resistant to hygromycin at 10 mg · L(-1) expressed β-glucuronidase. The greenish yellow fluorescence of GFP was observed when the hygromycin-resistant cells were viewed with a fluorescent microscope. PCR was used to successfully amplify fragments of the hpt (407 bp) and GUS (515 bp) genes from transformed cells, while Southern blots indicated the integration of the hygromycin gene into the genome of H. pluvialis. SEM indicated that the cell wall of H. pluvialis was altered on infection with Agrobacterium. The transformation achieved here by Agrobacterium does not need treatment with acetosyringone or the wounding of cells. A robust transformation method for this alga would pave the way for manipulation of many important pathways relevant to the food, pharmaceutical, and nutraceutical industries.

  10. Phagotrophy by the picoeukaryotic green alga Micromonas: implications for Arctic Oceans.

    PubMed

    McKie-Krisberg, Zaid M; Sanders, Robert W

    2014-10-01

    Photosynthetic picoeukaryotes (PPE) are recognized as major primary producers and contributors to phytoplankton biomass in oceanic and coastal environments. Molecular surveys indicate a large phylogenetic diversity in the picoeukaryotes, with members of the Prymnesiophyceae and Chrysophyseae tending to be more common in open ocean waters and Prasinophyceae dominating coastal and Arctic waters. In addition to their role as primary producers, PPE have been identified in several studies as mixotrophic and major predators of prokaryotes. Mixotrophy, the combination of photosynthesis and phagotrophy in a single organism, is well established for most photosynthetic lineages. However, green algae, including prasinophytes, were widely considered as a purely photosynthetic group. The prasinophyte Micromonas is perhaps the most common picoeukaryote in coastal and Arctic waters and is one of the relatively few cultured representatives of the picoeukaryotes available for physiological investigations. In this study, we demonstrate phagotrophy by a strain of Micromonas (CCMP2099) isolated from Arctic waters and show that environmental factors (light and nutrient concentration) affect ingestion rates in this mixotroph. In addition, we show size-selective feeding with a preference for smaller particles, and determine P vs I (photosynthesis vs irradiance) responses in different nutrient conditions. If other strains have mixotrophic abilities similar to Micromonas CCMP2099, the widespread distribution and frequently high abundances of Micromonas suggest that these green algae may have significant impact on prokaryote populations in several oceanic regimes.

  11. The charophycean green algae provide insights into the early origins of plant cell walls.

    PubMed

    Sørensen, Iben; Pettolino, Filomena A; Bacic, Antony; Ralph, John; Lu, Fachuang; O'Neill, Malcolm A; Fei, Zhangzhun; Rose, Jocelyn K C; Domozych, David S; Willats, William G T

    2011-10-01

    Numerous evolutionary innovations were required to enable freshwater green algae to colonize terrestrial habitats and thereby initiate the evolution of land plants (embryophytes). These adaptations probably included changes in cell-wall composition and architecture that were to become essential for embryophyte development and radiation. However, it is not known to what extent the polymers that are characteristic of embryophyte cell walls, including pectins, hemicelluloses, glycoproteins and lignin, evolved in response to the demands of the terrestrial environment or whether they pre-existed in their algal ancestors. Here we show that members of the advanced charophycean green algae (CGA), including the Charales, Coleochaetales and Zygnematales, but not basal CGA (Klebsormidiales and Chlorokybales), have cell walls that are comparable in several respects to the primary walls of embryophytes. Moreover, we provide both chemical and immunocytochemical evidence that selected Coleochaete species have cell walls that contain small amounts of lignin or lignin-like polymers derived from radical coupling of hydroxycinnamyl alcohols. Thus, the ability to synthesize many of the components that characterize extant embryophyte walls evolved during divergence within CGA. Our study provides new insight into the evolutionary window during which the structurally complex walls of embryophytes originated, and the significance of the advanced CGA during these events.

  12. Physiological and biochemical responses of the freshwater green algae Closterium ehrenbergii to the common disinfectant chlorine.

    PubMed

    Sathasivam, Ramaraj; Ebenezer, Vinitha; Guo, Ruoyu; Ki, Jang-Seu

    2016-11-01

    Chlorine (Cl2) is widely used as a disinfectant in water treatment plants and for cleaning swimming pools; it is finally discharged into aquatic environments, possibly causing damage to the non-target organisms in the receiving water bodies. Present study evaluated the effects of the biocide Cl2 to the green alga Closterium ehrenbergii (C. ehrenbergii). Growth rate, chlorophyll a levels, carotenoids, chlorophyll autofluorescence, and antioxidant enzymes were monitored up to 72-h after Cl2 exposure. C. ehrenbergii showed dose-dependent decrease in growth rate and cell division after exposure to Cl2. By using cell counts, the median effective concentration (EC50)-72-h was calculated to be 0.071mgL(-1). Cl2 significantly decreased the pigment levels and chlorophyll autofluorescence intensity, indicating that the photosystem was damaged in C. ehrenbergii. In addition, it increased the production of reactive oxygen species (ROS) in the cells. This stressor significantly increased the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase, and glutathione, and affected the physiology of the cells. These results indicate that Cl2 induces oxidative stress in the cellular metabolic process and leads to physiological and biochemical damages in the green algae. Cl2 discharged in industrial effluents and from water treatment plants may cause harmful effects to the C. ehrenbergii a common freshwater microalgae and other non-target organisms.

  13. A new microscopic method to analyse desiccation‐induced volume changes in aeroterrestrial green algae

    PubMed Central

    LAJOS, K.; MAYR, S.; BUCHNER, O.; BLAAS, K.

    2016-01-01

    Summary Aeroterrestrial green algae are exposed to desiccation in their natural habitat, but their actual volume changes have not been investigated. Here, we measure the relative volume reduction (RVRED) in Klebsormidium crenulatum and Zygnema sp. under different preset relative air humidities (RH). A new chamber allows monitoring RH during light microscopic observation of the desiccation process. The RHs were set in the range of ∼4 % to ∼95% in 10 steps. RVRED caused by the desiccation process was determined after full acclimation to the respective RHs. In K. crenulatum, RVRED (mean ± SE) was 46.4 ± 1.9%, in Zygnema sp. RVRED was only 34.3 ± 2.4% at the highest RH (∼95%) tested. This indicates a more pronounced water loss at higher RHs in K. crenulatum versus Zygnema sp. By contrast, at the lowest RH (∼4%) tested, RVRED ranged from 75.9 ± 2.7% in K. crenulatum to 83.9 ± 2.2% in Zygnema sp. The final volume reduction is therefore more drastic in Zygnema sp. These data contribute to our understanding of the desiccation process in streptophytic green algae, which are considered the closest ancestors of land plants. PMID:27075881

  14. Photosystem II stress tolerance in the unicellular green alga Chlamydomonas Reinhardtii under space conditions

    NASA Astrophysics Data System (ADS)

    Bertalan, Ivo; Esposito, Dania; Torzillo, Giuseppe; Faraloni, Cecilia; Johanningmeier, Udo; Giardi, Maria Teresa

    2007-09-01

    Photosynthesis was established on the earth 3.5 billion years ago. Due to the absence of the ozone layer in the early atmosphere it was most likely adapted to the presence of ionizing radiation continuously emitted by solar and stellar flares. That complex radiation spectrum comprises protons, alpha particles, heavy charged particle-HZE, electrons, X-ray and neutrons. Such spectrum has a significant impact on biological systems which capture light energy for e.g. photosynthesis. Oxygenic photosynthesis of plants, algae and cyanobacteria initiates at the level of photosystem II (PSII), a multisubunit protein complex embedded in the thylakoid membrane inside chloroplasts. PSII uses sunlight to power the unique photo-induced oxidation of water to atmospheric oxygen which is indispensable for most life forms. It is an especially sensitive component if exposed to space radiation and thus an important target for research aimed at improving bioregenerative life-support systems. The unicellular green algae Chlamydomonas reinhardtii is a long standing model organism for photosynthesis research. It was exposed to ionizing radiation in the ESA facility Biopan located in the Foton capsule brought to space by the Russian Soyuzfor 15 days. The algae were tested in space under shielded conditions in the past, but they were never exposed to direct ionizing radiation such as in Biopan. Conditions for survival were identified. It was observed that the effect of space stress on the survival of the algae varied depending on the light conditions to which they were exposed during the flight. In some cases the flight experience caused a stimulation of the photosystem II oxygen evolution of the cells.

  15. Estrogenic activity in extracts and exudates of cyanobacteria and green algae.

    PubMed

    Sychrová, E; Štěpánková, T; Nováková, K; Bláha, L; Giesy, J P; Hilscherová, K

    2012-02-01

    Here is presented some of the first information on interactions of compounds produced by cyanobacteria and green algae with estrogen receptor signaling. Estrogenic potency of aqueous extracts and exudates (culture spent media with extracellular products) of seven species of cyanobacteria (10 different laboratory strains) and two algal species were assessed by use of in vitro trans-activation assays. Compounds produced by cyanobacteria and algae, and in particular those excreted from the cells, were estrogenic. Most exudates were estrogenic with potencies expressed at 50% of the maximum response under control of the estrogen receptor ranging from 0.2 to 7.2 ng 17β-estradiol (E(2)) equivalents (EEQ)/L. The greatest estrogenic potency was observed for exudates of Microcystis aerigunosa, a common species that forms water blooms. Aqueous extracts of both green algae, but only one species of cyanobacteria (Aphanizomenon gracile) elicited significant estrogenicity with EEQ ranging from 15 to 280 ng 17β-estradiol (E(2))/g dry weight. Scenedesmus quadricauda exudates and extracts of Aphanizomenon flos-aquae were antagonistic to the ER when coexposed to E(2). The EEQ potency was not correlated with concentrations of cyanotoxins, such as microcystin and cylindrospermopsin, which suggests that the EEQ was comprised of other compounds. The study demonstrates some differences between the estrogenic potency of aqueous extracts prepared from the same species, but of different origin, while the effects of exudates were comparable within species. The observed estrogenic potencies are important namely in relation to the possible mass expansion of cyanobacteria and release of the active compounds into surrounding water.

  16. Iron colloids reduce the bioavailability of phosphorus to the green alga Raphidocelis subcapitata.

    PubMed

    Baken, Stijn; Nawara, Sophie; Van Moorleghem, Christoff; Smolders, Erik

    2014-08-01

    Phosphorus (P) is a limiting nutrient in many aquatic systems. The bioavailability of P in natural waters strongly depends on its speciation. In this study, structural properties of iron colloids were determined and related to their effect on P sorption and P bioavailability. The freshwater green alga Raphidocelis subcapitata was exposed to media spiked with radiolabelled (33)PO4, and the uptake of (33)P was monitored for 1 h. The media contained various concentrations of synthetic iron colloids with a size between 10 kDa and 0.45 μm. The iron colloids were stabilised by natural organic matter. EXAFS spectroscopy showed that these colloids predominantly consisted of ferrihydrite with small amounts of organically complexed Fe. In colloid-free treatments, the P uptake flux by the algae obeyed Michaelis-Menten kinetics. In the presence of iron colloids at 9 or 90 μM Fe, corresponding to molar P:Fe ratios between 0.02 and 0.17, the truly dissolved P (<10 kDa) was between 4 and 60% of the total dissolved P (<0.45 μm). These colloids reduced the P uptake flux by R. subcapitata compared to colloid-free treatments at the same total dissolved P concentration. However, the P uptake flux from colloid containing solutions equalled that from colloid-free ones when expressed as truly dissolved P. This demonstrates that colloidal P did not contribute to the P uptake flux. It is concluded that, on the short term, phosphate adsorbed to ferrihydrite colloids is not available to the green alga R. subcapitata.

  17. Cytotoxicity and antimicrobial activity of marine macro algae (Dictyotaceae and Ulvaceae) from the Persian Gulf.

    PubMed

    Mashjoor, Sakineh; Yousefzadi, Morteza; Esmaeili, Mohamad Ali; Rafiee, Roya

    2016-10-01

    Pharmaceutical industry now accept the worlds ocean which contains a vast array of organisms with unique biological properties, as a major frontier for medical investigation. Bioactive compounds with different modes of action, such as, antiproliferative, antioxidant, antimicrotubule, have been isolated from marine sources, specifically macro and micro algae, and cyanobacteria. The aim of this work was to investigate antimicrobial and cytotoxic activities of the extracts of marine macro algae Ulva flexuosa, Padina antillarum and Padina boergeseni from the northern coasts of the Persian Gulf, Qeshm Island, Iran, against three cell lines including MCF7, HeLa and Vero, as well as their inhibitory effects against a wide array (i.e. n = 11) of pathogenic bacteria and fungi. Antimicrobial activity of the marine macro algal extracts was assessed using a disc diffusion method; an MTT cytotoxicity assay was employed to test the effects of the extracts on each cancer cell line. The algal extracts showed considerable antimicrobial activity against the majority of the tested bacteria and fungi. Both ethyl acetate and methanol extracts at the highest concentration (100 µg/ml) caused cell death, with the IC50 values calculated for each cell type and each algal extracts. Results are exhibited a higher decrease in the viability of the cells treated at the highest concentration of marine macro algal ethyl acetate extracts compared to the methanol extracts (78.9 % death in Vero cells by ethyl acetate extracts from U. flexuosa). Despite, the ethyl acetate extracts with lower dose- response of cells, exhibited better cytotoxic activity than methanol extracts (IC50: 55.26 μg/ml in Vero cells by ethyl acetate extracts from U. flexuosa). Based on the findings, it is concluded that the marine macro algal extracts from the Persian Gulf possess antibacterial and cytotoxic potential, which could be considered for future applications in medicine and identifying novel drugs from the

  18. Responses of marine unicellular algae to brominated organic compounds in six growth media

    SciTech Connect

    Walsh, G.E.; Yoder, M.J.; McLaughlin, L.L.; Lores, E.M.

    1987-12-01

    Marine unicellular algae, Skeletonema costatum, Thalassiosira pseudonana, and Chlorella sp. were exposed to the industrial brominated compounds tetrabromobisphenol A, decabromobiphenyloxide (DBBO), hexabromocyclododecane (HBCD), pentabromomethylbenzene (PBMB), pentabromoethylbenzene (PBEB), and the herbicide bromoxynil (BROM), in six algal growth media. High concentrations of DBBO (1 mg liter-1), PBMB (1 mg liter-1), and PBEB (0.5 mg liter-1) reduced growth by less than 50%. EC50s of the other compounds varied with growth medium, with high EC50/low EC50 ratios between 1.3 and 9.9. Lowest EC50s, 9.3 to 12.0 micrograms liter-1, were obtained with S. costatum and HBCD. It is concluded that responses to toxicants in different media are the results of interactions among algae, growth medium, toxicant, and solvent carrier.

  19. Antioxidant system responses in two co-occurring green-tide algae under stress conditions

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhao, Xinyu; Tang, Xuexi

    2016-01-01

    Green tides have occurred every year from 2007 to 2014 in the Yellow Sea. Ulva prolifera (Müller) J. Agardh has been identified as the bloom-forming alga, co-occurring with U. intestinalis. We observed distinct strategies for both algal species during green tides. U. prolifera exhibited a high abundance initially and then decreased dramatically, while U. intestinalis persisted throughout. The antioxidant system responses of these two macroalgae were compared in the late phase of a green tide (in-situ) and after laboratory acclimation. Lipid peroxidation and antioxidant system responses differed significantly between the two. Malondialdehyde and hydrogen peroxide contents increased significantly in-situ in U. prolifera, but not in U. intestinalis. In U. prolifera, we observed a significant decrease in total antioxidant ability (T-AOC), antioxidant enzymes (SOD and Apx), and non-enzyme antioxidants (GSH and AsA) in-situ. U. intestinalis showed the same pattern of T-AOC and SOD, but its Gpx, Apx, and GSH responses did not differ significantly. The results suggest that U. prolifera was more susceptible than U. intestinalis to the harsh environmental changes during the late phase of a Yellow Sea green tide. The boom and bust strategy exhibited by U. prolifera and the persistence of U. intestinalis can be explained by differences in enzyme activity and antioxidant systems.

  20. High substrate specificity factor ribulose bisphosphate carboxylase/oxygenase from eukaryotic marine algae and properties of recombinant cyanobacterial RubiSCO containing "algal" residue modifications.

    PubMed

    Read, B A; Tabita, F R

    1994-07-01

    Marine algae play an important role in removing carbon dioxide from the atmosphere. In this investigation, we have determined the substrate specificity factor of ribulose 1,5-bisphosphate carboxylase/oxygenase from several marine chromophytic and rhodophytic algae. The enzymes were purified to homogeneity and all possessed significantly higher substrate specificity factors than the enzymes from terrestrial plants, green algae, or bacteria. There are substantial differences in the sequence in a helix 6 of the large subunit of these enzymes, which is intriguing since residues of this region had been previously shown to influence the ability of ribulose bisphosphate carboxylase to discriminate between CO2 and O2, presumably by influencing the adjacent flexible loop 6 region. Sequence divergence at this and other key regions might contribute to the substantial differences in the substrate specificity factor of the chromophyte/rhodophyte enzyme. Initial studies on probing the basis for the high substrate specificity factor employed single amino acid substitutions in the recombinant cyanobacterial ribulose bisphosphate carboxylase. Residues in the vicinity of loop 6 were changed to reflect the corresponding residues in the chromophyte/rhodophyte large subunit. Some changes in the substrate specificity factor were noted, as were alterations in other important kinetic parameters. Since marine algae show little evidence of photorespiratory metabolism, the high substrate specificity of ribulose bisphosphate carboxylase is consistent with the physiology of these organisms. The results of this study provide further evidence that the properties of this enzyme may evolve or change according to the environment in which the host organism is found.

  1. Complete genome sequence and transcriptomic analysis of a novel marine strain Bacillus weihaiensis reveals the mechanism of brown algae degradation.

    PubMed

    Zhu, Yueming; Chen, Peng; Bao, Yunjuan; Men, Yan; Zeng, Yan; Yang, Jiangang; Sun, Jibin; Sun, Yuanxia

    2016-11-30

    A novel marine strain representing efficient degradation ability toward brown algae was isolated, identified, and assigned to Bacillus weihaiensis Alg07. The alga-associated marine bacteria promote the nutrient cycle and perform important functions in the marine ecosystem. The de novo sequencing of the B. weihaiensis Alg07 genome was carried out. Results of gene annotation and carbohydrate-active enzyme analysis showed that the strain harbored enzymes that can completely degrade alginate and laminarin, which are the specific polysaccharides of brown algae. We also found genes for the utilization of mannitol, the major storage monosaccharide in the cell of brown algae. To understand the process of brown algae decomposition by B. weihaiensis Alg07, RNA-seq transcriptome analysis and qRT-PCR were performed. The genes involved in alginate metabolism were all up-regulated in the initial stage of kelp degradation, suggesting that the strain Alg07 first degrades alginate to destruct the cell wall so that the laminarin and mannitol are released and subsequently decomposed. The key genes involved in alginate and laminarin degradation were expressed in Escherichia coli and characterized. Overall, the model of brown algae degradation by the marine strain Alg07 was established, and novel alginate lyases and laminarinase were discovered.

  2. Complete genome sequence and transcriptomic analysis of a novel marine strain Bacillus weihaiensis reveals the mechanism of brown algae degradation

    PubMed Central

    Zhu, Yueming; Chen, Peng; Bao, Yunjuan; Men, Yan; Zeng, Yan; Yang, Jiangang; Sun, Jibin; Sun, Yuanxia

    2016-01-01

    A novel marine strain representing efficient degradation ability toward brown algae was isolated, identified, and assigned to Bacillus weihaiensis Alg07. The alga-associated marine bacteria promote the nutrient cycle and perform important functions in the marine ecosystem. The de novo sequencing of the B. weihaiensis Alg07 genome was carried out. Results of gene annotation and carbohydrate-active enzyme analysis showed that the strain harbored enzymes that can completely degrade alginate and laminarin, which are the specific polysaccharides of brown algae. We also found genes for the utilization of mannitol, the major storage monosaccharide in the cell of brown algae. To understand the process of brown algae decomposition by B. weihaiensis Alg07, RNA-seq transcriptome analysis and qRT-PCR were performed. The genes involved in alginate metabolism were all up-regulated in the initial stage of kelp degradation, suggesting that the strain Alg07 first degrades alginate to destruct the cell wall so that the laminarin and mannitol are released and subsequently decomposed. The key genes involved in alginate and laminarin degradation were expressed in Escherichia coli and characterized. Overall, the model of brown algae degradation by the marine strain Alg07 was established, and novel alginate lyases and laminarinase were discovered. PMID:27901120

  3. Protective effect of edible marine algae, Laminaria japonica and Porphyra haitanensis, on subchronic toxicity in rats induced by inorganic arsenic.

    PubMed

    Jiang, Yanhua; Wang, Lianzhu; Yao, Lin; Liu, Zhantao; Gao, Hua

    2013-09-01

    Arsenic, a potent environmental toxic agent, causes various hazardous effects on human health. This study was performed to evaluate the protective effects of edible marine algae, Laminaria japonica and Porphyra haitanensis, on subchronic stress of rats induced by arsenic trioxide (As2O3). The co-treatment of marine algae could slightly increase the growth rates of body weights compared to the As2O3-treated group. The marine algae application restored liver and renal function by preventing the increment in the activities of alanine transaminase and alkaline phosphatase, and the levels of total protein, blood urea nitrogen, and creatinine. The increase in the contents of total cholesterol, triglyceride, and low density lipoprotein cholesterol, and decrease in the contents of high density lipoprotein cholesterol were observed in algae co-treated groups which indicated that marine algae could reverse the abnormal lipid metabolisms induced by arsenic. Moreover, these algae could protect the rats from lipid peroxidation by restoring the depletion of superoxide dismutase and glutathione peroxidase activities and sulfhydryl group contents, and lowering the enhanced malondialdehyde contents. Therefore, evidences indicate that L. japonica and P. haitanensis can serve as an effective regimen for treating arsenic poisoning.

  4. Rickettsial endosymbiont in the "early-diverging" streptophyte green alga Mesostigma viride.

    PubMed

    Yang, Ashley; Narechania, Apurva; Kim, Eunsoo

    2016-04-01

    A bacterial endosymbiont was unexpectedly found in the "axenic" culture strain of the streptophyte green alga Mesostigma viride (NIES-995). Phylogenetic analyses based on 16S rRNA gene sequences showed that the symbiont belongs to the order Rickettsiales, specifically to the recently designated clade "Candidatus Megaira," which is closely related to the well-known Rickettsia clade. Rickettsiales bacteria of the "Ca. Megaira" clade are found in a taxonomically diverse array of eukaryotic hosts, including chlorophycean green algae, several ciliate species, and invertebrates such as Hydra. Transmission electron microscopy, fluorescence in situ hybridi-zation, and SYBR Green I staining experiments revealed that the endosymbiont of M. viride NIES-995 is rod shaped, typically occurs in clusters, and is surrounded by a halo-like structure, presumably formed by secretory substances from the bacterium. Two additional M. viride strains (NIES-296 and NIES-475), but not SAG50-1, were found to house the rickettsial endosymbiont. Analyses of strain NIES-995 transcriptome data indicated the presence of at least 91 transcriptionally active genes of symbiont origins. These include genes for surface proteins (e.g., rOmpB) that are known to play key roles in bacterial attachment onto host eukaryotes in related Rickettsia species. The assembled M. viride transcriptome includes transcripts that code for a suite of predicted algal-derived proteins, such as Ku70, WASH, SCAR, and CDC42, which may be important in the formation of the algal-rickettsial association.

  5. Growth and Metabolism of the Green Alga, Chlorella Pyrenoidosa, in Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Mills, W. Ronald

    2003-01-01

    The effect of microgravity on living organisms during space flight has been a topic of interest for some time, and a substantial body of knowledge on the subject has accumulated. Despite this, comparatively little information is available regarding the influence of microgravity on algae, even though it has been suggested for long duration flight or occupancy in space that plant growth systems, including both higher plants and algae, are likely to be necessary for bioregenerative life support systems. High-Aspect-Ratio Rotating-Wall Vessel or HARV bioreactors developed at Johnson Space Center provide a laboratory-based approach to investigating the effects of microgravity on cellular reactions. In this study, the HARV bioreactor was used to examine the influence of simulated microgravity on the growth and metabolism of the green alga, Chlorella pyrenoidosa. After the first 2 days of culture, cell numbers increased more slowly in simulated microgravity than in the HARV gravity control; after 7 days, growth in simulated microgravity was just over half (58%) that of the gravity control and at 14 days it was less than half (42%). Chlorophyll and protein were also followed as indices of cell competence and function; as with growth, after 2-3 days, protein and chlorophyll levels were reduced in modeled microgravity compared to gravity controls. Photosynthesis is a sensitive biochemical index of the fitness of photosynthetic organisms; thus, CO2-dependent O2 evolution was tested as a measure of photosynthetic capacity of cells grown in simulated microgravity. When data were expressed with respect to cell number, modeled microgravity appeared to have little effect on CO2 fixation. Thus, even though the overall growth rate was lower for cells cultured in microgravity, the photosynthetic capacity of the cells appears to be unaffected. Cells grown in simulated microgravity formed loose clumps or aggregates within about 2 days of culture, with aggregation increasing over time

  6. New α-glucosidase inhibitors from marine algae-derived Streptomyces sp. OUCMDZ-3434

    PubMed Central

    Chen, Zhengbo; Hao, Jiejie; Wang, Liping; Wang, Yi; Kong, Fandong; Zhu, Weiming

    2016-01-01

    Wailupemycins H (1) and I (2) with a new skeleton coupled two 6-(2-phenylnaphthalene-1-yl)pyrane-2-one nuclei to a –CH2– linkage were identified from the culture of Streptomyces sp. OUCMDZ-3434 associated with the marine algae, Enteromorpha prolifera. Compounds 1 and 2 are two new α-glucosidase inhibitors with the Ki/IC50 values of 16.8/19.7 and 6.0/8.3 μM, respectively. In addition, the absolute configurations of wailupemycins D (3) and E (4) are also resolved in this paper for the first time. PMID:26822662

  7. Host-parasite relationship of the geoduck Panopea abbreviata and the green alga Coccomyxa parasitica in the Argentinean Patagonian coast.

    PubMed

    Vázquez, Nuria; Rodríguez, Francisco; Ituarte, Cristián; Klaich, Javier; Cremonte, Florencia

    2010-11-01

    The association of the geoduck Panopea abbreviata and the green alga Coccomyxa parasitica is described. The identity of the green alga was confirmed by molecular studies; the alga was found within the hemocytes that infiltrate the connective tissue of the geoduck siphons. Cytological characteristics of hemocytes were not altered by algal infection; very often the algae were seen enveloped by a digestive vacuole within the hemocyte cytoplasm, evidencing diverse degrees of resorption. Connective cells of siphons were rarely infected by C. parasitica. The mean prevalence of C. parasitica was higher (82%) in San Matías Gulf (42°00'S, 65°05'W) than in San José Gulf (45%) (40°32'S, 64°02'W); except for spring, when the two locations showed no differences in prevalences (80%). Independently of location, season and host size, infected geoducks showed lower condition index values than uninfected ones. Regarding other bivalve species, only one specimen of the razor clam Ensis macha was found infected, and none of the oysters Ostrea puelchana and Pododesmus rudis and scallop Aequipecten tehuelchus was parasitized by the green alga.

  8. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant.

    PubMed

    Wang, Liang; Min, Min; Li, Yecong; Chen, Paul; Chen, Yifeng; Liu, Yuhuan; Wang, Yingkuan; Ruan, Roger

    2010-10-01

    The objective of this study was to evaluate the growth of green algae Chlorella sp. on wastewaters sampled from four different points of the treatment process flow of a local municipal wastewater treatment plant (MWTP) and how well the algal growth removed nitrogen, phosphorus, chemical oxygen demand (COD), and metal ions from the wastewaters. The four wastewaters were wastewater before primary settling (#1 wastewater), wastewater after primary settling (#2 wastewater), wastewater after activated sludge tank (#3 wastewater), and centrate (#4 wastewater), which is the wastewater generated in sludge centrifuge. The average specific growth rates in the exponential period were 0.412, 0.429, 0.343, and 0.948 day(-1) for wastewaters #1, #2, #3, and #4, respectively. The removal rates of NH4-N were 82.4%, 74.7%, and 78.3% for wastewaters #1, #2, and #4, respectively. For #3 wastewater, 62.5% of NO3-N, the major inorganic nitrogen form, was removed with 6.3-fold of NO2-N generated. From wastewaters #1, #2, and #4, 83.2%, 90.6%, and 85.6% phosphorus and 50.9%, 56.5%, and 83.0% COD were removed, respectively. Only 4.7% was removed in #3 wastewater and the COD in #3 wastewater increased slightly after algal growth, probably due to the excretion of small photosynthetic organic molecules by algae. Metal ions, especially Al, Ca, Fe, Mg, and Mn in centrate, were found to be removed very efficiently. The results of this study suggest that growing algae in nutrient-rich centrate offers a new option of applying algal process in MWTP to manage the nutrient load for the aeration tank to which the centrate is returned, serving the dual roles of nutrient reduction and valuable biofuel feedstock production.

  9. Effects of artificial sweeteners on metal bioconcentration and toxicity on a green algae Scenedesmus obliquus.

    PubMed

    Hu, Hongwei; Deng, Yuanyuan; Fan, Yunfei; Zhang, Pengfei; Sun, Hongwen; Gan, Zhiwei; Zhu, Hongkai; Yao, Yiming

    2016-05-01

    The ecotoxicity of heavy metals depends much on their speciation, which is influenced by other co-existing substances having chelating capacity. In the present study, the toxic effects of Cd(2+) and Cu(2+) on a green algae Scenedesmus obliquus were examined in the presence of two artificial sweeteners (ASs), acesulfame (ACE) and sucralose (SUC) by comparing the cell specific growth rate μ and pulse-amplitude-modulated (PAM) parameters (maximal photosystem II photochemical efficiency Fv/Fm, actual photochemical efficiency Yield, and non-photochemical quenching NPQ) of the algae over a 96-h period. Simultaneously, the bioconcentration of the metals by the algal cells in the presence of the ASs was measured. The presence of ACE enhanced the growth of S. obliquus and promoted the bioconcentration of Cd(2+) in S. obliquus, while the impacts of SUC were not significant. Meanwhile, EC50 values of Cd(2+) on the growth of S. obliquus increased from 0.42 mg/L to 0.54 mg/L and 0.48 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. As for Cu(2+), EC50 values increased from 0.13 mg/L to 0.17 mg/L and 0.15 mg/L with the addition of 1.0 mg/L ACE and SUC, respectively. In summary, the two ASs reduced the toxicity of the metals on the algae, with ACE showing greater effect than SUC. Although not as sensitive as the cell specific growth rate, PAM parameters could disclose the mechanisms involved in metal toxicity at subcellular levels. This study provides the first evidence for the possible impact of ASs on the ecotoxicity of heavy metals.

  10. Eukaryotic Life Inhabits Rhodolith-forming Coralline Algae (Hapalidiales, Rhodophyta), Remarkable Marine Benthic Microhabitats

    PubMed Central

    Krayesky-Self, Sherry; Schmidt, William E.; Phung, Delena; Henry, Caroline; Sauvage, Thomas; Camacho, Olga; Felgenhauer, Bruce E.; Fredericq, Suzanne

    2017-01-01

    Rhodoliths are benthic calcium carbonate nodules accreted by crustose coralline red algae which recently have been identified as useful indicators of biomineral changes resulting from global climate change and ocean acidification. This study highlights the discovery that the interior of rhodoliths are marine biodiversity hotspots that function as seedbanks and temporary reservoirs of previously unknown stages in the life history of ecologically important dinoflagellate and haptophyte microalgae. Whereas the studied rhodoliths originated from offshore deep bank pinnacles in the northwestern Gulf of Mexico, the present study opens the door to assess the universality of endolithic stages among bloom-forming microalgae spanning different phyla, some of public health concerns (Prorocentrum) in marine ecosystems worldwide. PMID:28368049

  11. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga.

    PubMed

    Harada, Hideki; Yamashita, Uki; Kurihara, Hideyuki; Fukushi, Eri; Kawabata, Jun; Kamei, Yuto

    2002-01-01

    In a previous report, we discussed an extract from a marine red alga, Amphiroa zonata, which shows selective cytotoxic activity to human leukemic cells, but no cytotoxicity to normal human dermal fibroblast (HDF) cells in vitro. In this study, we identified palmitic acid, a selective cytotoxic substance from the marine algal extract, and investigated its biological activities. At concentrations ranging from 12.5 to 50 micrograms/ml, palmitic acid shows selective cytotoxicity to human leukemic cells, but no cytotoxicity to normal HDF cells. Furthermore, palmitic acid induces apoptosis in the human leukemic cell line MOLT-4 at 50 micrograms/ml. Palmitic acid also shows in vivo antitumor activity in mice. One molecular target of palmitic acid in tumor cells is DNA topoisomerase I, however, interestingly, it does not affect DNA topoisomerase II, suggesting that palmitic acid may be a lead compound of anticancer drugs.

  12. Extraction of Nutraceuticals from Spirulina (Blue-Green Alga): A Bioorganic Chemistry Practice Using Thin-layer Chromatography

    ERIC Educational Resources Information Center

    Herrera Bravo de Laguna, Irma; Toledo Marante, Francisco J.; Luna-Freire, Kristerson R.; Mioso, Roberto

    2015-01-01

    Spirulina is a blue-green alga (cyanobacteria) with high nutritive value. This work provides an innovative and original approach to the consideration of a bioorganic chemistry practice, using Spirulina for the separation of phytochemicals with nutraceutical characteristics via thin-layer chromatography (TLC) plates. The aim is to bring together…

  13. Extraction of nutraceuticals from Spirulina (blue-green alga): A bioorganic chemistry practice using thin-layer chromatography.

    PubMed

    Herrera Bravo de Laguna, Irma; Toledo Marante, Francisco J; Luna-Freire, Kristerson R; Mioso, Roberto

    2015-01-01

    Spirulina is a blue-green alga (cyanobacteria) with high nutritive value. This work provides an innovative and original approach to the consideration of a bioorganic chemistry practice, using Spirulina for the separation of phytochemicals with nutraceutical characteristics via thin-layer chromatography (TLC) plates. The aim is to bring together current research, theory, and practice, and always in accordance with pedagogical ideas.

  14. Lineage-specific fragmentation and nuclear relocation of the mitochondrial cox2 gene in chlorophycean green algae (Chlorophyta).

    PubMed

    Rodríguez-Salinas, Elizabeth; Riveros-Rosas, Héctor; Li, Zhongkui; Fucíková, Karolina; Brand, Jerry J; Lewis, Louise A; González-Halphen, Diego

    2012-07-01

    In most eukaryotes the subunit 2 of cytochrome c oxidase (COX2) is encoded in intact mitochondrial genes. Some green algae, however, exhibit split cox2 genes (cox2a and cox2b) encoding two polypeptides (COX2A and COX2B) that form a heterodimeric COX2 subunit. Here, we analyzed the distribution of intact and split cox2 gene sequences in 39 phylogenetically diverse green algae in phylum Chlorophyta obtained from databases (28 sequences from 22 taxa) and from new cox2 data generated in this work (23 sequences from 18 taxa). Our results support previous observations based on a smaller number of taxa, indicating that algae in classes Prasinophyceae, Ulvophyceae, and Trebouxiophyceae contain orthodox, intact mitochondrial cox2 genes. In contrast, all of the algae in Chlorophyceae that we examined exhibited split cox2 genes, and could be separated into two groups: one that has a mitochondrion-localized cox2a gene and a nucleus-localized cox2b gene ("Scenedesmus-like"), and another that has both cox2a and cox2b genes in the nucleus ("Chlamydomonas-like"). The location of the split cox2a and cox2b genes was inferred using five different criteria: differences in amino acid sequences, codon usage (mitochondrial vs. nuclear), codon preference (third position frequencies), presence of nucleotide sequences encoding mitochondrial targeting sequences and presence of spliceosomal introns. Distinct green algae could be grouped according to the form of cox2 gene they contain: intact or fragmented, mitochondrion- or nucleus-localized, and intron-containing or intron-less. We present a model describing the events that led to mitochondrial cox2 gene fragmentation and the independent and sequential migration of cox2a and cox2b genes to the nucleus in chlorophycean green algae. We also suggest that the distribution of the different forms of the cox2 gene provides important insights into the phylogenetic relationships among major groups of Chlorophyceae.

  15. Characterization of a heat-shock-inducible hsp70 gene of the green alga Volvox carteri.

    PubMed

    Cheng, Qian; Hallmann, Armin; Edwards, Lisseth; Miller, Stephen M

    2006-04-12

    The green alga Volvox carteri possesses several thousand cells, but just two cell types: large reproductive cells called gonidia, and small, biflagellate somatic cells. Gonidia are derived from large precursor cells that are created during embryogenesis by asymmetric cell divisions. The J domain protein GlsA (Gonidialess A) is required for these asymmetric divisions and is believed to function with an Hsp70 partner. As a first step toward identifying this partner, we cloned and characterized V. carteri hsp70A, which is orthologous to HSP70A of the related alga Chlamydomonas reinhardtii. Like HSP70A, V. carteri hsp70A contains multiple heat shock elements (HSEs) and is highly inducible by heat shock. Consistent with these properties, Volvox transformants that harbor a glsA antisense transgene that is driven by an hsp70A promoter fragment express Gls phenotypes that are temperature-dependent. hsp70A appears to be the only gene in the genome that encodes a cytoplasmic Hsp70, so we conclude that Hsp70A is clearly the best candidate to be the chaperone that participates with GlsA in asymmetric cell division.

  16. Genotoxic effects of commercial formulations of Chlorpyrifos and Tebuconazole on green algae.

    PubMed

    Martinez, Ricardo Santiago; Di Marzio, Walter Darío; Sáenz, María Elena

    2015-01-01

    The alkaline single-cell gel electrophoresis assay (comet assay) was used for the study of the genotoxic effects of insecticide Chlorpyrifos and fungicide Tebuconazole (commercial formulations) on two freshwater green algae species, Pseudokirchneriella subcapitata and Nannocloris oculata, after 24 h of exposure. The percentage of DNA in tail of migrating nucleoids was taken as an endpoint of DNA impairment. Cell viability was measured by fluorometric detection of chlorophyll "a" in vivo and the determination of cell auto-fluorescence. Only the higher concentration of Chlorpyrifos tested resulted to affect significantly the cell viability of P. subcapitata, whereas cells of N. oculata were not affected. Tebuconazole assayed concentrations (3 and 6 mg/l) did not affect cell viability of both species. The results of comet assay on P. subcapitata showed that Chlorpyrifos concentration evaluated (0.8 mg/l) exerted a genotoxic effects; while for the other specie a concentration of 10 mg/l was needed. Tebuconazole was genotoxic at 3 and 6 mg/l for both species. The comet assay evidenced damage at the level of DNA simple strains molecule at pesticide concentrations were cytotoxicity was not evident, demonstrating that algae are models to take into account in ecological risk assessments for aquatic environments.

  17. Effect of Nanohexaconazole on Nitrogen Fixing Blue Green Algae and Bacteria.

    PubMed

    Kumar, Rajesh; Gopal, Madhuban; Pabbi, Sunil; Paul, Sangeeta; Alam, Md Imteyaz; Yadav, Saurabh; Nair, Kishore Kumar; Chauhan, Neetu; Srivastava, Chitra; Gogoi, Robin; Singh, Pradeep Kumar; Goswami, Arunava

    2016-01-01

    Nanohexaconazole is a highly efficient fungicide against Rhizoctonia solani. Nanoparticles are alleged to adversely affect the non-target organisms. In order to evaluate such concern, the present study was carried out to investigate the effect of nanohexaconazole and its commercial formulation on sensitive nitrogen fixing blue green algae (BGA) and bacteria. Various activities of algae and bacteria namely growth, N-fixation, N-assimilation, Indole acetic acid (IAA) production and phosphate solubilization were differently affected in the presence of hexaconazole. Although, there was stimulatory to slightly inhibitory effect on the growth measurable parameters of the organisms studied at the recommended dose of nanohexaconazole, but its higher dose was inhibitory to all these microorganisms. On the other hand, the recommended as well as higher dose of commercial hexaconazole showed much severe inhibition of growth and metabolic activity of these organisms as compared to the nano preparation. The uses of nanohexazconazole instead of hexaconazole as a fungicide will not only help to control various fungal pathogens but also sustain the growth and activity of these beneficial microorganisms for sustaining soil fertility and productivity.

  18. The influence of nitrogen on heterocyst production in blue-green algae

    USGS Publications Warehouse

    Ogawa, Roann E.; Carr, John F.

    1969-01-01

    A series of experiments on heterocyst production in Anabaena variabilis provides some strong indirect evidence for the role of heterocysts in nitrogen fixation. Of the algae tested (Anabaena variabilis, A. inaequalis, A. cylindrica, A. flos-aquae, Tolypothrix distorta, Gloeotrichia echinulata, Aphanizomenon flos-aquae, Oscillatoria sp., and Microcystis aeruginosa), only those with heterocysts grew in a nitrate-free medium. Growth in the nitrate-free medium was accompanied by an increase in heterocysts. Heterocyst formation in A. variabilis was evident 24 hr after transfer from a nitrate-containing to a nitrate-free medium. The number of heterocysts was altered by changes in the nitrogen source. Numbers were lowest when NH4-N was used as a nitrogen source and highest when nitrogen (N2-N) was derived from the atmosphere. Heterocyst numbers could also be regulated by controlling the concentration of NO3-N in the medium. Heterocyst production depended on the absence of combined nitrogen and the presence of phosphate. Data are presented on the occurrence of blue-green algae (with heterocysts) in Lake Erie and the environmental conditions apparently necessary for them to become dominant.

  19. Speculations on a possible essential function of the gelatinous sheath of blue-green algae.

    PubMed

    Lange, W

    1976-08-01

    Voluminous and often fluffy sheaths surrounding blue-green algal cells are observed (a) in productive natural waters, (b) in bacteria-containing laboratory cultures growing in inorganic nutrient media with added bacteria-assimilable organic matter, and (c) in axenic cultures in the same inorganic media even without added organic matter. The sheaths of bacteria-associated species in inorganic media without added organic matter are, by comparison, thin, and growth is meager. Repeated observations show that voluminous sheaths and vigorous growth of algal species are associated. It is suggested that formation and retention of a voluminous shealth provide a microenvironment around the algal cell where essential nutrients, present at only submarginal levels in the surrounding water, are concentrated and become readily available to the cell. The increase in nutrient concentration above a critical level, in turn, leads to vigorous algal growth. The voluminous sheath produced by the alga is not attacked by alga-associated bacteria when other assimilable organic matter is available; but in the absence of a more suitalble food, the bacteria feed on the less desirable gelatinous sheath, markedly reducing its thickness and causing meager algal growth.

  20. Two light-activated conductances in the eye of the green alga Volvox carteri.

    PubMed Central

    Braun, F J; Hegemann, P

    1999-01-01

    Photoreceptor currents of the multicellular green alga Volvox carteri were analyzed using a dissolver mutant. The photocurrents are restricted to the eyespot region of somatic cells. Photocurrents are detectable from intact cells and excised eyes. The rhodopsin action spectrum suggests that the currents are induced by Volvox rhodopsin. Flash-induced photocurrents are a composition of a fast Ca2+-carried current (PF) and a slower current (PS), which is carried by H+. PF is a high-intensity response that appears with a delay of less than 50 micros after flash. The stimulus-response curve of its initial rise is fit by a single exponential and parallels the rhodopsin bleaching. These two observations suggest that the responsible channel is closely connected to the rhodopsin, both forming a tight complex. At low flash energies PS is dominating. The current delay increases up to 10 ms, and the PS amplitude saturates when only a few percent of the rhodopsin is bleached. The data are in favor of a second signaling system, which includes a signal transducer mediating between rhodopsin and the channel. We present a model of how different modes of signal transduction are accomplished in this alga under different light conditions. PMID:10049347

  1. The Unicellular Green Alga Chlamydomonas reinhardtii as an Experimental System to Study Chloroplast RNA Metabolism

    NASA Astrophysics Data System (ADS)

    Nickelsen, J.; Kück, U.

    Chloroplasts are typical organelles of photoautotrophic eukaryotic cells which drive a variety of functions, including photosynthesis. For many years the unicellular green alga Chlamydomonas reinhardtii has served as an experimental organism for studying photosynthetic processes. The recent development of molecular tools for this organism together with efficient methods of genetic analysis and the availability of many photosynthesis mutants has now made this alga a powerful model system for the analysis of chloroplast biogenesis. For example, techniques have been developed to transfer recombinant DNA into both the nuclear and the chloroplast genome. This allows both complementation tests and analyses of gene functions in vivo. Moreover, site-specific DNA recombinations in the chloroplast allow targeted gene disruption experiments which enable a "reverse genetics" to be performed. The potential of the algal system for the study of chloroplast biogenesis is illustrated in this review by the description of regulatory systems of gene expression involved in organelle biogenesis. One example concerns the regulation of trans-splicing of chloroplast mRNAs, a process which is controlled by both multiple nuclear- and chloroplast-encoded factors. The second example involves the stabilization of chloroplast mRNAs. The available data lead us predict distinct RNA elements, which interact with trans-acting factors to protect the RNA against nucleolytic attacks.

  2. Fatty acid profiles of four filamentous green algae under varying culture conditions.

    PubMed

    Liu, Junzhuo; Vanormelingen, Pieter; Vyverman, Wim

    2016-01-01

    Although benthic filamentous algae are interesting targets for wastewater treatment and biotechnology, relatively little is known about their biochemical composition and variation in response to growth conditions. Fatty acid composition of four benthic filamentous green algae was determined in different culture conditions. Although the response was partly species-dependent, increasing culture age, nitrogen deprivation and dark exposure of stationary phase greatly increased both total fatty acid content (TFA) from 12-35 to 40-173mgg(-1) dry weight (DW) and the relative proportion of polyunsaturated fatty acids (PUFAs) from 21-58% to 55-87% of TFA, with dark exposure having the greatest effect. However, the main variation in fatty acid composition was between species, with Uronema being rich in C16:0 (2.3% of DW), Klebsormidium in C18:2ω6 (5.4% of DW) and Stigeoclonium in C18:3ω3 (11.1% of DW). This indicates the potential of the latter two species as potential sources of these PUFAs.

  3. Release of reduced inorganic selenium species into waters by the green fresh water algae Chlorella vulgaris.

    PubMed

    Simmons, Denina Bobbie Dawn; Wallschläger, Dirk

    2011-03-15

    The common green fresh water algae Chlorella vulgaris was exposed to starting concentrations of 10 μg/L selenium in the form of selenate, selenite, or selenocyanate (SeCN(-)) for nine days in 10% Bold's basal medium. Uptake of selenate was more pronounced than that of selenite, and there was very little uptake of selenocyanate. Upon uptake of selenate, significant quantities of selenite and selenocyanate were produced by the algae and released back into the growth medium; no selenocyanate was released after selenite uptake. Release of the reduced metabolites after selenate exposure appeared to coincide with increasing esterase activity in solution, indicating that cell death (lysis) was the primary emission pathway. This is the first observation of biotic formation of selenocyanate and its release into waters from a nonindustrial source. The potential environmental implications of this laboratory observation are discussed with respect to the fate of selenium in impacted aquatic systems, the ecotoxicology of selenium bioaccumulation, and the interpretation of environmental selenium speciation data generated, using methods incapable of positively identifying reduced inorganic selenium species, such as selenocyanate.

  4. Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Crespo, José L; Díaz-Troya, Sandra; Florencio, Francisco J

    2005-12-01

    The macrolide rapamycin specifically binds the 12-kD FK506-binding protein (FKBP12), and this complex potently inhibits the target of rapamycin (TOR) kinase. The identification of TOR in Arabidopsis (Arabidopsis thaliana) revealed that TOR is conserved in photosynthetic eukaryotes. However, research on TOR signaling in plants has been hampered by the natural resistance of plants to rapamycin. Here, we report TOR inactivation by rapamycin treatment in a photosynthetic organism. We identified and characterized TOR and FKBP12 homologs in the unicellular green alga Chlamydomonas reinhardtii. Whereas growth of wild-type Chlamydomonas cells is sensitive to rapamycin, cells lacking FKBP12 are fully resistant to the drug, indicating that this protein mediates rapamycin action to inhibit cell growth. Unlike its plant homolog, Chlamydomonas FKBP12 exhibits high affinity to rapamycin in vivo, which was increased by mutation of conserved residues in the drug-binding pocket. Furthermore, pull-down assays demonstrated that TOR binds FKBP12 in the presence of rapamycin. Finally, rapamycin treatment resulted in a pronounced increase of vacuole size that resembled autophagic-like processes. Thus, our findings suggest that Chlamydomonas cell growth is positively controlled by a conserved TOR kinase and establish this unicellular alga as a useful model system for studying TOR signaling in photosynthetic eukaryotes.

  5. Effect of aluminum and zinc on enzyme activities in the green Alga Selenastrum capricorutum

    SciTech Connect

    Kong, F.X.; Chen, Y.

    1995-11-01

    Acid rain produced by atmospheric pollution may decrease the pH value of water and increase the availability and potential toxicity of metals in water which have detrimental effects on aquatic organism, including algae, the important component of the primary production, and, thus, the entire aquatic food chain. Recent reviews of the effects of acid rain on freshwater ecosystems have emphasized research interest in soluble trivalent aluminum, although Al is rated low among trace metals in biological importance. On the other hand, zinc is an important trace element for the growth of phytoplankton and the cofactor of some enzymes. The growth response and tolerance of different species of algae to Al and Zn have been reported by Whitton who showed that algal growth would be stimulated by lower levels of the metals and totally inhibited by higher levels. These is little information, however, on the effect of Al on biochemical processes in aquatic organisms. This study investigates the influence of aluminum and zinc on several physioclogical processes in S. capricournutum, a common species of green algal in lake water. Algal growth (dry weight), ATP levels and the activities of several enzymes in the algal cells were measured after the treatment with various concentrations of Al and Zn in culture medium. Special attention is given to the relation between the enzymatic response and algal growth. 15 refs., 2 figs., 1 tab.

  6. Kinetic and equilibrium studies on biosorption of basic blue dye by green macro algae Caulerpa scalpelliformis.

    PubMed

    Aravindhan, Rathinam; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni

    2007-04-01

    Dynamic batch experiments were carried out for the biosorption of basic blue dye on to the green macro algae Caulerpa scalpelliformis. The factors affecting the sorption process such as the initial concentration of the dye, pH of the solution, the adsorbent dosage and the time of contact were studied. It has been observed that the sorption process was significantly affected by the pH of the initial dye solution. The sorption kinetics was found to follow the second-order kinetic model. The Boyd's plot confirmed the external mass transfer as the rate-limiting step. The average effective diffusion coefficient was found to be 1.652 x 10(- 5) cm(2)/s. Sorption equilibrium studies demonstrated that the biosorption followed Freundlich isotherm model, which implies a heterogeneous sorption phenomenon. Optimized parameters were used to treat the commercial effluent containing the dye. Complete color removal was observed in two stages of treatment with the seaweed.

  7. Calcium spirulan, an inhibitor of enveloped virus replication, from a blue-green alga Spirulina platensis.

    PubMed

    Hayashi, T; Hayashi, K; Maeda, M; Kojima, I

    1996-01-01

    Bioactivity-directed fractionation of a hot H2O extract from a blue-green alga Spirulina platensis led to the isolation of a novel sulfated polysaccharide named calcium spirulan (Ca-SP) as an antiviral principle. This polysaccharide was composed of rhamnose, ribose, mannose, fructose, galactose, xylose, glucose, glucuronic acid, galacturonic acid, sulfate, and calcium. Ca-SP was found to inhibit the replication of several enveloped viruses, including Herpes simplex virus type 1, human cytomegalovirus, measles virus, mumps virus, influenza A virus, and HIV-1. It was revealed that Ca-SP selectively inhibited the penetration of virus into host cells. Retention of molecular conformation by chelation of calcium ion with sulfate groups was suggested to be indispensable to its antiviral effect.

  8. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms.

    PubMed

    Suganya, K S Uma; Govindaraju, K; Kumar, V Ganesh; Dhas, T Stalin; Karthick, V; Singaravelu, G; Elanchezhiyan, M

    2015-02-01

    Biofunctionalized gold nanoparticles (AuNPs) play an important role in design and development of nanomedicine. Synthesis of AuNPs from biogenic materials is environmentally benign and possesses high bacterial inhibition and bactericidal properties. In the present study, blue green alga Spirulina platensis protein mediated synthesis of AuNPs and its antibacterial activity against Gram positive bacteria is discussed. AuNPs were characterized using Ultraviolet-visible (UV-vis) spectroscopy, Fluorescence spectroscopy, Fourier Transform-Infrared (FTIR) spectroscopy, Raman spectroscopy, High Resolution-Transmission Electron Microscopy (HR-TEM) and Energy Dispersive X-ray analysis (EDAX). Stable, well defined AuNPs of smaller and uniform shape with an average size of ~ 5 nm were obtained. The antibacterial efficacy of protein functionalized AuNPs were tested against Gram positive organisms Bacillus subtilis and Staphylococcus aureus.

  9. Purification and characterization of phycocyanin from the blue-green alga Aphanizomenon flos-aquae.

    PubMed

    Benedetti, Serena; Rinalducci, Sara; Benvenuti, Francesca; Francogli, Sonia; Pagliarani, Silvia; Giorgi, Luca; Micheloni, Mauro; D'Amici, Gian Maria; Zolla, Lello; Canestrari, Franco

    2006-03-20

    Aphanizomenon flos-aquae (AFA) is a blue-green alga and represents a nutrient-dense food source. In this study the presence of phycocyanin (PC), a blue protein belonging to the photosynthetic apparatus, has been demonstrated in AFA. An efficient method for its separation has been set up: PC can be purified by a simple single step chromatographic run using a hydroxyapatite column (ratio A620/A280 of 4.78), allowing its usage for health-enhancing properties while eliminating other aspecific algal components. Proteomic investigation and HPLC analysis of purified AFA phycobilisomes revealed that, contrary to the well-characterized Synechocystis and Spirulina spp., only one type of biliprotein is present in phycobilisomes: phycocyanins with no allo-phycocyanins. Two subunit polypeptides of PC were also separated: the beta subunit containing two bilins as chromophore and the alpha subunit containing only one.

  10. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria.

    PubMed

    Kumar, Kanhaiya; Dasgupta, Chitralekha Nag; Nayak, Bikram; Lindblad, Peter; Das, Debabrata

    2011-04-01

    CO(2) sequestration by cyanobacteria and green algae are receiving increased attention in alleviating the impact of increasing CO(2) in the atmosphere. They, in addition to CO(2) capture, can produce renewable energy carriers such as carbon free energy hydrogen, bioethanol, biodiesel and other valuable biomolecules. Biological fixation of CO(2) are greatly affected by the characteristics of the microbial strains, their tolerance to temperature and the CO(2) present in the flue gas including SO(X), NO(X). However, there are additional factors like the availability of light, pH, O(2) removal, suitable design of the photobioreactor, culture density and the proper agitation of the reactor that will affect significantly the CO(2) sequestration process. Present paper deals with the photobioreactors of different geometry available for biomass production. It also focuses on the hybrid types of reactors (integrating two reactors) which can be used for overcoming the bottlenecks of a single photobioreactor.

  11. Regulatory effect of hydrogen on nitrogenase activity of the blue-green alga (cyanobacterium) Nostoc muscorum.

    PubMed

    Scherer, S; Kerfin, W; Böger, P

    1980-03-01

    Preincubation of the blue-green alga (cyanobacterium) Nostoc muscorum under an atmosphere of argon plus acetylene in the light led to a greater than fourfold increase of light-induced hydrogen evolution and to a 50% increase of acetylene reduction, as compared to cells that had not been preconditioned. The basic and the increased hydrogen evolution were both due to nitrogenase activity. Furthermore, after preincubation the hydrogen uptake, usually observed with unconditional cells, was abolished. Nostoc preincubated under acetylene evolved hydrogen in the light even in the presence of nitrogen for at least 2 h, with a 15-fold increase as compared to the unconditioned cells. These acetylene effects could be completely abolished by the presence of hydrogen during acetylene preincubation. These findings indicate that the hydrogen concentration in N. muscorum cells plays a role in regulation of nitrogenase activity.

  12. Spirulan from blue-green algae inhibits fibrin and blood clots: its potent antithrombotic effects.

    PubMed

    Choi, Jun-Hui; Kim, Seung; Kim, Sung-Jun

    2015-05-01

    We investigated in vitro and in vivo fibrinolytic and antithrombotic activity of spirulan and analyzed its partial biochemical properties. Spirulan, a sulfated polysaccharide from the blue-green alga Arthrospira platensis, exhibits antithrombotic potency. Spirulan showed a strong fibrin zymogram lysis band corresponding to its molecular mass. It specifically cleaved Aα and Bβ, the major chains of fibrinogen. Spirulan directly decreased the activity of thrombin and factor X activated (FXa), procoagulant proteins. In vitro assays using human fibrin and mouse blood clots showed fibrinolytic and hemolytic activities of spirulan. Spirulan (2 mg/kg) showed antithrombotic effects in the ferric chloride (FeCl3 )-induced carotid arterial thrombus model and collagen and epinephrine-induced pulmonary thromboembolism mouse model. These results may be attributable to the prevention of thrombus formation and partial lysis of thrombus. Therefore, we suggest that spirulan may be a potential antithrombotic agent for thrombosis-related diseases.

  13. Fatty Acid Composition of Unicellular Strains of Blue-Green Algae1

    PubMed Central

    Kenyon, C. N.

    1972-01-01

    The fatty acids of 34 strains of unicellular blue-green algae provisionally assigned to the genera Synechococcus, Aphanocapsa, Gloeocapsa, Microcystis, and Chlorogloea by Stanier et al. have been chemically characterized. The strains analyzed can be divided into a series of compositional groups based upon the highest degree of unsaturation of the major cellular fatty acids. Twenty strains fall into the group characterized by one trienoic fatty acid isomer (α-linolenic acid), and seven strains fall into a group characterized by another trienoic acid isomer (γ-linolenic acid). These groups in many cases correlate well with groupings based upon other phenotypic characters of the strains, e.g., deoxyribonucleic acid base composition. The assignment of a strain to a compositional group is not altered when the strain is grown under a variety of different culture conditions. All strains contain glycolipids with the properties of mono- and digalactosyldiglycerides. PMID:4621688

  14. Multi-Level Light Capture Control in Plants and Green Algae.

    PubMed

    Wobbe, Lutz; Bassi, Roberto; Kruse, Olaf

    2016-01-01

    Life on Earth relies on photosynthesis, and the ongoing depletion of fossil carbon fuels has renewed interest in phototrophic light-energy conversion processes as a blueprint for the conversion of atmospheric CO2 into various organic compounds. Light-harvesting systems have evolved in plants and green algae, which are adapted to the light intensity and spectral composition encountered in their habitats. These organisms are constantly challenged by a fluctuating light supply and other environmental cues affecting photosynthetic performance. Excess light can be especially harmful, but plants and microalgae are equipped with different acclimation mechanisms to control the processing of sunlight absorbed at both photosystems. We summarize the current knowledge and discuss the potential for optimization of phototrophic light-energy conversion.

  15. Viruses of eukaryotic green algae; Progress report, June 20, 1990--July 1, 1991

    SciTech Connect

    Van Etten, J.L.

    1991-12-31

    Many large polyhedral, dsDNA containing (ca. 330 kb), plaque forming viruses which infect a unicellular, eukaryotic, chlorella-like green alga have been isolated and characterized. The plaque assay, the ability to synchronously infect the host, the short life cycle, and the ability of the viruses to undergo homologous recombination make them excellent model systems for studying many plant cell functions in the manner that bacterial and animal viruses have been used to study bacterial and animal cell functions. These viruses have several unique features including: (1) coding for DNA methyltransferase and site-specific (restriction) endonucleases and (2) unlike other viruses, these viruses appear to code for the enzymes involved in the glycosylation of their glycoproteins.

  16. Mössbauer study of cobalt and iron in the cyanobacterium (blue green alga)

    NASA Astrophysics Data System (ADS)

    Ambe, Shizuko

    1990-07-01

    Mössbauer emission and absorption studies have been performed on cobalt and iron in the cyanobacterium (blue-green alga). The Mössbauer spectrum of the cyanobacterium cultivated with57Co is decomposed into two doublets. The parameters of the major doublet are in good agreement with those of cyanocobalamin (vitamin B12) labeled with57Co. The other minor doublet has parameters close to those of Fe(II) coordinated with six nitrogen atoms. These suggest that cobalt is used for the biosynthesis of vitamin B12 or its analogs in the cyanobacterium. The spectra of the cyanobacterium grown with57Fe show that iron is in the high-spin trivalent state and possibly in the form of ferritin, iron storage protein.

  17. Mebamamides A and B, Cyclic Lipopeptides Isolated from the Green Alga Derbesia marina.

    PubMed

    Iwasaki, Arihiro; Ohno, Osamu; Sumimoto, Shinpei; Matsubara, Teruhiko; Shimada, Satoshi; Sato, Toshinori; Suenaga, Kiyotake

    2015-04-24

    Mebamamides A and B, new lipopeptides with four d-amino acid residues and a 3,8-dihydroxy-9-methyldecanoic acid residue, were isolated from the green alga Derbesia marina. Their gross structures were elucidated by spectroscopic and ESI-ITMS analyses. The absolute configurations except for the two leucines were revealed based on chiral-phase HPLC analyses of the acid hydrolysate and a modified Mosher's method. A distinction between D-Leu and L-Leu in the sequence was established by the application of a dansyl-Edman method to the partial acid hydrolysate. Mebamamide A did not exhibit any growth inhibitory activity against HeLa and HL60 cells at 10 μM, and mebamamide B did not exhibit any growth inhibitory activity against those cells at 100 μM. Additionally, it was suggested that mebamamide B induced the differentiation of HL60 cells into macrophage-like cells at 100 μM.

  18. Predictive modeling studies for the ecotoxicity of ionic liquids towards the green algae Scenedesmus vacuolatus.

    PubMed

    Das, Rudra Narayan; Roy, Kunal

    2014-06-01

    Hazardous potential of ionic liquids is becoming an issue of high concern with increasing application of these compounds in various industrial processes. Predictive toxicological modeling on ionic liquids provides a rational assessment strategy and aids in developing suitable guidance for designing novel analogues. The present study attempts to explore the chemical features of ionic liquids responsible for their ecotoxicity towards the green algae Scenedesmus vacuolatus by developing mathematical models using extended topochemical atom (ETA) indices along with other categories of chemical descriptors. The entire study has been conducted with reference to the OECD guidelines for QSAR model development using predictive classification and regression modeling strategies. The best models from both the analyses showed that ecotoxicity of ionic liquids can be decreased by reducing chain length of cationic substituents and increasing hydrogen bond donor feature in cations, and replacing bulky unsaturated anions with simple saturated moiety having less lipophilic heteroatoms.

  19. Assessment of blue-green algae in substantially reducing nitrogen fertilizer requirements for biomass fuel crops

    SciTech Connect

    Anderson, D.B.; Molten, P.M.; Metting, B.

    1981-07-01

    Laboratory, mass culture, and field studies are being undertaken in order to assess the potential of using blue-green algae (cyanobacteria) as nitrogen biofertilizers on irrigated ground. Of seven candidate strains, two were chosen for application to replicated field plots sown to field corn and the basis of laboratory-scale soil tray experiments and ease of semi-continuous 8000 l culture. Chosen were Anabaena BM-165, isolated from a local soil and Tolypothrix tenuis, imported from India. Using the acetylene reduction method, Anabaena is estimated from laboratory soil experiments to be able to fix from 30 to 62 kg N/ha/y, and has been mass cultured to a density of 1527 mg dry wt/l. T. tenuis is estimated from laboratory experiments to be able to fix from 27 to 65 kg N/ha/y, and has been mass cultured to a density of 1630 mg dry wt/l.

  20. Biotechnological Applications of Marine Enzymes From Algae, Bacteria, Fungi, and Sponges.

    PubMed

    Parte, S; Sirisha, V L; D'Souza, J S

    2017-01-01

    Diversity is the hallmark of all life forms that inhabit the soil, air, water, and land. All these habitats pose their unique inherent challenges so as to breed the "fittest" creatures. Similarly, the biodiversity from the marine ecosystem has evolved unique properties due to challenging environment. These challenges include permafrost regions to hydrothermal vents, oceanic trenches to abyssal plains, fluctuating saline conditions, pH, temperature, light, atmospheric pressure, and the availability of nutrients. Oceans occupy 75% of the earth's surface and harbor most ancient and diverse forms of organisms (algae, bacteria, fungi, sponges, etc.), serving as an excellent source of natural bioactive molecules, novel therapeutic compounds, and enzymes. In this chapter, we introduce enzyme technology, its current state of the art, unique enzyme properties, and the biocatalytic potential of marine algal, bacterial, fungal, and sponge enzymes that have indeed boosted the Marine Biotechnology Industry. Researchers began exploring marine enzymes, and today they are preferred over the chemical catalysts for biotechnological applications and functions, encompassing various sectors, namely, domestic, industrial, commercial, and healthcare. Next, we summarize the plausible pros and cons: the challenges encountered in the process of discovery of the potent compounds and bioactive metabolites such as biocatalysts/enzymes of biomedical, therapeutic, biotechnological, and industrial significance. The field of Marine Enzyme Technology has recently assumed importance, and if it receives further boost, it could successfully substitute other chemical sources of enzymes useful for industrial and commercial purposes and may prove as a beneficial and ecofriendly option. With appropriate directions and encouragement, marine enzyme technology can sustain the rising demand for enzyme production while maintaining the ecological balance, provided any undesired exploitation of the marine

  1. Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry.

    PubMed

    Herlory, Olivier; Bonzom, Jean-Marc; Gilbin, Rodolphe

    2013-09-15

    Although ecotoxicological studies tend to address the toxicity thresholds of uranium in freshwaters, there is a lack of information on the effects of the metal on physiological processes, particularly in aquatic plants. Knowing that uranium alters photosynthesis via impairment of the water photo-oxidation process, we determined whether pulse amplitude modulated (PAM) fluorometry was a relevant tool for assessing the impact of uranium on the green alga Chlamydomonas reinhardtii and investigated how and to what extent uranium hampered photosynthetic performance. Photosynthetic activity and quenching were assessed from fluorescence induction curves generated by PAM fluorometry, after 1 and 5h of uranium exposure in controlled conditions. The oxygen-evolving complex (OEC) of PSII was identified as the primary action site of uranium, through alteration of the water photo-oxidation process as revealed by F0/Fv. Limiting re-oxidation of the plastoquinone pool, uranium impaired the electron flux between the photosystems until almost complete inhibition of the PSII quantum efficiency ( [Formula: see text] , EC50=303 ± 64 μg UL(-1) after 5h of exposure) was observed. Non-photochemical quenching (qN) was identified as the most sensitive fluorescence parameter (EC50=142 ± 98 μg UL(-1) after 5h of exposure), indicating that light energy not used in photochemistry was dissipated in non-radiative processes. It was shown that parameters which stemmed from fluorescence induction kinetics are valuable indicators for evaluating the impact of uranium on PSII in green algae. PAM fluorometry provided a rapid and reasonably sensitive method for assessing stress response to uranium in microalgae.

  2. Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga).

    PubMed

    Zhang, Liping; Happe, Thomas; Melis, Anastasios

    2002-02-01

    Sulfur deprivation in green algae causes reversible inhibition of photosynthetic activity. In the absence of S, rates of photosynthetic O2 evolution drop below those of O2 consumption by respiration. As a consequence, sealed cultures of the green alga Chlamydomonas reinhardtii become anaerobic in the light, induce the "Fe-hydrogenase" pathway of electron transport and photosynthetically produce H2 gas. In the course of such H2-gas production cells consume substantial amounts of internal starch and protein. Such catabolic reactions may sustain, directly or in directly, the H2-production process. Profile analysis of selected photosynthetic proteins showed a precipitous decline in the amount of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) as a function of time in S deprivation, a more gradual decline in the level of photosystem (PS) II and PSI proteins, and a change in the composition of the PSII light-harvesting complex (LHC-II). An increase in the level of the enzyme Fe-hydrogenase was noted during the initial stages of S deprivation (0-72 h) followed by a decline in the level of this enzyme during longer (t >72 h) S-deprivation times. Microscopic observations showed distinct morphological changes in C. reinhardtii during S deprivation and H2 production. Ellipsoid-shaped cells (normal photosynthesis) gave way to larger and spherical cell shapes in the initial stages of S deprivation and H2 production, followed by cell mass reductions after longer S-deprivation and H2-production times. It is suggested that, under S-deprivation conditions, electrons derived from a residual PSII H2O-oxidation activity feed into the hydrogenase pathway, thereby contributing to the H2-production process in Chlamydomonas reinhardtii. Interplay between oxygenic photosynthesis, mitochondrial respiration, catabolism of endogenous substrate, and electron transport via the hydrogenase pathway is essential for this light-mediated H2-production process.

  3. Pectin metabolism and assembly in the cell wall of the charophyte green alga Penium margaritaceum.

    PubMed

    Domozych, David S; Sørensen, Iben; Popper, Zoë A; Ochs, Julie; Andreas, Amanda; Fangel, Jonatan U; Pielach, Anna; Sacks, Carly; Brechka, Hannah; Ruisi-Besares, Pia; Willats, William G T; Rose, Jocelyn K C

    2014-05-01

    The pectin polymer homogalacturonan (HG) is a major component of land plant cell walls and is especially abundant in the middle lamella. Current models suggest that HG is deposited into the wall as a highly methylesterified polymer, demethylesterified by pectin methylesterase enzymes and cross-linked by calcium ions to form a gel. However, this idea is based largely on indirect evidence and in vitro studies. We took advantage of the wall architecture of the unicellular alga Penium margaritaceum, which forms an elaborate calcium cross-linked HG-rich lattice on its cell surface, to test this model and other aspects of pectin dynamics. Studies of live cells and microscopic imaging of wall domains confirmed that the degree of methylesterification and sufficient levels of calcium are critical for lattice formation in vivo. Pectinase treatments of live cells and immunological studies suggested the presence of another class of pectin polymer, rhamnogalacturonan I, and indicated its colocalization and structural association with HG. Carbohydrate microarray analysis of the walls of P. margaritaceum, Physcomitrella patens, and Arabidopsis (Arabidopsis thaliana) further suggested the conservation of pectin organization and interpolymer associations in the walls of green plants. The individual constituent HG polymers also have a similar size and branched structure to those of embryophytes. The HG-rich lattice of P. margaritaceum, a member of the charophyte green algae, the immediate ancestors of land plants, was shown to be important for cell adhesion. Therefore, the calcium-HG gel at the cell surface may represent an early evolutionary innovation that paved the way for an adhesive middle lamella in multicellular land plants.

  4. Semi-continuous methane production from undiluted brown algae using a halophilic marine microbial community.

    PubMed

    Miura, Toyokazu; Kita, Akihisa; Okamura, Yoshiko; Aki, Tsunehiro; Matsumura, Yukihiko; Tajima, Takahisa; Kato, Junichi; Nakashimada, Yutaka

    2016-01-01

    Acclimated marine sediment-derived culture was used for semi-continuous methane production from materials equivalent to raw brown algae, without dilution of salinity and without nutrient supply, under 3 consecutive conditions of varying organic loading rates (OLRs) and hydraulic retention time (HRT). Methane production was stable at 2.0gVS/kg/day (39-day HRT); however, it became unstable at 2.9gVS/kg/day (28-day HRT) due to acetate and propionate accumulation. OLR subsequently decreased to 1.7gVS/kg/day (46-day HRT), stabilizing methane production beyond steady state. Methane yield was above 300mL/g VS at all OLRs. These results indicated that the acclimated marine sediment culture was able to produce methane semi-continuously from raw brown algae without dilution and nutrient supply under steady state. Microbial community analysis suggested that hydrogenotrophic methanogens predominated among archaea during unstable methane production, implying a partial shift of the methanogenic pathway from acetoclastic methanogenesis to acetate oxidation.

  5. Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae.

    PubMed

    Zhang, Cai; Chen, Xiaohua; Wang, Jiangtao; Tan, Liju

    2017-01-01

    To investigate toxic effects of microplastic on marine microalgae Skeletonema costatum, both algal growth inhibition test and non-contact shading test were carried out, and algal photosynthesis parameters were also determined. The SEM images were used to observe interactions between microplastic and algae. It was found that microplastic (mPVC, average diameter 1 μm) had obvious inhibition on growth of microalgae and the maximum growth inhibition ratio (IR) reached up to 39.7% after 96 h exposure. However, plastic debris (bPVC, average diameter 1 mm) had no effects on growth of microalgae. High concentration (50 mg/L) mPVC also had negative effects on algal photosynthesis since both chlorophyll content and photosynthetic efficiency (ΦPSⅡ) decreased under mPVC treatments. Shading effect was not one reason for toxicity of microplastic on algae in this study. Compared with non-contact shading effect, interactions between microplastic and microalage such as adsorption and aggregation were more reasonable explanations for toxic effects of microplastic on marine microalgae. The SEM images provided a more direct and reasonable method to observe the behaviors of microplastic.

  6. Late Miocene threshold response of marine algae to carbon dioxide limitation.

    PubMed

    Bolton, Clara T; Stoll, Heather M

    2013-08-29

    Coccolithophores are marine algae that use carbon for calcification and photosynthesis. The long-term adaptation of these and other marine algae to decreasing carbon dioxide levels during the Cenozoic era has resulted in modern algae capable of actively enhancing carbon dioxide at the site of photosynthesis. This enhancement occurs through the transport of dissolved bicarbonate (HCO3(-)) and with the help of enzymes whose expression can be modulated by variable aqueous carbon dioxide concentration, [CO2], in laboratory cultures. Coccolithophores preserve the geological history of this adaptation because the stable carbon and oxygen isotopic compositions of their calcite plates (coccoliths), which are preserved in the fossil record, are sensitive to active carbon uptake and transport by the cell. Here we use a model of cellular carbon fluxes and show that at low [CO2] the increased demand for HCO3(-) at the site of photosynthesis results in a diminished allocation of HCO3(-) to calcification, which is most pronounced in larger cells. This results in a large divergence between the carbon isotopic compositions of small versus large coccoliths only at low [CO2]. Our evaluation of the oxygen and carbon isotope record of size-separated fossil coccoliths reveals that this isotopic divergence first arose during the late Miocene to the earliest Pliocene epoch (about 7-5 million years ago). We interpret this to be a threshold response of the cells' carbon acquisition strategies to decreasing [CO2]. The documented coccolithophore response is synchronous with a global shift in terrestrial vegetation distribution between 8 and 5 Myr ago, which has been interpreted by some studies as a floral response to decreasing partial pressures of carbon dioxide () in the atmosphere. We infer a global decrease in carbon dioxide levels for this time interval that has not yet been identified in the sparse proxy record but is synchronous with global cooling and progressive glaciations.

  7. Evidence-based green algal genomics reveals marine diversity and ancestral characteristics of land plants

    SciTech Connect

    van Baren, Marijke J.; Bachy, Charles; Reistetter, Emily Nahas; Purvine, Samuel O.; Grimwood, Jane; Sudek, Sebastian; Yu, Hang; Poirier, Camille; Deerinck, Thomas J.; Kuo, Alan; Grigoriev, Igor V.; Wong, Chee -Hong; Smith, Richard D.; Callister, Stephen J.; Wei, Chia -Lin; Schmutz, Jeremy; Worden, Alexandra Z.

    2016-03-31

    Prasinophytes are widespread marine green algae that are related to plants. Abundance of the genus Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these organisms are important for marine ecology and understanding Virdiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb Micromonas commoda (RCC299) shows they share ≤ 8,142 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26%) GC splice donors. Micromonas has more genus-specific protein families (19%) than other genome sequenced prasinophytes (11%). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and most plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other claasses retain the entire PG pathway, like moss and glaucophyte algae. Multiple vascular plants that share a unique bi-domain protein also have the pathway, except the Penicillin-Binding-Protein. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in the PG-pathway retention and implicate a role in chloroplast structure of division in several extant Vridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore their extensive divergence. PG biosynthesis genes from the

  8. Introduced rats indirectly change marine rocky intertidal communities from algae- to invertebrate-dominated.

    PubMed

    Kurle, Carolyn M; Croll, Donald A; Tershy, Bernie R

    2008-03-11

    It is widely recognized that trophic interactions structure ecological communities, but their effects are usually only demonstrated on a small scale. As a result, landscape-level documentations of trophic cascades that alter entire communities are scarce. Islands invaded by animals provide natural experiment opportunities both to measure general trophic effects across large spatial scales and to determine the trophic roles of invasive species within native ecosystems. Studies addressing the trophic interactions of invasive species most often focus on their direct effects. To investigate both the presence of a landscape-level trophic cascade and the direct and indirect effects of an invasive species, we examined the impacts of Norway rats (Rattus norvegicus) introduced to the Aleutian Islands on marine bird densities and marine rocky intertidal community structures through surveys conducted on invaded and rat-free islands throughout the entire 1,900-km archipelago. Densities of birds that forage in the intertidal were higher on islands without rats. Marine intertidal invertebrates were more abundant on islands with rats, whereas fleshy algal cover was reduced. Our results demonstrate that invasive rats directly reduce bird densities through predation and significantly affect invertebrate and marine algal abundance in the rocky intertidal indirectly via a cross-community trophic cascade, unexpectedly changing the intertidal community structure from an algae- to an invertebrate-dominated system.

  9. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption.

    PubMed

    Nolte, Tom M; Hartmann, Nanna B; Kleijn, J Mieke; Garnæs, Jørgen; van de Meent, Dik; Jan Hendriks, A; Baun, Anders

    2017-02-01

    To investigate processes possibly underlying accumulation and ecological effects of plastic nano-particles we have characterized their interaction with the cell wall of green algae. More specifically, we have investigated the influence of particle surface functionality and water hardness (Ca(2+) concentration) on particle adsorption to algae cell walls. Polystyrene nanoparticles with different functional groups (non-functionalized, -COOH and -NH2) as well as coated (starch and PEG) gold nanoparticles were applied in these studies. Depletion measurements and atomic force microscopy (AFM) showed that adsorption of neutral and positively charged plastic nanoparticles onto the cell wall of P. subcapitata was stronger than that of negatively charged plastic particles. Results indicated that binding affinity is a function of both inter-particle and particle-cell wall interactions which are in turn influenced by the medium hardness and particle concentration. Physicochemical modelling using DLVO theory was used to interpret the experimental data, using also values for interfacial surface free energies. Our study shows that material properties and medium conditions play a crucial role in the rate and state of nanoparticle bio-adsorption for green algae. The results show that the toxicity of nanoparticles can be better described and assessed by using appropriate dose metrics including material properties, complexation/agglomeration behavior and cellular attachment and adsorption. The applied methodology provides an efficient and feasible approach for evaluating potential accumulation and hazardous effects of nanoparticles to algae caused by particle interactions with the algae cell walls.

  10. Effects of temperature on the germination of green algae micro-propagules in coastal waters of the Subei Shoal, China

    NASA Astrophysics Data System (ADS)

    Song, Wei; Peng, Keqin; Xiao, Jie; Li, Yan; Wang, Zongling; Liu, Xiangqing; Fu, Mingzhu; Fan, Shiliang; Zhu, Mingyuan; Li, Ruixiang

    2015-09-01

    Since 2007, large-scale green tides that primarily consisted of Ulva prolifera have consecutively invaded the coast of Qingdao (36°06'N, 120°25'E, PR China) in summer. The germination of green algae micro-propagules in the Subei Shoal played a significant role in the formation of these green tides. The change in sea temperature might be the key factor that affects the germination of the micro-propagules because the other environmental factors varied only slightly according to previous studies. This study was designed to investigate the effects of temperature on the germination of micro-propagules via laboratory experiments. The results showed the following: (1) five types of green algae micro-propagules, including U. prolifera, U. linza, U. compressa, Ulva sp. (Clade 6) and Blidingia sp., were detected in the seawater samples collected from the Subei Shoal; (2) at 5 °C, germinated micro-propagules were not detected in any of the samples; at 10 °C, the micro-propagules began to germinate, and the germination quantity markedly changed between 10 °C and 30 °C; (3) the germination numbers of U. prolifera, U. linza, Ulva sp. (Clade 6) and Blidingia sp. were maximized at 15 °C, 10 °C, 25 °C and 20 °C, respectively. This study indicated that the sea temperature played a significant role in the germination of green algae micro-propagules in water and could partly explain the community succession phenomenon of the attached green algae in the Subei Shoal.

  11. Environmental monitoring of heavy metals in Bulgarian Black Sea green algae.

    PubMed

    Strezov, Alexander; Nonova, Tzvetana

    2005-06-01

    Fe, Mn, Cu, Pb and Cd concentration distribution in six green macroalgae species from the Bulgarian Black Sea coast were determined. The measurement of these metals was carried out during six seasons from 1996 to 2002 using atomic absorption spectrometry (AAS). Samples were collected from eight different sites-Shabla, Kaliakra, Tuzlata, Ravda, Ahtopol and Sinemoretz. The obtained heavy metal (HM) data (mean values microg/g) for all algae are: 650 +/- 100 for Fe, 184 +/- 15 for Mn, 5.6 +/- 0.5 for Cu, 3.3 +/- 0.3 for Pb and 1.1 +/- 0.2 for Cd. The obtained HM contents indicate that different species demonstrate various degree of metal accumulation and the obtained higher values in the northern sector of the studied zone can be attributed to the discharge influence of the big rivers, entering the Black Sea-Danube, Dnyepr, Dnester and local pollutant emissions. All data show that there is no serious contamination in green macroalgae with heavy and toxic metals along the whole Bulgarian Black Sea coast.

  12. Triclosan causes toxic effects to algae in marine biofilms, but does not inhibit the metabolic activity of marine biofilm bacteria.

    PubMed

    Johansson, C Henrik; Janmar, Lisa; Backhaus, Thomas

    2014-07-15

    Effects of the antimicrobial agent triclosan to natural periphyton communities (biofilms, comprising primarily microalgae and bacteria) were assessed in two independent experiments during spring and summer. For that purpose a semi-static test system was used in which periphyton was exposed to a concentration range of 5-9054 nmol/L triclosan. Effects on algae were analyzed as content and composition of photosynthetic pigments. The corresponding EC50 values were 39.25 and 302.45 nmol/L for the spring and summer experiment, respectively. Effects on periphytic bacteria were assessed as effects on carbon utilization patterns, using Biolog Ecoplates. No inhibition of either total carbon utilization or functional diversity was observed, indicating a pronounced triclosan tolerance of the marine bacteria. In contrast, a small stimulation of the total carbon utilization was observed at triclosan concentrations exceeding 100 nmol/L.

  13. Do You Know Our Marine Algae? A Marine Education Infusion Unit.

    ERIC Educational Resources Information Center

    Butzow, John W.; Gregory, Charles J.

    Designed to provide teaching materials for middle school and junior high school teachers in northern New England, this marine education unit presents teacher-tested ideas and activities for use in the classroom and in field trips to the shore. Each unit includes ideas and activities drawn from a variety of content areas so that teachers of many…

  14. Evaluation of Marine Brown Algae and Sponges from Brazil as Anticoagulant and Antiplatelet Products

    PubMed Central

    de Andrade Moura, Laura; Ortiz-Ramirez, Fredy; Cavalcanti, Diana Negrao; Ribeiro, Suzi Meneses; Muricy, Guilherme; Teixeira, Valeria Laneuville; Fuly, Andre Lopes

    2011-01-01

    The ischemic disorders, in which platelet aggregation and blood coagulation are involved, represent a major cause of disability and death worldwide. The antithrombotic therapy has unsatisfactory performance and may produce side effects. So, there is a need to seek molecules with antithrombotic properties. Marine organisms produce substances with different well defined ecological functions. Moreover, some of these molecules also exhibit pharmacological properties such as antiviral, anticancer, antiophidic and anticoagulant properties. The aim of this study was to evaluate, through in vitro tests, the effect of two extracts of brown algae and ten marine sponges from Brazil on platelet aggregation and blood coagulation. Our results revealed that most of the extracts were capable of inhibiting platelet aggregation and clotting measured by plasma recalcification tests, prothrombin time, activated partial thromboplastin time, and fibrinogenolytic activity. On the other hand, five of ten species of sponges induced platelet aggregation. Thus, the marine organisms studied here may have molecules with antithrombotic properties, presenting biotechnological potential to antithrombotic therapy. Further chemical investigation should be conducted on the active species to discover useful molecules for the development of new drugs to treat clotting disorders. PMID:21892349

  15. Coralline alga reveals first marine record of subarctic North Pacific climate change

    USGS Publications Warehouse

    Halfar, J.; Steneck, R.; Schone, B.; Moore, G.W.K.; Joachimski, M.; Kronz, A.; Fietzke, J.; Estes, James

    2007-01-01

    While recent changes in subarctic North Pacific climate had dramatic effects on ecosystems and fishery yields, past climate dynamics and teleconnection patterns are poorly understood due to the absence of century-long high-resolution marine records. We present the first 117-year long annually resolved marine climate history from the western Bering Sea/Aleutian Island region using information contained in the calcitic skeleton of the long-lived crustose coralline red alga Clathromorphum nereostratum, a previously unused climate archive. The skeletal ??18O-time series indicates significant warming and/or freshening of surface waters after the middle of the 20th century. Furthermore, the time series is spatiotemporally correlated with Pacific Decadal Oscillation (PDO) and tropical El Nio??-Southern Oscillation (ENSO) indices. Even though the western Bering Sea/Aleutian Island region is believed to be outside the area of significant marine response to ENSO, we propose that an ENSO signal is transmitted via the Alaskan Stream from the Eastern North Pacific, a region of known ENSO teleconnections. Copyright 2007 by the American Geophysical Union.

  16. Anaerobic and aerobic hydrogen gas formation by the blue-green alga Anabaena cylindrica.

    PubMed

    Daday, A; Platz, R A; Smith, G D

    1977-11-01

    An investigation was made of certain factors involved in the formation of hydrogen gas, both in an anaerobic environment (argon) and in air, by the blue-green alga Anabaena cylindrica. The alga had not been previously adapted under hydrogen gas and hence the hydrogen evolution occurred entirely within the nitrogen-fixing heterocyst cells; organisms grown in a fixed nitrogen source, and which were therefore devoid of heterocysts, did not produce hydrogen under these conditions. Use of the inhibitor dichlorophenyl-dimethyl urea showed that hydrogen formation was directly dependent on photosystem I and only indirectly dependent on photosystem II, consistent with heterocysts being the site of hydrogen formation. The uncouplers carbonyl cyanide chlorophenyl hydrazone and dinitrophenol almost completely inhibited hydrogen formation, indicating that the process occurs almost entirely via the adenosine 5'-triphosphate-dependent nitrogenase. Salicylaldoxime also inhibited hydrogen formation, again illustrating the necessity of photophosphorylation. Whereas hydrogen formation could usually only be observed in anaerobic, dinitrogen-free environments, incubation in the presence of the dinitrogen-fixing inhibitor carbon monoxide plus the hydrogenase inhibitor acetylene resulted in significant formation of hydrogen even in air. Hydrogen formation was studied in batch cultures as a function of age of the cultures and also as a function of culture concentration, in both cases the cultures being harvested in logarithmic growth. Hydrogen evolution (and acetylene-reducing activity) exhibited a distinct maximum with respect to the age of the cultures. Finally, the levels of the protective enzyme, superoxide dismutase, were measured in heterocyst and vegetative cell fractions of the organism; the level was twice as high in heterocyst cells (2.3 units/mg of protein) as in vegetative cells (1.1 units/mg of protein). A simple procedure for isolating heterocyst cells is described.

  17. An extended corona attached to metaphase kinetochores of the green alga Oedogonium.

    PubMed

    Pickett-Heaps, J D; Carpenter, J

    1993-04-01

    Mitotic cells of the green alga Oedogonium were treated with the anti-microtubule agent oryzalin (1.0-0.1 microM) for 5 to 10 min. Within 5 min treatment of living cells, metaphase spindles became spherical with disorganized chromosomes, and anaphase spindles collapsed. At lower concentrations, the effects were slower, and partial recovery was observed about 10 to 20 min after the drug was washed out. Following breakdown of the spindle, considerable disorganized activity detected by time-lapse continued within the nucleus, isolated from the cytoplasm by its intact nuclear membrane. Under the electron microscope, spindle microtubules (MTs) were absent in oryzalin-treated cells. Paired metaphase kinetochores displayed an array of fine filamentous material extended, usually straight, about 3 microns into the nucleoplasm. In cells recovering from oryzalin treatment, MTs became associated with kinetochores in the usual manner. However, this filamentous array, the "extended corona" (EC), was almost undetectable, even when the MTs were short and poorly organized. The EC is appreciably larger by metaphase than the corona of prophase chromosomes and so it may assemble during early mitosis. Fine filaments interspersed with kinetochore MTs have been described in carefully fixed cells of this alga (M.J. Schibler, J.D. Pickett-Heaps, Eur. J. Cell Biol. 22, 687-698 (1980)). The EC apparently represents a less organized form of this material remaining after its scaffold of MTs has been removed. These fibers appear involved in MT capture upon spindle recovery from anti-MT drugs. They could function during prometaphase and even anaphase movement along spindle MTs.

  18. Effect of scenedesmus acuminatus green algae extracts on the development of Candida lipolytic yeast in gas condensate-containing media

    NASA Technical Reports Server (NTRS)

    Bilmes, B. I.; Kasymova, G. A.; Runov, V. I.; Karavayeva, N. N.

    1980-01-01

    Data are given of a comparative study of the growth and development as well as the characteristics of the biomass of the C. Lipolytica yeast according to the content of raw protein, protein, lipids, vitamins in the B group, and residual hydrocarbons during growth in media with de-aromatized gas-condensate FNZ as the carbon source with aqueous and alcohol extracts of S. acuminatus as the biostimulants. It is shown that the decoction and aqueous extract of green algae has the most intensive stimulating effect on the yeast growth. When a decoction of algae is added to the medium, the content of residual hydrocarbons in the biomass of C. lipolytica yeast is reduced by 4%; the quantity of protein, lipids, thamine and inositol with replacement of the yeast autolysate by the decoction of algae is altered little.

  19. Biosorption of copper by marine algae Gelidium and algal composite material in a packed bed column.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Loureiro, José M; Boaventura, Rui A R

    2008-09-01

    Marine algae Gelidium and algal composite material were investigated for the continuous removal of Cu(II) from aqueous solution in a packed bed column. The biosorption behaviour was studied during one sorption-desorption cycle of Cu(II) in the flow through column fed with 50 and 25 mg l(-1) of Cu(II) in aqueous solution, at pH 5.3, leading to a maximum uptake capacity of approximately 13 and 3 mg g(-1), respectively, for algae Gelidium and composite material. The breakthrough time decreases as the inlet copper concentration increases, for the same flow rate. The pH of the effluent decreases over the breakthrough time of copper ions, which indicates that ion exchange is one of the mechanisms involved in the biosorption process. Temperature has little influence on the metal uptake capacity and the increase of the ionic strength reduces the sorption capacity, decreasing the breakthrough time. Desorption using 0.1M HNO(3) solution was 100% effective. After two consecutive sorption-desorption cycles no changes in the uptake capacity of the composite material were observed. A mass transfer model including film and intraparticle resistances, and the equilibrium relationship, for adsorption and desorption, was successfully applied for the simulation of the biosorption column performance.

  20. A serine hydroxymethyltransferase from marine bacterium Shewanella algae: Isolation, purification, characterization and l-serine production.

    PubMed

    Jiang, Wei; Xia, Bingzhao; Liu, Ziduo

    2013-10-01

    Currently, l-serine is mainly produced by enzymatic conversion, in which serine hydroxymethyltransferase (SHMT) is the key enzyme, suggesting the importance of searching for a SHMT with high activity. Shewanella algae, a methanol-utilizing marine bacterium showing high SHMT activity, was selected based on screening bacterial strains and comparison of the activities of SHMTs. A glyA was isolated from the S. algae through thermal asymmetric interlaced PCR (TAIL-PCR) and it encoded a 417 amino acid polypeptide. The SaSHMT, encoded by the glyA, showed the optimal activity at 50°C and pH 7.0, and retained over 45% of its maximal activity after incubation at 40°C for 3h. The enzyme showed better stability under alkaline environment (pH 6.5-9.0) than Hyphomicrobium methylovorum GM2's SHMT (pH 6.0-7.5). The SaSHMT can produce 77.76mM of l-serine by enzymatic conversion, with the molecular conversion rate in catalyzing glycine to l-serine being 1.41-fold higher than that of Escherichia coli. Therefore, the SaSHMT has the potential for industrial applications due to its tolerance of alkaline environment and a relatively high enzymatic conversion rate.

  1. Characterization of the nuclear gene encoding mitochondrial aconitase in the marine red alga Gracilaria verrucosa.

    PubMed

    Zhou, Y H; Ragan, M A

    1995-07-01

    We have cloned a nuclear gene from the marine red alga Gracilaria verrucosa that encodes the complete 779 amino-acid mitochondrial aconitase (m-ACN), the first characterized from a photosynthetic organism. The N-terminal 28 deduced amino acids are predicted to constitute the mitochondrial transit peptide, the first described from a red alga. Putative transcriptional cis-acting elements were identified in the upstream untranslated region. The G. verrucosa m-ACN gene (m-ACN) is present in a single copy and is located ca. 1.5 kb upstream from the single-copy polyubiquitin gene. The single spliceosomal intron is located near the 5' end of the region encoding the mature m-ACN in precisely the same location and phase as intron 2 in Caenorhabditis elegans m-ACN; sequences at its 3' and 5' splice junctions and at the predicted lariat branch point conform well to the eukaryote consensus sequences. Multiple protein-sequence alignment of m-ACN, bacterial aconitase (b-ACN) and iron-responsive element-binding protein (IRE-BP), and phylogenetic analyses, revealed that m-ACN does not share a recent common ancestry with either b-ACN or IRE-BP.

  2. Larvicidal Activity against Aedes aegypti and Molluscicidal Activity against Biomphalaria glabrata of Brazilian Marine Algae.

    PubMed

    Guedes, Elíca Amara Cecília; de Carvalho, Cenira M; Ribeiro Junior, Karlos Antonio Lisboa; Lisboa Ribeiro, Thyago Fernando; de Barros, Lurdiana Dayse; de Lima, Maria Raquel Ferreira; Prado Moura, Flávia de Barros; Goulart Sant'ana, Antônio Euzebio

    2014-01-01

    This study investigated the biological activities of five benthic marine algae collected from Northeastern Region of Brazil. The tested activities included larvicidal activity against Aedes aegypti, molluscicidal activity against Biomphalaria glabrata, and toxicity against Artemia salina. Extracts of Ulva lactuca (Chlorophyta), Padina gymnospora, Sargassum vulgare (Phaeophyta), Hypnea musciformis, and Digenea simplex (Rhodophyta) were prepared using different solvents of increasing polarity, including dichloromethane, methanol, ethanol, and water. Of the extracts screened, the dichloromethane extracts of H. musciformis and P. gymnospora exhibited the highest activities and were subjected to bioassay-guided fractionation in hexane and chloroform. The chloroform fractions of the P. gymnospora and H. musciformis extracts showed molluscicidal activity at values below 40  μ g·mL(-1) (11.1460  μ g·mL(-1) and 25.8689  μ g·mL(-1), resp.), and the chloroform and hexane fractions of P. gymnospora showed larvicidal activity at values below 40  μ g·mL(-1) (29.018  μ g·mL(-1) and 17.230  μ g·mL(-1), resp.). The crude extracts were not toxic to A. salina, whereas the chloroform and hexane fractions of P. gymnospora (788.277  μ g·mL(-1) and 706.990  μ g·mL(-1)) showed moderate toxicity, indicating that the toxic compounds present in these algae are nonpolar.

  3. Sulfated polysaccharide from the marine algae Hypnea musciformis inhibits TNBS-induced intestinal damage in rats.

    PubMed

    V Brito, Tarcisio; Barros, Francisco C N; Silva, Renan O; Dias Júnior, Genilson J; C Júnior, José Simião; Franco, Álvaro X; Soares, Pedro M G; Chaves, Luciano S; Abreu, Clara M W S; de Paula, Regina C M; Souza, Marcellus H L P; Freitas, Ana Lúcia P; R Barbosa, André Luiz

    2016-10-20

    Sulfated polysaccharides extracted from seaweed have important pharmacological properties. Thus, the aim of this study was to characterize the sulfated polysaccharide (PLS) from the algae Hypnea musciformis and evaluate its protective effect in colitis induced by trinitrobenzene sulfonic acid in rats. The sulfated polysaccharide possess a high molecular mass (1.24×10(5)gmol(-1)) and is composed of a κ-carrageenan, as depicted by FT-IR and NMR spectroscopic data. PLS was administered orally (10, 30, and 60mg/kg, p.o.) for three days, starting before TNBS (trinitrobenzene sulfonic acid) instillation (day 1). The rats were killed on day three, the portion of distal colon (5cm) was excised and evaluated macroscopic scores and wet weight. Then, samples of the intestinal were used for histological evaluation and quantification of glutathione, malonyldialdehyde acid, myeloperoxidase, nitrate/nitrite and cytokines. Our results demonstrate that PLS reduced the colitis and all analyzed biochemical parameters. Thus, we concluded that the PLS extracted from the marine algae H. musciformis reduced the colitis in animal model and may have an important promising application in the inflammatory bowel diseases.

  4. Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca.

    PubMed

    Egan, S; Thomas, T; Holmström, C; Kjelleberg, S

    2000-06-01

    It is widely accepted that bacterial epiphytes can inhibit the colonization of surfaces by common fouling organisms. However, little information is available regarding the diversity and properties of these antifouling bacteria. This study assessed the antifouling traits of five epiphytes of the common green alga, Ulva lactuca. All isolates were capable of preventing the settlement of invertebrate larvae and germination of algal spores. Three of the isolates also inhibited the growth of a variety of bacteria and fungi. Their phylogenetic positions were determined by 16S ribosomal subunit DNA sequencing. All isolates showed a close affiliation with the genus Pseudoalteromonas and, in particular, with the species P. tunicata. Strains of this bacterial species also display a variety of antifouling activities, suggesting that antifouling ability may be an important trait for members of this genus to be highly successful colonizers of animate surfaces and for such species to protect their host against fouling.

  5. Green Marine: An environmental program to establish sustainability in marine transportation.

    PubMed

    Walker, Tony R

    2016-04-15

    European maritime companies have adopted programs to limit operational impacts on the environment. For maritime companies in North America, the Green Marine Environmental Program (GMEP) offers a framework to establish and reduce environmental footprints. Green Marine (GM) participants demonstrate annual improvements of specific environmental performance indicators (e.g., reductions in air pollution emissions) to maintain certification. Participants complete annual self-evaluations with results determining rankings for performance indicators on a 1-to-5 scale. Self-evaluations are independently verified every two years to ensure rigor and individual results are made publicly available annually to achieve transparency. GM benefits the marine industry across North America by encouraging sustainable development initiatives. GM's credibility is reflected through a diverse network of environmental groups and government agencies that endorse and help shape the program. Merits of this relatively new maritime certification (not previously described in the academic literature), are discussed.

  6. Molecular phylogeny of Ascotricha, including two new marine algae-associated species.

    PubMed

    Cheng, Xiaoli; Li, Wei; Cai, Lei

    2015-01-01

    Phylogenetic analyses based on a broad taxonomic sampling of Ascotricha were conducted using the sequences of nuc rDNA region encompassing the internal transcribed spacers 1 and 2, along with the 5.8S rDNA (ITS), partial nuc 18S rDNA (18S) and partial β-tubulin gene (TUB2). Hypoxyloid Xylariaceae and xylarioid Xylariaceae were inferred as two distinct lineages in the Xylariaceae in the combined ITS-TUB2 phylogeny. Within xylarioid Xylariaceae species of Ascotricha form a monophyletic group. Two new marine algae-associated fungi, Ascotricha longipila and A. parvispora, are described on the basis of morphological and molecular characters and the combination, A. sinuosa, is proposed. A synopsis of the morphological characters and a dichotomous key to Ascotricha species are provided.

  7. Preparation and characteristics of bio-oil from the marine brown alga Sargassum patens C. Agardh.

    PubMed

    Li, Demao; Chen, Limei; Xu, Dong; Zhang, Xiaowen; Ye, Naihao; Chen, Fangjian; Chen, Shulin

    2012-01-01

    The marine brown alga, Sargassum patens C. Agardh, floating on the Yellow Sea, was collected and converted to bio-oil through hydrothermal liquefaction with a modified reactor. A maximum yield of 32.1±0.2 wt.% bio-oil was obtained after 15 min at 340 °C, at a feedstock concentration of 15 g biomass/150 ml water, without using a catalyst. The bio-oil had a heating value of 27.1MJ/kg and contained water, lipid, alcohol, phenol, esters, ethers and aromatic compounds. The solid residue obtained had a high ash and oxygen content. The results suggest that S. patens C. Agardh has potential as biomass feedstock for fuel and chemical products.

  8. New Enzyme-Inhibitory Triterpenoid from Marine Macro Brown Alga Padina boergesenii Allender & Kraft

    PubMed Central

    Ali, Liaqat; Khan, Abdul Latif; Al-Broumi, Muhammad; Al-Harrasi, Rashid; Al-Kharusi, Lubna; Hussain, Javid; Al-Harrasi, Ahmed

    2017-01-01

    In continuation to our study of the chemical and biological potential of the secondary metabolites isolated from Omani seaweeds, we investigated a marine brown alga, Padina boergesenii. The phytochemical investigation resulted in the isolation of a new secondary metabolite, padinolic acid (1), along with some other semi-pure fractions and sub-fractions. The planar structure was confirmed through MS and NMR (1D and 2D) spectral data. The NOESY experiments coupled with the biogenetic consideration were helpful in assigning the stereochemistry in the molecule. Compound 1 was subjected to enzyme inhibition studies using urease, lipid peroxidase, and alpha-glucosidase enzymes. Compound 1 showed low to moderate α-glucosidase and urease enzyme inhibition, respectively, and moderate anti-lipid peroxidation activities. The current study indicates the potential of this seaweed and provides the basis for further investigation. PMID:28106757

  9. New Enzyme-Inhibitory Triterpenoid from Marine Macro Brown Alga Padina boergesenii Allender & Kraft.

    PubMed

    Ali, Liaqat; Khan, Abdul Latif; Al-Broumi, Muhammad; Al-Harrasi, Rashid; Al-Kharusi, Lubna; Hussain, Javid; Al-Harrasi, Ahmed

    2017-01-18

    In continuation to our study of the chemical and biological potential of the secondary metabolites isolated from Omani seaweeds, we investigated a marine brown alga, Padina boergesenii. The phytochemical investigation resulted in the isolation of a new secondary metabolite, padinolic acid (1), along with some other semi-pure fractions and sub-fractions. The planar structure was confirmed through MS and NMR (1D and 2D) spectral data. The NOESY experiments coupled with the biogenetic consideration were helpful in assigning the stereochemistry in the molecule. Compound 1 was subjected to enzyme inhibition studies using urease, lipid peroxidase, and alpha-glucosidase enzymes. Compound 1 showed low to moderate α-glucosidase and urease enzyme inhibition, respectively, and moderate anti-lipid peroxidation activities. The current study indicates the potential of this seaweed and provides the basis for further investigation.

  10. Effects of different strategies of mineral supplementation (marine algae alone or combined with rumen boluses) in organic dairy systems.

    PubMed

    López-Alonso, M; Rey-Crespo, F; Orjales, I; Rodríguez-Bermúdez, R; Miranda, M

    2016-10-01

    This study was designed to evaluate the effect of marine algae supplementation alone or in combination with a regular mineral supplement (rumen boluses) to improve the mineral status in organic dairy cattle and their effect on the milk mineral composition, milk production, composition (% of fat and protein) and quality (SCC). Thirty-two Holstein Friesian lactating cows were randomly selected and assigned to the algae (A), boluses (B), algae+boluses (AB) and control group (C). For the algae groups (A, AB), a supplement composed of Sea Lettuce (80%), Japanese Wireweed (17.5%) and Furbelows (2.5%) was formulated to be given to the cows at the rate of 100 g/animal per day (A1) for the length of 4 weeks. In the second half of the experiment (weeks 5-8), the algae mixture was reformulated and the proportion of Furbelows was increased from 2.5% to 5.0% with a subsequent decrease of Lettuce to 77.5% (A2). In the boluses group (B), each cow received 2 boluses after calving. Blood (serum) and milk samples were collected at 2 and 4 week intervals, respectively, and analysed for trace element concentrations by ICP-MS. Information related to the milk composition and SCC during a 305-day lactation for each animal were obtained from the Dairy Records Management System. The supplementation with algae, boluses or the combination of both treatments showed a statistically significant effect on the iodine (algae), selenium (boluses) and cobalt (algae+boluses) status of the animals. In milk, treatments had a statistical significant increase on iodine, and a tendency to increase selenium concentrations. The assayed algae mixture combined with another source of selenium could be an effective tool to improve the mineral status in serum and milk.

  11. Influence of extracellular polysaccharides (EPS) produced by two different green unicellular algae on membrane filtration in an algae-based biofuel production process.

    PubMed

    Matsumoto, Takaki; Yamamura, Hiroshi; Hayakawa, Jyunpei; Watanabe, Yoshimasa; Harayama, Shigeaki

    2014-01-01

    In the present study, two strains of green algae named S1 and S2, categorized as the same species of Pseudo-coccomyxa ellipsoidea but showing 99% homology, were cultivated under the same conditions and filtrated with a microfiltration membrane. On the basis of the results of the extracellular polysaccharides (EPS) characteristics of these two green algae and the degree of fouling, the influence of these characteristics on the performance of membrane filtration was investigated. There was no difference in the specific growth rate between the S1 and S2 strains; however, large differences were seen in the amount and quality of EPS between S1 and S2. When the S1 and S2 strains were filtered with a membrane, the trend in the increase in transmembrane pressure (TMP) was quite different. The filtration of the S1 strain showed a rapid increase in TMP, whereas the TMP of the filtration of the S2 strain did not increase at all during the operation. This clearly demonstrated that the characteristics of each strain affect the development of membrane fouling. On the basis of the detailed characterization of solved-EPS (s-EPS) and bound-EPS (b-EPS), it was clarified that s-EPS mainly contributed to irreversible fouling for both operations and the biopolymer-like organic matter contained in b-EPS mainly contributed to reversible fouling.

  12. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield.

    PubMed

    Goncalves, Elton C; Wilkie, Ann C; Kirst, Matias; Rathinasabapathi, Bala

    2016-08-01

    The great need for more sustainable alternatives to fossil fuels has increased our research interests in algal biofuels. Microalgal cells, characterized by high photosynthetic efficiency and rapid cell division, are an excellent source of neutral lipids as potential fuel stocks. Various stress factors, especially nutrient-starvation conditions, induce an increased formation of lipid bodies filled with triacylglycerol in these cells. Here we review our knowledge base on glycerolipid synthesis in the green algae with an emphasis on recent studies on carbon flux, redistribution of lipids under nutrient-limiting conditions and its regulation. We discuss the contributions and limitations of classical and novel approaches used to elucidate the algal triacylglycerol biosynthetic pathway and its regulatory network in green algae. Also discussed are gaps in knowledge and suggestions for much needed research both on the biology of triacylglycerol accumulation and possible avenues to engineer improved algal strains.

  13. Experimental evidence that evolutionary relatedness does not affect the ecological mechanisms of coexistence in freshwater green algae.

    PubMed

    Narwani, Anita; Alexandrou, Markos A; Oakley, Todd H; Carroll, Ian T; Cardinale, Bradley J

    2013-11-01

    The coexistence of competing species depends on the balance between their fitness differences, which determine their competitive inequalities, and their niche differences, which stabilise their competitive interactions. Darwin proposed that evolution causes species' niches to diverge, but the influence of evolution on relative fitness differences, and the importance of both niche and fitness differences in determining coexistence have not yet been studied together. We tested whether the phylogenetic distances between species of green freshwater algae determined their abilities to coexist in a microcosm experiment. We found that niche differences were more important in explaining coexistence than relative fitness differences, and that phylogenetic distance had no effect on either coexistence or on the sizes of niche and fitness differences. These results were corroborated by an analysis of the frequency of the co-occurrence of 325 pairwise combinations of algal taxa in > 1100 lakes across North America. Phylogenetic distance may not explain the coexistence of freshwater green algae.

  14. Nucleotide diversity of the colorless green alga Polytomella parva (Chlorophyceae, Chlorophyta): high for the mitochondrial telomeres, surprisingly low everywhere else.

    PubMed

    Smith, David Roy; Lee, Robert W

    2011-01-01

    Silent-site nucleotide diversity data (π(silent)) can provide insights into the forces driving genome evolution. Here we present π(silent) statistics for the mitochondrial and nuclear DNAs of Polytomella parva, a nonphotosynthetic green alga with a highly reduced, linear fragmented mitochondrial genome. We show that this species harbors very little genetic diversity, with the exception of the mitochondrial telomeres, which have an excess of polymorphic sites. These data are compared with previously published π(silent) values from the mitochondrial and nuclear genomes of the model species Chlamydomonas reinhardtii and Volvox carteri, which are close relatives of P. parva, and are used to understand the modes and tempos of genome evolution within green algae.

  15. Purification and characterization of cytochrome f-556.5 from the blue-green alga Spirulina platensis.

    PubMed

    Böhme, H; Pelzer, B; Böger, P

    1980-10-03

    The membrane-bound cytochrome f-556.5 from the blue-green alga Spirulina platensis was purified to apparent homogeneity. Most of its properties are comparable to cytochrome f isolated from higher plants and green algae. It is clearly distinguishable from soluble cytochrome c-554, also present in Spirulina, which probably replaces the function of plastocyanin in photosynthetic electron transport. 1. The reduced form of cytochrome f exhibits an asymmetrical alpha-band with a maximum at 556.5 nm, and a pronounced shoulder at 550 nm. The beta-, gamma and delta-bands coincide with those described for Scenedesmus cytochrome f-553, with maxima at 524 (532), 422, 331 and a protein peak at 276 nm. The maximum of ferricytochrome f is at 410.5 nm; there is no indication of a weak 695 nm band, described for soluble c-type cytochromes. The purest preparations had a delta/protein-peak ratio of 0.8; the gamma/alpha ratio was 7.3. Formation of a pyridine hemochromogen with a maximum at 550 nm indicated a c-type cytochrome. The molar extinction coefficient at 556.5 nm is 30200, the differential extinction coefficient 21 500. 2. The molecular weight determined by gel filtration or SDS-polyacrylamide gel electrophoresis is 33 000 and 34 000, respectively. 3. The redox properties differ from those described for other cytochromes f isolated from green algae and higher plants: the midpoint redox potential is significantly more negative (+318 mV, pH 7.0) and from pH 6 to 10 no pH dependence is observed. 4. The isoelectric point was determined at pH 3.95, which is more acidic as compared to other cytochromes f. 5. Comparison of the amino acid composition indicated a distant relationship to higher plant cytochrome f and a closer relationship to cytochrome f from green algae.

  16. Strategies for psbA gene expression in cyanobacteria, green algae and higher plants: from transcription to PSII repair.

    PubMed

    Mulo, Paula; Sakurai, Isamu; Aro, Eva-Mari

    2012-01-01

    The Photosystem (PS) II of cyanobacteria, green algae and higher plants is prone to light-induced inactivation, the D1 protein being the primary target of such damage. As a consequence, the D1 protein, encoded by the psbA gene, is degraded and re-synthesized in a multistep process called PSII repair cycle. In cyanobacteria, a small gene family codes for the various, functionally distinct D1 isoforms. In these organisms, the regulation of the psbA gene expression occurs mainly at the level of transcription, but the expression is fine-tuned by regulation of translation elongation. In plants and green algae, the D1 protein is encoded by a single psbA gene located in the chloroplast genome. In chloroplasts of Chlamydomonas reinhardtii the psbA gene expression is strongly regulated by mRNA processing, and particularly at the level of translation initiation. In chloroplasts of higher plants, translation elongation is the prevalent mechanism for regulation of the psbA gene expression. The pre-existing pool of psbA transcripts forms translation initiation complexes in plant chloroplasts even in darkness, while the D1 synthesis can be completed only in the light. Replacement of damaged D1 protein requires also the assistance by a number of auxiliary proteins, which are encoded by the nuclear genome in green algae and higher plants. Nevertheless, many of these chaperones are conserved between prokaryotes and eukaryotes. Here, we describe the specific features and fundamental differences of the psbA gene expression and the regeneration of the PSII reaction center protein D1 in cyanobacteria, green algae and higher plants. This article is part of a Special Issue entitled Photosystem II.

  17. Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae).

    PubMed

    Peled, Ehud; Leu, Stefan; Zarka, Aliza; Weiss, Meira; Pick, Uri; Khozin-Goldberg, Inna; Boussiba, Sammy

    2011-09-01

    Cytoplasmic oil globules of Haematococcus pluvialis (Chlorophyceae) were isolated and analyzed for pigments, lipids and proteins. Astaxanthin appeared to be the only pigment deposited in the globules. Triacyglycerols were the main lipids (more than 90% of total fatty acids) in both the cell-free extract and in the oil globules. Lipid profile analysis of the oil globules showed that relative to the cell-free extract, they were enriched with extraplastidial lipids. A fatty acids profile revealed that the major fatty acids in the isolated globules were oleic acid (18:1) and linoleic acid (18:2). Protein extracts from the globules revealed seven enriched protein bands, all of which were possible globule-associated proteins. A major 33-kDa globule protein was partially sequenced by MS/MS analysis, and degenerate DNA primers were prepared and utilized to clone its encoding gene from cDNA extracted from cells grown in a nitrogen depleted medium under high light. The sequence of this 275-amino acid protein, termed the Haematococcus Oil Globule Protein (HOGP), revealed partial homology with a Chlamydomonas reinhardtii oil globule protein and with undefined proteins from other green algae. The HOGP transcript was barely detectable in vegetative cells, but its level increased by more than 100 fold within 12 h of exposure to nitrogen depletion/high light conditions, which induced oil accumulation. HOGP is the first oil-globule-associated protein to be identified in H. pluvialis, and it is a member of a novel gene family that may be unique to green microalgae.

  18. The nucleotide sequence of blue-green algae phenylalanine-tRNA and the evolutionary origin of chloroplasts.

    PubMed Central

    Hecker, L I; Barnett, W E; Lin, F K; Furr, T D; Heckman, J E; RajBhandary, U L; Chang, S H

    1982-01-01

    Phenylalanine tRNA from the blue-green alga, Agmenellum quadruplicatum, has been purified to homogeneity. The nucleotide sequence of this tRNA was determined to be: (see tests) Comparisons of the sequence and the modified nucleosides of this tRNA with those of other tRNAPhes thus far sequenced, indicate that this blue green algal tRNAPhe is typically prokaryotic and closely resembles the chloroplast tRNAPhes of higher plants and Euglena. The significance of this observation to the evolutionary origin of chloroplasts is discussed. Images PMID:6817301

  19. Convoluted Plasma Membrane Domains in the Green Alga Chara are Depleted of Microtubules and Actin Filaments.

    PubMed

    Sommer, Aniela; Hoeftberger, Margit; Hoepflinger, Marion C; Schmalbrock, Sarah; Bulychev, Alexander; Foissner, Ilse

    2015-10-01

    Charasomes are convoluted plasma membrane domains in the green alga Chara australis. They harbor H(+)-ATPases involved in acidification of the medium, which facilitates carbon uptake required for photosynthesis. In this study we investigated the distribution of cortical microtubules and cortical actin filaments in relation to the distribution of charasomes. We found that microtubules and actin filaments were largely lacking beneath the charasomes, suggesting the absence of nucleating and/or anchoring complexes or an inhibitory effect on polymerization. We also investigated the influence of cytoskeleton inhibitors on the light-dependent growth and the darkness-induced degradation of charasomes. Inhibition of cytoplasmic streaming by cytochalasin D significantly inhibited charasome growth and delayed charasome degradation, whereas depolymerization of microtubules by oryzalin or stabilization of microtubules by paclitaxel had no effect. Our data indicate that the membrane at the cytoplasmic surface of charasomes has different properties in comparison with the smooth plasma membrane. We show further that the actin cytoskeleton is necessary for charasome growth and facilitates charasome degradation presumably via trafficking of secretory and endocytic vesicles, respectively. However, microtubules are required neither for charasome growth nor for charasome degradation.

  20. Comparison of the Photosynthetic Yield of Cyanobacteria and Green Algae: Different Methods Give Different Answers.

    PubMed

    Schuurmans, R Milou; van Alphen, Pascal; Schuurmans, J Merijn; Matthijs, Hans C P; Hellingwerf, Klaas J

    2015-01-01

    The societal importance of renewable carbon-based commodities and energy carriers has elicited a particular interest for high performance phototrophic microorganisms. Selection of optimal strains is often based on direct comparison under laboratory conditions of maximal growth rate or additional valued features such as lipid content. Instead of reporting growth rate in culture, estimation of photosynthetic efficiency (quantum yield of PSII) by pulse-amplitude modulated (PAM) fluorimetry is an often applied alternative method. Here we compared the quantum yield of PSII and the photonic yield on biomass for the green alga Chlorella sorokiniana 211-8K and the cyanobacterium Synechocystis sp. PCC 6803. Our data demonstrate that the PAM technique inherently underestimates the photosynthetic efficiency of cyanobacteria by rendering a high F0 and a low FM, specifically after the commonly practiced dark pre-incubation before a yield measurement. Yet when comparing the calculated biomass yield on light in continuous culture experiments, we obtained nearly equal values for both species. Using mutants of Synechocystis sp. PCC 6803, we analyzed the factors that compromise its PAM-based quantum yield measurements. We will discuss the role of dark respiratory activity, fluorescence emission from the phycobilisomes, and the Mehler-like reaction. Based on the above observations we recommend that PAM measurements in cyanobacteria are interpreted only qualitatively.

  1. Toxic cell concentrations of three polychlorinated biphenyl congeners in the green alga, Selenastrum capricornutum

    SciTech Connect

    Mayer, P. |; Halling-Soerensen, B.; Nyholm, N.; Sijm, D.T.H.M.

    1998-09-01

    Algal growth inhibition tests were performed with the unicellular green alga Selenastrum capricornutum and three {sup 14}C-labeled polychlorinated biphenyl (PCB) congeners. Toxicity was related to external aqueous concentrations and additionally to internal algal bound PCB concentrations. Estimates of the concentrations at 50% effectiveness (EC50s) for the three PCB congeners ranged within a factor of 17 when based on measured aqueous concentrations. When based on internal toxicant concentrations the corresponding range was 6.7 to 14.3 mmol/kg wet weight. Thus, changing the basis from external to internal concentrations reduced the range by almost one order of magnitude. Additional toxic cell concentrations of five monoaromatic compounds and S. capricornutum were calculated from literature data to be in the same order of magnitude as the experimental toxic cell concentrations for the PCBs, whereas EC50 values for all substances ranged by more than four orders of magnitude. The experimental and calculated data indicate that observed differences in the estimated EC50 values were mainly due to differences in bioconcentration behavior rather than to different intrinsic toxicities. These findings are in agreement with the concept of baseline toxicity, meaning that a number of hydrophobic organics exerts their acute toxicity by one relatively nonspecific mode of action.

  2. CELL WALL CARBOHYDRATE EPITOPES IN THE GREEN ALGA OEDOGONIUM BHARUCHAE F. MINOR (OEDOGONIALES, CHLOROPHYTA)(1).

    PubMed

    Estevez, José M; Leonardi, Patricia I; Alberghina, Josefina S

    2008-10-01

    Cell wall changes in vegetative and suffultory cells (SCs) and in oogonial structures from Oedogonium bharuchae N. D. Kamat f. minor Vélez were characterized using monoclonal antibodies against several carbohydrate epitopes. Vegetative cells and SCs develop only a primary cell wall (PCW), whereas mature oogonial cells secrete a second wall, the oogonium cell wall (OCW). Based on histochemical and immunolabeling results, (1→4)-β-glucans in the form of crystalline cellulose together with a variable degree of Me-esterified homogalacturonans (HGs) and hydroxyproline-rich glycoprotein (HRGP) epitopes were detected in the PCW. The OCW showed arabinosides of the extensin type and low levels of arabinogalactan-protein (AGP) glycans but lacked cellulose, at least in its crystalline form. Surprisingly, strong colabeling in the cytoplasm of mature oogonia cells with three different antibodies (LM-5, LM-6, and CCRC-M2) was found, suggesting the presence of rhamnogalacturonan I (RG-I)-like structures. Our results are discussed relating the possible functions of these cell wall epitopes with polysaccharides and O-glycoproteins during oogonium differentiation. This study represents the first attempt to characterize these two types of cell walls in O. bharuchae, comparing their similarities and differences with those from other green algae and land plants. This work represents a contribution to the understanding of how cell walls have evolved from simple few-celled to complex multicelled organisms.

  3. Stereocontrolled reduction of alpha- and beta-keto esters with micro green algae, Chlorella strains.

    PubMed

    Ishihara, K; Yamaguchi, H; Adachi, N; Hamada, H; Nakajima, N

    2000-10-01

    The stereocontrolled reduction of alpha- and beta-keto esters using micro green algae was accomplished by a combination of the cultivation method and the introduction of an additive. The reduction of ethyl pyruvate and ethyl benzoylformate by the photoautotrophically cultivated Chlorella sorokiniana gave the corresponding alcohol in high e.e. (>99% e.e. (S) and >99% e.e. (R), respectively). In the presence of glucose as an additive, the reduction of ethyl 3-methyl-2-oxobutanoate by the heterotrophically cultivated C. sorokiniana afforded the corresponding (R)-alcohol. On the other hand, the reduction in the presence of ethyl propionate gave the (S)-alcohol. Ethyl 2-methyl-3-oxobutanoate was reduced in the presence of glycerol by the photoautotrophically cultivated C. sorokiniana or the heterotrophically cultivated C. sorokiniana to the corresponding syn-(2R,3S)-hydroxy ester with high diastereo- and enantiomeric excess (e.e.). Some additives altered the stereochemical course in the reduction of alpha- and beta-keto esters.

  4. The hepatoprotective activity of blue green algae in Schistosoma mansoni infected mice.

    PubMed

    Mohamed, Azza H; Osman, Gamalat Y; Salem, Tarek A; Elmalawany, Alshimaa M

    2014-10-01

    This study aims to evaluate the immunomodulatory effects of a natural product, blue green algae (BGA) (100 mg/kg BW), alone or combined with praziquantel PZQ (250 mg/kg BW) on granulomatous inflammation, liver histopathology, some biochemical and immunological parameters in mice infected with Schistosoma mansoni. Results showed that the diameter and number of egg granuloma were significantly reduced after treatment of S. mansoni-infected mice with BGA, PZQ and their combination. The histopathological alterations observed in the liver of S. mansoni-infected mice were remarkably inhibited after BGA treatments. BGA decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) as well as the level of total protein (TP) while the level of albumin was increased. Treatment of infected mice with BGA, PZQ as well as their combination led to significant elevation in the activities of hepatic antioxidant enzymes glutathione peroxidase (GPX) and glutathione-S-transferase (GST) as compared with control group. Combination of BGA and PZQ resulted in significant reduction in the level of intercellular adhesion molecules-1 (ICAM-1), vascular adhesion molecules-1 (VCAM-1) and tumor necrosis factor-alpha (TNF-α) when compared to those of the S. mansoni-infected group. Overall, BGA significantly inhibited the liver damage accompanied with schistosomiasis, exhibited a potent antioxidant and immunoprotective activities. This study suggests that BGA can be considered as promising for development a complementary and/or alternative medicine against schistosomiasis.

  5. First crystal structure of Rubisco from a green alga, Chlamydomonas reinhardtii.

    PubMed

    Taylor, T C; Backlund, A; Bjorhall, K; Spreitzer, R J; Andersson, I

    2001-12-21

    The crystal structure of Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) from the unicellular green alga Chlamydomonas reinhardtii has been determined to 1.4 A resolution. Overall, the structure shows high similarity to the previously determined structures of L8S8 Rubisco enzymes. The largest difference is found in the loop between beta strands A and B of the small subunit (betaA-betaB loop), which is longer by six amino acid residues than the corresponding region in Rubisco from Spinacia. Mutations of residues in the betaA-betaB loop have been shown to affect holoenzyme stability and catalytic properties. The information contained in the Chlamydomonas structure enables a more reliable analysis of the effect of these mutations. No electron density was observed for the last 13 residues of the small subunit, which are assumed to be disordered in the crystal. Because of the high resolution of the data, some posttranslational modifications are unambiguously apparent in the structure. These include cysteine and N-terminal methylations and proline 4-hydroxylations.

  6. Chlorophyll a fluorescence lifetime reveals reversible UV-induced photosynthetic activity in the green algae Tetraselmis.

    PubMed

    Kristoffersen, Arne S; Hamre, Børge; Frette, Øyvind; Erga, Svein R

    2016-04-01

    The fluorescence lifetime is a very useful parameter for investigating biological materials on the molecular level as it is mostly independent of the fluorophore concentration. The green alga Tetraselmis blooms in summer, and therefore its response to UV irradiation is of particular interest. In vivo fluorescence lifetimes of chlorophyll a were measured under both normal and UV-stressed conditions of Tetraselmis. Fluorescence was induced by two-photon excitation using a femtosecond laser and laser scanning microscope. The lifetimes were measured in the time domain by time-correlated single-photon counting. Under normal conditions, the fluorescence lifetime was 262 ps, while after 2 h of exposure to UV radiation the lifetime increased to 389 ps, indicating decreased photochemical quenching, likely caused by a damaged and down-regulated photosynthetic apparatus. This was supported by a similar increase in the lifetime to 425 ps when inhibiting photosynthesis chemically using DCMU. Furthermore, the UV-stressed sample was dark-adapted overnight, resulting in a return of the lifetime to 280 ps, revealing that the damage caused by UV radiation is repairable on a relatively short time scale. This reversal of photosynthetic activity was also confirmed by [Formula: see text] measurements.

  7. Two components of photoreceptor potential in phototaxis of the flagellated green alga Haematococcus pluvialis

    PubMed Central

    Sineshchekov, Oleg A.; Litvin, Felix F.; Keszthelyi, Lajos

    1990-01-01

    The kinetics of the photoreceptor potential of phototaxis in biflagellated green alga Haematococcus pluvialis in response to a 10-ns laser pulse of three wavelengths (465, 550, and 590 nm) were measured in single cells with 30 μs time resolution. The rise and the decay of photoinduced potential are both at least biphasic. The first component of the rise is very stable and has no measurable (<30 μs) time delay. The second component is triggered after a 120-400-μs lag period, depending on flash intensity. Its appearance is sensitive to the physiological state of the cell and the amplitude can be increased by phototactically ineffective red background illumination. The electrical generators for both components are localized in the same region of the cell membrane (on the stigma-bearing side) and these components have the same depolarizing sign. The results indicate that the photoreceptor potential in phototaxis comprises two components, which could be interpreted as light-induced charge movement within the photoreceptor molecules and changes in ion permeability of the cell membrane. PMID:19431753

  8. Characteristics of Fluorescence and Delayed Light Emission from Green Photosynthetic Bacteria and Algae

    PubMed Central

    Clayton, Roderick K.

    1965-01-01

    Green photosynthetic bacteria exhibit variations in the intensity of their fluorescence during illumination. The initial intensity of fluorescence, measured at the onset of illumination, has a spectrum in which the major pigment Chlorobium chlorophyll predominates. The minor pigment bacteriochlorophyll predominates in the spectrum of the time-varying part of the fluorescence. The spectrum of delayed light emission is identical to that of the time-varying fluorescence. The variations in fluorescence also resemble the delayed light in their kinetics and in their dependence on exciting light intensity. Similar results are obtained for the kinetics of prompt and delayed light emission in the algae Chlorella and Anacystis. These findings raise the possibility that the variations in fluorescence actually represent a fast component of delayed light emission, of intensity comparable to the intensity of fluorescence. In Anacystis there is an outburst of light emission that develops after the exciting light has been turned off, reaching a maximum intensity after 1 to 3 seconds. This emitted light has the spectrum of chlorophyll fluorescence. It appears to be a novel example of bioluminescence with singlet excited chlorophyll as the emitter. PMID:14324979

  9. The growth response of the green alga Chlorella vulgaris to combined divalent cation exposure.

    PubMed

    Rachlin, J W; Grosso, A

    1993-01-01

    Using the growth response of the green alga Chlorella vulgaris as a model system, the effects of combinations of the environmentally active cations Cd, Co, and Cu were evaluated. The 96-h static EC50 for these cations to C. vulgaris were, respectively, 0.89 microM, 9.0 microM, and 2.8 microM, yielding a toxicity series such that Cd > Cu > Co. The cation combinations of Cd + Cu, and Cu + Co acted synergistically, while Cd + Co, and the tri-metallic combination Cd + Cu + Co resulted in antagonistic interactions. Examination of these toxic combinations at 24, 48, 72, and 96 h indicate that the cellular response is not a uniform one. Failure of energy dispersive X-ray spectrophotometric analysis to demonstrate any intracellular incorporation of these cations (except for a weak cytoplasmic Cu peak at the 8.0 KEV position) suggests that the toxic actions of these cations at EC50 concentrations are exerted at the level of the plasma membrane.

  10. The effects of nitric oxide in settlement and adhesion of zoospores of the green alga Ulva.

    PubMed

    Thompson, Stephanie E M; Callow, Maureen E; Callow, James A

    2010-01-01

    Previous studies have shown that elevated nitric oxide (NO) reduces adhesion in diatom, bacterial and animal cells. This article reports experiments designed to investigate whether elevated NO reduces the adhesion of zoospores of the green alga Ulva, an important fouling species. Surface-normalised values of NO were measured using the fluorescent indicator DAF-FM DA and parallel hydrodynamic measurements of adhesion strength were made. Elevated levels of NO caused by the addition of the exogenous NO donor SNAP reduced spore settlement by 20% and resulted in lower adhesion strength. Addition of the NO scavenger cPTIO abolished the effects of SNAP on adhesion. The strength of attachment and NO production by spores in response to four coatings (Silastic T2; Intersleek 700; Intersleek 900 and polyurethane) shows that reduced adhesion is correlated with an increase in NO production. It is proposed that in spores of Ulva, NO is used as an intracellular signalling molecule to detect how conducive a surface is for settlement and adhesion. The effect of NO on the adhesion of a range of organisms suggests that NO-releasing coatings could have the potential to control fouling.

  11. Phototoxicity of benzo(a)pyrene in the green alga Selenastrum capricornutum

    SciTech Connect

    Cody, T.E.; Radike, M.J.; Warshawsky, D.

    1984-10-01

    The effects of selected polycyclic aromatic hydrocarbons (PAHs) on the growth of the green alga Selenastrum capricornutum in three light regimens were examined. In gold fluorescent light, benzo(a)pyrene (BaP) at 12 mg/liter (48 ..mu..mole/liter), benz(a)anthracene (BaA) at 40 mg/liter (175 ..mu..mole/liter), anthracene (A) at 40 mg/liter (224 ..mu..mole/liter), and 13 metabolites of BaP each at 40 ..mu..g/liter had no effect on algal growth. In cool-white fluorescent light, 30% inhibition of algal growth occurred with 0.1 ..mu..mole/liter BaP, 8.0 ..mu..mole/liter BaA, and 40 ..mu..mole/liter A. BaP at 0.16 mg/liter (0.64 ..mu..mole/liter) totally inhibited growth. BaP concentrations an order of magnitude lower inhibited algal growth in fluorescent blacklight. In cool-white light, 5 of 13 metabolites of BaP (each 40 ..mu..g/liter) inhibited algal growth; 3,6-quinone; 6-hydroxy; 9-hydroxy; 3-hydroxy; and 1,6-quinone. Based on these results, PAHs and metabolites of BaP are selectively phototoxic to S. capricornutum due to the incident light intensity below 550 nm.

  12. Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii

    PubMed Central

    Onishi, Masayuki; Pringle, John R.

    2016-01-01

    The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs) has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins. PMID:27770025

  13. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    PubMed Central

    Deng, Junjing; Vine, David J.; Chen, Si; Nashed, Youssef S. G.; Jin, Qiaoling; Phillips, Nicholas W.; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris J.

    2015-01-01

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolution beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub–30-nm resolution structural images and ∼90-nm–resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context. PMID:25675478

  14. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri

    SciTech Connect

    Cornish, Adam J.; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L.

    2015-04-30

    Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.

  15. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri.

    PubMed

    Cornish, Adam J; Green, Robin; Gärtner, Katrin; Mason, Saundra; Hegg, Eric L

    2015-01-01

    Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobic conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.

  16. Transcriptome for Photobiological Hydrogen Production Induced by Sulfur Deprivation in the Green Alga Chlamydomonas reinhardtii▿ †

    PubMed Central

    Nguyen, Anh Vu; Thomas-Hall, Skye R.; Malnoë, Alizée; Timmins, Matthew; Mussgnug, Jan H.; Rupprecht, Jens; Kruse, Olaf; Hankamer, Ben; Schenk, Peer M.

    2008-01-01

    Photobiological hydrogen production using microalgae is being developed into a promising clean fuel stream for the future. In this study, microarray analyses were used to obtain global expression profiles of mRNA abundance in the green alga Chlamydomonas reinhardtii at different time points before the onset and during the course of sulfur-depleted hydrogen production. These studies were followed by real-time quantitative reverse transcription-PCR and protein analyses. The present work provides new insights into photosynthesis, sulfur acquisition strategies, and carbon metabolism-related gene expression during sulfur-induced hydrogen production. A general trend toward repression of transcripts encoding photosynthetic genes was observed. In contrast to all other LHCBM genes, the abundance of the LHCBM9 transcript (encoding a major light-harvesting polypeptide) and its protein was strongly elevated throughout the experiment. This suggests a major remodeling of the photosystem II light-harvesting complex as well as an important function of LHCBM9 under sulfur starvation and photobiological hydrogen production. This paper presents the first global transcriptional analysis of C. reinhardtii before, during, and after photobiological hydrogen production under sulfur deprivation. PMID:18708561

  17. The family of DOF transcription factors: from green unicellular algae to vascular plants.

    PubMed

    Moreno-Risueno, Miguel Angel; Martínez, Manuel; Vicente-Carbajosa, Jesús; Carbonero, Pilar

    2007-04-01

    This article deals with the origin and evolution of the DOF transcription factor family through a phylogenetic analysis of those DOF sequences identified from a variety of representative organisms from different taxonomic groups: the green unicellular alga Chlamydomonas reinhardtii, the moss Physcomitrella patens, the fern Selaginella moellendorffii, the gymnosperm Pinus taeda, the dicotyledoneous Arabidopsis thaliana and the monocotyledoneous angiosperms Oryza sativa and Hordeum vulgare. In barley, we have identified 26 different DOF genes by sequence analyses of clones isolated from the screening of genomic libraries and of ESTs, whereas a single DOF gene was identified by bioinformatics searches in the Chlamydomonas genome. The phylogenetic analysis groups all these genes into six major clusters of orthologs originated from a primary basal grade. Our results suggest that duplications of an ancestral DOF, probably formed in the photosynthetic eukaryotic ancestor, followed by subsequent neo-, sub-functionalization and pseudogenization processes would have triggered the expansion of the DOF family. Loss, acquisition and shuffling of conserved motifs among the new DOFs likely underlie the mechanism of formation of the distinct subfamilies.

  18. Integration of carbon assimilation modes with photosynthetic light capture in the green alga Chlamydomonas reinhardtii.

    PubMed

    Berger, Hanna; Blifernez-Klassen, Olga; Ballottari, Matteo; Bassi, Roberto; Wobbe, Lutz; Kruse, Olaf

    2014-10-01

    The unicellular green alga Chlamydomonas reinhardtii is capable of using organic and inorganic carbon sources simultaneously, which requires the adjustment of photosynthetic activity to the prevailing mode of carbon assimilation. We obtained novel insights into the regulation of light-harvesting at photosystem II (PSII) following altered carbon source availability. In C. reinhardtii, synthesis of PSII-associated light-harvesting proteins (LHCBMs) is controlled by the cytosolic RNA-binding protein NAB1, which represses translation of particular LHCBM isoform transcripts. This mechanism is fine-tuned via regulation of the nuclear NAB1 promoter, which is activated when linear photosynthetic electron flow is restricted by CO(2)-limitation in a photoheterotrophic context. In the wild-type, accumulation of NAB1 reduces the functional PSII antenna size, thus preventing a harmful overexcited state of PSII, as observed in a NAB1-less mutant. We further demonstrate that translation control as a newly identified long-term response to prolonged CO(2)-limitation replaces LHCII state transitions as a fast response to PSII over-excitation. Intriguingly, activation of the long-term response is perturbed in state transition mutant stt7, suggesting a regulatory link between the long- and short-term response. We depict a regulatory circuit operating on distinct timescales and in different cellular compartments to fine-tune light-harvesting in photoheterotrophic eukaryotes.

  19. Occurrence of Only One Form of Glutamine Synthetase in the Green Alga Monoraphidium braunii.

    PubMed Central

    Garcia-Fernandez, J. M.; Lopez-Ruiz, A.; Toribio, F.; Roldan, J. M.; Diez, J.

    1994-01-01

    Anion-exchange chromatography of crude extracts from the green alga Monoraphidium braunii yielded two glutamine synthetase (GS) activities. The ratio of activities was markedly different when crude extracts were subjected to various processing conditions but was not influenced by environmental factors of cell cultures. However, high performance liquid chromatography anion-exchange chromatograms showed only one GS if the crude extracts were processed immediately after cell disruption. Moreover, standard chromatography of crude extracts obtained in the absence of dithioerythritol, a reductant generally used in disruption buffers, yielded a single activity peak. Enzyme samples from the two activities obtained in the presence of dithioerythritol were purified for physicochemical characterization and antibody production. Both enzyme samples exhibited similar reactions to different inactivating agents and were undistinguishable by size-exclusion chromatography and native polyacrylamide gel electrophoresis. Additionally, the two GS preparations showed absolute antigenic identity as demonstrated by immunodiffusion and immunoblotting experiments. Immunocytochemistry of M. braunii cryosections evidenced a chloroplast-specific distribution of the enzyme, which rules out the existence of a cytoplasmic counterpart. All these results support the proposal that M. braunii possesses only one form of GS. PMID:12232093

  20. A novel alphaproteobacterial ectosymbiont promotes the growth of the hydrocarbon-rich green alga Botryococcus braunii

    PubMed Central

    Tanabe, Yuuhiko; Okazaki, Yusuke; Yoshida, Masaki; Matsuura, Hiroshi; Kai, Atsushi; Shiratori, Takashi; Ishida, Ken-ichiro; Nakano, Shin-ichi; Watanabe, Makoto M.

    2015-01-01

    Botryococcus braunii is a colony-forming green alga that accumulates large amounts of liquid hydrocarbons within the colony. The utilization of B. braunii for biofuel production is however hindered by its low biomass productivity. Here we describe a novel bacterial ectosymbiont (BOTRYCO-2) that confers higher biomass productivity to B. braunii. 16S rDNA analysis indicated that the sequence of BOTRYCO-2 shows low similarity (<90%) to cultured bacterial species and located BOTRYCO-2 within a phylogenetic lineage consisting of uncultured alphaproteobacterial clones. Fluorescence in situ hybridization (FISH) studies and transmission electric microscopy indicated that BOTRYCO-2 is closely associated with B. braunii colonies. Interestingly, FISH analysis of a water bloom sample also found BOTRYCO-2 bacteria in close association with cyanobacterium Microcystis aeruginosa colonies, suggesting that BOTRYCO-2 relatives have high affinity to phytoplankton colonies. A PCR survey of algal bloom samples revealed that the BOTRYCO-2 lineage is commonly found in Microcystis associated blooms. Growth experiments indicated that B. braunii Ba10 can grow faster and has a higher biomass (1.8-fold) and hydrocarbon (1.5-fold) yield in the presence of BOTRYCO-2. Additionally, BOTRYCO-2 conferred a higher biomass yield to BOT-22, one of the fastest growing strains of B. braunii. We propose the species name ‘Candidatus Phycosocius bacilliformis’ for BOTRYCO-2. PMID:26130609

  1. Active hydrocarbon biosynthesis and accumulation in a green alga, Botryococcus braunii (race A).

    PubMed

    Hirose, Mana; Mukaida, Fukiko; Okada, Sigeru; Noguchi, Tetsuko

    2013-08-01

    Among oleaginous microalgae, the colonial green alga Botryococcus braunii accumulates especially large quantities of hydrocarbons. This accumulation may be achieved more by storage of lipids in the extracellular space rather than in the cytoplasm, as is the case for all other examined oleaginous microalgae. The stage of hydrocarbon synthesis during the cell cycle was determined by autoradiography. The cell cycle of B. braunii race A was synchronized by aminouracil treatment, and cells were taken at various stages in the cell cycle and cultured in a medium containing [(14)C]acetate. Incorporation of (14)C into hydrocarbons was detected. The highest labeling occurred just after septum formation, when it was about 2.6 times the rate during interphase. Fluorescent and electron microscopy revealed that new lipid accumulation on the cell surface occurred during at least two different growth stages and sites of cells. Lipid bodies in the cytoplasm were not prominent in interphase cells. These lipid bodies then increased in number, size, and inclusions, reaching maximum values just before the first lipid accumulation on the cell surface at the cell apex. Most of them disappeared from the cytoplasm concomitant with the second new accumulation at the basolateral region, where extracellular lipids continuously accumulated. The rough endoplasmic reticulum near the plasma membrane is prominent in B. braunii, and the endoplasmic reticulum was often in contact with both a chloroplast and lipid bodies in cells with increasing numbers of lipid bodies. We discuss the transport pathway of precursors of extracellular hydrocarbons in race A.

  2. Horizontal Gene Transfer of Phytochelatin Synthases from Bacteria to Extremophilic Green Algae.

    PubMed

    Olsson, Sanna; Penacho, Vanessa; Puente-Sánchez, Fernando; Díaz, Silvia; Gonzalez-Pastor, José Eduardo; Aguilera, Angeles

    2017-01-01

    Transcriptomic sequencing together with bioinformatic analyses and an automated annotation process led us to identify novel phytochelatin synthase (PCS) genes from two extremophilic green algae (Chlamydomonas acidophila and Dunaliella acidophila). These genes are of intermediate length compared to known PCS genes from eukaryotes and PCS-like genes from prokaryotes. A detailed phylogenetic analysis gives new insight into the complicated evolutionary history of PCS genes and provides evidence for multiple horizontal gene transfer events from bacteria to eukaryotes within the gene family. A separate subgroup containing PCS-like genes within the PCS gene family is not supported since the PCS genes are monophyletic only when the PCS-like genes are included. The presence and functionality of the novel genes in the organisms were verified by genomic sequencing and qRT-PCR. Furthermore, the novel PCS gene in Chlamydomonas acidophila showed very strong induction by cadmium. Cloning and expression of the gene in Escherichia coli clearly improves its cadmium resistance. The gene in Dunaliella was not induced, most likely due to gene duplication.

  3. Comparison of the Photosynthetic Yield of Cyanobacteria and Green Algae: Different Methods Give Different Answers

    PubMed Central

    Schuurmans, R. Milou; van Alphen, Pascal; Schuurmans, J. Merijn; Matthijs, Hans C. P.; Hellingwerf, Klaas J.

    2015-01-01

    The societal importance of renewable carbon-based commodities and energy carriers has elicited a particular interest for high performance phototrophic microorganisms. Selection of optimal strains is often based on direct comparison under laboratory conditions of maximal growth rate or additional valued features such as lipid content. Instead of reporting growth rate in culture, estimation of photosynthetic efficiency (quantum yield of PSII) by pulse-amplitude modulated (PAM) fluorimetry is an often applied alternative method. Here we compared the quantum yield of PSII and the photonic yield on biomass for the green alga Chlorella sorokiniana 211-8K and the cyanobacterium Synechocystis sp. PCC 6803. Our data demonstrate that the PAM technique inherently underestimates the photosynthetic efficiency of cyanobacteria by rendering a high F0 and a low FM, specifically after the commonly practiced dark pre-incubation before a yield measurement. Yet when comparing the calculated biomass yield on light in continuous culture experiments, we obtained nearly equal values for both species. Using mutants of Synechocystis sp. PCC 6803, we analyzed the factors that compromise its PAM-based quantum yield measurements. We will discuss the role of dark respiratory activity, fluorescence emission from the phycobilisomes, and the Mehler-like reaction. Based on the above observations we recommend that PAM measurements in cyanobacteria are interpreted only qualitatively. PMID:26394153

  4. Phycobilisomes from blue-green and red algae: isolation criteria and dissociation characteristics.

    PubMed

    Gantt, E; Lipschultz, C A; Grabowski, J; Zimmerman, B K

    1979-04-01

    A general procedure for the isolation of functionally intact phycobilisomes was devised, based on modifications of previously used procedures. It has been successful with numerous species of red and blue-green algae (Anabaena variabilis, Anacystis nidulans, Agmenellum quadruplicatum, Fremyella diplosiphon, Glaucosphaera vacuolata, Griffithsia pacifica, Nemalion multifidum, Nostoc sp., Phormidium persicinum, Porphyridium cruentum, P. sordidum, P. aerugineum, Rhodosorus marinus). Isolation was carried out in 0.75 molar K-phosphate (pH 6.8 to 7.0) at 20 to 23 C on sucrose step gradients. Lower temperature (4 to 10 C) was usually unfavorable resulting in uncoupling of energy transfer and partial dissociation of the phycobilisomes, sometimes with complete loss of allophycocyanin. Intact phycobilisomes were characterized by fluorescence emission peaks of 670 to 675 nanometers at room temperature, and 678 to 685 nanometers at liquid nitrogen temperature. Uncoupling and subsequent dissociation of phycobilisomes, in lowered ionic conditions, varied with the species and the degree of dissociation but occurred preferentially between phycocyanin and allophycocyanin, or between phycocyanin and phycoerythrin.

  5. Genome-wide characterization of genetic variation in the unicellular, green alga Chlamydomonas reinhardtii.

    PubMed

    Jang, Hyosik; Ehrenreich, Ian M

    2012-01-01

    Chlamydomonas reinhardtii is a model system for studying cilia, photosynthesis, and other core features of eukaryotes, and is also an emerging source of biofuels. Despite its importance to basic and applied biological research, the level and pattern of genetic variation in this haploid green alga has yet to be characterized on a genome-wide scale. To improve understanding of C. reinhardtii's genetic variability, we generated low coverage whole genome resequencing data for nearly all of the available isolates of this species, which were sampled from a number of sites in North America over the past ∼70 years. Based on the analysis of more than 62,000 single nucleotide polymorphisms, we identified two groups of isolates that represent geographical subpopulations of the species. We also found that measurements of genetic diversity were highly variable throughout the genome, in part due to technical factors. We studied the level and pattern of linkage disequilibrium (LD), and observed one chromosome that exhibits elevated LD. Furthermore, we detected widespread evidence of recombination across the genome, which implies that outcrossing occurs in natural populations of this species. In summary, our study provides multiple insights into the sequence diversity of C. reinhardtii that will be useful to future studies of natural genetic variation in this organism.

  6. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.

    PubMed

    Salinas, Thalia; Larosa, Véronique; Cardol, Pierre; Maréchal-Drouard, Laurence; Remacle, Claire

    2014-05-01

    Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes.

  7. Distinctive architecture of the chloroplast genome in the chlorophycean green alga Stigeoclonium helveticum.

    PubMed

    Bélanger, Anne-Sophie; Brouard, Jean-Simon; Charlebois, Patrick; Otis, Christian; Lemieux, Claude; Turmel, Monique

    2006-11-01

    The chloroplast genome has experienced many architectural changes during the evolution of chlorophyte green algae, with the class Chlorophyceae displaying the lowest degree of ancestral traits. We have previously shown that the completely sequenced chloroplast DNAs (cpDNAs) of Chamydomonas reinhardtii (Chlamydomonadales) and Scenedesmus obliquus (Sphaeropleales) are highly scrambled in gene order relative to one another. Here, we report the complete cpDNA sequence of Stigeoclonium helveticum (Chaetophorales), a member of a third chlorophycean lineage. This genome, which encodes 97 genes and contains 21 introns (including four putatively trans-spliced group II introns inserted at novel sites), is remarkably rich in derived features and extremely rearranged relative to its chlorophycean counterparts. At 223,902 bp, Stigeoclonium cpDNA is the largest chloroplast genome sequenced thus far, and in contrast to those of Chlamydomonas and Scenedesmus, features no large inverted repeat. Interestingly, the pattern of gene distribution between the DNA strands and the bias in base composition along each strand suggest that the Stigeoclonium genome replicates bidirectionally from a single origin. Unlike most known trans-spliced group II introns, those of Stigeoclonium exhibit breaks in domains I and II. By placing our comparative genome analyses in a phylogenetic framework, we inferred an evolutionary scenario of the mutational events that led to changes in genome architecture in the Chlorophyceae.

  8. Health benefits of blue-green algae: prevention of cardiovascular disease and nonalcoholic fatty liver disease.

    PubMed

    Ku, Chai Siah; Yang, Yue; Park, Youngki; Lee, Jiyoung

    2013-02-01

    Blue-green algae (BGA) are among the most primitive life forms on earth and have been consumed as food or medicine by humans for centuries. BGA contain various bioactive components, such as phycocyanin, carotenoids, γ-linolenic acid, fibers, and plant sterols, which can promote optimal health in humans. Studies have demonstrated that several BGA species or their active components have plasma total cholesterol and triglyceride-lowering properties due to their modulation of intestinal cholesterol absorption and hepatic lipogenic gene expression. BGA can also reduce inflammation by inhibiting the nuclear factor κ B activity, consequently reducing the production of proinflammatory cytokines. Furthermore, BGA inhibit lipid peroxidation and have free radical scavenging activity, which can be beneficial for the protection against oxidative stress. The aforementioned effects of BGA can contribute to the prevention of metabolic and inflammatory diseases. This review provides an overview of the current knowledge of the health-promoting functions of BGA against cardiovascular disease and nonalcoholic fatty liver disease, which are major health threats in the developed countries.

  9. Characterization of Hydrogen Metabolism in the Multicellular Green Alga Volvox carteri

    DOE PAGES

    Cornish, Adam J.; Green, Robin; Gärtner, Katrin; ...

    2015-04-30

    Hydrogen gas functions as a key component in the metabolism of a wide variety of microorganisms, often acting as either a fermentative end-product or an energy source. The number of organisms reported to utilize hydrogen continues to grow, contributing to and expanding our knowledge of biological hydrogen processes. Here we demonstrate that Volvox carteri f. nagariensis, a multicellular green alga with differentiated cells, evolves H2 both when supplied with an abiotic electron donor and under physiological conditions. The genome of Volvox carteri contains two genes encoding putative [FeFe]-hydrogenases (HYDA1 and HYDA2), and the transcripts for these genes accumulate under anaerobicmore » conditions. The HYDA1 and HYDA2 gene products were cloned, expressed, and purified, and both are functional [FeFe]-hydrogenases. Additionally, within the genome the HYDA1 and HYDA2 genes cluster with two putative genes which encode hydrogenase maturation proteins. This gene cluster resembles operon-like structures found within bacterial genomes and may provide further insight into evolutionary relationships between bacterial and algal [FeFe]-hydrogenase genes.« less

  10. Kinetic flux profiling dissects nitrogen utilization pathways in the oleaginous green alga Chlorella protothecoides.

    PubMed

    Wu, Chao; Xiong, Wei; Dai, Junbiao; Wu, Qingyu

    2016-02-01

    As a promising candidate for biodiesel production, the green alga Chlorella protothecoides can efficiently produce oleaginous biomass and the lipid biosynthesis is greatly influenced by the availability of nitrogen source and corresponding nitrogen assimilation pathways. Based on isotope-assisted kinetic flux profiling (KFP), the fluxes through the nitrogen utilization pathway were quantitatively analyzed. We found that autotrophic C. protothecoides cells absorbed ammonium mainly through glutamate dehydrogenase (GDH), and partially through glutamine synthetase (GS), which was the rate-limiting enzyme of nitrogen assimilation process with rare metabolic activity of glutamine oxoglutarate aminotransferase (GOGAT, also known as glutamate synthase); whereas under heterotrophic conditions, the cells adapted to GS-GOGAT cycle for nitrogen assimilation in which GS reaction rate was associated with GOGAT activity. The fact that C. protothecoides chooses the adenosine triphosphate-free and less ammonium-affinity GDH pathway, or alternatively the energy-consuming GS-GOGAT cycle with high ammonium affinity for nitrogen assimilation, highlights the metabolic adaptability of C. protothecoides exposed to altered nitrogen conditions.

  11. F-actin reorganization upon de- and rehydration in the aeroterrestrial green alga Klebsormidium crenulatum.

    PubMed

    Blaas, Kathrin; Holzinger, Andreas

    2017-03-21

    Filamentous actin (F-actin) is a dynamic network involved in many cellular processes like cell division and cytoplasmic streaming. While many studies have addressed the involvement of F-actin in different cellular processes in cultured cells, little is known on the reactions to environmental stress scenarios, where this system might have essential regulatory functions. We investigated here the de- and rehydration kinetics of breakdown and reassembly of F-actin in the streptophyte green alga Klebsormidium crenulatum. Measurements of the chlorophyll fluorescence (effective quantum yield of photosystem II [ΔF/Fm']) via pulse amplitude modulation were performed as a measure for dehydration induced shut down of physiological activity, which ceased after 141±15min at ∼84% RH. We hypothesized that there is a link between this physiological parameter and the status of the F-actin system. Indeed, 20min of dehydration (ΔF/Fm'=0) leads to a breakdown of the fine cortical F-actin network as visualized by Atto 488 phalloidin staining, and dot-like structures remained. Already 10min after rehydration a beginning reassembly of F-actin is observed, after 25min the F-actin network appeared similar to untreated controls, indicating a full recovery. These results demonstrate the fast kinetics of F-actin dis- and reassembly likely contributing to cellular reorganization upon rehydration.

  12. Convoluted Plasma Membrane Domains in the Green Alga Chara are Depleted of Microtubules and Actin Filaments

    PubMed Central

    Sommer, Aniela; Hoeftberger, Margit; Hoepflinger, Marion C.; Schmalbrock, Sarah; Bulychev, Alexander; Foissner, Ilse

    2015-01-01

    Charasomes are convoluted plasma membrane domains in the green alga Chara australis. They harbor H+-ATPases involved in acidification of the medium, which facilitates carbon uptake required for photosynthesis. In this study we investigated the distribution of cortical microtubules and cortical actin filaments in relation to the distribution of charasomes. We found that microtubules and actin filaments were largely lacking beneath the charasomes, suggesting the absence of nucleating and/or anchoring complexes or an inhibitory effect on polymerization. We also investigated the influence of cytoskeleton inhibitors on the light-dependent growth and the darkness-induced degradation of charasomes. Inhibition of cytoplasmic streaming by cytochalasin D significantly inhibited charasome growth and delayed charasome degradation, whereas depolymerization of microtubules by oryzalin or stabilization of microtubules by paclitaxel had no effect. Our data indicate that the membrane at the cytoplasmic surface of charasomes has different properties in comparison with the smooth plasma membrane. We show further that the actin cytoskeleton is necessary for charasome growth and facilitates charasome degradation presumably via trafficking of secretory and endocytic vesicles, respectively. However, microtubules are required neither for charasome growth nor for charasome degradation. PMID:26272553

  13. High Yields of Hydrogen Production Induced by Meta-Substituted Dichlorophenols Biodegradation from the Green Alga Scenedesmus obliquus

    PubMed Central

    Papazi, Aikaterini; Andronis, Efthimios; Ioannidis, Nikolaos E.; Chaniotakis, Nikolaos; Kotzabasis, Kiriakos

    2012-01-01

    Hydrogen is a highly promising energy source with important social and economic implications. The ability of green algae to produce photosynthetic hydrogen under anaerobic conditions has been known for years. However, until today the yield of production has been very low, limiting an industrial scale use. In the present paper, 73 years after the first report on H2-production from green algae, we present a combinational biological system where the biodegradation procedure of one meta-substituted dichlorophenol (m-dcp) is the key element for maintaining continuous and high rate H2-production (>100 times higher than previously reported) in chloroplasts and mitochondria of the green alga Scenedesmus obliquus. In particular, we report that reduced m-dcps (biodegradation intermediates) mimic endogenous electron and proton carriers in chloroplasts and mitochondria, inhibit Photosystem II (PSII) activity (and therefore O2 production) and enhance Photosystem I (PSI) and hydrogenase activity. In addition, we show that there are some indications for hydrogen production from sources other than chloroplasts in Scenedesmus obliquus. The regulation of these multistage and highly evolved redox pathways leads to high yields of hydrogen production and paves the way for an efficient application to industrial scale use, utilizing simple energy sources and one meta-substituted dichlorophenol as regulating elements. PMID:23145057

  14. Toluhydroquinone, the secondary metabolite of marine algae symbiotic microorganism, inhibits angiogenesis in HUVECs.

    PubMed

    Kim, Nan-Hee; Jung, Hyun-Il; Choi, Woo-Suk; Son, Byeng-Wha; Seo, Yong-Bae; Choi, Jae Sue; Kim, Gun-Do

    2015-03-01

    Angiogenesis, the growth of new blood vessels from the existing ones, occurs during embryo development and wound healing. However, most malignant tumors require angiogenesis for their growth and metastasis as well. Therefore, inhibition of angiogenesis has been focused as a new strategy of cancer therapies. To treat cancer, there are marine microorganism-derived secondary metabolites developed as chemotherapeutic agents. In this study, we used toluhydroquinone (2-methyl-1,4-hydroquinone), one of the secondary metabolites isolated from marine algae symbiotic fungus, Aspergillus sp. We examined the effects of toluhydroquinone on angiogenesis using HUVECs. We identified that toluhydroquinone inhibited the activity of β-catenin and down-regulated Ras/Raf/MEK/ERK signaling which are crucial components during angiogenesis. In addition, the expression and activity of MMPs are reduced by the treatment of toluhydroquinone. In conclusion, we confirmed that toluhydroquinone has inhibitory effects on angiogenic behaviors of human endothelial cells, HUVECs. Our findings suggest that toluhydroquinone can be proposed as a potent anti-angiogenesis drug candidate to treat cancers.

  15. The effect of bloom of filamentous green algae on the reproduction of yellowfin sculpin Cottocomephorus grewingkii (Dybowski, 1874) (Cottoidae) during ecological crisis in Lake Baikal.

    PubMed

    Khanaev, I V; Dzyuba, E V; Kravtsova, L S; Grachev, M A

    2016-03-01

    In shallow water areas of open Lake Baikal, filamentous green alga of the genus Spirogyra grows abundantly. Together with alga of the genus Ulothrix, it forms algal mats. According to our observations from 2010 to 2013, the spawning habitat conditions for the yellowfin sculpin Cottocomephorus grewingkii (Dybowski, 1874) (Cottidae) proved to be significantly disturbed in the littoral zone of Listvennichnyi Bay (southern Baikal), which, in turn, reduced the number of egg layings. With a 100% projective cover of the floor and a high density of green filamentous algae, the shallow-water stony substrate becomes completely inaccessible for spawning of the August population.

  16. Drifting trajectories of green algae in the western Yellow Sea during the spring and summer of 2012

    NASA Astrophysics Data System (ADS)

    Bao, Min; Guan, Weibing; Yang, Yang; Cao, Zhenyi; Chen, Qi

    2015-09-01

    The northward drift of green algae (Ulva prolifera) from Subei Shoal in the western Yellow Sea, China, during the spring and summer of 2012, was investigated using satellite data and numerical modeling. Past studies have suggested that the green algae, documented offshore of Shandong province since 2007, originate in Subei Shoal region of the Yellow Sea. To test this hypothesis, drift bottles and satellite-tracked surface drifters were released from Subei Shoal and used to investigate the trajectories of green algae. Subei Shoal is characterized by complex bathymetry such as broad tidal flats and radial sand ridges. To identify processes that drive drift of the green algae around the shoal, a coastal ocean model based on the Finite Volume Coastal Ocean Model (FVCOM) was used. This model is forced by tides and surface winds, and has sufficient resolution to include tidal flats and sand ridges during both wetting and drying. The results of numerical experiments indicated that sand ridges limit the trajectory of particles. Without wind, particles scattered from their initial positions displayed a tendency to move northward, but were unable to move out of Subei Shoal. When a southerly wind was introduced to the model, particles traveled further north, out of the shallow waters. After leaving Subei Shoal, drifters remained limited by tide and topography until reaching 34°30.0‧N. North of 34°30.0‧N, 33% of the trajectory vectors can be explained by Ekman theory, and the remainder are probably controlled by the strong baroclinic processes in this area. For the six surface-following drifters deployed, the mean drift speed was 11.1 cm s-1 (288.8 km month-1), close to the speed observed for patches of U. prolifera. Numerical models and the results from drifter bottles demonstrated that green algae could leave Subei Shoal, but only when aided by a southerly wind. Satellite-tracked drifters provided strong evidence that if floating particles do leave Subei Shoal, they

  17. Acid water interferes with salamander-green algae symbiosis during early embryonic development.

    PubMed

    Bianchini, Kristin; Tattersall, Glenn J; Sashaw, Jessica; Porteus, Cosima S; Wright, Patricia A

    2012-01-01

    The inner egg capsule of embryos of the yellow-spotted salamander (Ambystoma maculatum) are routinely colonized by green algae, such as Oophila amblystomatis, that supply O(2) in the presence of light and may consume nitrogenous wastes, forming what has been proposed to be a mutualistic relationship. Given that A. maculatum have been reported to breed in acidic (pH <5.0) and neutral lakes, we hypothesized that low water pH would negatively affect these symbiotic organisms and alter the gradients within the jelly mass. Oxygen gradients were detected within jelly masses measured directly in a natural breeding pond (pH 4.5-4.8) at midday in full sunlight. In the lab, embryo jelly masses reared continuously at pH 4.5 had lower P(O)₂and higher ammonia levels relative to jelly masses held at pH 8.0 (control). Ammonia and lactate concentrations in embryonic tissues were approximately 37%-93% higher, respectively, in embryos reared at water pH 4.5 compared with pH 8.0. Mass was also reduced in embryos reared at pH 4.5 versus pH 8.0. In addition, light conditions (24 h light, 12L : 12D, or 24 h dark) and embryonic position (periphery vs. center) in the jelly mass affected P(O)₂but not ammonia gradients, suggesting that algal symbionts generate O(2) but do not significantly impact local ammonia concentrations, regardless of the pH of the water. We conclude that chronic exposure to acidic breeding ponds had a profound effect on the microenvironment of developing A. maculatum embryos, which in turn resulted in an elevation of potentially harmful metabolic end products and inhibited growth. Under acidic conditions, the expected benefit provided by the algae to the salamander embryo (i.e., high O(2) and low ammonia microenvironment) is compromised, suggesting that the A. maculatum-algal mutualism is beneficial to salamanders only at higher water pH values.

  18. The effect of sulfide on the blue-green algae of hot springs II. Yellowstone National Park.

    PubMed

    Castenholz, R W

    1977-06-01

    In the Mammoth Springs (Yellowstone National Park) waters with near neutral pH and soluble sulfide (H2S, HS(-), S(2-)) of over 1-2 mg/liter (30-60ΜM) are characterized by substrate covers of phototrophic bacteria (Chloroflexus and aChlorobium-like unicell) above 50‡C and by a blue-green alga (Spirulina labyrinthiformis) below this temperature.Synechococcus. Mastigocladus, and other blue-green algae typical of most hot springs of western North America are excluded, apparently by sulfide. The sulfide-adaptedSpirulina photosynthesized at maximum rates at 45‡C and at approximately 300 to 700ΜEin/m(2)/sec of "visible" radiation. Sulfide (0.6-1.2 mM) severely poisoned photosynthesis of nonadapted populations, but those continuously exposed to over 30ΜM tolerated at least 1 mM without inhibition. A normal(14)C-HCO3 photoincorporation rate was sustained with 0.6-1 mM sulfide in the presence of DCMU (7ΜM) or NH2OH (0.2 mM), although both of these photosystem II inhibitors prevented photoincorporation without sulfide. Other sulfur-containing compounds (S2O3 (2-) SO3 (2-), S2O4 (2-) thioglycolic acid cysteine) were unable to relieve DCMU inhibition. The lowering of the photoincorporation rate by preferentially irradiating photosystem I was also relieved by sulfide. The most tenable explanation of these results is that sulfide is used as a photo-reductant of CO2, at least when photosystem II is inhibited. It is suggested that in some blue-green algae photosystem II is poisoned by a low sulfide concentration, thus making these algae sulfidedependent if they are to continue photosynthesizing in a sulfide environment. Presumably a sulfidecytochrome reductase enzyme system must be synthesized for sulfide to be used as a photo-reductant.

  19. Light-modulated NADP-malate dehydrogenases from mossfern and green algae: insights into evolution of the enzyme's regulation.

    PubMed

    Ocheretina, O; Haferkamp, I; Tellioglu, H; Scheibe, R

    2000-11-27

    Chloroplast NADP-dependent malate dehydrogenase is one of the best-studied light-regulated enzymes. In C3 plants, NADP-MDH is a part of the 'malate valve' that controls the export of reducing equivalents in the form of malate to the cytosol. NADP-MDH is completely inactive in the dark and is activated in the light with reduced thioredoxin. Compared with its permanently active NAD-linked counterparts, NADP-MDH exhibits N- and C-terminal sequence extensions, each bearing one regulatory disulphide. Upon reduction of the C-terminal disulphide, the enzyme active site becomes accessible for the substrate. Reduction of the N-terminal disulphide promotes a conformational change advantageous for catalysis. To trace the evolutionary development of this intricate regulation mechanism, we isolated cDNA clones for NADP-MDH from the mossfern Selaginella and from two unicellular green algae. While the NADP-MDH sequence from Selaginella demonstrates the classic cysteine pattern of the higher plant enzyme, the sequences from the green algae are devoid of the N-terminal regulatory disulphide. Phylogenetic analysis of new sequences and of those available in the databases led to the conclusion that the chloroplast NADP-MDH and the cytosolic NAD-dependent form arose via duplication of an ancestral eubacterial gene, which preceded the separation of plant and animal lineages. Redox-sensitive NADP-MDH activity was detected only in the 'green' plant lineage starting from the primitive prasinophytic algae but not in cyanobacteria, Cyanophora paradoxa, red algae and diatoms. The latter organisms therefore appear to utilize mechanisms other than the light-regulated 'malate valve' to remove from plastids excessive electrons produced by photosynthesis.

  20. Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae.

    PubMed

    Dao, Ly H T; Beardall, John

    2016-03-01

    In the natural environment, heavy metal contamination can occur as long-term pollution of sites or as pulses of pollutants from wastewater disposal. In this study two freshwater green algae, Chlorella sp. FleB1 and Scenedesmus YaA6, were isolated from lead-polluted water samples and the effects of 24 h vs 4 and 8 d exposure of cultures to lead on growth, photosynthetic physiology and production of reactive oxygen species (ROS) of these algae were investigated. In Chlorella sp. FleB1, there was agreement between lead impacts on chlorophyll content, photosynthesis and growth in most case. However, in Scenedesmus acutus YaA6 growth was inhibited at lower lead concentrations (0.03-0.87 × 10(-9) M), under which ROS, measured by 2',7' dichlorodihydrofluorescein diacetate fluorescence, were 4.5 fold higher than in controls but photosynthesis was not affected, implying that ROS had played a role in the growth inhibition that did not involve direct effects on photosynthesis. Effects of short-term (5 h, 24 h) vs long-term (4 d and 8 d) exposure to lead were also compared between the two algae. The results contribute to our understanding of the mechanisms of lead toxicity to algae.

  1. Effect propagation in a toxicokinetic/toxicodynamic model explains delayed effects on the growth of unicellular green algae Scenedesmus vacuolatus.

    PubMed

    Vogs, Carolina; Bandow, Nicole; Altenburger, Rolf

    2013-04-01

    Ecotoxicological standard tests assess toxic effects by exposing an organism to high concentrations over defined periods of time. To evaluate toxicity under field conditions such as fluctuating and pulsed exposures, process-based toxicokinetic/toxicodynamic (TK/TD) models may be used for extrapolation from the existing evidence. A TK/TD model was developed that simulates the effect on growth of the green algae Scenedesmus vacuolatus continuously exposed to the model chemicals norflurazon, triclosan, and N-phenyl-2-naphthylamine. A pharmacological time-response model describing the effects of anticancer treatments on cancer cell growth was adapted and modified to model the affected growth of synchronized algae cells. The TK/TD model simulates the temporal effect course by linking the ambient concentration of a chemical to the observable adverse effect via an internal concentration and a sequence of biological events in the organism. The parameters of the toxicodynamic model are related to the growth characteristics of algae cells, a no effect concentration, the chemical efficacy as well as the ability of recovery and repair, and the delay during damage propagation. The TK/TD model fits well to the observed algae growth. The effect propagation through cumulative cell damage explained the observed delayed responses better than just the toxicokinetics. The TK/TD model could facilitate the link between several effect levels within damage propagation, which prospectively may be helpful to model adverse outcome pathways and time-dependent mixture effects.

  2. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis.

    PubMed

    Zhang, Zhen; Wang, Baobei; Hu, Qiang; Sommerfeld, Milton; Li, Yuanguang; Han, Danxiang

    2016-10-01

    The unicellular green alga Haematococcus pluvialis has been exploited as a cell factory to produce the high-value antioxidant astaxanthin for over two decades, due to its superior ability to synthesize astaxanthin under adverse culture conditions. However, slow vegetative growth under favorable culture conditions and cell deterioration or death under stress conditions (e.g., high light, nitrogen starvation) has limited the astaxanthin production. In this study, a new paradigm that integrated heterotrophic cultivation, acclimation of heterotrophically grown cells to specific light/nutrient regimes, followed by induction of astaxanthin accumulation under photoautotrophic conditions was developed. First, the environmental conditions such as pH, carbon source, nitrogen regime, and light intensity, were optimized to induce astaxanthin accumulation in the dark-grown cells. Although moderate astaxanthin content (e.g., 1% of dry weight) and astaxanthin productivity (2.5 mg L(-1)  day(-1) ) were obtained under the optimized conditions, a considerable number of cells died off when subjected to stress for astaxanthin induction. To minimize the susceptibility of dark-grown cells to light stress, the algal cells were acclimated, prior to light induction of astaxanthin biosynthesis, under moderate illumination in the presence of nitrogen. Introduction of this strategy significantly reduced the cell mortality rate under high-light and resulted in increased cellular astaxanthin content and astaxanthin productivity. The productivity of astaxanthin was further improved to 10.5 mg L(-1)  day(-1) by implementation of such a strategy in a bubbling column photobioreactor. Biochemical and physiological analyses suggested that rebuilding of photosynthetic apparatus including D1 protein and PsbO, and recovery of PSII activities, are essential for acclimation of dark-grown cells under photo-induction conditions. Biotechnol. Bioeng. 2016;113: 2088-2099. © 2016 The Authors

  3. Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements.

    PubMed Central

    Gilroy, D J; Kauffman, K W; Hall, R A; Huang, X; Chu, F S

    2000-01-01

    The presence of blue-green algae (BGA) toxins in surface waters used for drinking water sources and recreation is receiving increasing attention around the world as a public health concern. However, potential risks from exposure to these toxins in contaminated health food products that contain BGA have been largely ignored. BGA products are commonly consumed in the United States, Canada, and Europe for their putative beneficial effects, including increased energy and elevated mood. Many of these products contain Aphanizomenon flos-aquae, a BGA that is harvested from Upper Klamath Lake (UKL) in southern Oregon, where the growth of a toxic BGA, Microcystis aeruginosa, is a regular occurrence. M. aeruginosa produces compounds called microcystins, which are potent hepatotoxins and probable tumor promoters. Because M. aeruginosa coexists with A. flos-aquae, it can be collected inadvertently during the harvesting process, resulting in microcystin contamination of BGA products. In fall 1996, the Oregon Health Division learned that UKL was experiencing an extensive M. aeruginosa bloom, and an advisory was issued recommending against water contact. The advisory prompted calls from consumers of BGA products, who expressed concern about possible contamination of these products with microcystins. In response, the Oregon Health Division and the Oregon Department of Agriculture established a regulatory limit of 1 microg/g for microcystins in BGA-containing products and tested BGA products for the presence of microcystins. Microcystins were detected in 85 of 87 samples tested, with 63 samples (72%) containing concentrations > 1 microg/g. HPLC and ELISA tentatively identified microcystin-LR, the most toxic microcystin variant, as the predominant congener. Images Figure 1 Figure 2 PMID:10811570

  4. The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda.

    PubMed

    Řezanka, Tomáš; Kaineder, Katrin; Mezricky, Dana; Řezanka, Michal; Bišová, Kateřina; Zachleder, Vilém; Vítová, Milada

    2016-12-01

    Lanthanides (La, Gd, Nd, Ce) accumulated in the green alga Desmodesmus quadricauda but their intracellular localizations were distinctly different: lanthanum and gadolinium were localized in cytoplasm, while neodymium and cerium were in the chloroplast. The effect of lanthanum and neodymium, as representatives of these two groups, on growth, chlorophyll content and photosynthetic rate at different light intensities was studied. At the lowest light intensity used (50 µmol photons m(-2) s(-1)), in the presence of lanthanides (Nd), growth was enhanced by as much as 36 % over lanthanide free control, and the photosynthetic rate increased by up to 300 %. At high light intensities (238, 460, and 750 µmol photons m(-2) s(-1)), photosynthetic rate increased markedly, but there was no significant difference between rates in the presence or absence of lanthanides. However, growth, measured as a percentage of dry weight, if compared with lanthanide free control, increased at all light intensities (31, 39, and 20 %, respectively). The total amount of chlorophyll after lanthanide treatment increased by up to 21 % relative to the control culture, mainly due to an increase in the level of chlorophyll b. Addition of lanthanides caused a change in the chlorophyll a/b ratio from 4.583 in control cultivation, to 1.05. Possible mechanisms of lanthanide-induced photosynthetic change, alterations in photosynthetic structures, and increases in growth are discussed and compared with findings in higher plants. The hypothesis that the lanthanide effect could be due to formation of lanthanide-pheophytins was not confirmed as lanthanide pheophytins were not found in D. quadricauda. Furthermore, we have shown that the preferential incorporation of heavy isotopes of magnesium, namely (25)Mg and (26)Mg, into chlorophyll during photosynthesis that occurred in controls was diminished in the presence of lanthanides.

  5. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation.

    PubMed

    Gomes, Tânia; Xie, Li; Brede, Dag; Lind, Ole-Christian; Solhaug, Knut Asbjørn; Salbu, Brit; Tollefsen, Knut Erik

    2017-02-01

    The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49-1677mGy/h) for 6h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H2DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report on changes in several chlorophyll fluorescence parameters associated with photosynthetic performance and ROS formation in microalgae after exposure to gamma radiation.

  6. Effects of chlorpyrifos on the growth and ultrastructure of green algae, Ankistrodesmus gracilis.

    PubMed

    Asselborn, Viviana; Fernández, Carolina; Zalocar, Yolanda; Parodi, Elisa R

    2015-10-01

    The effect of the organophosphorus insecticide chlorpyrifos on the growth, biovolume, and ultrastructure of the green microalga Ankistrodesmus gracilis was evaluated. Concentrations of 9.37, 18.75, 37.5, 75 and 150mgL(-1) of chlorpyrifos were assayed along with a control culture. At the end of the bioassay the ultrastructure of algal cells from control culture and from cultures exposed to 37.5 and 150mgL(-1) was observed under transmission (TEM) and scanning electron microscopy (SEM). After 24 and 48h, treatments with 75 and 150mgL(-1) inhibited the growth of A. gracilis; whereas after 72 and 96h, all the treatments except at 9.37mgL(-1) significantly affected the algae growth. The effective concentration 50 (EC50) after 96h was 22.44mgL(-1) of chlorpyrifos. After the exposure to the insecticide, an increase in the biovolume was observed, with a larger increase in cells exposed to 75 and 150mgL(-1). Radical changes were observed in the ultrastructure of cells exposed to chlorpyrifos. The insecticide affected the cell shape and the distribution of the crests in the wall. At 37.5mgL(-1) electodense bodies were observed along with an increase in the size and number of starch granules. At 150mgL(-1) such bodies occupied almost the whole cytoplasm together with lipids and remains of thylakoids. Autospores formation occurred normally at 37.5mgL(-1) while at 150mgL(-1) karyokinesis occurred, but cell-separation-phase was inhibited. The present study demonstrates that the exposure of phytoplankton to the insecticide chlorpyrifos leads to effects observed at both cellular and population level.

  7. Blue-Green Algae Inhibit the Development of Atherosclerotic Lesions in Apolipoprotein E Knockout Mice

    PubMed Central

    Ku, Chai Siah; Kim, Bohkyung; Pham, Tho X.; Yang, Yue; Wegner, Casey J.; Park, Young-Ki; Balunas, Marcy

    2015-01-01

    Abstract Hyperlipidemia and inflammation contribute to the development of atherosclerotic lesions. Our objective was to determine antiatherogenic effect of edible blue-green algae (BGA) species, that is, Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP), in apolipoprotein E knockout (ApoE−/−) mice, a well-established mouse model of atherosclerosis. Male ApoE−/− mice were fed a high-fat/high-cholesterol (HF/HC, 15% fat and 0.2% cholesterol by wt) control diet or a HF/HC diet supplemented with 5% (w/w) of NO or SP powder for 12 weeks. Plasma total cholesterol (TC) and triglycerides (TG) were measured, and livers were analyzed for histology and gene expression. Morphometric analysis for lesions and immunohistochemical analysis for CD68 were conducted in the aorta and the aortic root. NO supplementation significantly decreased plasma TC and TG, and liver TC, compared to control and SP groups. In the livers of NO-fed mice, less lipid droplets were present with a concomitant decrease in fatty acid synthase protein levels than the other groups. There was a significant increase in hepatic low-density lipoprotein receptor protein levels in SP-supplemented mice than in control and NO groups. Quantification of aortic lesions by en face analysis demonstrated that both NO and SP decreased aortic lesion development to a similar degree compared with control. While lesions in the aortic root were not significantly different between groups, the CD68-stained area in the aortic root was significantly lowered in BGA-fed mice than controls. In conclusion, both NO and SP supplementation decreased the development of atherosclerotic lesions, suggesting that they may be used as a natural product for atheroprotection. PMID:26566121

  8. A new paradigm for producing astaxanthin from the unicellular green alga Haematococcus pluvialis

    PubMed Central

    Zhang, Zhen; Wang, Baobei; Hu, Qiang; Sommerfeld, Milton

    2016-01-01

    ABSTRACT The unicellular green alga Haematococcus pluvialis has been exploited as a cell factory to produce the high‐value antioxidant astaxanthin for over two decades, due to its superior ability to synthesize astaxanthin under adverse culture conditions. However, slow vegetative growth under favorable culture conditions and cell deterioration or death under stress conditions (e.g., high light, nitrogen starvation) has limited the astaxanthin production. In this study, a new paradigm that integrated heterotrophic cultivation, acclimation of heterotrophically grown cells to specific light/nutrient regimes, followed by induction of astaxanthin accumulation under photoautotrophic conditions was developed. First, the environmental conditions such as pH, carbon source, nitrogen regime, and light intensity, were optimized to induce astaxanthin accumulation in the dark‐grown cells. Although moderate astaxanthin content (e.g., 1% of dry weight) and astaxanthin productivity (2.5 mg L−1 day−1) were obtained under the optimized conditions, a considerable number of cells died off when subjected to stress for astaxanthin induction. To minimize the susceptibility of dark‐grown cells to light stress, the algal cells were acclimated, prior to light induction of astaxanthin biosynthesis, under moderate illumination in the presence of nitrogen. Introduction of this strategy significantly reduced the cell mortality rate under high‐light and resulted in increased cellular astaxanthin content and astaxanthin productivity. The productivity of astaxanthin was further improved to 10.5 mg L−1 day−1 by implementation of such a strategy in a bubbling column photobioreactor. Biochemical and physiological analyses suggested that rebuilding of photosynthetic apparatus including D1 protein and PsbO, and recovery of PSII activities, are essential for acclimation of dark‐grown cells under photo‐induction conditions. Biotechnol. Bioeng. 2016;113: 2088–2099.

  9. Phragmoplast of the green alga Spirogyra is functionally distinct from the higher plant phragmoplast

    PubMed Central

    1995-01-01

    Cytokinesis in the green alga Spirogyra (Zygnemataceae) is characterized by centripetal growth of a septum, which impinges on a persistent, centrifugally expanding telophase spindle, leading to a phragmoplast-like structure of potential phylogenetic significance (Fowke, L. C., and J. D. Pickett-Heaps. 1969. J. Phycol. 5:273-281). Combining fluorescent tagging of the cytoskeleton in situ and video- enhanced differential interference contrast microscopy of live cells, the process of cytokinesis was investigated with emphasis on cytoskeletal reorganization and concomitant redistribution of organelles. Based on a sequence of cytoskeletal arrangements and the effects of cytoskeletal inhibitors thereon, cytokinetic progression could be divided into three functional stages with respect to the contribution of microfilaments (MFs) and microtubules (MTs): (1) Initiation: in early prophase, a cross wall initial was formed independently of MFs and MTs at the presumptive site of wall growth. (2) Septum ingrowth: numerous organelles accumulated at the cross wall initial concomitant with reorganization of the extensive peripheral interphase MF array into a distinct circumferential MF array. This array guided the ingrowing septum until it contacted the expanding interzonal MT array. (3) Cross wall closure: MFs at the growing edge of the septum coaligned with and extended along the interzonal MTs toward the daughter nuclei. Thus, actin-based transportation of small organelles during this third stage occurred, in part, along a scaffold previously deployed in space by MTs. Displacement of the nuclei- associated interzonal MT array by centrifugation and depolymerization of the phragmoplast-like structure showed that the success of cytokinesis at the third stage depends on the interaction of both MF and MT cytoskeletons. Important features of the phragmoplast-like structure in Spirogyra were different from the higher plant phragmoplast: in particular, MFs were responsible for the

  10. Colony organization in the green alga Botryococcus braunii is specified by a complex extracellular matrix

    DOE PAGES

    Weiss, Taylor L.; Roth, Robyn; Goodson, Carrie; ...

    2012-08-31

    Botryococcus braunii is a colonial green alga whose cells associate via a complex extracellular matrix (ECM) and produce prodigious amounts of liquid hydrocarbons that can be readily converted into conventional combustion engine fuels. We used quickfreeze deep-etch electron microscopy and biochemical/histochemical analysis to elucidate many new features of B. braunii cell/colony organization and composition. Intracellular lipid bodies associate with the chloroplast and endoplasmic reticulum (ER) but show no evidence of being secreted. The ER displays striking fenestrations and forms a continuous subcortical system in direct contact with the cell membrane. The ECM has three distinct components. (i) Each cell ismore » surrounded by a fibrous β-1, 4- and/or β-1, 3-glucan-containing cell wall. (ii) The intracolonial ECM space is filled with a cross-linked hydrocarbon network permeated with liquid hydrocarbons. (iii) Colonies are enclosed in a retaining wall festooned with a fibrillar sheath dominated by arabinose-galactose polysaccharides, which sequesters ECM liquid hydrocarbons. Each cell apex associates with the retaining wall and contributes to its synthesis. Retaining-wall domains also form "drapes" between cells, with some folding in on themselves and penetrating the hydrocarbon interior of a mother colony, partitioning it into daughter colonies. In addition, we propose that retaining-wall components are synthesized in the apical Golgi apparatus, delivered to apical ER fenestrations, and assembled on the surfaces of apical cell walls, where a proteinaceous granular layer apparently participates in fibril morphogenesis. We further propose that hydrocarbons are produced by the nonapical ER, directly delivered to the contiguous cell membrane, and pass across the nonapical cell wall into the hydrocarbon-based ECM.« less

  11. UV radiation-induced accumulation of photoprotective compounds in the green alga Tetraspora sp. CU2551.

    PubMed

    Rastogi, Rajesh P; Incharoensakdi, Aran

    2013-09-01

    The effect of UV radiation on the accumulation of novel mycosporine-like amino acids (MAAs) along with their photoprotective function was investigated in the green alga Tetraspora sp. CU2551. No UV-absorbing compound was detected in this organism growing under normal light condition while two MAAs with absorption maxima at 324 nm and 322 nm were found to be accumulated after UV irradiation. The effects of UV exposure time with different cut-off filter foils namely 295 (PAR + UV-A + UV-B), 320 (PAR + UV-A) and 395 nm (PAR only) were studied on induction of the synthesis of these MAAs. Concentration of MAAs was found to increase with increase in exposure time under UV radiation. Furthermore, the antioxidant and photoprotective action of these MAAs was also investigated. The role of MAAs in diminishing the UV-induced production of ROS in vivo was also demonstrated using the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and results obtained supported the results of DPPH free radical scavenging assay. The MAAs also exhibited efficient photoprotective ability on Escherichia coli cells against UV-B stress. Thus, the MAAs in Tetraspora sp. CU2551 may act as efficient antioxidants as well as UV-sunscreen. This is the first report for the UV-induced synthesis and co-accumulation of these MAAs and their photoprotective actions in Tetraspora sp. which is a member of the class Chlorophyceae. Moreover, UV-induced accumulation as well as photoprotective function of these compounds may facilitate this chlorophyte to perform important ecological functions in harsh environmental conditions with high UV-B fluxes in their brightly lit habitats.

  12. Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Wang, Jiangxin; Zhang, Xuezhi; Chen, Yongsheng; Sommerfeld, Milton; Hu, Qiang

    2008-10-01

    With the rapid development of nanotechnology, there is an increasing risk of human and environmental exposure to nanotechnology-based materials and products. As water resources are particularly vulnerable to direct and indirect contamination of nonomaterials (NMs), the potential toxicity and environmental implication of NMs to aquatic organisms must be evaluated. In this study, we assessed potential toxicity of two commercially used NMs, titanium dioxide (TiO(2)) and quantum dots (QDs), using the unicellular green alga Chlamydomonas reinhartii as a model system. The response of the organism to NMs was assessed at physiological, biochemical, and molecular genetic levels. Growth kinetics showed that growth inhibition occurred during the first two to three days of cultivation in the presence of TiO(2) or QDs. Measurements of lipid peroxidation measurement indicated that oxidative stress of the cells occurred as early as 6 h after exposure to TiO(2) or QDs. The transcriptional expression profiling of four stress response genes (sod1, gpx, cat, and ptox2) revealed that transient up-regulation of these genes occurred in cultures containing as low as 1.0 mg L(-1) of TiO(2) or 0.1 mg L(-1) of QDs, and the maximum transcripts of cat, sod1, gpx, and ptox2 occurred at 1.5, 3, 3, and 6 h, respectively, and were proportional to the initial concentration of the NMs. As the cultures continued, recovery in growth was observed and the extent of recovery, as indicated by the final cell concentration, was dosage-dependent. QDs were found to be more toxic to Chlamydomonas cells than TiO(2) under our experimental conditions.

  13. Construction of a growth model in the green alga Tetraselmis subcordiformis using a response surface approach

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Niu, Jingyan; Liu, Jiahui; Yang, Hongshuai; Liu, Zhigang

    2016-06-01

    The green alga Tetraselmis subcordiformis has been widely used as a quality live food for aquaculture species, and also has been studied as a model organism for the photo-biological production of hydrogen. We attempted to quantify the relationship between T. subcordiformis specific growth rate (SGR) and three important environmental factors (temperature, salinity, and pH) using the central composite design and response surface method under laboratory conditions. The results showed that the linear effects of temperature and salinity were significant (P< 0.05), and they were equally important in impacting T. subcordiformis specific growth; the linear effect of pH was not significant (P>0.05); the interactive effect of temperature and pH was significant (P<0.05), whereas the temperature × salinity and salinity × pH interactions were not significant (P>0.05); all of the quadratic effects of the three factors were significant (P<0.05). A model equation for specific growth rate with the three factors was established, with the unadjusted and predictive R 2 as high as 0.990 and 0.921, respectively, suggesting that the model was a very good fit and that it could be used to predict SGR. Through optimizing the reliable model, an optimal 3-factor combination of 25 °C/35 of salinity/pH 7.9 was obtained, at which the maximum specific growth rate (0.65) was recorded, with a desirability value of 93.8%. These experimental results could serve as guidelines for increasing T. subcordiformis production efficiency.

  14. Evidence of Coexistence of C3 and C4 Photosynthetic Pathways in a Green-Tide-Forming Alga, Ulva prolifera

    PubMed Central

    Zhang, Xiaowen; Xu, Dong; Mou, Shanli; Cao, Shaona; Zheng, Zhou; Miao, Jinlai; Ye, Naihao

    2012-01-01

    Ulva prolifera, a typical green-tide-forming alga, can accumulate a large biomass in a relatively short time period, suggesting that photosynthesis in this organism, particularly its carbon fixation pathway, must be very efficient. Green algae are known to generally perform C3 photosynthesis, but recent metabolic labeling and genome sequencing data suggest that they may also perform C4 photosynthesis, so C4 photosynthesis might be more wide-spread than previously anticipated. Both C3 and C4 photosynthesis genes were found in U. prolifera by transcriptome sequencing. We also discovered the key enzymes of C4 metabolism based on functional analysis, such as pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxylase (PEPC), and phosphoenolpyruvate carboxykinase (PCK). To investigate whether the alga operates a C4-like pathway, the expression of rbcL and PPDK and their enzyme activities were measured under various forms and intensities of stress (differing levels of salinity, light intensity, and temperature). The expression of rbcL and PPDK and their enzyme activities were higher under adverse circumstances. However, under conditions of desiccation, the expression of rbcL and ribulose-1, 5-biphosphate carboxylase (RuBPCase) activity was lower, whereas that of PPDK was higher. These results suggest that elevated PPDK activity may alter carbon metabolism and lead to a partial operation of C4-type carbon metabolism in U. prolifera, probably contributing to its wide distribution and massive, repeated blooms in the Yellow Sea. PMID:22616009

  15. Evidence of coexistence of C₃ and C₄ photosynthetic pathways in a green-tide-forming alga, Ulva prolifera.

    PubMed

    Xu, Jianfang; Fan, Xiao; Zhang, Xiaowen; Xu, Dong; Mou, Shanli; Cao, Shaona; Zheng, Zhou; Miao, Jinlai; Ye, Naihao

    2012-01-01

    Ulva prolifera, a typical green-tide-forming alga, can accumulate a large biomass in a relatively short time period, suggesting that photosynthesis in this organism, particularly its carbon fixation pathway, must be very efficient. Green algae are known to generally perform C₃ photosynthesis, but recent metabolic labeling and genome sequencing data suggest that they may also perform C₄ photosynthesis, so C₄ photosynthesis might be more wide-spread than previously anticipated. Both C₃ and C₄ photosynthesis genes were found in U. prolifera by transcriptome sequencing. We also discovered the key enzymes of C₄ metabolism based on functional analysis, such as pyruvate orthophosphate dikinase (PPDK), phosphoenolpyruvate carboxylase (PEPC), and phosphoenolpyruvate carboxykinase (PCK). To investigate whether the alga operates a C₄-like pathway, the expression of rbcL and PPDK and their enzyme activities were measured under various forms and intensities of stress (differing levels of salinity, light intensity, and temperature). The expression of rbcL and PPDK and their enzyme activities were higher under adverse circumstances. However, under conditions of desiccation, the expression of rbcL and ribulose-1, 5-biphosphate carboxylase (RuBPCase) activity was lower, whereas that of PPDK was higher. These results suggest that elevated PPDK activity may alter carbon metabolism and lead to a partial operation of C₄-type carbon metabolism in U. prolifera, probably contributing to its wide distribution and massive, repeated blooms in the Yellow Sea.

  16. Deep Transcriptome Sequencing of Two Green Algae, Chara vulgaris and Chlamydomonas reinhardtii, Provides No Evidence of Organellar RNA Editing

    PubMed Central

    Cahoon, A. Bruce; Nauss, John A.; Stanley, Conner D.; Qureshi, Ali

    2017-01-01

    Nearly all land plants post-transcriptionally modify specific nucleotides within RNAs, a process known as RNA editing. This adaptation allows the correction of deleterious mutations within the asexually reproducing and presumably non-recombinant chloroplast and mitochondrial genomes. There are no reports of RNA editing in any of the green algae so this phenomenon is presumed to have originated in embryophytes either after the invasion of land or in the now extinct algal ancestor of all land plants. This was challenged when a recent in silico screen for RNA edit sites based on genomic sequence homology predicted edit sites in the green alga Chara vulgaris, a multicellular alga found within the Streptophyta clade and one of the closest extant algal relatives of land plants. In this study, the organelle transcriptomes of C. vulgaris and Chlamydomonas reinhardtii were deep sequenced for a comprehensive assessment of RNA editing. Initial analyses based solely on sequence comparisons suggested potential edit sites in both species, but subsequent high-resolution melt analysis, RNase H-dependent PCR (rhPCR), and Sanger sequencing of DNA and complementary DNAs (cDNAs) from each of the putative edit sites revealed them to be either single-nucleotide polymorphisms (SNPs) or spurious deep sequencing results. The lack of RNA editing in these two lineages is consistent with the current hypothesis that RNA editing evolved after embryophytes split from its ancestral algal lineage. PMID:28230734

  17. Survival and reproduction of some blue-green and green algae as affected by sewage water, fertilizer factory effluent, brassica oil, phenol, toluene and benzene.

    PubMed

    Agrawal, S C; Gupta, S

    2009-01-01

    Fourteen blue-green and green algae survived for widely different time periods ranging between 22-102 d in control culture medium. Irrespective of their long or short survival period in control cultures, their pro- or eukaryotic nature, their different morphological types or natural habitats, they all survived for a short time period ranging between 3-8 d in sewage water, 5-10 d in fertilizer factory effluent, (1/4)-2 d in brassica oil, (1/2)-2 d in phenol, 1-3 d in toluene, and 1-4 d in benzene (showing the relative toxicity of different chemicals to different algae, and the antialgal nature of brassica oil). Dilution decreased the toxicity of these agents very little, indicating that they all were very toxic to algae. None of the agent induced the formation of any reproductive or dormant cells. Sewage water, fertilizer factory effluent, brassica oil and/or benzene favored the formation of necridia cells in Phormidium bohneri, P. foveolarum, Microcoleus chthonoplastes, Lyngbya birgei, and L. major filaments. Scenedesmus quadricauda shed off all spines earlier, Hormidium flaccidum fragmented less or not at all, Scytonema millei formed no false branch and heterocyst, Aphanothece pallida and Gloeocapsa atrata cells did not divide, Cosmarium granatum cells did not form any zygospore and Oedogonium sp. not any oogonia-like cells under all or most of treatments with 25-100 % sewage water, 1-100 % fertilizer factory effluent, 1-100 % brassica oil, 25-100 % phenol, toluene and benzene.

  18. Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars.

    PubMed

    Jeong, Gwi-Taek; Kim, Sung-Koo; Park, Don-Hee

    2015-04-01

    In this study, the hydrolysis of marine macro-algae Gracilaria verrucosa with a solid-acid catalyst was investigated. To optimize the hydrolysis, four reaction factors, including liquid-to-solid ratio, catalyst loading, reaction temperature, and reaction time, were investigated. In the results, the highest total reducing sugar (TRS) yield, 61 g/L (51.9%), was obtained under the following conditions: 1:7.5 solid-to-liquid ratio, 15% (w/v) catalyst loading, 140 °C reaction temperature, and 150 min reaction time. Under these conditions, 10.7 g/L of 5-HMF and 2.5 g/L of levulinic acid (LA) were generated. The application of solid-acid catalyst and marine macro-algae resources shows a very high potential for production of fermentable sugars.

  19. Screening for antibacterial and antifungal activities in some marine algae from the Fujian coast of China with three different solvents

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Chen, Yin-Shan; Lu, Hai-Sheng

    2001-12-01

    Three different solvents viz ethanol, acetone and methanol-toluene (3:1) were used to extract antibiotics from 23 species of marine algae belonging to the Chlorophyta, Phaeophyta and Rhodophyta. Their crude extracts were tested for antibacterial and antifungal activities. Among them, the ethanol extract showed the strongest activity against the bacteria and fungi tested. Four species of the Rhodophyta ( Laurencia okamurai, Dasya scoparia, Grateloupia filicina and plocamium telfairiae) showed a wide spectrum of antibacterial activity. Every solvent extract from the four species was active against all the bacteria tested. The test bacterium Pseudomonas solancearum and the fungus Penicilium citrinum were most sensitive to the extracts of marine algae. In general, the extracts of seaweeds inhibited bacteria more strongly than fungi and species of the Rhodophyta showed the greatest activity against the bacteria and fungi tested.

  20. Enhanced acetyl-CoA production is associated with increased triglyceride accumulation in the green alga Chlorella desiccata.

    PubMed

    Avidan, Omri; Brandis, Alexander; Rogachev, Ilana; Pick, Uri

    2015-07-01

    Triglycerides (TAGs) from microalgae can be utilized as food supplements and for biodiesel production, but little is known about the regulation of their biosynthesis. This work aimed to test the relationship between acetyl-CoA (Ac-CoA) levels and TAG biosynthesis in green algae under nitrogen deprivation. A novel, highly sensitive liquid chromatography mass spectrometry (LC-MS/MS) technique enabled us to determine the levels of Ac-CoA, malonyl-CoA, and unacetylated (free) CoA in green microalgae. A comparative study of three algal species that differ in TAG accumulation levels shows that during N starvation, Ac-CoA levels rapidly rise, preceding TAG accumulation in all tested species. The levels of Ac-CoA in the high TAG accumulator Chlorella desiccata exceed the levels in the moderate TAG accumulators Dunaliella tertiolecta and Chlamydomonas reinhardtii. Similarly, malonyl-CoA and free CoA levels also increase, but to lower extents. Calculated cellular concentrations of Ac-CoA are far lower than reported K mAc-CoA values of plastidic Ac-CoA carboxylase (ptACCase) in plants. Transcript level analysis of plastidic pyruvate dehydrogenase (ptPDH), the major chloroplastic Ac-CoA producer, revealed rapid induction in parallel with Ac-CoA accumulation in C. desiccata, but not in D. tertiolecta or C. reinhardtii. It is proposed that the capacity to accumulate high TAG levels in green algae critically depends on their ability to divert carbon flow towards Ac-CoA. This requires elevation of the chloroplastic CoA pool level and enhancement of Ac-CoA biosynthesis. These conclusions may have important implications for future genetic manipulation to enhance TAG biosynthesis in green algae.

  1. Cadmium tolerance and adsorption by the marine brown alga Fucus vesiculosus from the Irish Sea and the Bothnian Sea.

    PubMed

    Brinza, Loredana; Nygård, Charlotta A; Dring, Matthew J; Gavrilescu, Maria; Benning, Liane G

    2009-03-01

    Cadmium (Cd) uptake capacities and Cd tolerance of the marine alga Fucus vesiculosus from the Irish Sea (salinity 35 psu) and from the Bothnian Sea (northern Baltic, 5 psu) were quantified. These data were complemented by measurements of changes in maximal photosynthetic rate (P(max)), dark respiration rate and variable fluorescence vs. maximal fluorescence (F(v):F(m)). At concentrations between 0.01 and 1 mmol Cd l(-1), F. vesiculosus from the Bothnian Sea adsorbed significantly more (about 98%) Cd compared with F. vesiculosus from the Irish Sea. The photosynthetic measurements showed that the Bothnian Sea F. vesiculosus were more sensitive to Cd exposure than the Irish Sea algae. The algae from the Irish Sea showed negative photosynthetic effects only at 1 mmol Cd l(-1), which was expressed as a decreased P(max) (-12.3%) and F(v):F(m) (-4.6%). On the contrary, the algae from the Bothnian Sea were negatively affected already at Cd concentrations as low at 0.1 mmol Cd l(-1). They exhibited increased dark respiration (+11.1%) and decreased F(v):F(m) (-13.9%). The results show that F. vesiculosus from the Bothnian Sea may be an efficient sorption substrate for Cd removal from Cd contaminated seawater and this algae type may also have applications for wastewater treatment.

  2. Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans.

    PubMed

    Beach, Evan S; Eckelman, Matthew J; Cui, Zheng; Brentner, Laura; Zimmerman, Julie B

    2012-10-01

    Dewatering of the green algae Neochloris oleoabundans by flocculation was investigated for chitosan biopolymer, ferric sulfate, and alum. Chitosan was found to be most effective flocculant, with an optimum dose of 100mg/L algae broth. Zeta potential measurements suggest the mechanism involves both adsorption and charge neutralization processes. Life cycle assessment (LCA) was used to compare the chitosan method to other flocculation methods as well as centrifugation and filtration/chamber press processes. LCA showed that among these techniques, flocculation by chitosan is the least energy intensive and had the lowest impacts across all other categories of environmental impacts. The results are discussed in the overall context of biofuel production from algal biomass.

  3. The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris

    NASA Astrophysics Data System (ADS)

    Żak, Adam; Kosakowska, Alicja

    2015-12-01

    Secondary metabolites produced by bacteria, fungi, algae and plants could affect the growth and development of biological and agricultural systems. This natural process that occurs worldwide is known as allelopathy. The main goal of this work was to investigate the influence of metabolites obtained from phytoplankton monocultures on the growth of green algae Chlorella vulgaris. We selected 6 species occurring in the Baltic Sea from 3 different taxonomic groups: cyanobacteria (Aphanizomenon flos-aquae; Planktothrix agardhii), diatoms (Thalassiosira pseudonana; Chaetoceros wighamii) and dinoflagellates (Alexandrium ostenfeldii; Prorocentrum minimum). In this study we have demonstrated that some of selected organisms caused allelopathic effects against microalgae. Both the negative and positive effects of collected cell-free filtrates on C. vulgaris growth, chlorophyll a concentration and fluorescence parameters (OJIP, QY, NPQ) have been observed. No evidence has been found for the impact on morphology and viability of C. vulgaris cells.

  4. The occurrence and biosynthesis of gamma-linolenic acid in a blue-green alga,Spirulina platensis.

    PubMed

    Nichols, B W; Wood, B J

    1968-01-01

    The acyl-lipid and fatty acid composition of six blue-green algae, namely,Spirulina platensis, Myxosarcina chroococcoides, Chlorogloea fritschii, Anabaena cylindrica, Anabaena flos-aquae, and Mastigocladus laminosus is reported.All contain major proportions of mono-and digalactosyl diglyceride, sulfoquinovosyl diglyceride, and phosphatidyl glycerol, but none possess lecithin, phophatidyl ethanolamine, or phosphatidyl inositol. Trans-3-hexadecenoic acid was absent from all extracts.The analyses provide further evidence that there is no general chemical or physical requirement for any specific fatty acid in photosynthesis. S. platensis is unique among photoautotrophic organisms so far studied, containing major quantities of gamma-linolenic acid (6,9,12-octadecatrienoic acid). This acid is synthesized by the alga by direct desaturation of linoleic acid and is primarily located in the mono- and digalactosyl diglyceride fractions.The possible phylogenetic relationship betweenS. platensis and other plant forms is discussed.

  5. Management of Local Stressors Can Improve the Resilience of Marine Canopy Algae to Global Stressors

    PubMed Central

    Strain, Elisabeth M. A.; van Belzen, Jim; van Dalen, Jeroen; Bouma, Tjeerd J.; Airoldi, Laura

    2015-01-01

    Coastal systems are increasingly threatened by multiple local anthropogenic and global climatic stressors. With the difficulties in remediating global stressors, management requires alternative approaches that focus on local scales. We used manipulative experiments to test whether reducing local stressors (sediment load and nutrient concentrations) can improve the resilience of foundation species (canopy algae along temperate rocky coastlines) to future projected global climate stressors (high wave exposure, increasing sea surface temperature), which are less amenable to management actions. We focused on Fucoids (Cystoseira barbata) along the north-western Adriatic coast in the Mediterranean Sea because of their ecological relevance, sensitivity to a variety of human impacts, and declared conservation priority. At current levels of sediment and nutrients, C. barbata showed negative responses to the simulated future scenarios of high wave exposure and increased sea surface temperature. However, reducing the sediment load increased the survival of C. barbata recruits by 90.24% at high wave exposure while reducing nutrient concentrations resulted in a 20.14% increase in the survival and enhanced the growth of recruited juveniles at high temperature. We conclude that improving water quality by reducing nutrient concentrations, and particularly the sediment load, would significantly increase the resilience of C. barbata populations to projected increases in climate stressors. Developing and applying appropriate targets for specific local anthropogenic stressors could be an effective management action to halt the severe and ongoing loss of key marine habitats. PMID:25807516

  6. The isolation of prophyra-334 from marine algae and its UV-absorption behavior

    NASA Astrophysics Data System (ADS)

    Zhaohui, Zhang; Xin, Gao; Tashiro, Yuri; Matsukawa, Shingo; Ogawa, Hiroo

    2005-12-01

    Prophyra-334 was prepared by methanol extraction and HPLC methods from marine algae (dried laver). It is a sunscreen compound that has good absorption of ultraviolet radiations in the wavelength ranges of 200-400 nm. The absorption maximum wavelength of prophyra-334 is at 334 nm, so defined the name. The molar extinction coefficient (ɛ) of prophyra-334 in aqueous solution at 334 nm wavelength is 4.23×104. The absorption of prophyra-334 in organic solvents differs in aqueous solutions. In polar organic solvents, the absorption maximum wavelength of prophyra-334 has a slight shift toward longer wavelength compared with that in pure water. On the contrary, in inert non-polar organic solvents, the absorption maximum wavelength and the shape of absorption spectra of prophyra-334 are changed. The effects of organic solvents on prophyra-334 stability suggested that: (1) the absorbance of prophyra-334 in water is generally constant at temperature of 60°C in 24 h, meaning that prophyra-334 is quite stable in water; (2) the absorbance of prophyra-334 in ethanol and hexane decreases at the same condition. The stability of prophyra-334 in organic solvents is less than that in aqueous solution. In benzene, the prophyra-334 is very instable.

  7. Unsupervised hierarchical partitioning of hyperspectral images: application to marine algae identification

    NASA Astrophysics Data System (ADS)

    Chen, B.; Chehdi, K.; De Oliveria, E.; Cariou, C.; Charbonnier, B.

    2015-10-01

    In this paper a new unsupervised top-down hierarchical classification method to partition airborne hyperspectral images is proposed. The unsupervised approach is preferred because the difficulty of area access and the human and financial resources required to obtain ground truth data, constitute serious handicaps especially over large areas which can be covered by airborne or satellite images. The developed classification approach allows i) a successive partitioning of data into several levels or partitions in which the main classes are first identified, ii) an estimation of the number of classes automatically at each level without any end user help, iii) a nonsystematic subdivision of all classes of a partition Pj to form a partition Pj+1, iv) a stable partitioning result of the same data set from one run of the method to another. The proposed approach was validated on synthetic and real hyperspectral images related to the identification of several marine algae species. In addition to highly accurate and consistent results (correct classification rate over 99%), this approach is completely unsupervised. It estimates at each level, the optimal number of classes and the final partition without any end user intervention.

  8. Screening of agglutinins in marine algae from Fujian coast of China

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Lu, Hai-Sheng

    2002-09-01

    Thirty-three species of marine algae belonging to Rhodophyta, Phaeophyta and Chlorophyta from the Fujian coast were examined for agglutinins with different animal and human erythrocytes. Protein extracts from 26 species were active against at least one type of the erythrocytes tested. There were 3 species ( Grateloupia imbricata, Ishige foliacea and Entermorpha prolifera) whose extracts could agglutimate all the erythrocytes used. The lowest protein concentration required to produce erythrocyte agglutination varied remarkably, from 3.1 μg/ml to 500 μg/ml. The strongest activity was found in the agglutination of rabbit erythrocytes by Gloiopeltis furcata extract. Inhibition assays performed with nine mono- and bisaccharides indicated that agglutinations of rabbit erythrocytes by extracts of 7 species were inhibited by one or more types of the sugars assayed. The agglutinating activity shown by extracts of most species was not affected when the test solution was heated to 90°C, but was lost at 95°C 100°C. A few extracts lost their activity at 60°C, 65°C and 75°C, respectively.

  9. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity

    PubMed Central

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-01-01

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation. PMID:26712768

  10. Marine Algae as a Potential Source for Anti-Obesity Agents

    PubMed Central

    Wan-Loy, Chu; Siew-Moi, Phang

    2016-01-01

    Obesity is a major epidemic that poses a worldwide threat to human health, as it is also associated with metabolic syndrome, type 2 diabetes and cardiovascular disease. Therapeutic intervention through weight loss drugs, accompanied by diet and exercise, is one of the options for the treatment and management of obesity. However, the only approved anti-obesity drug currently available in the market is orlistat, a synthetic inhibitor of pancreatic lipase. Other anti-obesity drugs are still being evaluated at different stages of clinical trials, while some have been withdrawn due to their severe adverse effects. Thus, there is a need to look for new anti-obesity agents, especially from biological sources. Marine algae, especially seaweeds are a promising source of anti-obesity agents. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginates, fucoidans and phlorotannins. The anti-obesity effects of such compounds are due to several mechanisms, which include the inhibition of lipid absorption and metabolism (e.g., fucoxanthin and fucoidans), effect on satiety feeling (e.g., alginates), and inhibition of adipocyte differentiation (e.g., fucoxanthin). Further studies, especially testing bioactive compounds in long-term human trials are required before any new anti-obesity drugs based on algal products can be developed. PMID:27941599

  11. The Structure-Activity Relationship between Marine Algae Polysaccharides and Anti-Complement Activity.

    PubMed

    Jin, Weihua; Zhang, Wenjing; Liang, Hongze; Zhang, Quanbin

    2015-12-25

    In this study, 33 different polysaccharides were prepared to investigate the structure-activity relationships between the polysaccharides, mainly from marine algae, and anti-complement activity in the classical pathway. Factors considered included extraction methods, fractionations, molecular weight, molar ratio of galactose to fucose, sulfate, uronic acid (UA) content, linkage, branching, and the type of monosaccharide. It was shown that the larger the molecular weights, the better the activities. The molar ratio of galactose (Gal) to fucose (Fuc) was a positive factor at a concentration lower than 10 µg/mL, while it had no effect at a concentration more than 10 µg/mL. In addition, sulfate was necessary; however, the sulfate content, the sulfate pattern, linkage and branching had no effect at a concentration of more than 10 µg/mL. Moreover, the type of monosaccharide had no effect. Laminaran and UA fractions had no activity; however, they could reduce the activity by decreasing the effective concentration of the active composition when they were mixed with the active compositions. The effect of the extraction methods could not be determined. Finally, it was observed that sulfated galactofucan showed good anti-complement activity after separation.

  12. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae

    PubMed Central

    Lemieux, Claude; Otis, Christian; Turmel, Monique

    2016-01-01

    The Streptophyta comprises all land plants and six main lineages of freshwater green algae: Mesostigmatophyceae, Chlorokybophyceae, Klebsormidiophyceae, Charophyceae, Coleochaetophyceae and Zygnematophyceae. Previous comparisons of the chloroplast genome from nine streptophyte algae (including four zygnematophyceans) revealed that, although land plant chloroplast DNAs (cpDNAs) inherited most of their highly conserved structural features from green algal ancestors, considerable cpDNA changes took place during the evolution of the Zygnematophyceae, the sister group of land plants. To gain deeper insights into the evolutionary dynamics of the chloroplast genome in streptophyte algae, we sequenced the cpDNAs of nine additional taxa: two klebsormidiophyceans (Entransia fimbriata and Klebsormidium sp. SAG 51.86), one coleocheatophycean (Coleochaete scutata) and six zygnematophyceans (Cylindrocystis brebissonii, Netrium digitus, Roya obtusa, Spirogyra maxima, Cosmarium botrytis and Closterium baillyanum). Our comparative analyses of these genomes with their streptophyte algal counterparts indicate that the large inverted repeat (IR) encoding the rDNA operon experienced loss or expansion/contraction in all three sampled classes and that genes were extensively shuffled in both the Klebsormidiophyceae and Zygnematophyceae. The klebsormidiophycean genomes boast greatly expanded IRs, with the Entransia 60,590-bp IR being the largest known among green algae. The 206,025-bp Entransia cpDNA, which is one of the largest genome among streptophytes, encodes 118 standard genes, i.e., four additional genes compared to its Klebsormidium flaccidum homolog. We inferred that seven of the 21 group II introns usually found in land plants were already present in the common ancestor of the Klebsormidiophyceae and its sister lineages. At 107,236 bp and with 117 standard genes, the Coleochaete IR-less genome is both the smallest and most compact among the streptophyte algal cpDNAs analyzed thus

  13. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae.

    PubMed

    Lemieux, Claude; Otis, Christian; Turmel, Monique

    2016-01-01

    The Streptophyta comprises all land plants and six main lineages of freshwater green algae: Mesostigmatophyceae, Chlorokybophyceae, Klebsormidiophyceae, Charophyceae, Coleochaetophyceae and Zygnematophyceae. Previous comparisons of the chloroplast genome from nine streptophyte algae (including four zygnematophyceans) revealed that, although land plant chloroplast DNAs (cpDNAs) inherited most of their highly conserved structural features from green algal ancestors, considerable cpDNA changes took place during the evolution of the Zygnematophyceae, the sister group of land plants. To gain deeper insights into the evolutionary dynamics of the chloroplast genome in streptophyte algae, we sequenced the cpDNAs of nine additional taxa: two klebsormidiophyceans (Entransia fimbriata and Klebsormidium sp. SAG 51.86), one coleocheatophycean (Coleochaete scutata) and six zygnematophyceans (Cylindrocystis brebissonii, Netrium digitus, Roya obtusa, Spirogyra maxima, Cosmarium botrytis and Closterium baillyanum). Our comparative analyses of these genomes with their streptophyte algal counterparts indicate that the large inverted repeat (IR) encoding the rDNA operon experienced loss or expansion/contraction in all three sampled classes and that genes were extensively shuffled in both the Klebsormidiophyceae and Zygnematophyceae. The klebsormidiophycean genomes boast greatly expanded IRs, with the Entransia 60,590-bp IR being the largest known among green algae. The 206,025-bp Entransia cpDNA, which is one of the largest genome among streptophytes, encodes 118 standard genes, i.e., four additional genes compared to its Klebsormidium flaccidum homolog. We inferred that seven of the 21 group II introns usually found in land plants were already present in the common ancestor of the Klebsormidiophyceae and its sister lineages. At 107,236 bp and with 117 standard genes, the Coleochaete IR-less genome is both the smallest and most compact among the streptophyte algal cpDNAs analyzed thus

  14. Evolutionary relatedness does not predict competition and co-occurrence in natural or experimental communities of green algae

    PubMed Central

    Alexandrou, Markos A.; Cardinale, Bradley J.; Hall, John D.; Delwiche, Charles F.; Fritschie, Keith; Narwani, Anita; Venail, Patrick A.; Bentlage, Bastian; Pankey, M. Sabrina; Oakley, Todd H.

    2015-01-01

    The competition-relatedness hypothesis (CRH) predicts that the strength of competition is the strongest among closely related species and decreases as species become less related. This hypothesis is based on the assumption that common ancestry causes close relatives to share biological traits that lead to greater ecological similarity. Although intuitively appealing, the extent to which phylogeny can predict competition and co-occurrence among species has only recently been rigorously tested, with mixed results. When studies have failed to support the CRH, critics have pointed out at least three limitations: (i) the use of data poor phylogenies that provide inaccurate estimates of species relatedness, (ii) the use of inappropriate statistical models that fail to detect relationships between relatedness and species interactions amidst nonlinearities and heteroskedastic variances, and (iii) overly simplified laboratory conditions that fail to allow eco-evolutionary relationships to emerge. Here, we address these limitations and find they do not explain why evolutionary relatedness fails to predict the strength of species interactions or probabilities of coexistence among freshwater green algae. First, we construct a new data-rich, transcriptome-based phylogeny of common freshwater green algae that are commonly cultured and used for laboratory experiments. Using this new phylogeny, we re-analyse ecological data from three previously published laboratory experiments. After accounting for the possibility of nonlinearities and heterogeneity of variances across levels of relatedness, we find no relationship between phylogenetic distance and ecological traits. In addition, we show that communities of North American green algae are randomly composed with respect to their evolutionary relationships in 99% of 1077 lakes spanning the continental United States. Together, these analyses result in one of the most comprehensive case studies of how evolutionary history influences

  15. Occurrence of metallothionein gene smtA in synechococcus Tx-20 and other blue-green algae

    SciTech Connect

    Robinson, N.J.; Gupta, A.; Huckle, J.W.; Jackson, P.; Whitton, B.A. )

    1990-06-01

    Blue-green algae are often abundant at Zn- and Cd-contaminated sites. In order to understand the mechanisms associated with Zn- and Cd-tolerance, we have isolated a metallothionein gene, designated smtA, in Synechococcus Tx-20 (- Pcc 6301 - Anacystis nidulans), a strain apparently obtained from an unpolluted site. The gene was cloned and sequenced, and its expression investigated in a range of heavy-metal-tolerant strains of the same organism obtained by stepwise adaptation. The polymerase chain reaction was used to probe for the possible presence of the homologous gene in a range of other strains (especially Synechococcus) isolated from sites without and with heavy metal contamination.

  16. Biogasification of Marine Algae: Nannochloropsis oculata and Botryococcus braunii (BRIEFING SLIDES)

    DTIC Science & Technology

    2010-06-01

    results. biomass to energy; biogasification; anaerobic digestion; gasification ; algae U U U SAR 30 Robert Diltz Reset 1 A schematic for taking the...Biological Engineers Conference, 9-12 June 2010, in Jupiter FL. Algae has the potential to be a useful source of biomass derived energy due to the high...transesterification of lipids to biodiesel or thermal gasification of the cells to produce synthesis gases. A new approach was identified to use algae in a

  17. Proliferation of group II introns in the chloroplast genome of the green alga Oedocladium carolinianum (Chlorophyceae)

    PubMed Central

    Otis, Christian

    2016-01-01

    Background The chloroplast genome sustained extensive changes in architecture during the evolution of the Chlorophyceae, a morphologically and ecologically diverse class of green algae belonging to the Chlorophyta; however, the forces driving these changes are poorly understood. The five orders recognized in the Chlorophyceae form two major clades: the CS clade consisting of the Chlamydomonadales and Sphaeropleales, and the OCC clade consisting of the Oedogoniales, Chaetophorales, and Chaetopeltidales. In the OCC clade, considerable variations in chloroplast DNA (cpDNA) structure, size, gene order, and intron content have been observed. The large inverted repeat (IR), an ancestral feature characteristic of most green plants, is present in Oedogonium cardiacum (Oedogoniales) but is lacking in the examined members of the Chaetophorales and Chaetopeltidales. Remarkably, the Oedogonium 35.5-kb IR houses genes that were putatively acquired through horizontal DNA transfer. To better understand the dynamics of chloroplast genome evolution in the Oedogoniales, we analyzed the cpDNA of a second representative of this order, Oedocladium carolinianum. Methods The Oedocladium cpDNA was sequenced and annotated. The evolutionary distances separating Oedocladium and Oedogonium cpDNAs and two other pairs of chlorophycean cpDNAs were estimated using a 61-gene data set. Phylogenetic analysis of an alignment of group IIA introns from members of the OCC clade was performed. Secondary structures and insertion sites of oedogonialean group IIA introns were analyzed. Results The 204,438-bp Oedocladium genome is 7.9 kb larger than the Oedogonium genome, but its repertoire of conserved genes is remarkably similar and gene order differs by only one reversal. Although the 23.7-kb IR is missing the putative foreign genes found in Oedogonium, it contains sequences coding for a putative phage or bacterial DNA primase and a hypothetical protein. Intergenic sequences are 1.5-fold longer and

  18. Induction of apoptosis by three marine algae through generation of reactive oxygen species in human leukemic cell lines.

    PubMed

    Huang, Huey-Lan; Wu, Shwu-Li; Liao, Hui-Fen; Jiang, Chii-Ming; Huang, Ray-Ling; Chen, Yu-Yawn; Yang, Yuh-Cheng; Chen, Yu-Jen

    2005-03-09

    In this study, we examined the antitumor effect of marine algae extracts on human hepatoma and leukemia cells. Ethyl acetate extracts from Colpomenia sinuosa (Cs-EA), Halimeda discoidae (Hd-EA), and Galaxaura oblongata (Go-EA) directly inhibited the growth of human hepatoma HuH-7 cells and leukemia U937 and HL-60 cells in a time- and dose-dependent manner. Specifically, these algae extracts induced apoptosis of U937 and HL-60 cells as evaluated by detection of hypodiploid cells using flow cytometry and observation of condensed and fragmented nuclei in algae extract-treated cells. Intracellular reactive oxygen species (ROS), especially hydrogen peroxide and superoxide anion, were increased about 2-3-fold in U937 cells treated with Cs-EA for 3-5 h. Interestingly, antioxidant N-acetylcysteine effectively blocked Cs-EA-, Hd-EA-, and Go-EA-induced apoptosis, suggesting that ROS is a key mediator in the apoptotic signaling pathway. In conclusion, our results show that algae extracts induce apoptosis in human leukemia cells through generation of ROS.

  19. VCRPs, small cysteine-rich proteins, might be involved in extracellular signaling in the green alga Volvox.

    PubMed

    Hallmann, Armin

    2008-02-01

    The sex-inducer of the spherical green alga Volvox carteri is one of the most potent biological effector molecules known: it is released into the medium by sexual males and triggers the switch to the sexual cleavage program in the reproductive cells of vegetatively grown males and females even at concentrations as low as 10(-16) M. In an adult Volvox alga, all cells are embedded in an extensive extracellular matrix (ECM), which constitutes >99% of the volume of the spheroid. There exist no cytoplasmic connections between the cells in an adult alga, so any signal transduction between different cells or from the organism's environment to a reproductive cell must involve the ECM. Recently, a small cysteine-rich extracellular protein, VCRP, was identified in Volvox and shown to be quickly synthesized by somatic cells in response to the sex-inducer. Due to its characteristics, VCRP was speculated to be an extracellular second messenger from somatic cells to reproductive cells. Here a related protein, VCRP2, is presented, exhibiting a 56% amino acid sequence identity with VCRP. Two possible scenarios for signal transduction from the sex-inducer to the reproductive cell are discussed.

  20. Refactoring the Six-Gene Photosystem II Core in the Chloroplast of the Green Algae Chlamydomonas reinhardtii.

    PubMed

    Gimpel, Javier A; Nour-Eldin, Hussam H; Scranton, Melissa A; Li, Daphne; Mayfield, Stephen P

    2016-07-15

    Oxygenic photosynthesis provides the energy to produce all food and most of the fuel on this planet. Photosystem II (PSII) is an essential and rate-limiting component of this process. Understanding and modifying PSII function could provide an opportunity for optimizing photosynthetic biomass production, particularly under specific environmental conditions. PSII is a complex multisubunit enzyme with strong interdependence among its components. In this work, we have deleted the six core genes of PSII in the eukaryotic alga Chlamydomonas reinhardtii and refactored them in a single DNA construct. Complementation of the knockout strain with the core PSII synthetic module from three different green algae resulted in reconstitution of photosynthetic activity to 85, 55, and 53% of that of the wild-type, demonstrating that the PSII core can be exchanged between algae species and retain function. The strains, synthetic cassettes, and refactoring strategy developed for this study demonstrate the potential of synthetic biology approaches for tailoring oxygenic photosynthesis and provide a powerful tool for unraveling PSII structure-function relationships.

  1. Sequestration of Dimethylsulfoniopropionate (DMSP) and Acrylate from the Green Alga Ulva Spp. by the Sea Hare Aplysia juliana.

    PubMed

    Kamio, Michiya; Koyama, Mao; Hayashihara, Nobuko; Hiei, Kaori; Uchida, Hajime; Watanabe, Ryuichi; Suzuki, Toshiyuki; Nagai, Hiroshi

    2016-05-01

    Many animals sequester secondary metabolites from their food. In this study, we hypothesized that the sea hare Aplysia juliana sequesters secondary metabolites from green algae. To test this, we performed NMR-based metabolomic analysis on methanol extracts of Ulva spp. and A. juliana. Another sea hare, Bursatella leachii, which mainly feeds on another type of alga, was added to this analysis as an outgroup. Two body parts of the sea hares, skin and digestive glands, were used in the analysis. Principal component analysis (PCA) on the NMR data of these samples detected biomarkers common to Ulva spp. and A. juliana. This result indicates sequestration of secondary metabolites by the herbivore from the plants. The biomarker metabolites were identified as dimethylsulfoniopropionate (DMSP) and acrylate, which were concentrated in skin of A. juliana and were released from the skin of live animals when physically stressed. Thus, our NMR-based metabolomic study revealed sequestration of algae-derived secondary metabolites in skin of A. Juliana, and in the discharge of the metabolites under conditions that mimic attack by predators.

  2. Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes.

    PubMed

    Nagao, Manabu; Matsui, Kenji; Uemura, Matsuo

    2008-06-01

    To elucidate the fundamental mechanisms and subsequent evolutionary aspects of plant cold acclimation, we examined the effect of cold acclimation on freezing tolerance in Klebsormidium flaccidum, a green alga belonging to Charophyceae, a sister group of land plants. Freezing tolerance of K. flaccidum was significantly enhanced by cold treatment: survival increased from 15% at -10 degrees C when grown at 18 degrees C to 55 and 85% after exposure at 2 degrees C for 2 and 7 d, respectively. Accompanying the development of freezing tolerance, soluble sugars (glucose and sucrose), a putative glycoside and amino acids, including gamma-aminobutyric acid (GABA), accumulated to high levels in the alga, suggesting that these solutes play a crucial role in the cold acclimation of K. flaccidum. Interestingly, the application of abscisic acid (ABA) did not change the freezing tolerance of the alga. We also observed changes in cell structure, including increased numbers and sizes of starch grains in chloroplasts, chloroplast enlargement, vacuole size reduction and cytoplasmic volume increase. These results suggest that K. flaccidum responds well to cold treatment and develops freezing tolerance in a process comparable to that of land plants.

  3. Extraction and PTP1B inhibitory activity of bromophenols from the marine red alga Symphyocladia latiuscula

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Li, Xiaoming; Gao, Lixin; Cui, Chuanming; Li, Chunshun; Li, Jia; Wang, Bingui

    2011-05-01

    Previously, we had characterized several structurally interesting brominated phenols from the marine red alga Symphyocladia latiuscula collected from various sites. However, Phytochemical investigations on this species collected from the Weihai coastline of Shandong Province remains blank. Therefore, we characterized the chemical constituents of individuals of this species collected from the region. Eight bromophenols were isolated and identified. Using detailed spectroscopic techniques and comparisons with published data, these compounds were identified as 2,3-dibromo-4,5-dihydroxybenzyl methyl ether ( 1), 3,5-dibromo-4-hydroxybenzoic acid ( 2), 2,3,6-tribromo-4,5-dihydroxymethylbenzene ( 3), 2,3,6-tribromo-4,5-dihydroxybenzaldehyde ( 4), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether ( 5), bis(2,3,6-tribromo-4,5-dihydroxyphenyl)methane ( 6), 1,2-bis(2,3,6-tribromo-4,5-dihydroxyphenyl)-ethane ( 7), and 1-(2,3,6-tribromo-4,5-dihydroxybenzyl)-pyrrolidin-2-one ( 8). Among these compounds, 1 and 2 were isolated for the first time from S. latiuscula. Each compound was evaluated on the ability to inhibit protein tyrosine phosphatase 1B (PTP1B), which is a potential therapeutic target in the treatment of type 2 diabetes. Bromophenols 5, 6, and 7 showed strong activities with IC50 values of 3.9, 4.3, and 3.5 μmol/L, respectively. This study provides further evidence that bromophenols are predominant among the chemical constituents of Symphyocladia, and that some of these compounds may be candidates for the development of anti-diabetes drugs.

  4. The GC-Rich Mitochondrial and Plastid Genomes of the Green Alga Coccomyxa Give Insight into the Evolution of Organelle DNA Nucleotide Landscape

    SciTech Connect

    Smith, David Roy; Burki, Fabien; Yamada, Takashi; Grimwood, Jane; Grigoriev, Igor V.; Van Etten, James L.; Keeling, Patrick J.

    2011-05-13

    Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.

  5. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    NASA Astrophysics Data System (ADS)

    Cusack, M.; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G.

    2015-02-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions.

  6. Effects of Cylindrospermopsin Producing Cyanobacterium and Its Crude Extracts on a Benthic Green Alga-Competition or Allelopathy?

    PubMed

    B-Béres, Viktória; Vasas, Gábor; Dobronoki, Dalma; Gonda, Sándor; Nagy, Sándor Alex; Bácsi, István

    2015-10-30

    Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by filamentous cyanobacteria which could work as an allelopathic substance, although its ecological role in cyanobacterial-algal assemblages is mostly unclear. The competition between the CYN-producing cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum, and the benthic green alga Chlorococcum sp. was investigated in mixed cultures, and the effects of CYN-containing cyanobacterial crude extract on Chlorococcum sp. were tested by treatments with crude extracts containing total cell debris, and with cell debris free crude extracts, modelling the collapse of a cyanobacterial water bloom. The growth inhibition of Chlorococcum sp. increased with the increasing ratio of the cyanobacterium in mixed cultures (inhibition ranged from 26% to 87% compared to control). Interestingly, inhibition of the cyanobacterium growth also occurred in mixed cultures, and it was more pronounced than it was expected. The inhibitory effects of cyanobacterial crude extracts on Chlorococcum cultures were concentration-dependent. The presence of C. ovalisporum in mixed cultures did not cause significant differences in nutrient content compared to Chlorococcum control culture, so the growth inhibition of the green alga could be linked to the presence of CYN and/or other bioactive compounds.

  7. The Exceptionally Large Chloroplast Genome of the Green Alga Floydiella terrestris Illuminates the Evolutionary History of the Chlorophyceae

    PubMed Central

    Brouard, Jean-Simon; Otis, Christian; Lemieux, Claude; Turmel, Monique

    2010-01-01

    The Chlorophyceae, an advanced class of chlorophyte green algae, comprises five lineages that form two major clades (Chlamydomonadales + Sphaeropleales and Oedogoniales + Chaetopeltidales + Chaetophorales). The four complete chloroplast DNA (cpDNA) sequences currently available for chlorophyceans uncovered an extraordinarily fluid genome architecture as well as many structural features distinguishing this group from other green algae. We report here the 521,168-bp cpDNA sequence from a member of the Chaetopeltidales (Floydiella terrestris), the sole chlorophycean lineage not previously sampled for chloroplast genome analysis. This genome, which contains 97 conserved genes and 26 introns (19 group I and 7 group II introns), is the largest chloroplast genome ever sequenced. Intergenic regions account for 77.8% of the genome size and are populated by short repeats. Numerous genomic features are shared with the cpDNA of the chaetophoralean Stigeoclonium helveticum, notably the absence of a large inverted repeat and the presence of unique gene clusters and trans-spliced group II introns. Although only one of the Floydiella group I introns encodes a homing endonuclease gene, our finding of five free-standing reading frames having similarity with such genes suggests that chloroplast group I introns endowed with mobility were once more abundant in the Floydiella lineage. Parsimony analysis of structural genomic features and phylogenetic analysis of chloroplast sequence data unambiguously resolved the Oedogoniales as sister to the Chaetopeltidales and Chaetophorales. An evolutionary scenario of the molecular events that shaped the chloroplast genome in the Chlorophyceae is presented. PMID:20624729

  8. Zeta potential measurement on the surface of blue-green algae particles for micro-bubble process.

    PubMed

    Taki, Kazuo; Seki, Tatsuhiro; Mononobe, Sakiyori; Kato, Kohichi

    2008-01-01

    Any kind of blue-green alga produces metabolites of musty substances and toxins. Therefore, it is necessary to remove the blue-green algae, and processing also including nutrient removal is desired for the water quality improvement of eutrophic lakes. The purpose of this study has been to investigate the possibility of a flotation system using a hybrid technique (chemical compounds and electrostatic bridge) applied to raw water containing phytoplankton with high pH of water, and to examine the zeta potential value of phytoplankton surface and the removal efficiency for phytoplankton, ammonia, nitrogen, and phosphoric acid. The results were as follows: firstly, zeta potential of M. aeruginosa particles was observed to achieve charge neutralization on their surface by adhesion of magnesium hydroxide precipitation with increasing pH. Secondly, maximum removal efficiency concerning chlorophyll-a was observed as 84%, and this efficiency was obtained in the condition of pH > 10, and magnesium hydroxide precipitation was observed. Thirdly, in the pH condition that the maximum removal efficiency of chlorophyll-a was obtained, the removal efficiency and the amount of decrease of NH(4)-N and PO(4)-P before and after the change of pH values were observed as 6.7% (0.04 mg-P/L) and 63.6% (0.07 mg-N/L), respectively.

  9. Antiviral activity of acidic polysaccharides from Coccomyxa gloeobotrydiformi, a green alga, against an in vitro human influenza A virus infection.

    PubMed

    Komatsu, Takayuki; Kido, Nobuo; Sugiyama, Tsuyoshi; Yokochi, Takashi

    2013-02-01

    The extracts prepared from green algae are reported to possess a variety of biological activities including antioxidant, antitumor and antiviral activities. The acidic polysaccharide fraction from a green alga Coccomyxa gloeobotrydiformi (CmAPS) was isolated and the antiviral action on an in vitro infection of influenza A virus was examined. CmAPS inhibited the growth and yield of all influenza A virus strains tested, such as A/H1N1, A/H2N2, A/H3N2 and A/H1N1 pandemic strains. The 50% inhibitory concentration of CmAPS on the infection of human influenza A virus strains ranged from 26 to 70 µg/mL and the antiviral activity of CmAPS against influenza A/USSR90/77 (H1N1) was the strongest. The antiviral activity of CmAPS was not due to the cytotoxicity against host cells. The antiviral activity of CmAPS required its presence in the inoculation of virus onto MDCK cells. Pretreatment and post-treatment with CmAPS was ineffective for the antiviral activity. CmAPS inhibited influenza A virus-induced erythrocyte hemagglutination and hemolysis. Taken together, CmAPS was suggested to exhibit the anti-influenza virus activity through preventing the interaction of virus and host cells. The detailed antiviral activity of CmAPS is discussed.

  10. Metabolite Profiling and Integrative Modeling Reveal Metabolic Constraints for Carbon Partitioning under Nitrogen Starvation in the Green Algae Haematococcus pluvialis*

    PubMed Central

    Recht, Lee; Töpfer, Nadine; Batushansky, Albert; Sikron, Noga; Gibon, Yves; Fait, Aaron; Nikoloski, Zoran; Boussiba, Sammy; Zarka, Aliza

    2014-01-01

    The green alga Hematococcus pluvialis accumulates large amounts of the antioxidant astaxanthin under inductive stress conditions, such as nitrogen starvation. The response to nitrogen starvation and high light leads to the accumulation of carbohydrates and fatty acids as well as increased activity of the tricarboxylic acid cycle. Although the behavior of individual pathways has been well investigated, little is known about the systemic effects of the stress response mechanism. Here we present time-resolved metabolite, enzyme activity, and physiological data that capture the metabolic response of H. pluvialis under nitrogen starvation and high light. The data were integrated into a putative genome-scale model of the green alga to in silico test hypotheses of underlying carbon partitioning. The model-based hypothesis testing reinforces the involvement of starch degradation to support fatty acid synthesis in the later stages of the stress response. In addition, our findings support a possible mechanism for the involvement of the increased activity of the tricarboxylic acid cycle in carbon repartitioning. Finally, the in vitro experiments and the in silico modeling presented here emphasize the predictive power of large scale integrative approaches to pinpoint metabolic adjustment to changing environments. PMID:25183014

  11. Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis.

    PubMed

    Recht, Lee; Töpfer, Nadine; Batushansky, Albert; Sikron, Noga; Gibon, Yves; Fait, Aaron; Nikoloski, Zoran; Boussiba, Sammy; Zarka, Aliza

    2014-10-31

    The green alga Hematococcus pluvialis accumulates large amounts of the antioxidant astaxanthin under inductive stress conditions, such as nitrogen starvation. The response to nitrogen starvation and high light leads to the accumulation of carbohydrates and fatty acids as well as increased activity of the tricarboxylic acid cycle. Although the behavior of individual pathways has been well investigated, little is known about the systemic effects of the stress response mechanism. Here we present time-resolved metabolite, enzyme activity, and physiological data that capture the metabolic response of H. pluvialis under nitrogen starvation and high light. The data were integrated into a putative genome-scale model of the green alga to in silico test hypotheses of underlying carbon partitioning. The model-based hypothesis testing reinforces the involvement of starch degradation to support fatty acid synthesis in the later stages of the stress response. In addition, our findings support a possible mechanism for the involvement of the increased activity of the tricarboxylic acid cycle in carbon repartitioning. Finally, the in vitro experiments and the in silico modeling presented here emphasize the predictive power of large scale integrative approaches to pinpoint metabolic adjustment to changing environments.

  12. [Experimental assessment of combined effect of nitrates and acute gamma-irradiation on green algae Scenedesmus quadricauda growth].

    PubMed

    Triapitsyna, G A; Tarasova, S P; Atamaniuk, N I; Osipov, D I; Priakhin, E A

    2012-01-01

    The combined effect of acute gamma-irradiation at doses of 0, 50, 100, 150 and 200 Gy and nitrates in concentrations of 0.04 g/dm3 (that corresponds to maximum permissible concentrations for fishery waters), 0.1, 0.25, 0.5, 1.0, 2.5 g/dm3 (that is close to NO3(-) level in water of a reservoir R-17 used as radioactive waste storage of the "Mayak" Production Association) and 5.0 g/dm3 (that is close to NO3(-) level in the water of radioactive waste storage reservoir R-9) on the unicellular green algae Scenedesmus quadricauda growth has been studied in laboratory conditions. It was shown that the joint effects of nitrates and y-radiation had an antagonistic character. Thus, it may be concluded that chemical pollution is the factor limiting the development of green algae in reservoir R-17; probably, both factors, chemical and radiating, are essential to the algocenosis degradation in reservoir R-9.

  13. Localization and Quantification of Callose in the Streptophyte Green Algae Zygnema and Klebsormidium: Correlation with Desiccation Tolerance

    PubMed Central

    Herburger, Klaus; Holzinger, Andreas

    2015-01-01

    Freshwater green algae started to colonize terrestrial habitats about 460 million years ago, giving rise to the evolution of land plants. Today, several streptophyte green algae occur in aero-terrestrial habitats with unpredictable fluctuations in water availability, serving as ideal models for investigating desiccation tolerance. We tested the hypothesis that callose, a β-d-1,3-glucan, is incorporated specifically in strained areas of the cell wall due to cellular water loss, implicating a contribution to desiccation tolerance. In the early diverging genus Klebsormidium, callose was drastically increased already after 30 min of desiccation stress. Localization studies demonstrated an increase in callose in the undulating cross cell walls during cellular water loss, allowing a regulated shrinkage and expansion after rehydration. This correlates with a high desiccation tolerance demonstrated by a full recovery of the photosynthetic yield visualized at the subcellular level by Imaging-PAM. Furthermore, abundant callose in terminal cell walls might facilitate cell detachment to release dispersal units. In contrast, in the late diverging Zygnema, the callose content did not change upon desiccation for up to 3.5 h and was primarily localized in the corners between individual cells and at terminal cells. While these callose deposits still imply reduction of mechanical damage, the photosynthetic yield did not recover fully in the investigated young cultures of Zygnema upon rehydration. The abundance and specific localization of callose correlates with the higher desiccation tolerance in Klebsormidium when compared with Zygnema. PMID:26412780

  14. The Physiological Response of Two Green Calcifying Algae from the Great Barrier Reef towards High Dissolved Inorganic and Organic Carbon (DIC and DOC) Availability

    PubMed Central

    Meyer, Friedrich Wilhelm; Vogel, Nikolas; Teichberg, Mirta; Uthicke, Sven; Wild, Christian

    2015-01-01

    Increasing dissolved inorganic carbon (DIC) concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC) concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7) and DOC (added as glucose in 0 and 294 μmol L-1) on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean acidification. PMID

  15. The physiological response of two green calcifying algae from the Great Barrier Reef towards high dissolved inorganic and organic carbon (DIC and DOC) availability.

    PubMed

    Meyer, Friedrich Wilhelm; Vogel, Nikolas; Teichberg, Mirta; Uthicke, Sven; Wild, Christian

    2015-01-01

    Increasing dissolved inorganic carbon (DIC) concentrations associated with ocean acidification can affect marine calcifiers, but local factors, such as high dissolved organic carbon (DOC) concentrations through sewage and algal blooms, may interact with this global factor. For calcifying green algae of the genus Halimeda, a key tropical carbonate producer that often occurs in coral reefs, no studies on these interactions have been reported. These data are however urgently needed to understand future carbonate production. Thus, we investigated the independent and combined effects of DIC (pCO2 402 μatm/ pHtot 8.0 and 996 μatm/ pHtot 7.7) and DOC (added as glucose in 0 and 294 μmol L-1) on growth, calcification and photosynthesis of H. macroloba and H. opuntia from the Great Barrier Reef in an incubation experiment over 16 days. High DIC concentrations significantly reduced dark calcification of H. opuntia by 130 % and led to net dissolution, but did not affect H. macroloba. High DOC concentrations significantly reduced daily oxygen production of H. opuntia and H. macroloba by 78 % and 43 %, respectively, and significantly reduced dark calcification of H. opuntia by 70%. Combined high DIC and DOC did not show any interactive effects for both algae, but revealed additive effects for H. opuntia where the combination of both factors reduced dark calcification by 162 % compared to controls. Such species-specific differences in treatment responses indicate H. opuntia is more susceptible to a combination of high DIC and DOC than H. macroloba. From an ecological perspective, results further suggest a reduction of primary production for Halimeda-dominated benthic reef communities under high DOC concentrations and additional decreases of carbonate accretion under elevated DIC concentrations, where H. opuntia dominates the benthic community. This may reduce biogenic carbonate sedimentation rates and hence the buffering capacity against further ocean acidification.

  16. New “missing link” genus of the colonial volvocine green algae gives insights into the evolution of oogamy

    PubMed Central

    2014-01-01

    Background The evolution of oogamy from isogamy, an important biological event, can be summarized as follows: morphologically similar gametes (isogametes) differentiated into small “male” and large “female” motile gametes during anisogamy, from which immotile female gametes (eggs) evolved. The volvocine green algae represent a model lineage to study this type of sex evolution and show two types of gametic unions: conjugation between isogametes outside the parental colonies (external fertilization during isogamy) and fertilization between small motile gametes (sperm) and large gametes (eggs) inside the female colony (internal fertilization during anisogamy and oogamy). Although recent cultural studies on volvocine algae revealed morphological diversity and molecular genetic data of sexual reproduction, an intermediate type of union between these two gametic unions has not been identified. Results We identified a novel colonial volvocine genus, Colemanosphaera, which produces bundles of spindle-shaped male gametes through successive divisions of colonial cells. Obligately anisogamous conjugation between male and female motile gametes occurred outside the female colony (external fertilization during anisogamy). This new genus contains 16- or 32-celled spheroidal colonies similar to those of the volvocine genera Yamagishiella and Eudorina. However, Colemanosphaera can be clearly distinguished from these two genera based on its sister phylogenetic position to the enigmatic flattened colonial volvocine Platydorina and external fertilization during anisogamy. Two species of Colemanosphaera were found in a Japanese lake; these species are also distributed in European freshwaters based on a published sequence of an Austrian strain and the original description of Pandorina charkowiensis from Ukraine. Conclusions Based on phylogeny and morphological data, this novel genus exhibits a missing link between Platydorina and the typical spheroidal colonial volvocine members

  17. The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants.

    PubMed

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2003-08-01

    Mitochondrial DNA (mtDNA) has undergone radical changes during the evolution of green plants, yet little is known about the dynamics of mtDNA evolution in this phylum. Land plant mtDNAs differ from the few green algal mtDNAs that have been analyzed to date by their expanded size, long spacers, and diversity of introns. We have determined the mtDNA sequence of Chara vulgaris (Charophyceae), a green alga belonging to the charophycean order (Charales) that is thought to be the most closely related alga to land plants. This 67,737-bp mtDNA sequence, displaying 68 conserved genes and 27 introns, was compared with those of three angiosperms, the bryophyte Marchantia polymorpha, the charophycean alga Chaetosphaeridium globosum (Coleochaetales), and the green alga Mesostigma viride. Despite important differences in size and intron composition, Chara mtDNA strikingly resembles Marchantia mtDNA; for instance, all except 9 of 68 conserved genes lie within blocks of colinear sequences. Overall, our genome comparisons and phylogenetic analyses provide unequivocal support for a sister-group relationship between the Charales and the land plants. Only four introns in land plant mtDNAs appear to have been inherited vertically from a charalean algar ancestor. We infer that the common ancestor of green algae and land plants harbored a tightly packed, gene-rich, and relatively intron-poor mitochondrial genome. The group II introns in this ancestral genome appear to have spread to new mtDNA sites during the evolution of bryophytes and charalean green algae, accounting for part of the intron diversity found in Chara and land plant mitochondria.

  18. A Simple Green Synthesis of Palladium Nanoparticles with Sargassum Alga and Their Electrocatalytic Activities Towards Hydrogen Peroxide.

    PubMed

    Momeni, S; Nabipour, I

    2015-08-01

    This study presents the synthesis of palladium nanoparticles (PdNPs) using the extract derived from the marine alga, Sargassum bovinum, collected from Persian Gulf area. Water-soluble compounds that exist in the marine alga extract were the main cause of the reduction of palladium ions to Pd nanoparticles. The basic properties of PdNPs produced in this method were confirmed by UV-visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) analysis, and Fourier transform infrared spectroscopy (FTIR). TEM confirmed the monodispersed and octahedral shape of PdNPs within the size ranges from 5 to 10 nm. Catalytic performance of the biosynthetic PdNPs was investigated by electrochemical reduction of hydrogen peroxide (H2O2). PdNP-modified carbon ionic liquid electrode (PdNPs/CILE) was developed as a nonenzymatic sensor for the determination of hydrogen peroxide. Amperometric measurements showed that PdNPs/CILE is a reliable sensor for the detection of hydrogen peroxide in the range of 5.0 μM-15.0 mM with a sensitivity of 284.35 mAmM(-1) cm(-2) and a detection limit of 1.0 μM. Moreover, PdNPs/CILE exhibits a wide linear range, high sensitivity and selectivity, and excellent stability for the detection of H2O2 in aqueous solutions.

  19. Three-dimensional ultrastructural study of oil and astaxanthin accumulation during encystment in the green alga Haematococcus pluvialis.

    PubMed

    Wayama, Marina; Ota, Shuhei; Matsuura, Hazuki; Nango, Nobuhito; Hirata, Aiko; Kawano, Shigeyuki

    2013-01-01

    Haematococcus pluvialis is a freshwater species of green algae and is well known for its accumulation of the strong antioxidant astaxanthin, which is used in aquaculture, various pharmaceuticals, and cosmetics. High levels of astaxanthin are present in cysts, which rapidly accumulate when the environmental conditions become unfavorable for normal cell growth. It is not understood, however, how accumulation of high levels of astaxanthin, which is soluble in oil, becomes possible during encystment. Here, we performed ultrastructural 3D reconstruction based on over 350 serial sections per cell to visualize the dynamics of astaxanthin accumulation and subcellular changes during the encystment of H. pluvialis. This study showcases the marked changes in subcellular elements, such as chloroplast degeneration, in the transition from green coccoid cells to red cyst cells during encystment. In green coccoid cells, chloroplasts accounted for 41.7% of the total cell volume, whereas the relative volume of astaxanthin was very low (0.2%). In contrast, oil droplets containing astaxanthin predominated in cyst cells (52.2%), in which the total chloroplast volume was markedly decreased (9.7%). Volumetric observations also demonstrated that the relative volumes of the cell wall, starch grains, pyrenoids, mitochondria, the Golgi apparatus, and the nucleus in a cyst cell are smaller than those in green coccid cells. Our data indicated that chloroplasts are degraded, resulting in a net-like morphology, but do not completely disappear, even at the red cyst stage.

  20. Response of marine and freshwater algae to nitric acid and elevated carbon dioxide levels simulating environmental effects of bolide impact

    NASA Technical Reports Server (NTRS)

    Boston, P. J.

    1988-01-01

    One of the intriguing facets of the Cretaceous-Tertiary extinction is the apparently selective pattern of mortality amongst taxa. Some groups of organisms were severely affected and some remained relatively unscathed as they went through the K/T boundary. While there is argument concerning the exact interpretation of the fossil record, one of the best documented extinctions at the Cretaceous-Tertiary boundary is that of the calcareous nannoplankton. These organisms include coccolithic algae and foraminiferans. Attempts to explain their decline at the K/T boundary center around chemistry which could affect their calcium carbonate shells while leaving their silica-shelled cousins less affected or unaffected. Two environmental consequences of an extraterrestrial body impact which were suggested are the production of large quantities of nitrogen oxides generated by the shock heating of the atmosphere and the possible rise in CO2 from the dissolution of CaCO3 shells. Both of these phenomena would acidify the upper layers of the oceans and bodies of freshwater not otherwise buffered. The effects of nitric acid, carbon dioxide, or both factors on the growth and reproduction of calcareous marine coccoliths and non-calcareous marine and freshwater species of algae were considered. These experiments demonstrate that nitric acid and carbon dioxide have significant effects on important aspects of the physiology and reproduction of modern algae representative of extinct taxa thought to have suffered significant declines at the Cretaceous-Tertiary boundary. Furthermore, calcareous species showed more marked effects than siliceous species and marine species tested were more sensitive than freshwater species.

  1. Biosorption of copper, cobalt and nickel by marine brown alga Sargassum sp. in fixed-bed column.

    PubMed

    Esmaeili, Akbar; Soufi, Samira; Rustaiyan, Abdolhossein; Safaiyan, Shila; Mirian, Simin; Fallahe, Gila; Moazami, Nasrin

    2007-11-01

    The biosorption of copper, cobalt and nickel by marine brown alga Sargassum sp. were investigated in a fixed-bed column (temperature = 30 degrees C; different pH). Langmuir and Freundlich sorption models were used to represent the equilibrium data. The maximum Cu2+ uptake was obtained at pH 4 and the optimum Co2+ and Ni2+ uptake were at pH 7. Different dosage of biosorbent did not have an effect on the results, but the 3.5 and 5 g of biosorbent were shown higher uptake. The metal removal rates were rapid, with about 80% of the total adsorption tacking place within 40 min.

  2. Effect of contact angle hysteresis on the removal of the sporelings of the green alga Ulva from the fouling-release coatings synthesized from polyolefin polymers.

    PubMed

    Ucar, Ikrime O; Cansoy, C Elif; Erbil, H Yildirim; Pettitt, Michala E; Callow, Maureen E; Callow, James A

    2010-09-01

    Wettability is one of the surface characteristics that is controlled by the chemical composition and roughness of a surface. A number of investigations have explored the relationship between water contact angle and surface free energy of polymeric coatings with the settlement (attachment) and adhesion strength of various marine organisms. However, the relationship between the contact angle hysteresis and fouling-release property is generally overlooked. In the present work, coatings were prepared by using commercial hydrophobic homopolymer and copolymer polyolefins, which have nearly the same surface free energy. The effects of contact angle hysteresis, wetting hysteresis, and surface free energy on the fouling-release properties for sporelings of the green alga Ulva from substrates were then examined quantitatively under a defined shear stress in a water channel. The ease of removal of sporelings under shear stress from the polymer surfaces was in the order of PP>HDPE>PPPE>EVA-12 and strongly and positively correlated with contact angle and wetting hysteresis; i.e., the higher the hysteresis, the greater the removal.

  3. Isolation, purification, and identification of antialgal substances in green alga Ulva prolifera for antialgal activity against the common harmful red tide microalgae.

    PubMed

    Sun, Ying-ying; Wang, Hui; Guo, Gan-lin; Pu, Yin-fang; Yan, Bin-lun; Wang, Chang-hai

    2016-01-01

    Ten compounds (1~10) were successfully isolated from green algae Ulva prolifera through the combination of silica gel column chromatography, Sephadex LH-20 column chromatography and repeated preparative thin-layer chromatography. These ten compounds showed antialgal activity against red tide microalgae. Among them, compounds 3, 6, and 7 showed stronger antialgal activity against red tide microalgae. Furthermore, their structure was identified on the basis of spectroscopic data. There are three glycoglycerolipids: 1-O-octadecanoic acid-3-O-β-D-galactopyranosyl glycerol (2), 1-O-palmitoyl-3-O-β-D-galactopyranosyl glycerol (4), and 1-O-palmitoyl-2-O-oleoyl-3-O-β-D-galactopyranosyl glycerol (5); two monoglycerides: glycerol monopalmitate (1), 9-hexadecenoic acid, 2,3-dihydroxypropyl ester (3); two terpenoids: loliolide (6) and lsololiolide (7); one lipid-soluble pigments: zeaxanthin (8); one sterol: cholest-5-en-3-ol (9); and one alkaloid: pyrrolopiperazine-2,5-dione (10). These compounds were isolated from U. prolifera for the first time, and compounds 2, 3, 5, and 8 were isolated from marine macroalgae for the first time.

  4. Transcriptomics of Desiccation Tolerance in the Streptophyte Green Alga Klebsormidium Reveal a Land Plant-Like Defense Reaction

    PubMed Central

    Holzinger, Andreas; Kaplan, Franziska; Blaas, Kathrin; Zechmann, Bernd; Komsic-Buchmann, Karin; Becker, Burkhard

    2014-01-01

    functions such as cell division, DNA replication, cofactor biosynthesis, and amino acid biosynthesis were down-regulated. Significance This is the first study investigating the desiccation transcriptome of a streptophyte green alga. Our results indicate that the cellular response is similar to embryophytes, suggesting that embryophytes inherited a basic cellular desiccation tolerance from their streptophyte predecessors. PMID:25340847

  5. Heavy metal concentrations in marine green, brown, and red seaweeds from coastal waters of Yemen, the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Al-Shwafi, Nabil A.; Rushdi, Ahmed I.

    2008-08-01

    The purpose of this study was to investigate the concentration levels of heavy metals in different species of the main three marine algal divisions from the Gulf of Aden coastal waters, Yemen. The divisions included Chlorophyta—green plants ( Halimeda tuna, Rhizoclonium kochiamum, Caldophora koiei, Enteromorpha compressa, and Caulerpa racemosa species), Phaeophyta—brown seaweeds ( Padina boryana, Turbinaria elatensis, Sargassum binderi, Cystoseira myrica, and Sargassum boveanum species), and Rhodophyta—red seaweeds ( Hypnea cornuta, Champia parvula, Galaxaura marginate, Laurencia paniculata, Gracilaria foliifere, and species). The heavy metals, which included cadmium (Cd), cobalt (Co), copper (Cu), chromium (Cr), Iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn), and vanadium (V) were measured by Atomic Absorption Spectrophotometer (AAs). The concentrations of heavy metals in all algal species are in the order of Fe >> Cu > Mn > Cr > Zn > Ni > Pb > Cd > V > Co. The results also showed that the uptake of heavy metals by different marine algal divisions was in the order of Chlorophyta > Phaeophyta > Rhodophyta. These heavy metals were several order of magnitude higher than the concentrations of the same metals in seawater. This indicates that marine alga progressively uptake heavy metals from seawater.

  6. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  7. Determination of growth rate depression of some green algae by atrazine

    SciTech Connect

    Hersh, C.M.; Crumpton, W.G.

    1987-12-01

    A common contaminant of surface waters of agricultural regions is the triazine herbicide, atrazine (2-chloro-4-ethylamino-6-isoproplyamino-s-triazine). Atrazine effectively inhibits growth and photosynthesis of most plants, including freshwater algae. Both depression of growth rate and reduced yield have been used as parameters in studies of the effects of atrazine on algal growth. Considerable variation exists among algal toxicity methods despite attempts at standardization. Experimental endpoints range from percent inhibitions to EC50s. Algae from two different Iowa springs were the subjects of a study of naturally occurring atrazine tolerance. The authors report here the results of two aspects of that study: development of a quick method of assessing toxin effects on algal growth, and investigation of a ecologically meaningful endpoint for toxin-growth experiments.

  8. Anti-cancer effects of blue-green alga Spirulina platensis, a natural source of bilirubin-like tetrapyrrolic compounds.

    PubMed

    Koníčková, Renata; Vaňková, Kateřina; Vaníková, Jana; Váňová, Kateřina; Muchová, Lucie; Subhanová, Iva; Zadinová, Marie; Zelenka, Jaroslav; Dvořák, Aleš; Kolář, Michal; Strnad, Hynek; Rimpelová, Silvie; Ruml, Tomáš; J Wong, Ronald; Vítek, Libor

    2014-01-01

    Spirulina platensis is a blue-green alga used as a dietary supplement because of its hypocholesterolemic properties. Among other bioactive substances, it is also rich in tetrapyrrolic compounds closely related to bilirubin molecule, a potent antioxidant and anti-proliferative agent. The aim of our study was to evaluate possible anticancer effects of S. platensis and S. platensis-derived tetrapyrroles using an experimental model of pancreatic cancer. The anti-proliferative effects of S. platensis and its tetrapyrrolic components [phycocyanobilin (PCB) and chlorophyllin, a surrogate molecule for chlorophyll A] were tested on several human pancreatic cancer cell lines and xenotransplanted nude mice. The effects of experimental therapeutics on mitochondrial reactive oxygen species (ROS) production and glutathione redox status were also evaluated. Compared to untreated cells, experimental therapeutics significantly decreased proliferation of human pancreatic cancer cell lines in vitro in a dose-dependent manner (from 0.16 g•L-1 [S. platensis], 60 μM [PCB], and 125 μM [chlorophyllin], p<0.05). The anti-proliferative effects of S. platensis were also shown in vivo, where inhibition of pancreatic cancer growth was evidenced since the third day of treatment (p < 0.05). All tested compounds decreased generation of mitochondrial ROS and glutathione redox status (p = 0.0006; 0.016; and 0.006 for S. platensis, PCB, and chlorophyllin, respectively). In conclusion, S. platensis and its tetrapyrrolic components substantially decreased the proliferation of experimental pancreatic cancer. These data support a chemopreventive role of this edible alga. Furthermore, it seems that dietary supplementation with this alga might enhance systemic pool of tetrapyrroles, known to be higher in subjects with Gilbert syndrome.

  9. Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta).

    PubMed

    Škaloud, Pavel; Friedl, Thomas; Hallmann, Christine; Beck, Andreas; Dal Grande, Francesco

    2016-08-01

    Coccoid green algae traditionally classified in Dictyochloropsis have a complex, reticulate chloroplast, when mature, without a pyrenoid. They occupy remarkably diverse ecological niches as free-living organisms or in association with lichen-forming fungi and were recently shown to form two distinct lineages within Trebouxiophyceae. We used a polyphasic approach to revise the taxonomy of the genus. Based on phylogenetic analysis of the 18S rRNA gene, and detailed morphological investigation using comparative conventional light and confocal microscopy, we have assigned these lineages to two genera, Dictyochloropsis and Symbiochloris gen. nov. We have reconsidered the diagnostic generic features as follows: Dictyochloropsis comprises only free-living algae with a reticulate chloroplast, forming lobes in a parallel arrangement at some ontogenetic stages, and which reproduce only by means of autospores. This agrees with Geitler's original diagnosis of Dictyochloropsis, but not with the later emendation by Tschermak-Woess. Consequently, the species of Dictyochloropsis sensu Tschermak-Woess are assigned to Symbiochloris, with new combinations proposed. Symbiochloris encompasses free-living and/or lichenized algae with lobed chloroplasts and that reproduce by forming zoospores characterized by two subapical isokont flagella that emerge symmetrically near the flattened apex. In addition, using coalescent-based approaches, morphological characters and secondary structure of ITS transcripts, we inferred species boundaries and taxonomic relationships within the newly proposed genera. Two species of Dictyochloropsis and nine species of Symbiochloris are delimited, including the newly described species D. asterochloroides, S. handae, S. tropica, and S. tschermakiae. Our results further support the non-monophyly of autosporine taxa within Trebouxiophyceae.

  10. Promotive effect of se on the growth and antioxidation of a blue-green alga Spirulina maxima

    NASA Astrophysics Data System (ADS)

    Zhi-Gang, Zhou; Zhi-Li, Liu

    1998-12-01

    Cultures of a blue-green alga Spirulina maxima (Setch. et Gard.) Geitler with various concentrations of Se in Zarrouk's medium showed that not higher than 40 mg/L Se could promote its growth. The present experiments showed that S. maxima grown under normal conditions, has an oxidant stress defence system for hydrogen peroxide (H2O2) removal, which is the Halliwell-Asada pathway. When 4 to 20 mg/L Se was added to the algal medium, this pathway was replaced by a so-called Sestressed pathway containing GSH peroxidase (GSH-POD). As a result of the occurrence of both higher activity of GSH-POD and lower levels of hydroxyl radical (OH·), the Se-stressed pathway scavenged H2O2 so effectively that the growth of S. maxima was promoted by 4 to 20 mg/L Se. While GSH-POD activity of the alga disappeared at 40 mg/L Se, the recovery of ascorbate peroxidase was observed. The lower levels of ascorbic acid and GSH made the Halliwell-Asada pathway for scavenging H2O2 less effective, while the highest activity of catalase might be responsible in part for the H2O2 removal, causing the level of OH· in S. maxima grown at 40 mg/L Se to be much higher than the OH· level in this alga grown at 4 to 20 mg/L Se, but lower than that in the control. The OH· level changes caused the growth of S. maxima cultured at 40 mg/L Se to increase slightly to close to that of the control.

  11. Purification and characterization of a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from brown algae.

    PubMed

    Yagi, Hisashi; Fujise, Asako; Itabashi, Narumi; Ohshiro, Takashi

    2016-12-01

    The application of marine resources, instead of fossil fuels, for biomass production is important for building a sustainable society. Seaweed is valuable as a source of marine biomass for producing biofuels such as ethanol, and can be used in various fields. Alginate is an anionic polysaccharide that forms the main component of brown algae. Various alginate lyases (e.g. exo- and endo-types and oligoalginate lyase) are generally used to degrade alginate. We herein describe a novel alginate lyase, AlgC-PL7, which belongs to the polysaccharide lyase 7 family. AlgC-PL7 was isolated from the halophilic Gram-negative bacterium Cobetia sp. NAP1 collected from the brown algae Padina arborescens Holmes. The optimal temperature and pH for AlgC-PL7 activity were 45 °C and 8, respectively. Additionally, AlgC-PL7 was thermostable and salt-tolerant, exhibited broad substrate specificity, and degraded alginate into monosaccharides. Therefore, AlgC-PL7 is a promising enzyme for the production of biofuels.

  12. Hydrogen peroxide photoproduction by immobilized cells of the blue-green alga Anabaena variabilis: A way to solar energy conversion

    SciTech Connect

    Morales, I.; La Rosa, F.F. de )

    1992-07-01

    A photosystem for hydrogen peroxide photoproduction formed by immobilized cells of the blue-green alga, Anabaena variabilis and the redox mediator methyl viologen is described. Hydrogen peroxide is produced in a redox catalyst cycle in which methyl viologen is reduced by electrons from water obtained by the photosynthetic apparatus of the algae using solar energy, and reoxidized by the introduction of oxygen into the solution. Hydrogen peroxide is produced during methyl viologen re-oxidation in two steps by means of the formation of superoxide. Experimental conditions for maximum photoproduction (catalyst charge, chlorophyll, and agar final concentration for cell immobilization) have been investigated using a continuous photosystem with immobilized A. variabilis as photocatalyst. Under the determined optimum conditions, the photosystem with immobilized A. variabilis is photocatalyst. Under the determined optimum conditions, the photosystem produces hydrogen peroxide at a rate of 100 {mu}moles/mg Chl{center dot}h, maintaining the production for several hours, and with an energy conversion efficiency of about 2%. Taking into account the use of hydrogen peroxide as fuel, this photosystem can be a useful tool in the storage of solar energy.

  13. Selenium Accumulation in Unicellular Green Alga Chlorella vulgaris and Its Effects on Antioxidant Enzymes and Content of Photosynthetic Pigments

    PubMed Central

    Sun, Xian; Zhong, Yu; Huang, Zhi; Yang, Yufeng

    2014-01-01

    The aim of the present study was to investigate selenite effects in the unicellular green algae Chlorella vulgaris as a primary producer and the relationship with intracellular bioaccumulation. The effects of selenite were evaluated by measuring the effect of different selenite concentrations on algal growth during a 144 h exposure period. It was found that lower Se concentrations (≤75 mg L−1) positively promoted C. vulgaris growth and acted as antioxidant by inhibiting lipid peroxidation (LPO) and intracellular reactive oxygen species (ROS). The antioxidative effect was associated with an increase in guaiacol peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD) and photosynthetic pigments. Meanwhile, significant increase in the cell growth rate and organic Se content was also detected in the algae. In contrast, these changes were opposite in C. vulgaris exposed to Se higher than 100 mg L−1. The antioxidation and toxicity appeared to be correlated to Se bioaccumulation, which suggests the appropriate concentration of Se in the media accumulation of C. vulgaris should be 75 mg L−1. Taken together, C. vulgaris possesses tolerance to Se, and Se-Chlorella could be developed as antioxidative food for aquaculture and human health. PMID:25375113

  14. Toxicity of Cu (II) to the green alga Chlorella vulgaris: a perspective of photosynthesis and oxidant stress.

    PubMed

    Chen, Zunwei; Song, Shufang; Wen, Yuezhong; Zou, Yuqin; Liu, Huijun

    2016-09-01

    The toxic effects of Cu (II) on the freshwater green algae Chlorella vulgaris and its chloroplast were investigated by detecting the responses of photosynthesis and oxidant stress. The results showed that Cu (II) arrested the growth of C. vulgaris and presented in a concentration- and time-dependent trend and the SRichards 2 model fitted the inhibition curve best. The chlorophyll fluorescence parameters, including qP, Y (II), ETR, F v /F m , and F v /F 0, were stimulated at low concentration of Cu (II) but declined at high concentration, indicating the photosystem II (PSII) of C. vulgaris was destroyed by Cu (II). The chloroplasts were extracted, and the Hill reaction activity (HRA) of chloroplast was significantly decreased with the increasing Cu (II) concentration under both illuminating and dark condition, and faster decline speed was observed under dark condition. Activities of superoxide dismutase (SOD) and catalase (CAT) and malondialdehyde (MDA) content were also significantly decreased at high concentration Cu (II), companied with a large number of reactive oxygen species (ROS) production. All these results indicated a severe oxidative stress on algal cells occurred as well as the effect on photosynthesis, thus inhibiting the growth of algae, which providing sights to evaluate the phytotoxicity of Cu (II).

  15. Selenium accumulation in unicellular green alga Chlorella vulgaris and its effects on antioxidant enzymes and content of photosynthetic pigments.

    PubMed

    Sun, Xian; Zhong, Yu; Huang, Zhi; Yang, Yufeng

    2014-01-01

    The aim of the present study was to investigate selenite effects in the unicellular green algae Chlorella vulgaris as a primary producer and the relationship with intracellular bioaccumulation. The effects of selenite were evaluated by measuring the effect of different selenite concentrations on algal growth during a 144 h exposure period. It was found that lower Se concentrations (≤ 75 mg L(-1)) positively promoted C. vulgaris growth and acted as antioxidant by inhibiting lipid peroxidation (LPO) and intracellular reactive oxygen species (ROS). The antioxidative effect was associated with an increase in guaiacol peroxidase (GPX), catalase (CAT), superoxide dismutase (SOD) and photosynthetic pigments. Meanwhile, significant increase in the cell growth rate and organic Se content was also detected in the algae. In contrast, these changes were opposite in C. vulgaris exposed to Se higher than 100 mg L-1. The antioxidation and toxicity appeared to be correlated to Se bioaccumulation, which suggests the appropriate concentration of Se in the media accumulation of C. vulgaris should be 75 mg L-1. Taken together, C. vulgaris possesses tolerance to Se, and Se-Chlorella could be developed as antioxidative food for aquaculture and human health.

  16. The sporulation of the green alga Ulva prolifera is controlled by changes in photosynthetic electron transport chain

    PubMed Central

    Wang, Hui; Lin, Apeng; Gu, Wenhui; Huan, Li; Gao, Shan; Wang, Guangce

    2016-01-01

    Sporulation and spore release are essential phases of the life cycle in algae and land plants. Ulva prolifera, which is an ideal organism for studying sporulation and spore release, was used as the experimental material in the present study. The determination of photosynthetic parameters, combined with microscopic observation, treatment with photosynthetic inhibitors, limitation of carbon acquisition, and protein mass spectrometry, was employed in this experiment. Cycle electron transport (CEF) was found enhanced at the onset of sporangia formation. The inhibition effect of dibromothymoquinone (DBMIB) towards sporulation was always strong during the sporulation process whereas the inhibition effect of 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU) was continuously declined accompanied with the progress of sporulation. The changes of photosynthesis resulted from the limitation of CO2 acquisition could stimulate sporulation onset. Quantitative protein analysis showed that enzymes involved in carbon fixation, including RUBISCO and pyruvate orthophosphate dikinase, declined during sporogenesis, while proteins involved in sporulation, including tubulin and centrin, increased. These results suggest that enhanced cyclic electron flow (CEF) and oxidation of the plastoquinone pool are essential for sporangia formation onset, and changes in photosynthetic electron transport chain have significant impacts on sporulation of the green algae. PMID:27102955

  17. The sex-inducing pheromone and wounding trigger the same set of genes in the multicellular green alga Volvox.

    PubMed

    Amon, P; Haas, E; Sumper, M

    1998-05-01

    The sex-inducing pheromone of the multicellular green alga Volvox carteri is a glycoprotein that triggers development of males and females at a concentration <10(-16) M. By differential screening of a cDNA library, two novel genes were identified that are transcribed under the control of this pheromone. Unexpectedly, one gene product was characterized as a lysozyme/chitinase, and the other gene product was shown to encode a polypeptide with a striking modular composition. This polypeptide has a cysteine protease domain separated by an extensin-like module from three repeats of a chitin binding domain. In higher plants, similar protein families are known to play an important role in defense against fungi. Indeed, we found that the same set of genes triggered by the sexual pheromone was also inducible in V. carteri by wounding.

  18. Differential larval settlement responses of Porites astreoides and Acropora palmata in the presence of the green alga Halimeda opuntia

    NASA Astrophysics Data System (ADS)

    Olsen, K.; Sneed, J. M.; Paul, V. J.

    2016-06-01

    Settlement is critical to maintaining coral cover on reefs, yet interspecific responses of coral planulae to common benthic macroalgae are not well characterized. Larval survival and settlement of two Caribbean reef-building corals, the broadcast-spawner Acropora palmata and the planulae-brooder Porites astreoides, were quantified following exposure to plastic algae controls and the green macroalga Halimeda opuntia. Survival and settlement rates were not significantly affected by the presence of H. opuntia in either species. However, ~10 % of P. astreoides larvae settled on the surface of the macroalga, whereas larvae of A. palmata did not. It is unlikely that corals that settle on macroalgae will survive post-settlement; therefore, H. opuntia may reduce the number of P. astreoides and other non-discriminatory larvae that survive to adulthood. Our results suggest that the presence of macroalgae on impacted reefs can have unexpected repercussions for coral recruitment and highlight discrepancies in settlement specificity between corals with distinct life history strategies.

  19. Cooperative processing of primary miRNAs by DUS16 and DCL3 in the unicellular green alga Chlamydomonas reinhardtii

    PubMed Central

    Cerutti, Heriberto

    2017-01-01

    ABSTRACT We have previously reported that the RNA-binding protein Dull slicer 16 (DUS16) plays a key role in the processing of primary miRNAs (pri-miRNAs) in the unicellular green alga Chlamydomonas reinhardtii. In the present report, we elaborate on the interaction of DUS16 with Dicer-like 3 (DCL3) during pri-miRNA processing. Comprehensive analyses of small RNA libraries derived from mutant and wild-type algal strains allowed the de novo prediction of 35 pri-miRNA genes, including 9 previously unknown ones. The pri-miRNAs dependent on DUS16 for processing largely overlapped with those dependent on DCL3. Our findings suggest that DUS16 and DCL3 work cooperatively, presumably as components of a microprocessor complex, in the processing of the majority of pri-miRNAs in C. reinhardtii. PMID:28289490

  20. The sex-inducing pheromone and wounding trigger the same set of genes in the multicellular green alga Volvox.

    PubMed Central

    Amon, P; Haas, E; Sumper, M

    1998-01-01

    The sex-inducing pheromone of the multicellular green alga Volvox carteri is a glycoprotein that triggers development of males and females at a concentration <10(-16) M. By differential screening of a cDNA library, two novel genes were identified that are transcribed under the control of this pheromone. Unexpectedly, one gene product was characterized as a lysozyme/chitinase, and the other gene product was shown to encode a polypeptide with a striking modular composition. This polypeptide has a cysteine protease domain separated by an extensin-like module from three repeats of a chitin binding domain. In higher plants, similar protein families are known to play an important role in defense against fungi. Indeed, we found that the same set of genes triggered by the sexual pheromone was also inducible in V. carteri by wounding. PMID:9596636