Science.gov

Sample records for marine isolate pseudoalteromonas

  1. Draft Genome Sequence of Marine Sponge Symbiont Pseudoalteromonas luteoviolacea IPB1, Isolated from Hilo, Hawaii.

    PubMed

    Sakai-Kawada, Francis E; Yakym, Christopher J; Helmkampf, Martin; Hagiwara, Kehau; Ip, Courtney G; Antonio, Brandi J; Armstrong, Ellie; Ulloa, Wesley J; Awaya, Jonathan D

    2016-09-22

    We report here the 6.0-Mb draft genome assembly of Pseudoalteromonas luteoviolacea strain IPB1 that was isolated from the Hawaiian marine sponge Iotrochota protea Genome mining complemented with bioassay studies will elucidate secondary metabolite biosynthetic pathways and will help explain the ecological interaction between host sponge and microorganism.

  2. MALDI-TOF Mass Spectrometry Discriminates Known Species and Marine Environmental Isolates of Pseudoalteromonas.

    PubMed

    Emami, Kaveh; Nelson, Andrew; Hack, Ethan; Zhang, Jinwei; Green, David H; Caldwell, Gary S; Mesbahi, Ehsan

    2016-01-01

    The genus Pseudoalteromonas constitutes an ecologically significant group of marine Gammaproteobacteria with potential biotechnological value as producers of bioactive compounds and of enzymes. Understanding their roles in the environment and bioprospecting for novel products depend on efficient ways of identifying environmental isolates. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) biotyping has promise as a rapid and reliable method of identifying and distinguishing between different types of bacteria, but has had relatively limited application to marine bacteria and has not been applied systematically to Pseudoalteromonas. Therefore, we constructed a MALDI-TOF MS database of 31 known Pseudoalteromonas species, to which new isolates can be compared by MALDI-TOF biotyping. The ability of MALDI-TOF MS to distinguish between species was scrutinized by comparison with 16S rRNA gene sequencing. The patterns of similarity given by the two approaches were broadly but not completely consistent. In general, the resolution of MALDI-TOF MS was greater than that of 16S rRNA gene sequencing. The database was tested with 13 environmental Pseudoalteromonas isolates from UK waters. All of the test strains could be identified to genus level by MALDI-TOF MS biotyping, but most could not be definitely identified to species level. We conclude that several of these isolates, and possibly most, represent new species. Thus, further taxonomic investigation of Pseudoalteromonas is needed before MALDI-TOF MS biotyping can be used reliably for species identification. It is, however, a powerful tool for characterizing and distinguishing among environmental isolates and can make an important contribution to taxonomic studies.

  3. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora

    NASA Astrophysics Data System (ADS)

    Genicot, Sabine; Groisillier, Agnès; Rogniaux, Hélène; Meslet-Cladière, Laurence; Barbeyron, Tristan; Helbert, William

    2014-08-01

    Carrageenans are sulfated polysaccharides extracted from the cell wall of some marine red algae. These polysaccharides are widely used as gelling, stabilizing, and viscosifying agents in the food and pharmaceutical industries. Since the rheological properties of these polysaccharides depend on their sulfate content, we screened several isolated marine bacteria for carrageenan specific sulfatase activity, in the aim of developing enzymatic bioconversion of carrageenans. As a result of the screening, an iota-carrageenan sulfatase was detected in the cell-free lysate of the marine bacterium Pseudoalteromonas carrageenovora strain PscT. It was purified through Phenyl Sepharose and Diethylaminoethyl Sepharose chromatography. The pure enzyme, Psc ?-CgsA, was characterized. It had a molecular weight of 115.9 kDaltons and exhibited an optimal activity/stability at pH ~8.3 and at 40°C ± 5°C. It was inactivated by phenylmethylsulfonyl fluoride but not by ethylene diamine tetraacetic acid. Psc ?-CgsA specifically catalyzes the hydrolysis of the 4-S sulfate of iota-carrageenan. The purified enzyme could transform iota-carrageenan into hybrid iota-/alpha- or pure alpha-carrageenan under controlled conditions. The gene encoding Psc ?-CgsA, a protein of 1038 amino acids, was cloned into Escherichia coli, and the sequence analysis revealed that Psc ?-CgsA has more than 90% sequence identity with a putative uncharacterized protein Q3IKL4 from the marine strain Pseudoalteromonas haloplanktis TAC 125, but besides this did not share any homology to characterized sulfatases. Phylogenetic studies show that P. carrageenovora sulfatase thus represents the first characterized member of a new sulfatase family, with a C-terminal domain having strong similarity with the superfamily of amidohydrolases, highlighting the still unexplored diversity of marine polysaccharide modifying enzymes.

  4. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora

    PubMed Central

    Genicot, Sabine M.; Groisillier, Agnès; Rogniaux, Hélène; Meslet-Cladière, Laurence; Barbeyron, Tristan; Helbert, William

    2014-01-01

    Carrageenans are sulfated polysaccharides extracted from the cell wall of some marine red algae. These polysaccharides are widely used as gelling, stabilizing, and viscosifying agents in the food and pharmaceutical industries. Since the rheological properties of these polysaccharides depend on their sulfate content, we screened several isolated marine bacteria for carrageenan specific sulfatase activity, in the aim of developing enzymatic bioconversion of carrageenans. As a result of the screening, an iota-carrageenan sulfatase was detected in the cell-free lysate of the marine bacterium Pseudoalteromonas carrageenovora strain PscT. It was purified through Phenyl Sepharose and Diethylaminoethyl Sepharose chromatography. The pure enzyme, Psc ι-CgsA, was characterized. It had a molecular weight of 115.9 kDaltons and exhibited an optimal activity/stability at pH ~8.3 and at 40 ± 5°C. It was inactivated by phenylmethylsulfonyl fluoride but not by ethylene diamine tetraacetic acid. Psc ι-CgsA specifically catalyzes the hydrolysis of the 4-S sulfate of iota-carrageenan. The purified enzyme could transform iota-carrageenan into hybrid iota-/alpha- or pure alpha-carrageenan under controlled conditions. The gene encoding Psc ι-CgsA, a protein of 1038 amino acids, was cloned into Escherichia coli, and the sequence analysis revealed that Psc ι-CgsA has more than 90% sequence identity with a putative uncharacterized protein Q3IKL4 from the marine strain Pseudoalteromonas haloplanktis TAC 125, but besides this did not share any homology to characterized sulfatases. Phylogenetic studies show that P. carrageenovora sulfatase thus represents the first characterized member of a new sulfatase family, with a C-terminal domain having strong similarity with the superfamily of amidohydrolases, highlighting the still unexplored diversity of marine polysaccharide modifying enzymes. PMID:25207269

  5. Exopolysaccharide production by a marine Pseudoalteromonas sp. strain isolated from Madeira Archipelago ocean sediments.

    PubMed

    Roca, Christophe; Lehmann, Mareen; Torres, Cristiana A V; Baptista, Sílvia; Gaudêncio, Susana P; Freitas, Filomena; Reis, Maria A M

    2016-06-25

    Exopolysaccharides (EPS) are polymers excreted by some microorganisms with interesting properties and used in many industrial applications. A new Pseudoalteromonas sp. strain, MD12-642, was isolated from marine sediments and cultivated in bioreactor in saline culture medium containing glucose as carbon source. Its ability to produce EPS under saline conditions was demonstrated reaching an EPS production of 4.4g/L within 17hours of cultivation, corresponding to a volumetric productivity of 0.25g/Lh, the highest value so far obtained for Pseudoalteromonas sp. strains. The compositional analysis of the EPS revealed the presence of galacturonic acid (41-42mol%), glucuronic acid (25-26mol%), rhamnose (16-22mol%) and glucosamine (12-16mol%) sugar residues. The polymer presents a high molecular weight (above 1000kDa). These results encourage the biotechnological exploitation of strain MD12-642 for the production of valuable EPS with unique composition, using saline by-products/wastes as feedstocks. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Identification of a Marine Agarolytic Pseudoalteromonas Isolate and Characterization of Its Extracellular Agarase

    PubMed Central

    Vera, Jorge; Alvarez, Raul; Murano, Erminio; Slebe, Juan Carlos; Leon, Oscar

    1998-01-01

    The phenotypic and agarolytic features of an unidentified marine bacteria that was isolated from the southern Pacific coast was investigated. The strain was gram negative, obligately aerobic, and polarly flagellated. On the basis of several phenotypic characters and a phylogenetic analysis of the genes coding for the 16S rRNA, this strain was identified as Pseudoalteromonas antarctica strain N-1. In solid agar, this isolate produced a diffusible agarase that caused agar softening around the colonies. An extracellular agarase was purified by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography on DEAE-cellulose. The purified protein was determined to be homogeneous on the basis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and it had a molecular mass of 33 kDa. The enzyme hydrolyzed the β-1,4-glycosydic linkages of agar, yielding neoagarotetraose and neoagarohexaose as the main products, and exhibited maximal activity at pH 7. The enzyme was stable at temperatures up to 30°C, and its activity was not affected by salt concentrations up to 0.5 M NaCl. PMID:9797294

  7. Life-Style and Genome Structure of Marine Pseudoalteromonas Siphovirus B8b Isolated from the Northwestern Mediterranean Sea

    SciTech Connect

    Lara, Elena; Holmfeldt, Karin; Solonenko, Natalie; Sà, Elisabet Laia; Ignacio-Espinoza, J. Cesar; Cornejo-Castillo, Francisco M.; Verberkmoes, Nathan C.; Vaqué, Dolors; Sullivan, Matthew B.; Acinas, Silvia G.; Kellogg, Christina A.

    2015-01-14

    Marine viruses (phages) alter bacterial diversity and evolution with impacts on marine biogeochemical cycles, and yet few well-developed model systems limit opportunities for hypothesis testing. We isolate phage B8b from the Mediterranean Sea using Pseudoalteromonas sp. QC-44 as a host and characterize it using myriad techniques. Morphologically, phage B8b was classified as a member of the Siphoviridae family. One-step growth analyses showed that this siphovirus had a latent period of 70 min and released 172 new viral particles per cell. In the host range analysis against 89 bacterial host strains revealed that phage B8b infected 3 Pseudoalteromonas strains (52 tested, >99.9% 16S rRNA gene nucleotide identity) and 1 non-Pseudoaltermonas strain belonging to Alteromonas sp. (37 strains from 6 genera tested), which helps bound the phylogenetic distance possible in a phage-mediated horizontal gene transfer event. The Pseudoalteromonas phage B8b genome size was 42.7 kb, with clear structural and replication modules where the former were delineated leveraging identification of 16 structural genes by virion structural proteomics, only 4 of which had any similarity to known structural proteins. In nature, this phage was common in coastal marine environments in both photic and aphotic layers (found in 26.5% of available viral metagenomes), but not abundant in any sample (average per sample abundance was 0.65% of the reads). Together these data improve our understanding of siphoviruses in nature, and provide foundational information for a new 'rare virosphere' phage-host model system.

  8. Life-Style and Genome Structure of Marine Pseudoalteromonas Siphovirus B8b Isolated from the Northwestern Mediterranean Sea

    DOE PAGES

    Lara, Elena; Holmfeldt, Karin; Solonenko, Natalie; ...

    2015-01-14

    Marine viruses (phages) alter bacterial diversity and evolution with impacts on marine biogeochemical cycles, and yet few well-developed model systems limit opportunities for hypothesis testing. We isolate phage B8b from the Mediterranean Sea using Pseudoalteromonas sp. QC-44 as a host and characterize it using myriad techniques. Morphologically, phage B8b was classified as a member of the Siphoviridae family. One-step growth analyses showed that this siphovirus had a latent period of 70 min and released 172 new viral particles per cell. In the host range analysis against 89 bacterial host strains revealed that phage B8b infected 3 Pseudoalteromonas strains (52 tested,more » >99.9% 16S rRNA gene nucleotide identity) and 1 non-Pseudoaltermonas strain belonging to Alteromonas sp. (37 strains from 6 genera tested), which helps bound the phylogenetic distance possible in a phage-mediated horizontal gene transfer event. The Pseudoalteromonas phage B8b genome size was 42.7 kb, with clear structural and replication modules where the former were delineated leveraging identification of 16 structural genes by virion structural proteomics, only 4 of which had any similarity to known structural proteins. In nature, this phage was common in coastal marine environments in both photic and aphotic layers (found in 26.5% of available viral metagenomes), but not abundant in any sample (average per sample abundance was 0.65% of the reads). Together these data improve our understanding of siphoviruses in nature, and provide foundational information for a new 'rare virosphere' phage-host model system.« less

  9. Life-style and genome structure of marine Pseudoalteromonas siphovirus B8b isolated from the northwestern Mediterranean Sea.

    PubMed

    Lara, Elena; Holmfeldt, Karin; Solonenko, Natalie; Sà, Elisabet Laia; Ignacio-Espinoza, J Cesar; Cornejo-Castillo, Francisco M; Verberkmoes, Nathan C; Vaqué, Dolors; Sullivan, Matthew B; Acinas, Silvia G

    2015-01-01

    Marine viruses (phages) alter bacterial diversity and evolution with impacts on marine biogeochemical cycles, and yet few well-developed model systems limit opportunities for hypothesis testing. Here we isolate phage B8b from the Mediterranean Sea using Pseudoalteromonas sp. QC-44 as a host and characterize it using myriad techniques. Morphologically, phage B8b was classified as a member of the Siphoviridae family. One-step growth analyses showed that this siphovirus had a latent period of 70 min and released 172 new viral particles per cell. Host range analysis against 89 bacterial host strains revealed that phage B8b infected 3 Pseudoalteromonas strains (52 tested, >99.9% 16S rRNA gene nucleotide identity) and 1 non-Pseudoaltermonas strain belonging to Alteromonas sp. (37 strains from 6 genera tested), which helps bound the phylogenetic distance possible in a phage-mediated horizontal gene transfer event. The Pseudoalteromonas phage B8b genome size was 42.7 kb, with clear structural and replication modules where the former were delineated leveraging identification of 16 structural genes by virion structural proteomics, only 4 of which had any similarity to known structural proteins. In nature, this phage was common in coastal marine environments in both photic and aphotic layers (found in 26.5% of available viral metagenomes), but not abundant in any sample (average per sample abundance was 0.65% of the reads). Together these data improve our understanding of siphoviruses in nature, and provide foundational information for a new 'rare virosphere' phage-host model system.

  10. Life-Style and Genome Structure of Marine Pseudoalteromonas Siphovirus B8b Isolated from the Northwestern Mediterranean Sea

    PubMed Central

    Lara, Elena; Holmfeldt, Karin; Solonenko, Natalie; Sà, Elisabet Laia; Ignacio-Espinoza, J. Cesar; Cornejo-Castillo, Francisco M.; Verberkmoes, Nathan C.; Vaqué, Dolors; Sullivan, Matthew B.; Acinas, Silvia G.

    2015-01-01

    Marine viruses (phages) alter bacterial diversity and evolution with impacts on marine biogeochemical cycles, and yet few well-developed model systems limit opportunities for hypothesis testing. Here we isolate phage B8b from the Mediterranean Sea using Pseudoalteromonas sp. QC-44 as a host and characterize it using myriad techniques. Morphologically, phage B8b was classified as a member of the Siphoviridae family. One-step growth analyses showed that this siphovirus had a latent period of 70 min and released 172 new viral particles per cell. Host range analysis against 89 bacterial host strains revealed that phage B8b infected 3 Pseudoalteromonas strains (52 tested, >99.9% 16S rRNA gene nucleotide identity) and 1 non-Pseudoaltermonas strain belonging to Alteromonas sp. (37 strains from 6 genera tested), which helps bound the phylogenetic distance possible in a phage-mediated horizontal gene transfer event. The Pseudoalteromonas phage B8b genome size was 42.7 kb, with clear structural and replication modules where the former were delineated leveraging identification of 16 structural genes by virion structural proteomics, only 4 of which had any similarity to known structural proteins. In nature, this phage was common in coastal marine environments in both photic and aphotic layers (found in 26.5% of available viral metagenomes), but not abundant in any sample (average per sample abundance was 0.65% of the reads). Together these data improve our understanding of siphoviruses in nature, and provide foundational information for a new ‘rare virosphere’ phage–host model system. PMID:25587991

  11. Biotechnological Potential of Cold Adapted Pseudoalteromonas spp. Isolated from 'Deep Sea' Sponges.

    PubMed

    Borchert, Erik; Knobloch, Stephen; Dwyer, Emilie; Flynn, Sinéad; Jackson, Stephen A; Jóhannsson, Ragnar; Marteinsson, Viggó T; O'Gara, Fergal; Dobson, Alan D W

    2017-06-19

    The marine genus Pseudoalteromonas is known for its versatile biotechnological potential with respect to the production of antimicrobials and enzymes of industrial interest. We have sequenced the genomes of three Pseudoalteromonas sp. strains isolated from different deep sea sponges on the Illumina MiSeq platform. The isolates have been screened for various industrially important enzymes and comparative genomics has been applied to investigate potential relationships between the isolates and their host organisms, while comparing them to free-living Pseudoalteromonas spp. from shallow and deep sea environments. The genomes of the sponge associated Pseudoalteromonas strains contained much lower levels of potential eukaryotic-like proteins which are known to be enriched in symbiotic sponge associated microorganisms, than might be expected for true sponge symbionts. While all the Pseudoalteromonas shared a large distinct subset of genes, nonetheless the number of unique and accessory genes is quite large and defines the pan-genome as open. Enzymatic screens indicate that a vast array of enzyme activities is expressed by the isolates, including β-galactosidase, β-glucosidase, and protease activities. A β-glucosidase gene from one of the Pseudoalteromonas isolates, strain EB27 was heterologously expressed in Escherichia coli and, following biochemical characterization, the recombinant enzyme was found to be cold-adapted, thermolabile, halotolerant, and alkaline active.

  12. Biotechnological Potential of Cold Adapted Pseudoalteromonas spp. Isolated from ‘Deep Sea’ Sponges

    PubMed Central

    Borchert, Erik; Knobloch, Stephen; Dwyer, Emilie; Flynn, Sinéad; Jackson, Stephen A.; Jóhannsson, Ragnar; Marteinsson, Viggó T.; O’Gara, Fergal; Dobson, Alan D. W.

    2017-01-01

    The marine genus Pseudoalteromonas is known for its versatile biotechnological potential with respect to the production of antimicrobials and enzymes of industrial interest. We have sequenced the genomes of three Pseudoalteromonas sp. strains isolated from different deep sea sponges on the Illumina MiSeq platform. The isolates have been screened for various industrially important enzymes and comparative genomics has been applied to investigate potential relationships between the isolates and their host organisms, while comparing them to free-living Pseudoalteromonas spp. from shallow and deep sea environments. The genomes of the sponge associated Pseudoalteromonas strains contained much lower levels of potential eukaryotic-like proteins which are known to be enriched in symbiotic sponge associated microorganisms, than might be expected for true sponge symbionts. While all the Pseudoalteromonas shared a large distinct subset of genes, nonetheless the number of unique and accessory genes is quite large and defines the pan-genome as open. Enzymatic screens indicate that a vast array of enzyme activities is expressed by the isolates, including β-galactosidase, β-glucosidase, and protease activities. A β-glucosidase gene from one of the Pseudoalteromonas isolates, strain EB27 was heterologously expressed in Escherichia coli and, following biochemical characterization, the recombinant enzyme was found to be cold-adapted, thermolabile, halotolerant, and alkaline active. PMID:28629190

  13. Algicidal Effects of a Novel Marine Pseudoalteromonas Isolate (Class Proteobacteria, Gamma Subdivision) on Harmful Algal Bloom Species of the Genera Chattonella, Gymnodinium, and Heterosigma

    PubMed Central

    Lovejoy, Connie; Bowman, John P.; Hallegraeff, Gustaaf M.

    1998-01-01

    During a bacterial survey of the Huon Estuary in southern Tasmania, Australia, we isolated a yellow-pigmented Pseudoalteromonas strain (class Proteobacteria, gamma subdivision), designated strain Y, that had potent algicidal effects on harmful algal bloom species. This organism was identified by 16S rRNA sequencing as a strain with close affinities to Pseudoalteromonas peptidysin. This bacterium caused rapid cell lysis and death (within 3 h) of gymnodinoids (including Gymnodinium catenatum) and raphidophytes (Chattonella marina and Heterosigma akashiwo). It caused ecdysis of armored dinoflagellates (e.g., Alexandrium catenella, Alexandrium minutum, and Prorocentrum mexicanum), but the algal cultures then recovered over the subsequent 24 h. Strain Y had no effect on a cryptomonad (Chroomonas sp.), a diatom (Skeletonema sp.), a cyanobacterium (Oscillatoria sp.), and two aplastidic protozoans. The algicidal principle of strain Y was excreted into the seawater medium and lost its efficacy after heating. Another common bacterial species, Pseudoalteromonas carrageenovora, was isolated at the same time and did not have these algicidal effects. The minimum concentrations of strain Y required to kill G. catenatum were higher than the mean concentrations found in nature under nonbloom conditions. However, the new bacterium showed a chemotactic, swarming behavior that resulted in localized high concentrations around target organisms. These observations imply that certain bacteria could play an important role in regulating the onset and development of harmful algal blooms. PMID:9687434

  14. A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica: gene cloning, enzyme purification and characterization.

    PubMed

    Al Khudary, Rami; Venkatachalam, Ramprasath; Katzer, Moritz; Elleuche, Skander; Antranikian, Garabed

    2010-05-01

    A gene encoding an esterase (estO) was identified and sequenced from a gene library screen of the psychrotolerant bacterium Pseudoalteromonas arctica. Analysis of the 1,203 bp coding region revealed that the deduced peptide sequence is composed of 400 amino acids with a predicted molecular mass of 44.1 kDa. EstO contains a N-terminal esterase domain and an additional OsmC domain at the C-terminus (osmotically induced family of proteins). The highly conserved five-residue motif typical for all alpha/beta hydrolases (G x S x G) was detected from position 104 to 108 together with a putative catalytic triad consisting of Ser(106), Asp(196), and His(225). Sequence comparison showed that EstO exhibits 90% amino acid identity with hypothetical proteins containing similar esterase and OsmC domains but only around 10% identity to the amino acid sequences of known esterases. EstO variants with and without the OsmC domain were produced and purified as His-tag fusion proteins in E. coli. EstO displayed an optimum pH of 7.5 and optimum temperature of 25 degrees C with more than 50% retained activity at the freezing point of water. The thermostability of EstO (50% activity after 5 h at 40 degrees C) dramatically increased in the truncated variant (50% activity after 2.5 h at 90 degrees C). Furthermore, the esterase displays broad substrate specificity for esters of short-chain fatty acids (C(2)-C(8)).

  15. Draft Genome Sequence of Pseudoalteromonas sp. Strain ECSMB14103, Isolated from the East China Sea.

    PubMed

    Guo, Xing-Pan; Ding, De-Wen; Bao, Wei-Yang; Yang, Jin-Long

    2015-04-23

    Pseudoalteromonas sp. strain ECSMB14103 was isolated from marine biofilms formed on the East China Sea. The draft genome sequence comprises 4.11 Mp with a G+C content of 39.7%. The information from the draft genome will contribute to an understanding of bacteria-animal interaction. Copyright © 2015 Guo et al.

  16. Genome sequences of six Pseudoalteromonas strains isolated from Arctic sea ice.

    PubMed

    Bian, Fei; Xie, Bin-Bin; Qin, Qi-Long; Shu, Yan-Li; Zhang, Xi-Ying; Yu, Yong; Chen, Bo; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2012-02-01

    Yu et al. (Polar Biol. 32:1539-1547, 2009) isolated 199 Pseudoalteromonas strains from Arctic sea ice. We sequenced the genomes of six of these strains, which are affiliated to different Pseudoalteromonas species based on 16S rRNA gene sequences, facilitating the study of physiology and adaptation of Arctic sea ice Pseudoalteromonas strains.

  17. [Antibiotic properties of the Pseudoalteromonas genus bacteria isolated from the Black Sea water and molluscs].

    PubMed

    Onyshchenko, O M; Kiprianova, O A; Lysenko, T H; Smirnov, V V

    2002-01-01

    Antagonistic properties of 41 strains of Alteromonas-like bacteria isolated from the Black Sea water and molluscs have been studied. Being grown on the rich medium "B" for marine bacteria, 21% of strains have shown high antagonistic activity against phytopathogenic fungi; 6% of strains inhibited the growth of Bacillus subtilis, Proteus vulgaris and Candida albicans. Spectrum of antagonistic activity was essentially changed on synthetic "BM" medium with acetate, glutamate, alpha-alanine as a single source of carbon and was directed against Pseudomonas aeruginosa. Culture liquids and acetone extracts of microbial biomass of 34% of the studied strains have shown activity against bacteria, fungi and cyanobacteria. Strains producing the wide spectrum of antimicrobial substances (Alteromonas macleodii, Pseudoalteromonas citrea, P. haloplanktis, P. aurantia, Pseudoalteromonas sp.), fungicidal and algocidal substances have been found. Both extra- and intracellular metabolities of marine bacteria (including the pigments) were active.

  18. Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata.

    PubMed

    Egan, S; James, S; Holmström, C; Kjelleberg, S

    2001-03-01

    A collection of 56 bacteria isolated from different surfaces in the marine environment were assayed for their effects on the germination of spores from the common green alga Ulva lactuca. Thirteen bacterial isolates were shown to inhibit spore germination. Of these bacteria, Pseudoalteromonas tunicata displayed the most pronounced effects against algal spores. Further characterisation of the anti-algal activity of P. tunicata was performed and it was found that this bacterium produces an extracellular component with specific activity toward algal spores that is heat-sensitive, polar and between 3 and 10 kDa in size. This biologically active compound was also found to prevent the germination of spores from the red alga Polysiphonia sp. and, given the widespread occurrence of P. tunicata in a range of marine habitats, this may suggest that it is effective against a variety of marine algae.

  19. Comparative Omics and Trait Analyses of Marine Pseudoalteromonas Phages Advance the Phage OTU Concept

    PubMed Central

    Duhaime, Melissa B.; Solonenko, Natalie; Roux, Simon; Verberkmoes, Nathan C.; Wichels, Antje; Sullivan, Matthew B.

    2017-01-01

    Viruses influence the ecology and evolutionary trajectory of microbial communities. Yet our understanding of their roles in ecosystems is limited by the paucity of model systems available for hypothesis generation and testing. Further, virology is limited by the lack of a broadly accepted conceptual framework to classify viral diversity into evolutionary and ecologically cohesive units. Here, we introduce genomes, structural proteomes, and quantitative host range data for eight Pseudoalteromonas phages isolated from Helgoland (North Sea, Germany) and use these data to advance a genome-based viral operational taxonomic unit (OTU) definition. These viruses represent five new genera and inform 498 unaffiliated or unannotated protein clusters (PCs) from global virus metagenomes. In a comparison of previously sequenced Pseudoalteromonas phage isolates (n = 7) and predicted prophages (n = 31), the eight phages are unique. They share a genus with only one other isolate, Pseudoalteromonas podophage RIO-1 (East Sea, South Korea) and two Pseudoalteromonas prophages. Mass-spectrometry of purified viral particles identified 12–20 structural proteins per phage. When combined with 3-D structural predictions, these data led to the functional characterization of five previously unidentified major capsid proteins. Protein functional predictions revealed mechanisms for hijacking host metabolism and resources. Further, they uncovered a hybrid sipho-myovirus that encodes genes for Mu-like infection rarely described in ocean systems. Finally, we used these data to evaluate a recently introduced definition for virus populations that requires members of the same population to have >95% average nucleotide identity across at least 80% of their genes. Using physiological traits and genomics, we proposed a conceptual model for a viral OTU definition that captures evolutionarily cohesive and ecologically distinct units. In this trait-based framework, sensitive hosts are considered viral

  20. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity▿†

    PubMed Central

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan; Harder, Tilmann; Gram, Lone

    2011-01-01

    The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so

  1. Marine bacteria from Danish coastal waters show antifouling activity against the marine fouling bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis independent of bacteriocidal activity.

    PubMed

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan; Harder, Tilmann; Gram, Lone

    2011-12-01

    The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so

  2. Identification, cloning, and expression of L-amino acid oxidase from marine Pseudoalteromonas sp. B3.

    PubMed

    Yu, Zhiliang; Zhou, Ning; Qiao, Hua; Qiu, Juanping

    2014-01-01

    L-amino acid oxidase (LAAO) is attracting more attentions due to its broad and important biological functions. Recently, an LAAO-producing marine microorganism (strain B3) was isolated from the intertidal zone of Dinghai sea area, China. Physiological, biochemical, and molecular identifications together with phylogenetic analysis congruously suggested that it belonged to the genus Pseudoalteromonas. Therefore, it was designated as Pseudoalteromonas sp. B3. Its capability of LAAO production was crossly confirmed by measuring the products of H2O2, a-keto acids, and NH4+ in oxidization reaction. Two rounds of PCR were performed to gain the entire B3-LAAO gene sequence of 1608 bps in length encoding for 535 amino acid residues. This deduced amino acid sequence showed 60 kDa of the calculated molecular mass, supporting the SDS-PAGE result. Like most of flavoproteins, B3-LAAO also contained two conserved typical motifs, GG-motif and βαβ-dinucleotide-binding domain motif. On the other hand, its unique substrate spectra and sequence information suggested that B3-LAAO was a novel LAAO. Our results revealed that it could be functionally expressed in E. coli BL21(DE3) using vectors, pET28b(+) and pET20b(+). However, compared with the native LAAO, the expression level of the recombinant one was relatively low, most probably due to the formation of inclusion bodies. Several solutions are currently being conducted in our lab to increase its expression level.

  3. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium.

    PubMed

    Tebben, Jan; Tapiolas, Dianne M; Motti, Cherie A; Abrego, David; Negri, Andrew P; Blackall, Linda L; Steinberg, Peter D; Harder, Tilmann

    2011-04-29

    The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora). The metamorphic cue was identified as tetrabromopyrrole (TBP) in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm(-2) in laboratory assays, which is on the order of 0.1-1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae.

  4. Induction of Larval Metamorphosis of the Coral Acropora millepora by Tetrabromopyrrole Isolated from a Pseudoalteromonas Bacterium

    PubMed Central

    Tebben, Jan; Tapiolas, Dianne M.; Motti, Cherie A.; Abrego, David; Negri, Andrew P.; Blackall, Linda L.; Steinberg, Peter D.; Harder, Tilmann

    2011-01-01

    The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora). The metamorphic cue was identified as tetrabromopyrrole (TBP) in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm−2 in laboratory assays, which is on the order of 0.1 –1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae. PMID:21559509

  5. Accelerator analysis of tributyltin adsorbed onto the surface of a tributyltin resistant marine Pseudoalteromonas sp. cell.

    PubMed

    Mimura, Haruo; Sato, Ryusei; Sasaki, Yu; Furuyama, Yuichi; Taniike, Akira; Yoshida, Kazutoshi; Kitamura, Akira

    2008-10-01

    Tributyltin (TBT) released into seawater from ship hulls is a stable marine pollutant and obviously remains in marine environments. We isolated a TBT resistant marine Pseudoalteromonas sp. TBT1 from sediment of a ship's ballast water. The isolate (10(9.3 +/- 0.2) colony-forming units mL(-1)) adsorbed TBT in proportion to the concentrations of TBTCl externally added up to 3 mM, where the number of TBT adsorbed by a single cell was estimated to be 10(8.2). The value was reduced to about one-fifth when the lysozyme-treated cells were used. The surface of ethanol treated cells became rough, but the capacity of TBT adsorption was the same as that for native cells. These results indicate that the function of the cell surface, rather than that structure, plays an important role to the adsorption of TBT. The adsorption state of TBT seems to be multi-layer when the number of more than 10(6.8) TBT molecules is adsorbed by a single cell.

  6. Accelerator Analysis of Tributyltin Adsorbed onto the Surface of a Tributyltin Resistant Marine Pseudoalteromonas sp. Cell

    PubMed Central

    Mimura, Haruo; Sato, Ryusei; Sasaki, Yu; Furuyama, Yuichi; Taniike, Akira; Yoshida, Kazutoshi; Kitamura, Akira

    2008-01-01

    Tributyltin (TBT) released into seawater from ship hulls is a stable marine pollutant and obviously remains in marine environments. We isolated a TBT resistant marine Pseudoalteromonas sp. TBT1 from sediment of a ship’s ballast water. The isolate (109.3 ± 0.2 colony-forming units mL−1) adsorbed TBT in proportion to the concentrations of TBTCl externally added up to 3 mM, where the number of TBT adsorbed by a single cell was estimated to be 108.2. The value was reduced to about one-fifth when the lysozyme-treated cells were used. The surface of ethanol treated cells became rough, but the capacity of TBT adsorption was the same as that for native cells. These results indicate that the function of the cell surface, rather than that structure, plays an important role to the adsorption of TBT. The adsorption state of TBT seems to be multi-layer when the number of more than 106.8 TBT molecules is adsorbed by a single cell. PMID:19325731

  7. Metalloid reducing bacteria isolated from deep ocean hydrothermal vents of the Juan de Fuca Ridge, Pseudoalteromonas telluritireducens sp. nov. and Pseudoalteromonas spiralis sp. nov.

    PubMed

    Rathgeber, Christopher; Yurkova, Natalia; Stackebrandt, Erko; Schumann, Peter; Humphrey, Elaine; Beatty, J Thomas; Yurkov, Vladimir

    2006-11-01

    Five strains of Gram-negative, rod, curved rod and spiral-shaped bacteria were isolated from the vicinity of deep ocean hydrothermal vents along the Main Endeavour Segment of the Juan de Fuca Ridge in the Pacific Ocean. All strains showed remarkable resistance to high levels of toxic metalloid oxyanions, and were capable of reducing the oxyanions tellurite and selenite to their less toxic elemental forms. Phylogenetic analysis of four strains identified these isolates as close relatives of the genus Pseudoalteromonas within the class Gammaproteobacteria. Pseudoalteromonas agarivorans was the closest relative of strains Te-1-1 and Se-1-2-redT, with, respectively, 99.5 and 99.8% 16S rDNA sequence similarity. Strain Te-2-2T was most closely related to Pseudoalteromonas paragorgicola, with 99.8% 16S rDNA sequence similarity. The DNA G+C base composition was 39.6 to 41.8 mol%, in agreement with other members of the genus Pseudoalteromonas. However, the isolates showed important morphological and physiological differences from previously described species of this genus, with one group forming rod-shaped bacteria typical of Pseudoalteromonas and the other forming vibrioid- to spiral-shaped cells. Based on these differences, and on phylogenetic data, we propose the creation of the new species Pseudoalteromonas telluritireducens sp. nov., with strain Se-1-2-redT (DSMZ = 16098T = VKM B-2382T) as the type strain, and Pseudoalteromonas spiralis sp. nov., with strain Te-2-2T (DSMZ = 16099T = VKM B-2383T) as the type strain.

  8. Liquid Chromatography-Mass Spectrometry-Based Rapid Secondary-Metabolite Profiling of Marine Pseudoalteromonas sp. M2

    PubMed Central

    Kim, Woo Jung; Kim, Young Ok; Kim, Jin Hee; Nam, Bo-Hye; Kim, Dong-Gyun; An, Cheul Min; Lee, Jun Sik; Kim, Pan Soo; Lee, Hye Min; Oh, Joa-Sup; Lee, Jong Suk

    2016-01-01

    The ocean is a rich resource of flora, fauna, and food. A wild-type bacterial strain showing confluent growth on marine agar with antibacterial activity was isolated from marine water, identified using 16S rDNA sequence analysis as Pseudoalteromonas sp., and designated as strain M2. This strain was found to produce various secondary metabolites including quinolone alkaloids. Using high-resolution mass spectrometry (MS) and nuclear magnetic resonance (NMR) analysis, we identified nine secondary metabolites of 4-hydroxy-2-alkylquinoline (pseudane-III, IV, V, VI, VII, VIII, IX, X, and XI). Additionally, this strain produced two novel, closely related compounds, 2-isopentylqunoline-4-one and 2-(2,3-dimetylbutyl)qunoline-4-(1H)-one, which have not been previously reported from marine bacteria. From the metabolites produced by Pseudoalteromonas sp. M2, 2-(2,3-dimethylbutyl)quinolin-4-one, pseudane-VI, and pseudane-VII inhibited melanin synthesis in Melan-A cells by 23.0%, 28.2%, and 42.7%, respectively, wherein pseudane-VII showed the highest inhibition at 8 µg/mL. The results of this study suggest that liquid chromatography (LC)-MS/MS-based metabolite screening effectively improves the efficiency of novel metabolite discovery. Additionally, these compounds are promising candidates for further bioactivity development. PMID:26805856

  9. Liquid Chromatography-Mass Spectrometry-Based Rapid Secondary-Metabolite Profiling of Marine Pseudoalteromonas sp. M2.

    PubMed

    Kim, Woo Jung; Kim, Young Ok; Kim, Jin Hee; Nam, Bo-Hye; Kim, Dong-Gyun; An, Cheul Min; Lee, Jun Sik; Kim, Pan Soo; Lee, Hye Min; Oh, Joa-Sup; Lee, Jong Suk

    2016-01-20

    The ocean is a rich resource of flora, fauna, and food. A wild-type bacterial strain showing confluent growth on marine agar with antibacterial activity was isolated from marine water, identified using 16S rDNA sequence analysis as Pseudoalteromonas sp., and designated as strain M2. This strain was found to produce various secondary metabolites including quinolone alkaloids. Using high-resolution mass spectrometry (MS) and nuclear magnetic resonance (NMR) analysis, we identified nine secondary metabolites of 4-hydroxy-2-alkylquinoline (pseudane-III, IV, V, VI, VII, VIII, IX, X, and XI). Additionally, this strain produced two novel, closely related compounds, 2-isopentylqunoline-4-one and 2-(2,3-dimetylbutyl)qunoline-4-(1H)-one, which have not been previously reported from marine bacteria. From the metabolites produced by Pseudoalteromonas sp. M2, 2-(2,3-dimethylbutyl)quinolin-4-one, pseudane-VI, and pseudane-VII inhibited melanin synthesis in Melan-A cells by 23.0%, 28.2%, and 42.7%, respectively, wherein pseudane-VII showed the highest inhibition at 8 µg/mL. The results of this study suggest that liquid chromatography (LC)-MS/MS-based metabolite screening effectively improves the efficiency of novel metabolite discovery. Additionally, these compounds are promising candidates for further bioactivity development.

  10. The anti-biofilm activity secreted by a marine Pseudoalteromonas strain.

    PubMed

    Klein, Géraldine L; Soum-Soutéra, Emmanuelle; Guede, Zakoua; Bazire, Alexis; Compère, Chantal; Dufour, Alain

    2011-09-01

    Bacterial biofilms occur on all submerged structures in marine environments. The authors previously reported that the marine bacterium Pseudoalteromonas sp. 3J6 secretes antibiofilm activity. Here, it was discovered that another Pseudoalteromonas sp. strain, D41, inhibited the development of strain 3J6 in mixed biofilms. Confocal laser scanning microscope observations revealed that the culture supernatant of strain D41 impaired biofilm formation of strain 3J6 and another marine bacterium. A microtiter plate assay of the antibiofilm activity was set up and validated with culture supernatants of Pseudoalteromonas sp. 3J6. This assay was used to determine the spectra of action of strains D41 and 3J6. Each culture supernatant impaired the biofilm development of 13 marine bacteria out of 18. However, differences in the spectra of action and the physical behaviours of the antibiofilm molecules suggest that the latter are not identical. They nevertheless share the originality of being devoid of antibacterial activity against planktonic bacteria.

  11. Ecogenomics and genome landscapes of marine Pseudoalteromonas phage H105/1

    PubMed Central

    Duhaime, Melissa Beth; Wichels, Antje; Waldmann, Jost; Teeling, Hanno; Glöckner, Frank Oliver

    2011-01-01

    Marine phages have an astounding global abundance and ecological impact. However, little knowledge is derived from phage genomes, as most of the open reading frames in their small genomes are unknown, novel proteins. To infer potential functional and ecological relevance of sequenced marine Pseudoalteromonas phage H105/1, two strategies were used. First, similarity searches were extended to include six viral and bacterial metagenomes paired with their respective environmental contextual data. This approach revealed ‘ecogenomic' patterns of Pseudoalteromonas phage H105/1, such as its estuarine origin. Second, intrinsic genome signatures (phylogenetic, codon adaptation and tetranucleotide (tetra) frequencies) were evaluated on a resolved intra-genomic level to shed light on the evolution of phage functional modules. On the basis of differential codon adaptation of Phage H105/1 proteins to the sequenced Pseudoalteromonas spp., regions of the phage genome with the most ‘host'-adapted proteins also have the strongest bacterial tetra signature, whereas the least ‘host'-adapted proteins have the strongest phage tetra signature. Such a pattern may reflect the evolutionary history of the respective phage proteins and functional modules. Finally, analysis of the structural proteome identified seven proteins that make up the mature virion, four of which were previously unknown. This integrated approach combines both novel and classical strategies and serves as a model to elucidate ecological inferences and evolutionary relationships from phage genomes that typically abound with unknown gene content. PMID:20613791

  12. Antibiofilm Activity of the Marine Bacterium Pseudoalteromonas sp. Strain 3J6▿

    PubMed Central

    Dheilly, Alexandra; Soum-Soutéra, Emmanuelle; Klein, Géraldine L.; Bazire, Alexis; Compère, Chantal; Haras, Dominique; Dufour, Alain

    2010-01-01

    Biofilm formation results in medical threats or economic losses and is therefore a major concern in a variety of domains. In two-species biofilms of marine bacteria grown under dynamic conditions, Pseudoalteromonas sp. strain 3J6 formed mixed biofilms with Bacillus sp. strain 4J6 but was largely predominant over Paracoccus sp. strain 4M6 and Vibrio sp. strain D01. The supernatant of Pseudoalteromonas sp. 3J6 liquid culture (SN3J6) was devoid of antibacterial activity against free-living Paracoccus sp. 4M6 and Vibrio sp. D01 cells, but it impaired their ability to grow as single-species biofilms and led to higher percentages of nonviable cells in 48-h biofilms. Antibiofilm molecules of SN3J6 were able to coat the glass surfaces used to grow biofilms and reduced bacterial attachment about 2-fold, which might partly explain the biofilm formation defect but not the loss of cell viability. SN3J6 had a wide spectrum of activity since it affected all Gram-negative marine strains tested except other Pseudoalteromonas strains. Biofilm biovolumes of the sensitive strains were reduced 3- to 530-fold, and the percentages of nonviable cells were increased 3- to 225-fold. Interestingly, SN3J6 also impaired biofilm formation by three strains belonging to the human-pathogenic species Pseudomonas aeruginosa, Salmonella enterica, and Escherichia coli. Such an antibiofilm activity is original and opens up a variety of applications for Pseudoalteromonas sp. 3J6 and/or its active exoproducts in biofilm prevention strategies. PMID:20363799

  13. Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3J6.

    PubMed

    Dheilly, Alexandra; Soum-Soutéra, Emmanuelle; Klein, Géraldine L; Bazire, Alexis; Compère, Chantal; Haras, Dominique; Dufour, Alain

    2010-06-01

    Biofilm formation results in medical threats or economic losses and is therefore a major concern in a variety of domains. In two-species biofilms of marine bacteria grown under dynamic conditions, Pseudoalteromonas sp. strain 3J6 formed mixed biofilms with Bacillus sp. strain 4J6 but was largely predominant over Paracoccus sp. strain 4M6 and Vibrio sp. strain D01. The supernatant of Pseudoalteromonas sp. 3J6 liquid culture (SN(3J6)) was devoid of antibacterial activity against free-living Paracoccus sp. 4M6 and Vibrio sp. D01 cells, but it impaired their ability to grow as single-species biofilms and led to higher percentages of nonviable cells in 48-h biofilms. Antibiofilm molecules of SN(3J6) were able to coat the glass surfaces used to grow biofilms and reduced bacterial attachment about 2-fold, which might partly explain the biofilm formation defect but not the loss of cell viability. SN(3J6) had a wide spectrum of activity since it affected all Gram-negative marine strains tested except other Pseudoalteromonas strains. Biofilm biovolumes of the sensitive strains were reduced 3- to 530-fold, and the percentages of nonviable cells were increased 3- to 225-fold. Interestingly, SN(3J6) also impaired biofilm formation by three strains belonging to the human-pathogenic species Pseudomonas aeruginosa, Salmonella enterica, and Escherichia coli. Such an antibiofilm activity is original and opens up a variety of applications for Pseudoalteromonas sp. 3J6 and/or its active exoproducts in biofilm prevention strategies.

  14. Six Pseudoalteromonas Strains Isolated from Surface Waters of Kabeltonne, Offshore Helgoland, North Sea

    PubMed Central

    Wichels, Antje; Sullivan, Matthew B.

    2016-01-01

    Draft genomes are presented for 6 Pseudoalteromonas sp. strains isolated from surface waters at Kabeltonne, Helgoland, a long-term ecological research station in the North Sea. These strains contribute knowledge of the genomic underpinnings of a developing model system to study phage-host dynamics of a particle-associated ocean copiotroph. PMID:26868390

  15. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus pseudoalteromonas.

    PubMed

    Bowman, John P

    2007-12-18

    The genus Pseudoalteromonas is a marine group of bacteria belonging to the class Gammaproteobacteria that has come to attention in the natural product and microbial ecology science fields in the last decade. Pigmented species of the genus have been shown to produce an array of low and high molecular weight compounds with antimicrobial, anti-fouling, algicidal and various pharmaceutically-relevant activities. Compounds formed include toxic proteins, polyanionic exopolymers, substituted phenolic and pyrolle-containing alkaloids, cyclic peptides and a range of bromine-substituted compounds. Ecologically, Pseudoalteromonas appears significant and to date has been shown to influence biofilm formation in various marine econiches; involved in predator-like interactions within the microbial loop; influence settlement, germination and metamorphosis of various invertebrate and algal species; and may also be adopted by marine flora and fauna as defensive agents. Studies have been so far limited to a relatively small subset of strains compared to the known diversity of the genus suggesting that many more discoveries of novel natural products as well as ecological connections these may have in the marine ecosystem remain to be made.

  16. Draft Genome Sequence of Pseudoalteromonas sp. Strain PAB 2.2 Isolated from Abrolhos Bank (Brazil).

    PubMed

    Silva, Bruno S O; Nobrega, Maria S; Leomil, Luciana; Tschoeke, Diogo A; Garcia, Gizele D; Dias, Graciela; Thompson, Cristiane C; Thompson, Fabiano L

    2017-03-09

    We present here the draft genome sequence of Pseudoalteromonas sp. strain PAB 2.2, isolated from water of Parcel de Abrolhos coral reef (17°57'32.7″; 38°30'20.3″), on Abrolhos Bank, at a depth of 12 m. The assembly consists of 4,434,635 bp and contains 40 contigs, with a G+C content of 41.60%.

  17. Draft Genome Sequence of Pseudoalteromonas sp. Strain PAB 2.2 Isolated from Abrolhos Bank (Brazil)

    PubMed Central

    Silva, Bruno S. O.; Nobrega, Maria S.; Leomil, Luciana; Tschoeke, Diogo A.; Garcia, Gizele D.; Dias, Graciela; Thompson, Cristiane C.

    2017-01-01

    ABSTRACT We present here the draft genome sequence of Pseudoalteromonas sp. strain PAB 2.2, isolated from water of Parcel de Abrolhos coral reef (17°57′32.7″; 38°30′20.3″), on Abrolhos Bank, at a depth of 12 m. The assembly consists of 4,434,635 bp and contains 40 contigs, with a G+C content of 41.60%. PMID:28280012

  18. Spotlight on Antimicrobial Metabolites from the Marine Bacteria Pseudoalteromonas: Chemodiversity and Ecological Significance

    PubMed Central

    Offret, Clément; Desriac, Florie; Le Chevalier, Patrick; Mounier, Jérôme; Jégou, Camille; Fleury, Yannick

    2016-01-01

    This review is dedicated to the antimicrobial metabolite-producing Pseudoalteromonas strains. The genus Pseudoalteromonas hosts 41 species, among which 16 are antimicrobial metabolite producers. To date, a total of 69 antimicrobial compounds belonging to 18 different families have been documented. They are classified into alkaloids, polyketides, and peptides. Finally as Pseudoalteromonas strains are frequently associated with macroorganisms, we can discuss the ecological significance of antimicrobial Pseudoalteromonas as part of the resident microbiota. PMID:27399731

  19. Recombinant expression of Toluene o-Xylene Monooxygenase (ToMO) from Pseudomonas stutzeri OX1 in the marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125.

    PubMed

    Siani, Loredana; Papa, Rosanna; Di Donato, Alberto; Sannia, Giovanni

    2006-11-10

    The psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125, isolated from Antarctic seawater, was used as recipient for a biodegradative gene of the mesophilic Pseudomonas stutzeri OX1. tou cluster, coding for Toluene o-Xylene Monooxygenase (ToMO), was successfully cloned and expressed into a "cold expression" vector. Apparent catalytic parameters of the recombinant microorganisms on three different substrates were determined and compared with those exhibited by Escherichia coli recombinant cells expressing ToMO. Production of a catalytically efficient TAC/tou microorganism supports the possibility of developing specific degradative capabilities for the bioremediation of chemically contaminated marine environments and of industrial effluents characterised by low temperatures.

  20. Biofilm formation and proteolytic activities of Pseudoalteromonas bacteria that were isolated from fish farm sediments

    PubMed Central

    Iijima, Saori; Washio, Kenji; Okahara, Ryota; Morikawa, Masaaki

    2009-01-01

    Summary In order to save natural resources and supply good fishes, it is important to improve fish‐farming techniques. The survival rate of fish fry appears to become higher when powders of foraminifer limestone are submerged at the bottom of fish‐farming fields, where bacterial biofilms often grow. The observations suggest that forming biofilms can benefit to keep health status of breeding fishes. We employed culture‐based methods for the identification and characterization of biofilm‐forming bacteria and assessed the application of their properties for fish farming. Fifteen bacterial strains were isolated from the biofilm samples collected from fish farm sediments. The 16S rRNA gene sequences indicated that these bacteria belonged to the genera, Pseudoalteromonas (seven strains), Vibrio (seven strains) and Halomonas (one strain). It was found that Pseudoalteromonas strains generally formed robust biofilms in a laboratory condition and produced extracellular proteases in a biofilm‐dependent manner. The results suggest that Pseudoalteromonas bacteria, living in the biofilm community, contribute in part to remove excess proteineous matters from the sediment sludge of fish farms. PMID:21261930

  1. Biofilm formation and proteolytic activities of Pseudoalteromonas bacteria that were isolated from fish farm sediments.

    PubMed

    Iijima, Saori; Washio, Kenji; Okahara, Ryota; Morikawa, Masaaki

    2009-05-01

    In order to save natural resources and supply good fishes, it is important to improve fish-farming techniques. The survival rate of fish fry appears to become higher when powders of foraminifer limestone are submerged at the bottom of fish-farming fields, where bacterial biofilms often grow. The observations suggest that forming biofilms can benefit to keep health status of breeding fishes. We employed culture-based methods for the identification and characterization of biofilm-forming bacteria and assessed the application of their properties for fish farming. Fifteen bacterial strains were isolated from the biofilm samples collected from fish farm sediments. The 16S rRNA gene sequences indicated that these bacteria belonged to the genera, Pseudoalteromonas (seven strains), Vibrio (seven strains) and Halomonas (one strain). It was found that Pseudoalteromonas strains generally formed robust biofilms in a laboratory condition and produced extracellular proteases in a biofilm-dependent manner. The results suggest that Pseudoalteromonas bacteria, living in the biofilm community, contribute in part to remove excess proteineous matters from the sediment sludge of fish farms. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Biofilm Development and Cell Death in the Marine Bacterium Pseudoalteromonas tunicata

    PubMed Central

    Mai-Prochnow, Anne; Evans, Flavia; Dalisay-Saludes, Doralyn; Stelzer, Sacha; Egan, Suhelen; James, Sally; Webb, Jeremy S.; Kjelleberg, Staffan

    2004-01-01

    The newly described green-pigmented bacterium Pseudoalteromonas tunicata (D2) produces target-specific inhibitory compounds against bacteria, algae, fungi, and invertebrate larvae and is frequently found in association with living surfaces in the marine environment. As part of our studies on the ecology of P. tunicata and its interaction with marine surfaces, we examined the ability of P. tunicata to form biofilms under continuous culture conditions within the laboratory. P. tunicata biofilms exhibited a characteristic architecture consisting of differentiated microcolonies surrounded by water channels. Remarkably, we observed a repeatable pattern of cell death during biofilm development of P. tunicata, similar to that recently reported for biofilms of Pseudomonas aeruginosa (J. S. Webb et al., J. Bacteriol. 185:4585-4595, 2003). Killing and lysis occurred inside microcolonies, apparently resulting in the formation of voids within these structures. A subpopulation of viable cells was always observed within the regions of killing in the biofilm. Moreover, extensive killing in mature biofilms appeared to result in detachment of the biofilm from the substratum. A novel 190-kDa autotoxic protein produced by P. tunicata, designated AlpP, was found to be involved in this biofilm killing and detachment. A ΔalpP mutant derivative of P. tunicata was generated, and this mutant did not show cell death during biofilm development. We propose that AlpP-mediated cell death plays an important role in the multicellular biofilm development of P. tunicata and subsequent dispersal of surviving cells within the marine environment. PMID:15184116

  3. Biofilm development and cell death in the marine bacterium Pseudoalteromonas tunicata.

    PubMed

    Mai-Prochnow, Anne; Evans, Flavia; Dalisay-Saludes, Doralyn; Stelzer, Sacha; Egan, Suhelen; James, Sally; Webb, Jeremy S; Kjelleberg, Staffan

    2004-06-01

    The newly described green-pigmented bacterium Pseudoalteromonas tunicata (D2) produces target-specific inhibitory compounds against bacteria, algae, fungi, and invertebrate larvae and is frequently found in association with living surfaces in the marine environment. As part of our studies on the ecology of P. tunicata and its interaction with marine surfaces, we examined the ability of P. tunicata to form biofilms under continuous culture conditions within the laboratory. P. tunicata biofilms exhibited a characteristic architecture consisting of differentiated microcolonies surrounded by water channels. Remarkably, we observed a repeatable pattern of cell death during biofilm development of P. tunicata, similar to that recently reported for biofilms of Pseudomonas aeruginosa (J. S. Webb et al., J. Bacteriol. 185:4585-4595, 2003). Killing and lysis occurred inside microcolonies, apparently resulting in the formation of voids within these structures. A subpopulation of viable cells was always observed within the regions of killing in the biofilm. Moreover, extensive killing in mature biofilms appeared to result in detachment of the biofilm from the substratum. A novel 190-kDa autotoxic protein produced by P. tunicata, designated AlpP, was found to be involved in this biofilm killing and detachment. A Delta alpP mutant derivative of P. tunicata was generated, and this mutant did not show cell death during biofilm development. We propose that AlpP-mediated cell death plays an important role in the multicellular biofilm development of P. tunicata and subsequent dispersal of surviving cells within the marine environment.

  4. Mechanisms for pseudoalteromonas piscicida-induced killing of vibrios and other bacterial pathogens

    USDA-ARS?s Scientific Manuscript database

    Pseudoalteromonas piscicida is a Gram-negative gammaproteobacterium found in the marine environment. Three strains of pigmented P. piscicida were isolated from seawater and partially characterized by inhibition studies, electron microscopy, and analysis for proteolytic enzymes. Growth inhibition and...

  5. Genome analysis of Pseudoalteromonas flavipulchra JG1 reveals various survival advantages in marine environment

    PubMed Central

    2013-01-01

    Background Competition between bacteria for habitat and resources is very common in the natural environment and is considered to be a selective force for survival. Many strains of the genus Pseudoalteromonas were confirmed to produce bioactive compounds that provide those advantages over their competitors. In our previous study, P. flavipulchra JG1 was found to synthesize a Pseudoalteromonas flavipulchra antibacterial Protein (PfaP) with L-amino acid oxidase activity and five small chemical compounds, which were the main competitive agents of the strain. In addition, the genome of this bacterium has been previously sequenced as Whole Genome Shotgun project (PMID: 22740664). In this study, more extensive genomic analysis was performed to identify specific genes or gene clusters which related to its competitive feature, and further experiments were carried out to confirm the physiological roles of these genes when competing with other microorganisms in marine environment. Results The antibacterial protein PfaP may also participate in the biosynthesis of 6-bromoindolyl-3-acetic acid, indicating a synergistic effect between the antibacterial macromolecule and small molecules. Chitinases and quorum quenching enzymes present in P. flavipulchra, which coincide with great chitinase and acyl homoserine lactones degrading activities of strain JG1, suggest other potential mechanisms contribute to antibacterial/antifungal activities. Moreover, movability and rapid response mechanisms to phosphorus starvation and other stresses, such as antibiotic, oxidative and heavy metal stress, enable JG1 to adapt to deleterious, fluctuating and oligotrophic marine environments. Conclusions The genome of P. flavipulchra JG1 exhibits significant genetic advantages against other microorganisms, encoding antimicrobial agents as well as abilities to adapt to various adverse environments. Genes involved in synthesis of various antimicrobial substances enriches the antagonistic mechanisms of P

  6. Engineered marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125: a promising micro-organism for the bioremediation of aromatic compounds.

    PubMed

    Papa, R; Parrilli, E; Sannia, G

    2009-01-01

    The recombinant Antarctic Pseudoalteromonas haloplanktis TAC125 (P. haloplanktis TAC/tou) expressing toluene-o-xylene monooxygenase (ToMO) can efficiently convert several aromatic compounds into their corresponding catechols in a broad range of temperature. When the genome of P. haloplanktis TAC125 was analysed in silico, the presence of a DNA sequence coding for a putative laccase-like protein was revealed. It is well known that bacterial laccases are able to oxidize dioxygenated aromatic compounds such as catechols. We analysed the catabolic features, conferred by recombinant ToMO activity and the endogenous laccase enzymatic activity, of P. haloplanktis TAC/tou engineered strain and its ability to grow on aromatic compounds as sole carbon and energy sources. Results presented highlight the broad potentiality of P. haloplanktis TAC/tou cells expressing recombinant ToMO in bioremediation and suggest the use of this engineered Antarctic bacterium in the bioremediation of chemically contaminated marine environments and/or cold effluents. This paper demonstrates the possibility to confer new and specific degradative capabilities to a bacterium isolated from an unpolluted environment (Antarctic seawater) transforming it into a bacterium able to grow on phenol as sole carbon and energy source.

  7. Growth patterns of two marine isolates: adaptations to substrate patchiness?

    PubMed

    Pernthaler, A; Pernthaler, J; Eilers, H; Amann, R

    2001-09-01

    During bottle incubations of heterotrophic marine picoplankton, some bacterial groups are conspicuously favored. In an earlier investigation bacteria of the genus Pseudoalteromonas rapidly multiplied in substrate-amended North Sea water, whereas the densities of Oceanospirillum changed little (H. Eilers, J. Pernthaler, and R. Amann, Appl. Environ. Microbiol. 66:4634-4640, 2000). We therefore studied the growth patterns of two isolates affiliating with Pseudoalteromonas and Oceanospirillum in batch culture. Upon substrate resupply, Oceanospirillum lagged threefold longer than Pseudoalteromonas but reached more than fivefold-higher final cell density and biomass. A second, mobile morphotype was present in the starved Oceanospirillum populations with distinctly greater cell size, DNA and protein content, and 16S rRNA concentration. Contrasting cellular ribosome concentrations during stationary phase suggested basic differences in the growth responses of the two strains to a patchy environment. Therefore, we exposed the strains to different modes of substrate addition. During cocultivation on a single batch of substrates, the final cell densities of Oceanospirillum were reduced three times as much as those Pseudoalteromonas, compared to growth yields in pure cultures. In contrast, the gradual addition of substrates to stationary-phase cocultures was clearly disadvantageous for the Pseudoalteromonas population. Different growth responses to substrate gradients could thus be another facet affecting the competition between marine bacteria and may help to explain community shifts observed during enrichments.

  8. D-Phenylalanine inhibits biofilm development of a marine microbe, Pseudoalteromonas sp. SC2014.

    PubMed

    Li, Ee; Wu, Jiajia; Wang, Peng; Zhang, Dun

    2016-09-01

    D-Amino acids have been reported to be able to inhibit biofilm formation or disperse existing biofilms of many microbes; in some cases this is due to growth inhibition as an unspecific effect. In this work, six different D-amino acids were tested for their inhibitory effects on biofilm development and bacterial growth of Pseudoalteromonas sp. SC2014, a marine microbe involved in microbiologically influenced corrosion (MIC). Experimental results indicated that D-phenylalanine (D-Phe) inhibited biofilm formation effectively at concentrations that did not affect cell growth, whereas the other D-amino acids either showed little effect or inhibited biofilm formation while inhibiting bacterial growth. Further studies found that D-Phe could inhibit bacterial accumulation on the surface of 316L stainless steel, and prevent bacteria from forming a multilayer biofilm. It was also suggested that D-Phe could promote the disassembly of an established multilayer biofilm but have little effect on the remaining monolayer adherent cells. For the first time, it was found that a D-amino acid could effectively inhibit biofilm formation of an MIC-involved microbe. This might supply a new insight into how MIC could be mitigated. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Purification and biochemical characterization of an alkaline protease from marine bacteria Pseudoalteromonas sp. 129-1.

    PubMed

    Wu, Shimei; Liu, Ge; Zhang, Dechao; Li, Chaoxu; Sun, Chaomin

    2015-12-01

    An extracellular alkaline protease produced by marine bacteria strain Pseudoalteromonas sp. 129-1 was purified by ammonium sulphate precipitation, anion exchange chromatography, and gel filtration. The purity of the protease was confirmed by SDS-PAGE and molecular mass was estimated to be 35 kDa. The protease maintained considerable activity and stability at a wide temperature range of 10-60 °C and pH range of 6-11, and optimum activity was detected at temperature of 50 °C and pH of 8. Metallo-protease inhibitor, EDTA, had no inhibitory effect on protease activity even at concentration up to 15 mM, whereas 15 mM PMSF, a common serine protease inhibitor, greatly inactivated the protease. The high stability of the protease in the presence of surfactants (SDS, Tween 80, and Triton X-100), oxidizing agent H(2)O(2), and commercial detergents was observed. Moreover, the protease was tolerant to most of the tested organic solvents, and saline tolerant up to 30%. Interestingly, biofilm of Pseudomonas aeruginosa PAO1 was greatly reduced by 0.01 mg ml(-1) of the protease, and nearly completely abolished with the concentration of 1 mg ml(-1). Collectively, the protease showed valuable feathers as an additive in laundry detergent and non-toxic anti-biofilm agent.

  10. Isolation and characterization of Pseudoalteromonas sp. from fermented Korean food, as an antagonist to Vibrio harveyi.

    PubMed

    Morya, V K; Choi, Wooyoung; Kim, Eun-Ki

    2014-02-01

    The microbial intervention for sustainable management of aquaculture, especially use of probiotics, is one of the most popular and practical approaches towards controlling pathogens. Vibrio harveyi is a well-known pathogenic bacterium, which is associated to a huge economic loss in the aquaculture system by causing vibriosis. The present study is crafted for screening and characterization of anti-Vibrio strains, which were isolated from various traditional fermented Korean foods. A total of 196 strains have been isolated from soybean paste (78 strains), red chili paste (49 strains), soy sauce (18 strains), jeotgal-a salted fish (34 strains), and the gazami crab-Portunus trituberculatus (17 strains). Fifteen strains showed an inhibitory effect on the growth of V. harveyi when subjected to coculture condition. Among the strains isolated, one has been identified as a significant anti-Vibrio strain. Further biochemical characterization and 16S rDNA sequencing revealed it as Pseudoalteromonas aliena, which had been deposited at the Korean Culture Center of Microorganisms (KCCM), Korea and designated as KCCM 11207P. The culture supernatants did not have any antimicrobial properties either in pure or in coculture condition. The culture supernatant was not toxic when supplemented to the swimming crab, Zoea, and Artemia larvae in aquaculture system. The results were very encouraging and showed a significant reduction in accumulated mortality. Here, we reported that pathogenic vibriosis can be controlled by Pseudoalteromonas sp. under in vitro and in vivo conditions. The results indicated that the biotic treatment offers a promising alternative to the use of antibiotics in crab aquaculture.

  11. The meroperon of a mercury-resistant Pseudoalteromonas haloplanktis strain isolated from Minamata Bay, Japan.

    PubMed

    Iohara, K; Iiyama, R; Nakamura, K; Silver, S; Sakai, M; Takeshita, M; Furukawa, K

    2001-09-01

    A mer operon of mercury-resistant Pseudoalteromonas haloplanktis strain M1, isolated from sea water of Minamata Bay, was cloned and analyzed. The mer genes were located in the chromosome and organized as merR-merT-merP-merC-merA-merD, the same order as that in Tn21. However, the orientation of the merR gene is the same as that of other mer genes (opposite direction to Tn21), and merR was cotranscribed with other mer genes, a pattern that has not been previously seen with mer determinants from other Gram-negative bacteria. Furthermore, the amino acid similarities of the corresponding mer gene products between those from strain M1 and Tn21 were unusually low.

  12. Cloning, expression and characterization of a lipase gene from marine bacterium Pseudoalteromonas lipolytica SCSIO 04301

    NASA Astrophysics Data System (ADS)

    Su, Hongfei; Mai, Zhimao; Zhang, Si

    2016-12-01

    A lipase gene, lip1233, isolated from Pseudoalteromonas lipolytica SCSIO 04301, was cloned and expressed in E. coli. The enzyme comprised 810 amino acid residues with a deduced molecular weight of 80 kDa. Lip1233 was grouped into the lipase family X because it contained a highly conserved motif GHSLG. The recombinant enzyme was purified with Ni-NTA affinity chromatography. The optimal temperature and pH value of Lip1233 were 45°C and 8.0, respectively. It retained more than 70% of original activity after being incubated in pH ranging from 6.0 to 9.5 for 30 min. It was stable when the temperature was below 45°C, but was unstable when the temperature was above 55°C. Most metal ions tested had no significant effect on the activity of Lip1233. Lip1233 remained more than original activity in some organic solvents at the concentration of 30% (v/v). It retained more than 30% activity after incubated in pure organic solvents for 12 h, while in hexane the activity was nearly 100%. Additionally, Lip1233 exhibited typical halotolerant characteristic as it was active under 4M NaCl. Lip1233 powder could catalyze efficiently the synthesis of fructose esters in hexane at 40°C. These characteristics demonstrated that Lip1233 is applicable to elaborate food processing and organic synthesis.

  13. Involvement of an Extracellular Protease in Algicidal Activity of the Marine Bacterium Pseudoalteromonas sp. Strain A28

    PubMed Central

    Lee, Sun-og; Kato, Junichi; Takiguchi, Noboru; Kuroda, Akio; Ikeda, Tsukasa; Mitsutani, Atsushi; Ohtake, Hisao

    2000-01-01

    The marine bacterium Pseudoalteromonas sp. strain A28 was able to kill the diatom Skeletonema costatum strain NIES-324. The culture supernatant of strain A28 showed potent algicidal activity when it was applied to a paper disk placed on a lawn of S. costatum NIES-324. The condensed supernatant, which was prepared by subjecting the A28 culture supernatant to ultrafiltration with a 10,000-Mw-cutoff membrane, showed algicidal activity, suggesting that strain A28 produced extracellular substances capable of killing S. costatum cells. The condensed supernatant was then found to have protease and DNase activities. Two Pseudoalteromonas mutants lacking algicidal activity, designated NH1 and NH2, were selected after N-methyl-N′-nitrosoguanidine mutagenesis. The culture supernatants of NH1 and NH2 showed less than 15% of the protease activity detected with the parental strain, A28. The protease was purified to homogeneity from A28 culture supernatants by using ion-exchange chromatography followed by preparative gel electrophoresis. Paper-disk assays revealed that the purified protease had potent algicidal activity. The purified protease had a molecular mass for 50 kDa, and the N-terminal amino acid sequence was determined to be Ala-Thr-Pro-Asn-Asp-Pro. The optimum pH and temperature of the protease were found to be 8.8 and 30°C, respectively, by using succinyl-Ala-Ala-Pro-Phe-p-nitroanilide as a substrate. The protease activity was strongly inhibited by phenylmethylsulfonyl fluoride, diisopropyl fluorophosphate, antipain, chymostatin, and leupeptin. No significant inhibition was detected with EDTA, EGTA, phenanthroline or tetraethylenepentamine. These results suggest that Pseudoalteromonas sp. strain A28 produced an extracellular serine protease which was responsible for the algicidal activity of this marine bacterium. PMID:11010878

  14. Proteomic studies highlight outer-membrane proteins related to biofilm development in the marine bacterium Pseudoalteromonas sp. D41.

    PubMed

    Ritter, Andrés; Com, Emmanuelle; Bazire, Alexis; Goncalves, Marina Dos Santos; Delage, Ludovic; Le Pennec, Gaël; Pineau, Charles; Dreanno, Catherine; Compère, Chantal; Dufour, Alain

    2012-11-01

    Bacterial biofilm development is conditioned by complex processes involving bacterial attachment to surfaces, growth, mobility, and exoproduct production. The marine bacterium Pseudoalteromonas sp. strain D41 is able to attach strongly onto a wide variety of substrates, which promotes subsequent biofilm development. Study of the outer-membrane and total soluble proteomes showed ten spots with significant intensity variations when this bacterium was grown in biofilm compared to planktonic cultures. MS/MS de novo sequencing analysis allowed the identification of four outer-membrane proteins of particular interest since they were strongly induced in biofilms. These proteins are homologous to a TonB-dependent receptor (TBDR), to the OmpW and OmpA porins, and to a type IV pilus biogenesis protein (PilF). Gene expression assays by quantitative RT-PCR showed that the four corresponding genes were upregulated during biofilm development on hydrophobic and hydrophilic surfaces. The Pseudomonas aeruginosa mutants unable to produce any of the OmpW, OmpA, and PilF homologues yielded biofilms with lower biovolumes and altered architectures, confirming the involvement of these proteins in the biofilm formation process. Our results indicate that Pseudoalteromonas sp. D41 shares biofilm formation mechanisms with human pathogenic bacteria, but also relies on TBDR, which might be more specific to the marine environment. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Stereochemical course of hydrolytic reaction catalyzed by alpha-galactosidase from cold adaptable marine bacterium of genus Pseudoalteromonas

    NASA Astrophysics Data System (ADS)

    Bakunina, Irina; Balabanova, Larissa; Golotin, Vasiliy; Slepchenko, Lyubov; Isakov, Vladimir; Rasskazov, Valeriy

    2014-10-01

    The recombinant α-galactosidase of the marine bacterium (α-PsGal) was synthesized with the use of the plasmid 40Gal, consisting of plasmid pET-40b (+) (Novagen) and the gene corresponding to the open reading frame of the mature α-galactosidase of marine bacterium Pseudoalteromonas sp. KMM 701, transformed into the E. coli Rosetta(DE3) cells. In order to understand the mechanism of action, the stereochemistry of hydrolysis of 4-nitrophenyl α-D-galactopyranoside (4-NPGP) by α-PsGal was measured by 1H NMR spectroscopy. The kinetics of formation of α- and β-anomer of galactose showed that α-anomer initially formed and accumulated, and then an appreciable amount of β-anomer appeared as a result of mutarotation. The data clearly show that the enzymatic hydrolysis of 4-NPGP proceeds with the retention of anomeric configuration, probably, due to a double displacement mechanism of reaction.

  16. Cellulase production from Pseudoalteromonas sp. NO3 isolated from the sea squirt Halocynthia rorentzi.

    PubMed

    Kim, Duwoon; Baik, Keun Sik; Park, Seong Chan; Kim, Seon-Jun; Shin, Tai-Sun; Jung, Sung-Joo; Oh, Myung-Joo; Seong, Chi Nam

    2009-11-01

    Pseudoalteromonas sp. NO3 was isolated from the hemolymph of diseased sea squirts (Halocynthia rorentzi) with symptoms of soft tunic syndrome. The strain was found to produce an extracellular cellulase (CelY) that consisted of a 1,476 bp open reading frame encoding 491 amino acid residues with an approximate molecular mass of 52 kDa. Homologies of the deduced amino acid sequence of celY with the products of the celA, celX, celG and cel5Z genes were 92.6, 93.3, 92.6, and 59.1%, respectively. Additionally, CelY had 50-80% remnant catalytic activity at temperatures of 10-20 degrees C. Highest carboxymethyl cellulose (CMC) hydrolysis was observed at pH 8.0 and 40 degrees C. CMC activity was determined by zymogram active staining and different degraded product profiles for CelY were obtained when cellotetraose, cellopentaose, and CMC were used as substrates. This study identified a transglycosylation activity in CelY that allows the enzyme to digest G4 to G2 and G3 without the production of G1.

  17. Complete genome sequence of a marine bacterium with two chromosomes, Pseudoalteromonas translucida KMM 520(T).

    PubMed

    Rong, Jin-Cheng; Liu, Min; Li, Yi; Sun, Tian-Yong; Pang, Xiu-Hua; Qin, Qi-Long; Chen, Xiu-Lan; Xie, Bin-Bin

    2016-04-01

    Bacteria with multiple chromosomes provide new insights into the evolution of multipartite genome structures and bacterial survival strategies. In this study, we report the complete genome sequence of Pseudoalteromonas translucida KMM 520(T), which contains two circular chromosomes and comprises 4,147,593 bp with a mean G+C content of 40.1%. The two chromosomes have similar G+C contents and similar percentages of coding regions. Chromosome II of P. translucida possesses a plasmid-type replication initiator protein (RepA), which indicated that chromosome II is probably originated from a plasmid. COG functional categories revealed that the two chromosomes have divergent distributions of functional categories, which indicated that they bear different responsibilities for cellular functions. The complete genome sequence of P. translucida contributes to a better understanding of the origin and evolution of the additional chromosome and the physiology of Pseudoalteromonas genus. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Genetic characterization of plasmid-mediated quinolone resistance gene qnrS2 in Pseudoalteromonas and Shewanella isolates from seawater.

    PubMed

    Zhao, Jing-Yi; Zhao, Shu-Mei; Mu, Xiao-Dong; Xiao, Zijun

    2016-12-23

    Three qnrS2-containing isolates of Pseudoalteromonas and Shewanella were collected from the seawater samples of Qingdao in China during 2014. They displayed resistance to ampicillin, ciprofloxacin, kanamycin, nalidixic acid and sulfamethoxazole. The qnrS2 genes were identified in the chromosomes of Pseudoalteromonas strain E8 and S16, and in a 140-kb plasmid in Shewanella strain S14, respectively. In addition, two copies of qnrS2 were identified in the strain E8. Sequence analyses revealed that there was an identical DNA segment located in the downstream of qnrS2 in strain S14 and E8, coding for a TetR transcriptional regulator, two putative integrases and a hypothetical protein. However, different genetic structures were identified in the upstream sequences: the terB gene associated with tellurite resistance in the strain S14, and a putative integron with dfrA6 and aadA13 gene cassettes or the Tn7-related gene complex tnsABC in the strain E8. In Pseudoalteromonas strain S16, qnrS2 was bracketed by the endonuclease I and III genes, and the electron transport complex rsxCDGE was located in the upstream sequences. This is the first report of two copies of the qnrS2 gene existing in one bacterial chromosome, and also the first identification of qnrS2 in Shewanella.

  19. [Cloning and expression of endoglucanase of marine cold-adapted bacteria Pseudoalteromonas sp. MB-1].

    PubMed

    You, Yin-wei; Wang, Tian-hong

    2005-02-01

    The cold-adapted gram-negative rod bacterium MB-1 which could secret cellulase was screened from mud of the bottom of the Huanghai. According to the sequence of 16S rDNA, this bacterium screened was identified as one species of Pseudoalteromonas and was named as Pseudoalteromonas sp. MB-1. The gene celA encoding cold-adapted endogluanase was cloned and then jointed to pGEX-4T-1 to construct expression plasmid pGEX-celA which was expressed in E. coli BL21. Analysis to the supernatant of E. coli sonicate revealed that the concentration of GST-CelA was about 78.5 mg/L. Properties of the fusion enzyme of GST-CelA including the optimum temperature at 35 degrees C and the optimum pH about 7.2, showed that this fusion enzyme still belonged to cold-adapted enzyme and neutral enzyme. The result lays solid base for the fundamental theory and application research on cold-adapted cellulase from Pseudoalteromonas sp. MB-1.

  20. Draft Genome Sequence of Pseudoalteromonas sp. Strain ND6B, an Oil-Degrading Isolate from Eastern Mediterranean Sea Water Collected at a Depth of 1,210 Meters

    SciTech Connect

    Harris, Austin P.; Techtmann, Stephen M.; Stelling, Savannah C.; Utturkar, Sagar M.; Alshibli, Noor K.; Brown, Steven D.; Hazen, Terry C.

    2014-11-26

    We report the draft genome of Pseudoalteromonas sp. strain ND6B, which is able to grow with crude oil as a carbon source. Strain ND6B was isolated from eastern Mediterranean Sea deep water at a depth of 1,210 m. The genome of strain ND6B provides insight into the oil-degrading ability of the Pseudoalteromonas species.

  1. Molecular cloning and characterization of a novel beta-agarase, AgaB, from marine Pseudoalteromonas sp. CY24.

    PubMed

    Ma, Cuiping; Lu, Xinzhi; Shi, Chao; Li, Jingbao; Gu, Yuchao; Ma, Yiming; Chu, Yan; Han, Feng; Gong, Qianhong; Yu, Wengong

    2007-02-09

    Agarases are generally classified into glycoside hydrolase families 16, 50, and 86 and are found to degrade agarose to frequently generate neoagarobiose, neoagarotetraose, or neoagarohexaose as the main products. In this study we have cloned a novel endo-type beta-agarase gene, agaB, from marine Pseudoalteromonas sp. CY24. The novel agarase encoded by agaB gene has no significant sequence similarity with any known proteins including all glycoside hydrolases. It degrades agarose to generate neoagarooctaose and neoagarodecaose as the main end products. Based on the analyses of enzymatic kinetics and degradation patterns of different oligosaccharides, the agarase AgaB appears to have a large substrate binding cleft that accommodates 12 sugar units, with 8 sugar units toward the reducing end spanning subsites +1 to +8 and 4 sugar units toward the non-reducing end spanning subsites -4 to -1, and enzymatic cleavage taking place between subsites -1 and +1. In addition, 1H NMR analysis shows that this enzyme hydrolyzes the glycosidic bond with inversion of anomeric configuration, in contrast to other known agarases that are retaining. Altogether, AgaB is structurally and functionally different from other known agarases and appears to represent a new family of glycoside hydrolase.

  2. Discovery and Characterization of a Distinctive Exo-1,3/1,4-β-Glucanase from the Marine Bacterium Pseudoalteromonas sp. Strain BB1▿ †

    PubMed Central

    Nakatani, Yoshio; Lamont, Iain L.; Cutfield, John F.

    2010-01-01

    Marine bacteria residing on local red, green, and brown seaweeds were screened for exo-1,3-β-glucanase (ExoP) activity. Of the 90 bacterial species isolated from 32 seaweeds, only one, a Pseudoalteromonas sp., was found to display such activity. It was isolated from a Durvillaea sp., a brown kelp known to contain significant amounts of the storage polysaccharide laminarin (1,3-β-d-glucan with some 1,6-β branching). Four chromatographic steps were utilized to purify the enzyme (ExoP). Chymotryptic digestion provided peptide sequences for primer design and subsequent gene cloning. The exoP gene coded for 840 amino acids and was located just 50 bp downstream from a putative lichenase (endo-1,3-1,4-β-glucanase) gene, suggesting possible cotranscription of these genes. Sequence comparisons revealed ExoP to be clustered within a group of bacterial glycosidases with high similarity to a group of glycoside hydrolase (GH3) plant enzymes, of which the barley exo-1,3/1,4-β-glucanase (ExoI) is the best characterized. The major difference between the bacterial and plant proteins is an extra 200- to 220-amino-acid extension at the C terminus of the former. This additional sequence does not correlate with any known functional domain, but ExoP was not active against laminarin when this region was removed. Production of recombinant ExoP allowed substrate specificity studies to be performed. The enzyme was found to possess similar levels of exoglucanase activity against both 1,4-β linkages and 1,3-β linkages, and so ExoP is designated an exo-1,3/1,4-β-exoglucanase, the first such bacterial enzyme to be characterized. This broader specificity could allow the enzyme to assist in digesting both cell wall cellulose and cytoplasmic laminarin. PMID:20729316

  3. Draft Genome Sequences of Pseudoalteromonas telluritireducens DSM 16098 and P. spiralis DSM 16099 Isolated from the Hydrothermal Vents of the Juan de Fuca Ridge

    PubMed Central

    Liu, Rui; Wang, Mengqiang; Wang, Hao; Gao, Qiang; Hou, Zhanhui; Zhou, Zhi; Gao, Dahai

    2016-01-01

    This report describes the draft genome sequences of two strains, Pseudoalteromonas telluritireducens DSM 16098 and P. spiralis DSM 16099, which were isolated from hydrothermal vents of the Juan de Fuca Ridge. The reads generated by an Ion Torrent PGM were assembled into contigs with total sizes of 4.4 Mb and 4.1 Mb for DSM 16098 and DSM 16099, respectively. PMID:27563045

  4. Draft Genome Sequences of Pseudoalteromonas telluritireducens DSM 16098 and P. spiralis DSM 16099 Isolated from the Hydrothermal Vents of the Juan de Fuca Ridge.

    PubMed

    Zhang, Huan; Liu, Rui; Wang, Mengqiang; Wang, Hao; Gao, Qiang; Hou, Zhanhui; Zhou, Zhi; Gao, Dahai; Wang, Lingling

    2016-08-25

    This report describes the draft genome sequences of two strains, Pseudoalteromonas telluritireducens DSM 16098 and P. spiralis DSM 16099, which were isolated from hydrothermal vents of the Juan de Fuca Ridge. The reads generated by an Ion Torrent PGM were assembled into contigs with total sizes of 4.4 Mb and 4.1 Mb for DSM 16098 and DSM 16099, respectively. Copyright © 2016 Zhang et al.

  5. Analysis of the Pseudoalteromonas tunicata Genome Reveals Properties of a Surface-Associated Life Style in the Marine Environment

    PubMed Central

    Thomas, Torsten; Evans, Flavia F.; Schleheck, David; Mai-Prochnow, Anne; Burke, Catherine; Penesyan, Anahit; Dalisay, Doralyn S.; Stelzer-Braid, Sacha; Saunders, Neil; Johnson, Justin; Ferriera, Steve; Kjelleberg, Staffan; Egan, Suhelen

    2008-01-01

    Background Colonisation of sessile eukaryotic host surfaces (e.g. invertebrates and seaweeds) by bacteria is common in the marine environment and is expected to create significant inter-species competition and other interactions. The bacterium Pseudoalteromonas tunicata is a successful competitor on marine surfaces owing primarily to its ability to produce a number of inhibitory molecules. As such P. tunicata has become a model organism for the studies into processes of surface colonisation and eukaryotic host-bacteria interactions. Methodology/Principal Findings To gain a broader understanding into the adaptation to a surface-associated life-style, we have sequenced and analysed the genome of P. tunicata and compared it to the genomes of closely related strains. We found that the P. tunicata genome contains several genes and gene clusters that are involved in the production of inhibitory compounds against surface competitors and secondary colonisers. Features of P. tunicata's oxidative stress response, iron scavenging and nutrient acquisition show that the organism is well adapted to high-density communities on surfaces. Variation of the P. tunicata genome is suggested by several landmarks of genetic rearrangements and mobile genetic elements (e.g. transposons, CRISPRs, phage). Surface attachment is likely to be mediated by curli, novel pili, a number of extracellular polymers and potentially other unexpected cell surface proteins. The P. tunicata genome also shows a utilisation pattern of extracellular polymers that would avoid a degradation of its recognised hosts, while potentially causing detrimental effects on other host types. In addition, the prevalence of recognised virulence genes suggests that P. tunicata has the potential for pathogenic interactions. Conclusions/Significance The genome analysis has revealed several physiological features that would provide P. tunciata with competitive advantage against other members of the surface-associated community

  6. Cloning and characterization of a new κ-carrageenase gene from marine bacterium Pseudoalteromonas sp. QY203

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyan; Li, Shangyong; Yang, Xuemei; Yu, Wengong; Han, Feng

    2015-12-01

    κ-carrageenan oligosaccharides exhibit various biological activities. Enzymatic degradation by κ-carrageenase is safe and controllable. Therefore, κ-carrageenases have captured more and more attentions. In this study, a κ-carrageenase encoding gene, cgkX, was cloned from Pseudoalteromonas sp. QY203 with degenerate and inverse PCR. It comprised an ORF of 1194 bp in length, encoding a protein with 397 amino acid residues. CgkX is a new member of glycoside hydrolase family 16. The deduced amino acid sequence shared a high similarity with CgkX of Pseudoalteromonas κ-carrageenase; however, the recombinant CgkX showed different biochemical characteristics. The recombinant enzyme was most active at pH 7.0 and 55°C in the presence of 300 mmol L-1 NaCl. It was stable in a broad range of acidity ranging from pH 3.0 to pH 10.0 when temperature was below 40°C. More than 80% of its activity was maintained after being incubated at pH 3.6-10.0 and 4°C for 24 h. CgkX retained more than 90% of activity after being incubated at 40°C for 1 h. EDTA and SDS (1 mmol L-1) did not inhibit its activity. CgkX hydrolyzed κ-carrageenan into disaccharide and tetrasaccharide as an endo-cleaver. All these characteristics demonstrated that CgkX is applicable to both κ-carrageenan oligosaccharide production and κ-carrageenase structure-function research.

  7. Improving Production of Protease from Pseudoalteromonas sp. CSN423 by Random Mutagenesis.

    PubMed

    Wu, Cuiling; Liu, Dan; Yang, Xinghao; Wu, Ribang; Zhang, Jiang; Huang, Jiafeng; He, Hailun

    2016-10-01

    Pseudoalteromonas sp. CSN423, a marine strain, can express a major protease designated as E423 and it was secreted into the supernatant. To improve the protease E423 yield, Pseudoalteromonas sp. CSN423 was subjected to mutagenesis using UV irradiation. Mutant strain with 5.1-fold higher protease yield was isolated and named as Pseudoalteromonas sp. CSN423-M. Three protease bands were detected by zymography with casein as substrate, and results of mass spectrometry (MS) showed that two lower molecular weight protein bands were the same protease but with different mature forms. The entire protease operon was sequenced and no mutation was found. Mutant strain-associated changes of expression levels of protease synthesis and secretion-related genes were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Mutant strain had higher expression of e423 than wild-type strain. Such result was consistent with protease activity profiles. Moreover, the mutant strain had higher transcriptional levels of citrate synthase (cs), α-ketoglutarate decarboxylase (kgd), cytochrome c oxidase subunit I (coxI), tolC, hlyD (membrane protein), luxR3, luxO, and luxT (transcriptional regulator). However, hexokinase (hk), pyruvate dehydrogenase E1 (pd-e1), epsD (membrane protein), and luxR1 remained unchanged, and luxR2 decreased sharply in the mutant. These results suggested that the redox pathway was promoted in the mutant strain, and LuxR family transcriptional regulators in Pseudoalteromonas spp. may play some role in regulating protease expression. Meanwhile, the secretion of extracellular protease was closely related to ABC transport system. These results may shed some light on the molecular mechanism underlying higher yield of protease E423 from Pseudoalteromonas sp. CSN423-M.

  8. Modulation of violacein production and phenotypes associated with biofilm by exogenous quorum sensing N-acylhomoserine lactones in the marine bacterium Pseudoalteromonas ulvae TC14.

    PubMed

    Mireille Ayé, Armande; Bonnin-Jusserand, Maryse; Brian-Jaisson, Florence; Ortalo-Magné, Annick; Culioli, Gérald; Koffi Nevry, Rose; Rabah, Nadia; Blache, Yves; Molmeret, Maëlle

    2015-10-01

    Various phenotypes ranging from biofilm formation to pigment production have been shown to be regulated by quorum sensing (QS) in many bacteria. However, studies of the regulation of pigments produced by marine bacteria in saline conditions and of biofilm-associated phenotypes are scarcer. This study focuses on the demonstration of the existence of a QS communication system involving N-acylhomoserine lactones (AHLs) in the Mediterranean Sea strain Pseudoalteromonas ulvae TC14. We have investigated whether TC14 produces the violacein pigment, and whether intrinsic or exogenous AHLs could influence its production and modulate biofilm-associated phenotypes. Here, we demonstrate that the purple pigment produced by TC14 is violacein. The study shows that in planktonic conditions, TC14 produces more pigment in the medium in which it grows less. Using different approaches, the results also show that TC14 does not produce intrinsic AHLs in our conditions. When exogenous AHLs are added in planktonic conditions, the production of violacein is upregulated by C6-, C12-, 3-oxo-C8 and 3-oxo-C12-HSLs (homoserine lactones), and downregulated by 3-oxo-C6-HSL. In sessile conditions, 3-oxo-C8-HSL upregulates the production of violacein. The study of the biofilm-associated phenotypes shows that oxo-derived-HSLs decrease adhesion, swimming and biofilm formation. While 3-oxo-C8 and 3-oxo-C12-HSLs decrease both swimming and adhesion, 3-oxo-C6-HSLs decrease not only violacein production in planktonic conditions but also swimming, adhesion and more subtly biofilm formation. Therefore, TC14 may possess a functional LuxR-type QS receptor capable of sensing extrinsic AHLs, which controls violacein production, motility, adhesion and biofilm formation.

  9. Structural flexibility of the heme cavity in the cold-adapted truncated hemoglobin from the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125.

    PubMed

    Giordano, Daniela; Pesce, Alessandra; Boechi, Leonardo; Bustamante, Juan Pablo; Caldelli, Elena; Howes, Barry D; Riccio, Alessia; di Prisco, Guido; Nardini, Marco; Estrin, Dario; Smulevich, Giulietta; Bolognesi, Martino; Verde, Cinzia

    2015-08-01

    Truncated hemoglobins build one of the three branches of the globin protein superfamily. They display a characteristic two-on-two α-helical sandwich fold and are clustered into three groups (I, II and III) based on distinct structural features. Truncated hemoglobins are present in eubacteria, cyanobacteria, protozoa and plants. Here we present a structural, spectroscopic and molecular dynamics characterization of a group-II truncated hemoglobin, encoded by the PSHAa0030 gene from Pseudoalteromonas haloplanktis TAC125 (Ph-2/2HbO), a cold-adapted Antarctic marine bacterium hosting one flavohemoglobin and three distinct truncated hemoglobins. The Ph-2/2HbO aquo-met crystal structure (at 2.21 Å resolution) shows typical features of group-II truncated hemoglobins, namely the two-on-two α-helical sandwich fold, a helix Φ preceding the proximal helix F, and a heme distal-site hydrogen-bonded network that includes water molecules and several distal-site residues, including His(58)CD1. Analysis of Ph-2/2HbO by electron paramagnetic resonance, resonance Raman and electronic absorption spectra, under varied solution conditions, shows that Ph-2/2HbO can access diverse heme ligation states. Among these, detection of a low-spin heme hexa-coordinated species suggests that residue Tyr(42)B10 can undergo large conformational changes in order to act as the sixth heme-Fe ligand. Altogether, the results show that Ph-2/2HbO maintains the general structural features of group-II truncated hemoglobins but displays enhanced conformational flexibility in the proximity of the heme cavity, a property probably related to the functional challenges, such as low temperature, high O2 concentration and low kinetic energy of molecules, experienced by organisms living in the Antarctic environment.

  10. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae)

    PubMed Central

    Graça, Ana Patrícia; Viana, Flávia; Bondoso, Joana; Correia, Maria Inês; Gomes, Luis; Humanes, Madalena; Reis, Alberto; Xavier, Joana R.; Gaspar, Helena; Lage, Olga M.

    2015-01-01

    Interest in the study of marine sponges and their associated microbiome has increased both for ecological reasons and for their great biotechnological potential. In this work, heterotrophic bacteria associated with three specimens of the marine sponge Erylus deficiens, were isolated in pure culture, phylogenetically identified and screened for antimicrobial activity. The isolation of bacteria after an enrichment treatment in heterotrophic medium revealed diversity in bacterial composition with only Pseudoalteromonas being shared by two specimens. Of the 83 selected isolates, 58% belong to Proteobacteria, 23% to Actinobacteria and 19% to Firmicutes. Diffusion agar assays for bioactivity screening against four bacterial strains and one yeast, revealed that a high number of the isolated bacteria (68.7%) were active, particularly against Candida albicans and Vibrio anguillarum. Pseudoalteromonas, Microbacterium, and Proteus were the most bioactive genera. After this preliminary screening, the bioactive strains were further evaluated in liquid assays against C. albicans, Bacillus subtilis and Escherichia coli. Filtered culture medium and acetone extracts from three and 5 days-old cultures were assayed. High antifungal activity against C. albicans in both aqueous and acetone extracts as well as absence of activity against B. subtilis were confirmed. Higher levels of activity were obtained with the aqueous extracts when compared to the acetone extracts and differences were also observed between the 3 and 5 day-old extracts. Furthermore, a low number of active strains was observed against E. coli. Potential presence of type-I polyketide synthases (PKS-I) and non-ribosomal peptide synthetases (NRPSs) genes were detected in 17 and 30 isolates, respectively. The high levels of bioactivity and the likely presence of associated genes suggest that Erylus deficiens bacteria are potential sources of novel marine bioactive compounds. PMID:25999928

  11. Isolation and identification of a bacterium from marine shrimp digestive tract: A new degrader of starch and protein

    NASA Astrophysics Data System (ADS)

    Li, Jiqiu; Tan, Beiping; Mai, Kangsen

    2011-09-01

    It is a practical approach to select candidate probiotic bacterial stains on the basis of their special traits. Production of digestive enzyme was used as a trait to select a candidate probiotic bacterial strain in this study. In order to select a bacterium with the ability to degrade both starch and protein, an ideal bacterial strain STE was isolated from marine shrimp ( Litopenaeus vannamei) intestines by using multiple selective media. The selected isolate STE was identified on the basis of its morphological, physiological, and biochemical characteristics as well as molecular analyses. Results of degradation experiments confirmed the ability of the selected isolate to degrade both starch and casein. The isolate STE was aerobic, Gram-negative, rod-shaped, motile and non-spore-forming, and had catalase and oxidase activities but no glucose fermentation activity. Among the tested carbon/nitrogen sources, only Tween40, alanyl-glycine, aspartyl-glycine, and glycyl-l-glutamic acid were utilized by the isolate STE. Results of homology comparison analyses of the 16S rDNA sequences showed that the isolate STE had a high similarity to several Pseudoalteromonas species and, in the phylogenetic tree, grouped with P. ruthenica with maximum bootstrap support (100%). In conclusion, the isolate STE was characterized as a novel strain belonging to the genus Pseudoalteromonas. This study provides a further example of a probiotic bacterial strain with specific characteristics isolated from the host gastrointestinal tract.

  12. Isolation of cellulolytic actinomycetes from marine sediments

    SciTech Connect

    Veiga, M.; Esparis, A.; Fabregas, J.

    1983-07-01

    The cellulolytic activity of 36 actinomycetes strains isolated from marine sediments was investigated by the cellulose-azure method. Approximately 50% of the isolates exhibited various degrees of cellulolytic activity. 13 references.

  13. Marine yeast isolation and industrial application

    PubMed Central

    Zaky, Abdelrahman Saleh; Tucker, Gregory A; Daw, Zakaria Yehia; Du, Chenyu

    2014-01-01

    Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields. PMID:24738708

  14. Emulsifying and Metal Ion Binding Activity of a Glycoprotein Exopolymer Produced by Pseudoalteromonas sp. Strain TG12▿

    PubMed Central

    Gutierrez, Tony; Shimmield, Tracy; Haidon, Cheryl; Black, Kenny; Green, David H.

    2008-01-01

    In this study, we describe the isolation and characterization of a new exopolymer that exhibits high emulsifying activities against a range of oil substrates and demonstrates a differential capacity to desorb various mono-, di-, and trivalent metal species from marine sediment under nonionic and seawater ionic-strength conditions. This polymer, PE12, was produced by a new isolate, Pseudoalteromonas sp. strain TG12 (accession number EF685033), during growth in a modified Zobell's 2216 medium amended with 1% glucose. Chemical and chromatographic analysis showed it to be a high-molecular-mass (>2,000 kDa) glycoprotein composed of carbohydrate (32.3%) and protein (8.2%). PE12 was notable in that it contained xylose as the major sugar component at unusually high levels (27.7%) not previously reported for a Pseudoalteromonas exopolymer. The polymer was shown to desorb various metal species from marine sediment—a function putatively conferred by its high content of uronic acids (28.7%). Seawater ionic strength (simulated using 0.6 M NaCl), however, caused a significant reduction in PE12's ability to desorb the sediment-adsorbed metals. These results demonstrate the importance of electrolytes, a physical parameter intrinsic of seawater, in influencing the interaction of microbial exopolymers with metal ions. In summary, PE12 may represent a new class of Pseudoalteromonas exopolymer with a potential for use in biotechnological applications as an emulsifying or metal-chelating agent. In addition to the biotechnological potential of these findings, the ecological aspects of this and related bacterial exopolymers in marine environments are also discussed. PMID:18552188

  15. Collection, Isolation and Culture of Marine Algae.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  16. Collection, Isolation and Culture of Marine Algae.

    ERIC Educational Resources Information Center

    James, Daniel E.

    1984-01-01

    Methods of collecting, isolating, and culturing microscopic and macroscopic marine algae are described. Three different culture media list of chemicals needed and procedures for preparing Erdschreiber's and Provasoli's E. S. media. (BC)

  17. QsdH, a Novel AHL Lactonase in the RND-Type Inner Membrane of Marine Pseudoalteromonas byunsanensis Strain 1A01261

    PubMed Central

    Huang, Wei; Lin, Yongjun; Yi, Shuyuan; Liu, Pengfu; Shen, Jie; Shao, Zongze; Liu, Ziduo

    2012-01-01

    N-acyl-homoserine lactones (AHLs) are the main quorum-sensing (QS) signals in gram-negative bacteria. AHLs trigger the expression of genes for particular biological functions when their density reaches a threshold. In this study, we identified and cloned the qsdH gene by screening a genomic library of Pseudoalteromonas byunsanensis strain 1A01261, which has AHL-degrading activity. The qsdH gene encoded a GDSL hydrolase found to be located in the N-terminus of a multidrug efflux transporter protein of the resistance-nodulation-cell division (RND) family. We further confirmed that the GDSL hydrolase, QsdH, exhibited similar AHL-degrading activity to the full-length ORF protein. QsdH was expressed and purified to process the N-terminal signal peptide yielding a 27-kDa mature protein. QsdH was capable of inactivating AHLs with an acyl chain ranging from C4 to C14 with or without 3-oxo substitution. High-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS) analyses showed that QsdH functioned as an AHL lactonase to hydrolyze the ester bond of the homoserine lactone ring of AHLs. In addition, site-directed mutagenesis demonstrated that QsdH contained oxyanion holes (Ser-Gly-Asn) in conserved blocks (I, II, and III), which had important roles in its AHL-degrading activity. Furthermore, the lactonase activity of QsdH was slightly promoted by several divalent ions. Using in silico prediction, we concluded that QsdH was located at the first periplasmic loop of the multidrug efflux transporter protein, which is essential to substrate selectivity for these efflux pumps. These findings led us to assume that the QsdH lactonase and C-terminal efflux pump might be effective in quenching QS of the P. byunsanensis strain 1A01261. Moreover, it was observed that recombinant Escherichia coli producing QsdH proteins attenuated the plant pathogenicity of Erwinia carotovora, which might have potential to control of gram-negative pathogenic

  18. Isolation, phylogenetic analysis and screening of marine mollusc-associated bacteria for antimicrobial, hemolytic and surface activities.

    PubMed

    Romanenko, Lyudmila A; Uchino, Masataka; Kalinovskaya, Natalia I; Mikhailov, Valery V

    2008-01-01

    This study was undertaken to survey culturable heterotrophic bacteria associated with the marine ark shell Anadara broughtoni inhabiting in the Sea of Japan, and to test isolates for their antimicrobial, hemolytic and surface activities with an emphasis on low-molecular-weight metabolites search. A total of 149 strains were isolated and identified phenotypically. A total of 27 strains were selected to be investigated phylogenetically by 165 rRNA gene sequence analysis. The most bacteria were affiliated with members of the Gammaproteobacteria and Alphaproteobacteria, and Less with Firmicutes, Actinobacteria, and Cytophaga-Flavobacterium-Bacteroides (CFB) group. The isolates capable of hemolysis were numerically abundant in the genera Pseudoalteromonas, Aeromonas and Bacillus. The six Gram-positive isolates belonging to the genera Bacillus, Paenibacillus and Saccharothrix and two Gram-negative strains related to Pseudomonas and Sphingomonas, possessed antimicrobial activity against indicator strains and to each other. Antimicrobial, hemolytic and surface activities were revealed in butanot extracts of cells or cell-free supernatant of six active strains. This points to availability of active low-molecular-weight metabolites. Substances with hemolytic and surface activities were isolated from strain Bacillus pumilus An 112 and characterized as cyclic depsipeptides with molecular masses 1021, 1035, 1049, 1063 and 1077 Da. The recovery of strains producing antimicrobial and surface-active substances suggests that microorganisms associated with the marine bivalve are potential source of bioactive metabolites.

  19. Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913

    PubMed Central

    2014-01-01

    Background Pseudoalteromonas species are a group of marine gammaproteobacteria frequently found in deep-sea sediments, which may play important roles in deep-sea sediment ecosystem. Although genome sequence analysis of Pseudoalteromonas has revealed some specific features associated with adaptation to the extreme deep-sea environment, it is still difficult to study how Pseudoalteromonas adapt to the deep-sea environment due to the lack of a genetic manipulation system. The aim of this study is to develop a genetic system in the deep-sea sedimentary bacterium Pseudoalteromonas sp. SM9913, making it possible to perform gene mutation by homologous recombination. Results The sensitivity of Pseudoalteromonas sp. SM9913 to antibiotic was investigated and the erythromycin resistance gene was chosen as the selective marker. A shuttle vector pOriT-4Em was constructed and transferred into Pseudoalteromonas sp. SM9913 through intergeneric conjugation with an efficiency of 1.8 × 10-3, which is high enough to perform the gene knockout assay. A suicide vector pMT was constructed using pOriT-4Em as the bone vector and sacB gene as the counterselective marker. The epsT gene encoding the UDP-glucose lipid carrier transferase was selected as the target gene for inactivation by in-frame deletion. The epsT was in-frame deleted using a two-step integration–segregation strategy after transferring the suicide vector pMT into Pseudoalteromonas sp. SM9913. The ΔepsT mutant showed approximately 73% decrease in the yield of exopolysaccharides, indicating that epsT is an important gene involved in the EPS production of SM9913. Conclusions A conjugal transfer system was constructed in Pseudoalteromonas sp. SM9913 with a wide temperature range for selection and a high transfer efficiency, which will lay the foundation of genetic manipulation in this strain. The epsT gene of SM9913 was successfully deleted with no selective marker left in the chromosome of the host, which thus make it

  20. Inhibition of Fungal Colonization by Pseudoalteromonas tunicata Provides a Competitive Advantage during Surface Colonization†

    PubMed Central

    Franks, A.; Egan, S.; Holmström, C.; James, S.; Lappin-Scott, H.; Kjelleberg, S.

    2006-01-01

    The marine epiphytic bacterium Pseudoalteromonas tunicata produces a range of extracellular secondary metabolites that inhibit an array of common fouling organisms, including fungi. In this study, we test the hypothesis that the ability to inhibit fungi provides P. tunicata with an advantage during colonization of a surface. Studies on a transposon-generated antifungal-deficient mutant of P. tunicata, FM3, indicated that a long-chain fatty acid-coenzyme A ligase is involved in the production of a broad-range antifungal compound by P. tunicata. Flow cell experiments demonstrated that production of an antifungal compound provided P. tunicata with a competitive advantage against a marine yeast isolate during surface colonization. This compound enabled P. tunicata to disrupt an already established fungal biofilm by decreasing the number of yeast cells attached to the surface by 66% ± 9%. For in vivo experiments, the wild-type and FM3 strains of P. tunicata were used to inoculate the surface of the green alga Ulva australis. Double-gradient denaturing gradient gel electrophoresis analysis revealed that after 48 h, the wild-type P. tunicata had outcompeted the surface-associated fungal community, whereas the antifungal-deficient mutant had no effect on the fungal community. Our data suggest that P. tunicata is an effective competitor against fungal surface communities in the marine environment. PMID:16957232

  1. Inhibition of fungal colonization by Pseudoalteromonas tunicata provides a competitive advantage during surface colonization.

    PubMed

    Franks, A; Egan, S; Holmström, C; James, S; Lappin-Scott, H; Kjelleberg, S

    2006-09-01

    The marine epiphytic bacterium Pseudoalteromonas tunicata produces a range of extracellular secondary metabolites that inhibit an array of common fouling organisms, including fungi. In this study, we test the hypothesis that the ability to inhibit fungi provides P. tunicata with an advantage during colonization of a surface. Studies on a transposon-generated antifungal-deficient mutant of P. tunicata, FM3, indicated that a long-chain fatty acid-coenzyme A ligase is involved in the production of a broad-range antifungal compound by P. tunicata. Flow cell experiments demonstrated that production of an antifungal compound provided P. tunicata with a competitive advantage against a marine yeast isolate during surface colonization. This compound enabled P. tunicata to disrupt an already established fungal biofilm by decreasing the number of yeast cells attached to the surface by 66% +/- 9%. For in vivo experiments, the wild-type and FM3 strains of P. tunicata were used to inoculate the surface of the green alga Ulva australis. Double-gradient denaturing gradient gel electrophoresis analysis revealed that after 48 h, the wild-type P. tunicata had outcompeted the surface-associated fungal community, whereas the antifungal-deficient mutant had no effect on the fungal community. Our data suggest that P. tunicata is an effective competitor against fungal surface communities in the marine environment.

  2. Draft Genome Sequence of Pseudoalteromonas sp. Strain PLSV, an Ulvan-Degrading Bacterium

    PubMed Central

    Kopel, Moran; Helbert, William; Henrissat, Bernard; Doniger, Tirza

    2014-01-01

    We present the draft genome sequence of Pseudoalteromonas sp. strain PLSV, isolated from the feces of an Aplysia sea slug. The addition of the PLSV genome to the existing genomes of three other ulvan-degrading bacterial species will enhance our understanding of ulvan utilization. PMID:25502665

  3. Phylogenentic and enzymatic characterization of psychrophilic and psychrotolerant marine bacteria belong to γ-Proteobacteria group isolated from the sub-Antarctic Beagle Channel, Argentina.

    PubMed

    Cristóbal, Héctor A; Benito, Juliana; Lovrich, Gustavo A; Abate, Carlos M

    2015-05-01

    The phylogenetic and physiological characteristics of cultivable-dependent approaches were determined to establish the diversity of marine bacteria associated with the intestines of benthonic organisms and seawater samples from the Argentina's Beagle Channel. A total of 737 isolates were classified as psychrophlic and psychrotolerant culturable marine bacteria. These cold-adapted microorganisms are capable of producing cold-active glycosyl hydrolases, such as β-glucosidases, celulases, β-galactosidases, xylanases, chitinases, and proteases. These enzymes could have potential biotechnological applications for use in low-temperature manufacturing processes. According to polymerase chain reaction-restriction fragment length polymorphism analysis of part of genes encoding 16S ribosomal DNA (ARDRA) and DNA gyrase subunit B (gyrB-RFLP), 11 operational taxonomic units (OTU) were identified and clustered in known genera using InfoStat software. The 50 isolates selected were sequenced based on near full sequence analysis of 16S rDNA and gyrB sequences and identified by their nearest neighbors ranging between 96 and 99 % of identities. Phylogenetic analyses using both genes allowed relationships between members of the cultured marine bacteria belonging to the γ-Proteobacteria group (Aeromonas, Halteromonas, Pseudomonas, Pseudoalteromonas, Shewanella, Serratia, Colwellia, Glacielocola, and Psychrobacter) to be evaluated. Our research reveals a high diversity of hydrolytic bacteria, and their products actuality has an industrial use in several bioprocesses at low-temperature manufacturing.

  4. Filamentous phages prevalent in Pseudoalteromonas spp. confer properties advantageous to host survival in Arctic sea ice

    PubMed Central

    Yu, Zi-Chao; Chen, Xiu-Lan; Shen, Qing-Tao; Zhao, Dian-Li; Tang, Bai-Lu; Su, Hai-Nan; Wu, Zhao-Yu; Qin, Qi-Long; Xie, Bin-Bin; Zhang, Xi-Ying; Yu, Yong; Zhou, Bai-Cheng; Chen, Bo; Zhang, Yu-Zhong

    2015-01-01

    Sea ice is one of the most frigid environments for marine microbes. In contrast to other ocean ecosystems, microbes in permanent sea ice are space confined and subject to many extreme conditions, which change on a seasonal basis. How these microbial communities are regulated to survive the extreme sea ice environment is largely unknown. Here, we show that filamentous phages regulate the host bacterial community to improve survival of the host in permanent Arctic sea ice. We isolated a filamentous phage, f327, from an Arctic sea ice Pseudoalteromonas strain, and we demonstrated that this type of phage is widely distributed in Arctic sea ice. Growth experiments and transcriptome analysis indicated that this phage decreases the host growth rate, cell density and tolerance to NaCl and H2O2, but enhances its motility and chemotaxis. Our results suggest that the presence of the filamentous phage may be beneficial for survival of the host community in sea ice in winter, which is characterized by polar night, nutrient deficiency and high salinity, and that the filamentous phage may help avoid over blooming of the host in sea ice in summer, which is characterized by polar day, rich nutrient availability, intense radiation and high concentration of H2O2. Thus, while they cannot kill the host cells by lysing them, filamentous phages confer properties advantageous to host survival in the Arctic sea ice environment. Our study provides a foremost insight into the ecological role of filamentous phages in the Arctic sea ice ecosystem. PMID:25303713

  5. Filamentous phages prevalent in Pseudoalteromonas spp. confer properties advantageous to host survival in Arctic sea ice.

    PubMed

    Yu, Zi-Chao; Chen, Xiu-Lan; Shen, Qing-Tao; Zhao, Dian-Li; Tang, Bai-Lu; Su, Hai-Nan; Wu, Zhao-Yu; Qin, Qi-Long; Xie, Bin-Bin; Zhang, Xi-Ying; Yu, Yong; Zhou, Bai-Cheng; Chen, Bo; Zhang, Yu-Zhong

    2015-03-17

    Sea ice is one of the most frigid environments for marine microbes. In contrast to other ocean ecosystems, microbes in permanent sea ice are space confined and subject to many extreme conditions, which change on a seasonal basis. How these microbial communities are regulated to survive the extreme sea ice environment is largely unknown. Here, we show that filamentous phages regulate the host bacterial community to improve survival of the host in permanent Arctic sea ice. We isolated a filamentous phage, f327, from an Arctic sea ice Pseudoalteromonas strain, and we demonstrated that this type of phage is widely distributed in Arctic sea ice. Growth experiments and transcriptome analysis indicated that this phage decreases the host growth rate, cell density and tolerance to NaCl and H2O2, but enhances its motility and chemotaxis. Our results suggest that the presence of the filamentous phage may be beneficial for survival of the host community in sea ice in winter, which is characterized by polar night, nutrient deficiency and high salinity, and that the filamentous phage may help avoid over blooming of the host in sea ice in summer, which is characterized by polar day, rich nutrient availability, intense radiation and high concentration of H2O2. Thus, while they cannot kill the host cells by lysing them, filamentous phages confer properties advantageous to host survival in the Arctic sea ice environment. Our study provides a foremost insight into the ecological role of filamentous phages in the Arctic sea ice ecosystem.

  6. Bioactive peptides from marine sources: pharmacological properties and isolation procedures.

    PubMed

    Aneiros, Abel; Garateix, Anoland

    2004-04-15

    Marine organisms represent a valuable source of new compounds. The biodiversity of the marine environment and the associated chemical diversity constitute a practically unlimited resource of new active substances in the field of the development of bioactive products. In this paper, the molecular diversity of different marine peptides is described as well as information about their biological properties and mechanisms of action is provided. Moreover, a short review about isolation procedures of selected bioactive marine peptides is offered. Novel peptides from sponges, ascidians, mollusks, sea anemones and seaweeds are presented in association with their pharmacological properties and obtainment methods.

  7. Isolation of fucosyltransferase-producing bacteria from marine environments.

    PubMed

    Kajiwara, Hitomi; Toda, Munetoyo; Mine, Toshiki; Nakada, Hiroshi; Yamamoto, Takeshi

    2012-01-01

    Fucose-containing oligosaccharides on the cell surface of some pathogenic bacteria are thought to be important for host-microbe interactions and to play a major role in the pathogenicity of bacterial pathogens. Here, we screened marine bacteria for glycosyltransferases using two methods: a one-pot glycosyltransferase assay method and a lectin-staining method. Using this approach, we isolated marine bacteria with fucosyltransferase activity. There have been no previous reports of marine bacteria producing fucosyltransferase. This paper thus represents the first report of fucosyltransferase-producing marine bacteria.

  8. Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery.

    PubMed

    Subramani, Ramesh; Aalbersberg, William

    2013-11-01

    Rare Actinomycetes from underexplored marine environments are targeted in drug discovery studies due to the Actinomycetes' potentially huge resource of structurally diverse natural products with unusual biological activity. Of all marine bacteria, 10 % are Actinomycetes, which have proven an outstanding and fascinating resource for new and potent bioactive molecules. Past and present efforts in the isolation of rare Actinomycetes from underexplored diverse natural habitats have resulted in the isolation of about 220 rare Actinomycete genera of which more than 50 taxa have been reported to be the producers of 2,500 bioactive compounds. That amount represents greater than 25 % of the total Actinomycetes metabolites, demonstrating that selective isolation methods are being developed and extensively applied. Due to the high rediscovery rate of known compounds from Actinomycetes, a renewed interest in the development of new antimicrobial agents from rare and novel Actinomycetes is urgently required to combat the increasing number of multidrug-resistant human pathogens. To facilitate that discovery, this review updates all selective isolation media including pretreatment and enrichment methods for the isolation of marine rare Actinomycetes. In addition, this review demonstrates that discovering new compounds with novel scaffolds can be increased by intensive efforts in isolating and screening rare marine genera of Actinomycetes. Between 2007 and mid-2013, 80 new rare Actinomycete species were reported from marine habitats. They belong to 23 rare families, of which three are novel, and 20 novel genera. Of them, the family Micromonosporaceae is dominant as a producer of promising chemical diversity.

  9. Phenotypic and molecular characterisation of Brucella isolates from marine mammals

    PubMed Central

    Dawson, Claire E; Stubberfield, Emma J; Perrett, Lorraine L; King, Amanda C; Whatmore, Adrian M; Bashiruddin, John B; Stack, Judy A; MacMillan, Alastair P

    2008-01-01

    Background Bacteria of the genus Brucella are the causative organisms of brucellosis in animals and man. Previous characterisation of Brucella strains originating from marine mammals showed them to be distinct from the terrestrial species and likely to comprise one or more new taxa. Recently two new species comprising Brucella isolates from marine mammals, B. pinnipedialis and B. ceti, were validly published. Here we report on an extensive study of the molecular and phenotypic characteristics of marine mammal Brucella isolates and on how these characteristics relate to the newly described species. Results In this study, 102 isolates of Brucella originating from eleven species of marine mammals were characterised. Results obtained by analysis using the Infrequent Restriction Site (IRS)-Derivative PCR, PCR-RFLP of outer membrane protein genes (omp) and IS711 fingerprint profiles showed good consistency with isolates originating from cetaceans, corresponding to B. ceti, falling into two clusters. These correspond to isolates with either dolphins or porpoises as their preferred host. Isolates originating predominantly from seals, and corresponding to B. pinnipedialis, cluster separately on the basis of IS711 fingerprinting and other molecular approaches and can be further subdivided, with isolates from hooded seals comprising a distinct group. There was little correlation between phenotypic characteristics used in classical Brucella biotyping and these groups. Conclusion Molecular approaches are clearly valuable in the division of marine mammal Brucella into subtypes that correlate with apparent ecological divisions, whereas conventional bioyping is of less value. The data presented here confirm that there are significant subtypes within the newly described marine mammal Brucella species and add to a body of evidence that could lead to the recognition of additional species or sub-species within this group. PMID:19091076

  10. Antibacterial activity of marine culturable bacteria collected from a global sampling of ocean surface waters and surface swabs of marine organisms.

    PubMed

    Gram, Lone; Melchiorsen, Jette; Bruhn, Jesper Bartholin

    2010-08-01

    The purpose of the present study was to isolate marine culturable bacteria with antibacterial activity and hence a potential biotechnological use. Seawater samples (244) and 309 swab samples from biotic or abiotic surfaces were collected on a global Danish marine research expedition (Galathea 3). Total cell counts at the seawater surface were 5 x 10(5) to 10(6) cells/ml, of which 0.1-0.2% were culturable on dilute marine agar (20 degrees C). Three percent of the colonies cultured from seawater inhibited Vibrio anguillarum, whereas a significantly higher proportion (13%) of colonies from inert or biotic surfaces was inhibitory. It was not possible to relate a specific kind of eukaryotic surface or a specific geographic location to a general high occurrence of antagonistic bacteria. Five hundred and nineteen strains representing all samples and geographic locations were identified on the basis of partial 16S rRNA gene sequence homology and belonged to three major groups: Vibrionaceae (309 strains), Pseudoalteromonas spp. (128 strains), and the Roseobacter clade (29 strains). Of the latter, 25 strains were identified as Ruegeria mobilis or pelagia. When re-testing against V. anguillarum, only 409 (79%) retained some level of inhibitory activity. Many strains, especially Pseudoalteromonas spp. and Ruegeria spp., also inhibited Staphylococcus aureus. The most pronounced antibacterial strains were pigmented Pseudoalteromonas strains and Ruegeria spp. The inhibitory, pigmented Pseudoalteromonas were predominantly isolated in warmer waters from swabs of live or inert surfaces. Ruegeria strains were isolated from all ocean areas except for Arctic and Antarctic waters and inhibitory activity caused by production of tropodithietic acid.

  11. Diversity of culturable actinobacteria isolated from marine sponge Haliclona sp.

    PubMed

    Jiang, Shumei; Sun, Wei; Chen, Minjie; Dai, Shikun; Zhang, Long; Liu, Yonghong; Lee, Kyung Jin; Li, Xiang

    2007-11-01

    This study describes actinobacteria isolated from the marine sponge Haliclona sp. collected in shallow water of the South China Sea. A total of 54 actinobacteria were isolated using media selective for actinobacteria. Species diversity and natural product diversity of isolates from marine sponge Haliclona sp. were analysed. Twenty-four isolates were selected on the basis of their morphology on different media and assigned to the phylum Actinobacteria by a combination of 16S rRNA gene based restriction enzymes digestion and 16S rRNA gene sequence analysis. The 16S rRNA genes of 24 isolates were digested by restriction enzymes TaqI and MspI and assigned to different groups according to their restriction enzyme pattern. The phylogenetic analysis based on 16S rRNA gene sequencing showed that the isolates belonged to the genera Streptomyces, Nocardiopsis, Micromonospora and Verrucosispora; one other isolate was recovered that does not belong to known genera based on its unique 16S rRNA gene sequence. To our knowledge, this is the first report of a bacterium classified as Verrucosispora sp. that has been isolated from a marine sponge. The majority of the strains tested belong to the genus Streptomyces and three isolates may be new species. All of the 24 isolates were screened for genes encoding polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). PKS and NRPS sequences were detected in more than half of the isolates and the different "PKS-I-PKS-II-NRPS" combinations in different isolates belonging to the same species are indicators of their potential natural product diversity and divergent genetic evolution.

  12. Highly divergent mussel lineages in isolated Indonesian marine lakes

    PubMed Central

    de Leeuw, Christiaan A.; Knegt, Bram; Maas, Diede L.; de Voogd, Nicole J.; Abdunnur; Suyatna, Iwan; Peijnenburg, Katja T.C.A.

    2016-01-01

    Marine lakes, with populations in landlocked seawater and clearly delineated contours, have the potential to provide a unique model to study early stages of evolution in coastal marine taxa. Here we ask whether populations of the mussel Brachidontes from marine lakes in Berau, East Kalimantan (Indonesia) are isolated from each other and from the coastal mangrove systems. We analyzed sequence data of one mitochondrial marker (Cytochrome Oxidase I (COI)), and two nuclear markers (18S and 28S). In addition, we examined shell shape using a geometric morphometric approach. The Indonesian populations of Brachidontes spp. harbored four deeply diverged lineages (14–75% COI corrected net sequence divergence), two of which correspond to previously recorded lineages from marine lakes in Palau, 1,900 km away. These four lineages also showed significant differences in shell shape and constitute a species complex of at least four undescribed species. Each lake harbored a different lineage despite the fact that the lakes are separated from each other by only 2–6 km, while the two mangrove populations, at 20 km distance from each other, harbored the same lineage and shared haplotypes. Marine lakes thus represent isolated habitats. As each lake contained unique within lineage diversity (0.1–0.2%), we suggest that this may have resulted from in situdivergence due to isolation of founder populations after the formation of the lakes (6,000–12,000 years before present). Combined effects of stochastic processes, local adaptation and increased evolutionary rates could produce high levels of differentiation in small populations such as in marine lake environments. Such short-term isolation at small spatial scales may be an important contributing factor to the high marine biodiversity that is found in the Indo-Australian Archipelago. PMID:27761314

  13. Highly divergent mussel lineages in isolated Indonesian marine lakes.

    PubMed

    Becking, Leontine E; de Leeuw, Christiaan A; Knegt, Bram; Maas, Diede L; de Voogd, Nicole J; Abdunnur; Suyatna, Iwan; Peijnenburg, Katja T C A

    2016-01-01

    Marine lakes, with populations in landlocked seawater and clearly delineated contours, have the potential to provide a unique model to study early stages of evolution in coastal marine taxa. Here we ask whether populations of the mussel Brachidontes from marine lakes in Berau, East Kalimantan (Indonesia) are isolated from each other and from the coastal mangrove systems. We analyzed sequence data of one mitochondrial marker (Cytochrome Oxidase I (COI)), and two nuclear markers (18S and 28S). In addition, we examined shell shape using a geometric morphometric approach. The Indonesian populations of Brachidontes spp. harbored four deeply diverged lineages (14-75% COI corrected net sequence divergence), two of which correspond to previously recorded lineages from marine lakes in Palau, 1,900 km away. These four lineages also showed significant differences in shell shape and constitute a species complex of at least four undescribed species. Each lake harbored a different lineage despite the fact that the lakes are separated from each other by only 2-6 km, while the two mangrove populations, at 20 km distance from each other, harbored the same lineage and shared haplotypes. Marine lakes thus represent isolated habitats. As each lake contained unique within lineage diversity (0.1-0.2%), we suggest that this may have resulted from in situdivergence due to isolation of founder populations after the formation of the lakes (6,000-12,000 years before present). Combined effects of stochastic processes, local adaptation and increased evolutionary rates could produce high levels of differentiation in small populations such as in marine lake environments. Such short-term isolation at small spatial scales may be an important contributing factor to the high marine biodiversity that is found in the Indo-Australian Archipelago.

  14. Isolation and partial characterization of phosphate solubilizing bacteria isolated from soil and marine samples.

    PubMed

    Mujahid, Talat Yasmeen; Siddiqui, Khaizran; Ahmed, Rifat; Kazmi, Shahana U; Ahmed, Nuzhat

    2014-09-01

    In the present study the potential of indigenous bacterial isolates from soil rhizosphere and marine environment to promote plant growth was determined. Eight bacterial strains isolated from soil and marine samples were characterized for the phosphate solubilizing activity. Qualitative and quantitative estimation of phosphate solubilization is done. MIC of antibiotic and heavy metals were checked for these strains. Strains show a diverse pattern of antibiotic and heavy metals resistance.

  15. Cryoprotective properties and preliminary characterization of exopolysaccharide (P-Arcpo 15) produced by the Arctic bacterium Pseudoalteromonas elyakovii Arcpo 15.

    PubMed

    Kim, Sung Jin; Kim, Byung-Gee; Park, Ha Ju; Yim, Joung Han

    2016-01-01

    Twenty-two bacterial strains that secrete exopolysaccharides (EPS) were isolated from marine samples obtained from the Chukchi Sea in the Arctic Ocean; of these, seven strains were found to be capable of producing cryoprotective EPS. The ArcPo 15 strain was isolated based on its ability to secrete large amounts of EPS, and was identified as Pseudoalteromonas elyakovii based on 16S rDNA analysis. The EPS, P-ArcPo 15, was purified by protease treatment and gel filtration chromatography. The purified EPS (P-ArcPo 15) had a molecular mass of 1.7 × 10(7) Da, and its infrared spectrum showed absorption bands of hydroxyl and carboxyl groups. The principal sugar components of P-ArcPo 15 were determined to be mannose and galacturonic acid, in the ratio of 3.3:1.0. The cryoprotective properties of P-ArcPo 15 were characterized by an Escherichia coli viability test. In the presence of 0.5% (w/v) EPS, the survival percentage of E. coli cells was as high as 94.19 ± 7.81% over five repeated freeze-thaw cycles. These biochemical characteristics suggest that the EPS P-ArcPo 15 may be useful in the development of cryoprotectants for biotechnological purposes, and we therefore assessed the utility of this novel cryoprotective EPS.

  16. Diversity of cold-active protease-producing bacteria from arctic terrestrial and marine environments revealed by enrichment culture.

    PubMed

    Kim, Eun Hye; Cho, Kyeung Hee; Lee, Yung Mi; Yim, Joung Han; Lee, Hong Kum; Cho, Jang-Cheon; Hong, Soon Gyu

    2010-08-01

    A new approach for enrichment culture was applied to obtain cold-active protease-producing bacteria for marine and terrestrial samples from Svalbard, Norway. The method was developed for the enrichment of bacteria by long-term incubation at low temperatures in semi-solid agar medium containing meat pieces as the main source of carbon and energy. ZoBell and 0.1x nutrient broth were added for marine and terrestrial microorganisms, respectively, to supply basal elements for growth. One to three types of colonies were observed from each enrichment culture, indicating that specific bacterial species were enriched during the experimental conditions. Among 89 bacterial isolates, protease activity was observed from 48 isolates in the screening media containing skim milk. Good growth was observed at 4 degrees C and 10 degrees C while none of the isolates could grow at 37 degrees C. At low temperatures, enzyme activity was equal to or higher than activity at higher temperatures. Bacterial isolates were included in the genera Pseudoalteromonas (33 isolates), Arthrobacter (24 isolates), Pseudomonas (16 isolates), Psychrobacter (6 isolates), Sphingobacterium (6 isolates), Flavobacterium (2 isolates), Sporosarcina (1 isolate), and Stenotrophomonas (1 isolate). Protease activity was observed from Pseudoalteromonas (33 isolates), Pseudomonas (10 isolates), Arthrobacter (4 isolates), and Flavobacterium (1 isolate).

  17. Psychroflexus saliphilus sp. nov., isolated from a marine solar saltern

    USDA-ARS?s Scientific Manuscript database

    A Gram-stain-negative, non-motile, rod-shaped, orange pigmented strain, WDS4A13**T, was isolated from a marine solar saltern in Weihai, China. WDS4A13**T grows optimally at pH at 7.0-8.0, 33°C, with 6% (w/v) NaCl. The polar lipid profile of the novel isolate consisted of two unidentified phospholipi...

  18. Isolation and characterization of hyaluronic acid from marine organisms.

    PubMed

    Giji, Sadhasivam; Arumugam, Muthuvel

    2014-01-01

    Hyaluronic acid (HA) being a viscous slippery substance is a multifunctional glue with immense therapeutic applications such as ophthalmic surgery, orthopedic surgery and rheumatology, drug delivery systems, pulmonary pathology, joint pathologies, and tissue engineering. Although HA has been isolated from terrestrial origin (human umbilical cord, rooster comb, bacterial sources, etc.) so far, the increasing interest on this polysaccharide significantly aroused the alternative search from marine sources since it is at the preliminary level. Enthrallingly, marine environments are considered more biologically diverse than terrestrial environments. Although numerous methods have been described for the extraction and purification of HA, the hitch on the isolation methods which greatly influences the yield as well as the molecular weight of the polymer still exists. Adaptation of suitable method is essential in this venture. Stimulated by the developed technology, to sketch the steps involved in isolation and analytical techniques for characterization of this polymer, a brief report on the concerned approach has been reviewed.

  19. Isolation of an autotrophic ammonia-oxidizing marine archaeon.

    PubMed

    Könneke, Martin; Bernhard, Anne E; de la Torre, José R; Walker, Christopher B; Waterbury, John B; Stahl, David A

    2005-09-22

    For years, microbiologists characterized the Archaea as obligate extremophiles that thrive in environments too harsh for other organisms. The limited physiological diversity among cultivated Archaea suggested that these organisms were metabolically constrained to a few environmental niches. For instance, all Crenarchaeota that are currently cultivated are sulphur-metabolizing thermophiles. However, landmark studies using cultivation-independent methods uncovered vast numbers of Crenarchaeota in cold oxic ocean waters. Subsequent molecular surveys demonstrated the ubiquity of these low-temperature Crenarchaeota in aquatic and terrestrial environments. The numerical dominance of marine Crenarchaeota--estimated at 10(28) cells in the world's oceans--suggests that they have a major role in global biogeochemical cycles. Indeed, isotopic analyses of marine crenarchaeal lipids suggest that these planktonic Archaea fix inorganic carbon. Here we report the isolation of a marine crenarchaeote that grows chemolithoautotrophically by aerobically oxidizing ammonia to nitrite--the first observation of nitrification in the Archaea. The autotrophic metabolism of this isolate, and its close phylogenetic relationship to environmental marine crenarchaeal sequences, suggests that nitrifying marine Crenarchaeota may be important to global carbon and nitrogen cycles.

  20. Isolation of an algal morphogenesis inducer from a marine bacterium.

    PubMed

    Matsuo, Yoshihide; Imagawa, Hiroshi; Nishizawa, Mugio; Shizuri, Yoshikazu

    2005-03-11

    Ulva and Enteromorpha are cosmopolitan and familiar marine algal genera. It is well known that these green macroalgae lose their natural morphology during short-term cultivation under aseptic conditions and during long-term cultivation in nutrient-added seawater and adopt an unusual form instead. These phenomena led to the belief that undefined morphogenetic factors that were indispensable to the foliaceous morphology of macroalgae exist throughout the oceans. We characterize a causative factor, named thallusin, isolated from an epiphytic marine bacterium. Thallusin induces normal germination and morphogenesis of green macroalgae.

  1. Unveiling the pan-genome of the SXT/R391 family of ICEs: molecular characterisation of new variable regions of SXT/R391-like ICEs detected in Pseudoalteromonas sp. and Vibrio scophthalmi.

    PubMed

    Rodríguez-Blanco, Arturo; Lemos, Manuel L; Osorio, Carlos R

    2016-08-01

    Integrating conjugative elements (ICEs) of the SXT/R391 family have been identified in fish-isolated bacterial strains collected from marine aquaculture environments of the northwestern Iberian Peninsula. Here we analysed the variable regions of two ICEs, one preliminarily characterised in a previous study (ICEVscSpa3) and one newly identified (ICEPspSpa1). Bacterial strains harboring these ICEs were phylogenetically assigned to Vibrio scophthalmi and Pseudoalteromonas sp., thus constituting the first evidence of SXT/R391-like ICEs in the genus Pseudoalteromonas to date. Variable DNA regions, which confer element-specific properties to ICEs of this family, were characterised. Interestingly, the two ICEs contained 29 genes not found in variable DNA insertions of previously described ICEs. Most notably, variable gene content for ICEVscSpa3 showed similarity to genes potentially involved in housekeeping functions of replication, nucleotide metabolism and transcription. For these genes, closest homologues were found clustered in the genome of Pseudomonas psychrotolerans L19, suggesting a transfer as a block to ICEVscSpa3. Genes encoding antibiotic resistance, restriction modification systems and toxin/antitoxin systems were absent from hotspots of ICEVscSpa3. In contrast, the variable gene content of ICEPspSpa1 included genes involved in restriction/modification functions in two different hotspots and genes related to ICE maintenance. The present study unveils a relatively large number of novel genes in SXT/R391-ICEs, and demonstrates the major role of ICE elements as contributors to horizontal gene transfer.

  2. Structure and ecological roles of a novel exopolysaccharide from the arctic sea ice bacterium Pseudoalteromonas sp. Strain SM20310.

    PubMed

    Liu, Sheng-Bo; Chen, Xiu-Lan; He, Hai-Lun; Zhang, Xi-Ying; Xie, Bin-Bin; Yu, Yong; Chen, Bo; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2013-01-01

    The structure and ecological roles of the exopolysaccharides (EPSs) from sea ice microorganisms are poorly studied. Here we show that strain SM20310, with an EPS production of 567 mg liter(-1), was screened from 110 Arctic sea ice isolates and identified as a Pseudoalteromonas strain. The EPS secreted by SM20310 was purified, and its structural characteristics were studied. The predominant repeating unit of this EPS is a highly complicated α-mannan with a molecular mass greater than 2 × 10(6) Da. The backbone of the EPS consists of 2-α-, 6-α-mannosyl residues, in which a considerable part of the 6-α-mannosyl residues are branched at the 2 position with either single t-mannosyl residues or two mannosyl residues. The structure of the described EPS is different from the structures of EPSs secreted by other marine bacteria. Analysis of the ecological roles of the identified EPS showed that the EPS could significantly enhance the high-salinity tolerance of SM20310 and improve the survival of SM20310 after freeze-thaw cycles. These results suggest that the EPS secreted by strain SM20310 enables the strain to adapt to the sea ice environment, which is characterized by low temperature, high salinity, and repeated freeze-thaw cycles. In addition to its functions in strain SM20310, this EPS also significantly improved the tolerance of Escherichia coli to freeze-thaw cycles, suggesting that it may have a universal impact on microorganism cryoprotection.

  3. Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus

    PubMed Central

    Biller, Steven J.; Berube, Paul M.; Berta-Thompson, Jessie W.; Kelly, Libusha; Roggensack, Sara E.; Awad, Lana; Roache-Johnson, Kathryn H.; Ding, Huiming; Giovannoni, Stephen J.; Rocap, Gabrielle; Moore, Lisa R.; Chisholm, Sallie W.

    2014-01-01

    The marine cyanobacterium Prochlorococcus is the numerically dominant photosynthetic organism in the oligotrophic oceans, and a model system in marine microbial ecology. Here we report 27 new whole genome sequences (2 complete and closed; 25 of draft quality) of cultured isolates, representing five major phylogenetic clades of Prochlorococcus. The sequenced strains were isolated from diverse regions of the oceans, facilitating studies of the drivers of microbial diversity—both in the lab and in the field. To improve the utility of these genomes for comparative genomics, we also define pre-computed clusters of orthologous groups of proteins (COGs), indicating how genes are distributed among these and other publicly available Prochlorococcus genomes. These data represent a significant expansion of Prochlorococcus reference genomes that are useful for numerous applications in microbial ecology, evolution and oceanography. PMID:25977791

  4. Antimicrobial potential of Actinomycetes species isolated from marine environment.

    PubMed

    Valli, S; Suvathi, Sugasini S; Aysha, O S; Nirmala, P; Vinoth, Kumar P; Reena, A

    2012-06-01

    To evaluate the antimicrobial activity of Actinomycetes species isolated from marine environment. Twenty one strains of Actinomycetes were isolated from samples of Royapuram, Muttukadu, Mahabalipuram sea shores and Adyar estuary. Preliminary screening was done using cross-streak method against two gram-positive and eight gram-negative bacteria. The most potent strains C11 and C12 were selected from which antibacterial substances were extracted. The antibacterial activities of the extracts were performed using Kirby-Bauer disc diffusion method. Molecular identification of those isolates was done. All those twenty one isolates were active against at least one of the test organisms. Morphological characters were recorded. C11 showed activity against Staphylococcus species (13.0±0.5 mm), Vibrio harveyi (11.0±0.2 mm), Pseudomonas species (12.0±0.3 mm). C12 showed activity against Staphylococcus species (16.0±0.4 mm), Bacillus subtilis (11.0±0.2 mm), Vibrio harveyi (9.0±0.1 mm), Pseudomonas species (10.0±0.2 mm). 16S rRNA pattern strongly suggested that C11 and C12 strains were Streptomyces species. The results of the present investigation reveal that the marine Actinomycetes from coastal environment are the potent source of novel antibiotics. Isolation, characterization and study of Actinomycetes can be useful in discovery of novel species of Actinomycetes.

  5. Marine fungi isolated from Chilean fjord sediments can degrade oxytetracycline.

    PubMed

    Ahumada-Rudolph, R; Novoa, V; Sáez, K; Martínez, M; Rudolph, A; Torres-Diaz, C; Becerra, J

    2016-08-01

    Salmon farming is the main economic activity in the fjords area of Southern Chile. This activity requires the use of antibiotics, such as oxytetracycline, for the control and prevention of diseases, which have a negative impact on the environment. We analyzed the abilities of endemic marine fungi to biodegrade oxytetracycline, an antibiotic used extensively in fish farming. We isolated marine fungi strains from sediment samples obtained from an area of fish farming activity. The five isolated strains showed an activity on oxytetracycline and were identified as Trichoderma harzianum, Trichoderma deliquescens, Penicillium crustosum, Rhodotorula mucilaginosa, and Talaromyces atroroseus by a scanning electron microscopy and characterized by molecular techniques. Results showed significant degradation in the concentration of oxytetracycline at the first 2 days of treatment for all strains analyzed. At 21 days of treatment, the concentration of oxytetracycline was decreased 92 % by T. harzianum, 85 % by T. deliquescens, 83 % by P. crustosum, 73 % by R. mucilaginosa, and 72 % by T. atroroseus, all of which were significantly higher than the controls. Given these results, we propose that fungal strains isolated from marine sediments may be useful tools for biodegradation of antibiotics, such as oxytetracycline, in the salmon industry.

  6. Draft Genome Sequence of Pseudoalteromonas tetraodonis Strain MQS005, a Bacterium with Potential Quorum-Sensing Regulation

    PubMed Central

    Pan, Yonglong; Wang, Yanbo; Yan, Xiaoqing; Mazumder, Asit

    2016-01-01

    We present here the draft genome sequence of Pseudoalteromonas tetraodonis strain MQS005, a bacterium possessing potential quorum-sensing regulatory activity. This strain was isolated from water from the South China Sea, People’s Republic of China. The assembly consists of 4,252,538 bp and contains 144 contigs, with a G+C content of 41.85%. PMID:27491986

  7. Isolation of Bacteriophages of the Marine Bacterium Beneckea natriegens from Coastal Salt Marshes1

    PubMed Central

    Zachary, Arthur

    1974-01-01

    Bacteriophages of the marine bacterium Beneckea natriegens were isolated from coastal marshes where they were limited to brackish and marine waters. The phages were widely distributed and morphologically diverse in the marshes. Images PMID:4133830

  8. Responses of Diverse Marine Heterotrophic Bacteria to Changing Copper Availability.

    NASA Astrophysics Data System (ADS)

    Posacka, A. M.; Maldonado, M. T.

    2016-02-01

    Copper (Cu) is essential to a variety of metabolic pathways in marine prokaryotes, including cellular respiration and degradation of complex organic substrates. Yet, its nutritional role in marine heterotrophic bacteria remains poorly understood. Our goal was to investigate the effects of Cu availability on growth and metabolism of diverse classes of marine heterotrophic bacteria (α -, Ɣ- proteobacteria and Flavobacteriia), including a number of strains isolated from the Northeast Pacific Ocean (Pseudoalteromonas sp., Alteromondales; and Dokdonia sp., Flavobacteriales) and a model bacterium from the Roseobacter clade Ruegeria pomeroyi (ATCC 700808). Our preliminary results indicate that Pseudoalteromonas sp may have a low metabolic requirement for Cu as their growth rates were only slightly reduced under Cu deficiency (10-25% µmax). In contrast, the growth of the flavobacterium Dokdonia sp is severely limited by low Cu levels (up to 90% µmax) and follows a Monod-type kinetics from 0 - 50nM Cu in EDTA-buffered media. Metabolic responses to changing Cu availability include an increase in intracellular sulfur content with decreasing Cu concentrations, while maintaining constant C:N stoichiometry. Bacterial growth efficiency (BGE, %) was directly correlated with Cu suggesting that carbon utilization in this organism is regulated by Cu availability. Our results indicate that Cu affects growth and metabolism of marine heterotrophic bacteria, and highlight the physiological differences in copper requirements among different bacterial groups.

  9. Phylogeny of marine Bacillus isolates from the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Siefert, J. L.; Larios-Sanz, M.; Nakamura, L. K.; Slepecky, R. A.; Paul, J. H.; Moore, E. R.; Fox, G. E.; Jurtshuk, P. Jr

    2000-01-01

    The phylogeny of 11 pigmented, aerobic, spore-forming isolates from marine sources was studied. Forty-two biochemical characteristics were examined, and a 16S rDNA sequence was obtained for each isolate. In a phylogenetic tree based on 16S sequencing, four isolates (NRRL B-14850, NRRL B-14904, NRRL B-14907, and NRRL B-14908) clustered with B. subtilis and related organisms; NRRL B-14907 was closely related to B. amyloliquefaciens. NRRL B-14907 and NRRL B-14908 were phenotypically similar to B. amyloliquefaciens and B. pumilus, respectively. Three strains (NRRL B-14906, NRRL B-14910, and NRRL B-14911) clustered in a clade that included B. firmus, B. lentus, and B. megaterium. NRRL B-14910 was closely related phenotypically and phylogenetically to B. megaterium. NRRL B-14905 clustered with the mesophilic round spore-producing species, B. fusiformis and B. sphaericus; the isolate was more closely related to B. fusiformis. NRRL B-14905 displayed characteristics typical of the B. sphaericus-like organisms. NRRL B-14909 and NRRL B-14912 clustered with the Paenibacillus species and displayed characteristics typical of the genus. Only NRRL B-14851, an unusually thin rod that forms very small spores, may represent a new Bacillus species.

  10. Phylogeny of marine Bacillus isolates from the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Siefert, J. L.; Larios-Sanz, M.; Nakamura, L. K.; Slepecky, R. A.; Paul, J. H.; Moore, E. R.; Fox, G. E.; Jurtshuk, P. Jr

    2000-01-01

    The phylogeny of 11 pigmented, aerobic, spore-forming isolates from marine sources was studied. Forty-two biochemical characteristics were examined, and a 16S rDNA sequence was obtained for each isolate. In a phylogenetic tree based on 16S sequencing, four isolates (NRRL B-14850, NRRL B-14904, NRRL B-14907, and NRRL B-14908) clustered with B. subtilis and related organisms; NRRL B-14907 was closely related to B. amyloliquefaciens. NRRL B-14907 and NRRL B-14908 were phenotypically similar to B. amyloliquefaciens and B. pumilus, respectively. Three strains (NRRL B-14906, NRRL B-14910, and NRRL B-14911) clustered in a clade that included B. firmus, B. lentus, and B. megaterium. NRRL B-14910 was closely related phenotypically and phylogenetically to B. megaterium. NRRL B-14905 clustered with the mesophilic round spore-producing species, B. fusiformis and B. sphaericus; the isolate was more closely related to B. fusiformis. NRRL B-14905 displayed characteristics typical of the B. sphaericus-like organisms. NRRL B-14909 and NRRL B-14912 clustered with the Paenibacillus species and displayed characteristics typical of the genus. Only NRRL B-14851, an unusually thin rod that forms very small spores, may represent a new Bacillus species.

  11. A direct pre-screen for marine bacteria producing compounds inhibiting quorum sensing reveals diverse planktonic bacteria that are bioactive.

    PubMed

    Linthorne, Jamie S; Chang, Barbara J; Flematti, Gavin R; Ghisalberti, Emilio L; Sutton, David C

    2015-02-01

    A promising new strategy in antibacterial research is inhibition of the bacterial communication system termed quorum sensing. In this study, a novel and rapid pre-screening method was developed to detect the production of chemical inhibitors of this system (quorum-quenching compounds) by bacteria isolated from marine and estuarine waters. This method involves direct screening of mixed populations on an agar plate, facilitating specific isolation of bioactive colonies. The assay showed that between 4 and 46 % of culturable bacteria from various samples were bioactive, and of the 95 selectively isolated bacteria, 93.7 % inhibited Vibrio harveyi bioluminescence without inhibiting growth, indicating potential production of quorum-quenching compounds. Of the active isolates, 21 % showed further activity against quorum-sensing-regulated pigment production by Serratia marcescens. The majority of bioactive isolates were identified by 16S ribosomal DNA (rDNA) amplification and sequencing as belonging to the genera Vibrio and Pseudoalteromonas. Extracts of two strongly bioactive Pseudoalteromonas isolates (K1 and B2) were quantitatively assessed for inhibition of growth and quorum-sensing-regulated processes in V. harveyi, S. marcescens and Chromobacterium violaceum. Extracts of the isolates reduced V. harveyi bioluminescence by as much as 98 % and C. violaceum pigment production by 36 % at concentrations which had no adverse effect on growth. The activity found in the extracts indicated that the isolates may produce quorum-quenching compounds. This study further supports the suggestion that quorum quenching may be a common attribute among culturable planktonic marine and estuarine bacteria.

  12. Heparin-like entities from marine organisms.

    PubMed

    Colliec-Jouault, S; Bavington, C; Delbarre-Ladrat, C

    2012-01-01

    Polysaccharides are ubiquitous in animals and plant cells where they play a significant role in a number of physiological situations e.g. hydration, mechanical properties of cell walls and ionic regulation. This review concentrates on heparin-like entities from marine procaryotes and eukaryotes. Carbohydrates from marine prokaryotes offer a significant structural chemodiversity with novel material and biological properties. Cyanobacteria are Gram-negative photosynthetic prokaryotes considered as a rich source of novel molecules, and marine bacteria are a rich source of polysaccharides with novel structures, which may be a good starting point from which to synthesise heparinoid molecules. For example, some sulphated polysaccharides have been isolated from gamma-proteobacteria such as Alteromonas and Pseudoalteromonas sp. In contrast to marine bacteria, all marine algae contain sulphated wall polysaccharides, whereas such polymers are not found in terrestrial plants. In their native form, or after chemical modifications, a range of polysaccharides isolated from marine organisms have been described that have anticoagulant, anti-thrombotic, anti-tumour, anti-proliferative, anti-viral or anti-inflammatory activities.In spite of the enormous potential of sulphated oligosaccharides from marine sources, their technical and pharmaceutical usage is still limited because of the high complexity of these molecules. Thus, the production of tailor-made oligo- and polysaccharidic structures by biocatalysis is also a growing field of interest in biotechnology.

  13. Micromonospora profundi sp. nov., isolated from deep marine sediment.

    PubMed

    Veyisoglu, Aysel; Carro, Lorena; Cetin, Demet; Guven, Kiymet; Spröer, Cathrin; Pötter, Gabriele; Klenk, Hans-Peter; Sahin, Nevzat; Goodfellow, Michael

    2016-11-01

    A novel actinobacterial strain, designated DS3010T, was isolated from a Black Sea marine sediment and characterized using a polyphasic approach. The strain was shown to have chemotaxonomic, morphological and phylogenetic properties consistent with classification as representing a member of the genus Micromonospora. Comparative 16S rRNA gene sequence studies showed that the strain was most closely related to the type strains of Micromonospora saelicesensis (99.5 %), Micromonospora chokoriensis (99.4 %) and Micromonospora violae (99.3 %). Similarly, a corresponding analysis based on partial gyrB gene sequences showed that it formed a distinct phyletic branch in a subclade that included the type strains of Micromonosporazamorensis, 'Micromonospora zeae', 'Micromonospora jinlongensis', M. saelicesensis and Micromonospora lupini. DS3010T was distinguished from its closest phylogenetic neighbours by low levels of DNA-DNA relatedness and by a combination of chemotaxonomic and phenotypic properties. On the basis of these data, it is proposed that the isolate should be assigned to the genus Micromonospora as Micromonospora profundi sp. nov. with isolate DS3010T (=DSM 45981T=KCTC 29243T) as the type strain.

  14. Pseudomonas pachastrellae sp. nov., isolated from a marine sponge.

    PubMed

    Romanenko, Lyudmila A; Uchino, Masataka; Falsen, Enevold; Frolova, Galina M; Zhukova, Natalia V; Mikhailov, Valery V

    2005-03-01

    Two Gram-negative, non-fermentative, non-denitrifying, non-pigmented, rod-shaped bacteria that were motile by means of polar flagella, designated strains KMM 330(T) and KMM 331, were isolated from a deep-sea sponge specimen and subjected to a polyphasic taxonomic study. The new isolates exhibited 16S rRNA gene sequence similarity of 99.9 %, and their mean level of DNA-DNA relatedness was 82 %. Phylogenetic analysis based on their 16S rRNA gene sequences placed the strains within the genus Pseudomonas as an independent deep clade. Strain KMM 330(T) shared highest sequence similarity (96.3 %) with each of Pseudomonas fulva NRIC 0180(T), Pseudomonas parafulva AJ 2129(T) and Pseudomonas luteola IAM 13000(T); sequence similarity to other recognized species of the genus Pseudomonas was below 95.7 %. The marine sponge isolates KMM 330(T) and KMM 331 could be distinguished from the other recognized Pseudomonas species based on a unique combination of their phenotypic characteristics, including growth in 8 or 10 % NaCl, the absence of pigments, the inability to denitrify and lack of carbohydrate utilization. On the basis of phylogenetic analysis, physiological and biochemical characterization, strains KMM 330(T) and KMM 331 should be classified as a novel species of the genus Pseudomonas, for which the name Pseudomonas pachastrellae sp. nov. is proposed. The type strain is KMM 330(T) (=JCM 12285(T)=NRIC 0583(T)=CCUG 46540(T)).

  15. Biosurfactant production by Azotobacter chroococcum isolated from the marine environment.

    PubMed

    Thavasi, R; Subramanyam Nambaru, V R M; Jayalakshmi, S; Balasubramanian, T; Banat, Ibrahim M

    2009-01-01

    Preliminary characterization of a biosurfactant-producing Azotobacter chroococcum isolated from marine environment showed maximum biomass and biosurfactant production at 120 and 132 h, respectively, at pH 8.0, 38 degrees C, and 30 per thousand salinity utilizing a 2% carbon substrate. It grew and produced biosurfactant on crude oil, waste motor lubricant oil, and peanut oil cake. Peanut oil cake gave the highest biosurfactant production (4.6 mg/mL) under fermentation conditions. The biosurfactant product emulsified waste motor lubricant oil, crude oil, diesel, kerosene, naphthalene, anthracene, and xylene. Preliminary characterization of the biosurfactant using biochemical, Fourier transform infrared spectroscopy, and mass spectral analysis indicated that the biosurfactant was a lipopeptide with percentage lipid and protein proportion of 31.3:68.7.

  16. Marinomonas arenicola sp. nov., isolated from marine sediment.

    PubMed

    Romanenko, Lyudmila A; Tanaka, Naoto; Frolova, Galina M

    2009-11-01

    A Marinomonas-like bacterium, strain KMM 3893(T), was isolated from a marine sandy sediment collected close to shore from the Sea of Japan and subjected to a phenotypic and phylogenetic study. Comparative 16S rRNA gene sequence analysis confirmed the novel strain's assignment to the genus Marinomonas. Strain KMM 3893(T) constituted a separate phyletic line in the genus Marinomonas, sharing <97 % sequence similarity with respect to other recognized Marinomonas species. Chemotaxonomically, strain KMM 3893(T) contained the predominant fatty acids C(18 : 1)omega7c, C(16 : 1)omega7c and C(16 : 0) and had a DNA G+C content of 50.0 mol%. On the basis of the phylogenetic analysis and physiological and biochemical characterization, strain KMM 3893(T) represents a novel species of the genus Marinomonas, for which the name Marinomonas arenicola sp. nov. is proposed. The type strain is KMM 3893(T) (=NRIC 0752(T) =JCM 15737(T)).

  17. Synthesis of Cycloprodigiosin Identifies the Natural Isolate as a Scalemic Mixture

    DOE PAGES

    Johnson, Rebecca E.; de Rond, Tristan; Lindsay, Vincent N. G.; ...

    2015-07-17

    We prepared the enantiomers of the natural product cycloprodigiosin using an expedient five-step synthetic sequence that takes advantage of a Schöllkopf–Barton–Zard (SBZ) pyrrole annulation with a chiral isocyanoacetate and a nitrocyclohexene derivative. Using chiral HPLC and X-ray crystallographic analyses of the synthetically prepared material and natural isolate (isolated from the marine bacterium Pseudoalteromonas rubra), naturally occurring cycloprodigiosin was determined to be a scalemic mixture occurring in an enantiomeric ratio of 83:17 (R)/(S) at C4'.

  18. New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade

    PubMed Central

    Mi, Yue; Zhang, Jinrong; He, Shan; Yan, Xiaojun

    2017-01-01

    Marine cyanobacteria are significant sources of structurally diverse marine natural products with broad biological activities. In the past 10 years, excellent progress has been made in the discovery of marine cyanobacteria-derived peptides with diverse chemical structures. Most of these peptides exhibit strong pharmacological activities, such as neurotoxicity and cytotoxicity. In the present review, we summarized peptides isolated from marine cyanobacteria since 2007. PMID:28475149

  19. Molecular characterization of a cryptic plasmid from the psychrotrophic antarctic bacterium Pseudoalteromonas sp. 643A.

    PubMed

    Cieśliński, Hubert; Werbowy, Katarzyna; Kur, Józef; Turkiewicz, Marianna

    2008-09-01

    We report the identification and nucleotide sequence analysis of pKW1, a plasmid of the psychrotrophic bacterium Pseudoalteromonas sp. 643A isolated from the stomach of Antarctic krill Euphasia superba. pKW1 consists of 4583 bp, has a G+C content of 43% and seven putative open reading frames (ORFs). The deduced amino acid sequence from ORF-1 shared significant similarity with the plasmid replicase protein of Psychrobacter cryohalolentis, strain K5. The DNA region immediately downstream of the ORF-1 showed some homology with the Rep-binding sequence of the theta-replicating ColE2-type plasmids. The ORF-3 amino acid sequence revealed amino acid sequence homology with the mobilization protein of Psychrobacter sp. PRwf-1 and Moraxella catarrhalis, with identities of 28% and 25%, respectively. The ORF-4 showed 46% amino acid sequence homology with the putative relaxase/mobilization nuclease MobA of Hafnia alvei and 44% homology with the putative mobilization protein A of Pasterulla multocida. The copy number of pKW1 in Pseudoalteromonas sp. 643A was estimated of 15 copies per chromosome.

  20. Maribacter arcticus sp. nov., isolated from Arctic marine sediment.

    PubMed

    Cho, Kyeung Hee; Hong, Soon Gyu; Cho, Hyun Hee; Lee, Yoo Kyung; Chun, Jongsik; Lee, Hong Kum

    2008-06-01

    A Gram-negative, non-motile, aerobic bacterium, designated strain KOPRI 20941(T), was isolated from a sample of marine sediment from Ny Alesund, Spitsbergen, Norway. A phylogenetic analysis based on 16S rRNA gene sequences revealed that the Arctic isolate nested within the genus Maribacter and showed the highest sequence similarity (98.1 %) with respect to Maribacter orientalis KMM 3947(T). Chemotaxonomic data (DNA G+C content of 36 mol%; MK-6 as the major respiratory quinone and iso-C(17 : 0) 3-OH, C(16 : 1)omega7c/iso-C(15 : 0) 2-OH and iso-C(15 : 0) as the major fatty acids) supported the affiliation of strain KOPRI 20941(T) to the genus Maribacter. The results of phylogenetic analyses, physiological and biochemical tests and a DNA-DNA reassociation test (<54 % relatedness) allowed genotypic and phenotypic differentiation of the strain from the recognized species of the genus Maribacter. Therefore strain KOPRI 20941(T) represents a novel species of the genus Maribacter, for which the name Maribacter arcticus sp. nov. is proposed. The type strain is KOPRI 20941(T) (=KCTC 22053(T)=JCM 14790(T)).

  1. Saccharicrinis marinus sp. nov., isolated from marine sediment.

    PubMed

    Liu, Qian-Qian; Li, Juan; Xiao, Di; Lu, Jin-Xing; Chen, Guan-Jun; Du, Zong-Jun

    2015-10-01

    A novel bacterial strain, designated Y11T, was isolated from marine sediment at Weihai in China. Comparative analysis of 16S rRNA gene sequences demonstrated that the novel isolate showed highest similarity to Saccharicrinis fermentans DSM 9555T (94.0 %) and Saccharicrinis carchari SS12T (92.7 %). Strain Y11T was a Gram-stain-negative, rod-shaped, non-endospore-forming, yellow-pigmented bacterium and was able to hydrolyse agar weakly. It was catalase-negative, oxidase-positive, facultatively anaerobic and motile by gliding. Optimal growth occurred at 28-30 °C, at pH 7.0-7.5 and in the presence of 2-3 % (w/v) NaCl. The DNA G+C content was 34.4 mol%. The strain contained MK-7 as the prevalent menaquinone. The major cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and C15 : 1ω6c. The predominant polar lipids were phosphatidylethanolamine and two unknown lipids. Data from the present polyphasic taxonomic study clearly place the strain as representing a novel species within the genus Saccharicrinis, for which the name Saccharicrinis marinus sp. nov. is proposed. The type strain is Y11T ( = CICC10837T = KCTC42400T).

  2. Ruegeria marina sp. nov., isolated from marine sediment.

    PubMed

    Huo, Ying-Yi; Xu, Xue-Wei; Li, Xue; Liu, Chen; Cui, Heng-Lin; Wang, Chun-Sheng; Wu, Min

    2011-02-01

    A Gram-negative, neutrophilic and rod-shaped bacterium, strain ZH17(T), was isolated from a marine sediment of the East China Sea and subjected to a polyphasic taxonomic characterization. The isolate grew in the presence of 0-7.5 % (w/v) NaCl and at pH 6.5-9.0; optimum growth was observed with 0.5-3.0 % (w/v) NaCl and at pH 7.5. Chemotaxonomic analysis showed ubiquinone-10 as predominant respiratory quinone and C(18 : 1)ω7c, 11-methyl C(18 : 1)ω7c, C(16 : 0), C(12 : 0) 3-OH and C(16 : 0) 2-OH as major fatty acids. The genomic DNA G+C content was 63.5 mol%. Comparative 16S rRNA gene sequence analysis revealed that the isolate belongs to the genus Ruegeria. Strain ZH17(T) exhibited the closest phylogenetic affinity to the type strain of Ruegeria pomeroyi, with 97.2 % sequence similarity, and less than 97 % sequence similarity with respect to other described species of the genus Ruegeria. The DNA-DNA reassociation value between strain ZH17(T) and R. pomeroyi DSM 15171(T) was 50.7 %. On the basis of phenotypic and genotypic data, strain ZH17(T) represents a novel species of the genus Ruegeria, for which the name Ruegeria marina sp. nov. (type strain ZH17(T) =CGMCC 1.9108(T) =JCM 16262(T)) is proposed.

  3. Marinagarivorans algicola gen. nov., sp. nov., isolated from marine algae.

    PubMed

    Guo, Ling-Yun; Li, Dong-Qi; Sang, Jin; Chen, Guan-Jun; Du, Zong-Jun

    2016-01-27

    Novel agar-degrading, Gram-staining-negative, motile, heterotrophic, facultatively anaerobic and pale yellow-pigmented bacterial strains, designated Z1T and JL1, were isolated from marine algae Gelidium amansii (Lamouroux) and Gracilaria verrucosa, respectively. Growth of the isolates was optimal at 28-30 °C, pH 7.0-7.5 and 1-3% (w/v) NaCl. Both strains contained Q-8 as the sole respiratory quinone. The major cellular fatty acids in strain Z1T were C18:1 ω7c, C16:0 and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH). The predominant polar lipids in strain Z1T were phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and aminolipid (AL). The genomic DNA G+C content of both strains was 45.1 mol%. Strains Z1T and JL1 were closely related, with 99.9% 16S rRNA gene sequence similarity. The average nucleotide identity (ANI) value between strains Z1T and JL1 was 99.3%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains Z1T and JL1 form a distinct phyletic line within the class Gammaproteobacteria, with less than 92.3% similarity to their closest relatives. Based on data from the current polyphasic study, the isolates are proposed to belong to a new genus and species designated Marinagarivorans algicola gen. nov., sp. nov. The type strain of Marinagarivorans algicola is Z1T (=ATCC BAA-2617T=CICC 10859T).

  4. Antifouling potential of bacteria isolated from a marine biofilm

    NASA Astrophysics Data System (ADS)

    Gao, Min; Wang, Ke; Su, Rongguo; Li, Xuzhao; Lu, Wei

    2014-10-01

    Marine microorganisms are a new source of natural antifouling compounds. In this study, two bacterial strains, Kytococcus sedentarius QDG-B506 and Bacillus cereus QDG-B509, were isolated from a marine biofilm and identified. The bacteria fermentation broth could exert inhibitory effects on the growth of Skeletonema costatum and barnacle larvae. A procedure was employed to extract and identify the antifouling compounds. Firstly, a toxicity test was conducted by graduated pH and liquid-liquid extraction to determine the optimal extraction conditions. The best extraction conditions were found to be pH 2 and 100% petroleum ether. The EC 50 value of the crude extract of K. sedentarius against the test microalgae was 236.7 ± 14.08 μg mL-1, and that of B. cereus was 290.6 ± 27.11 μg mL-1. Secondly, HLB SPE columns were used to purify the two crude extracts. After purification, the antifouling activities of the two extracts significantly increased: the EC 50 of the K. sedentarius extract against the test microalgae was 86.4 ± 3.71 μg mL-1, and that of B. cereus was 92.6 ± 1.47 μg mL-1. These results suggest that the metabolites produced by the two bacterial strains are with high antifouling activities and they should be fatty acid compounds. Lastly, GC-MS was used for the structural elucidation of the compounds. The results show that the antifouling compounds produced by the two bacterial strains are myristic, palmitic and octadecanoic acids.

  5. New and bioactive natural products isolated from madagascar plants and marine organisms.

    PubMed

    Hou, Y; Harinantenaina, L

    2010-01-01

    Madagascar, the world's fourth biggest island has an unique biodiversity. The interest on the phytochemical investigation of Malagasy plants and marine natural products started from the isolation of the potent anti-cancerous bisindole alkaloids: vinblastine and vincristine. In this paper, works published in the last two decades (1991-2009) on 270 new natural products isolated from Madagascar higher plants, liverworts and marine organisms are reviewed. Several results on the bioassays of the isolated new natural products have been reported.

  6. Possible Quorum Sensing in Marine Snow Bacteria: Production of Acylated Homoserine Lactones by Roseobacter Strains Isolated from Marine Snow

    PubMed Central

    Gram, Lone; Grossart, Hans-Peter; Schlingloff, Andrea; Kiørboe, Thomas

    2002-01-01

    We report here, for the first time, that bacteria associated with marine snow produce communication signals involved in quorum sensing in gram-negative bacteria. Four of 43 marine microorganisms isolated from marine snow were found to produce acylated homoserine lactones (AHLs) in well diffusion and thin-layer chromatographic assays based on the Agrobacterium tumefaciens reporter system. Three of the AHL-producing strains were identified by 16S ribosomal DNA gene sequence analysis as Roseobacter spp., and this is the first report of AHL production by these α-Proteobacteria. It is likely that AHLs in Roseobacter species and other marine snow bacteria govern phenotypic traits (biofilm formation, exoenzyme production, and antibiotic production) which are required mainly when the population reaches high densities, e.g., in the marine snow community. PMID:12147515

  7. [Marine bacteria producing antibacterial compounds isolated from inter-tidal invertebrates].

    PubMed

    León, Jorge; Liza, Libia; Soto, Isela; Torres, Magali; Orosco, Andrés

    2010-06-01

    Prospective sampling activities of intertidal invertebrates in the Ancon Bay (Lima, Peru) were done in order to select marine bacteria producing antimicrobial substances. The study included the isolation of bacteria in marine agar, in vitro antimicrobial susceptibility testing and electronic microscopic observations. We report the isolation, phenotypical characterization and antimicrobial properties of 10 strains of marine bacteria including the genus Vibrio, Pseudomonas, and Flavobacterium, and the order Actinomycetae that inhibit human pathogens. The results indicate that the marine invertebrates would be sources of bacteria producing antibiotic substances.

  8. Streptomyces ovatisporus sp. nov., isolated from deep marine sediment.

    PubMed

    Veyisoglu, Aysel; Cetin, Demet; Inan Bektas, Kadriye; Guven, Kiymet; Sahin, Nevzat

    2016-11-01

    The taxonomic position of a Gram-staining-positive strain, designated strain S4702T was isolated from a marine sediment collected from the southern Black Sea coast, Turkey, determined using a polyphasic approach. The isolate was found to have chemotaxonomic, morphological and phylogenetic properties consistent with its classification as representing a member of the genus Streptomyces and formed a distinct phyletic line in the 16S rRNA gene tree. S4702T was found to be most closely related to the type strains of Streptomyces marinus(DSM 41968T; 97.8 % sequence similarity) and Streptomyces abyssalis (YIM M 10400T; 97.6 %). 16S rRNA gene sequence similarities with other members of the genus Streptomyces were lower than 97.5 %. DNA-DNA relatedness of S4702T and the most closely related strain S. marinus DSM 41968T was 21.0 %. The G+C content of the genomic DNA was 72.5 mol%. The cell wall of the strain contained l,l-diaminopimelic acid and the cell-wall sugars were glucose and ribose. The major cellular fatty acids were identified as anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C15 : 0. The predominant menaquinone was MK-9(H8). The polar lipid profile of S4702T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. S4702T could be distinguished from its closest phylogenetic neighbours using a combination of chemotaxonomic, morphological and physiological properties. Consequently, it is proposed that S4702T represents a novel species of the genus Streptomyces, for which the name Streptomyces ovatisporus sp. nov. is proposed. The type strain is S4702T (DSM 42103T=KCTC 29206T=CGMCC 4.7357T).

  9. Streptomyces verrucosisporus sp. nov., isolated from marine sediments.

    PubMed

    Phongsopitanun, Wongsakorn; Kudo, Takuji; Ohkuma, Moriya; Pittayakhajonwut, Pattama; Suwanborirux, Khanit; Tanasupawat, Somboon

    2016-09-01

    Five actinomycete isolates, CPB1-1T, CPB2-10, BM1-4, CPB3-1 and CPB1-18, belonging to the genus Streptomyces were isolated from marine sediments collected from Chumphon Province, Thailand. They produced open loops of warty spore chains on aerial mycelia. ll-Diaminopimelic acid, glucose and ribose were found in their whole-cell hydrolysates. Polar lipids found were diphosphatidylglycerol, phosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. Menaquinones were MK-9(H6), MK-9(H8), MK-10(H6) and MK-10(H8). Major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The taxonomic position of the strains was described using a polyphasic approach. blastn analysis of the 16S rRNA gene sequence revealed that these five strains exhibited the highest similarities with 'Streptomyces mangrovicola' GY1 (99.0 %), Streptomyces fenghuangensisGIMN4.003T (98.6 %), Streptomyces barkulensisRC 1831T (98.5 %) and Streptomyces radiopugnans R97T (98.3 %). However, their phenotypic characteristics and 16S rRNA gene sequences as well as DNA-DNA relatedness differentiated these five strains from the other species of the genus Streptomyces. Here, we propose the novel actinomycetes all being representatives of the same novel species, Streptomyces verrucosisporus, with type strain CPB1-1T (=JCM 18519T=PCU 343T=TISTR 2344T).

  10. Haloferula chungangensis sp. nov., isolated from marine sediment.

    PubMed

    Kang, Hyeonji; Traiwan, Jitsopin; Weerawongwiwat, Veeraya; Jung, Min Young; Jeong, Ji Hoon; Myung, Soon Chul; Lee, Keun Chul; Lee, Jung-Sook; Kim, Wonyong

    2013-01-01

    A Gram-stain-negative, non-spore-forming, non-motile, strictly aerobic, rod-shaped bacterial strain, designated CAU 1074(T), was isolated from marine sediment and its taxonomic position was investigated using a polyphasic approach. Strain CAU 1074(T) grew optimally at 30 °C and pH 6.5. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CAU 1074(T) formed a distinct lineage within the genus Haloferula and was most closely related to Haloferula harenae KCTC 22198(T) (96.0% similarity). Strain CAU 1074(T) contained MK-9 as the major isoprenoid quinone, and iso-C(14:0,) C(16:1)ω9c and C(16:0) as the major fatty acids. The cell wall peptidoglycan contained meso-diaminopimelic acid. The major whole-cell sugars were glucose, xylose, mannose and ribose. The polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, aminoglycolipid and two unidentified phospholipids. The DNA G+C content of the strain was 64.0 mol%. On the basis of phenotypic and chemotaxonomic data, and phylogenetic inference, strain CAU 1074(T) should be classified as a member of a novel species in the genus Haloferula, for which the name Haloferula chungangensis sp. nov. is proposed; the type strain is CAU 1074(T) (= KCTC 23578(T) = CCUG 61920(T)). An emended description of the genus Haloferula is also provided.

  11. Hymenobacter rutilus sp. nov., isolated from marine sediment in Arctic.

    PubMed

    Kim, Myong Chol; Kim, Chol Myong; Kang, Ok Chol; Zhang, Yumin; Liu, Zuobing; Wangmu, Danzeng; Wei, Ziyan; Huang, Yao; Peng, Fang

    2016-11-21

    Strain K2-33028T, appeared brick-red colony on R2A plate, was isolated from marine sediment sample in Kings Bay, Svalbard Archipelago, Norway. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain K2-33028T belonged to the genus Hymenobacter. Cells were Gram-reaction-negative, non-spore-forming, aerobic, rod-shaped bacterium without motility. Growth occurred at 4-37℃ (optimum 28℃) and at pH 6.0-8.0 (optimum pH 7.0). Cells contained menaquinone-7, as the main respiratory quinone, and iso-C15:0, summed feature 3 (comprising C16:1 ω7c and/or C16:1 ω6c), C16:1 ω5c, summed feature 4 (comprising anteiso-C17:1 B and/or iso-C17:1 I) and anteiso-C15:0 as the major cellular fatty acids. Phosphatidylethanolamine was the predominant in the polar lipid profile. The DNA G+C content was 64.3 mol %. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain K2-33028T is considered to represent a novel species in the genus Hymenobacter, for which the name Hymenobacter rutilus sp. nov. is proposed. The type strain is K2-33028T (=CCTCC AB 2016091T=KCTC 52447T).

  12. Verrucosispora andamanensis sp. nov., isolated from a marine sponge.

    PubMed

    Supong, Khomsan; Suriyachadkun, Chanwit; Suwanborirux, Khanit; Pittayakhajonwut, Pattama; Thawai, Chitti

    2013-11-01

    An actinomycete strain, SP03-05(T), was isolated from a marine sponge sample (Xestospongia sp.) collected from Phuket Province of Thailand. The strain was aerobic, Gram-stain-positive and produced single spores at the tips of the substrate mycelium. Strain SP03-05(T) contained meso-diaminopimelic acid in the peptidoglycan; whole-cell sugars were arabinose, galactose, glucose, rhamnose, ribose and xylose. The polar lipid profile of strain SP03-05(T) consisted of phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides and unknown polar lipids. Morphological and chemotaxonomic characteristics of the strain identified it as a member of the family Micromonosporaceae. Phylogenetic analysis based on 16S rRNA gene sequences showed similarity of the strain to Verrucosispora lutea YIM 013(T) (96.90 %), Verrucosispora sediminis MS426(T) (96.90 %), Verrucosispora gifhornensis DSM 44337(T) (96.80 %), Verrucosispora maris AB-18-032(T) (96.80 %) and Verrucosispora qiuiae RtIII47(T) (95.40 %). The DNA G+C content was 72.4 mol%. The phenotypic, genotypic and DNA-DNA hybridization results supported the classification of this strain as a representative of a novel species in the genus Verrucosispora, for which the name Verrucosispora andamanensis sp. nov. is proposed. The type strain is SP03-05(T) ( = BCC 45620(T) = NBRC 109075(T)).

  13. Exploring Regulation Genes Involved in the Expression of L-Amino Acid Oxidase in Pseudoalteromonas sp. Rf-1

    PubMed Central

    Wang, Ju; Lin, Jianxun; Zhao, Minyan

    2015-01-01

    Bacterial L-amino acid oxidase (LAAO) is believed to play important biological and ecological roles in marine niches, thus attracting increasing attention to understand the regulation mechanisms underlying its production. In this study, we investigated genes involved in LAAO production in marine bacterium Pseudoalteromonas sp. Rf-1 using transposon mutagenesis. Of more than 4,000 mutants screened, 15 mutants showed significant changes in LAAO activity. Desired transposon insertion was confirmed in 12 mutants, in which disrupted genes and corresponding functionswere identified. Analysis of LAAO activity and lao gene expression revealed that GntR family transcriptional regulator, methylase, non-ribosomal peptide synthetase, TonB-dependent heme-receptor family, Na+/H+ antiporter and related arsenite permease, N-acetyltransferase GCN5, Ketol-acid reductoisomerase and SAM-dependent methytransferase, and their coding genes may be involved in either upregulation or downregulation pathway at transcriptional, posttranscriptional, translational and/or posttranslational level. The nhaD and sdmT genes were separately complemented into the corresponding mutants with abolished LAAO-activity. The complementation of either gene can restore LAAO activity and lao gene expression, demonstrating their regulatory role in LAAO biosynthesis. This study provides, for the first time, insights into the molecular mechanisms regulating LAAO production in Pseudoalteromonas sp. Rf-1, which is important to better understand biological and ecological roles of LAAO. PMID:25815733

  14. Purification and characterization of a bifunctional alginate lyase from Pseudoalteromonas sp. SM0524.

    PubMed

    Li, Jian-Wei; Dong, Sheng; Song, Jie; Li, Chun-Bo; Chen, Xiu-Lan; Xie, Bin-Bin; Zhang, Yu-Zhong

    2011-01-21

    An alginate lyase-producing bacterial strain, Pseudoalteromonas sp. SM0524, was screened from marine rotten kelp. In an optimized condition, the production of alginate lyase from Pseudoalteromonas sp. SM0524 reached 62.6 U/mL, suggesting that strain SM0524 is a good producer of alginate lyases. The bifunctional alginate lyase aly-SJ02 secreted by strain SM0524 was purified. Aly-SJ02 had an apparent molecular mass of 32 kDa. The optimal temperature and pH of aly-SJ02 toward sodium alginate was 50 °C and 8.5, respectively. The half life period of aly-SJ02 was 41 min at 40 °C and 20 min at 50 °C. Aly-SJ02 was most stable at pH 8.0. N-terminal sequence analysis suggested that aly-SJ02 may be an alginate lyase of polysaccharide lyase family 18. Aly-SJ02 showed activities toward both polyG (α-l-guluronic acid) and polyM (β-D-mannuronic acid), indicating that it is a bifunctional alginate lyase. Aly-SJ02 had lower K(m) toward polyG than toward polyM and sodium alginate. Thin layer chromatography and ESI-MS analyses showed that aly-SJ02 mainly released dimers and trimers from polyM and alginate, and trimers and tetramers from polyG, which suggests that aly-SJ02 may be a good tool to produce dimers and trimers from alginate.

  15. [Lipid composition of novel Shewanella species isolated from far Eastern seas].

    PubMed

    Frolova, G M; Pavel', K G; Shparteeva, A A; Nedashkovskaia, O I; Gorshkova, N M; Ivanova, E P; Mikhaĭlov, V V

    2005-01-01

    A comparative study of the lipid composition of 26 strains (including type strains) of marine Gammaproteobacteria belonging to the genera Shewanella, Alteromonas, Pseudoalteromonas, Marinobacterium, Microbulbifer, and Marinobacter was carried out. The bacteria exhibited genus-specific profiles of ubiquinones, phospholipids, and fatty acids, which can serve as reliable chemotaxonomic markers for tentative identification of new isolates. The studied species of the genus Shewanella were distinguished by the presence of two types of isoprenoid quinones, namely, ubiquinones Q-7 and Q-8 and menaquinones MK-7 and MMK-7; five phospholipids typical of this genus, namely, phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), lyso-PE, and acyl-PG; and the fatty acids 15:0, 16:0, 16:1 (n-7), 17:1 (n-8), i-13:0, and i-15:0. The high level of branched fatty acids (38-45%) and the presence of eicosapentaenoic acid (4%) may serve as criteria for the identification of this genus. Unlike Shewanella spp., bacteria of the other genera contained a single type of isoprenoid quinone: Q-8 (Alteromonas, Pseudoalteromonas, Marinobacterium, and Microbulbifer) or Q-9 (Marinobacter). The phospholipid compositions of these bacteria were restricted to three components: two major phospholipids (PE and PG) and a minor phospholipid, bisphosphatidic acid (Alteromonas and Pseudoalteromonas) or DPG (Marinobacterium, Microbulbifer, and Marinobacter). The bacteria exhibited genus-specific profiles of fatty acids.

  16. Exopolysaccharides Play a Role in the Swarming of the Benthic Bacterium Pseudoalteromonas sp. SM9913

    PubMed Central

    Liu, Ang; Mi, Zi-Hao; Zheng, Xiao-Yu; Yu, Yang; Su, Hai-Nan; Chen, Xiu-Lan; Xie, Bin-Bin; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Qin, Qi-Long

    2016-01-01

    Most marine bacteria secrete exopolysaccharide (EPS), which is important for bacterial survival in the marine environment. However, it is still unclear whether the self-secreted EPS is involved in marine bacterial motility. Here we studied the role of EPS in the lateral flagella-driven swarming motility of benthic bacterium Pseudoalteromonas sp. SM9913 (SM9913) by a comparison of wild SM9913 and ΔepsT, an EPS synthesis defective mutant. Reduction of EPS production in ΔepsT did not affect the growth rate or the swimming motility, but significantly decreased the swarming motility on a swarming plate, suggesting that the EPS may play a role in SM9913 swarming. However, the expression and assembly of lateral flagella in ΔepsT were not affected. Instead, ΔepsT had a different swarming behavior from wild SM9913. The swarming of ΔepsT did not have an obvious rapid swarming period, and its rate became much lower than that of wild SM9913 after 35 h incubation. An addition of surfactin or SM9913 EPS on the surface of the swarming plate could rescue the swarming level. These results indicate that the self-secreted EPS is required for the swarming of SM9913. This study widens our understanding of the function of the EPS of benthic bacteria. PMID:27092127

  17. Gracilimonas halophila sp. nov., isolated from a marine solar saltern.

    PubMed

    Lu, De-Chen; Xia, Jun; Dunlap, Christopher A; Rooney, Alejandro P; Du, Zong-Jun

    2017-09-01

    A Gram-stain-negative and facultatively anaerobic bacterium, designated WDS2C40T, was isolated from a marine solar saltern in Weihai, China. Cells of strain WDS2C40T were 0.4-0.5 µm wide and 4.0-9.0 µm long, catalase-positive and oxidase-negative. Strain WDS2C40T was tolerant to moderate salt concentrations. Growth occurred at 20-42 °C (optimum, 37-40 °C), at pH 7.0-8.5 (optimum, 7.5-8.0) and with 2-16 % (w/v) NaCl (optimum, 6-8 %). A phylogenetic analysis of the 16S rRNA gene indicated that strain WDS2C40T was a member of the genus Gracilimonas within the family Balneolaceae. The most closely related neighbour was Gracilimonas rosea JCM 18898T (95.92 % similarity). The major respiratory quinone of strain WDS2C40T was menaquinone MK-7, and the dominant fatty acids were iso-C13 : 0, iso-C15 : 0 and summed feature 3. The major polar lipids were diphosphatidylglycerol, one kind of glycolipid and two unidentified phospholipids. The genomic DNA G+C content was 41.7 mol%. Based on this polyphasic taxonomic study, strain WDS2C40T is considered to represent a novel species in the genus Gracilimonas, for which the name Gracilimonas halophila sp. nov. is proposed. The type strain is WDS2C40T (=KCTC 52042T=MCCC 1H00135T).

  18. Nocardioides antarcticus sp. nov., isolated from marine sediment.

    PubMed

    Deng, Sangsang; Chang, Xulu; Zhang, Yumin; Ren, Lvzhi; Jiang, Fan; Qu, Zhihao; Peng, Fang

    2015-08-01

    Strain M-SA3-94T, an aerobic, Gram-stain-positive, ovoid- to rod-shaped, non-motile bacterium, was isolated from the marine sediment of Ardley cove, King George Island, Antarctica. Strain M-SA3-94T grew optimally at pH 5.0-6.0, 20 °C and in the presence of 1.0 % (w/v) NaCl. Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain M-SA3-94T belonged to the genus Nocardioides in the family Nocardioidaceae, clustering with Nocardioides plantarum NCIMB 12834T, Nocardioides ginsengagri BX5-10T, Nocardioides marinquilinus CL-GY44T and Nocardioides lianchengensis D94-1T (with 96.1 %, 95.9 %, 94.5 % and 94.7 % 16S rRNA gene sequence similarity, respectively). The chemotaxonomic properties of strain M-SA3-94T were similar to those of members of the genus Nocardioides with validly published names. The major fatty acid was iso-C16 : 0. The polar lipid pattern contained diphosphatidylglycerol, phosphatidylglycerol and three unknown phospholipids. The diagnostic diamino acid in the cell-wall peptidoglycan was ll-2, 6-diaminopimelic acid. MK-8(H4) was the predominant menaquinone and the DNA G+C content of this strain was 66.7 mol%. On the basis of these phenotypic, phylogenetic and chemotaxonomic data, strain M-SA3-94T represents a novel species of the genus Nocardioides, for which the name Nocardioides antarcticus sp. nov. is proposed. The type strain is M-SA3-94T ( = CCTCC AB2014053T = LMG 28254T).

  19. Halobacterium litoreum sp. nov., isolated from a marine solar saltern.

    PubMed

    Lü, Zhen-Zhen; Li, Yang; Zhou, Yao; Cui, Heng-Lin; Li, Zheng-Rong

    2017-09-13

    Halophilic archaeal strain ZS-54-S2T was isolated from Zhoushan marine solar saltern, China. Cells were rod-shaped, Gram-stain-negative and formed red-pigmented colonies on an agar plate. Strain ZS-54-S2T was able to grow at 20-50 °C (optimum 35 °C), at 1.7-4.8 M NaCl (optimum 3.9 M), at 0.005-1.0 M MgCl2 (optimum 0.05 M) and at pH 5.0-9.5 (optimum pH 7.0). The cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was found to be 5 % (w/v). The major polar lipids of the strain were phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, two glycolipids, which were chromatographically identical to sulfated galactosyl mannosyl galactofuranosyl glucosyl diether and galactosyl mannosyl glucosyl diether, and an unidentified glycolipid, which was chromatographically identical to one detected in Halobacterium salinarum ATCC 33171T. The 16S rRNA gene and rpoB' gene of strain ZS-54-S2T were phylogenetically related to the corresponding genes of Halobacterium noricense JCM 15102T (97.5 % and 90.6 % relatedness, respectively), Halobacterium jilantaiense CGMCC 1.5337T (96.9 and 91.2 %), Halobacterium rubrum CGMCC 1.12575T (96.8 and 90.3 %) and Halobacterium salinarum CGMCC 1.1958T (96.5 and 88.4 %). The DNA G+C content of strain ZS-54-S2T was 66.7 mol%. The phenotypic, chemotaxonomic and phylogenetic properties suggested that strain ZS-54-S2T (=CGMCC 1.12562T=JCM 30038T) represents a new species of Halobacterium, for which the name Halobacteriumlitoreum sp. nov. is proposed.

  20. The bromotyrosine derivative ianthelline isolated from the arctic marine sponge Stryphnus fortis inhibits marine micro- and macrobiofouling.

    PubMed

    Hanssen, Kine O; Cervin, Gunnar; Trepos, Rozenn; Petitbois, Julie; Haug, Tor; Hansen, Espen; Andersen, Jeanette H; Pavia, Henrik; Hellio, Claire; Svenson, Johan

    2014-12-01

    The inhibition of marine biofouling by the bromotyrosine derivative ianthelline, isolated from the Arctic marine sponge Stryphnus fortis, is described. All major stages of the fouling process are investigated. The effect of ianthelline on adhesion and growth of marine bacteria and microalgae is tested to investigate its influence on the initial microfouling process comparing with the known marine antifoulant barettin as a reference. Macrofouling is studied via barnacle (Balanus improvisus) settlement assays and blue mussel (Mytilus edulis) phenoloxidase inhibition. Ianthelline is shown to inhibit both marine micro- and macrofoulers with a pronounced effect on marine bacteria (minimum inhibitory concentration (MIC) values 0.1-10 μg/mL) and barnacle larval settlement (IC50 = 3.0 μg/mL). Moderate effects are recorded on M. edulis (IC50 = 45.2 μg/mL) and microalgae, where growth is more affected than surface adhesion. The effect of ianthelline is also investigated against human pathogenic bacteria. Ianthelline displayed low micromolar MIC values against several bacterial strains, both Gram positive and Gram negative, down to 2.5 μg/mL. In summary, the effect of ianthelline on 20 different representative marine antifouling organisms and seven human pathogenic bacterial strains is presented.

  1. Cyclobacterium halophilum sp. nov., a marine bacterium isolated from a coastal-marine wetland.

    PubMed

    Shahinpei, Azadeh; Amoozegar, Mohammad Ali; Sepahy, Abbas Akhavan; Schumann, Peter; Ventosa, Antonio

    2014-03-01

    A novel Gram-stain-negative, slightly halophilic bacterium, designated strain GASx41(T), was isolated from soil of the coastal-marine wetland Gomishan in Iran. Cells of strain GASx41(T) were curved, ring-like or horseshoe-shaped rods and non-motile. Strain GASx41(T) was strictly aerobic, and catalase- and oxidase-positive. The strain was able to grow at NaCl concentrations of 1-10% (w/v), with optimum growth occurring at 2.5-3% (w/v) NaCl. The optimum temperature and pH for growth were 25-30 °C and pH 7.5-8.0. On the basis of 16S rRNA gene sequence analysis, strain GASx41(T) was shown to belong to the genus Cyclobacterium within the phylum Bacteroidetes and showed closest phylogenetic similarity to 'Cyclobacterium jeungdonense' HMD3055 (98.0%). The DNA G+C content of strain GASx41(T) was 48.1 mol%. The major cellular fatty acids of strain GASx41(T) were iso-C15 : 0, summed feature 4 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), anteiso-C15 : 0 2-OH, anteiso-C15 : 0 and iso-C17 : 0 3-OH, and its polar lipid pattern consisted of phosphatidylethanolamine, phosphatidylcholine and 12 unknown lipids. The only quinone present was menaquinone 7 (MK-7). All these features confirmed the placement of isolate GASx41(T) within the genus Cyclobacterium. On the basis of evidence from this study, a novel species of the genus Cyclobacterium, Cyclobacterium halophilum sp. nov., is proposed, with strain GASx41(T) ( = IBRC-M 10761(T) = CECT 8341(T)) as the type strain.

  2. Genome Sequences of Pseudoalteromonas Strains ATCC BAA-314, ATCC 70018, and ATCC 70019.

    PubMed

    Givan, Scott A; Zhou, Ming-Yi; Bromert, Karen; Bivens, Nathan; Chapman, Linda Fleet

    2015-05-07

    The assembly and annotation of the draft genome sequences for Pseudoalteromonas strains ATCC BAA314, ATCC 700518, and ATCC 700519 reveal candidates for promoting symbiosis between Pseudoalteromonas strains and eukaryotes. Groups of genes generally associated with virulence are present in all three strains, suggesting that these bacteria may be pathogenic under specific circumstances.

  3. Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems

    PubMed Central

    Flynn, James D.; Hirayama, Hisako; Sakai, Yasuyoshi; Dunfield, Peter F.; Knief, Claudia; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Khmelenina, Valentina N.; Trotsenko, Yuri A.; Murrell, J. Colin; Semrau, Jeremy D.; Svenning, Mette M.; Stein, Lisa Y.; Kyrpides, Nikos; Shapiro, Nicole; Woyke, Tanja; Bringel, Françoise; Vuilleumier, Stéphane; DiSpirito, Alan A.

    2016-01-01

    The genome sequences of Methylobacter marinus A45, Methylobacter sp. strain BBA5.1, and Methylomarinum vadi IT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems. PMID:26798114

  4. Bioactivities of six sterols isolated from marine invertebrates.

    PubMed

    Zhou, Xuefeng; Sun, Jianfan; Ma, Wanlei; Fang, Wei; Chen, Zhefan; Yang, Bin; Liu, Yonghong

    2014-02-01

    Epidioxy sterols and sterols with special side chains, such as hydroperoxyl sterols, usually obtained from marine natural products, are attractive for bioactivities. To isolate and screen bioactive and special sterols from China Sea invertebrates. Two hydroperoxyl sterols (1 and 2) from the sponge Xestospongia testudinaria Lamarck (Petrosiidae), three epidioxy sterols (3-5) from the sea urchin Glyptocidaris crenularis A. Agassiz (Glyptocidaridae), sponge Mycale sp. (Mycalidae) and gorgonian Dichotella gemmacea Milne Edwards and Haime (Ellisellidae) and an unusual sterol with 25-acetoxy-19-oate (6) also from D. gemmacea were obtained and identified. Using high-throughput screening, their bioactivities were tested toward Forkhead box O 3a (Foxo3a), 3-hydroxy-3-methylglutaryl CoA reductase gene fluorescent protein (HMGCR-GFP), nuclear factor kappa B (NF-κB) luciferase, peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α), protein-tyrosine phosphatase 1B (PTP1B), mitochondrial membrane permeabilization (MMP) and adenosine monophosphate-activated protein kinase. Their structures were determined by comparing their nuclear magnetic resonance data with those reported in the literature. Three epidioxy sterols (3-5) showed inhibitory activities toward Foxo3a, HMGCR-GFP and NF-κB-luciferase with the IC50 values 4.9-6.8 μg/mL. The hydroperoxyl sterol 29-hydroperoxystigmasta-5,24(28)-dien-3-ol (2) had diverse inhibitory activities against Foxo3a, HMGCR-GFP, NF-κB-luciferase, PGC-1α, PTP1B and MMP, with IC50 values of 3.8-19.1 μg/mL. The bioactivities of 3-5 showed that 5α,8α-epidioxy is the active group. Otherwise, the most plausible biosynthesis pathway for 1 and 2 in sponge involves the abstraction of an allylic proton by an activated oxygen, such as O2, along with migration of carbon-carbon double bond. Therefore, the bioactive and unstable steroid should be biosynthesized in sponge under a special ecological environment to act as a defensive

  5. Halobacterium rubrum sp. nov., isolated from a marine solar saltern.

    PubMed

    Han, Dong; Cui, Heng-Lin

    2014-12-01

    Halophilic archaeal strain TGN-42-S1(T) was isolated from the Tanggu marine solar saltern, China. Cells from strain TGN-42-S1(T) were observed to be pleomorphic rods, stained Gram-negative, and formed red-pigmented colonies on solid media. Strain TGN-42-S1(T) was found to be able to grow at 20-50 °C (optimum 35-37 °C), at 1.7-4.8 M NaCl (optimum 3.1 M), at 0-1.0 M MgCl2 (optimum 0.1 M), and at pH 5.0-9.0 (optimum pH 7.0-7.5). The cells lysed in distilled water, and the minimal NaCl concentration to prevent cell-lysis was found to be 10 % (w/v). The major polar lipids of the strain were phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, galactosyl mannosyl glucosyl diether (TGD-1), sulfated galactosyl mannosyl glucosyl diether (S-TGD-1), sulfated galactosyl mannosyl galactofuranosyl glucosyl diether (S-TeGD), and three unidentified glycolipids which were chromatographically identical to those of the Halobacterium species. The 16S rRNA gene and rpoB' gene of strain TGN-42-S1(T) were phylogenetically related to the corresponding genes of Halobacterium jilantaiense CGMCC 1.5337(T) (98.8 and 93.5 % nucleotide identity, respectively), Halobacterium salinarum CGMCC 1.1958(T) (98.4 and 91.9 %), and Halobacterium noricense JCM 15102(T) (96.9 and 91.1 %). The DNA G + C content of strain TGN-42-S1(T) was determined to be 69.2 mol %. Strain TGN-42-S1(T) showed low DNA-DNA relatedness with Hbt. jilantaiense CGMCC 1.5337(T) and Hbt. salinarum CGMCC 1.1958(T), the most closely related members of the genus Halobacterium. The phenotypic, chemotaxonomic, and phylogenetic properties suggested that strain TGN-42-S1(T) (=CGMCC 1.12575(T) =JCM 19908(T)) represents a new species of Halobacterium, for which the name Halobacterium rubrum sp. nov. is proposed.

  6. Purine nucleoside phosphorylase from Pseudoalteromonas sp. Bsi590: molecular cloning, gene expression and characterization of the recombinant protein.

    PubMed

    Li, Xiaohui; Jiang, Xinyin; Li, Huirong; Ren, Daming

    2008-05-01

    The gene encoding purine nucleoside phosphorylase (PNP) from the cold-adapted marine bacterium Pseudoalteromonas sp. Bsi590 was identified, cloned and expressed in Escherichia coli. The gene encodes a polypeptide of 233 amino acids with a calculated molecular weight of 25,018 Da. Pseudoalteromonas sp. Bsi590 PNP (PiPNP) shares 60% amino sequence identity and conservation of amino acid residues involved in catalysis with mesophilic Escherichia coli deoD-encoded purine nucleoside phosphorylase (EcPNP). N-terminal his-tagged PiPNP and EcPNP were purified to apparent homogeneity using Ni2+-chelating column. Compared with EcPNP, PiPNP possessed a lower temperature optimum and thermal stability. As for PNP enzymes in general, PiPNP and EcPNP displayed complicated kinetic properties; PiPNP possessed higher Km and catalytic efficiency (kcat/Km) compared to EcPNP at 37 degrees C. Substrate specificity results showed PiPNP catalyzed the phosphorolytic cleavage of 6-oxopurine and 6-aminopurine nucleosides (or 2-deoxynucleosides), and to a lesser extent purine arabinosides. PiPNP showed a better activity with inosine while no activity toward pyrimidine nucleosides. The protein conformation was analyzed by temperature perturbation difference spectrum. Results showed that PiPNP had lower conformation transition point temperature than EcPNP; phosphate buffer and KCl had significant influence on PiPNP protein conformation stability and thermostability.

  7. Isolation of porphyran-degrading marine microorganisms from the surface of red alga, Porphyra yezoensis.

    PubMed

    Yoshimura, Takashi; Tsuge, Keisuke; Sumi, Toshihisa; Yoshiki, Masahiro; Tsuruta, Yumi; Abe, Shin-ichi; Nishino, Shiduo; Sanematsu, Seigo; Koganemaru, Kazuyoshi

    2006-04-01

    Marine microorganisms degrading porphyran (POR) were found on the surface of thalli of Porphyra yezoensis. Fifteen crude microorganism groups softened and liquefied the surface of agar-rich plate medium. Among these, 11 microorganism groups degraded porphyran that consisted of sulfated polysaccharide in Porphyra yezoensis. Following isolation, 7 POR-degradable microorganisms were isolated from the 11 POR-degradable microorganism groups.

  8. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater

    USDA-ARS?s Scientific Manuscript database

    A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50**T, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rDNA sequences revealed that the novel isolate represented...

  9. Gram-positive bacteria of marine origin: a numerical taxonomic study on Mediterranean isolates.

    PubMed

    Ortigosa, M; Garay, E; Pujalte, M J

    1997-12-01

    A numerical taxonomic study was performed on 65 Gram-positive wild strains of heterotrophic, aerobic, marine bacteria, and 9 reference strains. The isolates were obtained from oysters and seawater sampled monthly over one year, by direct plating on Marine Agar. The strains were characterized by 96 morphological, biochemical, physiological and nutritional tests. Clustering yielded 13 phena at 0.62 similarity level (Sl coefficient). Only one of the seven phena containing wild isolates could be identified (Bacillus marinus). A pronounced salt requirement was found in most isolates.

  10. A preliminary report of phylogenetic diversity of bacterial strains isolated from marine creatures.

    PubMed

    Kurahashi, Midori; Yokota, Akira

    2002-10-01

    Bacterial diversity among marine creatures, especially molluscs, as a source for searching out novel lineages of bacteria, was studied. Marine creatures were collected at the coasts of the Kanto area in Japan. A total of 116 strains of bacteria were isolated from the intestines of 19 species of marine creatures includings molluscs, pisces and protochordata. Partial sequencing of 16S rDNA revealed that most of the isolates belonged to the gamma subclass of the Proteobacteria and Cytophaga-Flavobacterium-Bacteroides group. The BLAST searches revealed that the complete 16S rDNA sequence of 17 strains out of 116 isolates showed less than 94% similarity with 16S rDNA sequences deposited in the database. Four strains out of the 17 isolates belonged to the Rhodobacter group, 8 strains to the Alteromonas group, and the remaining 5 strains to the Cytophaga-Flavobacterium-Bacteroides group. Phylogenetic positions of 6 strains belonging to the Alteromonas group, which were isolated from different marine creatures, were close to each other, and represented a novel 16S rDNA lineage within the gamma subclass of Proteobacteria. Therefore, it may be inferred that these 6 strains belong to a new genus of Proteobacteria. Phylogenetic positions of the other strains are also independent from neighboring taxa, and they were suggested to respectively form a novel lineage. From these results, it is clear that the biodiversity of bacteria in marine creatures is much wider than was previously thought, and unknown microbiological resources are buried in these organisms.

  11. Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates.

    PubMed

    Ebada, Sherif S; Edrada, Ru Angelie; Lin, Wenhan; Proksch, Peter

    2008-01-01

    In the past few decades, marine natural products bioprospecting has yielded a considerable number of drug candidates. Two marine natural products have recently been admitted as new drugs: Prialt (also known as ziconotide) as a potent analgesic for severe chronic pain and Yondelis (known also as trabectedin or E-743) as antitumor agent for the treatment of advanced soft tissue sarcoma. In this protocol, methods for bioactivity-guided isolation, purification and identification of secondary metabolites from marine invertebrates such as sponges, tunicates, soft corals and crinoids are discussed. To achieve this goal, solvent extraction of usually freeze-dried sample of marine organisms is performed. Next, the extract obtained is fractionated by liquid-liquid partitioning followed by various chromatographic separation techniques including thin layer chromatography, vacuum liquid chromatography, column chromatography (CC) and preparative high-performance reversed-phase liquid chromatography. Isolation of bioactive secondary metabolites is usually monitored by bioactivity assays, e.g., antioxidant (2,2-diphenyl-1-picryl hydrazyl) and cytotoxicity (microculture tetrazolium) activities that ultimately yield the active principles. Special care should be taken when performing isolation procedures adapted to the physical and chemical characteristics of the compounds isolated, particularly their lipo- or hydrophilic characters. Examples of isolation of compounds of different polarities from extracts of various marine invertebrates will be presented in this protocol. Structure elucidation is achieved using recent spectroscopic techniques, especially 2D NMR and mass spectrometry analysis.

  12. Isolation characterization and growth of locally isolated hydrocarbonoclastic marine bacteria (eastern Algerian coast).

    PubMed

    Feknous, N; Branes, Z; Rouabhia, K; Batisson, I; Amblard, C

    2017-01-01

    The Algerian coastline is being exposed to several types of pollution, including that of hydrocarbons. This environment rich in oil could be the source of proliferation of hydrocarbonoclastic bacteria. The objective of the study is to isolate and identify indigenous bacterial strains from marine waters of two ports in the eastern Algerian coast and to test their growth in the presence of hydrocarbons with and without biostimulation throughout the intake of nitrogen and phosphate. Results recorded the highest level of both total hydrocarbons and phosphates in the port of Annaba, followed by El-Kala station and then the control station, while that of total nitrogen was vice versa. Fifty-three bacterial strains were identified from which four were selected to perform the growth tests. Results showed that the growth and the biodegradation differ from one species to another. Thus, the strains tested (Halomonas venusta NY-8, Exiguobacterium aurantiacum NB11-3A, Vibrio alginolyticus Pb-WC11099, and Dietzia sp. CNJ898 PL04) seem very active, in which better growth was obtained with the last two strains during nitrogen and phosphate supplementation. Such strains are suggested to participate a lot in the biodegradation of oil at polluted sites.

  13. Broad-Spectrum Antimicrobial Epiphytic and Endophytic Fungi from Marine Organisms: Isolation, Bioassay and Taxonomy

    PubMed Central

    Zhang, Yi; Mu, Jun; Feng, Yan; Kang, Yue; Zhang, Jia; Gu, Peng-Juan; Wang, Yu; Ma, Li-Fang; Zhu, Yan-Hua

    2009-01-01

    In the search for new marine derived antibiotics, 43 epi- and endophytic fungal strains were isolated from the surface or the inner tissue of different marine plants and invertebrates. Through preliminary and secondary screening, 10 of them were found to be able to produce broad-spectrum antimicrobial metabolites. By morphological and molecular biological methods, three active strains were characterized to be Penicillium glabrum, Fusarium oxysporum, and Alternaria alternata. PMID:19597575

  14. Broad-spectrum antimicrobial epiphytic and endophytic fungi from marine organisms: isolation, bioassay and taxonomy.

    PubMed

    Zhang, Yi; Mu, Jun; Feng, Yan; Kang, Yue; Zhang, Jia; Gu, Peng-Juan; Wang, Yu; Ma, Li-Fang; Zhu, Yan-Hua

    2009-04-17

    In the search for new marine derived antibiotics, 43 epi- and endophytic fungal strains were isolated from the surface or the inner tissue of different marine plants and invertebrates. Through preliminary and secondary screening, 10 of them were found to be able to produce broad-spectrum antimicrobial metabolites. By morphological and molecular biological methods, three active strains were characterized to be Penicillium glabrum, Fusarium oxysporum, and Alternaria alternata.

  15. Endoglucanase activities and growth of marine-derived fungi isolated from the sponge Haliclona simulans.

    PubMed

    Baker, P W; Kennedy, J; Morrissey, J; O'Gara, F; Dobson, A D W; Marchesi, J R

    2010-05-01

    The conversion of cheap cellulosic biomass to more easily fermentable sugars requires the use of costly cellulases. We have isolated a series of marine sponge-derived fungi and screened these for cellulolytic activity to determine the potential of this unique environmental niche as a source of novel cellulase activities. Fungi were isolated from the marine sponge Haliclona simulans. Phylogenetic analysis of these and other fungi previously isolated from H. simulans showed fungi from three phyla with very few duplicate species. Cellulase activities were determined using plate-based assays using different media and sea water concentrations while extracellular cellulase activities were determined using 3,5-dinitrosalicylic acid (DNSA)-based assays. Total and specific cellulase activities were determined using a range of incubation temperatures and compared to those for the cellulase overproducing mutant Hypocrea jecorina QM9414. Several of the strains assayed produced total or relative endoglucanase activities that were higher than H. jecorina, particularly at lower reaction temperatures. Marine sponges harbour diverse fungal species and these fungi are a good source of endoglucanase activities. Analysis of the extracellular endoglucanase activities revealed that some of the marine-derived fungi produced high endoglucanase activities that were especially active at lower temperatures. Marine-derived fungi associated with coastal marine sponges are a novel source of highly active endoglucanases with significant activity at low temperatures and could be a source of novel cellulase activities.

  16. Expression and enzymatic characterization of a cold-adapted β-agarase from Antarctic bacterium Pseudoalteromonas sp. NJ21

    NASA Astrophysics Data System (ADS)

    Li, Jiang; Sha, Yujie

    2015-03-01

    An agar-degrading bacterium, designated as Pseudoalteromonas sp. NJ21, was isolated from an Antarctic sediment sample. The agarase gene aga1161 from Pseudoalteromonas sp. NJ21 consisting of a 2 382-bp coding region was cloned. The gene encodes a 793-amino acids protein and was found to possess characteristic features of the Glyco_hydro_42 family. The recombinant agarase (rAga1161) was overexpressed in Escherichia coli and purified as a fusion protein. Enzyme activity analysis revealed that the optimum temperature and pH for the purified recombinant agarase were 30-40°C and 8.0, respectively. rAga1161 was found to maintain as much as 80% of its maximum activity at 10°C, which is typical of a coldadapted enzyme. The pattern of agar hydrolysis demonstrated that the enzyme is an β-agarase, producing neoagarobiose (NA2) as the final main product. Furthermore, this work is the first proof of an agarolytic activity in Antarctic bacteria and these results indicate the potential for the Antarctic agarase as a catalyst in medicine, food and cosmetic industries.

  17. Low densities of epiphytic bacteria from the marine alga Ulva australis inhibit settlement of fouling organisms.

    PubMed

    Rao, Dhana; Webb, Jeremy S; Holmström, Carola; Case, Rebecca; Low, Adrian; Steinberg, Peter; Kjelleberg, Staffan

    2007-12-01

    Bacteria that produce inhibitory compounds on the surface of marine algae are thought to contribute to the defense of the host plant against colonization of fouling organisms. However, the number of bacterial cells necessary to defend against fouling on the plant surface is not known. Pseudoalteromonas tunicata and Phaeobacter sp. strain 2.10 (formerly Roseobacter gallaeciensis) are marine bacteria often found in association with the alga Ulva australis and produce a range of extracellular inhibitory compounds against common fouling organisms. P. tunicata and Phaeobacter sp. strain 2.10 biofilms with cell densities ranging from 10(2) to 10(8) cells cm(-2) were established on polystyrene petri dishes. Attachment and settlement assays were performed with marine fungi (uncharacterized isolates from U. australis), marine bacteria (Pseudoalteromonas gracilis, Alteromonas sp., and Cellulophaga fucicola), invertebrate larvae (Bugula neritina), and algal spores (Polysiphonia sp.) and gametes (U. australis). Remarkably low cell densities (10(2) to 10(3) cells cm(-2)) of P. tunicata were effective in preventing settlement of algal spores and marine fungi in petri dishes. P. tunicata also prevented settlement of invertebrate larvae at densities of 10(4) to 10(5) cells cm(-2). Similarly, low cell densities (10(3) to 10(4)cells cm(-2)) of Phaeobacter sp. strain 2.10 had antilarval and antibacterial activity. Previously, it has been shown that abundance of P. tunicata on marine eukaryotic hosts is low (<1 x 10(3) cells cm(-2)) (T. L. Skovhus et al., Appl. Environ. Microbiol. 70:2373-2382, 2004). Despite such low numbers of P. tunicata on U. australis in situ, our data suggest that P. tunicata and Phaeobacter sp. strain 2.10 are present in sufficient quantities on the plant to inhibit fouling organisms. This strongly supports the hypothesis that P. tunicata and Phaeobacter sp. strain 2.10 can play a role in defense against fouling on U. australis at cell densities that commonly

  18. Low Densities of Epiphytic Bacteria from the Marine Alga Ulva australis Inhibit Settlement of Fouling Organisms▿

    PubMed Central

    Rao, Dhana; Webb, Jeremy S.; Holmström, Carola; Case, Rebecca; Low, Adrian; Steinberg, Peter; Kjelleberg, Staffan

    2007-01-01

    Bacteria that produce inhibitory compounds on the surface of marine algae are thought to contribute to the defense of the host plant against colonization of fouling organisms. However, the number of bacterial cells necessary to defend against fouling on the plant surface is not known. Pseudoalteromonas tunicata and Phaeobacter sp. strain 2.10 (formerly Roseobacter gallaeciensis) are marine bacteria often found in association with the alga Ulva australis and produce a range of extracellular inhibitory compounds against common fouling organisms. P. tunicata and Phaeobacter sp. strain 2.10 biofilms with cell densities ranging from 102 to 108 cells cm−2 were established on polystyrene petri dishes. Attachment and settlement assays were performed with marine fungi (uncharacterized isolates from U. australis), marine bacteria (Pseudoalteromonas gracilis, Alteromonas sp., and Cellulophaga fucicola), invertebrate larvae (Bugula neritina), and algal spores (Polysiphonia sp.) and gametes (U. australis). Remarkably low cell densities (102 to 103 cells cm−2) of P. tunicata were effective in preventing settlement of algal spores and marine fungi in petri dishes. P. tunicata also prevented settlement of invertebrate larvae at densities of 104 to 105 cells cm−2. Similarly, low cell densities (103 to 104cells cm−2) of Phaeobacter sp. strain 2.10 had antilarval and antibacterial activity. Previously, it has been shown that abundance of P. tunicata on marine eukaryotic hosts is low (<1 × 103 cells cm−2) (T. L. Skovhus et al., Appl. Environ. Microbiol. 70:2373-2382, 2004). Despite such low numbers of P. tunicata on U. australis in situ, our data suggest that P. tunicata and Phaeobacter sp. strain 2.10 are present in sufficient quantities on the plant to inhibit fouling organisms. This strongly supports the hypothesis that P. tunicata and Phaeobacter sp. strain 2.10 can play a role in defense against fouling on U. australis at cell densities that commonly occur in situ

  19. Correlation between pigmentation and larval settlement deterrence by Pseudoalteromonas sp. sf57.

    PubMed

    Huang, Yi-Li; Li, Mu; Yu, Zhiliang; Qian, Pei-Yuan

    2011-03-01

    The red-pigmented marine bacterium Pseudoalteromonas sp. sf57 forms a biofilm that deters larval settlement of the tube-building polychaete Hydroides elegans. To investigate the correlation between pigmentation and larval settlement deterrence, mutants of sf57 with deficient or altered pigmentation were generated by transposon mutagenesis. Five groups of pigmented mutants were obtained, viz. white, yellow, pink, dark red, and white-to-red. The white mutant WM1, which exhibited a substantial increase in bacterial density in the biofilm, became inductive to larval settlement. The other mutants that showed a lesser increase in bacterial density in their biofilms either retained their deterrence or induced higher larval settlement rates, but did not become inductive strains. Analysis of the disrupted genes in these mutants suggests that the type II secretion pathway, the LysR transcriptional regulator, NAD(P)-binding proteins, exonuclease, pyruvate metabolism, flagella assembly, and cell membrane processes may play a role in the regulation of pigmentation in sf57.

  20. Pseudoalteromonas haloplanktis produces methylamine, a volatile compound active against Burkholderia cepacia complex strains.

    PubMed

    Sannino, Filomena; Parrilli, Ermenegilda; Apuzzo, Gennaro Antonio; de Pascale, Donatella; Tedesco, Pietro; Maida, Isabel; Perrin, Elena; Fondi, Marco; Fani, Renato; Marino, Gennaro; Tutino, Maria Luisa

    2017-03-25

    The Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 has been reported to produce several Volatile Organic Compounds (VOCs), which are able to inhibit the growth of Burkholderia cepacia complex (Bcc) strains, opportunistic pathogens responsible for the infection of immune-compromised patients. However, no specific antibacterial VOCs have been identified to date. The purpose of the present study was to identify specific VOCs that contribute to Bcc inhibition by the Antarctic strain. When grown on defined medium containing D-gluconate and L-glutamate as carbon, nitrogen and energy sources, P. haloplanktis TAC125 is unable to inhibit the growth of Bcc strains. However, single addition of several amino acids to the defined medium restores the P. haloplanktis TAC125 inhibition ability. With the aim of identifying specific volatile compound/s responsible for Bcc inhibition, we set up an apparatus for VOC capture, accumulation, and storage. P. haloplanktis TAC125 was grown in an automatic fermenter which was connected to a cooling system to condense VOCs present in the exhaust air outlet. Upon addition of methionine to the growth medium, the VOC methylamine was produced by P. haloplanktis TAC125. Methylamine was found to inhibit the growth of several Bcc strains in a dose-dependent way. Although it was reported that P. haloplanktis TAC125 produces VOCs endowed with antimicrobial activity, this is the first demonstration that methylamine probably contributes to the anti-Bcc activity of P. haloplanktis TAC125 VOCs.

  1. Ecological Advantages of Autolysis during the Development and Dispersal of Pseudoalteromonas tunicata Biofilms

    PubMed Central

    Mai-Prochnow, Anne; Webb, Jeremy S.; Ferrari, Belinda C.; Kjelleberg, Staffan

    2006-01-01

    In the ubiquitous marine bacterium Pseudoalteromonas tunicata, subpopulations of cells are killed by the production of an autocidal protein, AlpP, during biofilm development. Our data demonstrate an involvement of this process in two parameters, dispersal and phenotypic diversification, which are of importance for the ecology of this organism and for its survival within the environment. Cell death in P. tunicata wild-type biofilms led to a major reproducible dispersal event after 192 h of biofilm development. The dispersal was not observed with a ΔAlpP mutant strain. Using flow cytometry and the fluorescent dye DiBAC4(3), we also show that P. tunicata wild-type cells that disperse from biofilms have enhanced metabolic activity compared to those cells that disperse from ΔAlpP mutant biofilms, possibly due to nutrients released from dead cells. Furthermore, we report that there was considerable phenotypic variation among cells dispersing from wild-type biofilms but not from the ΔAlpP mutant. Wild-type cells that dispersed from biofilms showed significantly increased variations in growth, motility, and biofilm formation, which may be important for successful colonization of new surfaces. These findings suggest for the first time that the autocidal events mediated by an antibacterial protein can confer ecological advantages to the species by generating a metabolically active and phenotypically diverse subpopulation of dispersal cells. PMID:16885293

  2. Role of bacteria in marine barite precipitation: a case study using Mediterranean seawater.

    PubMed

    Torres-Crespo, N; Martínez-Ruiz, F; González-Muñoz, M T; Bedmar, E J; De Lange, G J; Jroundi, F

    2015-04-15

    Marine bacteria isolated from natural seawater were used to test their capacity to promote barite precipitation under laboratory conditions. Seawater samples were collected in the western and eastern Mediterranean at 250 m and 200 m depths, respectively, since marine barite formation is thought to occur in the upper water column. The results indicate that Pseudoalteromonas sp., Idiomarina sp. and Alteromonas sp. actually precipitate barite under experimental conditions. Barite precipitates show typical characteristics of microbial precipitation in terms of size, morphology and composition. Initially, a P-rich phase precipitates and subsequently evolves to barite crystals with low P contents. Under laboratory conditions barite formation correlates with extracellular polymeric substances (EPS) production. Barite precipitates are particularly abundant in cultures where EPS production is similarly abundant. Our results further support the idea that bacteria may provide appropriate microenvironments for mineral precipitation in the water column. Therefore, bacterial production in the past ocean should be considered when using Ba proxies for paleoproductivity reconstructions.

  3. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products.

    PubMed

    Kjer, Julia; Debbab, Abdessamad; Aly, Amal H; Proksch, Peter

    2010-03-01

    Marine-derived fungi have been shown in recent years to produce a plethora of new bioactive secondary metabolites, some of them featuring new carbon frameworks hitherto unprecedented in nature. These compounds are of interest as new lead structures for medicine as well as for plant protection. The aim of this protocol is to give a detailed description of methods useful for the isolation and cultivation of fungi associated with various marine organisms (sponges, algae and mangrove plants) for the extraction, characterization and structure elucidation of biologically active secondary metabolites produced by these marine-derived endophytic fungi, and for the preliminary evaluation of their pharmacological properties based on rapid 'in house' screening systems. Some results exemplifying the positive outcomes of the protocol are given at the end. From sampling in marine environment to completion of the structure elucidation and bioactivity screening, a period of at least 3 months has to be scheduled.

  4. Screening and selection of stress resistant Lactobacillus spp. isolated from the marine oyster (Crassostrea gigas).

    PubMed

    Lee, Hae-In; Kim, Min Hee; Kim, Kwan Young; So, Jae-Seong

    2010-10-01

    We attempted to isolate Lactobacillus spp. from the marine oyster (Crassostrea gigas) and select stress resistant strains for development of a future marine aquaculture feed adjuvant. A total of 83 lactobacilli strains were isolated from oyster. They were all Gram-positive, rod-shaped and catalase-negative. By performing a stress resistance assay, we selected eighteen isolates. Based on 16S rRNA gene sequencing, Lactobacillus paracasei was the most prevalent species among the selected isolates. The in vitro antagonistic effect of the selected strains against fish pathogens was assayed by measurement of inhibition diameters. Except for MH44, MH51, MH53 and MH62, most of the isolates showed inhibition of Vibrio alginolyticus and Vibrio proteolyticus (diameters over 15 mm). Lactobacillus rhamnosus MH22 was selected as the most stress resistant strain showing the MICs of 1.8 M NaCl, 14% ethanol and 0.014% hydrogen peroxide. L. rhamnosus MH22 isolated from oyster has a potential to be applied as a microbial feed adjuvant for marine aquaculture.

  5. Biogeographic Variation in Host Range Phenotypes and Taxonomic Composition of Marine Cyanophage Isolates

    PubMed Central

    Hanson, China A.; Marston, Marcia F.; Martiny, Jennifer B. H.

    2016-01-01

    Despite the important role of phages in marine systems, little is understood about how their diversity is distributed in space. Biogeographic patterns of marine phages may be difficult to detect due to their vast genetic diversity, which may not be accurately represented by conserved marker genes. To investigate the spatial biogeographic structure of marine phages, we isolated over 400 cyanophages on Synechococcus host strain WH7803 at three coastal locations in the United States (Rhode Island, Washington, and southern California). Approximately 90% of the cyanophage isolates were myoviruses, while the other 10% were podoviruses. The diversity of isolates was further characterized in two ways: (i) taxonomically, using conserved marker genes and (ii) phenotypically, by testing isolates for their ability to infect a suite of hosts, or their “host range.” Because host range is a highly variable trait even among closely related isolates, we hypothesized that host range phenotypes of cyanophage isolates would vary more strongly among locations than would taxonomic composition. Instead, we found evidence for strong biogeographic variation both in taxonomic composition and host range phenotypes, with little taxonomic overlap among the three coastal regions. For both taxonomic composition and host range phenotypes, cyanophage communities from California and Rhode Island were the most dissimilar, while Washington communities exhibited similarity to each of the other two locations. These results suggest that selection imposed by spatial variation in host dynamics influence the biogeographic distribution of cyanophages. PMID:27446023

  6. Isolation strategies of marine-derived actinomycetes from sponge and sediment samples.

    PubMed

    Hameş-Kocabaş, E Esin; Uzel, Ataç

    2012-03-01

    During the last two decades, discoveries of new members of actinomycetes and novel metabolites from marine environments have drawn attention to such environments, such as sediment and sponge. For the successful isolation of actinomycetes from marine environments, many factors including the use of enrichment and pre-treatment techniques, and the selection of growth media and antibiotic supplements should be taken into account. High-throughput cultivation is an innovative technique that mimics nature, eliminates undesired, fast-growing bacteria and creates suitable conditions for rare, slow-growing actinomycetes. This review comprehensively evaluates the traditional and innovative techniques and strategies used for the isolation of actinomycetes from marine sponge and sediment samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites.

    PubMed

    Magarvey, Nathan A; Keller, Jessica M; Bernan, Valerie; Dworkin, Martin; Sherman, David H

    2004-12-01

    A unique selective enrichment procedure has resulted in the isolation and identification of two new genera of marine-derived actinobacteria. Approximately 90% of the microorganisms cultured by using the presented method were from the prospective new genera, a result indicative of its high selectivity. In this study, 102 actinomycetes were isolated from subtidal marine sediments collected from the Bismarck Sea and the Solomon Sea off the coast of Papua New Guinea. A combination of physiological parameters, chemotaxonomic characteristics, distinguishing 16S rRNA gene sequences, and phylogenetic analysis based on 16S rRNA genes provided strong evidence for the two new genera (represented by strains of the PNG1 clade and strain UMM518) within the family Micromonosporaceae. Biological activity testing of fermentation products from the new marine-derived actinomycetes revealed that several had activities against multidrug-resistant gram-positive pathogens, malignant cells, and vaccinia virus replication.

  8. Isolation and Characterization of Novel Marine-Derived Actinomycete Taxa Rich in Bioactive Metabolites†

    PubMed Central

    Magarvey, Nathan A.; Keller, Jessica M.; Bernan, Valerie; Dworkin, Martin; Sherman, David H.

    2004-01-01

    A unique selective enrichment procedure has resulted in the isolation and identification of two new genera of marine-derived actinobacteria. Approximately 90% of the microorganisms cultured by using the presented method were from the prospective new genera, a result indicative of its high selectivity. In this study, 102 actinomycetes were isolated from subtidal marine sediments collected from the Bismarck Sea and the Solomon Sea off the coast of Papua New Guinea. A combination of physiological parameters, chemotaxonomic characteristics, distinguishing 16S rRNA gene sequences, and phylogenetic analysis based on 16S rRNA genes provided strong evidence for the two new genera (represented by strains of the PNG1 clade and strain UMM518) within the family Micromonosporaceae. Biological activity testing of fermentation products from the new marine-derived actinomycetes revealed that several had activities against multidrug-resistant gram-positive pathogens, malignant cells, and vaccinia virus replication. PMID:15574955

  9. Distribution, Isolation, Host Specificity, and Diversity of Cyanophages Infecting Marine Synechococcus spp. in River Estuaries†

    PubMed Central

    Lu, Jingrang; Chen, Feng; Hodson, Robert E.

    2001-01-01

    The abundance of cyanophages infecting marine Synechococcus spp. increased with increasing salinity in three Georgia coastal rivers. About 80% of the cyanophage isolates were cyanomyoviruses. High cross-infectivity was found among the cyanophages infecting phycoerythrin-containing Synechococcus strains. Cyanophages in the river estuaries were diverse in terms of their morphotypes and genotypes. PMID:11425754

  10. Genome Sequence of Marinobacter sp. Strain MCTG268 Isolated from the Cosmopolitan Marine Diatom Skeletonema costatum

    DOE PAGES

    Gutierrez, Tony; Whitman, William B.; Huntemann, Marcel; ...

    2016-09-08

    Marinobactersp. strain MCTG268 was isolated from the cosmopolitan marine diatomSkeletonema costatumand can degrade oil hydrocarbons as sole sources of carbon and energy. Here, we present the genome sequence of this strain, which is 4,449,396 bp with 4,157 genes and an average G+C content of 57.0%.

  11. Draft Genome Sequences of One Marine and One Clinical Vibrio parahaemolyticus Strain, Both Isolated in Sweden

    PubMed Central

    Pinnell, Lee J.; Tallman, James J.

    2016-01-01

    Vibrio parahaemolyticus is the leading bacterial pathogen associated with seafood consumption. Here, we report the draft genome sequences of one marine and one clinical strain, both isolated in Sweden. These sequences will inform future comparative analysis of V. parahaemolyticus in northern Europe. PMID:27789643

  12. A new carotenoid glycosyl ester isolated from a marine microorganism, Fusarium strain T-1.

    PubMed

    Sakaki, Hideyuki; Kaneno, Hirokazu; Sumiya, Yasuji; Tsushima, Miyuki; Miki, Wataru; Kishimoto, Noriaki; Fujita, Tokio; Matsumoto, Sadayoshi; Komemushi, Sadao; Sawabe, Akiyoshi

    2002-11-01

    A new carotenoid glycosyl ester, neurosporaxanthin beta-D-glucopyranoside (2), together with neurosporaxanthin (1), beta-carotene, gamma-carotene, and torulene were isolated from cultured cells of a marine microorganism, strain T-1, which was identified as Fusarium sp. Their structures were determined by chemical and spectral data.

  13. Genome Sequence of Marinobacter sp. Strain MCTG268 Isolated from the Cosmopolitan Marine Diatom Skeletonema costatum

    PubMed Central

    Whitman, William B.; Huntemann, Marcel; Copeland, Alex; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Pillay, Manoj; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Andersen, Evan; Pati, Amrita; Stamatis, Dimitrios; Reddy, T. B. K.; Ngan, Chew Yee; Chovatia, Mansi; Daum, Chris; Shapiro, Nicole; Cantor, Michael N.; Woyke, Tanja

    2016-01-01

    Marinobacter sp. strain MCTG268 was isolated from the cosmopolitan marine diatom Skeletonema costatum and can degrade oil hydrocarbons as sole sources of carbon and energy. Here, we present the genome sequence of this strain, which is 4,449,396 bp with 4,157 genes and an average G+C content of 57.0%. PMID:27609918

  14. Genome Sequence of Marinobacter sp. Strain MCTG268 Isolated from the Cosmopolitan Marine Diatom Skeletonema costatum.

    PubMed

    Gutierrez, Tony; Whitman, William B; Huntemann, Marcel; Copeland, Alex; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Pillay, Manoj; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Andersen, Evan; Pati, Amrita; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Chovatia, Mansi; Daum, Chris; Shapiro, Nicole; Cantor, Michael N; Woyke, Tanja

    2016-09-08

    Marinobacter sp. strain MCTG268 was isolated from the cosmopolitan marine diatom Skeletonema costatum and can degrade oil hydrocarbons as sole sources of carbon and energy. Here, we present the genome sequence of this strain, which is 4,449,396 bp with 4,157 genes and an average G+C content of 57.0%.

  15. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation

    PubMed Central

    Qin, Wei; Amin, Shady A.; Martens-Habbena, Willm; Walker, Christopher B.; Urakawa, Hidetoshi; Devol, Allan H.; Ingalls, Anitra E.; Moffett, James W.; Armbrust, E. Virginia; Stahl, David A.

    2014-01-01

    Ammonia-oxidizing archaea (AOA) are now implicated in exerting significant control over the form and availability of reactive nitrogen species in marine environments. Detailed studies of specific metabolic traits and physicochemical factors controlling their activities and distribution have not been well constrained in part due to the scarcity of isolated AOA strains. Here, we report the isolation of two new coastal marine AOA, strains PS0 and HCA1. Comparison of the new strains to Nitrosopumilus maritimus strain SCM1, the only marine AOA in pure culture thus far, demonstrated distinct adaptations to pH, salinity, organic carbon, temperature, and light. Strain PS0 sustained nearly 80% of ammonia oxidation activity at a pH as low as 5.9, indicating that coastal strains may be less sensitive to the ongoing reduction in ocean pH. Notably, the two novel isolates are obligate mixotrophs that rely on uptake and assimilation of organic carbon compounds, suggesting a direct coupling between chemolithotrophy and organic matter assimilation in marine food webs. All three isolates showed only minor photoinhibition at 15 µE⋅m−2⋅s−1 and rapid recovery of ammonia oxidation in the dark, consistent with an AOA contribution to the primary nitrite maximum and the plausibility of a diurnal cycle of archaeal ammonia oxidation activity in the euphotic zone. Together, these findings highlight an unexpected adaptive capacity within closely related marine group I Archaea and provide new understanding of the physiological basis of the remarkable ecological success reflected by their generally high abundance in marine environments. PMID:25114236

  16. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation.

    PubMed

    Qin, Wei; Amin, Shady A; Martens-Habbena, Willm; Walker, Christopher B; Urakawa, Hidetoshi; Devol, Allan H; Ingalls, Anitra E; Moffett, James W; Armbrust, E Virginia; Stahl, David A

    2014-08-26

    Ammonia-oxidizing archaea (AOA) are now implicated in exerting significant control over the form and availability of reactive nitrogen species in marine environments. Detailed studies of specific metabolic traits and physicochemical factors controlling their activities and distribution have not been well constrained in part due to the scarcity of isolated AOA strains. Here, we report the isolation of two new coastal marine AOA, strains PS0 and HCA1. Comparison of the new strains to Nitrosopumilus maritimus strain SCM1, the only marine AOA in pure culture thus far, demonstrated distinct adaptations to pH, salinity, organic carbon, temperature, and light. Strain PS0 sustained nearly 80% of ammonia oxidation activity at a pH as low as 5.9, indicating that coastal strains may be less sensitive to the ongoing reduction in ocean pH. Notably, the two novel isolates are obligate mixotrophs that rely on uptake and assimilation of organic carbon compounds, suggesting a direct coupling between chemolithotrophy and organic matter assimilation in marine food webs. All three isolates showed only minor photoinhibition at 15 µE ⋅ m(-2) ⋅ s(-1) and rapid recovery of ammonia oxidation in the dark, consistent with an AOA contribution to the primary nitrite maximum and the plausibility of a diurnal cycle of archaeal ammonia oxidation activity in the euphotic zone. Together, these findings highlight an unexpected adaptive capacity within closely related marine group I Archaea and provide new understanding of the physiological basis of the remarkable ecological success reflected by their generally high abundance in marine environments.

  17. Bacillus cellulasensis sp. nov., isolated from marine sediment.

    PubMed

    Mawlankar, Rahul; Thorat, Meghana N; Krishnamurthi, Srinivasan; Dastager, Syed G

    2016-01-01

    A novel bacterial strain NIO-1130(T) was isolated from sediment sample taken from Chorao Island, Goa Province, India, and subjected to a taxonomic investigation. The strain was Gram-positive, aerobic, and motile. Phylogenetic analysis based on 16S rRNA gene sequences placed the isolate within the genus Bacillus and strain NIO-1130(T) showed highest sequence similarity with Bacillus halosaccharovorans DSM 25387(T) (98.4%) and Bacillus niabensis CIP 109816(T) (98.1%), whereas other Bacillus species showed <97.0% similarity. Tree based on gyrB gene sequence revealed that strain bacillus group. The major menaquinone was MK-7 and the predominant cellular fatty acids were iso-C15:0, anteiso-C15:0, iso-C17:0, and anteiso-C17:0. The strain showed a DNA G+C content of 39.9 mol%. DNA-DNA hybridization studies revealed that strain NIO-1130(T) exhibits 70% similarity with Bacillus halosaccharovorans DSM 25387(T) and Bacillus niabensis CIP 109816(T). On the basis of physiological, biochemical, chemotaxonomic and phylogenetic analyses, we consider the isolate to represent a novel species of the genus Bacillus, for which the name Bacillus cellulasensis sp. nov., is proposed. The type strain is NIO-1130(T) (=NCIM 5461(T)=CCTCC AB 2011126(T)).

  18. Ecological roles and biotechnological applications of marine and intertidal microbial biofilms.

    PubMed

    Mitra, Sayani; Sana, Barindra; Mukherjee, Joydeep

    2014-01-01

    This review is a retrospective of ecological effects of bioactivities produced by biofilms of surface-dwelling marine/intertidal microbes as well as of the industrial and environmental biotechnologies developed exploiting the knowledge of biofilm formation. Some examples of significant interest pertaining to the ecological aspects of biofilm-forming species belonging to the Roseobacter clade include autochthonous bacteria from turbot larvae-rearing units with potential application as a probiotic as well as production of tropodithietic acid and indigoidine. Species of the Pseudoalteromonas genus are important examples of successful surface colonizers through elaboration of the AlpP protein and antimicrobial agents possessing broad-spectrum antagonistic activity against medical and environmental isolates. Further examples of significance comprise antiprotozoan activity of Pseudoalteromonas tunicata elicited by violacein, inhibition of fungal colonization, antifouling activities, inhibition of algal spore germination, and 2-n-pentyl-4-quinolinol production. Nitrous oxide, an important greenhouse gas, emanates from surface-attached microbial activity of marine animals. Marine and intertidal biofilms have been applied in the biotechnological production of violacein, phenylnannolones, and exopolysaccharides from marine and tropical intertidal environments. More examples of importance encompass production of protease, cellulase, and xylanase, melanin, and riboflavin. Antifouling activity of Bacillus sp. and application of anammox bacterial biofilms in bioremediation are described. Marine biofilms have been used as anodes and cathodes in microbial fuel cells. Some of the reaction vessels for biofilm cultivation reviewed are roller bottle, rotating disc bioreactor, polymethylmethacrylate conico-cylindrical flask, fixed bed reactor, artificial microbial mats, packed-bed bioreactors, and the Tanaka photobioreactor.

  19. [Diversity and bioactivities of culturable marine actinobacteria isolated from mangrove sediment in Indian Ocean].

    PubMed

    He, Jie; Zhang, Daofeng; Xu, Ying; Zhang, Xiaomei; Tang, Shukun; Xu, Lihua; Li, Wenjun

    2012-10-04

    In order to explore the diversity, antimicrobial activity and enzyme-producing activity of marine actinobacteria isolated from mangrove sediments in Indian Ocean. Eight sediments collected from mangrove sediments in Indian Ocean were treated by the plate dilution method and spread on 24 isolation media only containing sole carbon source for energy. Marine actinobacteria were isolated and identified by 16S rRNA gene sequence analysis. The antimicrobial activity and enzyme-producing activity of isolated strains were further detected by spot planting method. In total 139 representative strains were selected from 521 isolates, and they were further sequenced and performed phylogenetic analysis based on their 16S rRNA gene sequences. There were 35 strains identified as potential novel species. Antimicrobial activity was detected in Bacillus subtilis, Candida albicans, Escherichia coli, Staphylococcus aureus, Aspergillus niger. Enzyme-producing activity for protease cellulase, amylase and esterase were 36.5%, 26.5%, 22.4% and 15.9%, respectively. Diverse marine actinobacteria were discovered in mangrove sediment in Indian Ocean, which have antimicrobial and enzyme activity.

  20. [Phylogenetic diversity of the culturable rare actinomycetes in marine sponge Hymeniacidon perlevis by improved isolation media].

    PubMed

    Xin, Yanjuan; Wu, Peichun; Deng, Maicun; Zhang, Wei

    2009-07-01

    Based on the molecular diversity information, seven actinomycete-selective culture media and isolation conditions were modified to isolate and cultivate diverse rare actinomycetes from Hymeniacidon perlevis. Modified, selective cultivation and enrichment media were used, with the addition of an elemental solution of simulating the elemental composition of marine sponge H. perlevis. Restriction Fragment Length Polymorphism (RFLP) analysis of 16S rDNA sequence was used to reveal the diversity of culturable rare actinomycetes. A total of 59 actinomycete strains were isolated from the marine sponge H. perlevis. A total of 27 representative actinomycetes were selected according to their morphological feature, color and pigments. They gave 15 different RFLP patterns after digesting their PCR products of 16s rDNA with Hha I. The results showed that these isolates belonged to 10 genera: Streptomyces, Nocardiopsis, Micromonospora, Cellulosimicrobium, Gordonia, Nocardia, Prauseria, Pseudonocardia , Saccharomonospora and Microbacterium. The modified isolation media and selective cultivation procedures are highly effective in the recovery of culturable actinomycetes from the marine sponge H. perlevis, resulting in the highest diversity of culturable rare actinomycetes from any sponges.

  1. Resistance of Marine Bacterioneuston to Solar Radiation

    PubMed Central

    Agogué, Hélène; Joux, Fabien; Obernosterer, Ingrid; Lebaron, Philippe

    2005-01-01

    A total of 90 bacterial strains were isolated from the sea surface microlayer (i.e., bacterioneuston) and underlying waters (i.e., bacterioplankton) from two sites of the northwestern Mediterranean Sea. The strains were identified by sequence analysis, and growth recovery was investigated after exposure to simulated solar radiation. Bacterioneuston and bacterioplankton isolates were subjected to six different exposure times, ranging from 0.5 to 7 h of simulated noontime solar radiation. Following exposure, the growth of each isolate was monitored, and different classes of resistance were determined according to the growth pattern. Large interspecific differences among the 90 marine isolates were observed. Medium and highly resistant strains accounted for 41% and 22% of the isolates, respectively, and only 16% were sensitive strains. Resistance to solar radiation was equally distributed within the bacterioneuston and bacterioplankton. Relative contributions to the highly resistant class were 43% for γ-proteobacteria and 14% and 8% for α-proteobacteria and the Cytophaga/Flavobacterium/Bacteroides (CFB) group, respectively. Within the γ-proteobacteria, the Pseudoalteromonas and Alteromonas genera appeared to be highly resistant to solar radiation. The majority of the CFB group (76%) had medium resistance. Our study further provides evidence that pigmented bacteria are not more resistant to solar radiation than nonpigmented bacteria. PMID:16151115

  2. Resistance of marine bacterioneuston to solar radiation.

    PubMed

    Agogué, Hélène; Joux, Fabien; Obernosterer, Ingrid; Lebaron, Philippe

    2005-09-01

    A total of 90 bacterial strains were isolated from the sea surface microlayer (i.e., bacterioneuston) and underlying waters (i.e., bacterioplankton) from two sites of the northwestern Mediterranean Sea. The strains were identified by sequence analysis, and growth recovery was investigated after exposure to simulated solar radiation. Bacterioneuston and bacterioplankton isolates were subjected to six different exposure times, ranging from 0.5 to 7 h of simulated noontime solar radiation. Following exposure, the growth of each isolate was monitored, and different classes of resistance were determined according to the growth pattern. Large interspecific differences among the 90 marine isolates were observed. Medium and highly resistant strains accounted for 41% and 22% of the isolates, respectively, and only 16% were sensitive strains. Resistance to solar radiation was equally distributed within the bacterioneuston and bacterioplankton. Relative contributions to the highly resistant class were 43% for gamma-proteobacteria and 14% and 8% for alpha-proteobacteria and the Cytophaga/Flavobacterium/Bacteroides (CFB) group, respectively. Within the gamma-proteobacteria, the Pseudoalteromonas and Alteromonas genera appeared to be highly resistant to solar radiation. The majority of the CFB group (76%) had medium resistance. Our study further provides evidence that pigmented bacteria are not more resistant to solar radiation than nonpigmented bacteria.

  3. Pressure-induced alteration in effects of high CO2 on marine bacteria

    NASA Astrophysics Data System (ADS)

    Yamada, N.; Tsukasaki, A.; Tsurushima, N.; Suzumura, M.

    2013-12-01

    Carbon capture and storage (CCS) is a key mitigation technology to reduce the release of carbon dioxide (CO2) into the atmosphere. Current CCS research is dominated by improvements of the efficiency of the capturing, transport or storage of CO2. Also, it is important to estimate potential impacts on marine environments related to potential CO2 leakage. It has been demonstrated that seawater acidification effects on marine community structure and food chains. Bacteria are the basis of marine microbial food web and responsible for a significant part of marine biogeochemical cycles in both water column and bottom sediments. We used a high pressure incubation system which is composed of an HPLC pump and stainless-steel pressure vessels. The system could maintain stably the pressure up to 30 MPa. Using the system, we investigated the effects of high CO2 concentration on a deep-sea bacterium, Pseudoalteromonas sp., isolated from the western North Pacific Ocean. The isolate was incubated in acidified seawaters at various CO2 concentrations under simulated pressure conditions between 0.1 MPa and 30 MPa. We determined bacterial growth rate and live/dead cell viability. It was found that both CO2 concentration and pressure influenced substantially the growth rate of the isolate. In order to assess potential effects of leaked CO2 on microbial assemblages in marine environments, it was suggested that hydraulic pressure is one essential variable to be considered.

  4. Antiplasmodial metabolites isolated from the marine octocoral Muricea austera.

    PubMed

    Gutiérrez, Marcelino; Capson, Todd L; Guzman, Héctor M; Gonzalez, José; Ortega-Barría, Eduardo; Quiñoa, Emilio; Riguera, Ricardo

    2006-10-01

    Bioassay-guided fractionation of the MeOH extract from the octocoral Muricea austera collected in the Pacific coast of Panama led to the isolation of eight compounds, including three tyramine derivatives (1-3), two steroidal pregnane glycosides (4, 5), and three sesquiterpenoids (6-8). Compounds 2-5 are new natural products, and their structures were determined on the basis of their spectroscopic data (HRMS, 1D and 2D NMR, and CD studies). The antiprotozoal activities of the natural compounds 1-8 as well as those of a series of synthetic glycosides (11-22) and tyramine derivatives (23-35) were evaluated in vitro against a drug-resistant Plasmodium falciparum and intracellular form of Trypanosoma cruzi.

  5. Research of Isolation and Degradation Conditions of Petroleum Degrading Marine

    NASA Astrophysics Data System (ADS)

    Fangrui, Guo

    2017-01-01

    A novel petroleum-degrading microbial strain was isolated from sediment samples in estuary of Bohai Sea estuary beaches. The strain was primarily identified as Alcanivorax sp. and named Alcanivorax sp. H34. Effect of PH values, temperature, nitrogen and phosphorus concentrations on degradation of H34 were investigated. The paraffinic components average degradation rate of H34 ungrowth cells under optimized conditions was studied. The results showed that the optimal growth conditions of H34 are were temperature of 30°C, initial PH of 7.0, nitrogen concentration of 3g/L, phosphorus concentration of 3g/L, and paraffinic components average degradation rates of H34 ungrowth cells was 41.6%, while total degradation rate was 45.5%.

  6. Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated actinomycetes.

    PubMed

    Abdelmohsen, Usama Ramadan; Pimentel-Elardo, Sheila M; Hanora, Amro; Radwan, Mona; Abou-El-Ela, Soad H; Ahmed, Safwat; Hentschel, Ute

    2010-02-26

    Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia). Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, fungi (Candida albicans) and human parasites (Leishmania major, Trypanosoma brucei). Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents.

  7. Isolation, Phylogenetic Analysis and Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes

    PubMed Central

    Abdelmohsen, Usama Ramadan; Pimentel-Elardo, Sheila M.; Hanora, Amro; Radwan, Mona; Abou-El-Ela, Soad H.; Ahmed, Safwat; Hentschel, Ute

    2010-01-01

    Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia). Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, fungi (Candida albicans) and human parasites (Leishmania major, Trypanosoma brucei). Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents. PMID:20411105

  8. PhAP protease from Pseudoalteromonas haloplanktis TAC125: Gene cloning, recombinant production in E. coli and enzyme characterization

    NASA Astrophysics Data System (ADS)

    de Pascale, D.; Giuliani, M.; De Santi, C.; Bergamasco, N.; Amoresano, A.; Carpentieri, A.; Parrilli, E.; Tutino, M. L.

    2010-08-01

    Cold-adapted proteases have been found to be the dominant activity throughout the cold marine environment, indicating their importance in bacterial acquisition of nitrogen-rich complex organic compounds. However, few extracellular proteases from marine organisms have been characterized so far, and the mechanisms that enable their activity in situ are still largely unknown. Aside from their ecological importance and use as model enzyme for structure/function investigations, cold-active proteolytic enzymes offer great potential for biotechnological applications. Our studies on cold adapted proteases were performed on exo-enzyme produced by the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. By applying a proteomic approach, we identified several proteolytic activities from its culture supernatant. PhAP protease was selected for further investigations. The encoding gene was cloned and the protein was recombinantly produced in E. coli cells. The homogeneous product was biochemically characterised and it turned out that the enzyme is a Zn-dependent aminopeptidase, with an activity dependence from assay temperature typical of psychrophilic enzymes.

  9. Preliminary study on swarming marine bacteria isolated from Pulau Tinggi's sponges

    NASA Astrophysics Data System (ADS)

    Sairi, Fareed; Idris, Hamidah; Zakaria, Nur Syuhana; Usup, Gires; Ahmad, Asmat

    2015-09-01

    Marine sponges were known to produce novel bioactive compounds that have anti-bacterial, anti-viral, anti-cancer and anti-fungal activities. Most of the bioactive compounds were secreted from the bacteria that lives on the sponges. The bacterial communities also produced biofilm, toxin or biosurfactant that protect the sponges from disease or in-coming predator. In this study, twenty nine marine bacteria with swarming motility characteristic was isolated from 2 different sponge samples collected in Pulau Tinggi These isolates were grown and their genome were extracted for molecular identification using the 16S rRNA approach. Sequence comparison using BLASTn and multiple alignments using MEGA4 was performed to produce a phylogenetic tree. The phylogenetic tree revealed that 20 of the isolates were grouped under α-Proteobacteria that comprised of 19 isolates in the Vibrionaceae family and one belongs to Aeromonadaceae family. Furthermore, six isolates from Actinobacteria family and three isolates from Firmicutes were also detected. The swarming characteristic indicates the possible production of biosurfactant.

  10. Nocardioides flavus sp. nov., isolated from marine sediment.

    PubMed

    Wang, Shuang; Zhou, Yuan; Zhang, Gaiyun

    2016-12-01

    A Gram-stain-positive, aerobic, non-motile, non-spore-forming and short rod-shaped actinomycete strain, Y4T, was isolated from a sediment sample collected from the Western Pacific. This isolate grew in the presence of 0-10 % (w/v) NaCl and at pH 6.0-9.0 and 4-40 °C; optimum growth was observed with 1 % (w/v) NaCl and at pH 7.0 and 35-37 °C. Phylogenetic analyses based on 16S rRNA gene sequence showed that strain Y4T belonged to the genus Nocardioides and was most closely related to the type strains Nocardioides ganghwensis JC2055T (98.0 %) and Nocardioides exalbidus RC825T (98.0 %), followed by Nocardioides alpinus Cr7-14T (97.9 %), Nocardioides oleivorans DSM 16090T (97.9 %), Nocardioides furvisabuli SBS-26T (97.4 %) and Nocardioides hwasunensis HFW-21T (97.4 %). Sequence similarities between strain Y4T and the other related species of the genus Nocardioides were less than 96.3 %. Strain Y4T had MK-8(H4) and MK-7(H4) as the predominant respiratory quinones and C17 : 1ω8c, iso-C16 : 0 and C17 : 0 as major fatty acids. The polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, one unknown phospholipid, two unknown glycolipids and one unknown lipid. The DNA G+C content was 70.4 mol%. The diagnostic diamino acid in the cell-wall peptidoglycan was ll-diaminopimelic acid. Strain Y4T could be differentiated from recognized Nocardioides species based on phenotypic characteristics, chemotaxonomic differences, phylogenetic analysis and DNA-DNA hybridization data. Thus, strain Y4T is considered to represent a novel species of the genus Nocardioides, for which the name Nocardioides flavus sp. nov. is proposed. The type strain is Y4T (=MCCC 1A09944T=LMG 28100T=JCM 19770T=CGMCC 1.12791T).

  11. Diversity of Thiosulfate-Oxidizing Bacteria from Marine Sediments and Hydrothermal Vents†

    PubMed Central

    Teske, A.; Brinkhoff, T.; Muyzer, G.; Moser, D. P.; Rethmeier, J.; Jannasch, H. W.

    2000-01-01

    Species diversity, phylogenetic affiliations, and environmental occurrence patterns of thiosulfate-oxidizing marine bacteria were investigated by using new isolates from serially diluted continental slope and deep-sea abyssal plain sediments collected off the coast of New England and strains cultured previously from Galapagos hydrothermal vent samples. The most frequently obtained new isolates, mostly from 103- and 104-fold dilutions of the continental slope sediment, oxidized thiosulfate to sulfate and fell into a distinct phylogenetic cluster of marine alpha-Proteobacteria. Phylogenetically and physiologically, these sediment strains resembled the sulfate-producing thiosulfate oxidizers from the Galapagos hydrothermal vents while showing habitat-related differences in growth temperature, rate and extent of thiosulfate utilization, and carbon substrate patterns. The abyssal deep-sea sediments yielded predominantly base-producing thiosulfate-oxidizing isolates related to Antarctic marine Psychroflexus species and other cold-water marine strains of the Cytophaga-Flavobacterium-Bacteroides phylum, in addition to gamma-proteobacterial isolates of the genera Pseudoalteromonas and Halomonas-Deleya. Bacterial thiosulfate oxidation is found in a wide phylogenetic spectrum of Flavobacteria and Proteobacteria. PMID:10919760

  12. Antifouling activity of secondary metabolites isolated from chinese marine organisms.

    PubMed

    Li, Yong-Xin; Wu, Hui-Xian; Xu, Ying; Shao, Chang-Lun; Wang, Chang-Yun; Qian, Pei-Yuan

    2013-10-01

    Biofouling results in tremendous economic losses to maritime industries around the world. A recent global ban on the use of organotin compounds as antifouling agents has further raised demand for safe and effective antifouling compounds. In this study, 49 secondary metabolites, including diterpenoids, steroids, and polyketides, were isolated from soft corals, gorgonians, brown algae, and fungi collected along the coast of China, and their antifouling activity was tested against cyprids of the barnacle Balanus (Amphibalanus) amphitrite. Twenty of the compounds were found to inhibit larval settlement significantly at a concentration of 25 μg ml(-1). Two briarane diterpenoids, juncin O (2) and juncenolide H (3), were the most promising non-toxic antilarval settlement candidates, with EC50 values less than 0.13 μg ml(-1) and a safety ratio (LC50/EC50) higher than 400. A preliminary structure-activity relationships study indicated that both furanon and furan moieties are important for antifouling activity. Intriguingly, the presence of hydroxyls enhanced their antisettlement activity.

  13. Adherence and intracellular survival within human macrophages of Enterococcus faecalis isolates from coastal marine sediment.

    PubMed

    Sabatino, Raffaella; Di Cesare, Andrea; Pasquaroli, Sonia; Vignaroli, Carla; Citterio, Barbara; Amiri, Mehdi; Rossi, Luigia; Magnani, Mauro; Mauro, Alessandro; Biavasco, Francesca

    2015-09-01

    Enterococcus faecalis is part of the human intestinal microbiota and an important nosocomial pathogen. It can be found in the marine environment, where it is also employed as a fecal indicator. To assess the pathogenic potential of marine E. faecalis, four strains isolated from marine sediment were analyzed for their ability to survive in human macrophages. Escherichia coli DH5α was used as a negative control. The number of adherent and intracellular bacteria was determined 2.5 h after the infection (T0) and after further 24h (T24) by CFU and qPCR counts. At T24 adherent and intracellular enterococcal CFU counts were increased for all strains, the increment in intracellular bacteria being particularly marked. No CFU of E. coli DH5α were detected. In contrast, qPCR counts of intracellular enterococcal and E. coli bacteria were similar at both time points. These findings suggest that whereas E. coli was killed within macrophages (no CFU, positive qPCR), the E. faecalis isolates not only escaped killing, but actually multiplied, as demonstrated by the increase in the viable cell population. These findings support earlier data by our group, further documenting that marine sediment can be a reservoir of pathogenic enterococci.

  14. Enrichment, Isolation, and Cultural Characteristics of Marine Strains of Clostridium botulinum Type C

    PubMed Central

    Segner, W. P.; Schmidt, C. F.; Boltz, J. K.

    1971-01-01

    Terrestrial strains of Clostridium botulinum type C, designated 468 and 571, were used to screen various media for growth and sporulation at 30 C. Of the various formulations tested, only egg meat medium fortified with 1% additions of yeast extract, ammonium sulfate, and glucose (FEM medium) gave good growth and satisfactory sporulation. FEM medium was used to recover four marine type C isolates from inshore sediments collected along the Atlantic, the Gulf of Mexico, and the Pacific coasts of the United States. The isolation techniques involved repeated transfer of cultures showing type C toxin in FEM medium and purification by a deep tube method. The medium used for purification was beef infusion-agar supplemented with 0.14% sodium bicarbonate and 0.1% l-cysteine hydrochloride. l-Cysteine was adopted in preference to sodium thioglycolate, because some lots of the latter were definitely inhibitory for growth. The addition of bicarbonate markedly increased viable spore counts of both the marine and terrestrial strains. Various cultural and biochemical characteristics of the marine and the terrestrial strains were compared. With the exception of some variations in their fermentation patterns, both groups showed similar characteristics. Of 23 fermentable compounds tested, the terrestrial strains attacked only glucose and mannose. The marine strains fermented glucose, mannose, galactose, and ribose actively; dextrin, inositol, maltose, and melibiose were weakly fermented. PMID:4944800

  15. [Isolation and structural elucidation of secondary metabolites from marine Streptomyces sp. SCSIO 1934].

    PubMed

    Niu, Siwen; Li, Sumei; Tian, Xinpeng; Hu, Tao; Ju, Jianhua; Ynag, Xiaohong; Zhang, Si; Zhang, Changsheng

    2011-07-01

    Marine Actinobacteria are emerging as new resources for bioactive natural products with promise in novel drug discovery. In recent years, the richness and diversity of marine Actinobacteria from the South China Sea and their ability in producing bioactive products have been investigated. The objective of this work is to isolate and identify bioactive secondary metabolites from a marine actinobacterium SCSIO 1934 derived from sediments of South China Sea. The strain was identified as a Streptomyces spieces by analyzing its 16S rDNA sequence. Streptomyces sp. SCSIO 1934 was fermented under optimized conditions and seven bioactive secondary metabolites were isolated and purified by chromatographic methods including colum chromatography over silica gel and Sephadex LH-20. Their structures were elucidated as 17-O-demethylgeldanamycin (1), lebstatin (2), 17-O-demethyllebstatin (3), nigericin (4), nigericin sodium salt (5), abierixin (6), respectively, by detailed NMR spectroscopic data (1H, 13C, COSY, HSQC and HMBC). This work provided a new marine actinobacterium Streptomyces sp. SCSIO 1934, capable of producing diverse bioactive natural products.

  16. New and Rare Carotenoids Isolated from Marine Bacteria and Their Antioxidant Activities

    PubMed Central

    Shindo, Kazutoshi; Misawa, Norihiko

    2014-01-01

    Marine bacteria have not been examined as extensively as land bacteria. We screened carotenoids from orange or red pigments-producing marine bacteria belonging to rare or novel species. The new acyclic carotenoids with a C30 aglycone, diapolycopenedioc acid xylosylesters A–C and methyl 5-glucosyl-5,6-dihydro-apo-4,4′-lycopenoate, were isolated from the novel Gram-negative bacterium Rubritalea squalenifaciens, which belongs to phylum Verrucomicrobia, as well as the low-GC Gram-positive bacterium Planococcus maritimus strain iso-3 belonging to the class Bacilli, phylum Firmicutes, respectively. The rare monocyclic C40 carotenoids, (3R)-saproxanthin and (3R,2′S)-myxol, were isolated from novel species of Gram-negative bacteria belonging to the family Flavobacteriaceae, phylum Bacteroidetes. In this review, we report the structures and antioxidant activities of these carotenoids, and consider relationships between bacterial phyla and carotenoid structures. PMID:24663119

  17. The calyxolanes: new 1,3-diphenylbutanoid metabolites isolated from the Caribbean marine sponge Calyx podatypa.

    PubMed

    Rodríguez, A D; Cóbar, O M; Padilla, O L

    1997-09-01

    Calyxolanes A (1) and B (2) are rare 1,3-diphenylbutanoid compounds isolated from the marine sponge Calyx podatypa collected in Puerto Rico. Their structures, including relative stereochemistry, have been determined by spectroscopic methods. The unique 2,4-diphenyloxolane function in 1 and 2 was established by 2D 1H-1H and 1H-13C NMR correlation experiments and confirmed by mass spectral analysis. A suggestion is made as to their biogenetic origin.

  18. Longibacter salinarum gen. nov., sp. nov., isolated from a marine solar saltern

    USDA-ARS?s Scientific Manuscript database

    A bacterial strain, designated WDS2C18**T, was isolated from a marine solar saltern in the coast of Weihai, Shandong Province, PR China. Cells of strain WDS2C18**T were long rod-shaped, red, and approximately 6.0–12.0 µm in length and 0.3–0.6 µm in width. The strain was Gram-stain-negative, facultat...

  19. Isolation and Structural Elucidation of Chondrosterins F–H from the Marine Fungus Chondrostereum sp

    PubMed Central

    Li, Hou-Jin; Chen, Ting; Xie, Ying-Lu; Chen, Wen-Dan; Zhu, Xiao-Feng; Lan, Wen-Jian

    2013-01-01

    The marine fungus Chondrostereum sp. was collected from a soft coral of the species Sarcophyton tortuosum from the South China Sea. Three new compounds, chondrosterins F–H (1, 4 and 5), together with three known compounds, incarnal (2), arthrosporone (3), and (2E)-decene-4,6,8-triyn-1-ol (6), were isolated. Their structures were elucidated primarily based on NMR and MS data. Incarnal (2) exhibited potent cytotoxic activity against various cancer cell lines. PMID:23434797

  20. Characterization of Marine Temperate Phage-Host Systems Isolated from Mamala Bay, Oahu, Hawaii

    PubMed Central

    Jiang, Sunny C.; Kellogg, Christina A.; Paul, John H.

    1998-01-01

    To understand the ecological and genetic role of viruses in the marine environment, it is critical to know the infectivity of viruses and the types of interactions that occur between marine viruses and their hosts. We isolated four marine phages from turbid plaques by using four indigenous bacterial hosts obtained from concentrated water samples from Mamala Bay, Oahu, Hawaii. Two of the rod-shaped bacterial hosts were identified as Sphingomonas paucimobilis and Flavobacterium sp. All of the phage isolates were tailed phages and contained double-stranded DNA. Two of the phage isolates had morphologies typical of the family Siphoviridae, while the other two belonged to the families Myoviridae and Podoviridae. The head diameters of these viruses ranged from 47 to 70.7 nm, and the tail lengths ranged from 12 to 146 nm. The burst sizes ranged from 7.8 to 240 phage/bacterial cell, and the genome sizes, as determined by restriction digestion, ranged from 36 to 112 kb. The members of the Siphoviridae, T-φHSIC, and T-φD0, and the member of the Myoviridae, T-φD1B, were found to form lysogenic associations with their bacterial hosts, which were isolated from the same water samples. Hybridization of phage T-φHSIC probe with lysogenic host genomic DNA was observed in dot blot hybridization experiments, indicating that prophage T-φHSIC was integrated within the host genome. These phage-host systems are available for use in studies of marine lysogeny and transduction. PMID:9464390

  1. Utilization of isolated marine mussel cells as an in vitro model to assess xenobiotics induced genotoxicity.

    PubMed

    Zhang, Y F; Chen, S Y; Qu, M J; Adeleye, A O; Di, Y N

    2017-10-01

    Freshly isolated cells are used as an ideal experimental model in in vitro toxicology analysis, especially the detection of diverse xenobiotics induced genotoxic effects. In present study, heavy metals (Zn, Cu, Cd, Pb) and PCBs were selected as representative xenobiotics to verify the ability of in vitro model in assessing genotoxic effects in cells of marine mussels (Mytilus galloprovincialis). DNA damage and chromosome aberration were assessed in freshly isolated cells from haemolymph, gill and digestive gland by single cell gel electrophoresis and micronucleus assay respectively. Gill cells showed more sensitive to Zn exposure among three types of cells, indicating tissue-specific genotoxicity. Significantly higher DNA aberrations were induced by Cu in haemocytes compared to Cd and Pb, indicating chemical-specific genotoxicity. An additive effect was detected after combined heavy metals and PCBs exposure, suggesting the interaction of selected xenobiotics. To our knowledge, this is the first attempt to study the complex effects of organic and/or inorganic contaminants using freshly isolated cells from marine mussels. Genetic responses are proved to occur and maintained in vitro in relation to short-term xenobiotics induced stresses. The utilization of the in vitro model could provide a rapid tool to investigate the comprehensive toxic effects in marine invertebrates and monitor environmental health. Copyright © 2017. Published by Elsevier Ltd.

  2. Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum.

    PubMed

    Desbois, Andrew P; Lebl, Tomas; Yan, Liming; Smith, Valerie J

    2008-12-01

    One solution to the global crisis of antibiotic resistance is the discovery of novel antimicrobial compounds for clinical application. Marine organisms are an attractive and, as yet, relatively untapped resource of new natural products. Cell extracts from the marine diatom, Phaeodactylum tricornutum, have antibacterial activity and the fatty acid, eicosapentaenoic acid (EPA), has been identified as one compound responsible for this activity. During the isolation of EPA, it became apparent that the extracts contained further antibacterial compounds. The present study was undertaken to isolate these additional antibacterial factors using silica column chromatography and reverse-phase high-performance liquid chromatography. Two antibacterial fractions, each containing a pure compound, were isolated and their chemical structures were investigated by mass spectrometry and nuclear magnetic resonance spectroscopy. The antibacterial compounds were identified as the monounsaturated fatty acid (9Z)-hexadecenoic acid (palmitoleic acid; C16:1 n-7) and the relatively unusual polyunsaturated fatty acid (6Z, 9Z, 12Z)-hexadecatrienoic acid (HTA; C16:3 n-4). Both are active against Gram-positive bacteria with HTA further inhibitory to the growth of the Gram-negative marine pathogen, Listonella anguillarum. Palmitoleic acid is active at micro-molar concentrations, kills bacteria rapidly, and is highly active against multidrug-resistant Staphylococcus aureus. These free fatty acids warrant further investigation as a new potential therapy for drug-resistant infections.

  3. Production of poly-beta-hydroxybutyrate (PHB) by Vibrio spp. isolated from marine environment.

    PubMed

    Chien, Chih-Ching; Chen, Chang-Chieh; Choi, Meng-Hui; Kung, Shieh-Shiuh; Wei, Yu-Hong

    2007-11-01

    Bacteria isolated from marine sediments were screened for their ability to accumulate polyhydroxyalkanoates. Among the isolates, four Vibrio spp. (strain M11, M14, M20 and M31) were studied in detail. All synthesized intracellular lipid inclusions during growth on diverse carbon sources including acetate, glycerol, succinate, glucose and sucrose. The inclusions were identified to be poly-beta-hydroxybutyrate (PHB) using gas chromatography and nuclear magnetic resonance analysis. No other type of polyhydroxyalkanoates (PHAs) was found to be accumulated by these marine isolates, suggesting that the diversity of PHAs produced in marine environments may be not as versatile as found in other environments. Strain M11 accumulated PHB in concentrations as high as 41% of cell dry weight when grown in medium containing 4% of sodium chloride. One of the Vibrio spp. was identified to be closely related to Vibrio natriegens (98% identity) by partial 16S rDNA sequence homology. V. natriegens has the shortest generation time (9.8 min) of any bacterium and this characteristic may be an exploitable trait for the industrial production of PHB.

  4. Antimicrobial activities of novel cultivable bacteria isolated from marine sponge Tedania anhelans

    NASA Astrophysics Data System (ADS)

    Zeng, Zhen; Zhao, Jing; Ke, Caihuan; Wang, Dexiang

    2013-05-01

    Marine sponge Tedania anhelans distributes throughout the intertidal zone of Fujian, southeastern China, and is a potential source of natural bioactive products. The sponge harbors a large number of bacterial groups that have been identified using various techniques, including fluorescent in situ hybridization (FISH). Fractionation of dissociated sponge allowed isolation of 25 bacterial species. Based on 16S rRNA gene sequencing, phylogenetic analysis attributed most of these eubacteria to α- Proteobacteria, γ- Proteobacteria, Cytophaga / Flavobacterium / Bacteroidetes (CFB group), and the family Bacillaceae of Gram-positive bacteria. In sequence similarity, five putatively novel species were identified with less than 98% similarity to other strains in the NCBI database. Tests for antimicrobial activities were performed against Gram-positive bacteria, Gram-negative bacteria, fungi, antitumor indicators Escherichia coli 343/591 (with DNA repair deficiency), regular E. coli 343/636 (with different DNA repair capacity), and 10 bacterial isolates exhibited inhibitory bioactivities. Among these strains, three isolates were detected involving function gene NRPS-A domains, which were most closely related to the amino acid sequences of linear gramicidin synthetase and pyoverdine synthetase. These results contribute to our knowledge of the microbes associated with marine sponges and further reveal novel bacterial resources for the screening of bioactive marine natural products.

  5. Genome Sequence of Streptomyces sp. H-KF8, a Marine Actinobacterium Isolated from a Northern Chilean Patagonian Fjord

    PubMed Central

    Undabarrena, Agustina; Ugalde, Juan Antonio; Castro-Nallar, Eduardo; Seeger, Michael

    2017-01-01

    ABSTRACT Streptomyces sp. H-KF8 is a fjord-derived marine actinobacterium capable of producing antimicrobial activity. Streptomyces sp. H-KF8 was isolated from sediments of the Comau fjord, located in the northern Chilean Patagonia. Here, we report the 7.7-Mb genome assembly, which represents the first genome of a Chilean marine actinobacterium. PMID:28183776

  6. Genome Sequence of Streptomyces sp. H-KF8, a Marine Actinobacterium Isolated from a Northern Chilean Patagonian Fjord.

    PubMed

    Undabarrena, Agustina; Ugalde, Juan Antonio; Castro-Nallar, Eduardo; Seeger, Michael; Cámara, Beatriz

    2017-02-09

    Streptomyces sp. H-KF8 is a fjord-derived marine actinobacterium capable of producing antimicrobial activity. Streptomyces sp. H-KF8 was isolated from sediments of the Comau fjord, located in the northern Chilean Patagonia. Here, we report the 7.7-Mb genome assembly, which represents the first genome of a Chilean marine actinobacterium. Copyright © 2017 Undabarrena et al.

  7. Three new chlorinated marine steroids, yonarasterols G, H and I, isolated from the okinawan soft coral, Clavularia viridis.

    PubMed

    Iwashima, M; Nara, K; Nakamichi, Y; Iguchi, K

    2001-01-01

    Three new chlorinated marine steroids, yonarasterols G, H and I, were isolated from the Okinawan soft coral, Clavularia viridis. Their structures including the absolute configuration were determined based on the results of spectroscopic analysis and chemical conversion.

  8. Screening, isolation and optimization of anti–white spot syndrome virus drug derived from marine plants

    PubMed Central

    Chakraborty, Somnath; Ghosh, Upasana; Balasubramanian, Thangavel; Das, Punyabrata

    2014-01-01

    Objective To screen, isolate and optimize anti-white spot syndrome virus (WSSV) drug derived from various marine floral ecosystems and to evaluate the efficacy of the same in host–pathogen interaction model. Methods Thirty species of marine plants were subjected to Soxhlet extraction using water, ethanol, methanol and hexane as solvents. The 120 plant isolates thus obtained were screened for their in vivo anti-WSSV property in Litopenaeus vannamei. By means of chemical processes, the purified anti-WSSV plant isolate, MP07X was derived. The drug was optimized at various concentrations. Viral and immune genes were analysed using reverse transcriptase PCR to confirm the potency of the drug. Results Nine plant isolates exhibited significant survivability in host. The drug MP07X thus formulated showing 85% survivability in host. The surviving shrimps were nested PCR negative at the end of the 15 d experimentation. The lowest concentration of MP07X required intramuscularly for virucidal property was 10 mg/mL. The oral dosage of 1 000 mg/kg body weight/day survived at the rate of 85%. Neither VP28 nor ie 1 was expressed in the test samples at 42nd hour and 84th hour post viral infection. Conclusions The drug MP07X derived from Rhizophora mucronata is a potent anti-WSSV drug. PMID:25183065

  9. A method to type the potential angucycline producers in actinomycetes isolated from marine sponges.

    PubMed

    Ouyang, Yongchang; Wu, Houbo; Xie, Lianwu; Wang, Guanghua; Dai, Shikun; Chen, Minjie; Yang, Keqian; Li, Xiang

    2011-05-01

    Angucyclines are aromatic polyketides with antimicrobial, antitumor, antiviral and enzyme inhibition activities. In this study, a new pair of degenerate primers targeting the cyclase genes that are involved in the aromatization of the first and/or second ring of angucycline, were designed and evaluated in a PCR protocol targeting the jadomycin cyclase gene of Streptomyces venezuelae ISP5230. The identity of the target amplicon was confirmed by sequencing. After validation, the primers were used to screen 49 actinomycete isolates from three different marine sponges to identify putative angucycline producers. Seven isolates were positively identified using this method. Sequence analysis of the positive amplicons confirmed their identity as putative angucycline cyclases with sequence highly similar to known angucycline cyclases. Phylogenetic analysis clustered these positives into the angucycline group of cyclases. Furthermore, amplifications of the seven isolates using ketosynthase-specific primers were positive, backing the results using the cyclase primers. Together these results provided strong support for the presence of angucycline biosynthetic genes in these isolates. The specific primer set targeting the cyclase can be used to identify putative angucycline producers among marine actinobacteria, and aid in the discovery of novel angucyclines.

  10. Potential of biogenic hydrogen production for hydrogen driven remediation strategies in marine environments.

    PubMed

    Hosseinkhani, Baharak; Hennebel, Tom; Boon, Nico

    2014-09-25

    Fermentative production of bio-hydrogen (bio-H2) from organic residues has emerged as a promising alternative for providing the required electron source for hydrogen driven remediation strategies. Unlike the widely used production of H2 by bacteria in fresh water systems, few reports are available regarding the generation of biogenic H2 and optimisation processes in marine systems. The present research aims to optimise the capability of an indigenous marine bacterium for the production of bio-H2 in marine environments and subsequently develop this process for hydrogen driven remediation strategies. Fermentative conversion of organics in marine media to H2 using a marine isolate, Pseudoalteromonas sp. BH11, was determined. A Taguchi design of experimental methodology was employed to evaluate the optimal nutritional composition in batch tests to improve bio-H2 yields. Further optimisation experiments showed that alginate-immobilised bacterial cells were able to produce bio-H2 at the same rate as suspended cells over a period of several weeks. Finally, bio-H2 was used as electron donor to successfully dehalogenate trichloroethylene (TCE) using biogenic palladium nanoparticles as a catalyst. Fermentative production of bio-H2 can be a promising technique for concomitant generation of an electron source for hydrogen driven remediation strategies and treatment of organic residue in marine ecosystems.

  11. Bioprospecting of Novel and Bioactive Compounds from Marine Actinomycetes Isolated from South China Sea Sediments.

    PubMed

    Yang, Na; Song, Fuhang

    2017-09-16

    Marine actinomycetes are less investigated compared to terrestrial strains as potential sources of natural products. To date, few investigations have been performed on culturable actinomycetes associated with South China Sea sediments. In the present study, twenty-eight actinomycetes were recovered from South China Sea sediments after dereplication by traditional culture-dependent method. The 16S rRNA gene sequences analyses revealed that these strains related to five families and seven genera. Twelve representative strains possessed at least one of the biosynthetic genes coding for polyketide synthase I, II, and nonribosomal peptide synthetase. Four strains had anti-Mycobacterium phlei activities and five strains had activities against methicillin-resistant Staphylococcus aureus. 10 L-scale fermentation of strains Salinispora sp. NHF45, Nocardiopsis sp. NHF48, and Streptomyces sp. NHF86 were carried out for novel and bioactive compounds discovery. Finally, we obtained a novel α-pyrone compound from marine Nocardiopsis sp. NHF48, an analogue of paulomenol from marine Streptomyces sp. NHF86 and a new source of rifamycin B, produced by Salinispora sp. NHF45. The present study concluded that marine actinomycetes, which we isolated from South China Sea sediments, will be a suitable source for the development of novel and bioactive compounds.

  12. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds

    PubMed Central

    Dhakal, Dipesh; Pokhrel, Anaya Raj; Shrestha, Biplav; Sohng, Jae Kyung

    2017-01-01

    Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications. PMID:28663748

  13. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds.

    PubMed

    Dhakal, Dipesh; Pokhrel, Anaya Raj; Shrestha, Biplav; Sohng, Jae Kyung

    2017-01-01

    Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications.

  14. Implications of macroalgal isolation by distance for networks of marine protected areas.

    PubMed

    Durrant, Halley M S; Burridge, Christopher P; Kelaher, Brendan P; Barrett, Neville S; Edgar, Graham J; Coleman, Melinda A

    2014-04-01

    The global extent of macroalgal forests is declining, greatly affecting marine biodiversity at broad scales through the effects macroalgae have on ecosystem processes, habitat provision, and food web support. Networks of marine protected areas comprise one potential tool that may safeguard gene flow among macroalgal populations in the face of increasing population fragmentation caused by pollution, habitat modification, climate change, algal harvesting, trophic cascades, and other anthropogenic stressors. Optimal design of protected area networks requires knowledge of effective dispersal distances for a range of macroalgae. We conducted a global meta-analysis based on data in the published literature to determine the generality of relation between genetic differentiation and geographic distance among macroalgal populations. We also examined whether spatial genetic variation differed significantly with respect to higher taxon, life history, and habitat characteristics. We found clear evidence of population isolation by distance across a multitude of macroalgal species. Genetic and geographic distance were positively correlated across 49 studies; a modal distance of 50-100 km maintained F(ST) < 0.2. This relation was consistent for all algal divisions, life cycles, habitats, and molecular marker classes investigated. Incorporating knowledge of the spatial scales of gene flow into the design of marine protected area networks will help moderate anthropogenic increases in population isolation and inbreeding and contribute to the resilience of macroalgal forests. ©2013 Society for Conservation Biology.

  15. Biomineralization processes of calcite induced by bacteria isolated from marine sediments

    PubMed Central

    Wei, Shiping; Cui, Hongpeng; Jiang, Zhenglong; Liu, Hao; He, Hao; Fang, Nianqiao

    2015-01-01

    Biomineralization is a known natural phenomenon associated with a wide range of bacterial species. Bacterial-induced calcium carbonate precipitation by marine isolates was investigated in this study. Three genera of ureolytic bacteria, Sporosarcina sp., Bacillus sp. and Brevundimonas sp. were observed to precipitate calcium carbonate minerals. Of these species, Sporosarcina sp. dominated the cultured isolates. B. lentus CP28 generated higher urease activity and facilitated more efficient precipitation of calcium carbonate at 3.24 ± 0.25 × 10−4 mg/cell. X-ray diffraction indicated that the dominant calcium carbonate phase was calcite. Scanning electron microscopy showed that morphologies of the minerals were dominated by cubic, rhombic and polygonal plate-like crystals. The dynamic process of microbial calcium carbonate precipitation revealed that B. lentus CP28 precipitated calcite crystals through the enzymatic hydrolysis of urea, and that when ammonium ion concentrations reached 746 mM and the pH reached 9.6, that favored calcite precipitation at a higher level of 96 mg/L. The results of this research provide evidence that a variety of marine bacteria can induce calcium carbonate precipitation, and may influence the marine carbonate cycle in natural environments. PMID:26273260

  16. Recent advances in isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids of marine origin.

    PubMed

    Nijampatnam, Bhavitavya; Dutta, Shilpa; Velu, Sadanandan E

    2015-08-01

    The ocean continues to provide a plethora of unique scaffolds capable of remarkable biological applications. A large number of pyrroloiminoquinone alkaloids, including discorhabdins, epinardins, batzellines, makaluvamines, and veiutamine, have been isolated from various marine organisms. A class of pyrroloiminoquinone-related alkaloids, known as bispyrroloquinones, is the focus of this review article. This family of marine alkaloids, which contain an aryl substituted bispyrroloquinone ring system, includes three subclasses of alkaloids namely, wakayin, tsitsikammamines A-B, and zyzzyanones A-D. Both wakayin and the tsitsikammamines contain a tetracyclic fused bispyrroloiminoquinone ring system, while zyzzyanones contain a fused tricyclic bispyrroloquinone ring system. The unique chemical structures of these marine natural products and their diverse biological properties, including antifungal and antimicrobial activity, as well as the potent, albeit generally nonspecific and universal cytotoxicities, have attracted great interest of synthetic chemists over the past three decades. Tsitsikammamines, wakayin, and several of their analogs show inhibition of topoisomerases. One additional possible mechanism of anticancer activity of tsitsikammamines analogs that has been discovered recently is through the inhibition of indoleamine 2, 3-dioxygenase, an enzyme involved in tumoral immune resistance. This review discusses the isolation, synthesis, and evaluation of bioactivities of bispyrroloquinone alkaloids and their analogs.

  17. Recent Developments in the Isolation, Synthesis, and Bioactivities of Bispyrroloquinone Alkaloids of Marine Origin

    PubMed Central

    Nijampatnam, Bhavitavya; Dutta, Shilpa; Velu, Sadanandan E.

    2016-01-01

    The ocean continues to provide a plethora of unique scaffolds capable of remarkable biological applications. A large number of pyrroloiminoquinone alkaloids, including discorhabdins, epinardins, batzellines, makaluvamines, and veiutamine have already been isolated from marine organisms. A class of pyrroloiminoquinone-related alkaloids known as bispyrroloquinones is the focus of this review. This family of marine alkaloids, which contain an aryl substituted bispyrroloquinone ring system, includes three subclasses of alkaloids namely, wakayin, tsitsikammamines A-B and zyzzyanones A-D. Both wakayin and the tsitsikammamines contain a tetracyclic fused bispyrroloiminoquinone ring system, while zyzzyanones contain a fused tricyclic bispyrroloquinone ring system. The unique chemical structures of these marine natural products and their diverse biological properties, including antifungal and antimicrobial activity, as well as the potent, albeit generally nonspecific and universal cytotoxicities, have attracted great interest of synthetic chemists over the past three decades. Tsitsikammamines, wakayin, and several of their analogues show inhibition of topoisomerases. One additional possible mechanism of anticancer activity of tsitsikammamines analogues that was discovered recently is through the inhibition of indoleamine 2,3-dioxygenase, an enzyme involved in tumoral immune resistance. This review discusses the isolation, synthesis, and bioactivities of bispyrroloquinone alkaloids and their analogues. PMID:26253489

  18. Biomineralization processes of calcite induced by bacteria isolated from marine sediments.

    PubMed

    Wei, Shiping; Cui, Hongpeng; Jiang, Zhenglong; Liu, Hao; He, Hao; Fang, Nianqiao

    2015-06-01

    Biomineralization is a known natural phenomenon associated with a wide range of bacterial species. Bacterial-induced calcium carbonate precipitation by marine isolates was investigated in this study. Three genera of ureolytic bacteria, Sporosarcina sp., Bacillus sp. and Brevundimonas sp. were observed to precipitate calcium carbonate minerals. Of these species, Sporosarcina sp. dominated the cultured isolates. B. lentus CP28 generated higher urease activity and facilitated more efficient precipitation of calcium carbonate at 3.24 ± 0.25 × 10(-4) mg/cell. X-ray diffraction indicated that the dominant calcium carbonate phase was calcite. Scanning electron microscopy showed that morphologies of the minerals were dominated by cubic, rhombic and polygonal plate-like crystals. The dynamic process of microbial calcium carbonate precipitation revealed that B. lentus CP28 precipitated calcite crystals through the enzymatic hydrolysis of urea, and that when ammonium ion concentrations reached 746 mM and the pH reached 9.6, that favored calcite precipitation at a higher level of 96 mg/L. The results of this research provide evidence that a variety of marine bacteria can induce calcium carbonate precipitation, and may influence the marine carbonate cycle in natural environments.

  19. Plesiomonas shigelloides and Aeromonadaceae family pathogens isolated from marine mammals of Southern and Southeastern Brazilian coast.

    PubMed

    Pereira, Christiane S; Amorim, Simone D; Santos, André Felipe das M; Siciliano, Salvatore; Moreno, Ignacio B; Ott, Paulo Henrique; Rodrigues, Dalia Dos Prazeres

    2008-10-01

    The aquatic environment is the habitat of many microorganisms, including Plesiomonas shigelloides and Aeromonas species which are pathogenic to human and animals. In the present investigation, we evaluated the occurrence of these pathogens from marine mammals beached or accidentally captured by fishing net in southeastern (RJ) and southern (RS) coastal Brazilian regions. A total of 198 swabs from 27 specimens of marine mammals, including 11 different species, were collected by DEENSP and GEMARS-CECLIMAR/ UFRGS Institutes and sent to LRNCEB/IOC/FIOCRUZ. The samples were enriched in Alkaline Peptone Water (APW) added with 1% of sodium chloride (NaCl), APW plus 3% NaCl and incubated at 37°C for 18-24 hours. Following, samples were streaked onto Pseudomonas-Aeromonas Selective Agar Base (GSP Agar) and suspected colonies were biochemically characterized. The results revealed 114 strains, including ten Aeromonas species and P. shigelloides. The main pathogens isolated were A. veronii biogroup veronii (19.3%), A. caviae (12.3%), A. hydrophila (9.6%) and P. shigelloides (7%). The pathogens were isolated in both coastal and offshore marine mammals. These data point the importance of epidemiological surveillance and microbiological monitoring and reinforce the need to implement environmental protection programs, especially related to endangered cetacean species.

  20. Plesiomonas shigelloides and Aeromonadaceae family pathogens isolated from marine mammals of Southern and Southeastern Brazilian coast

    PubMed Central

    Pereira, Christiane S.; Amorim, Simone D.; Santos, André Felipe das M.; Siciliano, Salvatore; Moreno, Ignacio B.; Ott, Paulo Henrique; Rodrigues, Dalia dos Prazeres

    2008-01-01

    The aquatic environment is the habitat of many microorganisms, including Plesiomonas shigelloides and Aeromonas species which are pathogenic to human and animals. In the present investigation, we evaluated the occurrence of these pathogens from marine mammals beached or accidentally captured by fishing net in southeastern (RJ) and southern (RS) coastal Brazilian regions. A total of 198 swabs from 27 specimens of marine mammals, including 11 different species, were collected by DEENSP and GEMARS-CECLIMAR/ UFRGS Institutes and sent to LRNCEB/IOC/FIOCRUZ. The samples were enriched in Alkaline Peptone Water (APW) added with 1% of sodium chloride (NaCl), APW plus 3% NaCl and incubated at 37°C for 18–24 hours. Following, samples were streaked onto Pseudomonas-Aeromonas Selective Agar Base (GSP Agar) and suspected colonies were biochemically characterized. The results revealed 114 strains, including ten Aeromonas species and P. shigelloides. The main pathogens isolated were A. veronii biogroup veronii (19.3%), A. caviae (12.3%), A. hydrophila (9.6%) and P. shigelloides (7%). The pathogens were isolated in both coastal and offshore marine mammals. These data point the importance of epidemiological surveillance and microbiological monitoring and reinforce the need to implement environmental protection programs, especially related to endangered cetacean species. PMID:24031302

  1. Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean Samples

    SciTech Connect

    Baya, A.M.; Brayton, P.R.; Brown, V.L.; Grimes, D.J.; Russek-Cohen, E.; Colwell, R.R.

    1986-06-01

    Sewage effluent and outfall confluence samples were collected at the Barceloneta Regional Treatment Plant in Barceloneta, Puerto Rico; outfall confluence samples at Ocean City, Md., were also collected. Samples from uncontaminated open ocean areas served as clean-water controls. Bacteria were enriched in marine broth 2216 amended with 1 ..mu..g of one of a set of chemical selected for study per ml: nitrobenzene, dibutyl phthalate, m-cresol, o-cresol, 4-nitroaniline, bis(tributyltin) oxide, and quinone. MICs of the chemicals were determined individually for all isolates. Bacterial isolates were evaluated for resistance to nine different antibiotics and for the presence of plasmid DNA. Treated sewage was found to contain large numbers of bacteria simultaneously possessing antibiotic resistance, chemical resistance, and multiple bands of plasmic DNA. Bacteria resistant to penicillin, erythromycin, nalidixic acid, ampicillin, m-cresol, quinone, and bis(tributyltin) oxide were detected in nearly all samples, but only sewage outfall confluence samples yielded bacterial isolates that were resistant to streptomycin. Bacteria resistant to a combination of antibiotics, including kanamycin, chloramphenicol, gentamicin, and tetracycline, were isolated only from sewage effluent samples. It is concluded that bacterial isolates derived from toxic chemical wastes more frequently contain plasmid DNA and demonstrate antimicrobial resistance than do bacterial isolates from domestic sewage-impacted waters or from uncontaminated open ocean sites.

  2. Isolation and Characterization of Gram-Positive Piezophilic Bacteria from Deep Marine Subsurface Sediment

    NASA Astrophysics Data System (ADS)

    Runko, G. M.; Fang, J.; Kato, C.

    2014-12-01

    The marine deep biosphere remains as the least studied of all of Earth's habitats and is inadequately understood, but is extremely important to understand the impacts that microbes have on global biogeochemical cycles. Sediment samples were obtained during IODP Expedition 337 in the western Pacific Ocean, from 1,498 meters below the seafloor (mbsf; samples 6R3), 1,951-1,999 mbsf (19R1), and 2,406 mbsf (29R7). These samples were initially mixed with marine broth and cultivated under anaerobic conditions at pressure of 35 MPa (megapascal) and temperatures of 35° C, 45° C, and 55° C for 3 months on board the Chikyu. Single colonies were isolated via plating on marine broth. Then, six strains of bacteria were identified, 6R3-1, 6R3-15, 19R1-5, 29R7-12B, 29R7-12M, and 29R7-12S. The six strains were then examined for optimal growth temperature and pressure. These organisms are Gram-positive, spore-forming, facultative anaerobic piezophilic bacteria. Major fatty acids are anteiso-15:0, anteiso-17:0 and iso-15:0. Phylogenetic analysis of 16S rRNA gene sequences revealed that the isolates are closely related to Virgibacillus pantothenticus, Robinsoniella peoriensis, and Bacillus subtilis. Because of their abundance in the deep marine subsurface, these microorganisms likely play an important role in sustaining the deep microbial ecosystem and influencing biogeochemical cycles in the deep biosphere.

  3. Larvicidal potency of marine actinobacteria isolated from mangrove environment against Aedes aegypti and Anopheles stephensi.

    PubMed

    Balakrishnan, S; Santhanam, P; Srinivasan, M

    2017-06-01

    The marine soil samples were collected from different locations of Parangipettai mangrove ecosystem, Vellar estuary, southeast coast of India. Totally 30 different marine actinobacteria were isolated by serial dilution plate technique on starch casein agar medium. The isolated actinobacteria were investigated for their larvicidal activity against Aedes aegypti and Anopheles stephensi mosquitoes. Streptomyces fungicidicus, S. griseus, S. albus, S. alboflavus and S. rochei were identified as potential biocide producers. Based on the antimicrobial activity, five strains were chosen for larvicidal and pupicidal activity. Among the crude extracts tested, the S. alboflavus extract showed significant activity against Ae. aegypti (LC50 1.48 ± 0.09 and LC90 3.33 ± 0.22) and An. stephensi (LC50 1.30 ± 0.09 and LC90 3.13 ± 0.21). Five isolates have shown a most significant mortality rate of the Ae. aegypti and An. stephensi mosquito larvae. This is an ideal eco-friendly approach for the control of Japanese encephalitis vectors, Ae. aegypti and malarial vector An. stephensi.

  4. Streptomyces atlanticus sp. nov., a novel actinomycete isolated from marine sponge Aplysina fulva (Pallas, 1766).

    PubMed

    Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Zucchi, Tiago Domingues; Pansa, Camila Cristiane; de Figueiredo Vasconcellos, Rafael Leandro; Crevelin, Eduardo José; de Moraes, Luiz Alberto Beraldo; Melo, Itamar Soares

    2016-11-01

    The taxonomic position of a novel marine actinomycete isolated from a marine sponge, Aplysina fulva, which had been collected in the Archipelago of Saint Peter and Saint Paul (Equatorial Atlantic Ocean), was determined by using a polyphasic approach. The organism showed a combination of morphological and chemotaxonomic characteristics consistent with its classification in the genus Streptomyces and forms a distinct branch within the Streptomyces somaliensis 16S rRNA gene tree subclade. It is closely related to Streptomyces violascens ISP 5183(T) (97.27 % 16S rRNA gene sequence similarity) and Streptomyces hydrogenans NBRC 13475(T) (97.15 % 16S rRNA gene sequence similarity). The 16S rRNA gene similarities between the isolate and the remaining members of the subclade are lower than 96.77 %. The organism can be distinguished readily from other members of the S. violacens subclade using a combination of phenotypic properties. On the basis of these results, it is proposed that isolate 103(T) (=NRRL B-65309(T) = CMAA 1378(T)) merits recognition as the type strain of a new Streptomyces species, namely Streptomyces atlanticus sp. nov.

  5. Global molecular phylogeography reveals persistent Arctic circumpolar isolation in a marine planktonic protist.

    PubMed

    Darling, Kate F; Kucera, Michal; Wade, Christopher M

    2007-03-20

    The high-latitude planktonic foraminifera have proved to be particularly useful model organisms for the study of global patterns of vicariance and gene flow in the oceans. Such studies demonstrate that gene flow can occur over enormous distances in the pelagic marine environment leading to cosmopolitanism but also that there are ecological and geographical barriers to gene flow producing biogeographic structure. Here, we have undertaken a comprehensive global study of genetic diversity within a marine protist species, the high-latitude planktonic foraminiferan Neogloboquadrina pachyderma. We present extensive new data sets from the North Pacific and Arctic Oceans that, in combination with our earlier data from the North Atlantic and Southern Oceans, allow us to determine the global phylogeography of this species. The new genetic data reveal a pattern of Arctic circumpolar isolation and bipolar asymmetry between the Atlantic and Pacific Oceans. We show that the ancestry of North Pacific N. pachyderma is relatively recent. It lies within the upwelling systems and subpolar waters of the Southern Hemisphere and remarkably not within the neighboring Arctic Ocean. Instead, the Arctic Ocean population forms a genetic continuum with the North Atlantic population, which became isolated from the southern populations much earlier, after the onset of Northern hemisphere glaciation. Data from the planktonic foraminiferal morphospecies Globigerina bulloides is also introduced to highlight the isolation and endemism found within the subpolar North Pacific gyre. These data provide perspective for interpretation and discussion of global gene flow and speciation patterns in the plankton.

  6. Structural investigation and biological activity of the lipooligosaccharide from the psychrophilic bacterium Pseudoalteromonas haloplanktis TAB 23.

    PubMed

    Carillo, Sara; Pieretti, Giuseppina; Parrilli, Ermenegilda; Tutino, Maria L; Gemma, Sabrina; Molteni, Monica; Lanzetta, Rosa; Parrilli, Michelangelo; Corsaro, Maria M

    2011-06-14

    Pseudoalteromonas haloplanktis TAB 23 is a Gram-negative psychrophilic bacterium isolated from the Antarctic coastal sea. To survive in these conditions psychrophilic bacteria have evolved typical membrane lipids and "antifreeze" proteins to protect the inner side of the microorganism. As for Gram-negative bacteria, the outer membrane is mainly constituted by lipopoly- or lipooligosaccharides (LPS or LOS, respectively), which lean towards the external environment. Despite this, very little is known about the peculiarity of LPS from Gram-negative psychrophilic bacteria and what their role is in adaptation to cold temperature. Here we report the complete structure of the LOS from P. haloplanktis TAB 23. The lipid A was characterized by MALDI-TOF MS analysis and was tested in vitro showing a significant inhibitory effect on the LPS-induced pro-inflammatory cytokine production when added in culture with LPS from Escherichia coli. The product obtained after de-O-acylation of the LPS was analyzed by MALDI-TOF MS revealing the presence of several molecular species, differing in phosphorylation degree and oligosaccharide length. The oligosaccharide portion released after strong alkaline hydrolysis was purified by anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) to give three main fractions, characterized by means of 2D NMR spectroscopy, which showed a very short highly phosphorylated saccharidic chain with the following general structure. α-Hepp3R,6R,4R'-(1→5)-α-Kdop4P-(2→6)-β-GlcpN4R-(1→6)-α-GlcpN1P (R=-H(2)PO(3) or -H; R'=α-Galp-(1→4)-β-Galp-(1→ or H-). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Isolation and Structural Elucidation of Euryjanicins B–D, Proline-Containing Cycloheptapeptides from the Caribbean Marine Sponge Prosuberites laughlini†

    PubMed Central

    Vera, Brunilda; Vicente, Jan; Rodríguez, Abimael D.

    2016-01-01

    Three new cyclic peptides, euryjanicins B (2), C (3), and D (4), have been isolated from the Puerto Rican marine sponge Prosuberites laughlini, and the structures were elucidated by chemical degradation, ESIMS/MS, and extensive 2D NMR methods. When tested against the National Cancer Institute 60 tumor cell line panel, all of the purified isolates displayed weak cytotoxicity. PMID:19743810

  8. Antagonism of Bacillus spp. isolated from marine biofilms against terrestrial phytopathogenic fungi.

    PubMed

    Ortega-Morales, B O; Ortega-Morales, F N; Lara-Reyna, J; De la Rosa-García, S C; Martínez-Hernández, A; Montero-M, Jorge

    2009-01-01

    We aimed at determining the antagonistic behavior of bacteria derived from marine biofilms against terrestrial phytopathogenic fungi. Some bacteria closely related to Bacillus mojavensis (three isolates) and Bacillus firmus (one isolate) displayed antagonistic activity against Colletotrichum gloeosporioides ATCC 42374, selected as first screen organism. The four isolates were further quantitatively tested against C. gloeosporioides, Colletotrichum fragariae, and Fusarium oxysporum on two culture media, potato dextrose agar (PDA) and a marine medium-based agar [yeast extract agar (YEA)] at different times of growth of the antagonists (early, co-inoculation with the pathogen and late). Overall antagonistic assays showed differential susceptibility among the pathogens as a function of the type of culture media and time of colonization (P < 0.05). In general, higher suppressive activities were recorded for assays performed on YEA than on PDA; and also when the antagonists were allowed to grow 24 h earlier than the pathogen. F. oxysporum was the most resistant fungus while the most sensitive was C. gloeosporioides ATCC 42374. Significant differences in antagonistic activity (P < 0.05) were found between the different isolates. In general, Bacillus sp. MC3B-22 displayed a greater antagonistic effect than the commercial biocontrol strain Bacillus subtilis G03 (Kodiak). Further incubation studies and scanning electronic microscopy revealed that Bacillus sp. MC3B-22 was able to colonize, multiply, and inhibit C. gloeosporioides ATCC 42374 when tested in a mango leaf assay, showing its potential for fungal biocontrol. Additional studies are required to definitively identify the active isolates and to determine their mode of antifungal action, safety, and biocompatibility.

  9. Isolation, identification, and cytotoxicity of a new isobenzofuran derivative from marine Streptomyces sp. W007

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyu; Xie, Zeping; Lou, Tingting; Jiang, Peng

    2016-03-01

    A new isobenzofuran derivative ( 1) was isolated from the marine Streptomyces sp. W007 and its structure was determined through extensive spectroscopic analyses, including 1D-NMR, 2D-NMR, and ESI-MS. The absolute configuration of compound 1 was determined by a combination of experimental analyses and comparison with reported data, including biogenetic reasoning, J-coupling analysis, NOESY, and 1H-1HCOSY. Compound 1 exhibited no cytotoxicity against human cells of gastric cancer BGC-823, lung cancer A549, and breast cancer MCF7.

  10. Thalassobius abyssi sp. nov., a marine bacterium isolated from the cold-seep sediment.

    PubMed

    Nogi, Yuichi; Mori, Kozue; Makita, Hiroko; Hatada, Yuji

    2015-11-09

    A novel marine bacterial strain designated JAMH 043T was isolated from the cold-seep sediment in Sagami Bay, Japan. Cells were Gram-negative, rod-shaped, non-motile and aerobic chemo-organotrophs. The cells of the isolate grew optimally at 25 °C, pH 7.0-7.5, and with 3% (w/v) NaCl. The major respiratory quinone was Q-10. The predominant fatty acid was C18:1ω7c. On the basis of 16S rRNA gene sequence analysis, the isolated strain was closely affiliated with members of the genus Thalassobius in the class Alphaproteobacteria, and the 16S rRNA gene sequence similarity of the novel isolate with the type strain of closest related species, Thalassobius aestuarii JC2049T, was 98.4 %. The DNA G+C content of the novel strain was 58.0 mol%. The hybridization values for DNA-DNA relatedness between strain JAMH043T and reference strains belonging to the genus Thalassobius were less than 14.1±2.2 %. Based on differences in taxonomic characteristics, the isolated strain represents a novel species of the genus Thalassobius, for which the name Thalassobius abyssi sp. nov. is proposed. Type strain is JAMH 043T (=JCM 30900T =DSMZ 100673T).

  11. A New Isolation and Evaluation Method for Marine-Derived Yeast spp. with Potential Applications in Industrial Biotechnology.

    PubMed

    Zaky, Abdelrahman Saleh; Greetham, Darren; Louis, Edward J; Tucker, Greg A; Du, Chenyu

    2016-11-28

    Yeasts that are present in marine environments have evolved to survive hostile environments that are characterized by high exogenous salt content, high concentrations of inhibitory compounds, and low soluble carbon and nitrogen levels. Therefore, yeasts isolated from marine environments could have interesting characteristics for industrial applications. However, the application of marine yeast in research or industry is currently very limited owing to the lack of a suitable isolation method. Current methods for isolation suffer from fungal interference and/or low number of yeast isolates. In this paper, an efficient and non-laborious isolation method has been developed and successfully isolated large numbers of yeasts without bacterial or fungal growth. The new method includes a three-cycle enrichment step followed by an isolation step and a confirmation step. Using this method, 116 marine yeast strains were isolated from 14 marine samples collected in the UK, Egypt, and the USA. These strains were further evaluated for the utilization of fermentable sugars (glucose, xylose, mannitol, and galactose) using a phenotypic microarray assay. Seventeen strains with higher sugar utilization capacity than the reference terrestrial yeast Saccharomyces cerevisiae NCYC 2592 were selected for identification by sequencing of the ITS and D1/D2 domains. These strains belonged to six species: S. cerevisiae, Candida tropicalis, Candida viswanathii, Wickerhamomyces anomalus, Candida glabrata, and Pichia kudriavzevii. The ability of these strains for improved sugar utilization using seawater-based media was confirmed and, therefore, they could potentially be utilized in fermentations using marine biomass in seawater media, particularly for the production of bioethanol and other biochemical products.

  12. A comparative study on the phylogenetic diversity of culturable actinobacteria isolated from five marine sponge species.

    PubMed

    Zhang, Haitao; Zhang, Wei; Jin, Yan; Jin, Meifang; Yu, Xingju

    2008-03-01

    A cultivation-based approach was employed to compare the culturable actinobacterial diversity associated with five marine sponge species (Craniella australiensis, Halichondria rugosa, Reniochalina sp., Sponge sp., and Stelletta tenuis). The phylogenetic affiliation of the actinobacterial isolates was assessed by 16S rDNA-RFLP analysis. A total of 181 actinobacterial strains were isolated using five different culture media (denoted as M1-M5). The type of medium exhibited significant effects on the number of actinobacteria recovered, with the highest number of isolates on M3 (63 isolates) and the lowest on M1 (12 isolates). The genera isolated were also different, with the recovery of three genera on M2 and M3, and only a single genus on M1. The number of actinobacteria isolated from the five sponge species was significantly different, with a count of 83, 36, 30, 17, and 15 isolates from S. tenuis, H. rugosa, Sponge sp., Reniochalina sp., and C. australiensis, respectively. M3 was the best isolation medium for recovery of actinobacteria from S. tenuis, H. rugosa, and Sponge sp., while no specific medium preference was observed for the recovery of actinobacteria from Reniochalina sp., and C. australiensis. The RFLP fingerprinting of 16S rDNA genes digested with HhaI revealed six different patterns, in which 16 representative 16S rDNAs were fully sequenced. Phylogenetic analysis indicated that 12 strains belong to the group Streptomyces, three strains belong to Pseudonocardia, and one strain belongs to Nocardia. Two strains C14 (from C. australiensis) and N13 (from Sponge sp.) have only 96.26% and 96.27% similarity to earlier published sequences, and are therefore potential candidates for new species. The highest diversity of three actinobacteria genera was obtained from Sponge sp., though the number of isolates was low. Two genera of actinobacteria, Streptomyces, and Pseudonocardia, were isolated from both S. tenuis and C. australiensis. Only the genus of Streptomyces

  13. Oxygen limitation favors the production of protein with antimicrobial activity in Pseudoalteromonas sp

    PubMed Central

    López, Ruth; Monteón, Víctor; Chan, Ernesto; Montejo, Rubí; Chan, Manuel

    2012-01-01

    This study examined the effect of dissolved oxygen concentration on the production of biomass and metabolites with antimicrobial activity of Pseudoalteromonas sp cultured at 0, 150, 250, or 450 revolutions per minute (rev. min-1). Dissolved oxygen (D.O) was monitored during the fermentation process, biomass was quantified by dry weight, and antimicrobial activity was assessed using the disk diffusion method. The bacterium Pseudoalteromonas reached similar concentration of biomass under all experimental agitation conditions, whereas antimicrobial activity was detected at 0 and 150 rev. min-1 registering 0% and 12% of D.O respectively corresponding to microaerophilic conditions. Antibiotic activity was severely diminished when D.O was above 20% of saturation; this corresponded to 250 or 450 rev. min-1. SDS-PAGE electrophoresis revealed a protein with a molecular weight of approximately 80 kilodaltons (kDa) with antimicrobial activity. Pseudoalteromonas is capable of growing under oxic and microaerophilic conditions but the metabolites with antimicrobial activity are induced under microaerophilic conditions. The current opinion is that Pseudoalteromonas are aerobic organisms; we provide additional information on the amount of dissolved oxygen during the fermentation process and its effect on antimicrobial activity. PMID:24031945

  14. Isolation and biological characteristics of aerobic marine magnetotactic bacterium YSC-1

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Pan, Hongmiao; Yue, Haidong; Song, Tao; Zhao, Yong; Chen, Guanjun; Wu, Longfei; Xiao, Tian

    2006-12-01

    Magnetotactic bacteria have become a hot spot of research in microbiology attracting intensive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fastidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in diameter of 100nm, and consist of Fe and Co shown on energy dispersive X-ray spectrum. The biological and physiological characteristics of this bacterium were also described. The colour of YSC-1 colony is white in small rod. The gram stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.

  15. Isolation and characterization of hyaluronic acid from the liver of marine stingray Aetobatus narinari.

    PubMed

    Sadhasivam, Giji; Muthuvel, Arumugam; Pachaiyappan, Abirami; Thangavel, Balasubramanian

    2013-03-01

    Although hyaluronic acid research pursuits ahead in exploring its biomedical perspective, very limited investigations were carried out in their isolation shape view point, furthermore, most of the investigations were targeted towards the terrestrial source. To swerve from that, the present study was projected through the marine superstore, where in high molecular weight hyaluronic acid of 13, 65,863 Da was isolated from the liver of stingray Aetobatus narinari. The purified HA was confirmed at the preliminary level by their stains all dye binding nature. Their analytical composition including carbon, hydrogen, nitrogen, N-acetyl glucosamine, glucuronic acid contents was analysed. The HA was characterized by agarose-gel electrophoresis, FTIR, HPTLC, and (1)H NMR. The DPPH radical scavenging activity of HA and its reducing power was evident to all the tested concentrations, but lower than that of ascorbic acid. HA showed significant inhibition against the proliferation of cells, substantiating its influence in regulation of cell functions.

  16. Enrichment and isolation of crude oil degrading bacteria from some mussels collected from the Persian Gulf.

    PubMed

    Bayat, Zeynab; Hassanshahian, Mehdi; Hesni, Majid Askari

    2015-12-15

    To date, little is known about existing relationships between mussels and bacteria in hydrocarbon-contaminated marine environments. The aim of this study is to find crude oil degrading bacteria in some mussels at the Persian Gulf. Twenty eight crude oil degrading bacteria were isolated from three mussels species collected from oil contaminated area at Persian Gulf. According to high growth and degradation of crude oil four strains were selected between 28 isolated strains for more study. Determination the nucleotide sequence of the gene encoding for 16S rRNA show that these isolated strains belong to: Shewanella algae isolate BHA1, Micrococcus luteus isolate BHA7, Pseudoalteromonas sp. isolate BHA8 and Shewanella haliotis isolate BHA35. The residual crude oil in culture medium was analysis by Gas Chromatography (GC). The results confirmed that these strains can degrade: 47.24%, 66.08%, 27.13% and 69.17% of crude oil respectively. These strains had high emulsification activity and biosurfactant production. Also, the effects of some factors on crude oil degradation by isolated strains were studied. The results show that the optimum concentration of crude oil was 2.5% and the best degradation take place at 12% of salinity. This research is the first reports on characterization of crude oil degrading bacteria from mussels at Persian Gulf and by using of these bacteria in the field the effect of oil pollution can be reduce on this marine environment.

  17. Isolation and expression of two aquaporin-encoding genes from the marine phanerogam Posidonia oceanica.

    PubMed

    Maestrini, Pierluigi; Giordani, Tommaso; Lunardi, Andrea; Cavallini, Andrea; Natali, Lucia

    2004-12-01

    Seagrasses such as Posidonia oceanica (L.) Delile are marine phanerogams, widespread in various seas, where they form large prairies representing dynamic substrates exceeding the area of the sediment surface several times over and allowing settlement of epiphyte organisms. Studying mechanisms involved in water transport in marine plants, we isolated two aquaporin-encoding genes, PoPIP1;1 and PoTIP1;1, showing high similarity to plasma membrane- and tonoplast-intrinsic protein-encoding genes, respectively. PoPIP1;1 is unique in the genome of P. oceanica, while PoTIP1;1 belongs to an aquaporin subfamily of at least four members. PoPIP1;1 and PoTIP1;1 encode functional proteins, as indicated by expression experiments in Xenopus oocytes. Both genes are constitutively expressed in the leaves, with higher levels of transcripts in young than in differentiated leaf tissues. Variations of salt concentration in aquarium determined different PoPIP1;1 and PoTIP1;1 transcript accumulation, indicating the existence of adaptation mechanisms related to gene expression also in marine plants, i.e. adapted to very high salt concentrations. Hyposalinity induced lower levels of PIP1 transcripts, while hypersalinity determined more PIP1 transcripts than normal salinity. TIP1 transcripts increased in response to both hypo- and hypersalinity after 2 days of treatment and went back to control levels after 5 d.

  18. Developmental cycle and pharmaceutically relevant compounds of Salinispora actinobacteria isolated from Great Barrier Reef marine sponges.

    PubMed

    Ng, Yi Kai; Hewavitharana, Amitha K; Webb, Richard; Shaw, P Nicholas; Fuerst, John A

    2013-04-01

    The developmental cycle of the obligate marine antibiotic producer actinobacterium Salinispora arenicola isolated from a Great Barrier Reef marine sponge was investigated in relation to mycelium and spore ultrastructure, synthesis of rifamycin antibiotic compounds, and expression of genes correlated with spore formation and with rifamycin precursor synthesis. The developmental cycle of S. arenicola M413 on solid agar medium was characterized by substrate mycelium growth, change of colony color, and spore formation; spore formation occurred quite early in colony growth but development of black colonies occurred only at late stages, correlated with a change in spore maturity in relation to cell wall layers. Rifamycins were detected throughout the growth cycle, but changed in relative quantity at particular phases in the cycle, with a marked increase after 32 days. Expression of the spore division gene ssgA and the rifK gene for 3-amino-5-hydroxybenzoate synthase responsible for rifamycin precursor synthesis was seen even at early stages of the growth cycle. ssgA expression significantly increased between days 26 and 31, but rifK expression effectively remained constant throughout the growth cycle, consistent with the early synthesis of rifamycin. Factors other than precursor synthesis may be responsible for an observed late increase in rifamycin production. A useful approach for measuring and exploring the regulation of antibiotic synthesis and gene expression in the marine natural product producer S. arenicola has been established.

  19. Antibacterial activity and QSAR of chalcones against biofilm-producing bacteria isolated from marine waters.

    PubMed

    Sivakumar, P M; Prabhawathi, V; Doble, M

    2010-04-01

    Biofouling in the marine environment is a major problem. In this study, three marine organisms, namely Bacillus flexus (LD1), Pseudomonas fluorescens (MD3) and Vibrio natriegens (MD6), were isolated from biofilms formed on polymer and metal surfaces immersed in ocean water. Phylogenetic analysis of these three organisms indicated that they were good model systems for studying marine biofouling. The in vitro antifouling activity of 47 synthesized chalcone derivatives was investigated by estimating the minimum inhibitory concentration against these organisms using a twofold dilution technique. Compounds C-5, C-16, C-24, C-33, C-34 and C-37 were found to be the most active. In the majority of the cases it was found that these active compounds had hydroxyl substitutions. A quantitative structure-activity relationship (QSAR) was developed after dividing the total data into training and test sets. The statistical measures r(2), [image omitted] (>0.6) q(2) (>0.5) and the F-ratio were found to be satisfactory. Spatial, structural and electronic descriptors were found to be predominantly affecting the antibiofouling activity of these compounds. Among the spatial descriptors, Jurs descriptors showed their contribution in all the three antibacterial QSARs.

  20. Marine Fungal and Bacterial Isolates for Lipase Production: A Comparative Study.

    PubMed

    Patnala, H S; Kabilan, U; Gopalakrishnan, L; Rao, R M D; Kumar, D S

    Lipases, belonging to the class of enzymes called hydrolases, can catalyze triglycerides to fatty acids and glycerol. They are produced by microbes of plant and animal origin, and also by marine organisms. As marine microorganisms thrive in extreme conditions, lipases isolated from their origin possess characteristics of extremozymes, retain its activity in extreme conditions and can catalyze few chemical reactions which are impossible otherwise relative to the lipase produced from terrestrial microorganisms. Lipases are useful in many industries like detergent, food, leather, pharmaceutical, diary, etc. Few commercial enzymes have been developed and the use of them in certain industries like dairy, soaps are proved to be beneficial. There are few research papers reporting the production of lipase from marine bacteria and fungi. Lipase production involves two types of fermentation processes-solid-state fermentation (SSF) and submerged fermentation (SmF). Although SmF process is used conventionally, SSF process produces lipase in higher amounts. The production is also influenced by the composition of the medium, physiochemical parameters like temperature, pH, carbon, and nitrogen sources. © 2016 Elsevier Inc. All rights reserved.

  1. Characterization and Genome Sequencing of a Novel Bacteriophage PH101 Infecting Pseudoalteromonas marina BH101 from the Yellow Sea of China.

    PubMed

    Wang, Duo-bing; Sun, Meng-qi; Shao, Hong-bing; Li, Yan; Meng, Xue; Liu, Zhao-yang; Wang, Min

    2015-11-01

    A novel Pseudoalteromonas marina bacteriophage, PH101, specifically infecting Pseudoalteromonas BH101 was isolated from the water sample of the Yellow Sea of China using the agar overlay method. 16S rDNA sequence identification was used to identify the host bacteria. Efficiency of infection, multiplicity of infection value, morphological characterization, one-step growth curve, and host range of the bacteriophage were determined. Purified PH101 genomic DNA was extracted and its genome was completely sequenced and analyzed. The phage morphology showed that PH101 belongs to the Myoviridae family with a head of 60 nm in diameter and a tail of 40 nm with a tail fiber of 10-20 nm. Microbiological characterization demonstrated that phage PH101 is stable at a wide range of temperatures (0-70 °C) and showed acid and alkaline resistance (pH 3-12). The one-step growth curve showed a latent period of about 20 min, a rise period of 20 min, and a burst size of about 31.6 virions. The genome sequencing and bioinformatic analysis shows that phage PH101 was a novel bacteriophage which was found to consist of a linear, double-stranded 131,903-bp DNA molecule with a GC content of 37.36 % and 228 putative open reading frames without RNA, which were classified into seven functional groups, including phage structure, adsorption, packaging, gene transfer protease, terminase, DNA binding, and regulation.

  2. A theoretical investigation of sympatric evolution of temporal reproductive isolation as illustrated by marine broadcast spawners.

    PubMed

    Tomaiuolo, Maurizio; Hansen, Thomas F; Levitan, Don R

    2007-11-01

    Recent theory suggests that frequency-dependent disruptive selection in combination with assortative mating can lead to the establishment of reproductive isolation in sympatry. Here we explore how temporal variation in reproduction might simultaneously generate both disruptive selection and assortative mating, and result in sympatric speciation. The conceptual framework of the model may be applicable to biological systems with negative frequency-dependent selection, such as marine broadcast spawners or systems with pollinator limitation. We present a model that is motivated by recent findings in marine broadcast spawners and is parameterized with data from the Montastraea annularis species complex. Broadcast spawners reproduce via external fertilization and synchronous spawning is required to increase the probability of successful fertilization, but empirical evidence shows that as density increases, so does the risk of polyspermy. Polyspermy is the fusion of multiple sperm with an egg at fertilization, a process that makes the embryo unviable. Synchrony can therefore also act as a source of negative density-dependent disruptive selection. Model analysis shows that the interaction between polyspermy and spawning synchrony can lead to temporal reproductive isolation in sympatry and that, more generally, increased density promotes maintenance of genetic variation.

  3. Evaluation of poultry protein isolate as a food ingredient: physicochemical properties and sensory characteristics of marinated chicken breasts.

    PubMed

    Khiari, Zied; Omana, Dileep A; Pietrasik, Zeb; Betti, Mirko

    2013-07-01

    The possibilities of replacing soy protein isolate (SPI) and reducing the amount of phosphate in marinated chicken breasts using poultry protein isolate (PPI) were investigated. PPI, prepared from mechanically separated turkey meat through the pH-shift technology, was used as a marinade ingredient for chicken breasts at 2 different concentrations (1.0% and 1.5%, w/w on a dry weight basis). Product characteristics were compared to samples marinated with salt, phosphate, or SPI. All the 5 treatments were subjected to instrumental and sensory analyses. Tumbling yield, drip, and cooking losses as well as expressible moisture showed that PPI can be used as a substitute for SPI in brine. The sensory analysis revealed that there were no differences among treatments in terms of appearance, color, flavor, saltiness, juiciness, tenderness, and overall acceptability of the marinated chicken breasts. However, chicken breasts marinated with phosphate had significantly higher aroma acceptability scores than those treated with 1% PPI.

  4. Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples.

    PubMed

    Duarte, A W F; Dayo-Owoyemi, I; Nobre, F S; Pagnocca, F C; Chaud, L C S; Pessoa, A; Felipe, M G A; Sette, L D

    2013-11-01

    The aim of the present study was to investigate the taxonomic identity of yeasts isolated from the Antarctic continent and to evaluate their ability to produce enzymes (lipase, protease and xylanase) at low and moderate temperatures. A total of 97 yeast strains were recovered from marine and terrestrial samples collected in the Antarctica. The highest amount of yeast strains was obtained from marine sediments, followed by lichens, ornithogenic soils, sea stars, Salpa sp., algae, sea urchin, sea squirt, stone with lichens, Nacella concinna, sea sponge, sea isopod and sea snail. Data from polyphasic taxonomy revealed the presence of 21 yeast species, distributed in the phylum Ascomycota (n = 8) and Basidiomycota (n = 13). Representatives of encapsulated yeasts, belonging to genera Rhodotorula and Cryptococcus were recovered from 7 different Antarctic samples. Moreover, Candida glaebosa, Cryptococcus victoriae, Meyerozyma (Pichia) guilliermondii, Rhodotorula mucilaginosa and R. laryngis were the most abundant yeast species recovered. This is the first report of the occurrence of some species of yeasts recovered from Antarctic marine invertebrates. Additionally, results from enzymes production at low/moderate temperatures revealed that the Antarctic environment contains metabolically diverse cultivable yeasts, which could be considered as a target for biotechnological applications. Among the evaluated yeasts in the present study 46.39, 37.11 and 14.43 % were able to produce lipase (at 15 °C), xylanase (at 15 °C) and protease (at 25 °C), respectively. The majority of lipolytic, proteolytic and xylanolytic strains were distributed in the phylum Basidiomycota and were mainly recovered from sea stars, lichens, sea urchin and marine sediments.

  5. Shimia sagamensis sp. nov., a marine bacterium isolated from cold-seep sediment.

    PubMed

    Nogi, Yuichi; Mori, Kozue; Uchida, Hiromi; Hatada, Yuji

    2015-09-01

    A novel marine bacterial strain designated JAMH 011(T) was isolated from the cold-seep sediment in Sagami Bay, Japan. Cells were Gram-stain-negative, rod-shaped, non-spore-forming, aerobic chemo-organotrophs and motile by means of a single polar flagellum. Growth occurred at temperatures below 31 °C, with the optimum at 25 °C. The major respiratory quinone was Q-10. The predominant fatty acid was C18 : 1ω7c. On the basis of 16S rRNA gene sequence analysis, the isolated strain was closely affiliated with members of the genus Shimia in the class Alphaproteobacteria, and the 16S rRNA gene sequence similarity of the novel isolate with the type strain of the closest related species, Shimia haliotis WM35(T), was 98.1%. The DNA G+C content of the novel strain was 57.3 mol%. The hybridization values for DNA-DNA relatedness between strain JAMH 011(T) and reference strains belonging to the genus Shimia were less than 9.4 ± 0.7%. Based on differences in taxonomic characteristics, the isolated strain represents a novel species of the genus Shimia, for which the name Shimia sagamensis sp. nov. is proposed. The type strain is JAMH 011(T) ( = JCM 30583(T) = DSM 29734(T)).

  6. Effects of Pseudoalteromonas sp. BC228 on digestive enzyme activity and immune response of juvenile sea cucumber ( Apostichopus japonicus)

    NASA Astrophysics Data System (ADS)

    Ma, Yuexin; Sun, Feixue; Zhang, Congyao; Bao, Pengyun; Cao, Shuqing; Zhang, Meiyan

    2014-12-01

    A marine bacterium, Pseudoalteromonas sp. BC228 was supplemented to feed in a feeding experiment aiming to determine its ability of enhancing the digestive enzyme activity and immune response of juvenile Apostichopus japonicus. Sea cucumber individuals were fed with the diets containing 0 (control), 105, 107 and 109 CFU g-1 diet of BC228 for 45 days. Results showed that intestinal trypsin and lipase activities were significantly enhanced by 107 and 109 CFU g-1 diet of BC228 in comparison with control ( P < 0.01). The phagocytic activity in the coelomocytes of sea cucumber fed the diet supplemented with 107 CFU g-1 diet of BC228 was significantly higher than that of those fed control diet ( P < 0.05). In addition, 105 and 107 CFU g-1 diet of BC228 significantly enhanced lysozyme and phenoloxidase activities in the coelomic fluid of sea cucumber, respectively, in comparison with other diets ( P < 0.01). Sea cucumbers, 10 each diet, were challenged with Vibrio splendidus NB13 after 45 days of feeding. It was found that the cumulative incidence and mortality of sea cucumber fed with BC228 containing diets were lower than those of animals fed control diet. Our findings evidenced that BC228 supplemented in diets improved the digestive enzyme activity of juvenile sea cucumber, stimulated its immune response and enhanced its resistance to the infection of V. splendidus.

  7. Cytoplasmic and Periplasmic Proteomic Signatures of Exponentially Growing Cells of the Psychrophilic Bacterium Pseudoalteromonas haloplanktis TAC125 ▿ †

    PubMed Central

    Wilmes, Boris; Kock, Holger; Glagla, Susanne; Albrecht, Dirk; Voigt, Birgit; Markert, Stephanie; Gardebrecht, Antje; Bode, Rüdiger; Danchin, Antoine; Feller, Georges; Hecker, Michael; Schweder, Thomas

    2011-01-01

    The psychrophilic model bacterium Pseudoalteromonas haloplanktis is characterized by remarkably fast growth rates under low-temperature conditions in a range from 5°C to 20°C. In this study the proteome of cellular compartments, the cytoplasm and periplasm, of P. haloplanktis strain TAC125 was analyzed under exponential growth conditions at a permissive temperature of 16°C. By means of two-dimensional protein gel electrophoresis and mass spectrometry, a first inventory of the most abundant cytoplasmic and periplasmic proteins expressed in a peptone-supplemented minimal medium was established. By this approach major enzymes of the amino acid catabolism of this marine bacterium could be functionally deduced. The cytoplasmic proteome showed a predominance of amino acid degradation pathways and tricarboxylic acid (TCA) cycle enzymes but also the protein synthesis machinery. Furthermore, high levels of cold acclimation and oxidative stress proteins could be detected at this moderate growth temperature. The periplasmic proteome was characterized by a significant abundance of transporters, especially of highly expressed putative TonB-dependent receptors. This high capacity for protein synthesis, efficient amino acid utilization, and substrate transport may contribute to the fast growth rates of the copiotrophic bacterium P. haloplanktis in its natural environments. PMID:21183643

  8. Whole-genome Sequencing of Vibrio sinaloensis T47, a Tropical Marine Isolate with Quorum Sensing Properties

    PubMed Central

    Mohamad, Nur Izzati; How, Kah Yan; Yin, Wai-Fong; Chan, Kok-Gan

    2017-01-01

    A large number of Vibrio sp. thrive in the marine environment and they are notable to cause food borne infection associated with undercooked seafood. In this study, we report the whole genome sequence of Vibrio sinaloensis T47 which was isolated from coastal marine water in Morib Beach, Hulu Selangor. The genome is made up of approximately 4.59 Mbp with 80 contigs and 46% G+C content. From the annotated genome, genes associated with quorum sensing (QS) were identified. This research provides a genetic basis for better understanding of QS pathway which contributes to the physiological traits of strain T47 to thrive in the marine environment. PMID:28348643

  9. Fibrinolytic enzyme from newly isolated marine bacterium Bacillus subtilis ICTF-1: media optimization, purification and characterization.

    PubMed

    Mahajan, Prafulla M; Nayak, Shubhada; Lele, Smita S

    2012-03-01

    Fibrinolytic enzymes are important in treatment of cardiovascular diseases. The present work reports isolation, screening and identification of marine cultures for production of fibrinolytic enzymes. A potent fibrinolytic enzyme-producing bacterium was isolated from marine niches and identified as Bacillus subtilis ICTF-1 on the basis of the 16S rRNA gene sequencing and biochemical properties. Further, media optimization using L(18)-orthogonal array method resulted in enhanced production of fibrinolytic enzyme (8814 U/mL) which was 2.6 fold higher than in unoptimized medium (3420 U/mL). In vitro assays revealed that the enzyme could catalyze blood clot lysis effectively, indicating that this enzyme could be a useful thrombolytic agent. A fibrinolytic enzyme was purified from the culture supernatant to homogeneity by three step procedures with a 34.42-fold increase in specific activity and 7.5% recovery. This purified fibrinolytic enzyme had molecular mass of 28 kDa, optimal temperature and pH at 50 °C and 9, respectively. It was stable at pH 5.0-11.0 and temperature of 25-37 °C. The enzyme activity was activated by Ca(2+) and obviously inhibited by Zn(2+), Fe(3)(+), Hg(2+) and PMSF. The purified fibrinolytic enzyme showed high stability towards various surfactants and was relatively stable towards oxidizing agent. Considering these properties purified fibrinolytic enzyme also finds potential application in laundry detergents in addition to thrombolytic agent. The gene encoding fibrinolytic enzyme was isolated and its DNA sequence was determined. Compared the full DNA sequence with those in NCBI, it was considered to be a subtilisin like serine-protease.

  10. Enhanced carboxymethylcellulase production by a newly isolated marine bacterium, Cellulophaga lytica LBH-14, using rice bran.

    PubMed

    Gao, Wa; Lee, Eun-Jung; Lee, Sang-Un; Li, Jianhong; Chung, Chung-Han; Lee, Jin-Woo

    2012-10-01

    The aim of this work was to establish the optimal conditions for production of carboxymethylcellulase (CMCase) by a newly isolated marine bacterium using response surface methodology (RSM). A microorganism producing CMCase, isolated from seawater, was identified as Cellulophaga lytica based 16S rDNA sequencing and the neighborjoining method. The optimal conditions of rice bran, ammonium chloride, and initial pH of the medium for cell growth were 100.0 g/l, 5.00 g/l, and 7.0, respectively, whereas those for production of CMCase were 79.9 g/l, 8.52 g/l, and 6.1. The optimal concentrations of K2HPO4, NaCl, MgSO4·7H2O, and (NH4)2SO4 for cell growth were 6.25, 0.62, 0.28, and 0.42 g/l, respectively, whereas those for production of CMCase were 3.72, 0.54, 0.70, and 0.34 g/l. The optimal temperature for cell growth and the CMCase production by C. lytica LBH-14 were 35 degrees C and 25 degrees C, respectively. The maximal production of CMCase under optimized condition for 3 days was 110.8 U/ml, which was 5.3 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen sources for the production of CMCase by C. lytica LBH-14. The time for production of CMCase by a newly isolated marine bacterium with submerged fermentations reduced to 3 days, which resulted in enhanced productivity of CMCase and a decrease in its production cost.

  11. ISOLATION AND CHARACTERIZATION OF A NOVEL MARINE BRUCELLA FROM A SOUTHERN SEA OTTER (ENHYDRA LUTRIS NEREIS), CALIFORNIA, USA.

    PubMed

    Miller, Melissa A; Burgess, Tristan L; Dodd, Erin M; Rhyan, Jack C; Jang, Spencer S; Byrne, Barbara A; Gulland, Frances M D; Murray, Michael J; Toy-Choutka, Sharon; Conrad, Patricia A; Field, Cara L; Sidor, Inga F; Smith, Woutrina A

    2017-04-01

    We characterize Brucella infection in a wild southern sea otter ( Enhydra lutris nereis) with osteolytic lesions similar to those reported in other marine mammals and humans. This otter stranded twice along the central California coast, US over a 1-yr period and was handled extensively at two wildlife rehabilitation facilities, undergoing multiple surgeries and months of postsurgical care. Ultimately the otter was euthanized due to severe, progressive neurologic disease. Necropsy and postmortem radiographs revealed chronic, severe osteoarthritis spanning the proximal interphalangeal joint of the left hind fifth digit. Numerous coccobacilli within the joint were strongly positive on Brucella immunohistochemical labelling, and Brucella sp. was isolated in pure culture from this lesion. Sparse Brucella-immunopositive bacteria were also observed in the cytoplasm of a pulmonary vascular monocyte, and multifocal granulomas were observed in the spinal cord and liver on histopathology. Findings from biochemical characterization, 16S ribosomal DNA, and bp26 gene sequencing of the bacterial isolate were identical to those from marine-origin brucellae isolated from cetaceans and phocids. Although omp2a gene sequencing revealed 100% homology with marine Brucella spp. infecting pinnipeds, whales, and humans, omp2b gene sequences were identical only to pinniped-origin isolates. Multilocus sequence typing classified the sea otter isolate as ST26, a sequence type previously associated only with cetaceans. Our data suggest that the sea otter Brucella strain represents a novel marine lineage that is distinct from both Brucella pinnipedialis and Brucella ceti. Prior reports document the zoonotic potential of the marine brucellae. Isolation of Brucella sp. from a stranded sea otter highlights the importance of wearing personal protective equipment when handling sea otters and other marine mammals as part of wildlife conservation and rehabilitation efforts.

  12. A Coralline Algal-Associated Bacterium, Pseudoalteromonas Strain J010, Yields Five New Korormicins and a Bromopyrrole

    PubMed Central

    Tebben, Jan; Motti, Cherie; Tapiolas, Dianne; Thomas-Hall, Peter; Harder, Tilmann

    2014-01-01

    The ethanol extract of Pseudoalteromonas strain J010, isolated from the surface of the crustose coralline alga Neogoniolithon fosliei, yielded thirteen natural products. These included a new bromopyrrole, 4′-((3,4,5-tribromo-1H-pyrrol-2-yl)methyl)phenol (1) and five new korormicins G–K (2–6). Also isolated was the known inducer of coral larval metamorphosis, tetrabromopyrrole (TBP), five known korormicins (A–E, previously named 1, 1a–c and 3) and bromoalterochromide A (BAC-A). Structures of the new compounds were elucidated through interpretation of spectra obtained after extensive NMR and MS investigations and comparison with literature values. The antibacterial, antifungal and antiprotozoal potential of 1–6, TBP and BAC-A was assessed. Compounds 1–6 showed antibacterial activity while BAC-A exhibited antiprotozoal properties against Tetrahymena pyriformis. TBP was found to have broad-spectrum activity against all bacteria, the protozoan and the fungus Candida albicans. PMID:24828288

  13. Isolation of three marine prostanoids, possible biosynthetic intermediates for clavulones, from the Okinawan soft coral Clavularia viridis.

    PubMed

    Watanabe, Kinzo; Sekine, Miyuki; Iguchi, Kazuo

    2003-08-01

    Three marine prostanoids, 1, 2, and 3, were isolated from the extract of the Okinawan soft coral Clavularia viridis. The structures of these compounds were assigned based on the results of spectroscopic analysis. Compound 1 was shown to be preclavulone-A methyl ester, and this is the first isolation of the ester of preclavulone-A as a natural product. Preclavulone-A is proposed to be the key intermediate in the biosynthesis of marine prostanoids exemplified by clavulones in C. viridis. The new prostanoid 3 was suggested to be a biosynthetic intermediate from preclavulone-A to clavulones, and a possible biogenetic pathway via 3 is proposed.

  14. Spongiispira norvegica gen. nov., sp. nov., a marine bacterium isolated from the boreal sponge Isops phlegraei.

    PubMed

    Kaesler, Ines; Graeber, Ingeborg; Borchert, Martin S; Pape, Thomas; Dieckmann, Ralf; von Döhren, Hans; Nielsen, Preben; Lurz, Rudi; Michaelis, Walter; Szewzyk, Ulrich

    2008-08-01

    The bacterial strain Gp_4_7.1T, isolated from the marine sponge Isops phlegraei collected at the Sula Ridge off the Norwegian coast, was characterized. The isolate was a motile spirillum that was monopolarly and monotrichously flagellated. It was aerobic, Gram-negative, oxidase-positive and catalase-negative. Optimal growth occurred between 20 and 30 degrees C, at pH 7-8 and with a salt concentration of 2-3 % (w/v). The isolate showed a relatively restricted nutritional profile. Substrate utilization tests were only positive for arabinose. Enzyme tests were positive for esterase lipase C8, lipase C14, leucine arylamidase and naphthol-AS-BI-phosphohydrolase. The strain was not able to reduce nitrate. The major cellular fatty acids were C16:1 omega7 and C16:0. The DNA G+C content was 62.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequence comparison classified the strain as a member of the order Oceanospirillales in the class Gammaproteobacteria. Strain Gp_4_7.1T formed a distinct phyletic line with less than 94 % 16S rRNA gene sequence similarity to its closest relatives with validly published names. Based on the determined data, it is proposed that the strain represents a novel species in a new genus, Spongiispira norvegica gen. nov., sp. nov.; the type strain of Spongiispira norvegica is Gp_4_7.1T (=DSM 17749T =NCIMB 14401T).

  15. Genome sequencing and analysis of a highly virulent Vibrio parahaemolyticus strain isolated from the marine environment

    NASA Astrophysics Data System (ADS)

    Parks, M. C.; Moreno, E.

    2016-02-01

    Vibrio parahaemolyticus [Vp] is a Gram-negative bacterium and a natural inhabitant of coastal marine ecosystems worldwide. Vp is also a coincidental pathogen of humans. Virulent strains are commonly identified by the presence of the thermostable direct (tdh) or tdh-related (trh) hemolysin genes. However, virulence is multifaceted and many clinical Vp isolates do not carry tdh or trh. In this study, we sequenced and assembled the draft genome of a tdh- and trh-negative environmental isolate (805) shown previously to be highly virulent in zebrafish. To investigate potential mechanisms of virulence, we compared 805 to the clinical V. parahaemolyticus type strain (RIMD2210633). Pairwise comparison revealed the presence of multiple genomic regions including an IncF conjugative pilus (1.3 Kb) and a colicin V plasmid (1.49 Kb). These features are homologous to genomic regions present in clinical V. vulnificus and V. cholerae strains. Genome comparison also revealed the presence of five toxin-antitoxin systems. Isolate 805 likely attained these new features through the lateral acquisition of mobile genomic material - a hypothesis supported by the aberrant GC content of these regions. Colicin V plasmids are a diverse group of IncF plasmids found in invasive bacterial strains. Similarly, an abundance of toxin-antitoxin systems have been linked to virulence in Gram-negative bacteria. Current efforts are focused on characterizing 142 coding features present in 805 but absent from the type strain.

  16. Marine Bacterial Isolates Display Diverse Responses to UV-B Radiation

    PubMed Central

    Joux, Fabien; Jeffrey, Wade H.; Lebaron, Philippe; Mitchell, David L.

    1999-01-01

    The molecular and biological consequences of UV-B radiation were investigated by studying five species of marine bacteria and one enteric bacterium. Laboratory cultures were exposed to an artificial UV-B source and subjected to various post-UV irradiation treatments. Significant differences in survival subsequent to UV-B radiation were observed among the isolates, as measured by culturable counts. UV-B-induced DNA photodamage was investigated by using a highly specific radioimmunoassay to measure cyclobutane pyrimidine dimers (CPDs). The CPDs determined following UV-B exposure were comparable for all of the organisms except Sphingomonas sp. strain RB2256, a facultatively oligotrophic ultramicrobacterium. This organism exhibited little DNA damage and a high level of UV-B resistance. Physiological conditioning by growth phase and starvation did not change the UV-B sensitivity of marine bacteria. The rates of photoreactivation following exposure to UV-B were investigated by using different light sources (UV-A and cool white light). The rates of photoreactivation were greatest during UV-A exposure, although diverse responses were observed. The differences in sensitivity to UV-B radiation between strains were reduced after photoreactivation. The survival and CPD data obtained for Vibrio natriegens when we used two UV-B exposure periods interrupted by a repair period (photoreactivation plus dark repair) suggested that photoadaptation could occur. Our results revealed that there are wide variations in marine bacteria in their responses to UV radiation and subsequent repair strategies, suggesting that UV-B radiation may affect the microbial community structure in surface water. PMID:10473381

  17. Marine bacterial isolates display diverse responses to UV-B radiation.

    PubMed

    Joux, F; Jeffrey, W H; Lebaron, P; Mitchell, D L

    1999-09-01

    The molecular and biological consequences of UV-B radiation were investigated by studying five species of marine bacteria and one enteric bacterium. Laboratory cultures were exposed to an artificial UV-B source and subjected to various post-UV irradiation treatments. Significant differences in survival subsequent to UV-B radiation were observed among the isolates, as measured by culturable counts. UV-B-induced DNA photodamage was investigated by using a highly specific radioimmunoassay to measure cyclobutane pyrimidine dimers (CPDs). The CPDs determined following UV-B exposure were comparable for all of the organisms except Sphingomonas sp. strain RB2256, a facultatively oligotrophic ultramicrobacterium. This organism exhibited little DNA damage and a high level of UV-B resistance. Physiological conditioning by growth phase and starvation did not change the UV-B sensitivity of marine bacteria. The rates of photoreactivation following exposure to UV-B were investigated by using different light sources (UV-A and cool white light). The rates of photoreactivation were greatest during UV-A exposure, although diverse responses were observed. The differences in sensitivity to UV-B radiation between strains were reduced after photoreactivation. The survival and CPD data obtained for Vibrio natriegens when we used two UV-B exposure periods interrupted by a repair period (photoreactivation plus dark repair) suggested that photoadaptation could occur. Our results revealed that there are wide variations in marine bacteria in their responses to UV radiation and subsequent repair strategies, suggesting that UV-B radiation may affect the microbial community structure in surface water.

  18. Antimicrobial resistance of Pseudomonas spp. isolated from wastewater and wastewater-impacted marine coastal zone.

    PubMed

    Luczkiewicz, Aneta; Kotlarska, Ewa; Artichowicz, Wojciech; Tarasewicz, Katarzyna; Fudala-Ksiazek, Sylwia

    2015-12-01

    In this study, species distribution and antimicrobial susceptibility of cultivated Pseudomonas spp. were studied in influent (INF), effluent (EFF), and marine outfall (MOut) of wastewater treatment plant (WWTP). The susceptibility was tested against 8 antimicrobial classes, active against Pseudomonas spp.: aminoglycosides, carbapenems, broad-spectrum cephalosporins from the 3rd and 4th generation, extended-spectrum penicillins, as well as their combination with the β-lactamase inhibitors, monobactams, fluoroquinolones, and polymyxins. Among identified species, resistance to all antimicrobials but colistin was shown by Pseudomonas putida, the predominant species in all sampling points. In other species, resistance was observed mainly against ceftazidime, ticarcillin, ticarcillin-clavulanate, and aztreonam, although some isolates of Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas pseudoalcaligenes, and Pseudomonas protegens showed multidrug-resistance (MDR) phenotype. Among P. putida, resistance to β-lactams and to fluoroquinolones as well as multidrug resistance become more prevalent after wastewater treatment, but the resistance rate decreased in marine water samples. Obtained data, however, suggests that Pseudomonas spp. are equipped or are able to acquire a wide range of antibiotic resistance mechanisms, and thus should be monitored as possible source of resistance genes.

  19. Aurantibacter crassamenti gen. nov., sp. nov., a bacterium isolated from marine sediment.

    PubMed

    Yoon, Jaewoo; Kasai, Hiroaki

    2017-01-01

    A Gram-stain-negative, strictly aerobic, orange-colored, rod-shaped, chemoheterotrophic bacterium, designated HG732(T), was isolated from marine sediment in Japan. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the novel marine strain was affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes and that it shared the highest (94.1 %) sequence similarity with Kriegella aquimaris KMM 3665(T). The strain could be differentiated phenotypically from related members of the family Flavobacteriaceae. Major fatty acids of strain HG732(T) were iso-C15:1 G, iso-C15:0 and iso-C17:0 3-OH. The polar lipid profile consisted of phosphatidylglycerol, three unidentidied aminolipids and two unidentified lipids. The DNA G+C content of the strain was determined to be 35.2 mol%, and the major respiratory quinone was identified as menaquinone 6 (MK-6). From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel genus in the family Flavobacteriaceae, for which the name Aurantibacter crassamenti gen. nov., sp. nov. is proposed. The type strain of A. crassamenti gen. nov., sp. nov. is HG732(T) (= KCTC 52207(T) = NBRC 112211(T)).

  20. Isolation and Characterization of Methanesulfonic Acid-Degrading Bacteria from the Marine Environment

    PubMed Central

    Thompson, A. S.; Owens, N.; Murrell, J. C.

    1995-01-01

    Two methylotrophic bacterial strains, TR3 and PSCH4, capable of growth on methanesulfonic acid as the sole carbon source were isolated from the marine environment. Methanesulfonic acid metabolism in these strains was initiated by an inducible NADH-dependent monooxygenase, which cleaved methanesulfonic acid into formaldehyde and sulfite. The presence of hydroxypyruvate reductase and the absence of ribulose monophosphate-dependent hexulose monophosphate synthase indicated the presence of the serine pathway for formaldehyde assimilation. Cell suspensions of bacteria grown on methanesulfonic acid completely oxidized methanesulfonic acid to carbon dioxide and sulfite with a methanesulfonic acid/oxygen stoichiometry of 1.0:2.0. Oxygen electrode-substrate studies indicated the dissimilation of formaldehyde to formate and carbon dioxide for energy generation. Carbon dioxide was not fixed by ribulose bisphosphate carboxylase. It was shown that methanol is not an intermediate in methanesulfonic acid metabolism, although these strains grew on methanol and other one-carbon compounds, as well as a variety of heterotrophic carbon sources. These two novel marine facultative methylotrophs have the ability to mineralize methanesulfonic acid and may play a role in the cycling of global organic sulfur. PMID:16535055

  1. Hydrolysis of Fucoidan by Fucoidanase Isolated from the Marine Bacterium, Formosa algae

    PubMed Central

    Silchenko, Artem S.; Kusaykin, Mikhail I.; Kurilenko, Valeriya V.; Zakharenko, Alexander M.; Isakov, Vladimir V.; Zaporozhets, Tatyana S.; Gazha, Anna K.; Zvyagintseva, Tatyana N.

    2013-01-01

    Intracellular fucoidanase was isolated from the marine bacterium, Formosa algae strain KMM 3553. The first appearance of fucoidan enzymatic hydrolysis products in a cell-free extract was detected after 4 h of bacterial growth, and maximal fucoidanase activity was observed after 12 h of growth. The fucoidanase displayed maximal activity in a wide range of pH values, from 6.5 to 9.1. The presence of Mg2+, Ca2+ and Ba2+ cations strongly activated the enzyme; however, Cu2+ and Zn2+ cations had inhibitory effects on the enzymatic activity. The enzymatic activity of fucoidanase was considerably reduced after prolonged (about 60 min) incubation of the enzyme solution at 45 °C. The fucoidanase catalyzed the hydrolysis of fucoidans from Fucus evanescens and Fucus vesiculosus, but not from Saccharina cichorioides. The fucoidanase also did not hydrolyze carrageenan. Desulfated fucoidan from F. evanescens was hydrolysed very weakly in contrast to deacetylated fucoidan, which was hydrolysed more actively compared to the native fucoidan from F. evanescens. Analysis of the structure of the enzymatic products showed that the marine bacteria, F. algae, synthesized an α-l-fucanase with an endo-type action that is specific for 1→4-bonds in a polysaccharide molecule built up of alternating three- and four-linked α-l-fucopyranose residues sulfated mainly at position 2. PMID:23852092

  2. Hydrolysis of fucoidan by fucoidanase isolated from the marine bacterium, Formosa algae.

    PubMed

    Silchenko, Artem S; Kusaykin, Mikhail I; Kurilenko, Valeriya V; Zakharenko, Alexander M; Isakov, Vladimir V; Zaporozhets, Tatyana S; Gazha, Anna K; Zvyagintseva, Tatyana N

    2013-07-11

    Intracellular fucoidanase was isolated from the marine bacterium, Formosa algae strain KMM 3553. The first appearance of fucoidan enzymatic hydrolysis products in a cell-free extract was detected after 4 h of bacterial growth, and maximal fucoidanase activity was observed after 12 h of growth. The fucoidanase displayed maximal activity in a wide range of pH values, from 6.5 to 9.1. The presence of Mg2+, Ca2+ and Ba2+ cations strongly activated the enzyme; however, Cu2+ and Zn2+ cations had inhibitory effects on the enzymatic activity. The enzymatic activity of fucoidanase was considerably reduced after prolonged (about 60 min) incubation of the enzyme solution at 45 °C. The fucoidanase catalyzed the hydrolysis of fucoidans from Fucus evanescens and Fucus vesiculosus, but not from Saccharina cichorioides. The fucoidanase also did not hydrolyze carrageenan. Desulfated fucoidan from F. evanescens was hydrolysed very weakly in contrast to deacetylated fucoidan, which was hydrolysed more actively compared to the native fucoidan from F. evanescens. Analysis of the structure of the enzymatic products showed that the marine bacteria, F. algae, synthesized an α-l-fucanase with an endo-type action that is specific for 1→4-bonds in a polysaccharide molecule built up of alternating three- and four-linked α-l-fucopyranose residues sulfated mainly at position 2.

  3. Isolation, structure determination and cytotoxicity studies of tryptophan alkaloids from an Australian marine sponge Hyrtios sp.

    PubMed

    Khokhar, Shahan; Feng, Yunjiang; Campitelli, Marc R; Ekins, Merrick G; Hooper, John N A; Beattie, Karren D; Sadowski, Martin C; Nelson, Colleen C; Davis, Rohan A

    2014-08-01

    Mass-guided fractionation of the MeOH extract from a specimen of the Australian marine sponge Hyrtios sp. resulted in the isolation of two new tryptophan alkaloids, 6-oxofascaplysin (2), and secofascaplysic acid (3), in addition to the known metabolites fascaplysin (1) and reticulatate (4). The structures of all molecules were determined following NMR and MS data analysis. Structural ambiguities in 2 were addressed through comparison of experimental and DFT-generated theoretical NMR spectral values. Compounds 1-4 were evaluated for their cytotoxicity against a prostate cancer cell line (LNCaP) and were shown to display IC50 values ranging from 0.54 to 44.9 μM.

  4. Arbovirus of Marine Mammals: a New Alphavirus Isolated from the Elephant Seal Louse, Lepidophthirus macrorhini

    PubMed Central

    La Linn, May; Gardner, Joy; Warrilow, David; Darnell, Grant A.; McMahon, Clive R.; Field, Ian; Hyatt, Alex D.; Slade, Robert W.; Suhrbier, Andreas

    2001-01-01

    A novel alphavirus was isolated from the louse Lepidophthirus macrorhini, collected from southern elephant seals, Mirounga leonina, on Macquarie Island, Australia. The virus displayed classic alphavirus ultrastructure and appeared to be serologically different from known Australasian alphaviruses. Nearly all Macquarie Island elephant seals tested had neutralizing antibodies against the virus, but no virus-associated pathology has been identified. Antarctic Division personnel who have worked extensively with elephant seals showed no serological evidence of exposure to the virus. Sequence analysis illustrated that the southern elephant seal (SES) virus segregates with the Semliki Forest group of Australasian alphaviruses. Phylogenetic analysis of known alphaviruses suggests that alphaviruses might be grouped according to their enzootic vertebrate host class. The SES virus represents the first arbovirus of marine mammals and illustrates that alphaviruses can inhabit Antarctica and that alphaviruses can be transmitted by lice. PMID:11287559

  5. Isolation, Structure Elucidation and Total Synthesis of Lajollamide A from the Marine Fungus Asteromyces cruciatus

    PubMed Central

    Gulder, Tobias A. M.; Hong, Hanna; Correa, Jhonny; Egereva, Ekaterina; Wiese, Jutta; Imhoff, Johannes F.; Gross, Harald

    2012-01-01

    The marine-derived filamentous fungus Asteromyces cruciatus 763, obtained off the coast of La Jolla, San Diego, USA, yielded the new pentapeptide lajollamide A (1), along with the known compounds regiolone (2), hyalodendrin (3), gliovictin (4), 1N-norgliovicitin (5), and bis-N-norgliovictin (6). The planar structure of lajollamide A (1) was determined by Nuclear Magnetic Resonance (NMR) spectroscopy in combination with mass spectrometry. The absolute configuration of lajollamide A (1) was unambiguously solved by total synthesis which provided three additional diastereomers of 1 and also revealed that an unexpected acid-mediated partial racemization (2:1) of the L-leucine and L-N-Me-leucine residues occurred during the chemical degradation process. The biological activities of the isolated metabolites, in particular their antimicrobial properties, were investigated in a series of assay systems. PMID:23342379

  6. Drimane sesquiterpenoids from the fungus Aspergillus ustus isolated from the marine sponge Suberites domuncula.

    PubMed

    Liu, Hongbing; Edrada-Ebel, RuAngelie; Ebel, Rainer; Wang, Yao; Schulz, Barbara; Draeger, Siegfried; Müller, Werner E G; Wray, Victor; Lin, Wenhan; Proksch, Peter

    2009-09-01

    Seven new drimane sesquiterpenoids (1-3, 6-9), along with the known compounds deoxyuvidin B (4), strobilactone B (5), and RES-1149-2 (10), were obtained from cultures of the fungus Aspergillus ustus, which was isolated from the marine sponge Suberites domuncula. Their structures were established by means of spectroscopic analyses including one- and two-dimensional NMR spectroscopy and high-resolution MS. Compounds 6, 7, and 10 showed cytotoxic activity against a panel of tumor cell lines, including L5178Y, HeLa, and PC12 cells, with 7 being the most active (EC(50) against L5178Y cell line: 0.6 microg/mL).

  7. Investigating on the Correlation Between Some Biological Activities of Marine Sponge-Associated Bacteria Extracts and Isolated Diketopiperazines.

    PubMed

    Abd El-Hady, Faten K; Fayad, Walid; Iodice, Carmine; El-Shahid, Zeinab A; Abdel-Aziz, Mohamed S; Crudele, Egle; Tommonaro, Giuseppina

    2017-01-01

    Marine organisms have been considered as the richest sources of novel bioactive metabolites, which can be used for pharmaceutical purposes. In the last years, the interest for marine microorganisms has grown for their enormous biodiversity and for the evidence that many novel compounds isolated from marine invertebrates are really synthesized by their associated bacteria. Nevertheless, the discovery of a chemical communication Quorum sensing (QS) between bacterial cells and between bacteria and host has gained the researchers to expand the aim of their study toward the role of bacteria associated with marine invertebrates, such as marine sponge. In the present paper, we report the evaluation of biological activities of different extracts of bacteria Vibrio sp. and Bacillus sp. associated with marine sponges Dysidea avara and Ircinia variabilis, respectively. Moreover, we evaluated the biological activities of some diketopiperazines (DKPs), previously isolated, and able to activate QS mechanism. The results showed that all extracts, fractions, and DKPs showed low scavenging activity against DPPH and superoxide anion, low cytotoxic and anti-tyrosinase activities, but no antimicrobial and acetylcholinesterase inhibitory activities. One DKP [cyclo-(trans-4-hydroxy-L-prolyl-L-leucine)] has the highest α-glucosidase inhibitory activity even than the standard acarbose.

  8. Genomic Analysis of a Marine Bacterium: Bioinformatics for Comparison, Evaluation, and Interpretation of DNA Sequences.

    PubMed

    Rekadwad, Bhagwan N; Gonzalez, Juan M; Khobragade, Chandrahasya N

    2016-01-01

    A total of five highly related strains of an unidentified marine bacterium were analyzed through their short genome sequences (AM260709-AM260713). Genome-to-Genome Distance (GGDC) showed high similarity to Pseudoalteromonas haloplanktis (X67024). The generated unique Quick Response (QR) codes indicated no identity to other microbial species or gene sequences. Chaos Game Representation (CGR) showed the number of bases concentrated in the area. Guanine residues were highest in number followed by cytosine. Frequency of Chaos Game Representation (FCGR) indicated that CC and GG blocks have higher frequency in the sequence from the evaluated marine bacterium strains. Maximum GC content for the marine bacterium strains ranged 53-54%. The use of QR codes, CGR, FCGR, and GC dataset helped in identifying and interpreting short genome sequences from specific isolates. A phylogenetic tree was constructed with the bootstrap test (1000 replicates) using MEGA6 software. Principal Component Analysis (PCA) was carried out using EMBL-EBI MUSCLE program. Thus, generated genomic data are of great assistance for hierarchical classification in Bacterial Systematics which combined with phenotypic features represents a basic procedure for a polyphasic approach on unambiguous bacterial isolate taxonomic classification.

  9. Genomic Analysis of a Marine Bacterium: Bioinformatics for Comparison, Evaluation, and Interpretation of DNA Sequences

    PubMed Central

    Khobragade, Chandrahasya N.

    2016-01-01

    A total of five highly related strains of an unidentified marine bacterium were analyzed through their short genome sequences (AM260709–AM260713). Genome-to-Genome Distance (GGDC) showed high similarity to Pseudoalteromonas haloplanktis (X67024). The generated unique Quick Response (QR) codes indicated no identity to other microbial species or gene sequences. Chaos Game Representation (CGR) showed the number of bases concentrated in the area. Guanine residues were highest in number followed by cytosine. Frequency of Chaos Game Representation (FCGR) indicated that CC and GG blocks have higher frequency in the sequence from the evaluated marine bacterium strains. Maximum GC content for the marine bacterium strains ranged 53-54%. The use of QR codes, CGR, FCGR, and GC dataset helped in identifying and interpreting short genome sequences from specific isolates. A phylogenetic tree was constructed with the bootstrap test (1000 replicates) using MEGA6 software. Principal Component Analysis (PCA) was carried out using EMBL-EBI MUSCLE program. Thus, generated genomic data are of great assistance for hierarchical classification in Bacterial Systematics which combined with phenotypic features represents a basic procedure for a polyphasic approach on unambiguous bacterial isolate taxonomic classification. PMID:27882328

  10. Isolation of Typical Marine Bacteria by Dilution Culture: Growth, Maintenance, and Characteristics of Isolates under Laboratory Conditions

    PubMed Central

    Schut, Frits; de Vries, Egbert J.; Gottschal, Jan C.; Robertson, Betsy R.; Harder, Wim; Prins, Rudolf A.; Button, Don K.

    1993-01-01

    Marine bacteria in Resurrection Bay near Seward, Alaska, and in the central North Sea off the Dutch coast were cultured in filtered autoclaved seawater following dilution to extinction. The populations present before dilution varied from 0.11 × 109 to 1.07 × 109 cells per liter. The mean cell volume varied between 0.042 and 0.074 μm3, and the mean apparent DNA content of the cells ranged from 2.5 to 4.7 fg of DNA per cell. All three parameters were determined by high-resolution flow cytometry. All 37 strains that were obtained from very high dilutions of Resurrection Bay and North Sea samples represented facultatively oligotrophic bacteria. However, 15 of these isolates were eventually obtained from dilution cultures that could initially be cultured only on very low-nutrient media and that could initially not form visible colonies on any of the agar media tested, indicating that these cultures contained obligately oligotrophic bacteria. It was concluded that the cells in these 15 dilution cultures had adapted to growth under laboratory conditions after several months of nutrient deprivation prior to isolation. From the North Sea experiment, it was concluded that the contribution of facultative oligotrophs and eutrophs to the total population was less than 1% and that while more than half of the population behaved as obligately oligotrophic bacteria upon first cultivation in the dilution culture media, around 50% could not be cultured at all. During one of the Resurrection Bay experiments, 53% of the dilution cultures obtained from samples diluted more than 2.5 × 105 times consisted of such obligate oligotrophs. These cultures invariably harbored a small rod-shaped bacterium with a mean cell volume of 0.05 to 0.06 μm3 and an apparent DNA content of 1 to 1.5 fg per cell. This cell type had the dimensions of ultramicrobacteria. Isolates of these ultramicrobacterial cultures that were eventually obtained on relatively high-nutrient agar plates were, with respect

  11. Genome Sequence of Salegentibacter salarius KCTC 12974, Isolated from a Marine Solar Saltern of the Yellow Sea in South Korea

    PubMed Central

    Xu, Yongle; Zheng, Qiang; Liu, Yanting; Jiao, Nianzhi

    2016-01-01

    Salegentibacter salarius KCTC 12974 is isolated from a marine solar saltern of the Yellow Sea in South Korea. Here, we report the draft genome sequence of Salegentibacter salarius KCTC 12974. Various glycoside hydrolase genes in even numbers in the genome reflect the ecological adaption of KCTC 12974 to its habitat. PMID:27881540

  12. Salaramides A and B; two alpha-oxoamides isolated from the marine sponge Hippospongia sp. (Porifera, Dictyoceratida).

    PubMed

    Bensemhoun, Julia; Rudi, Amira; Kashman, Yoel; Gaydou, Emile M; Vacelet, Jean; Aknin, Maurice

    2010-02-01

    Two novel alpha-oxoamides, salaramide A (1) and its homologue salaramide B (2), were isolated from the Madagascar marine sponge, Hippospongia sp., collected in Salary Bay, north of Tulear. The structures of 1 and 2 were elucidated by interpretation of mass spectra, 1D and 2D NMR spectra, and confirmed by chemical transformation.

  13. Muricauda marina sp. nov., isolated from marine snow of Yellow Sea.

    PubMed

    Su, Ying; Yang, Xiaoting; Wang, Yanan; Liu, Yuyang; Ren, Qiaomeng; Zhang, Xiao-Hua

    2017-07-01

    A Gram-staining-negative, long rod-shaped, non-motile, strictly aerobic bacterial strain, designated H19-56T, was isolated from a surface marine snow sample collected from the Yellow Sea near China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that H19-56T represented a member of the genus Muricauda and showed the highest sequence similarity to Muricauda ruestringensis B1T (96.9 %). H19-56T grew optimally at pH 8.0, 32 °C and in the presence of 3 % (w/v) NaCl. The DNA G+C content was 43.6 mol%. H19-56T contained MK-6 as the predominant respiratory quinone and had iso-C15 : 0 and iso-C15 : 1G as the major cellular fatty acids. The major polar lipids were phosphatidylethanolamine, two unidentified aminolipids and three unidentified lipids. On the basis of the results of the polyphasic analyses, this isolate was considered to represent a novel species of the genus Muricauda, for which the name Muricauda marina sp. nov. is proposed. The type strain is H19-56T (CGMCC 1.15774T=JCM 31456T=MCCC 1K03196T=KCTC 52374T).

  14. Matrix Production, Pigment Synthesis, and Sporulation in a Marine Isolated Strain of Bacillus pumilus

    PubMed Central

    Di Luccia, Blanda; Riccio, Antonio; Vanacore, Adele; Baccigalupi, Loredana; Molinaro, Antonio; Ricca, Ezio

    2015-01-01

    The ability to produce an extracellular matrix and form multicellular communities is an adaptive behavior shared by many bacteria. In Bacillus subtilis, the model system for spore-forming bacteria, matrix production is one of the possible differentiation pathways that a cell can follow when vegetative growth is no longer feasible. While in B. subtilis the genetic system controlling matrix production has been studied in detail, it is still unclear whether other spore formers utilize similar mechanisms. We report that SF214, a pigmented strain of Bacillus pumilus isolated from the marine environment, can produce an extracellular matrix relying on orthologs of many of the genes known to be important for matrix synthesis in B. subtilis. We also report a characterization of the carbohydrates forming the extracellular matrix of strain SF214. The isolation and characterization of mutants altered in matrix synthesis, pigmentation, and spore formation suggest that in strain SF214 the three processes are strictly interconnected and regulated by a common molecular mechanism. PMID:26506360

  15. Isolation, biochemical characterization and antibiofilm effect of a lectin from the marine sponge Aplysina lactuca.

    PubMed

    Carneiro, Rômulo Farias; Lima, Paulo Henrique Pinheiro de; Chaves, Renata Pinheiro; Pereira, Rafael; Pereira, Anna Luísa; de Vasconcelos, Mayron Alves; Pinheiro, Ulisses; Teixeira, Edson Holanda; Nagano, Celso Shiniti; Sampaio, Alexandre Holanda

    2017-06-01

    A new lectin was isolated from the marine sponge Aplysina lactuca (ALL) by combining ammonium sulfate precipitation and affinity chromatography on guar gum matrix. ALL showed affinity for the disaccharides α-lactose, β-lactose and lactulose (Ka=12.5, 31.9 and 145.5M(-1), respectively), as well as the glycoprotein porcine stomach mucin. Its hemagglutinating activity was stable in neutral acid pH values and temperatures below 60°C. ALL is a dimeric protein formed by two covalently linked polypeptide chains. The average molecular mass, as determined by Electrospray Ionization Mass Spectrometry (ESI-MS), was 31,810±2Da. ESI-MS data also indicated the presence of three cysteines involved in one intrachain and one interchain disulfide bond. The partial amino acid sequence of ALL was determined by tandem mass spectrometry. Eight tryptic peptides presented similarity with lectin I isolated from Axinella polypoides. Its secondary structure is predominantly β-sheet, as indicated by circular dichroism (CD) spectroscopy. ALL agglutinated gram-positive and gram-negative bacterial cells, and it were able to significantly reduce the biomass of the bacterial biofilm tested at dose- dependent effect.

  16. Matrix Production, Pigment Synthesis, and Sporulation in a Marine Isolated Strain of Bacillus pumilus.

    PubMed

    Di Luccia, Blanda; Riccio, Antonio; Vanacore, Adele; Baccigalupi, Loredana; Molinaro, Antonio; Ricca, Ezio

    2015-10-21

    The ability to produce an extracellular matrix and form multicellular communities is an adaptive behavior shared by many bacteria. In Bacillus subtilis, the model system for spore-forming bacteria, matrix production is one of the possible differentiation pathways that a cell can follow when vegetative growth is no longer feasible. While in B. subtilis the genetic system controlling matrix production has been studied in detail, it is still unclear whether other spore formers utilize similar mechanisms. We report that SF214, a pigmented strain of Bacillus pumilus isolated from the marine environment, can produce an extracellular matrix relying on orthologs of many of the genes known to be important for matrix synthesis in B. subtilis. We also report a characterization of the carbohydrates forming the extracellular matrix of strain SF214. The isolation and characterization of mutants altered in matrix synthesis, pigmentation, and spore formation suggest that in strain SF214 the three processes are strictly interconnected and regulated by a common molecular mechanism.

  17. Reproductive strategies and isolation-by-demography in a marine clonal plant along an eutrophication gradient.

    PubMed

    Oliva, Silvia; Romero, Javier; Pérez, Marta; Manent, Pablo; Mascaró, Oriol; Serrão, Ester A; Coelho, Nelson; Alberto, Filipe

    2014-12-01

    Genetic diversity in clonal organisms includes two distinct components, (i) the diversity of genotypes or clones (i.e. genotypic richness) in a population and (ii) that of the alleles (i.e. allelic and gene diversity within populations, and differentiation between populations). We investigated how population differentiation and genotypic components are associated across a gradient of eutrophication in a clonal marine plant. To that end, we combined direct measurements of sexual allocation (i.e. flower and seed counts) and genotypic analyses, which are used as an estimator of effective sexual reproduction across multiple generations. Genetic differentiation across sites was also modelled according to a hypothesis here defined as isolation-by-demography, in which we use population-specific factors, genotypic richness and eutrophication that are hypothesized to affect the source-sink dynamics and thus influence the genetic differentiation between a pair of populations. Eutrophic populations exhibited lower genotypic richness, in agreement with lower direct measurements of sexual allocation and contemporaneous gene flow. Genetic differentiation, while not explained by distance, was best predicted by genotypic richness and habitat quality. A multiple regression model using these two predictors was considered the best model (R(2) = 0.43). In this study, the relationship between environment and effective sexual-asexual balance is not simply (linearly) predicted by direct measurements of sexual allocation. Our results indicate that population-specific factors and the isolation-by-demography model should be used more often to understand genetic differentiation. © 2014 John Wiley & Sons Ltd.

  18. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments

    PubMed Central

    Revathy, T.; Jayasri, M. A.; Suthindhiran, K.

    2015-01-01

    The polycyclic aromatic hydrocarbons (PAHs) pollution to the environment is a major threat to the living organisms, and hence the degradation of these PAHs is necessary. Studies on PAHs degrading bacteria have focussed on terrestrial microbes and the potential of marine derived microbes is undermined. Herein we report the isolation and characterization of PAHs degrading Burkholderia sp. from lagoon sediments collected at the Southern coast of India. The strain was Gram negative, rod-shaped, motile, and ∼2–5 μm in length. Based on the phylogenetic data the strain was identified as Burkholderia and designated as VITRSB1. Initial PAHs degradation ability of the strain was assessed using basal salt medium supplemented with diesel, kerosene, toluene, aniline, naphthalene, and phenol. The strain was found to be effectively degrading kerosene, diesel, toluene, and aniline even at higher concentration (1%). However, naphthalene and aniline were degraded only at lower concentration (0.1%) and phenol, camphor, and DAP inhibited the growth of the strain. Furthermore, the degraded end products of the PAHs were determined using FTIR. Notably, none of the end products were found to be toxic to the biosphere. Our results indicate that the isolated Burkholderia sp. could be a prospective candidate for the effective degradation of selective PAHs. PMID:26605106

  19. Paraoerskovia marina gen. nov., sp. nov., an actinobacterium isolated from marine sediment.

    PubMed

    Khan, Shams Tabrez; Harayama, Shigeaki; Tamura, Tomohiko; Ando, Katsuhiko; Takagi, Motoki; Kazuo, Shin-ya

    2009-08-01

    A Gram-positive-staining, facultatively anaerobic bacterial strain, CTT-37T, was isolated from a marine sediment sample collected from Tottori city, located on the shore of the Sea of Japan. A 16S rRNA gene sequence comparison indicated that the isolate represents a novel clade that clusters with members of the families Cellulomonadaceae and Sanguibacteraceae. Strain CTT-37T shared maximum 16S rRNA gene sequence similarity of 96.4% with Oerskovia paurometabola DSM 14281T and 96.2% with Oerskovia enterophila DSM 43852T. The DNA-DNA hybridization value between strain CTT-37T and O. enterophila JCM 7350T was 10-12%. The following chemotaxonomic characteristics of strain CTT-37T were markedly different from those of strains in the genus Oerskovia. The cell wall contained L-serine in the peptidoglycan interpeptide bridge. The predominant menaquinone was MK-9 (H4); other quinones detected were MK-9 and MK-9(H2). The only polar lipid was phosphatidylglycerol and the G+C content of the DNA was 70 mol%. Differences in phenotypic characteristics and large phylogenetic distances between strain CTT-37T and all members of the genus Oerskovia supported the classification of CTT-37T within a new genus and species, for which the name Paraoerskovia marina gen. nov., sp. nov. is proposed. The type strain of Paraoerskovia marina is CTT-37T (=NBRC 104352T=DSM 21750T).

  20. Saccharopolyspora spongiae sp. nov., a novel actinomycete isolated from the marine sponge Scopalina ruetzleri (Wiedenmayer, 1977).

    PubMed

    Souza, Danilo Tosta; Silva, Fábio Sérgio Paulino da; Silva, Leonardo José da; Crevelin, Eduardo José; Moraes, Luiz Alberto Beraldo; Zucchi, Tiago Domingues; Melo, Itamar Soares

    2017-06-01

    A novel marine actinomycete, designated strain CMAA 1452T, was isolated from the sponge Scopalina ruetzleri collected from Saint Peter and Saint Paul Archipelago, in Brazil, and subjected to a polyphasic taxonomic investigation. The organism formed a distinct phyletic line in the Saccharopolyspora 16S rRNA gene tree and had chemotaxonomic and morphological properties consistent with its classification in this genus. It was found to be closely related to Saccharopolyspora dendranthemae KLBMP 1305T (99.5% 16S rRNA gene sequence similarity) and shared similarities of 99.3, 99.2 and 99.0 % with 'Saccharopolyspora endophytica' YIM 61095, Saccharopolyspora tripterygii YIM 65359T and 'Saccharopolyspora pathumthaniensis' S582, respectively. DNA-DNA relatedness values between the isolate and its closest phylogenetic neighbours, namely S. dendranthemae KLBMP 1305T, 'S. endophytica' YIM 61095 and S. tripterygii YIM 65359T, were 53.5, 25.8 and 53.2 %, respectively. Strain CMAA 1452T was also distinguished from the type strains of these species using a range of phenotypic features. On the basis of these results, it is proposed that strain CMAA 1452T (=DSM 103218T=NRRL B-65384T) merits recognition as the type strain of a novel Saccharopolyspora species, Saccharopolyspora spongiae sp. nov.

  1. Diversity of protease-producing marine bacteria from sub-antarctic environments.

    PubMed

    Cristóbal, Héctor Antonio; López, Maria Alejandra; Kothe, Erika; Abate, Carlos Mauricio

    2011-12-01

    From seawater and the intestines of benthonic organisms collected from the Beagle Channel, Argentina, 230 marine bacteria were isolated. Cultivable bacteria were characterized and classified as psychrotolerant, whereas few isolates were psychrophiles. These isolates were capable of producing proteases at 4 and 15 °C under neutral (pH 7.0), alkaline (pH 10.0) and acidic (pH 4.5) conditions on different media, revealing 62, 33 and 22% producers at cold and 84, 47 and 33% producers at low temperatures, respectively. More protease-producing strains (67%) were detected when isolated from benthic invertebrates as compared to seawater (33%), with protease production under neutral conditions resulting in milk protein hydrolysis halos between 27 and 30 ± 2 mm in diameter. Using sterile 0.22 μm membrane filters, 29 isolates exhibiting extracellular protease activity were detected. These were grouped into six operational taxonomic units by restriction analysis and identified based on 16S rDNA as γ-proteobacteria of the genera Pseudoalteromonas, Pseudomonas, Shewanella, Alteromonas, Aeromonas, and Serratia. Plasmids were found to be harbored by eight strains, mainly within the isolates from benthonic organisms.

  2. Saccharomonospora oceani sp. nov. isolated from marine sediments in Little Andaman, India.

    PubMed

    Zhang, Dao-Feng; Chen, Wei; He, Jie; Zhang, Xiao-Mei; Xiong, Zi-Jun; Sahu, Maloy Kumar; Sivakumar, Kannan; Li, Wen-Jun

    2013-06-01

    Two actinomycete strains, designated YIM M11168(T) and YIM M11177, were isolated from marine sediment samples from Little Andaman, Indian Ocean, and their taxonomic position was determined by a polyphasic approach. The two Gram-positive, aerobic strains were observed to produce branched substrate mycelium and aerial hyphae but did not fragment, and no diffusible pigment was produced on the media tested. At maturity, spores were formed singly or in pairs on aerial hyphae and substrate mycelium, and occasionally the single ones were borne on long sporophores. The optimum growth was determined to occur at 28 °C, 0-4 % (w/v) NaCl and pH 7.0-8.0. Whole-cell hydrolysates of both strains contained meso-diaminopimelic acid and the diagnostic sugars were determined to be galactose, glucose and arabinose. Their predominant menaquinone was found to be MK-9(H4). The polar lipids detected in the two strains were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol mannoside, phosphatidylinositol, phosphatidylmethylethanolamine, phosphatidylethanolamine and two unknown phosphoglycolipids. The major fatty acids (>10 %) identified were iso-C16:0, iso-C16:1 H, iso-C16:0, C17:1 ω6c for strain YIM M11168(T), iso-C16:0 and Summed Feature 3 for strain YIM M11177. The G + C contents of the genomic DNAs of both strains were determined to be 71.4 %. DNA-DNA hybridization relatedness values (78.4 ± 3.7 %) of these two isolates supported the conclusion that they belong to the same species. Based on phylogenetic analysis, phenotypic and genotypic data, it is concluded that the two isolates belong to a novel species of the genus Saccharomonospora of the family Pseudonocardiaceae. The name Saccharomonospora oceani sp. nov. (Type strain YIM M11168(T) = DSM 45700(T) = JCM 18128(T)) is proposed for the novel species.

  3. Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton.

    PubMed

    Suttle, C A; Chan, A M; Cottrell, M T

    1991-03-01

    Viruses may be major structuring elements of phytoplankton communities and hence important regulators of nutrient and energy fluxes in aquatic environments. In order to ascertain whether viruses are potentially important in dictating phytoplankton community structure, it is essential to determine the extent to which representative phytoplankton taxa are susceptible to viral infection. We used a spiral ultrafiltration cartridge (30,000-molecular-weight cutoff) to concentrate viruses from seawater at efficiencies approaching 100%. Natural virus communities were concentrated from stations in the Gulf of Mexico, a barrier island pass, and a hypersaline lagoon (Laguna Madre) and added to cultures of potential phytoplankton hosts. By following changes in in vivo fluorescence over time, it was possible to isolate several viruses that were pathogens to a variety of marine phytoplankton, including a prasinophyte (Micromonas pusilla), a pennate diatom (likely a Navicula sp.), a centric diatom (of unknown taxa), and a chroococcoid cyanobacterium (a Synechococcus sp.). As well, we observed changes in fluorescence in cultures of a cryptophyte (a Rhodomonas sp.) and a chlorophyte (Nannochloropsis oculata) which were consistent with the presence of viral pathogens. Although pathogens were isolated from all stations, all the pathogens were not isolated from every station. Filterability studies on the viruses infecting M. pusilla and the Navicula sp. showed that the viruses were consistently infective after filtration through polycarbonate and glass-fiber filters but were affected by most other filter types. Establishment of phytoplankton-pathogen systems will be important in elucidating the effect that viruses have on primary producers in aquatic systems.

  4. Effects of culture medium compositions on antidiabetic activity and anticancer activity of marine endophitic bacteria isolated from sponge

    NASA Astrophysics Data System (ADS)

    Maryani, Faiza; Mulyani, Hani; Artanti, Nina; Udin, Linar Zalinar; Dewi, Rizna Triana; Hanafi, Muhammad; Murniasih, Tutik

    2017-01-01

    High diversity of Indonesia marine spesies and their ability in producing secondary metabolite that can be used as a drug candidate cause this fascinating topic need to explore. Most of marine organisms explored to discover drug is macroorganism whereas microorganism (such as Indonesia marine bacteria) is very limited. Therefore, in this report, antidiabetic and anticancer activity of Indonesia marine bacteria isolated from Sponges's extract have been studied. Bacteria strain 8.9 which are collection of Research Center for Oseanography, Indonesian Institute of Sciences were from Barrang Lompo Island, Makasar, Indonesia. Bacteria were cultured in different culture medium compositions (such as: different pH, source of glucose and water) for 48 hours on a shaker, then they were extracted with ethyl asetate. Extracts of bacteria were tested by DPPH method (antioxidant activity), alpha glucosidase inhibitory activity method (antidiabetic activity), and Alamar Blue assay (anticancer activity) at 200 ppm. According to result, extract of bacteria in pH 8.0 exhibited the greatest antioxidant (19.27% inhibition), antidiabetic (63.95% inhibition) and anticancer activity of T47D cell line (44.62% cell viability) compared to other extracts. However, effect of addition of sugar sources (such as: glucose, sucrose, and soluble starch) and effect of addition of water/sea water exhibited less influence on their bioactivities. In conclusion, Indonesia marine bacteria isolated from sponge have potential a source of bioactive compound in drug discovery field.

  5. Isolation and initial characterization of a novel type of Baeyer-Villiger monooxygenase activity from a marine microorganism.

    PubMed

    Willetts, Andrew; Joint, Ian; Gilbert, Jack A; Trimble, William; Mühling, Martin

    2012-07-01

    A novel type of Baeyer-Villiger monooxygenase (BVMO) has been found in a marine strain of Stenotrophomonas maltophila strain PML168 that was isolated from a temperate intertidal zone. The enzyme is able to use NADH as the source of reducing power necessary to accept the atom of diatomic oxygen not incorporated into the oxyfunctionalized substrate. Growth studies have establish that the enzyme is inducible, appears to serve a catabolic role, and is specifically induced by one or more unidentified components of seawater as well as various anthropogenic xenobiotic compounds. A blast search of the primary sequence of the enzyme, recovered from the genomic sequence of the isolate, has placed this atypical BVMO in the context of the several hundred known members of the flavoprotein monooxygenase superfamily. A particular feature of this BVMO lies in its truncated C-terminal domain, which results in a relatively small protein (357 amino acids; 38.4 kDa). In addition, metagenomic screening has been conducted on DNA recovered from an extensive range of marine environmental samples to gauge the relative abundance and distribution of similar enzymes within the global marine microbial community. Although low, abundance was detected in samples from many marine provinces, confirming the potential for biodiscovery in marine microorganisms.

  6. Methanosarcina acetivorans sp. nov., an Acetotrophic Methane-Producing Bacterium Isolated from Marine Sediments

    PubMed Central

    Sowers, Kevin R.; Baron, Stephen F.; Ferry, James G.

    1984-01-01

    A new acetotrophic marine methane-producing bacterium that was isolated from the methane-evolving sediments of a marine canyon is described. Exponential phase cultures grown with sodium acetate contained irregularly shaped cocci that aggregated in the early stationary phase and finally differentiated into communal cysts that released individual cocci when ruptured or transferred to fresh medium. The irregularly shaped cocci (1.9 ± 0.2 mm in diameter) were gram negative and occurred singly or in pairs. Cells were nonmotile, but possessed a single fimbria-like structure. Micrographs of thin sections showed a monolayered cell wall approximately 10 nm thick that consisted of protein subunits. The cells in aggregates were separated by visible septation. The communal cysts contained several single cocci encased in a common envelope. An amorphous form of the communal cyst that had incomplete septation and internal membrane-like vesicles was also present in late exponential phase cultures. Sodium acetate, methanol, methylamine, dimethylamine, and trimethylamine were substrates for growth and methanogenesis; H2-CO2 (80:20) and sodium formate were not. The optimal growth temperature was 35 to 40°C. The optimal pH range was 6.5 to 7.0. Both NaCl and Mg2+ were required for growth, with maximum growth rates at 0.2 M NaCl and 0.05 M MgSO4. The DNA base composition was 41 ± 1% guanine plus cytosine. Methanosarcina acetivorans is the proposed species. C2A is the type strain (DSM 2834, ATCC 35395). Images PMID:16346552

  7. Antibacterial Activities of Bacteria Isolated from the Marine Sponges Isodictya compressa and Higginsia bidentifera Collected from Algoa Bay, South Africa

    PubMed Central

    Matobole, Relebohile Matthew; van Zyl, Leonardo Joaquim; Parker-Nance, Shirley; Davies-Coleman, Michael T.; Trindade, Marla

    2017-01-01

    Due to the rise in multi-drug resistant pathogens and other diseases, there is renewed interest in marine sponge endosymbionts as a rich source of natural products (NPs). The South African marine environment is rich in marine biota that remains largely unexplored and may represent an important source for the discovery of novel NPs. We first investigated the bacterial diversity associated with five South African marine sponges, whose microbial populations had not previously been investigated, and select the two sponges (Isodictya compressa and Higginsia bidentifera) with highest species richness to culture bacteria. By employing 33 different growth conditions 415 sponge-associated bacterial isolates were cultured and screened for antibacterial activity. Thirty-five isolates showed antibacterial activity, twelve of which exhibited activity against the multi-drug resistant Escherichia coli 1699, implying that some of the bioactive compounds could be novel. Genome sequencing of two of these isolates confirmed that they harbour uncharacterized biosynthetic pathways that may encode novel chemical structures. PMID:28218694

  8. Biological Potential of Chitinolytic Marine Bacteria

    PubMed Central

    Paulsen, Sara Skøtt; Andersen, Birgitte; Gram, Lone; Machado, Henrique

    2016-01-01

    Chitinolytic microorganisms secrete a range of chitin modifying enzymes, which can be exploited for production of chitin derived products or as fungal or pest control agents. Here, we explored the potential of 11 marine bacteria (Pseudoalteromonadaceae, Vibrionaceae) for chitin degradation using in silico and phenotypic assays. Of 10 chitinolytic strains, three strains, Photobacterium galatheae S2753, Pseudoalteromonas piscicida S2040 and S2724, produced large clearing zones on chitin plates. All strains were antifungal, but against different fungal targets. One strain, Pseudoalteromonas piscicida S2040, had a pronounced antifungal activity against all seven fungal strains. There was no correlation between the number of chitin modifying enzymes as found by genome mining and the chitin degrading activity as measured by size of clearing zones on chitin agar. Based on in silico and in vitro analyses, we cloned and expressed two ChiA-like chitinases from the two most potent candidates to exemplify the industrial potential. PMID:27999269

  9. Response to UVB radiation and oxidative stress of marine bacteria isolated from South Pacific Ocean and Mediterranean Sea.

    PubMed

    Matallana-Surget, S; Villette, C; Intertaglia, L; Joux, F; Bourrain, M; Lebaron, P

    2012-12-05

    Marine bacterial strains isolated from South Pacific and Mediterranean Sea were studied for their resistance to UVB radiation, their repair capacity under photoreactivating light, as well as their oxidative stress response using concentrated hydrogen peroxide (H(2)O(2)), as an oxidizer. A total of 30 marine bacteria were isolated from the hyper-oligotrophic waters of the South Pacific Gyre to the eutrophic waters of the Chilean coast during the BIOSOPE cruise (2004), and 10 strains from surface Mediterranean coastal waters. One third of bacteria presented a high resistance to UVB and almost all isolates presented an efficient post-irradiation recovery. Only few strains showed cell survival to high concentration of H(2)O(2). No correlation between the sampling sites and the bacterial UVB resistance was observed. Two marine bacteria, Erythrobacter flavus and Ruegeria mobilis, were of particular interest, presenting a good response to the three parameters (UVB and H(2)O(2) resistance/efficient repair). Unexpectedly, two resistant strains were again identified as Ruegeria species underlining that this geographically widespread genus, resist to UVB regardless the environment from which the isolates originate.

  10. Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt.

    PubMed

    Rashad, Ferial M; Fathy, Hayam M; El-Zayat, Ayatollah S; Elghonaimy, Ahlam M

    2015-06-01

    Different strategies have been employed for selective isolation of Streptomycetes from 20 marine samples varied in their biological nature. The recovery of Streptomycetes isolates (112) was influenced preferentially by different strategies; sediment samples were the best source of potential candidate Streptomycetes. All isolates exhibited antimicrobial activities with variable spectrum; the most promising isolates (31) were phenotypically characterized and identified as Streptomyces sp.; these isolates exhibited variable capacity for secretion of numerous hydrolytic enzymes such as catalase, protease, amylase, lipase, lecithinase, asparaginase, chitinase and pectinase. All the strains resisted both penicillin and streptomycin, 29 were sensitive to neomycin; the majority of strains (25) showed multiple antibiotic resistance index greater than 0.2; 23, 22 and 13 degraded the shrimp shell, chicken feather and corn cob, respectively, producing bioactive substance(s) which indicates their diversity and their ecological role in the marine ecosystem. At least 28 strains exhibited nematicidal activity in vitro and in vivo against root-knot nematode and supported plant growth. In vitro, the assessed Streptomyces species exhibited the ability to produce gibberellic acid, indole acetic acid, abscisic acid, kinetin and benzyladenine. Except for indole acetic acid, this is the first report concerning the ability of marine Streptomyces to produce such phytohormones and the use of shrimp shell waste as a mono component medium for production of phytohormones. The study is efficacious in selecting effective biodiverse strains of marine Streptomyces that may work under diverse agro-ecological conditions as a useful element in plant nutrition and as biocontrol agents involved in integrated management programs. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Densities and antimicrobial resistance of Escherichia coli isolated from marine waters and beach sands.

    PubMed

    Andrade, Vanessa da Costa; Zampieri, Bruna Del Busso; Ballesteros, Eliete Rodrigues; Pinto, Aline Bartelochi; de Oliveira, Ana Julia Fernandes Cardoso

    2015-06-01

    Bacterial resistance is a rising problem all over the world. Many studies have showed that beach sands can contain higher concentration of microorganisms and represent a risk to public health. This paper aims to evaluate the densities and resistance to antimicrobials of Escherichia coli strains, isolated from seawater and samples. The hypothesis is that microorganisms show higher densities in contaminated beach sands and more antimicrobial resistance than the water column. Density, distribution, and antimicrobial resistance of bacteria E. coli were evaluate in seawater and sands from two recreational beaches with different levels of pollution. At the beach with higher degree of pollution (Gonzaguinha), water samples presented the highest densities of E. coli; however, higher frequency of resistant strains was observe in wet sand (71.9 %). Resistance to a larger number of antimicrobial groups was observe in water (betalactamics, aminoglycosides, macrolides, rifampicins, and tetracyclines) and sand (betagalactamics and aminoglycosids). In water samples, highest frequencies of resistance were obtain against ampicilin (22.5 %), streptomycin (15.0 %), and rifampicin (15.0 %), while in sand, the highest frequencies were observe in relation to ampicilin (36.25 %) and streptomycin (23.52 %). At the less polluted beach, Ilha Porchat, highest densities of E. coli and higher frequency of resistance were obtain in wet and dry sand (53.7 and 53.8 %, respectively) compared to water (50 %). Antimicrobial resistance in strains isolated from water and sand only occurred against betalactamics (ampicilin and amoxicilin plus clavulanic acid). The frequency and variability of bacterial resistance to antimicrobials in marine recreational waters and sands were related to the degree of fecal contamination in this environment. These results show that water and sands from beaches with a high index of fecal contamination of human origin may be potential sources of contamination by pathogens

  12. Kocuria subflava sp. nov., isolated from marine sediment from the Indian Ocean.

    PubMed

    Jiang, Zhao; Zhang, Wei-Hua; Yuan, Chang-Guo; Chen, Jia-Yang; Cao, Li-Xiang; Park, Dong-Jin; Xiao, Min; Kim, Chang-Jin; Li, Wen-Jun

    2015-12-01

    A novel Gram-staining positive, catalase-positive, oxidase-negative, aerobic, non-motile coccus, designated strain YIM 13062(T), was isolated from a marine sediment sample collected from the Indian Ocean. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 13062(T) belongs to the genus Kocuria, and is closely related to Kocuria polaris NBRC 103063(T) (97.8 % similarity), Kocuria rosea NBRC 3768(T) (97.6 % similarity) and Kocuria carniphila JCM 14118(T) (97.4 % similarity). The strain grew optimally at 28 °C, pH 8.0 and in the presence of 2-4 % (w/v) NaCl. Cell-wall peptidoglycan type was Lys-Ala3 (type A3α). The major isoprenoid quinones were MK-6(H2) and MK-7(H2). The polar lipids of strain YIM 13062(T) consisted of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), one unidentified phospholipid (PL), one unidentified aminophospholipid (APL), two unidentified aminolipids (AL) and four unidentified lipids (L). Major fatty acids of the novel isolate were anteiso-C15:0, iso-C14:0 and C18:1 2OH. The genomic DNA G+C content of strain YIM 13062(T) was 68.0 mol%. The level of DNA-DNA relatedness between strain YIM 13062(T) and K. polaris NBRC 103063(T), K. rosea NBRC 3768(T), K. carniphila JCM 14118(T) were 53.2, 48.8 and 42.6 %, respectively. On the basis of genotypic and phenotypic data, it is apparent that strain YIM 13062(T) represents a novel species of the genus Kocuria, for which the name Kocuria subflava sp. nov. is proposed. The type strain is YIM 13062(T) (=CGMCC 4.7252(T)=KCTC 39547(T)).

  13. Isolation of microplastics in biota-rich seawater samples and marine organisms.

    PubMed

    Cole, Matthew; Webb, Hannah; Lindeque, Pennie K; Fileman, Elaine S; Halsband, Claudia; Galloway, Tamara S

    2014-03-31

    Microplastic litter is a pervasive pollutant present in aquatic systems across the globe. A range of marine organisms have the capacity to ingest microplastics, resulting in adverse health effects. Developing methods to accurately quantify microplastics in productive marine waters, and those internalized by marine organisms, is of growing importance. Here we investigate the efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present. Our optimized enzymatic protocol can digest >97% (by weight) of the material present in plankton-rich seawater samples without destroying any microplastic debris present. In applying the method to replicate marine samples from the western English Channel, we identified 0.27 microplastics m(-3). The protocol was further used to extract microplastics ingested by marine zooplankton under laboratory conditions. Our findings illustrate that enzymatic digestion can aid the detection of microplastic debris within seawater samples and marine biota.

  14. Isolation of microplastics in biota-rich seawater samples and marine organisms

    NASA Astrophysics Data System (ADS)

    Cole, Matthew; Webb, Hannah; Lindeque, Pennie K.; Fileman, Elaine S.; Halsband, Claudia; Galloway, Tamara S.

    2014-03-01

    Microplastic litter is a pervasive pollutant present in aquatic systems across the globe. A range of marine organisms have the capacity to ingest microplastics, resulting in adverse health effects. Developing methods to accurately quantify microplastics in productive marine waters, and those internalized by marine organisms, is of growing importance. Here we investigate the efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present. Our optimized enzymatic protocol can digest >97% (by weight) of the material present in plankton-rich seawater samples without destroying any microplastic debris present. In applying the method to replicate marine samples from the western English Channel, we identified 0.27 microplastics m-3. The protocol was further used to extract microplastics ingested by marine zooplankton under laboratory conditions. Our findings illustrate that enzymatic digestion can aid the detection of microplastic debris within seawater samples and marine biota.

  15. Isolation of microplastics in biota-rich seawater samples and marine organisms

    PubMed Central

    Cole, Matthew; Webb, Hannah; Lindeque, Pennie K.; Fileman, Elaine S.; Halsband, Claudia; Galloway, Tamara S.

    2014-01-01

    Microplastic litter is a pervasive pollutant present in aquatic systems across the globe. A range of marine organisms have the capacity to ingest microplastics, resulting in adverse health effects. Developing methods to accurately quantify microplastics in productive marine waters, and those internalized by marine organisms, is of growing importance. Here we investigate the efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present. Our optimized enzymatic protocol can digest >97% (by weight) of the material present in plankton-rich seawater samples without destroying any microplastic debris present. In applying the method to replicate marine samples from the western English Channel, we identified 0.27 microplastics m−3. The protocol was further used to extract microplastics ingested by marine zooplankton under laboratory conditions. Our findings illustrate that enzymatic digestion can aid the detection of microplastic debris within seawater samples and marine biota. PMID:24681661

  16. Impact of Irradiation and Polycyclic Aromatic Hydrocarbon Spiking on Microbial Populations in Marine Sediment for Future Aging and Biodegradability Studies

    PubMed Central

    Melcher, Rebecca J.; Apitz, Sabine E.; Hemmingsen, Barbara B.

    2002-01-01

    Experiments were carried out to develop methods to generate well-characterized, polycyclic aromatic hydrocarbon (PAH)-spiked, aged but minimally altered sediments for fate, biodegradation, and bioavailability experiments. Changes in indigenous bacterial populations were monitored in mesocosms constructed of relatively clean San Diego Bay sediments, with and without exposure to gamma radiation, and then spiked with five different PAHs and hexadecane. While phenanthrene and chrysene degraders were present in the unspiked sediments and increased during handling, PAH spiking of nonirradiated sediments led to dramatic increases in their numbers. Phenotypic characterization of isolates able to grow on phenanthrene or chrysene placed them in several genera of marine bacteria: Vibrio, Marinobacter or Cycloclasticus, Pseudoalteromonas, Marinomonas, and Halomonas. This is the first time that marine PAH degraders have been identified as the latter two genera, expanding the diversity of marine bacteria with this ability. Even at the highest irradiation dose (10 megarads), heterotrophs and endospore formers reappeared within weeks. However, while bacteria from the unirradiated sediments had the capacity to both grow on and mineralize 14C-labeled phenanthrene and chrysene, irradiation prevented the reappearance of PAH degraders for up to 4 months, allowing spikes to age onto the sediments, which can be used to model biodegradation in marine sediments. PMID:12039743

  17. Purification and characterization of alginate lyase from locally isolated marine Pseudomonas stutzeri MSEA04.

    PubMed

    Beltagy, Ehab A; El-Borai, Aliaa; Lewiz, Marina; ElAssar, Samy A

    2016-09-01

    An alginate lyase with high specific enzyme activity was purified from Pseudomonas stutzeri MSEA04, isolated from marine brown algae. The alginate lyase was purified by precipitation with ammonium sulphate, acetone and ethanol individually. 70% ethanol fraction showed maximum specific activity (133.3 U/mg). This fraction was re-purified by anion exchange chromatography DEAE- Cellulose A-52. The loaded protein was separated into 3 peaks. The second protein peak was the major one which contained 48.2% of the total protein recovered and 79.4% of the total recovered activity. The collected fractions of this peak were subjected to further purification by re-chromatography on Sephadex G-100. Alginate lyase activity was fractionated in the Sephadex column into one major peak, and the specific activity of this fraction reached 116 U/mg. The optimal substrate concentration, pH and temperature for alginate lyase activity were 8 mg/ml, pH 7.5 and 37 °C, respectively. While, Km and Vmax values were 1.07 mg alginate/ ml and 128.2 U/mg protein, respectively. The enzyme was partially stable below 50 °C, and the activity of the enzyme was strongly enhanced by K(+), and strongly inhibited by Ba(+2), Cd(+2), Fe(+2) and Zn(+2). The purified enzyme yielded a single band on SDS-PAGE with molecular weight (40.0 kDa).

  18. Isolation of Brazilian marine fungi capable of growing on DDD pesticide.

    PubMed

    Ortega, Scarlet Nere; Nitschke, Marcia; Mouad, Ana Maria; Landgraf, Maria Diva; Rezende, Maria Olímpia Oliveira; Seleghim, Mirna Helena Regali; Sette, Lara Durães; Porto, André Luiz Meleiro

    2011-02-01

    The fungi Aspergillus sydowii Ce15, Aspergillus sydowii Ce19, Aspergillus sydowii Gc12, Bionectria sp. Ce5, Penicillium miczynskii Gc5, Penicillium raistrickii Ce16 and Trichoderma sp. Gc1, isolated from marine sponges Geodia corticostylifera and Chelonaplysylla erecta, were evaluated for their ability to grow in the presence of DDD pesticide. Increasing concentrations of DDD pesticide, i.e., 5.0 mg (1.56 × 10⁻¹² mmol), 10.0 mg (3.12 × 10⁻²) mmol) and 15.0 mg (4.68 × 10⁻² mmol) in solid and liquid culture media were tested. The fungi Trichoderma sp. Gc1 and Penicillium miczynskii Gc5 were able to grow in the presence of up to 15.0 mg of DDD, suggesting their potential for biodegradation. A 100% degradation of DDD was attained in liquid culture medium when Trichoderma sp. Gc1 was previously cultivated for 5 days and supplemented with 5.0 mg of DDD in the presence of hydrogen peroxide. However, the quantitative analysis showed that DDD was accumulated on mycelium and biodegradation level reached a maximum value of 58% after 14 days.

  19. Oceanobacillus arenosus sp. nov., a moderately halophilic bacterium isolated from marine sand.

    PubMed

    Kim, Wonyong; Siamphan, Chatuphon; Kim, Jong-Hwa; Sukhoom, Ampaitip

    2015-09-01

    A Gram-stain-positive, spore-forming, rod-shaped, motile, strictly aerobic bacterium, designated CAU 1183(T), was isolated from marine sand and its taxonomic position was investigated by using a polyphasic approach. The bacterium grew optimally at 30 °C, at pH 8.5 and in the presence of 2% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CAU 1183(T) formed a distinct lineage within the genus Oceanobacillus and exhibited the highest similarity to Oceanobacillus chungangensis CAU 1051(T) (97.6%). The strain contained MK-7 as the predominant isoprenoid quinone and anteiso-C15 : 0 was the major cellular fatty acid. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The polar lipid pattern of strain CAU 1183(T) consisted of diphosphatidylglycerol, phosphatidylglycerol and unidentified lipids, including two phospholipids, two glycolipids, a phosphoglycolipid and two lipids. The G+C content of the genomic DNA was 37.5 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain CAU 1183(T) should be assigned to a novel species in the genus Oceanobacillus, for which the name Oceanobacillus arenosus sp. nov. is proposed. The type strain is CAU 1183(T) ( = KCTC 33037(T) = CECT 8560(T)).

  20. Characterization of tamulamides A and B, polyethers isolated from the marine dinoflagellate Karenia brevis.

    PubMed

    Truxal, Laura T; Bourdelais, Andrea J; Jacocks, Henry; Abraham, William M; Baden, Daniel G

    2010-04-23

    Florida red tides occur as the result of blooms of the marine dinoflagellate Karenia brevis. K. brevis is known to produce several families of fused polyether ladder compounds. The most notable compounds are the brevetoxins, potent neurotoxins that activate mammalian sodium channels. Additional fused polyether ladder compounds produced by K. brevis include brevenal, brevisin, and hemibrevetoxin B, all with varying affinities for the same binding site on voltage-sensitive sodium channels. The structure elucidation and biological activity of two additional fused polyether ladder compounds containing seven fused ether rings will be described in this paper. Tamulamide A (MW = 638.30) and tamulamide B (MW = 624.29) were isolated from K. brevis cultures, and their structures elucidated using a combination of NMR spectroscopy and high-resolution mass spectrometry. Tamulamides A and B were both found to compete with tritiated brevetoxin-3 ([(3)H]-PbTx-3) for its binding site on rat brain synaptosomes. However, unlike the brevetoxins, tamulamides A and B showed no toxicity to fish at doses up to 200 nM and did not cause significant bronchoconstriction in sheep pulmonary assays.

  1. Salinirussus salinus gen. nov., sp. nov., isolated from a marine solar saltern.

    PubMed

    Cui, Heng-Lin; Lü, Zhen-Zhen; Li, Yang; Zhou, Yao

    2017-09-01

    A halophilic archaeal strain, YGH44T, was isolated from the Yinggehai marine solar saltern in Hainan Province of China. Cells were rod-shaped, stained Gram-negative and formed red-pigmented colonies on agar plates. Optimal growth was obtained with 3.4 M NaCl (range: 2.6-4.8 M), 0.5 M MgCl2 (range: 0.005-1.0 M), at 37 °C (range: 25-55 °C) and at pH 7.0 (range: pH 5.0-9.0). The cells lysed in distilled water, and the minimal NaCl concentration to prevent cell lysis was 1.7 M. Phylogenetic tree reconstructions based on 16S rRNA genes and rpoB' genes revealed that strain YGH44T was distinct from the related genera, Halovenus, Halapricum, Halorientalis, Halorhabdus and Halosimplex of the order Halobacteriales. The major polar lipids of the strain were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and three unidentified glycolipids. The DNA G+C content of strain YGH44Twas 69.0 mol%. The phenotypic, chemotaxonomic and phylogenetic properties suggested that strain YGH44T (=CGMCC 1.12234T=JCM 18646T) represents a novel species of a new genus within the order Halobacteriales, for which the name Salinirussus salinus gen. nov., sp. nov. is proposed.

  2. Tsukamurella spongiae sp. nov., a novel actinomycete isolated from a deep-water marine sponge.

    PubMed

    Olson, Julie B; Harmody, Dedra K; Bej, Asim K; McCarthy, Peter J

    2007-07-01

    A Gram-positive, rod-shaped, non-spore-forming bacterium (strain K362(T)) was isolated from a deep-water marine sponge collected off the coast of Curaçao in the Netherlands Antilles. On the basis of 16S rRNA gene sequence similarities, strain K362(T) was shown to belong to the genus Tsukamurella, being most closely related to Tsukamurella pulmonis (99.2 %), Tsukamurella tyrosinosolvens (98.9 %), Tsukamurella strandjordii (98.8 %), Tsukamurella pseudospumae (98.8 %) and Tsukamurella spumae (98.8 %). A combination of the substrate utilization patterns, the fatty acid and mycolic acid profiles and the DNA-DNA hybridization results supported the affiliation of strain K362(T) to the genus Tsukamurella and enabled the genotypic and phenotypic differentiation of strain K362(T) from the seven recognized Tsukamurella species. Strain K362(T) therefore represents a novel species of the genus Tsukamurella, for which the name Tsukamurella spongiae sp. nov. is proposed. The type strain is K362(T) (=DSM 44990(T)=NRRL B-24467(T)).

  3. Phenotypic and molecular characterization of Listeria monocytogenes strains isolated from a marine environment in Morocco.

    PubMed

    Bou-m'handi, Naïma; Jacquet, Christine; El Marrakchi, Abdelhaq; Martin, Paul

    2007-01-01

    Microbiological analysis of 1025 marine samples, including 345 from seawater, 337 from shellfish, and 343 from sediments collected between January 2000 and December 2002 from 18 shellfish sites on the Atlantic coast of mid-west of Morocco (Agadir region), yielded 143 strains of Listeria (Listeria monocytogenes: 38; L. innocua: 109; L. ivanovii: 1). The overall incidence of Listeria sp. in the coastal environment was 5.3%. Thirteen L. monocytogenes strains were isolated from seawater, 7 from sediment, and 12 from shellfish. The 38 strains of L. monocytogenes were phenotypically characterized. All belonged to two chemotypes according to appareillage et procédé d'identification (API) Listeria classification: 8 strains were type 2510, alpha-mannosidase-negative and hemolytic; and 30 strains were type 6510, alpha-mannosidase-positive, of which 8 strains were nonhemolytic. All the L. monocytogenes strains belonged to the 1/2 serogroup, with serovar 1/2b clearly prevalent (78.9%), although some nonhemolytic strains were serovar 1/2a. This collection of L. monocytogenes strains included 6 different pulsotypes as assessed by DNA macrorestriction with the restriction enzymes AscI and ApaI.

  4. Penicillium jejuense sp. nov., isolated from the marine environments of Jeju Island, Korea.

    PubMed

    Park, Myung Soo; Fong, Jonathan J; Oh, Seung-Yoon; Houbraken, Jos; Sohn, Jae Hak; Hong, Seung-Beom; Lim, Young Woon

    2015-01-01

    Three strains of an unidentified Penicillium species were isolated during a fungal diversity survey of marine environments in Korea. These strains are described here as a new species following a multigene phylogenetic analyses of nuc rDNA internal transcribed spacer barcodes (ITS1-5.8S-ITS2), genes for β-tubulin, calmodulin and RNA polymerase II second largest subunit, and observation of macro-and micromorphological characters. Phylogenetic analyses revealed that the three strains formed a strongly supported monophyletic group distinct from previously reported species of section Aspergilloides. Morphologically this species can be distinguished from its sister species, P. crocicola, by the reverse color on Czapek yeast autolysate agar, abundant production of sclerotia on malt extract agar and colony characters on yeast extract sucrose agar. We name this new species P. jejuense, after the locality where it was discovered. At 25 C for 7 d, P. jejuense colonies grew to 55-60 mm on CYA, 45-48 mm on MEA, 48-52 mm on YES and 23-26 mm on CREA. Conidia (2.2-3.4 × 2.0-2.6 μm) and sclerotia (160-340 × 125-210 μm) were globose to ellipsoidal.

  5. A serine hydroxymethyltransferase from marine bacterium Shewanella algae: Isolation, purification, characterization and l-serine production.

    PubMed

    Jiang, Wei; Xia, Bingzhao; Liu, Ziduo

    2013-10-01

    Currently, l-serine is mainly produced by enzymatic conversion, in which serine hydroxymethyltransferase (SHMT) is the key enzyme, suggesting the importance of searching for a SHMT with high activity. Shewanella algae, a methanol-utilizing marine bacterium showing high SHMT activity, was selected based on screening bacterial strains and comparison of the activities of SHMTs. A glyA was isolated from the S. algae through thermal asymmetric interlaced PCR (TAIL-PCR) and it encoded a 417 amino acid polypeptide. The SaSHMT, encoded by the glyA, showed the optimal activity at 50°C and pH 7.0, and retained over 45% of its maximal activity after incubation at 40°C for 3h. The enzyme showed better stability under alkaline environment (pH 6.5-9.0) than Hyphomicrobium methylovorum GM2's SHMT (pH 6.0-7.5). The SaSHMT can produce 77.76mM of l-serine by enzymatic conversion, with the molecular conversion rate in catalyzing glycine to l-serine being 1.41-fold higher than that of Escherichia coli. Therefore, the SaSHMT has the potential for industrial applications due to its tolerance of alkaline environment and a relatively high enzymatic conversion rate.

  6. Isolation and characterization of marine bacterial strain degrading fucoidan from Korean Undaria pinnatifida Sporophylls.

    PubMed

    Kim, Woo-Jung; Kim, Sung-Min; Lee, Yoon-Hee; Kim, Hyun Guell; Kim, Hyung-Kwon; Moon, Seong Hoon; Suh, Hyun-Hyo; Jang, Ki-Hyo; Park, Yong-Il

    2008-04-01

    In spite of an increasing interest in fucoidans as biologically active compounds, no convenient commercial sources with fucoidanase activity are yet available. A marine bacterial strain that showed confluent growth on a minimal medium containing fucoidan, prepared from Korean Undaria pinnatifida sporophylls, as the sole carbon source was isolated and identified based on a 16S rDNA sequence analysis as a strain of Sphingomonas paucimobilis, and named Sphingomonas paucimobilis PF-1. The strain depolymerized fucoidan into more than 7 distinct lowmolecular- mass fucose-containing oligosaccharides, ranging from 305 to 3,749 Da. The enzyme activity was shown to be associated with the whole cell, suggesting the possibility of a surface display of the enzyme. However, a whole-cell enzyme preparation neither released the monomer Lfucose from the fucoidan nor hydrolyzed the chromogenic substrate p-nitrophenyl-alpha-L-fucoside, indicating that the enzyme may be an endo-acting fucoidanase rather than an alpha-L-fucosidase. Therefore, this would appear to be the first report on fucoidanolytic activity by a Sphingomonas species and also the first report on the enzymatic degradation of the Korean Undaria pinnatifida sporophyll fucoidan. Moreover, this enzyme activity may be very useful for structural analyses of fucose-containing polysaccharides and the production of bioactive fucooligosaccharides.

  7. Isolation of naturally occurring enteroviruses from a variety of shellfish species residing in Long Island and New Jersey marine embayments

    SciTech Connect

    Vaughn, J.M.; Landry, E.F.; Vicale, T.J.; Dahl, M.C.

    1980-02-01

    Shellfish and shellfish-raising waters from a variety of Long Island and New Jersey marine embayments were examined for the presence of human enteroviruses. Little difference in virological quality was noted between areas designated as being open or closed to shellfishing. Viral isolations could not be correlated with coliform counts from identical samples, indicating the need to re-evaluate the use of bacterial standards as indices of the overall sanitary quality of water and shellfish.

  8. Aceticlastic and NaCl-Requiring Methanogen “Methanosaeta pelagica” sp. nov., Isolated from Marine Tidal Flat Sediment

    PubMed Central

    Iino, Takao; Suzuki, Ken-Ichiro; Yamaguchi, Kaoru; Kamagata, Yoichi

    2012-01-01

    Among methanogens, only 2 genera, Methanosaeta and Methanosarcina, are known to contribute to methanogenesis from acetate, and Methanosaeta is a specialist that uses acetate specifically. However, Methanosaeta strains so far have mainly been isolated from anaerobic digesters, despite the fact that it is widespread, not only in anaerobic methanogenic reactors and freshwater environments, but also in marine environments, based upon extensive 16S rRNA gene-cloning analyses. In this study, we isolated an aceticlastic methanogen, designated strain 03d30qT, from a tidal flat sediment. Phylogenetic analyses based on 16S rRNA and mcrA genes revealed that the isolate belongs to the genus Methanosaeta. Unlike the other known Methanosaeta species, this isolate grows at Na+ concentrations of 0.20 to 0.80 M, with an optimum concentration of 0.28 M. Quantitative estimation using real-time PCR detected the 16S rRNA gene of the genus Methanosaeta in the marine sediment, and relative abundance ranged from 3.9% to 11.8% of the total archaeal 16S rRNA genes. In addition, the number of Methanosaeta organisms increased with increasing depth and was much higher than that of Methanosarcina organisms, suggesting that aceticlastic methanogens contribute to acetate metabolism to a greater extent than previously thought in marine environments, where sulfate-reducing acetate oxidation prevails. This is the first report on marine Methanosaeta species, and based on phylogenetic and characteristic studies, the name “Methanosaeta pelagica” sp. nov. is proposed for this novel species, with type strain 03d30q. PMID:22344667

  9. Tricycloclavulone and clavubicyclone, novel prostanoid-related marine oxylipins, isolated from the Okinawan soft coral Clavularia viridis.

    PubMed

    Iwashima, Makoto; Terada, Ikuo; Okamoto, Katsumi; Iguchi, Kazuo

    2002-05-03

    Two novel prostanoid-related marine oxylipins, tricycloclavulone (1) and clavubicyclone (2), were isolated from the Okinawan soft coral Clavularia viridis. The structures of 1, having a tricyclo[5.3.0.0(1,4)]decane ring system, and 2, having a bicyclo[3.2.1]octane ring system, were elucidated on the basis of spectroscopic analysis. Clavubicyclone showed a moderate growth inhibition activity against tumor cells in vitro.

  10. Determination of the chemical structures of tandyukisins B-D, isolated from a marine sponge-derived fungus.

    PubMed

    Yamada, Takeshi; Umebayashi, Yoshihide; Kawashima, Maiko; Sugiura, Yuma; Kikuchi, Takashi; Tanaka, Reiko

    2015-05-21

    Tandyukisins B-D (1-3), novel decalin derivatives, have been isolated from a strain of Trichoderma harzianum OUPS-111D-4 originally derived from the marine sponge Halichondria okadai, and their structures have been elucidated on the basis of spectroscopic analyses using 1D and 2D NMR techniques. In addition, their chemical structures were established by chemical transformation. They exhibited weak cytotoxicity, but selective growth inhibition on panel screening using 39 human cancer cell lines.

  11. Genome Sequence of the Marine Bacterium Vibrio campbellii DS40M4, Isolated from Open Ocean Water

    PubMed Central

    Dias, Graciela M.; Thompson, Cristiane C.; Fishman, Brian; Naka, Hiroaki; Haygood, Margo G.; Crosa, Jorge H.

    2012-01-01

    Vibrio sp. strain DS40M4 is a marine bacterium that was isolated from open ocean water. In this work, using genomic taxonomy, we were able to classify this bacterium as V. campbellii. Our genomic analysis revealed that V. campbellii DS40M4 harbors genes related to iron transport, virulence, and environmental fitness, such as those encoding anguibactin and vanchrobactin biosynthesis proteins, type II, III, IV, and VI secretion systems, and proteorhodopsin. PMID:22275102

  12. Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis.

    PubMed

    Desjardine, Kelsey; Pereira, Alban; Wright, Helen; Matainaho, Teatulohi; Kelly, Michael; Andersen, Raymond J

    2007-12-01

    Tauramamide (1), a new lipopeptide antibiotic, is produced by cultures of the marine bacterial isolate Brevibacillus laterosporus PNG276 obtained from Papua New Guinea. Tauramamide was isolated as its methyl and ethyl esters 2 and 3, whose structures were elucidated by analysis of NMR, MS, and chemical degradation data. A total synthesis of tauramamide (1) and tauramamide ethyl ester (3) confirmed the structure proposed from spectroscopic analysis and provided the natural product for antimicrobial testing. Tauramamide (1) and ethyl ester 3 show potent and relatively selective inhibition of pathogenic Enterococcus sp.

  13. Targeted Capture and Heterologous Expression of the Pseudoalteromonas Alterochromide Gene Cluster in Escherichia coli Represents a Promising Natural Product Exploratory Platform

    PubMed Central

    2015-01-01

    Marine pseudoalteromonads represent a very promising source of biologically important natural product molecules. To access and exploit the full chemical capacity of these cosmopolitan Gram-(−) bacteria, we sought to apply universal synthetic biology tools to capture, refactor, and express biosynthetic gene clusters for the production of complex organic compounds in reliable host organisms. Here, we report a platform for the capture of proteobacterial gene clusters using a transformation-associated recombination (TAR) strategy coupled with direct pathway manipulation and expression in Escherichia coli. The ∼34 kb pathway for production of alterochromide lipopeptides by Pseudoalteromonas piscicida JCM 20779 was captured and heterologously expressed in E. coli utilizing native and E. coli-based T7 promoter sequences. Our approach enabled both facile production of the alterochromides and in vivo interrogation of gene function associated with alterochromide’s unusual brominated lipid side chain. This platform represents a simple but effective strategy for the discovery and biosynthetic characterization of natural products from marine proteobacteria. PMID:25140825

  14. Zeaxanthin production by novel marine isolates from coastal sand of India and its antioxidant properties.

    PubMed

    Prabhu, Sudharshan; Rekha, P D; Young, Chiu-Chung; Hameed, Asif; Lin, Shih-Yao; Arun, A B

    2013-10-01

    Zeaxanthin carotenoids are class of commercially important natural products and diverse biomolecules produced by plants and many microorganisms. Bacteria often produce a cocktail of polar and nonpolar carotenoids limiting their industrial applications. Marine members of the family Flavobacteriaceae are known to produce potential carotenoids such as astaxanthin and zeaxanthin. A few bacterial species have been reported for the predominant production zeaxanthin. Here, we report the molecular identification of the zeaxanthin as a major carotenoid produced by two novel bacteria (YUAB-SO-11 and YUAB-SO-45) isolated from sandy beaches of South West Coast of India and the effect of carbon sources on the production of zeaxanthin. The strains were identified based on the 16S rRNA gene sequencing as a member of genus Muricauda. The closest relatives of YUAB-SO-11 and YUAB-SO-45 were Muricauda aquimarina (JCM 11811(T)) (98.9 %) and Muricauda olearia (JCM 15563(T)) (99.2 %), respectively, indicating that both of these strains might represent a novel species. The highest level of zeaxanthin production was achieved (YUAB-SO-11, 1.20 ± 0.11 mg g(-1)) and (YUAB-SO-45, 1.02 ± 0.13 mg g(-1)) when cultivated in marine broth supplemented with 2 % NaCl (pH 7) and incubated at 30 °C. Addition of 0.1 M glutamic acid, an intermediate of citric acid cycle, enhanced the zeaxanthin production as 18 and 14 % by the strains YUAB-SO-11 and YUAB-SO-45 respectively. The zeaxanthin showed in vitro nitric oxide scavenging, inhibition of lipid peroxidation, and 2,2-diphenyl-1-picryl hydrazyl scavenging activities higher than the commercial zeaxanthin. The results of this study suggest that two novel strains YUAB-SO-11 and YUAB-SO-45 belonging to genus Muricauda produce zeaxanthin as a predominant carotenoid, and higher production of zeaxanthin was achieved on glutamic acid supplementation. The pigment showed good in vitro antioxidant activity, which can be exploited further for commercial

  15. Enhanced lipid and biomass production by a newly isolated and identified marine microalga.

    PubMed

    Dammak, Mouna; Haase, Sandra Mareike; Miladi, Ramzi; Ben Amor, Faten; Barkallah, Mohamed; Gosset, David; Pichon, Chantal; Huchzermeyer, Bernhard; Fendri, Imen; Denis, Michel; Abdelkafi, Slim

    2016-12-05

    The increasing demand for microalgae lipids as an alternative to fish has encouraged researchers to explore oleaginous microalgae for food uses. In this context, optimization of growth and lipid production by the marine oleaginous V2-strain-microalgae is of great interest as it contains large amounts of mono-unsaturated (MUFAs) and poly-unsaturated fatty acids (PUFAs). In this study, the isolated V2 strain was identified based on 23S rRNA gene. Growth and lipid production conditions were optimized by using the response surface methodology in order to maximize its cell growth and lipid content that was quantified by both flow cytometry and the gravimetric method. The intracellular lipid bodies were detected after staining with Nile red by epifluorescence microscopy. The fatty acid profile of optimal culture conditions was determined by gas chromatography coupled to a flame ionization detector. The phenotypic and phylogenetic analyses showed that the strain V2 was affiliated to Tetraselmis genus. The marine microalga is known as an interesting oleaginous species according to its high lipid production and its fatty acid composition. The optimization process showed that maximum cell abundance was achieved under the following conditions: pH: 7, salinity: 30 and photosynthetic light intensity (PAR): 133 μmol photons.m(-2).s(-1). In addition, the highest lipid content (49 ± 2.1% dry weight) was obtained at pH: 7, salinity: 37.23 and photosynthetic light intensity (PAR): 188 μmol photons.m(-2).s(-1). The fatty acid profile revealed the presence of 39.2% and 16.1% of total fatty acids of mono-unsaturated fatty acids (MUFAs) and poly-unsaturated fatty acids (PUFAs), respectively. Omega 3 (ω3), omega 6 (ω6) and omega 9 (ω9) represented 5.28%, 8.12% and 32.8% of total fatty acids, respectively. This study showed the successful optimization of salinity, light intensity and pH for highest growth, lipid production and a good fatty acid composition, making strain V2

  16. Epibacterium ulvae gen. nov., sp. nov., epibiotic bacteria isolated from the surface of a marine alga.

    PubMed

    Penesyan, Anahit; Breider, Sven; Schumann, Peter; Tindall, Brian J; Egan, Suhelen; Brinkhoff, Thorsten

    2013-05-01

    Two Gram-reaction-negative, rod-shaped, motile bacteria, designated strains U82 and U95(T), were isolated from the marine alga Ulva australis collected at Sharks Point, Clovelly, a rocky intertidal zone near Sydney, Australia. Both strains were oxidase- and catalase-positive, formed brown- to black-pigmented colonies and required NaCl for growth. Phylogenetic analysis based on nearly complete 16S rRNA gene sequences revealed that these strains belong to the Roseobacter clade within the Alphaproteobacteria. The 16S rRNA genes of both strains were identical across the sequenced 1326 nt, but showed differences in the intergenic spacer region (ITS) between the 16S and the 23S rRNA genes. At the genomic level the DNA G+C contents of strains U82 and U95(T) were identical (52.6 mol%) and they had a DNA-DNA hybridization value of 83.7%, suggesting that these strains belong to the same species. The closest described phylogenetic neighbour to strains U82 and U95(T) was Thalassobius aestuarii DSM 15283(T) with 95.8% 16S rRNA gene sequence similarity. Other close relatives include further species of the genera Thalassobius and Shimia. Strains U82 and U95(T) were negative for bacteriochlorophyll a production, showed antibacterial activity towards other marine bacteria, were resistant to the antibiotics gentamicin and spectinomycin and were unable to hydrolyse starch or gelatin. The major fatty acids (>1%) were 18 : 1ω7c, 16 : 0, 18 : 2, 10 : 0 3-OH, 12 : 0, 20 : 1 2-OH and 18 : 0. The polar lipid pattern indicated the presence of phosphatidylglycerol, phosphatidylcholine, two unidentified aminolipids and four unidentified phospholipids. Both strains produced ubiquinone 10 (Q-10) as the sole respiratory lipoquinone. Based on their phenotypic and phylogenetic characteristics, it is suggested that strains U82 and U95(T) are members of a novel species within a new genus for which the name Epibacterium ulvae gen. nov., sp. nov. is proposed. The type

  17. Promising Biological Indicator of Heavy Metal Pollution: Bioluminescent Bacterial Strains Isolated and Characterized from Marine Niches of Goa, India.

    PubMed

    Thakre, Neha A; Shanware, Arti S

    2015-09-01

    In present study, several marine water samples collected from the North Goa Beaches, India for isolation of luminescent bacterial species. Isolates obtained labelled as DP1-5 and AB1-6. Molecular characterization including identification of a microbial culture using 16S rRNA gene based molecular technique and phylogenetic analysis confirmed that DP3 & AB1 isolates were Vibrio harveyi. All of the isolates demonstrated multiple metal resistances in terms of growth, with altered luminescence with variable metal concentration. Present investigations were an attempt towards exploring and reporting an updated diversity of bioluminescent bacterial species from various sites around the Goa, India which would be explored in future for constructing luminescence based biosensor for efficiently monitoring the level of hazardous metals in the environment.

  18. Marine Isolates of Trichoderma spp. as Potential Halotolerant Agents of Biological Control for Arid-Zone Agriculture ▿ †

    PubMed Central

    Gal-Hemed, Inbal; Atanasova, Lea; Komon-Zelazowska, Monika; Druzhinina, Irina S.; Viterbo, Ada; Yarden, Oded

    2011-01-01

    The scarcity of fresh water in the Mediterranean region necessitates the search for halotolerant agents of biological control of plant diseases that can be applied in arid-zone agriculture irrigated with saline water. Among 29 Trichoderma strains previously isolated from Mediterranean Psammocinia sp. sponges, the greatest number of isolates belong to the Trichoderma longibrachiatum-Hypocrea orientalis species pair (9), H. atroviridis/T. atroviride (9), and T. harzianum species complex (7), all of which are known for high mycoparasitic potential. In addition, one isolate of T. asperelloides and two putative new species, Trichoderma sp. O.Y. 14707 and O.Y. 2407, from Longibrachiatum and Strictipilosa clades, respectively, have been identified. In vitro salinity assays showed that the ability to tolerate increasing osmotic pressure (halotolerance) is a strain- or clade-specific property rather than a feature of a species. Only a few isolates were found to be sensitive to increased salinity, while others either were halotolerant or even demonstrated improved growth in increasingly saline conditions. In vitro antibiosis assays revealed strong antagonistic activity toward phytopathogens due to the production of both soluble and volatile metabolites. Two marine-derived Trichoderma isolates, identified as T. atroviride and T. asperelloides, respectively, effectively reduced Rhizoctonia solani damping-off disease on beans and also induced defense responses in cucumber seedlings against Pseudomonas syringae pv. lachrimans. This is the first inclusive evaluation of marine fungi as potential biocontrol agents. PMID:21666030

  19. Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture.

    PubMed

    Gal-Hemed, Inbal; Atanasova, Lea; Komon-Zelazowska, Monika; Druzhinina, Irina S; Viterbo, Ada; Yarden, Oded

    2011-08-01

    The scarcity of fresh water in the Mediterranean region necessitates the search for halotolerant agents of biological control of plant diseases that can be applied in arid-zone agriculture irrigated with saline water. Among 29 Trichoderma strains previously isolated from Mediterranean Psammocinia sp. sponges, the greatest number of isolates belong to the Trichoderma longibrachiatum-Hypocrea orientalis species pair (9), H. atroviridis/T. atroviride (9), and T. harzianum species complex (7), all of which are known for high mycoparasitic potential. In addition, one isolate of T. asperelloides and two putative new species, Trichoderma sp. O.Y. 14707 and O.Y. 2407, from Longibrachiatum and Strictipilosa clades, respectively, have been identified. In vitro salinity assays showed that the ability to tolerate increasing osmotic pressure (halotolerance) is a strain- or clade-specific property rather than a feature of a species. Only a few isolates were found to be sensitive to increased salinity, while others either were halotolerant or even demonstrated improved growth in increasingly saline conditions. In vitro antibiosis assays revealed strong antagonistic activity toward phytopathogens due to the production of both soluble and volatile metabolites. Two marine-derived Trichoderma isolates, identified as T. atroviride and T. asperelloides, respectively, effectively reduced Rhizoctonia solani damping-off disease on beans and also induced defense responses in cucumber seedlings against Pseudomonas syringae pv. lachrimans. This is the first inclusive evaluation of marine fungi as potential biocontrol agents.

  20. Isolation, Identification And Screening Antibacterial Activity from Marine Sponge-Associated Fungi Against Multidrug-Resistant (MDR) Escherichia coli

    NASA Astrophysics Data System (ADS)

    Triandala Sibero, Mada; Sabdaningsih, Aninditia; Cristianawati, Olvi; Nuryadi, Handung; Karna Radjasa, Ocky; Sabdono, Agus; Trianto, Agus

    2017-02-01

    Irrational used of antibiotic in several decades ago causing resistant in bacteria and decreasing the cure rate of infectious diseases. Multidrug-resistant (MDR) Escherichia coli is known to cause various of infectious diseases such as urinary tract infection, nosocomial bloodstream infection, meningitis, bacteraemia, and gastrointestinal disease. Marine sponge-associated fungi have potential as source of new compound to combat MDR E. coli. The aims of this research were to isolate marine sponge-assosiated fungi, to screen potential fungi against MDR E. coli, to identify the potential fungi and its host sponge. There were 29 marine sponge-associated fungi successfully isolated from 9 sponges. Among 29 sponge-associated fungi screened, there were 7 isolates showed antibacterial activity against MDR E. coli. The best inhibition zone produced by MPS 14.1/MT 02 and MPS 14.3/MT 04 from sponge PP.SP.16.14. According to fungi identification result fungus MPS 14.1/MT 02 was identified as Trichoderma asperellum while MPS 14.3/MT 04 was identified as Trichoderma reesei. Sponge identification leaded the PP.SP.16.14 as Cinachyrella sp.

  1. Aerobic and anoxic growth and nitrate removal capacity of a marine denitrifying bacterium isolated from a recirculation aquaculture system.

    PubMed

    Borges, Maria-Teresa; Sousa, André; De Marco, Paolo; Matos, Ana; Hönigová, Petra; Castro, Paula M L

    2008-01-01

    Bacterial biofilters used in marine recirculation aquaculture systems need improvements to enhance nitrogen removal efficiency. Relatively little is known about biofilter autochthonous population structure and function. The present study was aimed at isolating and characterizing an autochthonous denitrifying bacterium from a marine biofilter installed at a recirculation aquaculture system. Colonization of four different media in a marine fish farm was followed by isolation of various denitrifying strains and molecular classification of the most promising one, strain T2, as a novel member of the Pseudomonas fluorescens cluster. This strain exhibits high metabolic versatility regarding N and C source utilization and environmental conditions for growth. It removed nitrate through aerobic assimilatory metabolism at a specific rate of 116.2 mg NO(3)-N g dw(-1) h(-1). Dissimilatory NO(3)-N removal was observed under oxic conditions at a limited rate, where transient NO(2)-N formed represented 22% (0.17 mg L(-1)) of the maximum transient NO(2)-N observed under anoxic conditions. Dissimilatory NO(3)-N removal under anoxic conditions occurred at a specific rate of 53.5 mg NO(3)-N g dw(-1) h(-1). The isolated denitrifying strain was able to colonize different materials, such as granular activated carbon (GAC), Filtralite and Bioflow plastic rings, which allow the development of a prototype bioreactor for strain characterization under dynamic conditions and mimicking fish-farm operating conditions.

  2. Isolation and Characterisation of 1-Alkyl-3-Methylimidazolium Chloride Ionic Liquid-Tolerant and Biodegrading Marine Bacteria

    PubMed Central

    Megaw, Julianne; Busetti, Alessandro; Gilmore, Brendan F.

    2013-01-01

    The aim of this study was to isolate and identify marine-derived bacteria which exhibited high tolerance to, and an ability to biodegrade, 1-alkyl-3-methylimidazolium chloride ionic liquids. The salinity and hydrocarbon load of some marine environments may induce selective pressures which enhance the ability of microbes to grow in the presence of these liquid salts. The isolates obtained in this study generally showed a greater ability to grow in the presence of the selected ionic liquids compared to microorganisms described previously, with two marine-derived bacteria, Rhodococcus erythropolis and Brevibacterium sanguinis growing in concentrations exceeding 1 M 1-ethyl-3-methylimidazolium chloride. The ability of these bacteria to degrade the selected ionic liquids was assessed using High Performance Liquid Chromatography (HPLC), and three were shown to degrade the selected ionic liquids by up to 59% over a 63-day test period. These bacterial isolates represent excellent candidates for further potential applications in the bioremediation of ionic liquid-containing waste or following accidental environmental exposure. PMID:23560109

  3. Isolation by environmental distance in mobile marine species: molecular ecology of franciscana dolphins at their southern range.

    PubMed

    Mendez, Martin; Rosenbaum, Howard C; Subramaniam, Ajit; Yackulic, Charles; Bordino, Pablo

    2010-06-01

    The assessment of population structure is a valuable tool for studying the ecology of endangered species and drafting conservation strategies. As we enhance our understanding about the structuring of natural populations, it becomes important that we also understand the processes behind these patterns. However, there are few rigorous assessments of the influence of environmental factors on genetic patterns in mobile marine species. Given their dispersal capabilities and localized habitat preferences, coastal cetaceans are adequate study species for evaluating environmental effects on marine population structure. The franciscana dolphin, a rare coastal cetacean endemic to the Western South Atlantic, was studied to examine these issues. We analysed genetic data from the mitochondrial DNA and 12 microsatellite markers for 275 franciscana samples utilizing frequency-based, maximum-likelihood and Bayesian algorithms to assess population structure and migration patterns. This information was combined with 10 years of remote sensing environmental data (chlorophyll concentration, water turbidity and surface temperature). Our analyses show the occurrence of genetically isolated populations within Argentina, in areas that are environmentally distinct. Combined evidence of genetic and environmental structure suggests that isolation by distance and a process here termed isolation by environmental distance can explain the observed correlations. Our approach elucidated important ecological and conservation aspects of franciscana dolphins, and has the potential to increase our understanding of ecological processes influencing genetic patterns in other marine species.

  4. Effects of isolation and fishing on the marine ecosystems of Easter Island and Salas y Gómez, Chile

    USGS Publications Warehouse

    Friedlander, Alan M.; Ballesteros, Enric; Beets, Jim; Berkenpas, Eric; Gaymer, Carlos F.; Gorny, Matthias; Sala, Enric

    2013-01-01

    1. An expedition to Salas y Gómez and Easter islands was conducted to develop a comprehensive baseline of the nearshore marine ecosystem, to survey seamounts of the recently created Motu Motiro Hiva Marine Park (MMHMP) – a no-take marine reserve of 150 000 km2 – and to compare these results with Easter Island where the marine ecosystem is similar but has no marine protection. 2. Live coral cover was surprisingly high at both Easter Island (53%) and Salas y Gómez (44%), especially considering their sub-tropical location, high wave energy environments, and geographic isolation. 3. Endemic and regionally-endemic species comprised 77% of the fish abundance at Easter Island and 73% at Salas y Gómez. Fish biomass at Salas y Gómez was relatively high (1.2 t ha-1) and included a large proportion of apex predators (43%), whereas at Easter Island it was almost three times lower (0.45 t ha-1) with large predators accounting for less than 2% of the biomass, despite good habitat quality. 4. The large cohort of small sharks and the absence of larger sharks at Salas y Gómez suggest mesopredator release consistent with recent shark fishing. The fish fauna at the seamounts between Easter Island and Salas y Gómez, outside of MMHMP, harboured 46% endemic species, including a new species of damselfish (Chromis sp. nov.) and probably a new species of Chimaera (Hydrolagus). Numerous seamounts adjacent to Salas y Gómez are currently not included in the MMHMP. 5. This expedition highlights the high biodiversity value of this remote part of the Pacific owing to the uniqueness (endemicity) of the fauna, large apex predator biomass, and geographic isolation.

  5. Marinicauda algicola sp. nov., isolated from a marine red alga Rhodosorus marinus.

    PubMed

    Jeong, Sang Eun; Jeon, Seung Heon; Chun, Byung Hee; Kim, Dong-Woon; Jeon, Che Ok

    2017-09-01

    An aerobic Gram-stain-negative prosthecate bacterium, designated RMAR8-3T, was isolated from a marine red alga Rhodosorus marinus in the Republic of Korea. Cells were dimorphic rods with a single polar prostheca (non-motile) or flagellum (motile) showing catalase- and oxidase-positive reactions. Growth of strain RMAR8-3T was observed at 15-45 °C (optimum, 40 °C), at pH 6.0-9.0 (optimum, pH 7.0) and in the presence of 0-10 % (w/v) NaCl (optimum, 2 %). Ubiquinone-10 was detected as the sole isoprenoid quinone and C18 : 0, summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1ω6c), C17 : 0, C12 : 0 3-OH and C16 : 0 were identified as the major cellular fatty acids. The major polar lipids were sulfo-quinovosyldiacylglycerol, glucuronopyranosyldiglyceride and monoglycosyldiglyceride. The G+C content of the genomic DNA was 66.3 mol%. Strain RMAR8-3T was most closely related to Marinicauda pacifica P-1 km-3T with a 97.6 % 16S rRNA gene sequence similarity. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain RMAR8-3T formed a tight phylogenic lineage with M. pacifica P-1 km-3T within the family Hyphomonadaceae. On the basis of phenotypic, chemotaxonomic and molecular features, strain RMAR8-3T clearly represents a novel species of the genus Marinicauda, for which the name Marinicauda algicola sp. nov. is proposed. The type strain is RMAR8-3T (=KACC 18990T=JCM 31718T).

  6. Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment

    SciTech Connect

    Raghukumar, C.; D`Souza, T.M.; Thorn, R.G.; Reddy, C.A.

    1999-05-01

    A basidiomycetous fungus Flavodon flavus (Klotzsch) Ryvarden (strain 312), isolated from decaying sea grass from a coral lagoon off the west coast of India, mineralized nearly 24% of {sup 14}C-labeled synthetic lignin to {sup 14}CO{sub 2} in 24 days. When grown in low-nitrogen medium this fungus produced three major classes of extracellular lignin-modifying enzymes (LMEs): manganese-dependent peroxidase (MNP), lignin peroxidase (LIP), and laccase. Low MNP and laccase activities were seen in high-nitrogen medium, but no LIP activity was seen. In media containing lignocellulosic substrates such as pine, poplar, or sugarcane bagasse as the sole source of carbon and nitrogen, relatively high MNP and moderate levels of laccases were seen, but LIP production either was not seen or was minimal. LME production was also seen in media prepared with artificial seawater. Fast protein liquid chromatography and isoelectric focusing resolved LMEs into four isozymes each of MNP and LIP, while laccase isozymes were resolved into two groups, one group containing seven isozymes and the other group containing at least three isozymes. The molecular masses of the different isozymes were 43 to 99 kDa for MNP, 40 and 41.5 kDa for LIP, and 43 and 99 kDa for laccase. F. flavus showed effective degradation of various dye pollutants in media prepared with or without artificial seawater. This is the first report on the production of all three major classes of LMEs by F. flavus and points to the bioremediation potential of this organism in terrestrial as well as marine environments.

  7. Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia.

    PubMed

    Al-Saif, Sarah Saleh Abdu-Llah; Abdel-Raouf, Nevein; El-Wazanani, Hend A; Aref, Ibrahim A

    2014-01-01

    Marine algae are known to produce a wide variety of bioactive secondary metabolites and several compounds have been derived from them for prospective development of novel drugs by the pharmaceutical industries. However algae of the Red sea have not been adequately explored for their potential as a source of bioactive substances. In this context Ulva reticulata, Caulerpa occidentalis, Cladophora socialis, Dictyota ciliolata, and Gracilaria dendroides isolated from Red sea coastal waters of Jeddah, Saudi Arabia, were evaluated for their potential for bioactivity. Extracts of the algae selected for the study were prepared using ethanol, chloroform, petroleum ether and water, and assayed for antibacterial activity against Escherichia coli ATCC 25322, Pseudomonas aeruginosa ATCC 27853, Stapylococcus aureus ATCC 29213, and Enterococcus faecalis ATCC 29212. It was found that chloroform was most effective followed by ethanol, petroleum ether and water for the preparation of algal extract with significant antibacterial activities, respectively. Results also indicated that the extracts of red alga G. dendroides were more efficient against the tested bacterial strains followed by green alga U. reticulata, and brown algae D. ciliolata. Chemical analyses showed that G. dendroides recorded the highest percentages of the total fats and total proteins, followed by U. reticulata, and D. ciliolate. Among the bioflavonoids determined Rutin, Quercetin and Kaempherol were present in high percentages in G. dendroides, U. reticulata, and D. ciliolate. Estimation of saturated and unsaturated fatty acids revealed that palmitic acid was present in highest percentage in all the algal species analyzed. Amino acid analyses indicated the presence of free amino acids in moderate contents in all the species of algae. The results indicated scope for utilizing these algae as a source of antibacterial substances.

  8. Isolation and Characterization of Strain MMB-1 (CECT 4803), a Novel Melanogenic Marine Bacterium.

    PubMed

    Solano, F; Garcia, E; Perez, D; Sanchez-Amat, A

    1997-09-01

    A novel marine melanogenic bacterium, strain MMB-1, was isolated from the Mediterranean Sea. The taxonomic characterization of this strain indicated that it belongs to the genus Alteromonas. Under in vivo conditions, L-tyrosine was the specific monophenolic precursor for melanin synthesis. This bacterium contained all types of activities associated with polyphenol oxidases (PPOs), cresolase (EC 1.18.14.1), catecholase (EC 1.10.3.1), and laccase (EC 1.10.3.2). These activities were due to the presence of two different PPOs. The first one showed all the enzymatic activities, but it was not involved in melanogenesis in vivo, since amelanogenic mutant strains obtained by nitrosoguanidine treatment contained levels of this PPO similar to that of the wild-type MMB-1 strain. The second PPO showed cresolase and catecholase activities but no laccase, and it was involved in melanogenesis, since this enzyme was lost in amelanogenic mutant strains. This PPO was strongly activated by sodium dodecyl sulfate below the critical micelle concentration, and it is a tyrosinase-like enzyme showing a lag period in its tyrosine hydroxylase activity that could be avoided by small amounts of L-dopa. This is the first report of a bacterium that contains two PPOs and also the first report of a pluripotent PPO showing all types of oxidase activities. The bacterium and the pluripotent PPO may be useful models for exploring the roles of PPOs in cellular physiology, aside from melanin formation. On the other hand, the high oxidizing capacity of the PPO for a wide range of substrates could make possible its application in phenolic biotransformations, food processing, or the cosmetic industry, where fungal and plant PPOs are being used.

  9. Desulfovibrio senegalensis sp. nov., a mesophilic sulfate reducer isolated from marine sediment.

    PubMed

    Thioye, Abdoulaye; Gam, Zouhaier Ben Ali; Mbengue, Malick; Cayol, Jean-Luc; Joseph-Bartoli, Manon; Touré-Kane, Coumba; Labat, Marc

    2017-09-01

    Several strains of sulfate-reducing bacteria were isolated from marine sediments recovered from Hann Bay (Senegal). All were related to members of the genus Desulfovibrio. A strictly anaerobic, mesophilic and moderately halophilic strain designated BLaC1T was further characterized. Cells of strain BLaC1T stained Gram-negative and were 0.5 µm wide and 2-4 µm long, motile, rod-shaped and non-spore-forming. The four major fatty acids were anteiso-C15 : 0, iso-C15 : 0, iso-C17 : 0 and anteiso-C17 : 0. Growth was observed from 15 to 45 °C (optimum 40 °C) and at pH 5.5-8 (optimum pH 7.5). The salinity range for growth was 5-65 g NaCl l-1 (optimum 30 g l-1). Yeast extract was required for growth. Strain BLaC1T was able to grow on lactate and acetate in the presence of sulfate as an electron acceptor. Sulfate, thiosulfate and sulfite could serve as terminal electron acceptors, but not fumarate, nitrate or elemental sulfur. The DNA G+C content was 55.8 mol%. 16S rRNA gene sequence analysis assigned strain BLaC1T to the family Desulfovibrionaceae; its closest relative was Desulfovibrio oxyclinae DSM 19275T (93.7 % similarity). On the basis of 16S rRNA gene sequence comparisons and physiological characteristics, strain BLaC1T is proposed as representing a novel species of Desulfovibrio, with the name Desulfovibrio senegalensis sp. nov. The type strain is BLaC1T (=DSM 101509T=JCM 31063T).

  10. Ornithinimicrobium algicola sp. nov., a marine actinobacterium isolated from the green alga of the genus Ulva.

    PubMed

    Ramaprasad, E V V; Sasikala, Ch; Ramana, Ch V

    2015-12-01

    A Gram-staining-positive, non-spore-forming actinobacterium, strain JC311T, isolated from marine green alga of the genus Ulva was studied to examine its taxonomic position. On the basis of the 16S rRNA gene sequence similarity studies, strain JC311T was shown represent a member of the genus Ornithinimicrobium and to be closely related to Ornithinimicrobium pekingense LW6T (98.6 %), Ornithinimicrobium kibberense K22-20T (98.3 %) and Ornithinimicrobium humiphilum HKI 0124T (98.1 %). However, strain JC311T showed less than 22 % DNA reassociation value (based on DNA-DNA hybridization) with O. pekingense JCM14001T, O. kibberense JCM12763T and O. humiphilum KCTC19901T. The predominant menaquinone of strain JC311T was MK-8(H4). The peptidoglycan contained l-ornithine as the diagnostic diamino acid. The polar lipid profile consisted of the lipids diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, glycophospholipid, aminophospholipid, phospholipid and two unidentified lipids. The major fatty acids iso-C16 : 0, iso-C15 : 0, iso-C17 : 1ω9c and iso-C17 : 0 were consistent with the fatty acid patterns reported for members of the genus Ornithinimicrobium. The distinct genomic, morphological, physiological and chemotaxonomic differences from the previously described taxa support the classification of JC311T as a representative of a novel species of the genus Ornithinimicrobium, for which we propose the name Ornithinimicrobium algicola sp. nov., with the type strain JC311T ( = KCTC 39559 T =  LMG 28808T).

  11. Phylogenetic diversity and biological activity of actinobacteria isolated from the Chukchi Shelf marine sediments in the Arctic Ocean.

    PubMed

    Yuan, Meng; Yu, Yong; Li, Hui-Rong; Dong, Ning; Zhang, Xiao-Hua

    2014-03-06

    Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis.

  12. Phylogenetic Diversity and Biological Activity of Actinobacteria Isolated from the Chukchi Shelf Marine Sediments in the Arctic Ocean

    PubMed Central

    Yuan, Meng; Yu, Yong; Li, Hui-Rong; Dong, Ning; Zhang, Xiao-Hua

    2014-01-01

    Marine environments are a rich source of Actinobacteria and have the potential to produce a wide variety of biologically active secondary metabolites. In this study, we used four selective isolation media to culture Actinobacteria from the sediments collected from the Chukchi Shelf in the Arctic Ocean. A total of 73 actinobacterial strains were isolated. Based on repetitive DNA fingerprinting analysis, we selected 30 representatives for partial characterization according to their phylogenetic diversity, antimicrobial activities and secondary-metabolite biosynthesis genes. Results from the 16S rRNA gene sequence analysis indicated that the 30 strains could be sorted into 18 phylotypes belonging to 14 different genera: Agrococcus, Arsenicicoccus, Arthrobacter, Brevibacterium, Citricoccus, Janibacter, Kocuria, Microbacterium, Microlunatus, Nocardioides, Nocardiopsis, Saccharopolyspora, Salinibacterium and Streptomyces. To our knowledge, this paper is the first report on the isolation of Microlunatus genus members from marine habitats. Of the 30 isolates, 11 strains exhibited antibacterial and/or antifungal activity, seven of which have activities against Bacillus subtilis and Candida albicans. All 30 strains have at least two biosynthetic genes, one-third of which possess more than four biosynthetic genes. This study demonstrates the significant diversity of Actinobacteria in the Chukchi Shelf sediment and their potential for producing biologically active compounds and novel material for genetic manipulation or combinatorial biosynthesis. PMID:24663116

  13. Molecular adaptations in Antarctic fish and marine microorganisms.

    PubMed

    Giordano, Daniela; Russo, Roberta; di Prisco, Guido; Verde, Cinzia

    2012-06-01

    The Antarctic marine environment is one of the most extreme on Earth due to its stably low temperature and high oxygen content. Here we discuss various aspects of the molecular adaptations evolved by Antarctic fish and marine microorganisms living in this environment. This review will in particular focus on: (i) the genetic/genomic bases of adaptation in Antarctic notothenioid fish; (ii) the role of neuroglobin recently identified in the brain of Antarctic icefish; (iii) the structural and functional features of globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125.

  14. Use of a SLAM transfected Vero cell line to isolate and characterize marine mammal morbilliviruses using an experimental ferret model.

    PubMed

    Nielsen, Ole; Smith, Greg; Weingartl, Hana; Lair, Stéphane; Measures, Lena

    2008-07-01

    yield of virus finally obtained) over traditional cell culture methodologies for isolation and characterization of marine mammal morbilliviruses.

  15. Isolation of a New Natural Product and Cytotoxic and Antimicrobial Activities of Extracts from Fungi of Indonesian Marine Habitats

    PubMed Central

    Tarman, Kustiariyah; Lindequist, Ulrike; Wende, Kristian; Porzel, Andrea; Arnold, Norbert; Wessjohann, Ludger A.

    2011-01-01

    In the search for bioactive compounds, 11 fungal strains were isolated from Indonesian marine habitats. Ethyl acetate extracts of their culture broth were tested for cytotoxic activity against a urinary bladder carcinoma cell line and for antifungal and antibacterial activities against fish and human pathogenic bacteria as well as against plant and human pathogenic fungi. The crude extract of a sterile algicolous fungus (KT31), isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex P.C. Silva exhibited potent cytotoxic activity with an IC50 value of 1.5 μg/mL. Another fungal strain (KT29) displayed fungicidal properties against the plant pathogenic fungus Cladosporium cucumerinum Ell. et Arth. at 50 μg/spot. 2-Carboxy-8-methoxy-naphthalene-1-ol (1) could be isolated as a new natural product. PMID:21556160

  16. Isolation of a new natural product and cytotoxic and antimicrobial activities of extracts from fungi of Indonesian marine habitats.

    PubMed

    Tarman, Kustiariyah; Lindequist, Ulrike; Wende, Kristian; Porzel, Andrea; Arnold, Norbert; Wessjohann, Ludger A

    2011-02-25

    In the search for bioactive compounds, 11 fungal strains were isolated from Indonesian marine habitats. Ethyl acetate extracts of their culture broth were tested for cytotoxic activity against a urinary bladder carcinoma cell line and for antifungal and antibacterial activities against fish and human pathogenic bacteria as well as against plant and human pathogenic fungi. The crude extract of a sterile algicolous fungus (KT31), isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex P.C. Silva exhibited potent cytotoxic activity with an IC₅₀ value of 1.5 μg/mL. Another fungal strain (KT29) displayed fungicidal properties against the plant pathogenic fungus Cladosporium cucumerinum Ell. et Arth. at 50 μg/spot. 2-Carboxy-8-methoxy-naphthalene-1-ol (1) could be isolated as a new natural product.

  17. Purification and characterization of antibacterial compounds of Pseudoalteromonas flavipulchra JG1.

    PubMed

    Yu, Min; Wang, Junfeng; Tang, Kaihao; Shi, Xiaochong; Wang, Shushan; Zhu, Wei-Ming; Zhang, Xiao-Hua

    2012-03-01

    Pseudoalteromonas flavipulchra JG1 produces a protein PfaP and a range of small-molecule compounds with inhibitory activities against Vibrio anguillarum. The PfaP protein was purified from the extracellular products of JG1 by electroelution, and antibacterial activity was observed by an in-gel antibacterial assay. The complete amino acid sequence (694 aa) of PfaP was determined by de novo peptide sequencing and subsequent alignment with the proteome sequence of strain JG1. The calculated molecular mass of PfaP was 77.0 kDa. PfaP was 58 % identical to l-lysine oxidase AlpP of Pseudoalteromonas tunicata D2, and 54 % identical to the marinocine antimicrobial protein of Marinomonas mediterranea MMB-1. Five small molecules (compounds 1-5) with antibacterial activity, which were identified as p-hydroxybenzoic acid (1), trans-cinnamic acid (2), 6-bromoindolyl-3-acetic acid (3), N-hydroxybenzoisoxazolone (4) and 2'-deoxyadenosine (5), were purified by sequential column chromatography over silica gel, Sephadex LH-20 and RP-18 from ethyl acetate extract of strain JG1, and their structures were determined by NMR and MS. Brown compound 3, the only brominated compound, showed antibacterial activity against both Gram-positive and Gram-negative bacteria.

  18. The Haloprotease CPI Produced by the Moderately Halophilic Bacterium Pseudoalteromonas ruthenica Is Secreted by the Type II Secretion Pathway▿ †

    PubMed Central

    Sánchez-Porro, Cristina; Mellado, Encarnación; Pugsley, Anthony P.; Francetic, Olivera; Ventosa, Antonio

    2009-01-01

    The gene (cpo) encoding the extracellular protease CPI produced by the moderately halophilic bacterium Pseudoalteromonas ruthenica CP76 was cloned, and its nucleotide sequence was analyzed. The cpo gene encodes a 733-residue protein showing sequence similarity to metalloproteases of the M4 family. The type II secretion apparatus was shown to be responsible for secretion of the haloprotease CPI. PMID:19376897

  19. Life in the cold: a proteomic study of cold-repressed proteins in the antarctic bacterium pseudoalteromonas haloplanktis TAC125.

    PubMed

    Piette, Florence; D'Amico, Salvino; Mazzucchelli, Gabriel; Danchin, Antoine; Leprince, Pierre; Feller, Georges

    2011-06-01

    The proteomes expressed at 4°C and 18°C by the psychrophilic Antarctic bacterium Pseudoalteromonas haloplanktis were compared using two-dimensional differential in-gel electrophoresis with special reference to proteins repressed by low temperatures. Remarkably, the major cold-repressed proteins, almost undetectable at 4°C, were heat shock proteins involved in folding assistance.

  20. Recently confirmed apoptosis-inducing lead compounds isolated from marine sponge of potential relevance in cancer treatment.

    PubMed

    Essack, Magbubah; Bajic, Vladimir B; Archer, John A C

    2011-01-01

    Despite intense efforts to develop non-cytotoxic anticancer treatments, effective agents are still not available. Therefore, novel apoptosis-inducing drug leads that may be developed into effective targeted cancer therapies are of interest to the cancer research community. Targeted cancer therapies affect specific aberrant apoptotic pathways that characterize different cancer types and, for this reason, it is a more desirable type of therapy than chemotherapy or radiotherapy, as it is less harmful to normal cells. In this regard, marine sponge derived metabolites that induce apoptosis continue to be a promising source of new drug leads for cancer treatments. A PubMed query from 01/01/2005 to 31/01/2011 combined with hand-curation of the retrieved articles allowed for the identification of 39 recently confirmed apoptosis-inducing anticancer lead compounds isolated from the marine sponge that are selectively discussed in this review.

  1. Recently Confirmed Apoptosis-Inducing Lead Compounds Isolated from Marine Sponge of Potential Relevance in Cancer Treatment

    PubMed Central

    Essack, Magbubah; Bajic, Vladimir B.; Archer, John A.C.

    2011-01-01

    Despite intense efforts to develop non-cytotoxic anticancer treatments, effective agents are still not available. Therefore, novel apoptosis-inducing drug leads that may be developed into effective targeted cancer therapies are of interest to the cancer research community. Targeted cancer therapies affect specific aberrant apoptotic pathways that characterize different cancer types and, for this reason, it is a more desirable type of therapy than chemotherapy or radiotherapy, as it is less harmful to normal cells. In this regard, marine sponge derived metabolites that induce apoptosis continue to be a promising source of new drug leads for cancer treatments. A PubMed query from 01/01/2005 to 31/01/2011 combined with hand-curation of the retrieved articles allowed for the identification of 39 recently confirmed apoptosis-inducing anticancer lead compounds isolated from the marine sponge that are selectively discussed in this review. PMID:22131960

  2. Phylogenetic Identification of Fungi Isolated from the Marine Sponge Tethya aurantium and Identification of Their Secondary Metabolites

    PubMed Central

    Wiese, Jutta; Ohlendorf, Birgit; Blümel, Martina; Schmaljohann, Rolf; Imhoff, Johannes F.

    2011-01-01

    Fungi associated with the marine sponge Tethya aurantium were isolated and identified by morphological criteria and phylogenetic analyses based on internal transcribed spacer (ITS) regions. They were evaluated with regard to their secondary metabolite profiles. Among the 81 isolates which were characterized, members of 21 genera were identified. Some genera like Acremonium, Aspergillus, Fusarium, Penicillium, Phoma, and Trichoderma are quite common, but we also isolated strains belonging to genera like Botryosphaeria, Epicoccum, Parasphaeosphaeria, and Tritirachium which have rarely been reported from sponges. Members affiliated to the genera Bartalinia and Volutella as well as to a presumably new Phoma species were first isolated from a sponge in this study. On the basis of their classification, strains were selected for analysis of their ability to produce natural products. In addition to a number of known compounds, several new natural products were identified. The scopularides and sorbifuranones have been described elsewhere. We have isolated four additional substances which have not been described so far. The new metabolite cillifuranone (1) was isolated from Penicillium chrysogenum strain LF066. The structure of cillifuranone (1) was elucidated based on 1D and 2D NMR analysis and turned out to be a previously postulated intermediate in sorbifuranone biosynthesis. Only minor antibiotic bioactivities of this compound were found so far. PMID:21731550

  3. Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems: TABLE 1 

    DOE PAGES

    Flynn, James D.; Hirayama, Hisako; Sakai, Yasuyoshi; ...

    2016-01-21

    The genome sequences ofMethylobacter marinusA45,Methylobactersp. strain BBA5.1, andMethylomarinum vadiIT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems.

  4. Shewanella arctica sp. nov., an iron-reducing bacterium isolated from Arctic marine sediment.

    PubMed

    Kim, So-Jeong; Park, Soo-Je; Oh, Yong-Sik; Lee, Sang-Ah; Shin, Kee-Sun; Roh, Dong-Hyun; Rhee, Sung-Keun

    2012-05-01

    Two strains of dissimilatory iron-reducing bacteria, which could couple lactate oxidation to iron reduction for energy conservation, were isolated from Arctic marine sediment. The strains, IR12(T) and IR26, were both Gram-staining-negative, catalase- and oxidase-positive and facultative anaerobes. Their cells were rod-shaped and motile by means of a polar flagellum. Both strains grew in the presence of 0.5-3.5 % (w/v) NaCl, with an absolute requirement for Na(+). Both were psychrotolerant since they could grow at 4-28 °C but had an optimum growth temperature of 20 °C. Both grew at pH 4.5-9.0 (optimum, pH 7.5). The major fatty acids of strains IR12(T) and IR26 were summed feature 3 (C(16 : 1)ω6c and/or C(16 : 1)ω7c) and C(16 : 0). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strains IR12(T) and IR26 belonged to the class Gammaproteobacteria and were most closely related to Shewanella vesiculosa M7(T), Shewanella livingstonensis NF22(T) and Shewanella frigidimarina ACAM 591(T) (with 98.5 and 98.8 %, 98.5 and 98.8 %, and 98.5 and 98.8 % sequence similarities, respectively). The genomic DNA G+C contents of strains IR12(T) and IR26 were 40.0 and 40.3 mol%, respectively. DNA-DNA relatedness data indicated that the two novel strains represented a single species that was distinct from S. vesiculosa M7(T), S. livingstonensis NF22(T) and S. frigidimarina ACAM 591(T). Based on the phylogenetic, phenotypic and DNA-DNA relatedness data, the two new strains represent a single novel species of the genus Shewanella, for which the name Shewanella arctica sp. nov. is proposed. The type strain is IR12(T) ( = KCTC 23109(T) = JCM 16723(T)).

  5. Lysobacter hymeniacidonis sp. nov., isolated from a crude oil-contaminated marine sponge

    NASA Astrophysics Data System (ADS)

    Xin, Yanjuan; Qu, Junge; Xu, Junyi; Wu, Peichun; Cao, Xupeng; Xue, Song

    2015-12-01

    An aerobic, Gram-negative bacterium, strain 2-5T, was isolated from a crude oil-contaminated marine sponge collected near Dalian Bay, China, and subjected to a polyphasic taxonomic investigation. Cells of strain 2-5T were non-spore forming, non-motile, rods 0.2-0.3 µm wide and 1.1-1.2µm long. Strain 2-5T grew well on nutrient agar, TSA, R2A agar and LB agar. Colonies of strain 2-5T on LB agar were circular, smooth with entire margins, non-transparent and pale yellow after 3 d of incubation at 30°C. Growth of strain 2-5T occurred in LN medium with 0-6% NaCl; no growth occurred in the presence of 8.0% NaCl. Strain 2-5T grew at 15-42°C and at pH 6.0-8.0. Comparative 16S rRNA gene sequence analysis showed that strain 2-5T clustered with the species of the genus Lysobacter. Its closet neighbors were the type strains of Lysobacter concretionis KCTC 12205T (97% similarity), Lysobacter arseniciresistens ZS79T (96%), and Lysobacter defluii APB-9T (96%). The value for DNA-DNA relatedness between strain 2-5T and L. concretionis KCTC 12205T was 23%. Branched fatty acids iso-C16: 0, iso-C15: 0, iso-C 11: 0 3-OH, iso-C17: 1ω9 c and iso-C11: 0 were found to be predominant. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Strain 2-5T had a DNA G+C content of 63.8 mol%. On the basis of the phenotypic, chemotaxonomic, DNA-DNA hybridization and phylogenetic data, strain 2-5T represents a novel species of the genus Lysobacter, for which the name Lysobacter hymeniacidonis sp. nov. is proposed. The type strain is 2-5T (=CGMCC 1.12190T = JCM 18137T).

  6. Winogradskyella psychrotolerans sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from Arctic sediment.

    PubMed

    Begum, Z; Srinivas, T N R; Manasa, P; Sailaja, B; Sunil, B; Prasad, S; Shivaji, S

    2013-05-01

    A novel Gram-negative, rod-coccus shaped, non-motile, strain, RS-3(T), was isolated from a sediment sample collected from the marine transect of Kongsfjorden, Ny-Ålesund, Svalbard, Arctic. Colonies and broth cultures were yellowish in colour due to the presence of carotenoids. Strain RS-3(T) was positive for oxidase, aesculinase, caseinase, gelatinase and urease activities and negative for amylase, catalase, lipase, lysine decarboxylase, ornithine decarboxylase, DNase and β-galactosidase activities. The predominant fatty acids were iso-C15 : 0 (18.0), anteiso-C15 : 0 (16.8), iso-C15 : 1 G (14.2), anteiso-C15 : 1 A (6.0) and iso-C15 : 0 3-OH (6.8). Strain RS-3(T) contained MK-6 (72.42 %) and MK-7 (27.58 %) as the major respiratory quinones and phosphatidylethanolamine, two unidentified aminolipids and two unidentified lipids make up the polar lipid composition. The DNA G+C content of strain RS-3(T) was 34.7±1.2 mol%. The 16S rRNA gene sequence analysis indicated that Winogradskyella pacifica and Winogradskyella thalassocola are the most closely related species with sequence similarities to the type strains of these species of 98.5 and 97.7 %, respectively. However, DNA-DNA hybridization with Winogradskyella pacifica KCTC 22997(T) and Winogradskyella thalassocola DSM 15363(T) showed a relatedness of 22 and 42.5 % with respect to strain RS-3(T). Based on the DNA-DNA hybridization values, phenotypic and chemotaxonomic characteristics and phylogenetic inference, strain RS-3(T) is proposed as a novel species of the genus Winogradskyella, for which the name Winogradskyella psychrotolerans sp. nov. is proposed. The type strain of Winogradskyella psychrotolerans sp. nov. is RS-3(T) ( = CIP 110154(T) = NBRC 106169(T)). An emended description of the genus Winogradskyella is provided.

  7. Cyclobacterium qasimii sp. nov., a psychrotolerant bacterium isolated from Arctic marine sediment.

    PubMed

    Shivaji, S; Reddy, P Vishnu Vardhan; Rao, S S S Nageshwara; Begum, Zareena; Manasa, Poorna; Srinivas, T N R

    2012-09-01

    A novel Gram-stain-negative, horseshoe-shaped, non-motile bacterium, designated strain M12-11B(T), was isolated from a marine sediment sample collected at a depth of 200 m from Kongsfjorden, Svalbard. The colony colour was orangish red due to the presence of carotenoids. Fatty acids were dominated by branched and unsaturated fatty acids (90.8 %), with a high abundance of iso-C(15 : 0) (14.9 %), anteiso-C(15 : 0) (11.4 %), iso-C(15 : 1) G (13.1 %), C(15 : 1)ω6c (5.4 %), C(17 : 1)ω6c (6.7 %), summed feature 3 (C(16 : 1)ω7c and/or C(16 : 1)ω6c; 9.3 %) and summed feature 9 (10-methyl C(16 : 0) and/or iso-C(17 : 1)ω9c; 5.9 %). Strain M12-11B(T) contained MK-7 as the major respiratory quinone. The polar lipids consisted of phosphatidylcholine, phosphatidylethanolamine, one unidentified aminolipid and three unidentified lipids. Based on 16S rRNA gene sequence similarities, the type strains of Cyclobacterium amurskyense, Cyclobacterium marinum and Cyclobacterium lianum were most closely related to M12-11B(T) with sequence similarities of 98.2, 96.8 and 93.3 %, respectively. Other members of the family Cyclobacteriaceae had sequence similarities of <92.0 %. However, DNA-DNA hybridization with Cyclobacterium amurskyense KCTC 12363(T) and Cyclobacterium marinum DSM 745(T) showed relatedness values of only 24.5 and 32.5 % with respect to strain M12-11B(T). Based on the results of DNA-DNA hybridization experiments and phenotypic and chemotaxonomic data, it appears that strain M12-11B(T) represents a novel species of the genus Cyclobacterium, for which the name Cyclobacterium qasimii sp. nov. is proposed; the type strain is M12-11B(T) (= KCTC 23011(T) = NBRC 106168(T)) and it has a DNA G+C content of 40.5 mol%.

  8. Kordia ulvae sp. nov., a bacterium isolated from the surface of green marine algae Ulva sp.

    PubMed

    Qi, Feng; Huang, Zhaobin; Lai, Qiliang; Li, Dengfeng; Shao, Zongze

    2016-04-20

    A novel bacterial strain SC2T was isolated from Ulva sp. a green marine algae. Strain SC2T was Gram-negative, aerobic, rod-shaped and had no flagellum. Oxidase and catalase were positive. Strain SC2T can degrade skim milk, agar, soluble starch, Tween 20 and Tween 80. The optimal salinity and temperature of strain SC2T were 2% and 30 °C, respectively. Phylogenetic analysis based on the 16S rRNA gene indicated that strain SC2T was affiliated to the genus Kordia, with highest sequence similarity to Kordia algicida OT-1T (97.23%), Kordia antarctica IMCC3317T (97.23%) and Kordia jejudonensis SSK3-3T (97.02%); other species of the genus Kordia shared 93.98%-95.78% sequence similarity. The ANI value and the DNA-DNA hybridization estimated value between strain SC2T and three type strains (K. algicida OT-1T, K. antarctica IMCC3317T and K. jejudonensis SSK3-3T) were found to be 79.4%-82.4% and 24.2%-27.0%, respectively. The predominant fatty acids (>5.0%) were C16:0, iso-C15:0, iso-C15:0 3-OH, iso-C17:0 3-OH, summed feature 3 (comprised C16:1 ω7c/C16:1 ω6c), summed feature 8 (comprised C18:1 ω7c/C18:1 ω6c) and summed feature 9 (comprised iso-C17:1 ω9c/C16:0 10-methyl). The respiratory quinone was Menaquinone-6 (MK-6). The polar lipid profile consisted of four unknown lipids, three unidentified phospholipids, one unidentified aminolipid and one phosphatidylethanolamine. The G+C content of the genomic DNA was 34.5 mol%. The combined genotypic and phenotypic data showed that strain SC2T represents a novel species within the genus Kordia, for which the name Kordia ulvae sp. nov. is proposed, with the type strain SC2T (= KCTC 42872T = MCCC 1A01772T = LMG 29123T).

  9. Vibrio caribbeanicus sp. nov., isolated from the marine sponge Scleritoderma cyanea.

    PubMed

    Hoffmann, Maria; Monday, Steven R; Allard, Marc W; Strain, Errol A; Whittaker, Paul; Naum, Marianna; McCarthy, Peter J; Lopez, Jose V; Fischer, Markus; Brown, Eric W

    2012-08-01

    A Gram-negative, oxidase-positive, catalase-negative, facultatively anaerobic, motile, curved rod-shaped bacterium, strain N384(T), was isolated from a marine sponge (Scleritoderma cyanea; phylum Porifera) collected from a depth of 795 feet (242 m) off the west coast of Curaçao. On the basis of 16S rRNA gene sequencing, strain N384(T) was shown to belong to the genus Vibrio, most closely related to Vibrio brasiliensis LMG 20546(T) (98.8% similarity), Vibrio nigripulchritudo ATCC 27043(T) (98.5%), Vibrio tubiashii ATCC 19109(T) (98.6%) and V. sinaloensis DSM 21326(T) (98.2%). The DNA G+C content of strain N384(T) was 41.6 mol%. An analysis of concatenated sequences of five genes (gyrB, rpoA, pyrH, mreB and ftsZ; 4068 bp) demonstrated a clear separation between strain N384(T) and its closest neighbours and clustered strain N384(T) into the 'Orientalis' clade of vibrios. Phenotypically, the novel species belonged to the arginine dihydrolase-positive, lysine decarboxylase- and ornithine decarboxylase-negative (A+/L-/O-) cluster. The novel species was also differentiated on the basis of fatty acid composition, specifically that the proportions of iso-C(13:0), iso-C(15:0), C(15:0), iso-C(16:0), C(16:0), iso-C(17:0), C(17:1)ω8c and C(17:0) were significantly different from those found in V. brasiliensis and V. sinaloensis. The results of DNA-DNA hybridization, average nucleotide identity and physiological and biochemical tests further allowed differentiation of this strain from other described species of the genus Vibrio. Collectively, these findings confirm that strain N384(T) represents a novel Vibrio species, for which the name Vibrio caribbeanicus sp. nov. is proposed, with the type strain N384(T) ( = ATCC BAA-2122(T) = DSM 23640(T)).

  10. Subtilomycin: A New Lantibiotic from Bacillus subtilis Strain MMA7 Isolated from the Marine Sponge Haliclona simulans

    PubMed Central

    Phelan, Robert W.; Barret, Matthieu; Cotter, Paul D.; O’Connor, Paula M.; Chen, Rui; Morrissey, John P.; Dobson, Alan D. W.; O’Gara, Fergal; Barbosa, Teresa M.

    2013-01-01

    Bacteriocins are attracting increased attention as an alternative to classic antibiotics in the fight against infectious disease and multidrug resistant pathogens. Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans displays a broad spectrum antimicrobial activity, which includes Gram-positive and Gram-negative pathogens, as well as several pathogenic Candida species. This activity is in part associated with a newly identified lantibiotic, herein named as subtilomycin. The proposed biosynthetic cluster is composed of six genes, including protein-coding genes for LanB-like dehydratase and LanC-like cyclase modification enzymes, characteristic of the class I lantibiotics. The subtilomycin biosynthetic cluster in B. subtilis strain MMA7 is found in place of the sporulation killing factor (skf) operon, reported in many B. subtilis isolates and involved in a bacterial cannibalistic behaviour intended to delay sporulation. The presence of the subtilomycin biosynthetic cluster appears to be widespread amongst B. subtilis strains isolated from different shallow and deep water marine sponges. Subtilomycin possesses several desirable industrial and pharmaceutical physicochemical properties, including activity over a wide pH range, thermal resistance and water solubility. Additionally, the production of the lantibiotic subtilomycin could be a desirable property should B. subtilis strain MMA7 be employed as a probiotic in aquaculture applications. PMID:23736764

  11. Uneven frequency of Vibrio alginolyticus-group isolates among different populations of Galápagos marine iguana (Amblyrhynchus cristatus).

    PubMed

    Thaller, Maria C; Ciambotta, Marco; Sapochetti, Manuela; Migliore, Luciana; Tapia, Whashington; Cedeño, Virna; Gentile, Gabriele

    2010-02-01

    The presence of Vibrio isolates was investigated in cloacal swabs from the Galápagos marine iguana (Amblyrhyncus cristatus). Such unique iguana is endemic to the Galápagos Archipelago, it is listed as vulnerable in the IUCN Red List (2009), and is strictly protected by CITES and Ecuador laws. Our results revealed an uneven isolation frequency of vibrios from animals living in different settings: maximal among the Santa Fe population, scarce at Bahía Tortuga but practically absent in the samples from Puerto Ayora and Plaza Sur. A 16S sequencing confirmed that the isolates belonged to the genus Vibrio, placing them within the V. alginolyticus group; the biochemical identification was, indeed, consistent with V. alginolyticus features. The reason of the observed discrepancy is not clear, but could be either linked to a higher pollution in the inhabited or more touristic places or to differential influence of chemical and physical parameters at a local scale. As V. alginolyticus is an opportunistic pathogen for man and it is known to cause disease in sea-living animals, the ability of these vibrios to enter and persist to a certain extent in the marine iguana gut should be regarded as a risk for health of both the animals and the human personnel involved in monitoring activities. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. Development of a novel technique for axenic isolation and culture of thraustochytrids from New Zealand marine environments.

    PubMed

    Wilkens, S L; Maas, E W

    2012-02-01

    To maintain axenic cultures of commercially important thraustochytrids, a novel procedure was developed for the isolation of zoospores and sporangium from heterotrophic seawater samples and axenic culture on solid media. Thraustochytrid cultures were isolated from Whangapoua Harbour in North East New Zealand and subjected to two antibiotic and antifungal treatment regimes designed to eliminate bacteria and fungi. Antibiotic trial 1 was designed to determine the appropriate combination of antibiotics (including streptomycin/penicillin, ampicillin, rifampicin, nalidixic acid, tetracycline, gentamicin and the antifungal agent nystatin). Antibiotic trial 2 determined the optimal dosing frequency and concentration of the antibiotics, and antifungal found to be the most promising in trial 1. Axenic cultures were then spread plated onto nutrient agar containing the optimal antibiotic cocktail, and pure thraustochytrid colonies were purified on solid media using standard microbiological techniques. Removal of bacteria and fungi was best accomplished using a mixture of three antibiotics and one antifungal; rifampicin (300 mg l(-1)), streptomycin/penicillin (25 mg l(-1)) and nystatin (10 mg l(-1)) were incorporated in seawater samples and incorporated into cultures every 24 h for a minimum of 2 days. The axenic isolation and culture of marine thraustochytrids from a marine habitat in New Zealand have significant implications for the biotechnological development of these potentially valuable protists. This method has global significance as it is reasonable to assume it could be used throughout the world to obtain axenic thraustochytrid cultures. © 2011The Authors Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  13. Umboniibacter marinipuniceus gen. nov., sp. nov., a marine gammaproteobacterium isolated from the mollusc Umbonium costatum from the Sea of Japan.

    PubMed

    Romanenko, Lyudmila A; Tanaka, Naoto; Frolova, Galina M

    2010-03-01

    Two bacterial strains, KMM 3891(T) and KMM 3892, were isolated from internal tissues of the marine mollusc Umbonium costatum collected from the Sea of Japan. The novel isolates were Gram-negative, aerobic, faint pink-reddish-pigmented, rod-shaped, non-motile, stenohaline and psychrotolerant bacteria that were unable to degrade most tested complex polysaccharides. Polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Fatty acid analysis revealed C(17 : 1)omega6c, C(17 : 0), C(16 : 0) and C(16 : 1)omega7c as the dominant components. The major isoprenoid quinone was Q-7. The DNA G+C content of strain KMM 3891(T) was 51.7 mol%. According to phylogenetic analysis of 16S rRNA gene sequences, strains KMM 3891(T) and KMM 3892 were positioned within the Gammaproteobacteria as a separate branch, sharing <93 % sequence similarity to their phylogenetic relatives including Saccharophagus degradans, Microbulbifer species, Endozoicomonas elysicola, Simiduia agarivorans and Teredinibacter turnerae. Based on phenotypic characterization and phylogenetic distance, the novel marine isolates KMM 3891(T) and KMM 3892 represent a new genus and species, for which the name Umboniibacter marinipuniceus gen. nov., sp. nov. is proposed. The type strain of Umboniibacter marinipuniceus is KMM 3891(T) (=NRIC 0753(T) =JCM 15738(T)).

  14. Isolation of promising bacterial strains from soil and marine environment for polyhydroxyalkanoates (PHAs) production utilizing Jatropha biodiesel byproduct.

    PubMed

    Shrivastav, Anupama; Mishra, Sanjiv K; Shethia, Bhumi; Pancha, Imran; Jain, Deepti; Mishra, Sandhya

    2010-08-01

    PHAs are biodegradable and environmentally friendly thermoplastics. The major contributor to PHA production cost is carbon substrate cost, therefore it is desirable to produce PHA from waste/byproducts like Jatropha biodiesel byproducts. This study was done using Jatropha biodiesel byproduct as carbon source, to decrease production cost for PHAs. Total 41 isolates from soil and marine source were able to utilize Jatropha biodiesel byproduct. Nine bacteria were selected for further studies, which were found positive for Nile red viable colony screening. Two bacterial isolates SM-P-1S and SM-P-3M isolated from soil and marine environment respectively, were found promising for PHA production. PHA accumulation for SM-P-1S and SM-P-3M was 71.8% and 75% PHA/CDW respectively and identified as Bacillus sonorensis and Halomonas hydrothermalis by MTCC. The PHA obtained from SM-P-1S and SM-P-3M was analyzed by FTIR and NMR as polyhydroxybutyrate (PHB). Copyright 2010 Elsevier B.V. All rights reserved.

  15. Plasmid-Mediated Quinolone Resistance (PMQR) Genes and Class 1 Integrons in Quinolone-Resistant Marine Bacteria and Clinical Isolates of Escherichia coli from an Aquacultural Area.

    PubMed

    Tomova, Alexandra; Ivanova, Larisa; Buschmann, Alejandro H; Godfrey, Henry P; Cabello, Felipe C

    2017-06-23

    Antimicrobial usage in aquaculture selects for antimicrobial-resistant microorganisms in the marine environment. The relevance of this selection to terrestrial animal and human health is unclear. Quinolone-resistance genes qnrA, qnrB, and qnrS were chromosomally located in four randomly chosen quinolone-resistant marine bacteria isolated from an aquacultural area with heavy quinolone usage. In quinolone-resistant uropathogenic clinical isolates of Escherichia coli from a coastal area bordering the same aquacultural region, qnrA was chromosomally located in two E. coli isolates, while qnrB and qnrS were located in small molecular weight plasmids in two other E. coli isolates. Three quinolone-resistant marine bacteria and three quinolone-resistant E. coli contained class 1 integrons but without physical association with PMQR genes. In both marine bacteria and uropathogenic E. coli, class 1 integrons had similar co-linear structures, identical gene cassettes, and similarities in their flanking regions. In a Marinobacter sp. marine isolate and in one E. coli clinical isolate, sequences immediately upstream of the qnrS gene were homologous to comparable sequences of numerous plasmid-located qnrS genes while downstream sequences were different. The observed commonality of quinolone resistance genes and integrons suggests that aquacultural use of antimicrobials might facilitate horizontal gene transfer between bacteria in diverse ecological locations.

  16. Characterization of a New Cold-Adapted and Salt-Activated Polysaccharide Lyase Family 7 Alginate Lyase from Pseudoalteromonas sp. SM0524

    PubMed Central

    Chen, Xiu-Lan; Dong, Sheng; Xu, Fei; Dong, Fang; Li, Ping-Yi; Zhang, Xi-Ying; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Xie, Bin-Bin

    2016-01-01

    Marine bacterial alginate lyases play a role in marine alginate degradation and carbon cycling. Although a large number of alginate lyases have been characterized, reports on alginate lyases with special characteristics are still rather less. Here, a gene alyPM encoding an alginate lyase of polysaccharide lyase family 7 (PL7) was cloned from marine Pseudoalteromonas sp. SM0524 and expressed in Escherichia coli. AlyPM shows 41% sequence identity to characterized alginate lyases, indicating that AlyPM is a new PL7 enzyme. The optimal pH for AlyPM activity was 8.5. AlyPM showed the highest activity at 30°C and remained 19% of the highest activity at 5°C. AlyPM was unstable at temperatures above 30°C and had a low Tm of 37°C. These data indicate that AlyPM is a cold-adapted enzyme. Moreover, AlyPM is a salt-activated enzyme. AlyPM activity in 0.5–1.2 M NaCl was sixfolds higher than that in 0 M NaCl, probably caused by a significant increase in substrate affinity, because the Km of AlyPM in 0.5 M NaCl decreased more than 20-folds than that in 0 M NaCl. AlyPM preferably degraded polymannuronate and mainly released dimers and trimers. These data indicate that AlyPM is a new PL7 endo-alginate lyase with special characteristics. PMID:27486451

  17. MLVA-16 typing of 295 marine mammal Brucella isolates from different animal and geographic origins identifies 7 major groups within Brucella ceti and Brucella pinnipedialis

    PubMed Central

    2009-01-01

    Background Since 1994, Brucella strains have been isolated from a wide range of marine mammals. They are currently recognized as two new Brucella species, B. pinnipedialis for the pinniped isolates and B. ceti for the cetacean isolates in agreement with host preference and specific phenotypic and molecular markers. In order to investigate the genetic relationships within the marine mammal Brucella isolates and with reference to terrestrial mammal Brucella isolates, we applied in this study the Multiple Loci VNTR (Variable Number of Tandem Repeats) Analysis (MLVA) approach. A previously published assay comprising 16 loci (MLVA-16) that has been shown to be highly relevant and efficient for typing and clustering Brucella strains from animal and human origin was used. Results 294 marine mammal Brucella strains collected in European waters from 173 animals and a human isolate from New Zealand presumably from marine origin were investigated by MLVA-16. Marine mammal Brucella isolates were shown to be different from the recognized terrestrial mammal Brucella species and biovars and corresponded to 3 major related groups, one specific of the B. ceti strains, one of the B. pinnipedialis strains and the last composed of the human isolate. In the B. ceti group, 3 subclusters were identified, distinguishing a cluster of dolphin, minke whale and porpoise isolates and two clusters mostly composed of dolphin isolates. These results were in accordance with published analyses using other phenotypic or molecular approaches, or different panels of VNTR loci. The B. pinnipedialis group could be similarly subdivided in 3 subclusters, one composed exclusively of isolates from hooded seals (Cystophora cristata) and the two others comprising other seal species isolates. Conclusion The clustering analysis of a large collection of marine mammal Brucella isolates from European waters significantly strengthens the current view of the population structure of these two species, and their

  18. A Novel Erythromycin Resistance Plasmid from Bacillus Sp. Strain HS24, Isolated from the Marine Sponge Haliclona Simulans

    PubMed Central

    Leong, Dara; Morrissey, John P.; Adams, Claire; Dobson, Alan D. W.; O’Gara, Fergal

    2014-01-01

    A better understanding of the origin and natural reservoirs of resistance determinants is fundamental to efficiently tackle antibiotic resistance. This paper reports the identification of a novel 5.8 kb erythromycin resistance plasmid, from Bacillus sp. HS24 isolated from the marine sponge Haliclona simulans. pBHS24B has a mosaic structure and carries the erythromycin resistance gene erm(T). This is the first report of an erythromycin resistance plasmid from a sponge associated bacteria and of the Erm(T) determinant in the genus Bacillus. PMID:25548909

  19. Draft genome sequence of the marine Streptomyces sp. strain PP-C42, isolated from the Baltic Sea.

    PubMed

    Fan, Longjiang; Liu, Yun; Li, Zefeng; Baumann, Heike I; Kleinschmidt, Katrin; Ye, Wanzhi; Imhoff, Johannes F; Kleine, Michael; Cai, Daguang

    2011-07-01

    Streptomyces, a branch of aerobic Gram-positive bacteria, represents the largest genus of actinobacteria. The streptomycetes are characterized by a complex secondary metabolism and produce over two-thirds of the clinically used natural antibiotics today. Here we report the draft genome sequence of a Streptomyces strain, PP-C42, isolated from the marine environment. A subset of unique genes and gene clusters for diverse secondary metabolites as well as antimicrobial peptides could be identified from the genome, showing great promise as a source for novel bioactive compounds.

  20. Verrucisidinol and Verrucosidinol Acetate, Two Pyrone-Type Polyketides Isolated from a Marine Derived Fungus, Penicillium aurantiogriseum

    PubMed Central

    Yu, Ke; Ren, Biao; Wei, Junli; Chen, Caixia; Sun, Jinsheng; Song, Fuhang; Dai, Huanqin; Zhang, Lixin

    2010-01-01

    The new secondary metabolites verrucosidinol (1) and its derivative verrucosidinol acetate (2), together with a potent neurotoxin verrucosidin (3), a congener norverrucosidin (4) and a mixture of two known phytotoxic metabolites terrestric acids (5 and 6), were isolated from the marine derived fungus Penicillium aurantiogriseum. Verrucosidinol has a ring-opened ethylene oxide moiety in the polyene α-pyrone skeleton, and verrucosidinol acetate is its acetate derivative. The chemical structures were determined by comparing with literature data and a combination of spectroscopic techniques, including high resolution mass spectrum and two-dimentional nuclear magnetic resonance spectroscopic analysis. PMID:21139842

  1. Physiological and genetic analyses reveal a mechanistic insight into the multifaceted lifestyles of Pseudoalteromonas sp. SM9913 adapted to the deep-sea sediment.

    PubMed

    Mi, Zi-Hao; Yu, Zi-Chao; Su, Hai-Nan; Wang, Lei; Chen, Xiu-Lan; Pang, Xiuhua; Qin, Qi-Long; Xie, Bin-Bin; Zhang, Xi-Ying; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2015-10-01

    Although bacteriobenthos play a major role in the degradation of particulate organic matter in marine sediment, knowledge of the sediment-adapted lifestyles of bacteriobenthos is still scarce. Here, the particle-associated, swimming and swarming lifestyles of the benthonic bacterium Pseudoalteromonas sp. SM9913 (SM9913) were illustrated. SM9913 had a clay particle-associated lifestyle, and its exopolysaccharide played an important role in this lifestyle. SM9913 also had swimming and swarming motilities, indicating that it may have swimming and swarming lifestyles in the sediment. The lateral flagella were responsible for the swarming motility, and the polar flagella were responsible for the swimming motility. Iron limitation was an indispensable inductive signal of the swarming motility. An analysis of the motilities of SM9913 and its mutants in clay demonstrated that SM9913 moved in clay by both swimming and swarming motilities. Genomic analysis suggests that having two flagella systems is most likely a common adaptation of some bacteriobenthos to the sediment environment. Our results reveal the lifestyles of benthonic SM9913, providing a better understanding of the environmental adaptation of benthonic bacteria.

  2. A Bacterial Quorum-Sensing Precursor Induces Mortality in the Marine Coccolithophore, Emiliania huxleyi

    PubMed Central

    Harvey, Elizabeth L.; Deering, Robert W.; Rowley, David C.; El Gamal, Abrahim; Schorn, Michelle; Moore, Bradley S.; Johnson, Matthew D.; Mincer, Tracy J.; Whalen, Kristen E.

    2016-01-01

    Interactions between phytoplankton and bacteria play a central role in mediating biogeochemical cycling and food web structure in the ocean. However, deciphering the chemical drivers of these interspecies interactions remains challenging. Here, we report the isolation of 2-heptyl-4-quinolone (HHQ), released by Pseudoalteromonas piscicida, a marine gamma-proteobacteria previously reported to induce phytoplankton mortality through a hitherto unknown algicidal mechanism. HHQ functions as both an antibiotic and a bacterial signaling molecule in cell–cell communication in clinical infection models. Co-culture of the bloom-forming coccolithophore, Emiliania huxleyi with both live P. piscicida and cell-free filtrates caused a significant decrease in algal growth. Investigations of the P. piscicida exometabolome revealed HHQ, at nanomolar concentrations, induced mortality in three strains of E. huxleyi. Mortality of E. huxleyi in response to HHQ occurred slowly, implying static growth rather than a singular loss event (e.g., rapid cell lysis). In contrast, the marine chlorophyte, Dunaliella tertiolecta and diatom, Phaeodactylum tricornutum were unaffected by HHQ exposures. These results suggest that HHQ mediates the type of inter-domain interactions that cause shifts in phytoplankton population dynamics. These chemically mediated interactions, and other like it, ultimately influence large-scale oceanographic processes. PMID:26870019

  3. Selection of Yarrowia lipolytica strains with high protein content from yeasts isolated from different marine environments

    NASA Astrophysics Data System (ADS)

    Chi, Zhenming; Wang, Fang; Wang, Lin; Li, Jing; Wang, Xianghong

    2007-10-01

    A total of 78 Yarrowia lipolytica yeast strains from seawater, sediments, mud of salterns, the guts of marine fish, and marine algae were obtained. After the crude protein of the yeasts was estimated by the method of Kjehldahl, we found that seven strains of the marine yeasts grown in soy bean cake hydrolysate with 20 g L-1 of glucose for 48 h at 28°C contained more than 41.0 g protein per 100 g of cell dry weight and the cell dry weight was more than 4.4 g per L of the culture. Among them, strain SWJ-1b contained the highest crude protein. The results of Biolog identification and molecular methods further confirmed that they indeed belonged to Y. lipolytica.

  4. Identification and Antibacterial Activity of Bacteria Isolated from Marine Sponge Haliclona (Reniera) sp. against Multi-Drug Resistant Human Pathogen

    NASA Astrophysics Data System (ADS)

    Ardhanu Asagabaldan, Meezan; Ayuningrum, D.; Kristiana, R.; Sabdono, A.; Radjasa, O. K.; Trianto, A.

    2017-02-01

    The marine sponge Haliclona (Reniera) sp. was a potential source of natural bioactive compounds. This sponge widely distributed along the coast of Panjang Island, Jepara, Indonesia. The aims of this research were to isolate the associated bacteria with Haliclona (Reniera) sp. and to screen the antibacterial activity against Multi-Drug Resistant (MDR) bacteria. Amount five bacteria were isolated using media selective for bacteria. The antibacterial activities of bacteria were performed by overlay methods. The bacteria strain PSP. 39-04 had the best activity against Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, and Enterobacter cloaceae. Based on colony morphology and phylogenetic characterization using 16S rRNA gene sequencing, PSP 39-04 was closely related with Chromohalobacter salixigens strain DSM3043.

  5. Relative Frequency Distribution of D125 C Values for Spore Isolates from the Mariner-Mars 1969 Spacecraft

    PubMed Central

    Bond, W. W.; Favero, M. S.; Petersen, N. J.; Marshall, J. H.

    1971-01-01

    Bacterial spore crops were prepared from 103 randomly selected aerobic mesophilic isolates collected during a spore assay of Mariner-Mars 1969 spacecraft conducted by the Jet Propulsion Laboratory. D125 c values, which were determined by the fractional-replicate-unit-negative-most-probable number assay method using a forced air oven, ranged from less than 5 min to a maximum of 58 min. Subsequent identification of the 103 isolates indicated that there was no relationship between species and dry-heat resistance. A theoretical dry-heat survival curve of the “population” was nonlinear. The slope of this curve was determined almost exclusively by the more resistant organisms, although they represented only a small portion of the “population.” PMID:16349904

  6. [Identification and Nitrogen Removal Characteristics of a Heterotrophic Nitrification-Aerobic Denitrification Strain Isolated from Marine Environment].

    PubMed

    Sun, Qing-hua; Yu, De-shuang; Zhang, Pei-yu; Lin, Xue-zheng; Li, Jin

    2016-02-15

    A heterotrophic nitrification-aerobic denitrification strain named y5 was isolated from marine environment by traditional microbial isolation method using seawater as medium. It was identified as Klebsiella sp. based on the morphological, physiological and 16S rRNA sequence analysis. The experiment results showed that the optimal carbon resource was sodium citrate; the optimal pH was 7.0; and the optimal C/N was 17. The strain could use NH4Cl, NaNO2 and KNO3 as sole nitrogen source, and the removal efficiencies were77.07%, 64.14% and 100% after 36 hours, respectively. The removal efficiency reached 100% after 36 hours in the coexistence of NH4Cl, NaNO2 and KNO3. The results showed that the strain y5 had independent and efficient heterotrophic nitrification and aerobic denitrification activities in high salt wastewater.

  7. Incidence of Plasmids in Marine Vibrio spp. Isolated from an Oil Field in the Northwestern Gulf of Mexico

    PubMed Central

    Hada, Howard S.; Sizemore, Ronald K.

    1981-01-01

    Presumptive marine Vibrio spp. were collected from an operational oil field and control site located in the northwestern Gulf of Mexico. Of 440 isolates analyzed for the presence of extrachromosomal deoxyribonucleic acid elements or plasmids by using the cleared lysate and agarose gel techniques, 31% showed distinct plasmid bands on agarose gels. A majority of the plasmids detected were estimated to have molecular masses of 10 × 106 or less. Multiple plasmids were observed in approximately half of the plasmid-containing strains. A number of isolates contained plasmids with similar banding and mobility patterns. The oil field area had noticeably more plasmid-containing strains (35 versus 23% in the control site) and a greater number of plasmids per plasmid-containing strain (an average of 2.5 plasmids, versus 1.5 in the control site). Oil field discharges might have resulted in increased plasmid incidence and diversity. Images PMID:16345685

  8. Two New Species of Marine Saprotrophic Sphaeroformids in the Mesomycetozoea Isolated From the Sub-Arctic Bering Sea.

    PubMed

    Hassett, Brandon T; López, J Andrés; Gradinger, Rolf

    2015-07-01

    The genus Sphaeroforma previously encompassed organisms isolated exclusively from animal symbionts in marine systems. The first saprotrophic sphaeroformids (Mesomycetozoea) isolated from non-animal hosts are described here. Sphaeroforma sirkka and S. napiecek are also the first species in the genus possessing endogenous DNA-containing motile propagules and central vacuoles, traits that have previously guided morphological differentiation of sphaeroformids from the genus Creolimax. Phylogenetic analysis of DNA sequences from the 18S rRNA and the ITS1-5.8S--ITS2 loci firmly place S. sirkka and S. napiecek within Sphaeroforma, extending the number of known species to six within this genus. The discovery of these species increases the geographical range, cellular variation and life history complexity of the sphaeroformids.

  9. Physiological characterization of a halotolerant anoxygenic phototrophic Fe(II)-oxidizing green-sulfur bacterium isolated from a marine sediment.

    PubMed

    Laufer, Katja; Niemeyer, Annika; Nikeleit, Verena; Halama, Maximilian; Byrne, James M; Kappler, Andreas

    2017-05-01

    Anoxygenic photoautotrophic bacteria which use light energy and electrons from Fe(II) for growth, so-called photoferrotrophs, are suggested to have been amongst the first phototrophic microorganisms on Earth and to have contributed to the deposition of sedimentary iron mineral deposits, i.e. banded iron formations. To date only two isolates of marine photoferrotrophic bacteria exist, both of which are closely related purple non-sulfur bacteria. Here we present a novel green-sulfur photoautotrophic Fe(II) oxidizer isolated from a marine coastal sediment, Chlorobium sp. strain N1, which is closely related to the freshwater green-sulfur bacterium Chlorobium luteolum DSM273 that is incapable of Fe(II) oxidation. Besides Fe(II), our isolated strain grew phototrophically with other inorganic and organic substrates such as sulfide, hydrogen, lactate or yeast extract. Highest Fe(II) oxidation rates were measured at pH 7.0-7.3, the temperature optimum was 25°C. Mössbauer spectroscopy identified ferrihydrite as the main Fe(III) mineral and fluorescence and helium-ion microscopy revealed cell-mineral aggregates without obvious cell encrustation. In summary, our study showed that the new isolate is physiologically adapted to the conditions of its natural habitat but also to conditions as proposed for early Earth and is thus a suitable model organism for further studies addressing phototrophic Fe(II) oxidation on early Earth. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Antimicrobial resistance profile of Vibrio species isolated from marine shrimp farming environments (Litopenaeus vannamei) at Ceará, Brazil.

    PubMed

    Rebouças, Rosa Helena; de Sousa, Oscarina Viana; Lima, Anahy Sousa; Vasconcelos, Fabio Roger; de Carvalho, Patricia Barroso; Vieira, Regine Helena Silva dos Fernandes

    2011-01-01

    Brazilian shrimp culture industry has a great economic importance mainly to the northeast region. However, the accelerated development of this activity has resulted in the emergency of outbreaks of diseases from farming shrimp, and as a consequence the use of antimicrobial drugs to minimize the potential adverse effect under the shrimp production. The inappropriate use of antibiotics in aquaculture is one of the causes for the high incidence of antimicrobial resistant bacteria isolated from aquatic environments that represent a danger for aquatic organisms and human health. There is little information available on the level of antimicrobial resistance in pathogenic bacteria from shrimp farming environment. Therefore, this study aimed to evaluate the phenotypic resistance profile among Vibrio isolates from hatcheries water samples and from cultivated marine shrimp hepatopancreas (L. vannamei). Antimicrobial susceptibility testing was carried out by a standard disc diffusion method and the minimum inhibitory concentration (MIC) of oxytetracycline (OTC) for resistant Vibrio isolates was determinate by broth dilution method. The results showed a high incidence of resistance to ampicillin (45.2%) and to the tetracycline class (38.7%). Florfenicol and nitrofurantoin were 100% effective against Vibrio isolates. In this study, the OTC-resistant Vibrio spp. showed MIC values of more than 400mg/L and the presence of seawater did not influence the oxytetracycline bioactivity. The occurrence of antimicrobial multiresistance patterns was observed in 29% of Vibrio isolates. Fifty-five percent of multiresistant isolates of Vibrio lost one or more antibiotic resistance phenotype after procedure to curing of resistance plasmids. The oxytetracycline resistance was the phenotype most often lost among plasmid-cured isolates.

  11. Microaerophilic Fe(II)-Oxidizing Zetaproteobacteria Isolated from Low-Fe Marine Coastal Sediments: Physiology and Composition of Their Twisted Stalks.

    PubMed

    Laufer, K; Nordhoff, M; Halama, M; Martinez, R E; Obst, M; Nowak, M; Stryhanyuk, H; Richnow, H H; Kappler, A

    2017-04-15

    Microaerophilic Fe(II) oxidizers are commonly found in habitats containing elevated Fe(II) and low O2 concentrations and often produce characteristic Fe mineral structures, so-called twisted stalks or tubular sheaths. Isolates originating from freshwater habitats are all members of the Betaproteobacteria, while isolates from marine habitats belong almost exclusively to the Zetaproteobacteria So far, only a few isolates of marine microaerophilic Fe(II) oxidizers have been described, all of which are obligate microaerophilic Fe(II) oxidizers and have been thought to be restricted to Fe-rich systems. Here, we present two new isolates of marine microaerophilic Fe(II)-oxidizing Zetaproteobacteria that originate from typical coastal marine sediments containing only low Fe concentrations (2 to 11 mg of total Fe/g of sediment [dry weight]; 70 to 100 μM dissolved Fe(2+) in the porewater). The two novel Zetaproteobacteria share characteristic physiological properties of the Zetaproteobacteria group, even though they come from low-Fe environments: the isolates are obligate microaerophilic Fe(II) oxidizers and, like most isolated Zetaproteobacteria, they produce twisted stalks. We found a low organic carbon content in the stalks (∼0.3 wt%), with mostly polysaccharides and saturated aliphatic chains (most likely lipids). The Fe minerals in the stalks were identified as lepidocrocite and possibly ferrihydrite. Immobilization experiments with Ni(2+) showed that the stalks can function as a sink for trace metals. Our findings show that obligate microaerophilic Fe(II) oxidizers belonging to the Zetaproteobacteria group are not restricted to Fe-rich environments but can also be found in low-Fe marine environments, which increases their overall importance for the global biogeochemical Fe cycle.IMPORTANCE So far, only a few isolates of benthic marine microaerophilic Fe(II) oxidizers belonging to the Zetaproteobacteria exist, and most isolates were obtained from habitats containing

  12. Limited genetic diversity among Sarcocystis neurona strains infecting southern sea otters precludes distinction between marine and terrestrial isolates.

    PubMed

    Wendte, J M; Miller, M A; Nandra, A K; Peat, S M; Crosbie, P R; Conrad, P A; Grigg, M E

    2010-04-19

    Sarcocystis neurona is an apicomplexan parasite identified as a cause of fatal neurological disease in the threatened southern sea otter (Enhydra lutris nereis). In an effort to characterize virulent S. neurona strains circulating in the marine ecosystem, this study developed a range of markers relevant for molecular genotyping. Highly conserved sequences within the 18S ribosomal gene array, the plastid-encoded RNA polymerase (RPOb) and the cytochrome c oxidase subunit 1 mitochondrial gene (CO1) were assessed for their ability to distinguish isolates at the genus and species level. For within-species comparisons, five surface antigens (SnSAG1-SnSAG5) and one high resolution microsatellite marker (Sn9) were developed as genotyping markers to evaluate intra-strain diversity. Molecular analysis at multiple loci revealed insufficient genetic diversity to distinguish terrestrial isolates from strains infecting marine mammals. Furthermore, SnSAG specific primers applied against DNA from the closely related species, Sarcocystis falcatula, lead to the discovery of highly similar orthologs to SnSAG2, 3, and 4, calling into question the specificity of diagnostic tests based on these antigens. The results of this study suggest a population genetic structure for S. neurona similar to that reported for the related parasite, Toxoplasma gondii, dominated by a limited number of successful genotypes. Published by Elsevier B.V.

  13. Limited genetic diversity among Sarcocystis neurona strains infecting southern sea otters precludes distinction between marine and terrestrial isolates

    PubMed Central

    Wendte, J.M.; Miller, M.A.; Nandra, A.K.; Peat, S.M.; Crosbie, P.R.; Conrad, P.A.; Grigg, M.E.

    2010-01-01

    Sarcocystis neurona is an apicomplexan parasite identified as a cause of fatal neurological disease in the threatened southern sea otter (Enhydra lutris nereis). In an effort to characterize virulent S. neurona strains circulating in the marine ecosystem, this study developed a range of markers relevant for molecular genotyping. Highly conserved sequences within the 18S ribosomal gene array, the plastid-encoded RNA polymerase (RPOb) and the cytochrome c oxidase subunit 1 mitochondrial gene (CO1) were assessed for their ability to distinguish isolates at the genus and species level. For within-species comparisons, five surface antigens (SnSAG1-SnSAG5) and one high resolution microsatellite marker (Sn9) were developed as genotyping markers to evaluate intra-strain diversity. Molecular analysis at multiple loci revealed insufficient genetic diversity to distinguish terrestrial isolates from strains infecting marine mammals. Furthermore, SnSAG specific primers applied against DNA from the closely related species, Sarcocystis falcatula, lead to the discovery of highly similar orthologs to SnSAG2, 3, and 4, calling into question the specificity of diagnostic tests based on these antigens. The results of this study suggest a population genetic structure for S. neurona similar to that reported for the related parasite, Toxoplasma gondii, dominated by a limited number of successful genotypes. PMID:20071081

  14. Immunological cross-reactions between P700 chlorophyll-proteins isolated from two marine green algae and one higher plant

    NASA Astrophysics Data System (ADS)

    Wu, Xiaonan; Zhou, Baicheng; Tseng, C. K.

    1991-06-01

    P700 Chl-protein was isolated from a marine green alga Bryopsis corticulans with SDS-resolved thylakoid membranes by SDS-PAGE. After elution from the gel, the recovered protein revealed a 100 KD polypeptide by re-electrophoresis. The same SDS-PAGE procedure was used to isolate P700 Chl-proteins from spinach ( Spinacea oleracea) and another marine green alga Codium fragile. Polyclonal antibodies to Bryopsis P700 protein were raised in rabbits. The antibodies were shown to cross-react with P700 Chl-protein and Chl-protein complexes containing P700 protein from B. Corticulans, C. f ragile, and even spinach. Results indicate similarity of the amino acid sequences of the P700 Chl-proteins and the highly conserved structure of the apoproteins of phylogenetically distant species over evolution. The antibodies cross-react with none of the components of PSII in the species tested, indicating an independent pathway of evolution of photosystem I and photosystem II of later origin.

  15. Draft Genome Sequences of Gammaproteobacterial Methanotrophs Isolated from Marine Ecosystems: TABLE 1 

    SciTech Connect

    Flynn, James D.; Hirayama, Hisako; Sakai, Yasuyoshi; Dunfield, Peter F.; Klotz, Martin G.; Knief, Claudia; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Khmelenina, Valentina N.; Trotsenko, Yuri A.; Murrell, J. Colin; Semrau, Jeremy D.; Svenning, Mette M.; Stein, Lisa Y.; Kyrpides, Nikos; Shapiro, Nicole; Woyke, Tanja; Bringel, Françoise; Vuilleumier, Stéphane; DiSpirito, Alan A.; Kalyuzhnaya, Marina G.

    2016-01-21

    The genome sequences ofMethylobacter marinusA45,Methylobactersp. strain BBA5.1, andMethylomarinum vadiIT-4 were obtained. These aerobic methanotrophs are typical members of coastal and hydrothermal vent marine ecosystems.

  16. Disruption of Microbial Biofilms by an Extracellular Protein Isolated from Epibiotic Tropical Marine Strain of Bacillus licheniformis

    PubMed Central

    Dusane, Devendra H.; Damare, Samir R.; Nancharaiah, Yarlagadda V.; Ramaiah, N.; Venugopalan, Vayalam P.; Kumar, Ameeta Ravi; Zinjarde, Smita S.

    2013-01-01

    Background Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. Methodology/Principal Findings B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275) derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC) value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. Conclusion/Significance We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent. PMID:23691235

  17. Structure of EstA esterase from psychrotrophic Pseudoalteromonas sp. 643A covalently inhibited by monoethylphosphonate

    SciTech Connect

    Brzuszkiewicz, Anna; Nowak, Elzbieta; Dauter, Zbigniew; Dauter, Miroslawa; Cieslinski, Hubert; Dlugolecka, Anna; Kur, Józef

    2010-10-28

    The crystal structure of the esterase EstA from the cold-adapted bacterium Pseudoalteromonas sp. 643A was determined in a covalently inhibited form at a resolution of 1.35 {angstrom}. The enzyme has a typical SGNH hydrolase structure consisting of a single domain containing a five-stranded {beta}-sheet, with three helices at the convex side and two helices at the concave side of the sheet, and is ornamented with a couple of very short helices at the domain edges. The active site is located in a groove and contains the classic catalytic triad of Ser, His and Asp. In the structure of the crystal soaked in diethyl p-nitrophenyl phosphate (DNP), the catalytic serine is covalently connected to a phosphonate moiety that clearly has only one ethyl group. This is the only example in the Protein Data Bank of a DNP-inhibited enzyme with covalently bound monoethylphosphate.

  18. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    PubMed

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS.

  19. Comparative study on the antibiotic susceptibility and plasmid profiles of Vibrio alginolyticus strains isolated from four Tunisian marine biotopes.

    PubMed

    Lajnef, Rim; Snoussi, Mejdi; Romalde, Jesús López; Nozha, Cohen; Hassen, Abdennaceur

    2012-12-01

    The antibiotic resistance patterns and the plasmids profiles of the predominant etiological agent responsible for vibriosis in Tunisia, V. alginolyticus were studied to contribute to control their spread in some Mediterranean aquaculture farms and seawater. The sixty-nine V. alginolyticus strains isolated from different marine Tunisian biotopes (bathing waters, aquaculture and conchylicole farms and a river connected to the seawater during the cold seasons) were multi-drug resistant with high resistance rate to ampicillin, kanamycin, doxycyclin, erythromycin, imipinem, and nalidixic acid. The multiple resistance index ranged from 0.3 to 0.7 for the isolates of Khenis, from 0.5 to 0.8 for those of Menzel Jmil, from 0.5 to 0.75 (Hergla) and from 0.3 to 0.7 for the isolates of Oued Soltane. The high value of antibiotic resistance index was recorded for the V. alginolyticus population isolated from the fish farm in Hergla (ARI = 0.672) followed by the population isolated from the conchylicole station of Menzel Jmil (ARI = 0.645). The results obtained by the MIC tests confirmed the resistance of the V. alginolyticus to ampicillin, erythromycin, kanamycin, cefotaxime, streptomycin and trimethoprim. Plasmids were found in 79.48 % of the strains analyzed and 30 different plasmid profiles were observed. The strains had a high difference in the size of plasmids varying between 0.5 and 45 kb. Our study reveals that the antibiotic-resistant bacteria are widespread in the aquaculture and conchylicole farm relatively to others strains isolated from seawater.

  20. Erysipelothrix rhusiopathiae isolates recovered from fish, a harbour seal (Phoca vitulina) and the marine environment are capable of inducing characteristic cutaneous lesions in pigs.

    PubMed

    Opriessnig, T; Shen, H G; Bender, J S; Boehm, J R; Halbur, P G

    2013-05-01

    In order to determine the diversity and pathogenicity of Erysipelothrix spp. isolates recovered from marine fish, a harbour seal (Phoca vitulina) and the marine environment, 14 isolates were characterized by genotyping, serotyping, determination of the surface protective antigen (spa) gene type and assessment of virulence in a pig bioassay. All 14 isolates were Erysipelothrix rhusiopathiae. Isolates were determined to be of serotypes 2 (n = 3), 3 (n = 1), 4 (n = 1), 12 (n = 1), 15 (n = 1) or 21 (n = 6), and one isolate cross-reacted with serotypes 5 and 21. The spa gene analysis determined that 64.3% (n = 9) were spaA and 35.7% (n = 5) were spaB1. In pigs, 10/14 isolates induced small plaques to diamond-shaped cutaneous lesions consistent with Erysipelothrix spp. infection. The results of this study indicate that the marine E. rhusiopathiae isolates have greater genetic and antigenic diversity than pig isolates and are capable of inducing classical skin lesions in pigs.

  1. Aflaquinolones A-G: Secondary metabolites from marine and fungicolous isolates of Aspergillus spp.

    USDA-ARS?s Scientific Manuscript database

    Seven new compounds (aflaquinolones A-G; 1-7) containing dihydroquinolin-2-one and terpenoid units have been isolated from two different fungal sources. Two of these metabolites (1 and 2) were obtained from a Hawaiian fungicolous isolate of Aspergillus sp. (section Flavipedes; MYC-2048=NRRL 58570), ...

  2. Desulfoconvexum algidum gen. nov., sp. nov., a psychrophilic sulfate-reducing bacterium isolated from a permanently cold marine sediment.

    PubMed

    Könneke, Martin; Kuever, Jan; Galushko, Alexander; Jørgensen, Bo Barker

    2013-03-01

    A sulfate-reducing bacterium, designated JHA1(T), was isolated from a permanently cold marine sediment sampled in an Artic fjord on the north-west coast of Svalbard. The isolate was originally enriched at 4 °C in a highly diluted liquid culture amended with hydrogen and sulfate. Strain JHA1(T) was a psychrophile, growing fastest between 14 and 16 °C and not growing above 20 °C. Fastest growth was found at neutral pH (pH 7.2-7.4) and at marine concentrations of NaCl (20-30 g l(-1)). Phylogenetic analysis of 16S rRNA gene sequences revealed that strain JHA1(T) was a member of the family Desulfobacteraceae in the Deltaproteobacteria. The isolate shared 99 % 16S rRNA gene sequence similarity with an environmental sequence obtained from permanently cold Antarctic sediment. The closest recognized relatives were Desulfobacula phenolica DSM 3384(T) and Desulfobacula toluolica DSM 7467(T) (both <95 % sequence similarity). In contrast to its closest phylogenetic relatives, strain JHA1(T) grew chemolithoautotrophically with hydrogen as an electron donor. CO dehydrogenase activity indicated the operation of the reductive acetyl-CoA pathway for inorganic carbon assimilation. Beside differences in physiology and morphology, strain JHA1(T) could be distinguished chemotaxonomically from the genus Desulfobacula by the absence of the cellular fatty acid C16 : 0 10-methyl. Phylogenetic differentiation from other genera was further supported by DsrAB and AprBA sequence analysis. Based on the described phylogenetic and phenotypic differences between strain JHA1(T) and its closest relatives, the establishment of a novel genus and a novel species, Desulfoconvexum algidum gen. nov., sp. nov. is proposed. The type strain is JHA1(T) ( = DSM 21856(T)  = JCM 16085(T)).

  3. Anti-Biofilm Activity of a Long-Chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm

    PubMed Central

    Casillo, Angela; Papa, Rosanna; Ricciardelli, Annarita; Sannino, Filomena; Ziaco, Marcello; Tilotta, Marco; Selan, Laura; Marino, Gennaro; Corsaro, Maria M.; Tutino, Maria L.; Artini, Marco; Parrilli, Ermenegilda

    2017-01-01

    Staphylococcus epidermidis is a harmless human skin colonizer responsible for ~20% of orthopedic device-related infections due to its capability to form biofilm. Nowadays there is an interest in the development of anti-biofilm molecules. Marine bacteria represent a still underexploited source of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. Previous results have demonstrated that the culture supernatant of Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 impairs the formation of S. epidermidis biofilm. Further, evidence supports the hydrophobic nature of the active molecule, which has been suggested to act as a signal molecule. In this paper we describe an efficient activity-guided purification protocol which allowed us to purify this anti-biofilm molecule and structurally characterize it by NMR and mass spectrometry analyses. Our results demonstrate that the anti-biofilm molecule is pentadecanal, a long-chain fatty aldehyde, whose anti-S. epidermidis biofilm activity has been assessed using both static and dynamic biofilm assays. The specificity of its action on S. epidermidis biofilm has been demonstrated by testing chemical analogs of pentadecanal differing either in the length of the aliphatic chain or in their functional group properties. Further, indications of the mode of action of pentadecanal have been collected by studying the bioluminescence of a Vibrio harveyi reporter strain for the detection of autoinducer AI-2 like activities. The data collected suggest that pentadecanal acts as an AI-2 signal. Moreover, the aldehyde metabolic role and synthesis in the Antarctic source strain has been investigated. To the best of our knowledge, this is the first report on the identification of an anti-biofilm molecule form from cold-adapted bacteria and on the action of a long-chain fatty aldehyde acting as an anti-biofilm molecule against S. epidermidis. PMID:28280714

  4. Anti-Biofilm Activity of a Long-Chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm.

    PubMed

    Casillo, Angela; Papa, Rosanna; Ricciardelli, Annarita; Sannino, Filomena; Ziaco, Marcello; Tilotta, Marco; Selan, Laura; Marino, Gennaro; Corsaro, Maria M; Tutino, Maria L; Artini, Marco; Parrilli, Ermenegilda

    2017-01-01

    Staphylococcus epidermidis is a harmless human skin colonizer responsible for ~20% of orthopedic device-related infections due to its capability to form biofilm. Nowadays there is an interest in the development of anti-biofilm molecules. Marine bacteria represent a still underexploited source of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. Previous results have demonstrated that the culture supernatant of Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 impairs the formation of S. epidermidis biofilm. Further, evidence supports the hydrophobic nature of the active molecule, which has been suggested to act as a signal molecule. In this paper we describe an efficient activity-guided purification protocol which allowed us to purify this anti-biofilm molecule and structurally characterize it by NMR and mass spectrometry analyses. Our results demonstrate that the anti-biofilm molecule is pentadecanal, a long-chain fatty aldehyde, whose anti-S. epidermidis biofilm activity has been assessed using both static and dynamic biofilm assays. The specificity of its action on S. epidermidis biofilm has been demonstrated by testing chemical analogs of pentadecanal differing either in the length of the aliphatic chain or in their functional group properties. Further, indications of the mode of action of pentadecanal have been collected by studying the bioluminescence of a Vibrio harveyi reporter strain for the detection of autoinducer AI-2 like activities. The data collected suggest that pentadecanal acts as an AI-2 signal. Moreover, the aldehyde metabolic role and synthesis in the Antarctic source strain has been investigated. To the best of our knowledge, this is the first report on the identification of an anti-biofilm molecule form from cold-adapted bacteria and on the action of a long-chain fatty aldehyde acting as an anti-biofilm molecule against S. epidermidis.

  5. Phylogenetic Diversity of Marine Cyanophage Isolates and Natural Virus Communities as Revealed by Sequences of Viral Capsid Assembly Protein Gene g20†

    PubMed Central

    Zhong, Yan; Chen, Feng; Wilhelm, Steven W.; Poorvin, Leo; Hodson, Robert E.

    2002-01-01

    In order to characterize the genetic diversity and phylogenetic affiliations of marine cyanophage isolates and natural cyanophage assemblages, oligonucleotide primers CPS1 and CPS8 were designed to specifically amplify ca. 592-bp fragments of the gene for viral capsid assembly protein g20. Phylogenetic analysis of isolated cyanophages revealed that the marine cyanophages were highly diverse yet more closely related to each other than to enteric coliphage T4. Genetically related marine cyanophage isolates were widely distributed without significant geographic segregation (i.e., no correlation between genetic variation and geographic distance). Cloning and sequencing analysis of six natural virus concentrates from estuarine and oligotrophic offshore environments revealed nine phylogenetic groups in a total of 114 different g20 homologs, with up to six clusters and 29 genotypes encountered in a single sample. The composition and structure of natural cyanophage communities in the estuary and open-ocean samples were different from each other, with unique phylogenetic clusters found for each environment. Changes in clonal diversity were also observed from the surface waters to the deep chlorophyll maximum layer in the open ocean. Only three clusters contained known cyanophage isolates, while the identities of the other six clusters remain unknown. Whether or not these unidentified groups are composed of bacteriophages that infect different Synechococcus groups or other closely related cyanobacteria remains to be determined. The high genetic diversity of marine cyanophage assemblages revealed by the g20 sequences suggests that marine viruses can potentially play important roles in regulating microbial genetic diversity. PMID:11916671

  6. Isolation of low-molecular-weight heparin/heparan sulfate from marine sources.

    PubMed

    Saravanan, Ramachandran

    2014-01-01

    The glycosaminoglycan (heparin and heparan sulfate) are polyanionic sulfated polysaccharides mostly recognized for its anticoagulant activity. In many countries, low-molecular-weight heparins have replaced the unfractionated heparin, owing to its high bioavailability, half-life, and less adverse effect. The low-molecular-weight heparins differ in mode of preparation (chemical or enzymatic synthesis and chromatography fractionations) and as a consequence in molecular weight distribution, chemical structure, and pharmacological activities. Bovine and porcine body parts are at present used for manufacturing of commercial heparins, and the appearance of mad cow disease and Creutzfeldt-Jakob disease in humans has limited the use of bovine heparin. Consequently, marine organisms come across the new resource for the production of low-molecular-weight heparin and heparan sulfate. The importance of this chapter suggests that the low-molecular-weight heparin and heparan sulfate from marine species could be alternative sources for commercial heparin. © 2014 Elsevier Inc. All rights reserved.

  7. Culturable heterotrophic bacteria from the marine sponge Dendrilla nigra: isolation and phylogenetic diversity of actinobacteria

    NASA Astrophysics Data System (ADS)

    Selvin, Joseph; Gandhimathi, R.; Kiran, G. Seghal; Priya, S. Shanmugha; Ravji, T. Rajeetha; Hema, T. A.

    2009-09-01

    Culturable heterotrophic bacterial composition of marine sponge Dendrilla nigra was analysed using different enrichments. Five media compositions including without enrichment (control), enriched with sponge extract, with growth regulator (antibiotics), with autoinducers, and complete enrichment containing sponge extract, antibiotics, and autoinducers were developed. DNA hybridization assay was performed to explore host specific bacteria and ecotypes of culturable sponge-associated bacteria. Enrichment with selective inducers (AHLs and sponge extract) and regulators (antibiotics) considerably enhanced the cultivation potential of sponge-associated bacteria. It was found that Marinobacter (MSI032), Micromonospora (MSI033), Streptomyces (MSI051), and Pseudomonas (MSI057) were sponge-associated obligate symbionts. The present findings envisaged that “ Micromonospora-Saccharomonospora-Streptomyces” group was the major culturable actinobacteria in the marine sponge D. nigra. The DNA hybridization assay was a reliable method for the analysis of culturable bacterial community in marine sponges. Based on the culturable community structure, the sponge-associated bacteria can be grouped (ecotypes) as general symbionts, specific symbionts, habitat flora, and antagonists.

  8. New Sequence Types and Multidrug Resistance among Pathogenic Escherichia coli Isolates from Coastal Marine Sediments

    PubMed Central

    Luna, G. M.; Rinaldi, C.; Di Cesare, A.; Danovaro, R.; Biavasco, F.

    2012-01-01

    The spread of antibiotic-resistant microorganisms is widely recognized, but data about their sources, presence, and significance in marine environments are still limited. We examined 109 Escherichia coli strains from coastal marine sediments carrying virulence genes for antibiotic susceptibility, specific resistance genes, prevalence of class 1 and 2 integrons, and sequence type. Antibiotic resistance was found in 35% of strains, and multiple resistances were found in 14%; the resistances detected most frequently were against tetracycline (28%), ampicillin (16.5%), trimethoprim-sulfamethoxazole (13%), and streptomycin (7%). The highest prevalence of resistant strains was in phylogenetic group A, whereas phylogroup B2 exhibited a significantly lower frequency than all the other groups. Sixty percent of multiresistant strains harbored class 1 or 2 integrase genes, and about 50% carried resistance genes (particularly dfrA and aadA) linked to a class 1 integron. Multilocus sequence typing of 14 selected strains identified eight different types characteristic of extraintestinal pathogens and three new allelic combinations. Our data suggest that coastal marine sediment may be a suitable environment for the survival of pathogenic and antimicrobial-resistant E. coli strains capable of contributing to resistance spread via integrons among benthic bacteria, and they highlight a role for these strains in the emergence of new virulent genotypes. PMID:22447595

  9. Shifting elasmobranch community assemblage at Cocos Island--an isolated marine protected area.

    PubMed

    White, Easton R; Myers, Mark C; Flemming, Joanna Mills; Baum, Julia K

    2015-08-01

    Fishing pressure has increased the extinction risk of many elasmobranch (shark and ray) species. Although many countries have established no-take marine reserves, a paucity of monitoring data means it is still unclear if reserves are effectively protecting these species. We examined data collected by a small group of divers over the past 21 years at one of the world's oldest marine protected areas (MPAs), Cocos Island National Park, Costa Rica. We used mixed effects models to determine trends in relative abundance, or probability of occurrence, of 12 monitored elasmobranch species while accounting for variation among observers and from abiotic factors. Eight of 12 species declined significantly over the past 2 decades. We documented decreases in relative abundance for 6 species, including the iconic scalloped hammerhead shark (Sphyrna lewini) (-45%), whitetip reef shark (Triaenodon obesus) (-77%), mobula ray (Mobula spp.) (-78%), and manta ray (Manta birostris) (-89%), and decreases in the probability of occurrence for 2 other species. Several of these species have small home ranges and should be better protected by an MPA, which underscores the notion that declines of marine megafauna will continue unabated in MPAs unless there is adequate enforcement effort to control fishing. In addition, probability of occurrence at Cocos Island of tiger (Galeocerdo cuvier), Galapagos (Carcharhinus galapagensis), blacktip (Carcharhinus limbatus), and whale (Rhincodon typus) sharks increased significantly. The effectiveness of MPAs cannot be evaluated by examining single species because population responses can vary depending on life history traits and vulnerability to fishing pressure.

  10. Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages.

    PubMed

    Simmons, T Luke; Coates, R Cameron; Clark, Benjamin R; Engene, Niclas; Gonzalez, David; Esquenazi, Eduardo; Dorrestein, Pieter C; Gerwick, William H

    2008-03-25

    In all probability, natural selection began as ancient marine microorganisms were required to compete for limited resources. These pressures resulted in the evolution of diverse genetically encoded small molecules with a variety of ecological and metabolic roles. Remarkably, many of these same biologically active molecules have potential utility in modern medicine and biomedical research. The most promising of these natural products often derive from organisms richly populated by associated microorganisms (e.g., marine sponges and ascidians), and often there is great uncertainty about which organism in these assemblages is making these intriguing metabolites. To use the molecular machinery responsible for the biosynthesis of potential drug-lead natural products, new tools must be applied to delineate their genetic and enzymatic origins. The aim of this perspective is to highlight both traditional and emerging techniques for the localization of metabolic pathways within complex marine environments. Examples are given from the literature as well as recent proof-of-concept experiments from the authors' laboratories.

  11. Streptococcus hongkongensis sp. nov., isolated from a patient with an infected puncture wound and from a marine flatfish.

    PubMed

    Lau, Susanna K P; Curreem, Shirly O T; Lin, Cherry C N; Fung, Ami M Y; Yuen, Kwok-Yung; Woo, Patrick C Y

    2013-07-01

    A bacterium, HKU30(T), was isolated from the infected tissue of a patient with wound infection after puncture by a fish fin. Cells are facultative anaerobic, non-spore-forming, non-motile, Gram-positive cocci arranged in chains. Colonies were non-haemolytic. The strain was catalase, oxidase, urease and Voges-Proskauer test negative. It reacted with Lancefield's group G antisera and was resistant to optochin. It grew on bile aesculin agar and in 5 % NaCl. It was unidentified by three commercial identification systems. 16S rRNA gene sequence analysis indicated that the bacterium shared 98.2, 97.7, 97.4 and 97.1 % nucleotide identities with Streptococcus iniae, Streptococcus pseudoporcinus, Streptococcus parauberis and Streptococcus uberis, respectively. The DNA G+C content was 35.6 ± 0.9 mol% (mean ± sd). In view of the occupational exposure of the patient, an epidemiological study was performed to isolate the bacterium from marine fish. Two strains, with similar phenotypic and genotypic characteristics to those of HKU30(T), were isolated from a three-lined tongue sole (Cynoglossus abbreviatus) and an olive flounder (Paralichthys olivaceus) respectively. Phylogenetic analysis of four additional housekeeping genes, groEL, gyrB, sodA and rpoB, showed that the three isolates formed a distinct branch among known species of the genus Streptococcus, being most closely related to S. parauberis (CCUG 39954(T)). DNA-DNA hybridization demonstrated ≤ 53.8 % DNA relatedness between the three isolates and related species of the genus Streptococcus. A novel species, Streptococcus hongkongensis sp. nov., is proposed. The type strain is HKU30(T) ( = DSM 26014(T) = CECT 8154(T)).

  12. 'Halomonas saudii' sp. nov., a new bacterial species isolated from marine plant Halocnemum strobilaceum.

    PubMed

    Bibi, F; Yasir, M; Alvi, S A; Azhar, E I; Al-Ghamdi, A A K; Abuzenadah, A M; Raoult, D; Angelakis, E

    2017-01-01

    We report here the main characteristics of 'Halomonas saudii' strain Saudii DR2 (CSUR P2512), a new species of the Halomonas genus that was isolated from a rhizosphere of Halocnemum strobilaceum in April 2015.

  13. Cytotoxic and apoptotic evaluations of marine bacteria isolated from brine-seawater interface of the Red Sea.

    PubMed

    Sagar, Sunil; Esau, Luke; Hikmawan, Tyas; Antunes, Andre; Holtermann, Karie; Stingl, Ulrich; Bajic, Vladimir B; Kaur, Mandeep

    2013-02-06

    High salinity and temperature combined with presence of heavy metals and low oxygen renders deep-sea anoxic brines of the Red Sea as one of the most extreme environments on Earth. The ability to adapt and survive in these extreme environments makes inhabiting bacteria interesting candidates for the search of novel bioactive molecules. Total 20 i.e. lipophilic (chloroform) and hydrophilic (70% ethanol) extracts of marine bacteria isolated from brine-seawater interface of the Red Sea were tested for cytotoxic and apoptotic activity against three human cancer cell lines, i.e. HeLa (cervical carcinoma), MCF-7 (Breast Adenocarcinoma) and DU145 (Prostate carcinoma). Among these, twelve extracts were found to be very active after 24 hours of treatment, which were further evaluated for their cytotoxic and apoptotic effects at 48 hr. The extracts from the isolates P1-37B and P3-37A (Halomonas) and P1-17B (Sulfitobacter) have been found to be the most potent against tested cancer cell lines. Overall, bacterial isolates from the Red Sea displayed promising results and can be explored further to find novel drug-like molecules. The cell line specific activity of the extracts may be attributed to the presence of different polarity compounds or the cancer type i.e. biological differences in cell lines and different mechanisms of action of programmed cell death prevalent in different cancer cell lines.

  14. Cytotoxic and apoptotic evaluations of marine bacteria isolated from brine-seawater interface of the Red Sea

    PubMed Central

    2013-01-01

    Background High salinity and temperature combined with presence of heavy metals and low oxygen renders deep-sea anoxic brines of the Red Sea as one of the most extreme environments on Earth. The ability to adapt and survive in these extreme environments makes inhabiting bacteria interesting candidates for the search of novel bioactive molecules. Methods Total 20 i.e. lipophilic (chloroform) and hydrophilic (70% ethanol) extracts of marine bacteria isolated from brine-seawater interface of the Red Sea were tested for cytotoxic and apoptotic activity against three human cancer cell lines, i.e. HeLa (cervical carcinoma), MCF-7 (Breast Adenocarcinoma) and DU145 (Prostate carcinoma). Results Among these, twelve extracts were found to be very active after 24 hours of treatment, which were further evaluated for their cytotoxic and apoptotic effects at 48 hr. The extracts from the isolates P1-37B and P3-37A (Halomonas) and P1-17B (Sulfitobacter) have been found to be the most potent against tested cancer cell lines. Conclusion Overall, bacterial isolates from the Red Sea displayed promising results and can be explored further to find novel drug-like molecules. The cell line specific activity of the extracts may be attributed to the presence of different polarity compounds or the cancer type i.e. biological differences in cell lines and different mechanisms of action of programmed cell death prevalent in different cancer cell lines. PMID:23388148

  15. Flavobacterium rakeshii sp. nov., isolated from marine sediment, and emended description of Flavobacterium beibuense Fu et al. 2011.

    PubMed

    Kaur, Ishwinder; Kaur, Chandandeep; Khan, Fazlurrahman; Mayilraj, Shanmugam

    2012-12-01

    A Gram-negative, non-motile bacterial strain that formed straight rods and straw yellow colonies, designated FCS-5(T), was isolated from a marine sediment from the Arabian Sea. The isolate exhibited most of the phenotypic properties expected for a member of the genus Flavobacterium. The major fatty acids were iso-C(15:0), iso-C(17:0) 3-OH, C(17:1)ω9c and summed feature 3 (comprising iso-C(15:0) 2-OH and/or C(16:1)ω7c). The only isoprenoid quinone was MK-6. The only polyamine was homospermidine and the major polar lipid was phosphatidylethanolamine. The G+C content of the genomic DNA was 32.4 mol%. According to 16S rRNA gene sequence analysis, strain FCS-5(T) belonged to the genus Flavobacterium and exhibited 99.3% 16S rRNA gene sequence similarity with Flavobacterium beibuense F44-8(T) and 90.9-94.6% sequence similarity with other members of the genus Flavobacterium. The results of physiological and biochemical tests allowed the discrimination of the isolate from its phylogenetic relatives. Strain FCS-5(T) is a representative of a novel species of the genus Flavobacterium, for which the name Flavobacterium rakeshii sp. nov. is proposed. The type strain is FCS-5(T) ( = MTCC 10967(T) = JCM 17928(T)). An emended description of F. beibuense is also proposed.

  16. Overexpression and secretion of AgaA7 from Pseudoalteromonas hodoensis sp. nov in Bacillus subtilis for the depolymerization of agarose.

    PubMed

    Ramos, Kristine Rose M; Valdehuesa, Kris Niño G; Cabulong, Rhudith B; Moron, Llewelyn S; Nisola, Grace M; Hong, Soon-Kwang; Lee, Won-Keun; Chung, Wook-Jin

    2016-08-01

    Interest in agar or agarose-based pharmaceutical products has driven the search for potent agarolytic enzymes. An extracellular β-agarase (AgaA7) recently isolated from Pseudoalteromonas hodoensis sp. nov was expressed in Bacillus subtilis, which was chosen due to its capability to overproduce and secrete functional enzymes. Phenotypic analysis showed that the engineered B. subtilis secreted a functional AgaA7 when fused with the aprE signal peptide (SP) at the amino-terminus. The maximum agarolytic activity was observed during the late logarithmic phase. To further improve the secretion of AgaA7, an expression library of AgaA7 fused to different naturally occurring B. subtilis SPs was created. The amount of AgaA7 secreted by the clones was compared through activity assay, immuno-blot, and purification via affinity chromatography. Although the aprE SP can readily facilitate the secretion of AgaA7, other SPs such as yqgA, pel, and lipA were relatively more efficient. Among these SPs, lipA was the most efficient in improving the secretion of AgaA7.The use of B. subtilis as host for the expression and secretion of agarolytic and other hydrolytic enzymes can be a useful tool in the field of white biotechnology.

  17. The Inhibition and Resistance Mechanisms of Actinonin, Isolated from Marine Streptomyces sp. NHF165, against Vibrio anguillarum

    PubMed Central

    Yang, Na; Sun, Chaomin

    2016-01-01

    Vibrio sp. is the most serious pathogen in marine aquaculture, and the development of anti-Vibrio agents is urgently needed. However, it is extreme lack of high-throughput screening (HTS) model for searching anti-Vibrio compounds. Here, we established a protein-based HTS screening model to identify agents targeting peptide deformylase (PDF) of Vibrio anguillarum. To find potential anti-Vibrio compounds, crude extracts derived from marine actinomycetes were applied for screening with this model. Notably, crude extract of strain Streptomyces sp. NHF165 inhibited dramatically both on V. anguillarum PDF (VaPDF) activity and V. anguillarum cell growth. And actinonin was further identified as the functional component. Anti-VaPDF and anti-V. anguillarum activities of actinonin were dose-dependent, and the IC50 values were 6.94 and 2.85 μM, respectively. To understand the resistance of V. anguillarum against actinonin, spontaneous V. anguillarum mutants with resistance against actinonin were isolated. Surprisingly, for the resistant strains, the region between 774 and 852 base pairs was found to be absent in the gene folD which produces 10-formyl-tetrahydrofolate, a donor of N-formyl to Met-tRNAfmet. When compared to the wild type strain, ΔfolD mutant showed eight times of minimum inhibition concentration on actinonin, however, the folD complementary strain could not grow on the medium supplemented with actinonin, which suggested that folD gene mutation was mainly responsible for the actinonin resistance. To our knowledge, this is the first report showing that marine derived Streptomyces sp. could produce actinonin with anti-VaPDF activity and the resistance against actinonin by V. anguillarum is mediated by mutation in folD gene. PMID:27679625

  18. Production and Isolation of Amphibactin siderophores in Iron-stressed cultures of the marine bacteria Vibrio spp.

    NASA Astrophysics Data System (ADS)

    McLean, C.; Boiteau, R.; Bundy, R.; Gauglitz, J.; Repeta, D.

    2016-02-01

    Iron is an important micronutrient for marine microbes. Low concentrations of dissolved iron limit production in much of the ocean, putting pressure on microbial communities to develop efficient iron acquisition strategies. One such strategy is the production of siderophores, high affinity iron binding ligands, to facilitate iron uptake to meet their physiological iron quota. Recently, our lab has shown that amphibactins, siderophores with lipid side chains, are present in iron-deficient regions of the ocean. However, little is known about which organisms can utilize amphibactin bound iron. Here we describe a method to isolate amphibactins from laboratory cultures in order to identify the conditional stability constants and uptake rates of purified amphibactin compounds. We searched the National Center for Biotechnology Information database to identify microbial genomes containing homologous to the known amphibactin biosynthesis genes. Several of these strains were screened with high performance reverse-phase liquid chromatography electrospray ionization mass spectrometry (HPLC-ESIMS) to confirm amphibactin production. We then optimized amphibactin production for the strain Vibrio cyclitrophicus 1F53 under different shaking speeds and iron concentrations, using a chrome azurol S (CAS) assay to screen for siderophore abundance. Maximum production was found after 38 hours of shaking at 150-rpm, and with the addition of 10nM of desferrioxamine B to induce iron limitation. Amphibactins were extracted from the media by solid phase extraction and purified by reverse phase HPLC. The conditional stability constants for several amphibactins were then measured in seawater using competitive ligand exchange absorptive cathodic stripping voltammetry with salicylaldoxime as the added ligand. Future work will determine the uptake rates of these compounds by natural communities of marine bacteria, and give insight on the bioavailability of amphibactins in the marine environment.

  19. Isolation and identification of chitin in three-dimensional skeleton of Aplysina fistularis marine sponge.

    PubMed

    Wysokowski, Marcin; Bazhenov, Vasilii V; Tsurkan, Mikhail V; Galli, Roberta; Stelling, Allison L; Stöcker, Hartmut; Kaiser, Sabine; Niederschlag, Elke; Gärtner, Günter; Behm, Thomas; Ilan, Micha; Petrenko, Alexander Y; Jesionowski, Teofil; Ehrlich, Hermann

    2013-11-01

    The recent discovery of chitin within skeletons of numerous marine and freshwater sponges (Porifera) stimulates further experiments to identify this structural aminopolysaccharide in new species of these aquatical animals. Aplysina fistularis (Verongida: Demospongiae: Porifera) is well known to produce biologically active bromotyrosines. Here, we present a detailed study of the structural and physico-chemical properties of the three-dimensional skeletal scaffolds of this sponge. Calcofluor white staining, Raman and IR spectroscopy, ESI-MS as well as chitinase digestion test were applied in order to unequivocally prove the first discovery of α-chitin in skeleton of A. fistularis.

  20. Macrolactone Nuiapolide, Isolated from a Hawaiian Marine Cyanobacterium, Exhibits Anti-Chemotactic Activity

    PubMed Central

    Mori, Shogo; Williams, Howard; Cagle, Davey; Karanovich, Kristopher; Horgen, F. David; Smith, Roger; Watanabe, Coran M. H.

    2015-01-01

    A new bioactive macrolactone, nuiapolide (1) was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 μM against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol residue. PMID:26473885

  1. Spongiimicrobium salis gen. nov., sp. nov., a bacterium of the family Flavobacteriaceae isolated from a marine sponge.

    PubMed

    Yoon, Jaewoo; Adachi, Kyoko; Kasai, Hiroaki

    2016-09-01

    A Gram-stain-negative, strictly aerobic, pale-yellow pigmented, rod-shaped, chemoheterotrophic bacterium, designated A6F-11(T), was isolated from a marine sponge collected in Japan. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the novel marine strain was affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes and that it shared the highest (92.9 %) sequence similarity with Arenibacter palladensis LMG 21972(T). The strain could be differentiated phenotypically from related members of the family Flavobacteriaceae. The major fatty acids of strain A6F-11(T) were iso-C15:1 G, iso-C15:0, C16:1 ω6c and/or C16:1 ω7c and iso-C17:0 3-OH. The polar lipid profile consisted of phosphatidylglycerol, two unidentified aminolipids and two unidentified lipids. The DNA G+C content was 34.7 mol%, and the major respiratory quinone was menaquinone 6 (MK-6). From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel taxon in the family Flavobacteriaceae, for which the name Spongiimicrobium salis gen. nov., sp. nov. is proposed. The type strain of S. salis gen. nov., sp. nov. is A6F-11(T) (= KCTC 42753(T) = NBRC 111401(T)).

  2. Purification and characterization of a novel alginate lyase from the marine bacterium Cobetia sp. NAP1 isolated from brown algae.

    PubMed

    Yagi, Hisashi; Fujise, Asako; Itabashi, Narumi; Ohshiro, Takashi

    2016-12-01

    The application of marine resources, instead of fossil fuels, for biomass production is important for building a sustainable society. Seaweed is valuable as a source of marine biomass for producing biofuels such as ethanol, and can be used in various fields. Alginate is an anionic polysaccharide that forms the main component of brown algae. Various alginate lyases (e.g. exo- and endo-types and oligoalginate lyase) are generally used to degrade alginate. We herein describe a novel alginate lyase, AlgC-PL7, which belongs to the polysaccharide lyase 7 family. AlgC-PL7 was isolated from the halophilic Gram-negative bacterium Cobetia sp. NAP1 collected from the brown algae Padina arborescens Holmes. The optimal temperature and pH for AlgC-PL7 activity were 45 °C and 8, respectively. Additionally, AlgC-PL7 was thermostable and salt-tolerant, exhibited broad substrate specificity, and degraded alginate into monosaccharides. Therefore, AlgC-PL7 is a promising enzyme for the production of biofuels.

  3. Thiocapsa marina sp. nov., a novel, okenone-containing, purple sulfur bacterium isolated from brackish coastal and marine environments.

    PubMed

    Caumette, Pierre; Guyoneaud, Remy; Imhoff, Johannes F; Süling, Jörg; Gorlenko, Vladimir

    2004-07-01

    Four marine, phototrophic, purple sulfur bacteria (strains 5811T, 5812, BM-3 and BS-1) were isolated in pure culture from different brackish to marine sediments in the Mediterranean Sea, the White Sea and the Black Sea. Single cells of these strains were coccus-shaped, non-motile and did not contain gas vesicles. The colour of cell suspensions that were grown in the light was purple-red. Bacteriochlorophyll a and carotenoids of the okenone series were present as photosynthetic pigments. Photosynthetic membrane systems were of the vesicular type. Hydrogen sulfide, thiosulfate, elemental sulfur and molecular hydrogen were used as electron donors during photolithotrophic growth under anoxic conditions; carbon dioxide was utilized as the carbon source. During growth on sulfide, elemental sulfur globules were stored inside the cells. In the presence of hydrogen sulfide, several organic substances could be photoassimilated. Comparative 16S rDNA sequence analysis revealed an affiliation of these four strains to the genus Thiocapsa. Both phylogenetic analysis and the results of DNA-DNA hybridization studies revealed that these strains formed a separate cluster within the genus Thiocapsa. Thus, according to phenotypic characteristics and mainly the carotenoid composition, 16S rDNA sequence analysis and DNA-DNA hybridization data, it is proposed that these strains should be classified as a novel species, Thiocapsa marina sp. nov., with strain 5811T (=DSM 5653T=ATCC 43172T) as the type strain.

  4. Isolation and characterization of a marine magnetotactic spirillum axenic culture QH-2 from an intertidal zone of the China Sea.

    PubMed

    Zhu, Kailing; Pan, Hongmiao; Li, Jinhua; Yu-Zhang, Kui; Zhang, Sheng-Da; Zhang, Wen-Yan; Zhou, Ke; Yue, Haidong; Pan, Yongxin; Xiao, Tian; Wu, Long-Fei

    2010-05-01

    Magnetotactic bacteria (MTB) are ubiquitous in aquatic habitats. Because of their fastidious requirements for growth conditions, only very few axenic MTB cultures have been obtained worldwide. In this study, we report a novel marine magnetotactic spirillum axenic culture, designated as QH-2, isolated from the China Sea. It was able to grow in semi-solid or liquid chemically defined medium. The cells were amphitrichously flagellated and contained one single magnetosome chain with an average number of 16 magnetosomes per cell. Phosphate and lipid granules were also observed in the cells. Both rock magnetism and energy-dispersive X-ray spectroscopy characterizations indicated that the magnetosomes in QH-2 were single-domain magnetites (Fe(3)O(4)). QH-2 cells swam mostly in a straight line at a velocity of 20-50 microm/s and occasionally changed to a helical motion. Unlike other magnetotactic spirilla, QH-2 cells responded to light illumination. As a consequence of illumination, the cells changed the direction in which they swam from parallel to the magnetic field to antiparallel. This response appears to be similar to the effect of an increase in [O(2)]. Analysis of the QH-2 16S rRNA sequence showed that it had greater than 11% sequence divergence from freshwater magnetotactic spirilla. Thus, the marine QH-2 strain seems to be both phylogenetically and magnetotactically distinct from the freshwater Magnetospirillum spp. studied previously. (c) 2010 Elsevier Masson SAS. All rights reserved.

  5. Characterization of a Newly Isolated Marine Fungus Aspergillus dimorphicus for Optimized Production of the Anti-Tumor Agent Wentilactones

    PubMed Central

    Xu, Rui; Xu, Gang-Ming; Li, Xiao-Ming; Li, Chun-Shun; Wang, Bin-Gui

    2015-01-01

    The potential anti-tumor agent wentilactones were produced by a newly isolated marine fungus Aspergillus dimorphicus. This fungus was derived from deep-sea sediment and identified by polyphasic approach, combining phenotypic, molecular, and extrolite profiles. However, wentilactone production was detected only under static cultures with very low yields. In order to improve wentilactone production, culture conditions were optimized using the response surface methodology. Under the optimal static fermentation conditions, the experimental values were closely consistent with the prediction model. The yields of wentilactone A and B were increased about 11-fold to 13.4 and 6.5 mg/L, respectively. The result was further verified by fermentation scale-up for wentilactone production. Moreover, some small-molecule elicitors were found to have capacity of stimulating wentilactone production. To our knowledge, this is first report of optimized production of tetranorlabdane diterpenoids by a deep-sea derived marine fungus. The present study might be valuable for efficient production of wentilactones and fundamental investigation of the anti-tumor mechanism of norditerpenoids. PMID:26610530

  6. A survey of fish viruses isolated from wild marine fishes from the coastal waters of southern Korea.

    PubMed

    Kim, Wi-Sik; Choi, Shin-Young; Kim, Do-Hyung; Oh, Myung-Joo

    2013-11-01

    A survey was conducted to investigate viral infection in 253 wild marine fishes harvested in the southern coastal area of Korea from 2010 to 2012. The fish that were captured by local anglers were randomly bought and sampled for virus examination. The samples were tested for presence of virus by virus isolation with FHM, FSP, and BF-2 cells and molecular methods (polymerase chain reaction and sequencing). Of the 253 fish sampled, 9 fish were infected with virus. Aquabirnaviruses (ABVs), Viral hemorrhagic septicemia virus (VHSV), and Red seabream iridovirus (RSIV) were detected in 7, 1, and 1 fish, respectively. Molecular phylogenies demonstrated the detected viruses (ABV, VHSV, and RSIV) were more closely related to viruses reported of the same type from Korea and Japan than from other countries, suggesting these viruses may be indigenous to Korean and Japanese coastal waters.

  7. Indolediketopiperazine Alkaloids from Eurotium cristatum EN-220, an Endophytic Fungus Isolated from the Marine Alga Sargassum thunbergii.

    PubMed

    Du, Feng-Yu; Li, Xin; Li, Xiao-Ming; Zhu, Li-Wei; Wang, Bin-Gui

    2017-01-25

    Four new indolediketopiperazine derivatives (1-4), along with nine known congeners (5-13), were isolated and identified from the culture extract of Eurotium cristatum EN-220, an endophytic fungus obtained from the marine alga Sargassum thunbergii. The structures of thesecompounds were elucidated on the basis of extensive spectroscopic analysis and the absolute configurations of compounds 1-4 were established by NOESY experiments and by chiral HPLC analyses of their acid hydrolysates. The absolute configuration of C-8 (a quaternary carbon substituted with a hydroxyl group) in 5 of preechinulin class was firstly determined by electronic circular dichroism (ECD) calculations. All these compounds were evaluatedfor brine shrimp (Artemia salina) lethality and nematicidal activity as well as antioxidativeand antimicrobial potency.

  8. Assessment of Bioflocculant Production by Bacillus sp. Gilbert, a Marine Bacterium Isolated from the Bottom Sediment of Algoa Bay

    PubMed Central

    Nontembiso, Piyo; Sekelwa, Cosa; Leonard, Mabinya V.; Anthony, Okoh I.

    2011-01-01

    The bioflocculant-producing potentials of a marine bacteria isolated from the bottom sediment of Algoa Bay was investigated using standard methods. The 16S rDNA sequence analysis revealed 98% similarity to that of Bacillus sp. HXG-C1 and the nucleotide sequence was deposited in GenBank as Bacillus sp. Gilbert with accession number HQ537128. Bioflocculant was optimally produced when sucrose (72% flocculating activity) and ammonium chloride (91% flocculating activity) were used as sole sources of carbon and nitrogen, respectively; an initial pH 6.2 of the production medium; and Mg2+ as cation. Chemical analysis of the purified bioflocculant revealed the compound to be a polysaccharide. PMID:21822413

  9. Violapyrones H and I, New Cytotoxic Compounds Isolated from Streptomyces sp. Associated with the Marine Starfish Acanthaster planci

    PubMed Central

    Shin, Hee Jae; Lee, Hwa-Sun; Lee, Jong Seok; Shin, Junho; Lee, Min Ah; Lee, Hyi-Seung; Lee, Yeon-Ju; Yun, Jieun; Kang, Jong Soon

    2014-01-01

    Two new α-pyrone derivatives, violapyrones H (1) and I (2), along with known violapyrones B (3) and C (4) were isolated from the fermentation broth of a marine actinomycete Streptomyces sp. The strain was derived from a crown-of-thorns starfish, Acanthaster planci, collected from Chuuk, Federated States of Micronesia. The structures of violapyrones were elucidated by the analysis of 1D and 2D NMR and HR-ESIMS data. Violapyrones (1–4) exhibited cytotoxicity against 10 human cancer cell lines with GI50 values of 1.10–26.12 μg/mL when tested using sulforhodamine B (SRB) assay. This is the first report on the cytotoxicity of violapyrones against cancer cell lines and the absolute configuration of violapyrone C. PMID:24886866

  10. Paracoccus seriniphilus sp. nov., an L-serine-dehydratase-producing coccus isolated from the marine bryozoan Bugula plumosa.

    PubMed

    Pukall, Rüdiger; Laroche, Marc; Kroppenstedt, Reiner M; Schumann, Peter; Stackebrandt, Erko; Ulber, Roland

    2003-03-01

    A novel marine Gram-negative, non-motile, non-spore-forming, aerobic bacterium, associated with the bryozoan Bugula plumosa, was isolated in a screening programme for strains containing enzymes able to convert the amino acid L-serine. Strain MBT-A4T produced L-serine dehydratase and was able to grow on L-serine as the sole carbon and nitrogen source. The nearest phylogenetic neighbour was Paracoccus marcusii, as determined by 16S rDNA sequence analysis (97.8% similarity). The DNA-DNA reassociation value obtained for Paracoccus marcusii DSM11574T and MBT-A4T was 32.6%. The major ubiquinone was 0-10. Based on genotypic, chemotaxonomic and physiological characteristics, a new species of the genus Paracoccus is proposed, Paracoccus seriniphilus sp. nov., the type strain being strain MBT-A4T (=DSM 14827T =CIP 107400T).

  11. Assessment of bioflocculant production by Bacillus sp. Gilbert, a marine bacterium isolated from the bottom sediment of Algoa Bay.

    PubMed

    Nontembiso, Piyo; Sekelwa, Cosa; Leonard, Mabinya V; Anthony, Okoh I

    2011-01-01

    The bioflocculant-producing potentials of a marine bacteria isolated from the bottom sediment of Algoa Bay was investigated using standard methods. The 16S rDNA sequence analysis revealed 98% similarity to that of Bacillus sp. HXG-C1 and the nucleotide sequence was deposited in GenBank as Bacillus sp. Gilbert with accession number HQ537128. Bioflocculant was optimally produced when sucrose (72% flocculating activity) and ammonium chloride (91% flocculating activity) were used as sole sources of carbon and nitrogen, respectively; an initial pH 6.2 of the production medium; and Mg²⁺ as cation. Chemical analysis of the purified bioflocculant revealed the compound to be a polysaccharide.

  12. Indolediketopiperazine Alkaloids from Eurotium cristatum EN-220, an Endophytic Fungus Isolated from the Marine Alga Sargassum thunbergii

    PubMed Central

    Du, Feng-Yu; Li, Xin; Li, Xiao-Ming; Zhu, Li-Wei; Wang, Bin-Gui

    2017-01-01

    Four new indolediketopiperazine derivatives (1–4), along with nine known congeners (5–13), were isolated and identified from the culture extract of Eurotium cristatum EN-220, an endophytic fungus obtained from the marine alga Sargassum thunbergii. The structures of thesecompounds were elucidated on the basis of extensive spectroscopic analysis and the absolute configurations of compounds 1–4 were established by NOESY experiments and by chiral HPLC analyses of their acid hydrolysates. The absolute configuration of C-8 (a quaternary carbon substituted with a hydroxyl group) in 5 of preechinulin class was firstly determined by electronic circular dichroism (ECD) calculations. All these compounds were evaluatedfor brine shrimp (Artemia salina) lethality and nematicidal activity as well as antioxidativeand antimicrobial potency. PMID:28125012

  13. Violapyrones H and I, new cytotoxic compounds isolated from Streptomyces sp. associated with the marine starfish Acanthaster planci.

    PubMed

    Shin, Hee Jae; Lee, Hwa-Sun; Lee, Jong Seok; Shin, Junho; Lee, Min Ah; Lee, Hyi-Seung; Lee, Yeon-Ju; Yun, Jieun; Kang, Jong Soon

    2014-05-30

    Two new α-pyrone derivatives, violapyrones H (1) and I (2), along with known violapyrones B (3) and C (4) were isolated from the fermentation broth of a marine actinomycete Streptomyces sp. The strain was derived from a crown-of-thorns starfish, Acanthaster planci, collected from Chuuk, Federated States of Micronesia. The structures of violapyrones were elucidated by the analysis of 1D and 2D NMR and HR-ESIMS data. Violapyrones (1-4) exhibited cytotoxicity against 10 human cancer cell lines with GI50 values of 1.10-26.12 μg/mL when tested using sulforhodamine B (SRB) assay. This is the first report on the cytotoxicity of violapyrones against cancer cell lines and the absolute configuration of violapyrone C.

  14. Biodegradation of complex hydrocarbons in spent engine oil by novel bacterial consortium isolated from deep sea sediment.

    PubMed

    Ganesh Kumar, A; Vijayakumar, Lakshmi; Joshi, Gajendra; Magesh Peter, D; Dharani, G; Kirubagaran, R

    2014-10-01

    Complex hydrocarbon and aromatic compounds degrading marine bacterial strains were isolated from deep sea sediment after enrichment on spent engine (SE) oil. Phenotypic characterization and phylogenetic analysis of 16S rRNA gene sequences showed the isolates were related to members of the Pseudoalteromonas sp., Ruegeria sp., Exiguobacterium sp. and Acinetobacter sp. Biodegradation using 1% (v/v) SE oil with individual and mixed strains showed the efficacy of SE oil utilization within a short retention time. The addition of non-ionic surfactant 0.05% (v/v) Tween 80 as emulsifying agent enhanced the solubility of hydrocarbons and renders them more accessible for biodegradation. The degradation of several compounds and the metabolites formed during the microbial oxidation process were confirmed by Fourier transform infrared spectroscopy and Gas chromatography-mass spectrometry analyses. The potential of this consortium to biodegrade SE oil with and without emulsifying agent provides possible application in bioremediation of oil contaminated marine environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China.

    PubMed

    Hong, Kui; Gao, An-Hui; Xie, Qing-Yi; Gao, Hao; Zhuang, Ling; Lin, Hai-Peng; Yu, Hai-Ping; Li, Jia; Yao, Xin-Sheng; Goodfellow, Michael; Ruan, Ji-Sheng

    2009-01-01

    The mangrove ecosystem is a largely unexplored source for actinomycetes with the potential to produce biologically active secondary metabolites. Consequently, we set out to isolate, characterize and screen actinomycetes from soil and plant material collected from eight mangrove sites in China. Over 2,000 actinomycetes were isolated and of these approximately 20%, 5%, and 10% inhibited the growth of Human Colon Tumor 116 cells, Candida albicans and Staphylococcus aureus, respectively, while 3% inhibited protein tyrosine phosphatase 1B (PTP1B), a protein related to diabetes. In addition, nine isolates inhibited aurora kinase A, an anti-cancer related protein, and three inhibited caspase 3, a protein related to neurodegenerative diseases. Representative bioactive isolates were characterized using genotypic and phenotypic procedures and classified to thirteen genera, notably to the genera Micromonospora and Streptomyces. Actinomycetes showing cytotoxic activity were assigned to seven genera whereas only Micromonospora and Streptomyces strains showed anti-PTP1B activity. We conclude that actinomycetes isolated from mangrove habitats are a potentially rich source for the discovery of anti-infection and anti-tumor compounds, and of agents for treating neurodegenerative diseases and diabetes.

  16. Actinomycetes for Marine Drug Discovery Isolated from Mangrove Soils and Plants in China

    PubMed Central

    Hong, Kui; Gao, An-Hui; Xie, Qing-Yi; Gao, Hao; Zhuang, Ling; Lin, Hai-Peng; Yu, Hai-Ping; Li, Jia; Yao, Xin-Sheng; Goodfellow, Michael; Ruan, Ji-Sheng

    2009-01-01

    The mangrove ecosystem is a largely unexplored source for actinomycetes with the potential to produce biologically active secondary metabolites. Consequently, we set out to isolate, characterize and screen actinomycetes from soil and plant material collected from eight mangrove sites in China. Over 2,000 actinomycetes were isolated and of these approximately 20%, 5%, and 10% inhibited the growth of Human Colon Tumor 116 cells, Candida albicans and Staphylococcus aureus, respectively, while 3% inhibited protein tyrosine phosphatase 1B (PTP1B), a protein related to diabetes. In addition, nine isolates inhibited aurora kinase A, an anti-cancer related protein, and three inhibited caspase 3, a protein related to neurodegenerative diseases. Representative bioactive isolates were characterized using genotypic and phenotypic procedures and classified to thirteen genera, notably to the genera Micromonospora and Streptomyces. Actinomycetes showing cytotoxic activity were assigned to seven genera whereas only Micromonospora and Streptomyces strains showed anti-PTP1B activity. We conclude that actinomycetes isolated from mangrove habitats are a potentially rich source for the discovery of anti-infection and anti-tumor compounds, and of agents for treating neurodegenerative diseases and diabetes. PMID:19370169

  17. Sensors for isolation of anti-cancer compounds found within marine invertebrates

    NASA Astrophysics Data System (ADS)

    Wiegand, Gordon; LaRue, Amanda

    2015-05-01

    Highly evolved bacteria living within immobile marine animals are being targeted as a source of antitumor pharmaceuticals. This paper describes 2 electo-optical sensor systems developed for identifying species of tunicates and actinobacteria that live within them. Two stages of identification include 1) a benthic survey apparatus to locate species and 2) a laboratory housed cell analysis platform used to classify their bacterial micro-biome. Marine Optics Sampling- There are over 3000 species of Tunicates that thrive in diverse habitats. We use a system of cameras, GPS and the GPS/photo integration application on a PC laptop to compile a time / location stamp for each image taken during the dive survey. A shape-map of x/y coordinates of photos are stored for later identification and sampling. Flow Cytometers/cell sorters housed at The Medical University of South Carolina and The University of Maryland have been modified to produce low-noise, high signal wave forms used for bacteria analysis. We strive to describe salient contrasts between these two fundamentally different sensor systems. Accents are placed on analog transducers and initial step sensing systems and output.

  18. Isolation and characterization of a novel, highly selective astaxanthin-producing marine bacterium.

    PubMed

    Asker, Dalal

    2017-09-18

    A high throughput screening approach for astaxanthin-producing bacteria led to the discovery of a novel highly selective astaxanthin-producing marine bacterium (strain N-5). Phylogenetic analysis based on partial 16S rRNA gene and phenotypic metabolic testing indicated it belongs to the genus Brevundimonas. Therefore, it was designated as Brevundimonas sp. strain N-5. To identify and quantify carotenoids produced by strain N-5, HPLC-DAD and HPLC-MS methods were used. The culture conditions including media, shaking and time had significant effects on cell growth and carotenoids production including astaxanthin. The total carotenoids were ~601.2 µg g-1 dry cells including a remarkable amount (364.6 µg g-1 dry cells) of optically pure astaxanthin (3S, 3'S) isomer, with high selectivity (~60.6%) under medium aeration conditions. Notably, increasing the culture aeration enhanced astaxanthin production up to 85% of total carotenoids. This is the first report that describes a natural, highly selective astaxanthin-producing marine bacterium.

  19. Antiplatelet and anticoagulant effects of diterpenes isolated from the marine alga, Dictyota menstrualis.

    PubMed

    de Andrade Moura, Laura; Marqui de Almeida, Ana Carolina; Domingos, Thaisa Francielle Souza; Ortiz-Ramirez, Fredy; Cavalcanti, Diana Negrão; Teixeira, Valéria Laneuville; Fuly, André Lopes

    2014-04-30

    Cardiovascular diseases represent a major cause of disability and death worldwide. Therapeutics are available, but they often have unsatisfactory results and may produce side effects. Alternative treatments based on the use of natural products have been extensively investigated, because of their low toxicity and side effects. Marine organisms are prime candidates for such products, as they are sources of numerous and complex substances with ecological and pharmacological effects. In this work, we investigated, through in vitro experiments, the effects of three diterpenes (pachydictyol A, isopachydictyol A and dichotomanol) from the Brazilian marine alga, Dictyota menstrualis, on platelet aggregation and plasma coagulation. Results showed that dichotomanol inhibited ADP- or collagen-induced aggregation of platelet-rich plasma (PRP), but failed to inhibit washed platelets (WP). In contrast, pachydictyol A and isopachydictyol A failed to inhibit the aggregation of PRP, but inhibited WP aggregation induced by collagen or thrombin. These diterpenes also inhibited coagulation analyzed by the prothrombin time and activated partial thromboplastin time and on commercial fibrinogen. Moreover, diterpenes inhibited the catalytic activity of thrombin. Theoretical studies using the Osiris Property Explorer software showed that diterpenes have low theoretical toxicity profiles and a drug-score similar to commercial anticoagulant drugs. In conclusion, these diterpenes are promising candidates for use in anticoagulant therapy, and this study also highlights the biotechnological potential of oceans and the importance of bioprospecting to develop medicines.

  20. Antiplatelet and Anticoagulant Effects of Diterpenes Isolated from the Marine Alga, Dictyota menstrualis

    PubMed Central

    Moura, Laura de Andrade; Marqui de Almeida, Ana Carolina; Francielle Souza Domingos, Thaisa; Ortiz-Ramirez, Fredy; Negrão Cavalcanti, Diana; Laneuville Teixeira, Valéria; Lopes Fuly, André

    2014-01-01

    Cardiovascular diseases represent a major cause of disability and death worldwide. Therapeutics are available, but they often have unsatisfactory results and may produce side effects. Alternative treatments based on the use of natural products have been extensively investigated, because of their low toxicity and side effects. Marine organisms are prime candidates for such products, as they are sources of numerous and complex substances with ecological and pharmacological effects. In this work, we investigated, through in vitro experiments, the effects of three diterpenes (pachydictyol A, isopachydictyol A and dichotomanol) from the Brazilian marine alga, Dictyota menstrualis, on platelet aggregation and plasma coagulation. Results showed that dichotomanol inhibited ADP- or collagen-induced aggregation of platelet-rich plasma (PRP), but failed to inhibit washed platelets (WP). In contrast, pachydictyol A and isopachydictyol A failed to inhibit the aggregation of PRP, but inhibited WP aggregation induced by collagen or thrombin. These diterpenes also inhibited coagulation analyzed by the prothrombin time and activated partial thromboplastin time and on commercial fibrinogen. Moreover, diterpenes inhibited the catalytic activity of thrombin. Theoretical studies using the Osiris Property Explorer software showed that diterpenes have low theoretical toxicity profiles and a drug-score similar to commercial anticoagulant drugs. In conclusion, these diterpenes are promising candidates for use in anticoagulant therapy, and this study also highlights the biotechnological potential of oceans and the importance of bioprospecting to develop medicines. PMID:24796305

  1. Salmonella infection in grey seals (Halichoerus grypus), a marine mammal sentinel species: pathogenicity and molecular typing of Salmonella strains compared with human and livestock isolates.

    PubMed

    Baily, Johanna L; Foster, Geoffrey; Brown, Derek; Davison, Nicholas J; Coia, John E; Watson, Eleanor; Pizzi, Romain; Willoughby, Kim; Hall, Ailsa J; Dagleish, Mark P

    2016-03-01

    Microbial pollution of the marine environment through land-sea transfer of human and livestock pathogens is of concern. Salmonella was isolated from rectal swabs of free-ranging and stranded grey seal pups (21.1%; 37/175) and compared with strains from the same serovars isolated from human clinical cases, livestock, wild mammals and birds in Scotland, UK to characterize possible transmission routes using pulsed-field gel electrophoresis and multi-locus variable number of tandem repeat analyses. A higher prevalence of Salmonella was found in pups exposed to seawater, suggesting that this may represent a source of this pathogen. Salmonella Bovismorbificans was the most common isolate (18.3% pups; 32/175) and was indistinguishable from isolates found in Scottish cattle. Salmonella Typhimurium was infrequent (2.3% pups; 4/175), mostly similar to isolates found in garden birds and, in one case, identical to a highly multidrug resistant strain isolated from a human child. Salmonella Haifa was rare (1.1% pups; 2/175), but isolates were indistinguishable from that of a human clinical isolate. These results suggest that S. Bovismorbificans may circulate between grey seal and cattle populations and that both S. Typhimurium and S. Haifa isolates are shared with humans, raising concerns of microbial marine pollution.

  2. Characterizing mechanisms of extracellular electron transport in sulfur and iron-oxidizing electrochemically active bacteria isolated from marine sediments

    NASA Astrophysics Data System (ADS)

    Rowe, A. R.; Bird, L. J.; Lam, B. R.; Nealson, K. H.

    2014-12-01

    Lithotrophic reactions, including the oxidation of mineral species, are often difficult to detect in environmental systems. This could be due to the nature of substrate or metabolite quantification or the rapid consumption of metabolic end products or intermediates by proximate biological or abiotic processes. Though recently genetic markers have been applied to detecting these processes in environmental systems, our knowledge of lithotrophic markers are limited to those processes catalyzed by organisms that have been cultured and physiologically characterized. Here we describe the use of electrochemical enrichment techniques to isolate marine sediment-dwelling microbes capable of the oxidation or insoluble forms of iron and sulfur including both the elemental species. All the organisms isolated fall within the Alphaproteobacteria and Gammaproteobacteria and are capable of acquiring electrons from an electrode while using either oxygen or nitrate as a terminal electron acceptor. Electrochemical analysis of these microbes has demonstrated that, though they have similar geochemical abilities (either sulfur or iron oxidation), they likely utilize different biochemical mechanisms demonstrated by the variability in dominant electron transfer modes or interactions (i.e., biofilm, planktonic or mediator facilitated interactions) and the wide range of midpoint potentials observed for dominant redox active cellular components (ranging from -293 to +50 mV vs. Ag/AgCl). For example, organisms isolated on elemental sulfur tended to have higher midpoint potentials than iron-oxidizing microbes. A variety of techniques are currently being applied to understanding the different mechanisms of extracellular electron transport for oxidizing an electrode or corresponding insoluble electron donor including both genomic and genetic manipulation experiments. The insight gained from these experiments is not limited to the physiology of the organisms isolated but will also aid in

  3. Rubritalea sabuli sp. nov., a carotenoid- and squalene-producing member of the family Verrucomicrobiaceae, isolated from marine sediment.

    PubMed

    Yoon, Jaewoo; Matsuo, Yoshihide; Matsuda, Satoru; Adachi, Kyoko; Kasai, Hiroaki; Yokota, Akira

    2008-04-01

    The taxonomic status of a verrucomicrobial strain isolated from marine sediment was established based on a polyphasic examination. The novel isolate, strain YM29-052T, was obligately aerobic, Gram-negative, non-motile, coccoid or rod-shaped and chemoheterotrophic. Phylogenetic analyses based on 16S rRNA gene sequences demonstrated that the new isolate shared approximately 94-99 % sequence similarity with members of genus Rubritalea of the family Verrucomicrobiaceae within the phylum 'Verrucomicrobia'. Genomic DNA-DNA hybridization between strain YM29-052T and Rubritalea squalenifaciens HOact23T showed relatedness of <70 %, the value commonly accepted as the threshold for the phylogenetic definition of a species. Strain YM29-052T produces carotenoid compounds that render the cell biomass a pink colour; the strain also contains squalene. The cell-wall peptidoglycan of the novel strain contains muramic acid and meso-diaminopimelic acid. The DNA G+C content of strain YM29-052T was 47.7 mol%; MK-8 and MK-9 were the major menaquinones. The presence of iso-C14 : 0, iso-C16 : 0 and C16 : 1 omega 7c as major cellular fatty acids supported the identification of the novel isolate as a member of the genus Rubritalea. On the basis of polyphasic taxonomic evidence, it was concluded that strain YM29-052T should be classified within a novel species of the genus Rubritalea, for which the name Rubritalea sabuli sp. nov. is proposed. The type strain is YM29-052T (=MBIC08323T =KCTC 22127T).

  4. Microplate-based high throughput screening procedure for the isolation of lipid-rich marine microalgae

    PubMed Central

    2011-01-01

    We describe a new selection method based on BODIPY (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene) staining, fluorescence activated cell sorting (FACS) and microplate-based isolation of lipid-rich microalgae from an environmental sample. Our results show that direct sorting onto solid medium upon FACS can save about 3 weeks during the scale-up process as compared with the growth of the same cultures in liquid medium. This approach enabled us to isolate a biodiverse collection of several axenic and unialgal cultures of different phyla. PMID:22192119

  5. Mining Genomes of Three Marine Sponge-Associated Actinobacterial Isolates for Secondary Metabolism

    PubMed Central

    Horn, Hannes; Hentschel, Ute

    2015-01-01

    Here, we report the draft genome sequences of three actinobacterial isolates, Micromonospora sp. RV43, Rubrobacter sp. RV113, and Nocardiopsis sp. RV163 that had previously been isolated from Mediterranean sponges. The draft genomes were analyzed for the presence of gene clusters indicative of secondary metabolism using antiSMASH 3.0 and NapDos pipelines. Our findings demonstrated the chemical richness of sponge-associated actinomycetes and the efficacy of genome mining in exploring the genomic potential of sponge-derived actinomycetes. PMID:26430030

  6. Draft Genome Sequence of Aeromonas caviae CH129, a Marine-Derived Bacterium Isolated from the Coast of São Paulo State, Brazil

    PubMed Central

    Alfonso Vargas, Nadia Catalina; Zimpel, Cristina Kraemer; Pessoa, Adalberto; Rivera, Irma Nelly Gutierrez

    2016-01-01

    We report here the draft genome sequence of Aeromonas caviae CH129, a marine-derived bacterium isolated from the coast of São Paulo state, Brazil. Genomic analysis revealed genes encoding enzymes involved in binding, transport, and chitin metabolism and different virulence-associated factors. PMID:27908996

  7. Genome Sequence of Nitratireductor basaltis Strain UMTGB225, a Marine Bacterium Isolated from a Green Barrel Tunicate in Bidong Island, Malaysia

    PubMed Central

    Gan, Huan You; Gan, Han Ming; Saari, Nur Azna; Usup, Gires

    2014-01-01

    Nitratireductor basaltis strain UMTGB225 is a Gram-negative bacterium isolated from a marine tunicate found in Bidong Island, Terengganu, Malaysia. In this study, the genome of Nitratireductor basaltis UMTGB225 was sequenced to gain insight into the role of this bacterium and its association with tunicate hosts in a coral reef habitat. PMID:25301654

  8. Genome Sequences of Two Naphthalene-Degrading Strains of Pseudomonas balearica, Isolated from Polluted Marine Sediment and from an Oil Refinery Site

    PubMed Central

    Jakobsson, Hedvig E.; Busquets, Antonio; Gomila, Margarita; Jaén-Luchoro, Daniel; Seguí, Carolina; Aliaga-Lozano, Francisco; García-Valdés, Elena; Lalucat, Jorge

    2017-01-01

    ABSTRACT The genome sequences of Pseudomonas balearica strains LS401 (CCUG 66666) and st101 (CCUG 66667) have been determined. The strains were isolated as naphthalene degraders from polluted marine sediment and from a sample from an oil refinery site, respectively. These genomes provide essential data about the biodegradation capabilities and the ecological implications of P. balearica. PMID:28385841

  9. Draft Genome Sequence of Aeromonas caviae CH129, a Marine-Derived Bacterium Isolated from the Coast of São Paulo State, Brazil.

    PubMed

    Cardozo, Flávio Augusto; Alfonso Vargas, Nadia Catalina; Zimpel, Cristina Kraemer; Pessoa, Adalberto; Rivera, Irma Nelly Gutierrez

    2016-12-01

    We report here the draft genome sequence of Aeromonas caviae CH129, a marine-derived bacterium isolated from the coast of São Paulo state, Brazil. Genomic analysis revealed genes encoding enzymes involved in binding, transport, and chitin metabolism and different virulence-associated factors.

  10. Molecular characterization of birnaviruses isolated from wild marine fishes at the Flemish Cap (Newfoundland)

    USGS Publications Warehouse

    Romero-Brey, I.; Batts, W.N.; Bandin, I.; Winton, J.R.; Dopazo, C.P.

    2004-01-01

    Several isolates of aquatic birnaviruses were recovered from different species of wild fish caught in the Flemish Cap, a Newfoundland fishery close to the Atlantic coast of Canada. The nucleotide sequence of a region of the NS gene was identical among the isolates and was most similar to the Dry Mills and West Buxton reference strains of infectious pancreatic necrosis virus (IPNV). Phylogenetic analysis of the sequence of a region of the VP2 gene demonstrated that the isolates were most closely aligned with the American strains of IPNV serotype Al. Electron microscopy of virus structures clarified and concentrated from cultures of infected chinook salmon embryo (CHSE-214) cells revealed a majority of typical IPNV-like icosahedral particles, as well as a low proportion of type I tubules having a diameter of approximately 55 nm and a variable length of up to 2 ??m. The tubules could be propagated in cell cultures, but always in the presence of low proportions of icosahedral particles. Cloning of selected isolates by serial dilution yielded preparations with a high proportion of the tubular structures with a density in CsCl gradients of approximately 1.30 g cm-3. Polyacrylamide gel electrophoresis revealed the material in the band was composed of the IPNV pVP2 and VP2 proteins.

  11. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    PubMed Central

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  12. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry.

    PubMed

    Essack, Magbubah; Alzubaidy, Hanin S; Bajic, Vladimir B; Archer, John A C

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  13. Isolation of brominated long-chain fatty acids from the phospholipids of the tropical marine sponge Amphimedon terpenensis.

    PubMed

    Garson, M J; Zimmermann, M P; Hoberg, M; Larsen, R M; Battershill, C N; Murphy, P T

    1993-11-01

    Preliminary investigation of the phospholipid fatty acid composition of the tropical marine sponge Amphimedon terpenensis by gas chromatography/mass spectrometry revealed the presence of some novel brominated fatty acids. Two new brominated fatty acids, (5E, 9Z)-6-bromo-5,9-tetracosadienoic acid (2a) and (5E, 9Z)-6-bromo-5,9-pentacosadienoic acid (3a) were subsequently isolated from a chloroform/methanol (3:1, vol/vol) extract of the sponge and characterized as their methyl esters 2b and 3b. The known brominated fatty acid (5E, 9Z)-6-bromo-5,9-hexacosadienoic acid (4a) was also isolated. The new fatty acid methyl esters were confirmed as brominated delta 5,9 acid derivatives by chemical ionization mass spectrometry. The position of the bromine substituent was determined to be C-6 by nuclear magnetic resonance techniques while the stereochemistry of the two double bonds was deduced by nuclear Overhauser enhancement difference spectroscopy. The biosynthetic implications of the co-occurrence of the three brominated acids are discussed.

  14. Bacillus toyonensis strain AEMREG6, a bacterium isolated from South African marine environment sediment samples produces a glycoprotein bioflocculant.

    PubMed

    Okaiyeto, Kunle; Nwodo, Uchechukwu U; Mabinya, Leonard V; Okoh, Anthony I

    2015-03-23

    A bioflocculant-producing bacteria, isolated from sediment samples of a marine environment in the Eastern Cape Province of South Africa demonstrated a flocculating activity above 60% for kaolin clay suspension. Analysis of the 16S ribosomal deoxyribonucleic acid (rDNA) nucleotide sequence of the isolate in the GenBank database showed 99% similarity to Bacillus toyonensis strain BCT-7112 and it was deposited in the GenBank as Bacillus toyonensis strain AEMREG6 with accession number KP406731. The bacteria produced a bioflocculant (REG-6) optimally in the presence of glucose and NH4NO3 as the sole carbon and nitrogen source, respectively, initial medium pH of 5 and Ca2+ as the cation of choice. Chemical analysis showed that purified REG-6 was a glycoprotein mainly composed of polysaccharide (77.8%) and protein (11.5%). It was thermally stable and had strong flocculating activity against kaolin suspension over a wide range of pH values (3-11) with a relatively low dosage requirement of 0.1 mg/mL in the presence of Mn2+. Fourier transform infrared spectroscopy (FTIR) revealed the presence of hydroxyl, carboxyl and amide groups preferred for flocculation. Scanning electron microscopy (SEM) revealed that bridging was the main flocculation mechanism of REG-6. The outstanding flocculating performance of REG-6 holds great potential to replace the hazardous chemical flocculants currently used in water treatment.

  15. Sterol patterns of cultured zooxanthellae isolated from marine invertebrates: Synthesis of gorgosterol and 23-desmethylgorgosterol by aposymbiotic algae

    PubMed Central

    Withers, Nancy W.; Kokke, W. C. M. C.; Fenical, William; Djerassi, Carl

    1982-01-01

    Quantitative sterol compositions of cultured zooxanthellae isolated from various Pacific and Atlantic invertebrate hosts: Zoanthus sociatus (a zoanthid), Oculina diffusa (a scleractian coral), Tridacna gigas (a giant clam), Melibe pilosa (a nudibranch), and Aiptasia pulchella (a sea anemone) are reported. The results clearly demonstrate large differences in sterol patterns of zooxanthellae and that there is no obvious relationship between the taxonomic affiliation of the host and the sterol pattern of its isolated symbiont. The sterols of the zooxanthellae of O. diffusa (Cnidaria) and T. gigas (Mollusca) are qualitatively equivalent. Based on the structures of the two major free sterols synthesized by each alga, the zooxanthellae from different hosts were separated into three distinct groups. It was also found that an aposymbiotic alga can synthesize the unique marine sterols gorgosterol and 23-desmethylgorgosterol. Most of the sterols were identified by using mass spectroscopy and 360-MHz proton magnetic resonance. Spectroscopic data are reported for four novel sterols—(23,24R)-dimethyl-5α-cholest-(22E)-en-3β-o l, 23-methyl-5α-cholest-22E-en-3β-ol, cholesta-5,14-dien-3β-ol, and 4α-methyl-5α-cholesta-8(14)-24-dien-3β-ol. PMID:16593195

  16. Identification and bioactivity of compounds from the fungus Penicillium sp. CYE-87 isolated from a marine tunicate.

    PubMed

    Shaala, Lamiaa A; Youssef, Diaa T A

    2015-03-25

    In the course of our continuous interest in identifying bioactive compounds from marine microbes, we have investigated a tunicate-derived fungus, Penicillium sp. CYE-87. A new compound with the 1,4-diazepane skeleton, terretrione D (2), together with the known compounds, methyl-2-([2-(1H-indol-3-yl)ethyl]carbamoyl)acetate (1), tryptamine (3), indole-3-carbaldehyde (4), 3,6-diisobutylpyrazin-2(1H)-one (5) and terretrione C (6), were isolated from Penicillium sp. CYE-87. The structures of the isolated compounds were established by spectral analysis, including 1D (1H, 13C) and 2D (COSY, multiplicity edited-HSQC and HMBC) NMR and HRESIMS, as well as comparison of their NMR data with those in the literature. The compounds were evaluated for their antimigratory activity against the human breast cancer cell line (MDA-MB-231) and their antiproliferation activity against HeLa cells. Compounds 2 and 6 showed significant antimigratory activity against MDA-MB-231, as well as antifungal activity against C. albicans.

  17. Rubidimonas crustatorum gen. nov., sp. nov., a novel member of the family Saprospiraceae isolated from a marine crustacean.

    PubMed

    Yoon, Jaewoo; Katsuta, Atsuko; Kasai, Hiroaki

    2012-03-01

    A strictly aerobic, Gram-negative, reddish-orange pigmented, non-motile and rod-shaped bacterium, designated AK17-053(T) was isolated from a marine crustacean (Squillidae) living on tidal flats on the coast of the Ariake Sea, Nagasaki, Japan. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the novel isolate could be affiliated with the family Saprospiraceae of the phylum Bacteroidetes and that it showed highest sequence similarity (84%) with Lewinella marina MKG-38(T). The strain could be differentiated phenotypically from recognized members of the family Saprospiraceae. The G+C content of DNA was 55.3 mol%, MK-7 was the major menaquinone and iso-C(15:0) and C(16:1)ω7c were the major fatty acids. On the basis of polyphasic taxonomic studies, it was concluded that strain AK17-053(T) represents a new genus of the family Saprospiraceae. We propose the name Rubidimonas crustatorum gen. nov., sp. nov. for this strain; its type strain is AK17-053(T) (= MBIC08356(T) = NBRC 107717(T)).

  18. Antiplasmodial activities of homogentisic acid derivative protein kinase inhibitors isolated from a Vanuatu marine sponge Pseudoceratina sp.

    PubMed

    Lebouvier, Nicolas; Jullian, Valérie; Desvignes, Isabelle; Maurel, Séverine; Parenty, Arnaud; Dorin-Semblat, Dominique; Doerig, Christian; Sauvain, Michel; Laurent, Dominique

    2009-11-23

    As part of our search for new antimalarial drugs in South Pacific marine sponges, we have looked for inhibitors of Pfnek-1, a specific protein kinase of Plasmodium falciparum. On the basis of promising activity in a preliminary screening, the ethanolic crude extract of a new species of Pseudoceratina collected in Vanuatu was selected for further investigation. A bioassay-guided fractionation led to the isolation of a derivative of homogentisic acid [methyl (2,4-dibromo-3,6-dihydroxyphenyl)acetate, 4a] which inhibited Pfnek-1 with an IC(50) around 1.8 muM. This product was moderately active in vitro against a FcB1 P. falciparum strain (IC(50) = 12 muM). From the same sponge, we isolated three known compounds [11,19-dideoxyfistularin-3 (1), 11-deoxyfistularin-3 (2) and dibromo-verongiaquinol (3)] which were inactive against Pfnek-1. Synthesis and biological evaluation of some derivatives of 4a are reported.

  19. Aqabamycins A-G: novel nitro maleimides from a marine Vibrio species. I. Taxonomy, fermentation, isolation and biological activities.

    PubMed

    Al-Zereini, Wael; Fotso Fondja Yao, Clarisse Blanchine; Laatsch, Hartmut; Anke, Heidrun

    2010-06-01

    In a screening of marine bacteria, a Vibrio species isolated from the surface of the soft coral Sinularia polydactyla collected in the Red Sea was found to be a prolific producer of secondary metabolites with antibacterial and cytotoxic activities. Seven novel maleimide derivatives named aqabamycin A (1a), aqabamycin B (1b), aqabamycin C (1c), aqabamycin D (1d), aqabamycin E (1e and 1e'), aqabamycin F (1f) and aqabamycin G (2) were isolated together with several known metabolites such as 3-nitro-1H-indazole (3), indazole-3-carbaldehyde (4), phenyl-2-bis-indolylmethane (5a), turbomycin B (5b), vibrindole A (6), 1,4-dithiane (7), 3-(3-nitro-4-hydroxyphenyl)-2-propenoic acid (8), 3-nitro-4-hydroxybenzaldehyde (9), phenylacetic acid, benzoic acid, 3-hydroxybenzoic acid and 4-hydroxycinnamic acid. The aqabamycins, except aqabamycin A, bear a nitro group. Compounds 3, 4, 7 are described here for the first time from a natural source and vibrindole A was found to have cytotoxic activity.

  20. Concurrence of cat and tet genes in multiple antibiotic-resistant bacteria isolated from a sea cucumber and sea urchin mariculture farm in China.

    PubMed

    Dang, Hongyue; Song, Linsheng; Chen, Mingna; Chang, Yaqing

    2006-11-01

    A basic understanding of abundance and diversity of antibiotic-resistant microbes and their genetic determinants is necessary for finding a way to prevent and control the spread of antibiotic resistance. For this purpose, chloramphenicol and multiple antibiotic-resistant bacteria were screened from a mariculture farm in northern China. Both sea cucumber and sea urchin rearing ponds were populated with abundant antibiotic-resistant bacteria, especially marine vibrios. Sixty-five percent chloramphenicol-resistant isolates from sea cucumber harbored a cat gene, either cat IV or cat II, whereas 35% sea urchin isolates harbored a cat gene, actually cat II. The predominant resistance determinant cat IV gene mainly occurred in isolates related to Vibrio tasmaniensis or Pseudoalteromonas atlantica, and the cat II gene mainly occurred in Vibrio splendidus-like isolates. All the cat-positive isolates also harbored one or two of the tet genes, tet(D), tet(B), or tet(A). As no chloramphenicol-related antibiotic was ever used, coselection of the cat genes by other antibiotics, especially oxytetracycline, might be the cause of the high incidence of cat genes in the mariculture farm studied.

  1. Structure Elucidation and in Vitro Toxicity of New Azaspiracids Isolated from the Marine Dinoflagellate Azadinium poporum

    PubMed Central

    Krock, Bernd; Tillmann, Urban; Potvin, Éric; Jeong, Hae Jin; Drebing, Wolfgang; Kilcoyne, Jane; Al-Jorani, Ahmed; Twiner, Michael J.; Göthel, Qun; Köck, Matthias

    2015-01-01

    Two strains of Azadinium poporum, one from the Korean West coast and the other from the North Sea, were mass cultured for isolation of new azaspiracids. Approximately 0.9 mg of pure AZA-36 (1) and 1.3 mg of pure AZA-37 (2) were isolated from the Korean (870 L) and North Sea (120 L) strains, respectively. The structures were determined to be 3-hydroxy-8-methyl-39-demethyl-azaspiracid-1 (1) and 3-hydroxy-7,8-dihydro-39-demethyl-azaspiracid-1 (2) by 1H- and 13C-NMR. Using the Jurkat T lymphocyte cell toxicity assay, (1) and (2) were found to be 6- and 3-fold less toxic than AZA-1, respectively. PMID:26528990

  2. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    PubMed Central

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations. PMID:26484353

  3. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review.

    PubMed

    Ahmadi, Azin; Zorofchian Moghadamtousi, Soheil; Abubakar, Sazaly; Zandi, Keivan

    2015-01-01

    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  4. Isolation and characterization of anti-adenoviral secondary metabolites from marine actinobacteria.

    PubMed

    Strand, Mårten; Carlsson, Marcus; Uvell, Hanna; Islam, Koushikul; Edlund, Karin; Cullman, Inger; Altermark, Björn; Mei, Ya-Fang; Elofsson, Mikael; Willassen, Nils-Peder; Wadell, Göran; Almqvist, Fredrik

    2014-01-28

    Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 μM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure.

  5. Isolation and Characterization of Anti-Adenoviral Secondary Metabolites from Marine Actinobacteria

    PubMed Central

    Strand, Mårten; Carlsson, Marcus; Uvell, Hanna; Islam, Koushikul; Edlund, Karin; Cullman, Inger; Altermark, Björn; Mei, Ya-Fang; Elofsson, Mikael; Willassen, Nils-Peder; Wadell, Göran; Almqvist, Fredrik

    2014-01-01

    Adenovirus infections in immunocompromised patients are associated with high mortality rates. Currently, there are no effective anti-adenoviral therapies available. It is well known that actinobacteria can produce secondary metabolites that are attractive in drug discovery due to their structural diversity and their evolved interaction with biomolecules. Here, we have established an extract library derived from actinobacteria isolated from Vestfjorden, Norway, and performed a screening campaign to discover anti-adenoviral compounds. One extract with anti-adenoviral activity was found to contain a diastereomeric 1:1 mixture of the butenolide secondary alcohols 1a and 1b. By further cultivation and analysis, we could isolate 1a and 1b in different diastereomeric ratio. In addition, three more anti-adenoviral butenolides 2, 3 and 4 with differences in their side-chains were isolated. In this study, the anti-adenoviral activity of these compounds was characterized and substantial differences in the cytotoxic potential between the butenolide analogs were observed. The most potent butenolide analog 3 displayed an EC50 value of 91 μM and no prominent cytotoxicity at 2 mM. Furthermore, we propose a biosynthetic pathway for these compounds based on their relative time of appearance and structure. PMID:24477283

  6. Isolation and characterization of a marine algicidal bacterium against the harmful raphidophyceae Chattonella marina.

    PubMed

    Kim, Yun Sook; Lee, Dae-Sung; Jeong, Seong-Yun; Lee, Woe Jae; Lee, Myung-Suk

    2009-02-01

    A bacterial strain named AB-4 showing algicidal activity against Chattonella marina was isolated from coastal water of ULjin, Republic of Korea. The isolated strain was identified as Bacillus sp. by culture morphology, biochemical reactions, and homology research based on 16S rDNA. The bacterial culture led to the lysis of algal cells, suggesting that the isolated strain produced a latent algal-lytic compound. Amongst changes in algicidal activity by different culture filtrate volumes, the 10% (100 microl/ml) concentration showed the biggest change in algicidal activity; there, estimated algicidal activity was 95%. The swimming movements of Chattonella marina cells were inhibited because of treatment of the bacterial culture; subsequently, Chattonella marina cells became swollen and rounded. With longer exposure time, algal cells were disrupted and cellular components lost their integrity and decomposed. The released algicide(s) were heat-tolerant and stable in pH variations, except pH 3, 4, and 5. Culture filtrate of Bacillus sp. AB-4 was toxic against harmful algae bloom (HAB) species and nontoxic against livefood organisms. Bacillus sp. AB-4 showed comparatively strong activity against Akashiwo sanguinea, Fibriocapsa japonica, Heterosigma akashiwo, and Scrippsiella trochoidea. These results suggest that the algicidal activity of Bacillus sp. AB-4 is potentially useful for controlling outbreaks of Chattonella marina.

  7. Production of acylated homoserine lactone by gram-positive bacteria isolated from marine water.

    PubMed

    Biswa, Pramal; Doble, Mukesh

    2013-06-01

    Acylated homoserine lactone (AHL)-based quorum sensing (QS) has been reported to be present only in Gram-negative microorganisms. Isolation of a novel Gram-positive microorganism from sea water, capable of producing AHL, is reported here. The isolate (GenBank: JF915892, designated as MPO) belonging to the Exiguobacterium genera is capable of inducing the AHL bioreporters, namely Chromobacterium violaceum CV026, Agrobacterium tumefaceins A136, and E. coli JM 109(psb1075). This inducer is characterized as C3-oxo-octanoyl homoserine lactone (OOHL), and its production reaches a maximum of 15.6 μg L(-1), during the stationary growth phase of the organism. MPO extract when exogenously added inhibits the formation of biofilm for the same organism and lowers the extracellular polymeric substances, indicating an AHL-associated phenotypic trait. The isolated sequence of a probable LuxR homolog from MPO (designated as ExgR) shows similar functional domains and contains conserved residues in LuxR from other known bacterial QS LuxR regulators. Also present immediately downstream to ExgR was found a sequence showing homology to known LuxI synthase of Pseudomonas putida. qPCR analysis suggests an increment in exgR mRNA on addition of AHL, further proving the role of ExgR as a QS regulator.

  8. Tenacibaculum dicentrarchi sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from European sea bass.

    PubMed

    Piñeiro-Vidal, Maximino; Gijón, Daniel; Zarza, Carles; Santos, Ysabel

    2012-02-01

    A novel Gram-stain-negative rod-shaped gliding bacterial strain, designated 35/09(T), was isolated from diseased European sea bass (Dicentrarchus labrax L.) in Spain. Colonies were pale-yellow-pigmented with uneven edges and did not adhere to the agar. The DNA G+C content of the isolate was 31.3 mol%. 16S rRNA gene sequence analysis indicated affiliation to the genus Tenacibaculum (family Flavobacteriaceae, phylum 'Bacteroidetes'). Sequence similarities between the isolate and type strains of other members of the genus were 93.1-97.3 %. The major fatty acids (>5 % of the total fatty acids) were iso-C(15 : 0) (24.8 %), iso-C(15 : 0) 3-OH (18.0 %), anteiso-C(15 : 0) (8.1 %), C(15 : 1)ω6c (6.9 %) and iso-C(15 : 1) (6.2 %). Genotypic and phenotypic data indicate that strain 35/09(T) should be classified as a representative of a novel species in the genus Tenacibaculum, for which the name Tenacibaculum dicentrarchi sp. nov. is proposed; the type strain is 35/09(T) ( = CECT 7612(T) = NCIMB 14598(T)).

  9. Isolation, Characterisation and Antagonistic Activity of Bacteria Symbionts Hardcoral Pavona sp. Isolated from Panjang Island, Jepara Against Infectious Multi-drug Resistant (MDR) Bacteria

    NASA Astrophysics Data System (ADS)

    Ayuningrum, D.; Kristiana, R.; Asagabaldan, M. A.; Sabdono, A.; Radjasa, O. K.; Nuryadi, H.; Trianto, A.

    2017-02-01

    Pavona sp. is highly spread over Indonesian waters including Panjang Island. Several studies showed that bacteria symbionts hardcoral were the big source of antibiotic product, but there was limited research of the bacteria symbionts with hardcoral Pavona sp. In this research bacteria symbionts from hardcoral Pavona sp. had been collected from Panjang Island, Jepara. Marine bacteria symbionts were isolated by serial dillution method, while antibacterial activity was performed by using overlay and agar block method. The total of 2 from 5 isolates were active to MDR bacteria such as Enterobacter aerogenes and Acinetobacter baumanii, the code were PHC 44/04 and PHC 44/05. Then both of them were identified by morphological and molecular DNA characterization using 16 S rRNA gene sequence. The result of 16 S rRNA identification shows PHC 44/04 has 99% similarities with Virgibacillus salarius strain sa-Vb 1, while PHC 44/05 shows 99% similarities with Pseudoalteromonas flavipulchra strain NCIMB 2033.

  10. Vibrio jasicida sp. nov., a member of the Harveyi clade, isolated from marine animals (packhorse lobster, abalone and Atlantic salmon).

    PubMed

    Yoshizawa, Susumu; Tsuruya, Yasuhiro; Fukui, Youhei; Sawabe, Tomoo; Yokota, Akira; Kogure, Kazuhiro; Higgins, Melissa; Carson, Jeremy; Thompson, Fabiano L

    2012-08-01

    Six isolates of a facultatively anaerobic bacterium were recovered in culture from marine invertebrates and vertebrates, including packhorse lobster (Jasus verreauxi), abalone (Haliotis sp.) and Atlantic salmon (Salmo salar), between 1994 and 2002. The bacteria were Gram-negative, rod-shaped and motile by means of more than one polar flagellum, oxidase-positive, catalase-positive and able to grow in the presence of 0.5-8.0% NaCl (optimum 3.0-6.0%) and at 10-37 °C (optimum 25-30 °C). On the basis of 16S rRNA gene sequence analysis and multilocus sequence analysis (MLSA) using five loci (2443 bp; gyrB, pyrH, ftsZ, mreB and gapA), the closest phylogenetic neighbours of strain TCFB 0772(T) were the type strains of Vibrio communis (99.8 and 94.6 % similarity, respectively), Vibrio owensii (99.8 and 94.1%), Vibrio natriegens (99.4 and 88.8%), Vibrio parahaemolyticus (99.4 and 90.3%), Vibrio rotiferianus (99.2 and 94.4%), Vibrio alginolyticus (99.1 and 89.3%) and Vibrio campbellii (99.1 and 92.3%). DNA-DNA hybridization confirmed that the six isolates constitute a unique taxon that is distinct from other known species of Vibrio. In addition, this taxon can be readily differentiated phenotypically from other Vibrio species. The six isolates therefore represent a novel species, for which the name Vibrio jasicida sp. nov. is proposed; the novel species is represented by the type strain TCFB 0772(T) ( = JCM 16453(T)  = LMG 25398(T)) (DNA G+C content 45.9 mol%) and reference strains TCFB 1977 ( = JCM 16454) and TCFB 1000 ( = JCM 16455).

  11. Production of the Bioactive Compounds Violacein and Indolmycin Is Conditional in a maeA Mutant of Pseudoalteromonas luteoviolacea S4054 Lacking the Malic Enzyme

    PubMed Central

    Thøgersen, Mariane S.; Delpin, Marina W.; Melchiorsen, Jette; Kilstrup, Mogens; Månsson, Maria; Bunk, Boyke; Spröer, Cathrin; Overmann, Jörg; Nielsen, Kristian F.; Gram, Lone

    2016-01-01

    It has previously been reported that some strains of the marine bacterium Pseudoalteromonas luteoviolacea produce the purple bioactive pigment violacein as well as the antibiotic compound indolmycin, hitherto only found in Streptomyces. The purpose of the present study was to determine the relative role of each of these two compounds as antibacterial compounds in P. luteoviolacea S4054. Using Tn10 transposon mutagenesis, a mutant strain that was significantly reduced in violacein production in mannose-containing substrates was created. Full genome analyses revealed that the vio-biosynthetic gene cluster was not interrupted by the transposon; instead the insertion was located to the maeA gene encoding the malic enzyme. Supernatant of the mutant strain inhibited Vibrio anguillarum and Staphylococcus aureus in well diffusion assays and in MIC assays at the same level as the wild type strain. The mutant strain killed V. anguillarum in co-culture experiments as efficiently as the wild type. Using UHPLC-UV/Vis analyses, we quantified violacein and indolmycin, and the mutant strain only produced 7–10% the amount of violacein compared to the wild type strain. In contrast, the amount of indolmycin produced by the mutant strain was about 300% that of the wild type. Since inhibition of V. anguillarum and S. aureus by the mutant strain was similar to that of the wild type, it is concluded that violacein is not the major antibacterial compound in P. luteoviolacea. We furthermore propose that production of violacein and indolmycin may be metabolically linked and that yet unidentified antibacterial compound(s) may be play a role in the antibacterial activity of P. luteoviolacea. PMID:27695447

  12. Glutathionylation of the iron superoxide dismutase from the psychrophilic eubacterium Pseudoalteromonas haloplanktis.

    PubMed

    Castellano, Immacolata; Ruocco, Maria Rosaria; Cecere, Francesca; Di Maro, Antimo; Chambery, Angela; Michniewicz, Andzelika; Parlato, Giuseppe; Masullo, Mariorosario; De Vendittis, Emmanuele

    2008-05-01

    Our previous work showed that the adduct between beta-mercaptoethanol and the single cysteine residue (Cys57) in superoxide dismutase from the psychrophilic eubacterium Pseudoalteromonas haloplanktis (PhSOD) reduces the enzyme inactivation by peroxynitrite. In this work, immunoblotting experiments prove that peroxynitrite inactivation of PhSOD involves formation of nitrotyrosine residue(s). In order to study the role of Cys57 as a redox-sensor residue modifiable by cellular thiols, a recombinant PhSOD and two Cys57 mutants were produced and characterized. Recombinant and mutant enzymes share similar activity and peroxynitrite inactivation, but different reactivity towards three glutathione forms. Indeed, oxidized glutathione and S-nitrosoglutathione, but reduced glutathione, lead to S-glutathionylation of recombinant PhSOD. This new covalent modification for a Fe-SOD does not occur in both Cys57 mutants, thus indicating that its target is Cys57. Moreover, mass spectrometry analysis confirmed that S-glutathionylation of Cys57 takes place also with endogenous PhSOD. Formation of this mixed disulfide in PhSOD protects the enzyme from tyrosine nitration and peroxynitrite inactivation. PhSOD undergoes S-glutathionylation during its overproduction in E. coli cells and in a growing culture of P. haloplanktis. In both cases the extent of glutathionylated PhSOD is enhanced upon cell exposure to oxidative agents. We suggest that S-glutathionylation of PhSOD could represent a further cold-adaptation strategy to improve the antioxidant cellular defence mechanism.

  13. Anti-biofilm activity of Pseudoalteromonas flavipulchra SktPp1 against Serratia marcescens SMJ-11

    NASA Astrophysics Data System (ADS)

    Iqbal, Faiq; Usup, Gires; Ahmad, Asmat

    2015-09-01

    This study aimed to examine the anti-biofilm activity of Pseudoalteromonas flavipulchra SktPp1 crude extract against the biofilm producer, Serratia marcescens. The crude extract of P. flavipulchra SktPp1 was extracted with ethyl acetate. The sub-minimum inhibitory concentration (MIC), 0.1 mg/ml, has been used in this study. The anti-biofilm activity of P. flavipulchra SktPp1 crude extract was assessed against the biofilm of S. marcescens using the crystal violet assay. The growth curve has been used as the indicator of the effect of crude extracts to bacterial growth. The sub-MIC crude extract was tested against two of S. marcescens virulence factors, including the swarming ability and production of prodigiosin using the swarming assay and prodigiosin assay. The growth curves of S. marcescens indicated that the sub-MIC concentration of crude extract did not affect the growth of S. marcescens. The production of prodigiosin was reduced by 44%. The diameter of the swarming area was reduced from 8.7 cm to 0.8 cm. The sub-MIC crude extract inhibits 26.9% of the biofilm production in S. marcescens. This crude extract lost its activity at 50°C and above. In conclusion, crude extract of P. flavipulchra SktPp1 has the ability to inhibit S. marcescens SMJ-11 biofilm formation.

  14. Characterization of an arylsulfatase from a mutant library of Pseudoalteromonas carrageenovora arylsulfatase.

    PubMed

    Zhu, Yanbing; Liu, Han; Qiao, Chaochao; Li, Lijun; Jiang, Zedong; Xiao, Anfeng; Ni, Hui

    2017-03-01

    A library of Pseudoalteromonas carrageenovora arylsulfatase mutants was constructed by introducing random mutagenesis using error-prone PCR. After screening, one mutant strain was obtained whose arylsulfatase had improved thermal stability. Protein sequence analysis revealed one amino acid substitution of H260L. The mutant arylsulfatase (named H260L) retained higher residual activity than wild-type enzyme (named WT) after incubation at 45, 50, 55 and 60°C for 60min. Thermal inactivation analysis showed that the half-life (t1/2) value at 55°C for H260L was 40.6min, while that of WT was 9.1min. When p-nitrophenyl sulfate was used as a substrate, the optimal reaction temperature and pH for the mutant enzyme were 55°C and pH 8.0, respectively. H260L was stable over the pH range of 6.0-9.0. Inhibition assay with EDTA indicated that metal ions play an important role during the catalytic process of the mutant enzyme. The desulfation ratio against agar of Gracilaria lemaneiformis was 82%.

  15. Isolation and characterization of a methylotrophic marine methanogen, Methanococcoides methylutens gen. nov. , sp

    SciTech Connect

    Sowers, K.R.; Ferry, J.G.

    1983-02-01

    A new genus of marine methanogenic bacteria is described that utilizes trimethylamine, diethylamine, monomethylamine, and methanol as substrates for growth and methanogenesis. Methane was not produced from H/sub 2/-CO/sub 2/, sodium formate, or sodium acetate. Growth on trimethylamine was stimulated by yeast extract, Trypticase (BBL Microbiology Systems, Cockeysville, MD), rumen fluid, or B vitamins. The optimal growth temperature was 30 to 35/sup 0/C. The maximum growth rate was between pH 7.0 and 7.5. Na/sup +/ (0.4 M) and MgSO/sub 4/ (0.05 M) were required for maximum growth. Colonies of the type strain, TMA-10, were yellow, circular, and convex with entire edges. Cells were nonmotile, nonsporeforming, irregular cocci 1 ..mu..m in diameter which stained gram negative and occurred singly or in pairs. Micrographs of thin sections revealed a monolayered cell wall approximately 10-nm thick which consisted of protein. Cells were lysed in 0.01% sodium dodecyl sulfate or 0.001% Triton X-100. The DNA base composition was 42 mol% guanine plus cytosine. Methanococcoides is the proposed genus and Methanococcoides methylutens is the type species. TMA-10 is the type strain (ATCC 33938).

  16. The isolation of prophyra-334 from marine algae and its UV-absorption behavior

    NASA Astrophysics Data System (ADS)

    Zhaohui, Zhang; Xin, Gao; Tashiro, Yuri; Matsukawa, Shingo; Ogawa, Hiroo

    2005-12-01

    Prophyra-334 was prepared by methanol extraction and HPLC methods from marine algae (dried laver). It is a sunscreen compound that has good absorption of ultraviolet radiations in the wavelength ranges of 200-400 nm. The absorption maximum wavelength of prophyra-334 is at 334 nm, so defined the name. The molar extinction coefficient (ɛ) of prophyra-334 in aqueous solution at 334 nm wavelength is 4.23×104. The absorption of prophyra-334 in organic solvents differs in aqueous solutions. In polar organic solvents, the absorption maximum wavelength of prophyra-334 has a slight shift toward longer wavelength compared with that in pure water. On the contrary, in inert non-polar organic solvents, the absorption maximum wavelength and the shape of absorption spectra of prophyra-334 are changed. The effects of organic solvents on prophyra-334 stability suggested that: (1) the absorbance of prophyra-334 in water is generally constant at temperature of 60°C in 24 h, meaning that prophyra-334 is quite stable in water; (2) the absorbance of prophyra-334 in ethanol and hexane decreases at the same condition. The stability of prophyra-334 in organic solvents is less than that in aqueous solution. In benzene, the prophyra-334 is very instable.

  17. Isolation and characterization of glutamine synthetase from the marine diatom Skeletonema costatum.

    PubMed Central

    Robertson, D L; Alberte, R S

    1996-01-01

    Two peaks of glutamine synthetase (GS) activity were resolved by anion-exchange chromatography from the marine diatom Skeletonema costatum Grev. The second peak of activity accounted for greater than 93% of total enzyme activity, and this isoform was purified over 200-fold. Results from denaturing gel electrophoresis and gel-filtration chromatography suggest that six 70-kD subunits constitute the 400-kD native enzyme. The structure of the diatom GS, therefore, appears more similar to that of a type found in bacteria than to the type common among other eukaryotes. Apparent Michaelis constant values were 0.7 mM for NH4(+), 5.7 mM for glutamic acid, and 0.5 mM for ATP. Enzyme activity was inhibited by serine, alanine, glycine, phosphinothricin, and methionine sulfoximine. Polyclonal antiserum raised against the purified enzyme localized a single polypeptide on western blots of S. costatum cell lysates and recognized the denatured, native enzyme. Western analysis of the two peak fractions derived from anion-exchange chromatography demonstrated that the 70-kD protein was present only in the later eluting peak of enzyme activity. This form of GS does not appear to be unique to S. costatum, since the antiserum recognized a similar-sized protein in cell lysates of other chromophytic algae. PMID:8756499

  18. Isolation and characterization of glutamine synthetase from the marine diatom Skeletonema costatum.

    PubMed

    Robertson, D L; Alberte, R S

    1996-08-01

    Two peaks of glutamine synthetase (GS) activity were resolved by anion-exchange chromatography from the marine diatom Skeletonema costatum Grev. The second peak of activity accounted for greater than 93% of total enzyme activity, and this isoform was purified over 200-fold. Results from denaturing gel electrophoresis and gel-filtration chromatography suggest that six 70-kD subunits constitute the 400-kD native enzyme. The structure of the diatom GS, therefore, appears more similar to that of a type found in bacteria than to the type common among other eukaryotes. Apparent Michaelis constant values were 0.7 mM for NH4(+), 5.7 mM for glutamic acid, and 0.5 mM for ATP. Enzyme activity was inhibited by serine, alanine, glycine, phosphinothricin, and methionine sulfoximine. Polyclonal antiserum raised against the purified enzyme localized a single polypeptide on western blots of S. costatum cell lysates and recognized the denatured, native enzyme. Western analysis of the two peak fractions derived from anion-exchange chromatography demonstrated that the 70-kD protein was present only in the later eluting peak of enzyme activity. This form of GS does not appear to be unique to S. costatum, since the antiserum recognized a similar-sized protein in cell lysates of other chromophytic algae.

  19. Isolation of a novel aquaglyceroporin from a marine teleost (Sparus auratus): function and tissue distribution.

    PubMed

    Santos, C R A; Estêvão, M D; Fuentes, J; Cardoso, J C R; Fabra, M; Passos, A L; Detmers, F J; Deen, P M T; Cerdà, J; Power, D M

    2004-03-01

    The aquaporins (formerly called the major intrinsic protein family) are transmembrane channel proteins. The family includes the CHIP group, which are functionally characterised as water channels and the GLP group, which are specialised for glycerol transport. The present study reports the identification and characterisation of a novel GLP family member in a teleost fish, the sea bream Sparus auratus. A sea bream aquaporin (sbAQP) cDNA of 1047 bp and encoding a protein of 298 amino acids was isolated from a kidney cDNA library. Functional characterization of the sbAQP using a Xenopus oocyte assay revealed that the isolated cDNA stimulated osmotic water permeability in a mercury-sensitive manner and also stimulated urea and glycerol uptake. Northern blotting demonstrated that sbAQP was expressed at high levels in the posterior region of the gut, where two transcripts were identified (1.6 kb and 2 kb), and in kidney, where a single transcript was present (2 kb). In situ hybridisation studies with a sbAQP riboprobe revealed its presence in the lamina propria and smooth muscle layer of the posterior region of the gut and in epithelial cells of some kidney tubules. sbAQP was also present in putative chloride cells of the gill. Phylogenetic analysis of sbAQP, including putative GLP genes from Fugu rubripes, revealed that it did not group with any of the previously isolated vertebrate GLPs and instead formed a separate group, suggesting that it may be a novel GLP member.

  20. Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments.

    PubMed

    Genuário, Diego Bonaldo; Vaz, Marcelo Gomes Marçal Vieira; Hentschke, Guilherme Scotta; Sant'Anna, Célia Leite; Fiore, Marli Fátima

    2015-02-01

    Nostoc is a common and well-studied genus of cyanobacteria and, according to molecular phylogeny, is a polyphyletic group. Therefore, revisions of this genus are urged in an attempt to clarify its taxonomy. Novel strains isolated from underexplored environments and assigned morphologically to the genus Nostoc are not genetically related to the 'true Nostoc' group. In this study, four strains isolated from biofilms collected in Antarctica and five strains originated from Brazilian mangroves were evaluated. Despite their morphological similarities to other morphotypes of Nostoc, these nine strains differed from other morphotypes in ecological, physiological and genetic aspects. Based on the phylogeny of the 16S rRNA gene, the Antarctic sequences were grouped together with the sequences of the Brazilian mangrove isolates and Nostoc sp. Mollenhauer 1 : 1-067 in a well-supported cluster (74 % bootstrap value, maximum-likelihood). This novel cluster was separated phylogenetically from the 'true Nostoc' clade and from the clades of the morphologically similar genera Mojavia and Desmonostoc. The 16S rRNA gene sequences generated in this study exhibited 96 % similarity to sequences from the nostocacean genera mentioned above. Physiologically, these nine strains showed the capacity to grow in a salinity range of 1-10 % NaCl, indicating their tolerance of saline conditions. These results provide support for the description of a new genus, named Halotia gen. nov., which is related morphologically to the genera Nostoc, Mojavia and Desmonostoc. Within this new genus, three novel species were recognized and described based on morphology and internal transcribed spacer secondary structures: Halotia branconii sp. nov., Halotia longispora sp. nov. and Halotia wernerae sp. nov., under the provisions of the International Code of Nomenclature for Algae, Fungi and Plants.

  1. Sonorensin: an Antimicrobial Peptide, Belonging to the Heterocycloanthracin Subfamily of Bacteriocins, from a New Marine Isolate, Bacillus sonorensis MT93

    PubMed Central

    Chopra, Lipsy; Singh, Gurdeep; Choudhary, Vikas

    2014-01-01

    Marine environments are the greatest fronts of biodiversity, representing a resource of unexploited or unknown microorganisms and new substances having potential applications. Among microbial products, antimicrobial peptides (AMPs) have received great attention recently due to their applications as food preservatives and therapeutic agents. A new marine soil isolate producing an AMP was identified as Bacillus sonorensis based on 16S rRNA gene sequence analysis. It produced an AMP that showed a broad spectrum of activity against both Gram-positive and Gram-negative bacteria. The peptide, named sonorensin, was purified to homogeneity using a combination of chromatographic techniques. The intact molecular mass of the purified peptide, 6,274 Da, as revealed by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF), was in agreement with Tricine-SDS-PAGE analysis. A PCR array of primers was used to identify AMP structural genes, which allowed the successful amplification of the related genes from strain MT93. The putative open reading frame of sonorensin was amplified, cloned into the pET-32a(+) vector, expressed as a thioredoxin (Trx) fusion protein in Escherichia coli, and then purified. Sequence alignment analysis revealed that the bacteriocin being reported could belong to new subfamily of bacteriocins, heterocycloanthracin. The peptide indicated its potential as a biocontrol agent or food antimicrobial agent, due to its antimicrobial activity against bacteria such as Listeria monocytogenes and Staphylococcus aureus. This is the first report of the production, purification, and characterization of wild-type and recombinant bacteriocin by B. sonorensis and the first bacteriocin of the heterocycloanthracin subfamily to be characterized. PMID:24610839

  2. Sonorensin: an antimicrobial peptide, belonging to the heterocycloanthracin subfamily of bacteriocins, from a new marine isolate, Bacillus sonorensis MT93.

    PubMed

    Chopra, Lipsy; Singh, Gurdeep; Choudhary, Vikas; Sahoo, Debendra K

    2014-05-01

    Marine environments are the greatest fronts of biodiversity, representing a resource of unexploited or unknown microorganisms and new substances having potential applications. Among microbial products, antimicrobial peptides (AMPs) have received great attention recently due to their applications as food preservatives and therapeutic agents. A new marine soil isolate producing an AMP was identified as Bacillus sonorensis based on 16S rRNA gene sequence analysis. It produced an AMP that showed a broad spectrum of activity against both Gram-positive and Gram-negative bacteria. The peptide, named sonorensin, was purified to homogeneity using a combination of chromatographic techniques. The intact molecular mass of the purified peptide, 6,274 Da, as revealed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF), was in agreement with Tricine-SDS-PAGE analysis. A PCR array of primers was used to identify AMP structural genes, which allowed the successful amplification of the related genes from strain MT93. The putative open reading frame of sonorensin was amplified, cloned into the pET-32a(+) vector, expressed as a thioredoxin (Trx) fusion protein in Escherichia coli, and then purified. Sequence alignment analysis revealed that the bacteriocin being reported could belong to new subfamily of bacteriocins, heterocycloanthracin. The peptide indicated its potential as a biocontrol agent or food antimicrobial agent, due to its antimicrobial activity against bacteria such as Listeria monocytogenes and Staphylococcus aureus. This is the first report of the production, purification, and characterization of wild-type and recombinant bacteriocin by B. sonorensis and the first bacteriocin of the heterocycloanthracin subfamily to be characterized.

  3. An IS711 Element Downstream of the bp26 Gene Is a Specific Marker of Brucella spp. Isolated from Marine Mammals

    PubMed Central

    Cloeckaert, Axel; Grayon, Maggy; Grepinet, Olivier

    2000-01-01

    DNA polymorphism of the bp26 gene, coding for a diagnostic protein antigen for brucellosis, was assessed by PCR and restriction fragment length polymorphism analysis using primers to amplify the bp26 gene with its flanking regions. Surprisingly, whereas PCR performed on DNA of the reference strains of the six recognized Brucella species produced a product of the expected size (1,029 bp), PCR performed on DNA of three representative strains from marine mammals (from a seal, a dolphin, and a porpoise) produced a larger product, of about 1,900 bp. Nucleotide sequencing of the 1,900-bp PCR products revealed the presence of an insertion sequence, IS711, downstream of the bp26 gene and adjacent to a Bru-RS1 element previously described as being a hot spot for IS711 insertion. PCR performed on a large number of field strains from different geographic origins and from marine mammal isolates indicated that the occurrence of an IS711 element downstream of the bp26 gene was a feature specific to the marine mammal Brucella strains. Thus, this PCR assay is able to differentiate Brucella terrestrial isolates from marine mammal isolates and could be applied for diagnostic purposes. PMID:10973465

  4. A fatty acid glycoside from a marine-derived fungus isolated from mangrove plant Scyphiphora hydrophyllacea.

    PubMed

    Zeng, Yan-Bo; Wang, Hui; Zuo, Wen-Jian; Zheng, Bo; Yang, Tao; Dai, Hao-Fu; Mei, Wen-Li

    2012-03-01

    To study the antimicrobial components from the endophytic fungus A1 of mangrove plant Scyphiphora hydrophyllacea Gaertn. F., a new fatty acid glucoside was isolated by column chromatography from the broth of A1, and its structure was identified as R-3-hydroxyundecanoic acid methylester-3-O-α-l-rhamnopyranoside (1) by spectroscopic methods including 1D and 2D NMR (HMQC, (1)H-(1)H COSY and HMBC) and chemical methods. Antimicrobial assay showed compound 1 possessed modest inhibitory effect on Saphylococcus aureus and methicillin-resistant S. aureus (MRSA) using the filter paper disc agar diffusion method.

  5. Botryane metabolites from the fungus Geniculosporium sp. isolated from the marine red alga Polysiphonia.

    PubMed

    Krohn, Karsten; Dai, Jingqiu; Flörke, Ulrich; Aust, Hans-Jürgen; Dräger, Siegfried; Schulz, Barbara

    2005-03-01

    Eleven new botryane metabolites (1-11) were isolated together with four known cytochalasins (12-15) from the mitosporic fungus Geniculosporium sp., which is associated with the red alga Polysiphonia sp. The structures of 1-11 differ from known botryanes in substitution pattern, degree of saturation, and altered sites of oxidation, alkylation, unsaturation, etc. They were determined by spectroscopic methods (mainly extensive 1D and 2D NMR experiments and mass spectral measurements) and X-ray single-crystal analysis. The herbicidal, antifungal, and antibacterial activities of these new natural products were evaluated.

  6. Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota.

    PubMed

    Li, Miaomiao; Shang, Qingsen; Li, Guangsheng; Wang, Xin; Yu, Guangli

    2017-03-24

    Carrageenan, agarose, and alginate are algae-derived undigested polysaccharides that have been used as food additives for hundreds of years. Fermentation of dietary carbohydrates of our food in the lower gut of humans is a critical process for the function and integrity of both the bacterial community and host cells. However, little is known about the fermentation of these three kinds of seaweed carbohydrates by human gut microbiota. Here, the degradation characteristics of carrageenan, agarose, alginate, and their oligosaccharides, by Bacteroides xylanisolvens, Bacteroides ovatus, and Bacteroides uniforms, isolated from human gut microbiota, are studied.

  7. Influence of temperature, pH, and salinity on membrane lipid composition and TEX86 of marine planktonic thaumarchaeal isolates

    NASA Astrophysics Data System (ADS)

    Elling, Felix J.; Könneke, Martin; Mußmann, Marc; Greve, Andreas; Hinrichs, Kai-Uwe

    2015-12-01

    Marine ammonia-oxidizing archaea of the phylum Thaumarchaeota are a cosmopolitan group of microorganisms representing a major fraction of the picoplankton in the ocean. The cytoplasmic membranes of Thaumarchaeota consist predominantly of intact polar isoprenoid glycerol dibiphytanyl glycerol tetraether (GDGT) lipids, which may be used as biomarkers for living Thaumarchaeota. Fossil thaumarchaeal GDGT core lipids accumulate in marine sediments and serve as the basis for geochemical proxies such as the TEX86 paleothermometer. Here, we demonstrate that the responses of membrane lipid compositions and resulting TEX86 values to growth temperature strongly diverge in three closely related thaumarchaeal pure cultures, i.e., Nitrosopumilus maritimus and two novel strains isolated from South Atlantic surface water, although the inventories of intact polar lipids and core lipids were overall similar in the three strains. N. maritimus and its closely related strain NAOA6 showed linear relationships of TEX86 and growth temperature but no correlation of TEX86 and temperature was observed in the more distantly related strain NAOA2. In contrast, the weighted average number of cycloalkyl moieties (ring index) was linearly correlated with growth temperature in all strains. This disparate relationship of TEX86 to growth temperature among closely related Thaumarchaeota suggests that the ring index but not the TEX86 ratio represents a universal response to growth temperature in marine planktonic Thaumarchaeota. Furthermore, the distinct TEX86-temperature relationships in the cultivated strains indicate that environmental GDGT signals may include an ecological component, which has important implications for ocean temperature reconstructions using the TEX86 proxy. In contrast, different growth medium salinities in the range 27-51‰ tested for N. maritimus showed no systematic effect on intact polar GDGT composition and TEX86. Similarly, N. maritimus showed only small changes in intact

  8. Extraction, isolation, and purification of analytes from samples of marine origin--a multivariate task.

    PubMed

    Liguori, Lucia; Bjørsvik, Hans-René

    2012-12-01

    The development of a multivariate study for a quantitative analysis of six different polybrominated diphenyl ethers (PBDEs) in tissue of Atlantic Salmo salar L. is reported. An extraction, isolation, and purification process based on an accelerated solvent extraction system was designed, investigated, and optimized by means of statistical experimental design and multivariate data analysis and regression. An accompanying gas chromatography-mass spectrometry analytical method was developed for the identification and quantification of the analytes, BDE 28, BDE 47, BDE 99, BDE 100, BDE 153, and BDE 154. These PBDEs have been used in commercial blends that were used as flame-retardants for a variety of materials, including electronic devices, synthetic polymers and textiles. The present study revealed that an extracting solvent mixture composed of hexane and CH₂Cl₂ (10:90) provided excellent recoveries of all of the six PBDEs studied herein. A somewhat lower polarity in the extracting solvent, hexane and CH₂Cl₂ (40:60) decreased the analyte %-recoveries, which still remain acceptable and satisfactory. The study demonstrates the necessity to perform an intimately investigation of the extraction and purification process in order to achieve quantitative isolation of the analytes from the specific matrix.

  9. Isolation and characterization of high quality DNA from marine benthic macroalgae.

    PubMed

    Chakraborty, S; Vijayan, K; Nair, C V; Santra, S C; Bhattacharya, T

    2008-11-01

    The isolation of high quality DNA is essential for many molecular biology applications including polymerase chain reaction (PCR) and endonuclease restriction digestion based techniques. An easy and inexpensive protocol has been developed for extracting genomic DNA from seven species of algae viz. Lola capillaries, Enteromorpha intestinalis, Ulva lactuca and Rhizoclonium sp belonging to Chlorophyceae, Catenella nipae, Polysiphonia mollis belonging to Rhodophyceae and Dictyota ceylanica belonging to Phaeophyceae group were collected from the coastal regions of Sunderban delta in West Bengal, India dominantly growing on mud flats, bark of different mangrove trees, pneumatophores, stilt roots, concrete surfaces, wooden and bamboo poles, sides of the boats and other water vehicles inundated during high tides. The DNA was found suitable for restriction endonuclease digestion and PCR amplification with randomely amplified polymorphic DNA (RAPD) primers. The A260/A280 ratio of 1.15 0.14 to 1.94 indicated little contamination from proteins and polysaccharides. The PCR amplification with RAPD primers showed its suitability in PCR based techniques and the restriction digestion with Eco RV confirmed its suitability for hybridization based techniques. The protocol is equally good for isolating DNA from both fresh as well as preserved materials.

  10. Pacificibacter maritimus gen. nov., sp. nov., isolated from shallow marine sediment.

    PubMed

    Romanenko, Lyudmila A; Tanaka, Naoto; Svetashev, Vasily I; Kalinovskaya, Nataliya I

    2011-06-01

    An aerobic, Gram-stain-negative, non-pigmented, non-motile bacterium, strain KMM 9031(T), was isolated from a sandy sediment sample collected from the shore of the Sea of Japan and subjected to phenotypic and phylogenetic analysis. Based on comparative 16S rRNA gene sequence analysis, strain KMM 9031(T) constituted a separate phylogenetic line within the Roseobacter clade of the class Alphaproteobacteria, sharing highest sequence similarities with members of the genera Roseovarius (92.7-95.3 %), Pseudoruegeria (94.5 %), Sulfitobacter (92.7-94.4 %) and Thalassobacter (94.2-94.3 %). The predominant fatty acid of strain KMM 9031(T) was C(18 : 1)ω7c, with C(16 : 0), C(10 : 0) 3-OH and C(12 : 1) 3-OH present in lesser amounts. The DNA G+C content of the isolate was 52.6 mol%. The major isoprenoid quinone was Q-10 and polar lipids comprised phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol and two unknown lipids. On the basis of phylogenetic analysis and physiological and biochemical characterization, strain KMM 9031(T) represents a novel species in a new genus, for which the name Pacificibacter maritimus gen. nov., sp. nov. is proposed; the type strain is KMM 9031(T) ( = NRIC 0785(T)  = JCM 17096(T)).

  11. Simultaneous Detection and Prevalence of Allergens in Anisakis Species Isolated from Marine Fishes.

    PubMed

    Lee, Woo Joo; Seo, Dong Joo; Oh, Hyejin; Jeon, Su Been; Jung, Day; Choi, Changsun

    2016-05-01

    This study was conducted to develop a multiplex reverse transcription (RT) PCR for the detection of Anisakis allergens and to investigate the relationship between allergen profiles and anisakid larvae isolated from Scomber japonicus, Trichiurus lepturus, and Conger myriaster in Korea. The species of Anisakis was determined using Anisakis pegreffii-specific PCR and restriction fragment length polymorphism analysis. The prevalence and profiles of five Ani s allergens were examined by multiplex RTPCR. A. pegreffii and Anisakis typica accounted for 97.1 and 2.9%, respectively, of the 140 larvae examined. In A. pegreffii, allergen prevalence was 41.2% for Ani s 1, 72.1% for Ani s 2, 69.9% for Ani s 3, 86.7% for Ani s 4, and 93.4% for Ani s 5. Most A. pegreffii larvae had multiple allergen profiles, and 80.7% of A. pegreffii carried both Ani s 4 and Ani s 5, which are heat-resistant allergens. Fifty-two to 65% of A. pegreffii isolated from S. japonicus and C. myriaster carried all five Ani s allergens.

  12. [Study of marine actinomycetes isolated from the central coast of Peru and their antibacterial activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis].

    PubMed

    León, Jorge; Aponte, Juan José; Rojas, Rosario; Cuadra, D'Lourdes; Ayala, Nathaly; Tomás, Gloria; Guerrero, Marco

    2011-06-01

    To determine the antimicrobial potential of marine actinomycetes against drug-resistant pathogens represented by strains of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE). Strains of actinomycetes (29) isolated from marine sediment were evaluated by their characteristics in two culture media and by testing their inhibitory capacity by in vitro antagonism against multi-drug resistant (MDR) pathogenic bacteria for MRSA and VRE. Organic extracts of 3 selected actinomicetes were processed to determine the minimum inhibitory concentration (MIC) of the active compound. Most isolated actinomycetes belong to a homogeneous group of write-gray actinomycetes with a good growth in Marine Agar. The inhibitory rates of the isolates were above 85% for both pathogens with inhibition zones greater than 69 and 78 mm in diameter for MRSA and VRE respectively. Dichloromethane extracts of 3 isolates (I-400A, B1-T61, M10-77) showed strong inhibitory activity of both pathogens, M10-77 being the highest actinomycete strain with antibiotic activity against methicillin-resistant S. aureus ATCC 43300 and vancomycin-resistant E. faecalis ATCC 51299 with a minimum inhibitory concentrations (MIC) of 7.9 and 31.7 μg/ml respectively. Phylogenetic analysis of M10-77 strain showed 99% similarity with the marine species Streptomyces erythrogriseus. Marine sediments of the central coast of Peru, are a source of actinomycetes strains showing high capacity to produce bioactive compounds able to inhibit pathogens classified as multi-drug-resistant such as methicillin-resistant S. aureus and vancomycin-resistant E. faecalis.

  13. Isolation and characterization of marine psychrophilic phage-host systems from Arctic sea ice.

    PubMed

    Borriss, Michael; Helmke, Elisabeth; Hanschke, Renate; Schweder, Thomas

    2003-10-01

    Phage-host systems from extreme cold environments have rarely been surveyed. This study is concerned with the isolation and characterization of three different phage-host systems from Arctic sea ice and melt pond samples collected north-west of Svalbard (Arctic). On the basis of 16S rDNA sequences, the three bacterial phage hosts exhibited the greatest similarity to the species Shewanella frigidimarina (96.0%), Flavobacterium hibernum (94.0%), and Colwellia psychrerythraea (98.4%), respectively. The host bacteria are psychrophilic with good growth at 0 degrees C, resulting in a rapid formation of visible colonies at this temperature. The phages showed an even more pronounced adaptation to cold temperatures than the bacteria, with growth maxima below 14 degrees C and good plaque formation at 0 degrees C. Transmission electron microscopy (TEM) examinations revealed that the bacteriophages belonged to the tailed, double-stranded DNA phage families Siphoviridae and Myoviridae. All three phages were host-specific.

  14. Response to polychlorinated biphenyls of marine phytoplankton isolates cultured under natural conditions.

    PubMed Central

    Powers, C D; Rowland, R G; O'Connors, H B; Wurster, C F

    1977-01-01

    Polychlorinated biphenyls (PCB) at a concentration of 10 mug/liter substantially but temporarily suppressed the growth rate and photosynthesis of two species of Thalassiosira recently isolated from Long Island Sound and grown in dialysis membrane bags suspended in the tidal channel of an estuarine marsh. Inhibition of carbon fixation was apparently due to reduced levels of chlorophyll a per PCB-treated cell, but no significant loss of function per unit of existing chlorophyll a was observed. Cell concentrations in all size classes (3.2- to 18.6-mum-equivalent spherical diameters) were markedly lower in PCB-treated cultures, with toal biomass equaling only 30% of that in control cultures throughout the experiment. PMID:413482

  15. Shewanella hafniensis sp. nov. and Shewanella morhuae sp. nov., isolated from marine fish of the Baltic Sea.

    PubMed

    Satomi, Masataka; Vogel, Birte Fonnesbech; Gram, Lone; Venkateswaran, Kasthuri

    2006-01-01

    Two novel species belonging to the genus Shewanella are described on the basis of their phenotypic characteristics, phylogenetic analyses of 16S rRNA and gyrB gene sequences and levels of DNA-DNA hybridization. A total of 47 strains belonging to two novel Gram-negative, psychrotolerant, H2S-producing bacterial species were isolated from marine fish (cod and flounder) caught from the Baltic Sea off Denmark. The phenotypic characteristics of strains belonging to group 1 (14 strains) indicated that these represented a non-sucrose-assimilating variant of Shewanella baltica with a DNA G+C content of 47.0 mol%. Strains of group 2 (33 isolates) did not utilize the carbon substrates assimilated by S. baltica except gluconate, N-acetylglucosamine and malate. Their DNA G+C content was 44.0 mol%. Phylogenetic analysis of the 16S rRNA gene sequence data placed the two novel species within the genus Shewanella. Group 1 strains showed greatest sequence similarity to Shewanella putrefaciens ATCC 8071T (99.0 %) and with S. baltica NCTC 10375(T) (98.3 %). However, gyrB gene sequence analysis showed these isolates to share only 90.0 % sequence similarity with S. putrefaciens ATCC 8071T and 93.9 % with S. baltica NCTC 10375T. Similarly, DNA-DNA hybridization experiments revealed DNA relatedness levels of 38 % between the group 1 isolates and S. putrefaciens ATCC 8071T and 43 % with S. baltica NCTC 10375T. The group 2 strains shared less than 97 % 16S rRNA gene sequence similarities with recognized Shewanella species. Comparisons between the two novel species indicated 16S rRNA gene sequence similarity of approximately 98 %, gyrB gene sequence similarity of approximately 89 % and DNA-DNA reassociation values of 20-34 %. Based on the evidence presented, two novel species, Shewanella hafniensis sp. nov. (type strain P010T = ATCC BAA-1207T = NBRC 100975T) and Shewanella morhuae sp. nov. (type strain U1417T = ATCC BAA-1205T = NBRC 100978T), are described.

  16. Shewanella profunda sp. nov., isolated from deep marine sediment of the Nankai Trough.

    PubMed

    Toffin, Laurent; Bidault, Adeline; Pignet, Patricia; Tindall, Brian J; Slobodkin, Alexander; Kato, Chiaki; Prieur, Daniel

    2004-11-01

    A novel piezotolerant, mesophilic, facultatively anaerobic, organotrophic, polarly flagellated bacterium (strain LT13a(T)) was isolated from a deep sediment layer in the Nankai Trough (Leg 190, Ocean Drilling Program) off the coast of Japan. This organism used a wide range of organic substrates as sole carbon and energy sources: pyruvate, glutamate, succinate, fumarate, lactate, citrate, peptone and tryptone. Oxygen, nitrate, fumarate, ferric iron and cystine were used as electron acceptors. Maximal growth rates were observed at a hydrostatic pressure of 10 MPa. Hydrostatic pressure for growth was in the range 0.1-50 MPa. Predominant cellular fatty acids were 16 : 1omega7c, 15 : 0 iso, 16 : 0 and 13 : 0 iso. The G+C content of the DNA was 44.9 mol%. On the basis of 16S rRNA gene sequences, strain LT13a(T) was shown to belong to the gamma-Proteobacteria, being closely related to Shewanella putrefaciens (98 %), Shewanella oneidensis (97 %) and Shewanella baltica (96 %). Levels of DNA homology between strain LT13a(T) and S. putrefaciens, S. oneidensis and S. baltica were <20 %, indicating that strain LT13a(T) represents a novel species. Genetic evidence and phenotypic characteristics showed that isolate LT13a(T) constitutes a novel species of the genus Shewanella. Because of the deep origin of the strain, the name Shewanella profunda sp. nov. is proposed, with LT13a(T) (=DSM 15900(T)=JCM 12080(T)) as the type strain.

  17. Croceitalea marina sp. nov., isolated from marine particles of Yellow Sea, and emended description of the genera Croceitalea.

    PubMed

    Su, Ying; Yu, Min; Ren, Qiaomeng; Sun, Zhongcheng; Zhang, Yan; Yang, Xiaoting; Wang, Yanan; Zhang, Xiao-Hua

    2017-08-31

    A Gram-staining-negative, rod-shaped, non-motile, golden yellow-coloured and strictly aerobic bacterial strain, designated H01-35T, was isolated from a surface marine particles sample collected from the Yellow Sea in China. According to the phylogenetic analysis based on 16S rRNA gene sequences, the strain H01-35T belonged to the genus Croceitalea and showed the highest sequence similarity to Croceitalea litorea CBA3205T (96.4 %). Strain H01-35T grew optimally at pH 8.0-9.0, 28 °C and in the presence of 3 % (w/v) NaCl. The DNA G+C content was 52.7 mol%. Strain H01-35T contained MK-6 as the predominant respiratory quinone and held iso-C15 : 1 G, iso-C15 : 0 and iso-C17 : 0 3-OH as the major cellular fatty acids. The major polar lipids were phosphatidylethanolamine, two unidentified aminolipids and five unidentified lipids. Exoenzymes for starch, gelatin and Tween 20 degradation were detected in Strain H01-35T but the strain was negative for sulfur and indole production. On the basis of the polyphasic analyses, this isolate was considered to represent a novel species in the genus Croceitalea, for which the name Croceitalea marina sp. nov. is proposed. The type strain is H01-35T (MCCC 1K03229T=KCTC 52368T). The emendation of description of the genus Croceitalea is also given.

  18. Desulfobulbus aggregans sp. nov., a Novel Sulfate Reducing Bacterium Isolated from Marine Sediment from the Gulf of Gabes.

    PubMed

    Kharrat, Hanen; Karray, Fatma; Bartoli, Manon; Ben Hnia, Wajdi; Mhiri, Najla; Fardeau, Marie-Laure; Bennour, Feten; Kamoun, Lotfi; Alazard, Didier; Sayadi, Sami

    2017-04-01

    Three sulfate-reducing bacterial strains designated SM40(T), SM41, and SM43 were isolated from marine sediment in the region of Skhira located in the Gulf of Gabes (Tunisia). These strains grew in anaerobic media with phosphogypsum as a sulfate source and sodium lactate as an electron and carbon source. One of them, strain SM40(T), was characterized by phenotypic and phylogenetic methods. Cells were ovoid, Gram-stain-negative and non-motile. The temperature limits for growth were 10 and 55 °C with an optimum at 35 °C and the pH range was 6.5-8.1 with an optimum at pH 7.5. Growth was observed at salinities ranging from 10 to 80 g NaCl l(-1) with an optimum at 30 g NaCl l(-1). Strain SM40(T) was able to utilize butanol, ethanol, formate, L-glucose, glycerol, lactate, propanol, propionate, and pyruvate as electron donors for the reduction of sulfate, sulfite, or thiosulfate to H2S. Without electron acceptors, strain SM40(T) fermented butanol and pyruvate. The DNA G+C content of strain SM40(T) was 52.6 mol %. Phylogenetic analysis based on the 16S rRNA gene sequence of the isolate revealed that strain SM40(T) was closely related to the species in the genus Desulfobulbus of the family Desulfobulbaceae. The sequence similarity between strain SM40 and Desulfobulbus marinus was 95.4%. The phylogenetic analysis, DNA G+C content, and differences in substrate utilization suggested that strain SM40 represents a new species of the genus Desulfobulbus, D. aggregans sp. nov. The type strain is strain SM40(T) (=DSM 28693(T) = JCM 19994(T)).

  19. Muricauda antarctica sp. nov., a marine member of the Flavobacteriaceae isolated from Antarctic seawater.

    PubMed

    Wu, Yue-Hong; Yu, Pei-Song; Zhou, Ya-Dong; Xu, Lin; Wang, Chun-Sheng; Wu, Min; Oren, Aharon; Xu, Xue-Wei

    2013-09-01

    A Gram-stain-negative, rod-shaped bacterium with appendages, designated Ar-22(T), was isolated from a seawater sample collected from the western part of Prydz Bay, near Cape Darnley, Antarctica. Strain Ar-22(T) grew optimally at 35 °C, at pH 7.5 and in the presence of 1-3% (w/v) NaCl. The isolate was positive for casein, gelatin and Tween 20 decomposition and negative for H2S production and indole formation. Chemotaxonomic analysis showed that MK-6 was the major isoprenoid quinone and phosphatidylethanolamine was the major polar lipid. The major fatty acids were iso-C(17:0) 3-OH, iso-C(15:1) G, iso-C(15:0) and C(16:1)ω7c/iso-C(15:0) 2OH. The genomic DNA G+C content was 44.8 mol%. Comparative 16S rRNA gene sequence analysis revealed that strain Ar-22(T) is closely related to members of the genus Muricauda, sharing 94.2-97.3% sequence similarity with the type strains of species of the genus Muricauda and being most closely related to the Muricauda aquimarina. Phylogenetic analysis based on the 16S rRNA gene sequence comparison confirmed that strain Ar-22(T) formed a deep lineage with Muricauda flavescens. Sequence similarity between strain Ar-22(T) and Muricauda ruestringensis DSM 13258(T), the type species of the genus Muricauda, was 96.9%. Strain Ar-22(T) exhibited mean DNA-DNA relatedness values of 40.1%, 49.4% and 25.7% to M. aquimarina JCM 11811(T), M. flavescens JCM 11812(T) and Muricauda lutimaris KCTC 22173(T), respectively. On the basis of phenotypic and genotypic data, strain Ar-22(T) represents a novel species of the genus Muricauda, for which the name Muricauda antarctica sp. nov. (type strain Ar-22(T) =CGMCC 1.12174(T) = JCM 18450(T)) is proposed.

  20. [FATTY ACID COMPOSITION ALTEROMONAS-LIKE BACTERIA ISOLATED FROM THE BLACK SEA WATER].

    PubMed

    Klochko, V V; Avdeeva, L V

    2015-01-01

    Alteromonas macleodii strains isolated from the Black sea water were similar in their fatty acids composition with the type strain of this species. Analysis of lipid composition of 10 A. macleodii strains isolated from the deep and surface water layers in different World ocean regions including the Black sea water has shown that the deep and surface isolates of this species formed two groups different in their fatty acids profiles. The Black sea isolates of Pseudoalteromonas haloplanktis, P. citrea, P. flavipulchra conformed to these species type strains in their fatty acids composition. On the basis of the fatty acids spectra similarity of three Pseudoalteromonas species strains with Plipolytica described in 2010 has been established. Presence of t