Sample records for marine natural meroterpenes

  1. Meroterpenes from Marine Invertebrates: Structures, Occurrence, and Ecological Implications

    PubMed Central

    Menna, Marialuisa; Imperatore, Concetta; D’Aniello, Filomena; Aiello, Anna

    2013-01-01

    Meroterpenes are widely distributed among marine organisms; they are particularly abundant within brown algae, but other important sources include microorganisms and invertebrates. In the present review the structures and bioactivities of meroterpenes from marine invertebrates, mainly sponges and tunicates, are summarized. More than 300 molecules, often complex and with unique skeletons originating from intra- and inter-molecular cyclizations, and/or rearrangements, are illustrated. The reported syntheses are mentioned. The issue of a potential microbial link to their biosynthesis is also shortly outlined. PMID:23685889

  2. Bioactive Secondary Metabolites from a Thai Collection of Soil and Marine-Derived Fungi of the Genera Neosartorya and Aspergillus.

    PubMed

    Zin, War War May; Prompanya, Chadaporn; Buttachon, Suradet; Kijjoa, Anake

    2016-01-01

    Fungi are microorganisms which can produce interesting secondary metabolites with structural diversity. Although terrestrial fungi have been extensively investigated for their bioactive secondary metabolites such as antibiotics, marine-derived fungi have only recently attracted attention of Natural Products chemists. Our group has been working on the secondary metabolites produced by the cultures of the fungi of the genera Neosartorya and Aspergillus, collected from soil and marine environments from the tropical region for the purpose of finding new leads for anticancer and antibacterial drugs. This review covers only the secondary metabolites of four soil and six marine-derived species of Neosarorya as well as a new species of marine-derived Aspergillus, investigated by our group. In total, we have isolated fifty three secondary metabolites which can be categorized as polyketides (two), isocoumarins (six), terpenoids (two), meroterpenes (fourteen), alkaloids (twenty eight) and cyclic peptide (one). The anticancer and antibacterial activities of these fungal metabolites are also discussed. Among fifty three secondary metabolites isolated, only the alkaloid eurochevalierine and the cadinene sesquiterpene, isolated from the soil fungus N. pseudofisheri, showed relevant in vitro cytostatic activity against glioblastoma (U373) and non-small cell lung cancer (A549) cell lines while the meroditerpene aszonapyrone A exhibited strong antibacterial activity against multidrug-resistant Gram-positive bacteria and also strong antibiofilm activity in these isolates.

  3. An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi.

    PubMed

    Overy, David P; Bayman, Paul; Kerr, Russell G; Bills, Gerald F

    2014-07-03

    The natural products community has been investigating secondary metabolites from marine fungi for several decades, but when one attempts to search for validated reports of new natural products from marine fungi, one encounters a literature saturated with reports from 'marine-derived' fungi. Of the 1000+ metabolites that have been characterized to date, only approximately 80 of these have been isolated from species from exclusively marine lineages. These metabolites are summarized here along with the lifestyle and habitats of their producing organisms. Furthermore, we address some of the reasons for the apparent disconnect between the stated objectives of discovering new chemistry from marine organisms and the apparent neglect of the truly exceptional obligate marine fungi. We also offer suggestions on how to reinvigorate enthusiasm for marine natural products discovery from fungi from exclusive marine lineages and highlight the need for critically assessing the role of apparently terrestrial fungi in the marine environment.

  4. A marine sink for chlorine in natural organic matter [Natural chlorination of marine organic matter

    DOE PAGES

    Leri, Alessandra C.; Northrup, Paul A.; Mayer, Lawrence M.; ...

    2015-07-06

    Chloride, Cl –, is the most abundant solute in seawater, amounting to 55% of ions by weight. Cl – is more difficult to oxidize than bromide, and marine halogenating enzymes tend to be bromoperoxidases that are incapable of forming organochlorines. Consequently, most halogenated natural products identified in the marine environment are organobromines. Known exceptions include small quantities of volatile chlorocarbons emitted by marine algae and dissolved chlorinated benzoic acids.

  5. An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi

    PubMed Central

    Overy, David P.; Bayman, Paul; Kerr, Russell G.; Bills, Gerald F.

    2014-01-01

    The natural products community has been investigating secondary metabolites from marine fungi for several decades, but when one attempts to search for validated reports of new natural products from marine fungi, one encounters a literature saturated with reports from ‘marine-derived’ fungi. Of the 1000+ metabolites that have been characterized to date, only approximately 80 of these have been isolated from species from exclusively marine lineages. These metabolites are summarized here along with the lifestyle and habitats of their producing organisms. Furthermore, we address some of the reasons for the apparent disconnect between the stated objectives of discovering new chemistry from marine organisms and the apparent neglect of the truly exceptional obligate marine fungi. We also offer suggestions on how to reinvigorate enthusiasm for marine natural products discovery from fungi from exclusive marine lineages and highlight the need for critically assessing the role of apparently terrestrial fungi in the marine environment. PMID:25379338

  6. Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products.

    PubMed

    Valliappan, Karuppiah; Sun, Wei; Li, Zhiyong

    2014-09-01

    Actinobacteria are ubiquitous in the marine environment, playing an important ecological role in the recycling of refractory biomaterials and producing novel natural products with pharmic applications. Actinobacteria have been detected or isolated from the marine creatures such as sponges, corals, mollusks, ascidians, seaweeds, and seagrass. Marine organism-associated actinobacterial 16S rRNA gene sequences, i.e., 3,003 sequences, deposited in the NCBI database clearly revealed enormous numbers of actinobacteria associated with marine organisms. For example, RDP classification of these sequences showed that 112 and 62 actinobacterial genera were associated with the sponges and corals, respectively. In most cases, it is expected that these actinobacteria protect the host against pathogens by producing bioactive compounds. Natural products investigation and functional gene screening of the actinobacteria associated with the marine organisms revealed that they can synthesize numerous natural products including polyketides, isoprenoids, phenazines, peptides, indolocarbazoles, sterols, and others. These compounds showed anticancer, antimicrobial, antiparasitic, neurological, antioxidant, and anti-HIV activities. Therefore, marine organism-associated actinobacteria represent an important resource for marine drugs. It is an upcoming field of research to search for novel actinobacteria and pharmaceutical natural products from actinobacteria associated with the marine organisms. In this review, we attempt to summarize the present knowledge on the diversity and natural products production of actinobacteria associated with the marine organisms, based on the publications from 1991 to 2013.

  7. Antifungal potential of marine natural products.

    PubMed

    El-Hossary, Ebaa M; Cheng, Cheng; Hamed, Mostafa M; El-Sayed Hamed, Ashraf Nageeb; Ohlsen, Knut; Hentschel, Ute; Abdelmohsen, Usama Ramadan

    2017-01-27

    Fungal diseases represent an increasing threat to human health worldwide which in some cases might be associated with substantial morbidity and mortality. However, only few antifungal drugs are currently available for the treatment of life-threatening fungal infections. Furthermore, plant diseases caused by fungal pathogens represent a worldwide economic problem for the agriculture industry. The marine environment continues to provide structurally diverse and biologically active secondary metabolites, several of which have inspired the development of new classes of therapeutic agents. Among these secondary metabolites, several compounds with noteworthy antifungal activities have been isolated from marine microorganisms, invertebrates, and algae. During the last fifteen years, around 65% of marine natural products possessing antifungal activities have been isolated from sponges and bacteria. This review gives an overview of natural products from diverse marine organisms that have shown in vitro and/or in vivo potential as antifungal agents, with their mechanism of action whenever applicable. The natural products literature is covered from January 2000 until June 2015, and we are reporting the chemical structures together with their biological activities, as well as the isolation source. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Marine natural flavonoids: chemistry and biological activities.

    PubMed

    Martins, Beatriz T; Correia da Silva, Marta; Pinto, Madalena; Cidade, Honorina; Kijjoa, Anake

    2018-05-04

    As more than 70% of the world's surface is covered by oceans, marine organisms offer a rich and unlimited resource of structurally diverse bioactive compounds. These organisms have developed unique properties and bioactive compounds that are, in majority of them, unparalleled by their terrestrial counterparts due to the different surrounding ecological systems. Marine flavonoids have been extensively studied in the last decades due to a growing interest concerning their promising biological/pharmacological activities. The most common classes of marine flavonoids are flavones and flavonols, which are mostly isolated from marine plants. Although most of flavonoids are hydroxylated and methoxylated, some marine flavonoids possess an unusual substitution pattern, not commonly found in terrestrial organisms, namely the presence of sulphate, chlorine, and amino groups. This review presents, for the first time in a systematic way, the structure, natural occurrence, and biological activities of marine flavonoids.

  9. Marine actinobacteria: an important source of bioactive natural products.

    PubMed

    Manivasagan, Panchanathan; Kang, Kyong-Hwa; Sivakumar, Kannan; Li-Chan, Eunice C Y; Oh, Hyun-Myung; Kim, Se-Kwon

    2014-07-01

    Marine environment is largely an untapped source for deriving actinobacteria, having potential to produce novel, bioactive natural products. Actinobacteria are the prolific producers of pharmaceutically active secondary metabolites, accounting for about 70% of the naturally derived compounds that are currently in clinical use. Among the various actinobacterial genera, Actinomadura, Actinoplanes, Amycolatopsis, Marinispora, Micromonospora, Nocardiopsis, Saccharopolyspora, Salinispora, Streptomyces and Verrucosispora are the major potential producers of commercially important bioactive natural products. In this respect, Streptomyces ranks first with a large number of bioactive natural products. Marine actinobacteria are unique enhancing quite different biological properties including antimicrobial, anticancer, antiviral, insecticidal and enzyme inhibitory activities. They have attracted global in the last ten years for their ability to produce pharmaceutically active compounds. In this review, we have focused attention on the bioactive natural products isolated from marine actinobacteria, possessing unique chemical structures that may form the basis for synthesis of novel drugs that could be used to combat resistant pathogenic microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Marine Natural Products as Prototype Agrochemical Agents

    PubMed Central

    Peng, Jiangnan; Shen, Xiaoyu; El Sayed, Khalid A.; Dunbar, D. C Harles; Perry, Tony L.; Wilkins, Scott P.; Hamann, Mark T.; Bobzin, Steve; Huesing, Joseph; Camp, Robin; Prinsen, Mike; Krupa, Dan; Wideman, Margaret A.

    2016-01-01

    In the interest of identifying new leads that could serve as prototype agrochemical agents, 18 structurally diverse marine-derived compounds were examined for insecticidal, herbicidal, and fungicidal activities. Several new classes of compounds have been shown to be insecticidal, herbicidal, and fungicidal, which suggests that marine natural products represent an intriguing source for the discovery of new agrochemical agents. PMID:12670165

  11. Marine natural products: a new wave of drugs?

    PubMed Central

    Montaser, Rana; Luesch, Hendrik

    2011-01-01

    The largely unexplored marine world that presumably harbors the most biodiversity may be the vastest resource to discover novel ‘validated’ structures with novel modes of action that cover biologically relevant chemical space. Several challenges, including the supply problem and target identification, need to be met for successful drug development of these often complex molecules; however, approaches are available to overcome the hurdles. Advances in technologies such as sampling strategies, nanoscale NMR for structure determination, total chemical synthesis, fermentation and biotechnology are all crucial to the success of marine natural products as drug leads. We illustrate the high degree of innovation in the field of marine natural products, which in our view will lead to a new wave of drugs that flow into the market and pharmacies in the future. PMID:21882941

  12. Natural Products from Marine Fungi—Still an Underrepresented Resource

    PubMed Central

    Imhoff, Johannes F.

    2016-01-01

    Marine fungi represent a huge potential for new natural products and an increased number of new metabolites have become known over the past years, while much of the hidden potential still needs to be uncovered. Representative examples of biodiversity studies of marine fungi and of natural products from a diverse selection of marine fungi from the author’s lab are highlighting important aspects of this research. If one considers the huge phylogenetic diversity of marine fungi and their almost ubiquitous distribution, and realizes that most of the published work on secondary metabolites of marine fungi has focused on just a few genera, strictly speaking Penicillium, Aspergillus and maybe also Fusarium and Cladosporium, the diversity of marine fungi is not adequately represented in investigations on their secondary metabolites and the less studied species deserve special attention. In addition to results on recently discovered new secondary metabolites of Penicillium species, the diversity of fungi in selected marine habitats is highlighted and examples of groups of secondary metabolites produced by representatives of a variety of different genera and their bioactivities are presented. Special focus is given to the production of groups of derivatives of metabolites by the fungi and to significant differences in biological activities due to small structural changes. PMID:26784209

  13. [The recent research progress of chemistry of marine natural products].

    PubMed

    Shi, Qing-wen; Li, Li-geng; Wang, Yu-fang; Huo, Chang-hong; Zhang, Man-li

    2010-10-01

    Ocean is a unique and excellent resource that provides a diverse array of intriguing natural products. Marine natural products have demonstrated significant and extremely potent biological activities and have captured the attention of natural products chemists in the past few decades. It is increasingly recognized that a wealth of fascinating natural products and novel chemical entities will play a dominant role in the discovery of useful leads for the development of pharmaceutical agents and provide useful probes to lead to breakthroughs in a variety of life-science fields. This article focused on the research progress of chemistry of marine natural products in recent five years.

  14. Bioactive natural products from Chinese marine flora and fauna.

    PubMed

    Zhou, Zhen-Fang; Guo, Yue-Wei

    2012-09-01

    In recent decades, the pharmaceutical application potential of marine natural products has attracted much interest from both natural product chemists and pharmacologists. Our group has long been engaged in the search for bioactive natural products from Chinese marine flora (such as mangroves and algae) and fauna (including sponges, soft corals, and mollusks), resulting in the isolation and characterization of numerous novel secondary metabolites spanning a wide range of structural classes and various biosynthetic origins. Of particular interest is the fact that many of these compounds show promising biological activities, including cytotoxic, antibacterial, and enzyme inhibitory effects. By describing representative studies, this review presents a comprehensive summary regarding the achievements and progress made by our group in the past decade. Several interesting examples are discussed in detail.

  15. Zebrafish Embryo Toxicity Microscale Model for Ichthyotoxicity Evaluation of Marine Natural Products.

    PubMed

    Bai, Hong; Kong, Wen-Wen; Shao, Chang-Lun; Li, Yun; Liu, Yun-Zhang; Liu, Min; Guan, Fei-Fei; Wang, Chang-Yun

    2016-04-01

    Marine organisms often protect themselves against their predators by chemical defensive strategy. The second metabolites isolated from marine organisms and their symbiotic microbes have been proven to play a vital role in marine chemical ecology, such as ichthyotoxicity, allelopathy, and antifouling. It is well known that the microscale models for marine chemoecology assessment are urgently needed for trace quantity of marine natural products. Zebrafish model has been widely used as a microscale model in the fields of environment ecological evaluation and drug safety evaluation, but seldom reported for marine chemoecology assessment. In this work, zebrafish embryo toxicity microscale model was established for ichthyotoxicity evaluation of marine natural products by using 24-well microplate based on zebrafish embryo. Ichthyotoxicity was evaluated by observation of multiple toxicological endpoints, including coagulation egg, death, abnormal heartbeat, no spontaneous movement, delayed hatch, and malformation of the different organs during zebrafish embryogenesis periods at 24, 48, and 72 h post-fertilization (hpf). 3,4-Dichloroaniline was used as the positive control for method validation. Subsequently, the established model was applied to test the ichthyotoxic activity of the compounds isolated from corals and their symbiotic microbes and to isolate the bioactive secondary metabolites from the gorgonian Subergorgia mollis under bioassay guidance. It was suggested that zebrafish embryo toxicity microscale model is suitable for bioassay-guided isolation and preliminary bioactivity screening of marine natural products.

  16. Bioactive natural products from Chinese marine flora and fauna

    PubMed Central

    Zhou, Zhen-fang; Guo, Yue-wei

    2012-01-01

    In recent decades, the pharmaceutical application potential of marine natural products has attracted much interest from both natural product chemists and pharmacologists. Our group has long been engaged in the search for bioactive natural products from Chinese marine flora (such as mangroves and algae) and fauna (including sponges, soft corals, and mollusks), resulting in the isolation and characterization of numerous novel secondary metabolites spanning a wide range of structural classes and various biosynthetic origins. Of particular interest is the fact that many of these compounds show promising biological activities, including cytotoxic, antibacterial, and enzyme inhibitory effects. By describing representative studies, this review presents a comprehensive summary regarding the achievements and progress made by our group in the past decade. Several interesting examples are discussed in detail. PMID:22941288

  17. Drugs from the Oceans: Marine Natural Products as Leads for Drug Discovery.

    PubMed

    Altmann, Karl-Heinz

    2017-10-25

    The marine environment harbors a vast number of species that are the source of a wide array of structurally diverse bioactive secondary metabolites. At this point in time, roughly 27'000 marine natural products are known, of which eight are (were) at the origin of seven marketed drugs, mostly for the treatment of cancer. The majority of these drugs and also of drug candidates currently undergoing clinical evaluation (excluding antibody-drug conjugates) are unmodified natural products, but synthetic chemistry has played a central role in the discovery and/or development of all but one of the approved marine-derived drugs. More than 1000 new marine natural products have been isolated per year over the last decade, but the pool of new and unique structures is far from exhausted. To fully leverage the potential offered by the structural diversity of marine-produced secondary metabolites for drug discovery will require their broad assessment for different bioactivities and the productive interplay between new fermentation technologies, synthetic organic chemistry, and medicinal chemistry, in order to secure compound supply and enable lead optimization.

  18. Marine Natural Products as Models to Circumvent Multidrug Resistance.

    PubMed

    Long, Solida; Sousa, Emília; Kijjoa, Anake; Pinto, Madalena M M

    2016-07-08

    Multidrug resistance (MDR) to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds.

  19. Survey of marine natural product structure revisions: a synergy of spectroscopy and chemical synthesis

    PubMed Central

    Suyama, Takashi L.; Gerwick, William H.; McPhail, Kerry L.

    2011-01-01

    The structural assignment of new natural product molecules supports research in a multitude of disciplines that may lead to new therapeutic agents and or new understanding of disease biology. However, reports of numerous structural revisions, even of recently elucidated natural products, inspired the present survey of techniques used in structural misassignments and subsequent revisions in the context of constitutional or configurational errors. Given the comparatively recent development of marine natural products chemistry, coincident with the modern spectroscopy, it is of interest to consider the relative roles of spectroscopy and chemical synthesis in the structure elucidation and revision of those marine natural products which were initially misassigned. Thus, a tabulated review of all marine natural product structural revisions from 2005 to 2010 is organized according to structural motif revised. Misassignments of constitution are more frequent than perhaps anticipated by reliance on HMBC and other advanced NMR experiments, especially considering the full complement of all natural products. However, these techniques also feature prominently in structural revisions, specifically of marine natural products. Nevertheless, as is the case for revision of relative and absolute configuration, total synthesis is a proven partner for marine, as well as terrestrial, natural products structure elucidation. It also becomes apparent that considerable ‘detective work’ remains in structure elucidation, in spite of the spectacular advances in spectroscopic techniques. PMID:21715178

  20. Marine Peptides as Anticancer Agents: A Remedy to Mankind by Nature.

    PubMed

    Negi, Beena; Kumar, Deepak; Rawat, Diwan S

    2017-01-01

    In the search of bioactive molecules, nature has always been an important source and most of the drugs in clinic are either natural products or derived from natural products. The ocean has played significant role as thousands of molecules and their metabolites with different types of biological activity such as antimicrobial, anti-inflammatory, anti-malarial, antioxidant, anti HIV and anticancer activity have been isolated from marine organisms. In particular, marine peptides have attracted much attention due to their high specificity against cancer cell lines that may be attributed to the various unusual amino acid residues and their sequences in the peptide chain. This review aims to identify the various anticancer agents isolated from the marine system and their anticancer potential. We did literature search for the anticancer peptides isolated from the different types of microorganism found in the marine system. Total one eighty eight papers were reviewed concisely and most of the important information from these papers were extracted and kept in the present manuscript. This review gives details about the isolation, anticancer potential and mechanism of action of the anticancer peptides of the marine origin. Many of these molecules such as aplidine, dolastatin 10, didemnin B, kahalalide F, elisidepsin (PM02734) are in clinical trials for the treatment of various cancers. With the interdisciplinary and collaborative research and technical advancements we can search more promising and affordable anticancer drugs in future. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Marine Natural Products from New Caledonia—A Review

    PubMed Central

    Motuhi, Sofia-Eléna; Mehiri, Mohamed; Payri, Claude Elisabeth; La Barre, Stéphane; Bach, Stéphane

    2016-01-01

    Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs. PMID:26999165

  2. Marine Natural Products from New Caledonia--A Review.

    PubMed

    Motuhi, Sofia-Eléna; Mehiri, Mohamed; Payri, Claude Elisabeth; La Barre, Stéphane; Bach, Stéphane

    2016-03-16

    Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs.

  3. Targeting Nuclear Receptors with Marine Natural Products

    PubMed Central

    Yang, Chunyan; Li, Qianrong; Li, Yong

    2014-01-01

    Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators. PMID:24473166

  4. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials

    PubMed Central

    Choudhary, Alka; Naughton, Lynn M.; Montánchez, Itxaso

    2017-01-01

    The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012–2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds. PMID:28846659

  5. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials.

    PubMed

    Choudhary, Alka; Naughton, Lynn M; Montánchez, Itxaso; Dobson, Alan D W; Rai, Dilip K

    2017-08-28

    The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012-2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds.

  6. Marine shrimp aquaculture and natural resource degradation in Thailand

    NASA Astrophysics Data System (ADS)

    Flaherty, Mark; Karnjanakesorn, Choomjet

    1995-01-01

    Rising demand for shrimp in the developed nations has helped to foster a dramatic growth in marine shrimp aquaculture, particularly in South America and South Asia. In Thailand, Marine shrimp aquaculture is now an important earmer of foreign exchange. The growth in Production has been achieved through the expansion of the culture area and the adoption of intensive production methods. The conversion of near-shore areas to shrimp culture, however, is proving to have many consequences that impinge on the environmental integrity of coastal areas. This paper reviews the development of Thailand's marine shrimp culture industry and examines the nature of the environmental impacts that are emerging. It then discusses the implications these have for rural poor and the long-term viability of the culture industry.

  7. Marine transportation of liquefied natural gas. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curt, R.P.; Delaney, T.D.

    1973-01-01

    This report covers in some detail most of the major areas of consideration involved in the marine carriage of LNG. Some of the fields investigated and reviewed are the world's total energy picture and the particular requirements of natural gas in the United States in the near future. (GRA)

  8. Agri-Business, Natural Resources, Marine Science; Grade 7. Cluster V.

    ERIC Educational Resources Information Center

    Calhoun, Olivia H.

    A curriculum guide for grade 7, the document is devoted to the occupational clusters "Agri-business, Natural Resources, and Marine Science." It is divided into five units: natural resources, ecology, landscaping, conservation, oceanography. Each unit is introduced by a statement of the topic, the unit's purpose, main ideas, quests, and a…

  9. Investigating the Biosynthesis of Natural Products from Marine Proteobacteria: A Survey of Molecules and Strategies

    PubMed Central

    Timmermans, Marshall L.; Paudel, Yagya P.; Ross, Avena C.

    2017-01-01

    The phylum proteobacteria contains a wide array of Gram-negative marine bacteria. With recent advances in genomic sequencing, genome analysis, and analytical chemistry techniques, a whole host of information is being revealed about the primary and secondary metabolism of marine proteobacteria. This has led to the discovery of a growing number of medically relevant natural products, including novel leads for the treatment of multidrug-resistant Staphylococcus aureus (MRSA) and cancer. Of equal interest, marine proteobacteria produce natural products whose structure and biosynthetic mechanisms differ from those of their terrestrial and actinobacterial counterparts. Notable features of secondary metabolites produced by marine proteobacteria include halogenation, sulfur-containing heterocycles, non-ribosomal peptides, and polyketides with unusual biosynthetic logic. As advances are made in the technology associated with functional genomics, such as computational sequence analysis, targeted DNA manipulation, and heterologous expression, it has become easier to probe the mechanisms for natural product biosynthesis. This review will focus on genomics driven approaches to understanding the biosynthetic mechanisms for natural products produced by marine proteobacteria. PMID:28762997

  10. Investigating the Biosynthesis of Natural Products from Marine Proteobacteria: A Survey of Molecules and Strategies.

    PubMed

    Timmermans, Marshall L; Paudel, Yagya P; Ross, Avena C

    2017-08-01

    The phylum proteobacteria contains a wide array of Gram-negative marine bacteria. With recent advances in genomic sequencing, genome analysis, and analytical chemistry techniques, a whole host of information is being revealed about the primary and secondary metabolism of marine proteobacteria. This has led to the discovery of a growing number of medically relevant natural products, including novel leads for the treatment of multidrug-resistant Staphylococcus aureus (MRSA) and cancer. Of equal interest, marine proteobacteria produce natural products whose structure and biosynthetic mechanisms differ from those of their terrestrial and actinobacterial counterparts. Notable features of secondary metabolites produced by marine proteobacteria include halogenation, sulfur-containing heterocycles, non-ribosomal peptides, and polyketides with unusual biosynthetic logic. As advances are made in the technology associated with functional genomics, such as computational sequence analysis, targeted DNA manipulation, and heterologous expression, it has become easier to probe the mechanisms for natural product biosynthesis. This review will focus on genomics driven approaches to understanding the biosynthetic mechanisms for natural products produced by marine proteobacteria.

  11. Biological Activity of Recently Discovered Halogenated Marine Natural Products

    PubMed Central

    Gribble, Gordon W.

    2015-01-01

    This review presents the biological activity—antibacterial, antifungal, anti-parasitic, antiviral, antitumor, antiinflammatory, antioxidant, and enzymatic activity—of halogenated marine natural products discovered in the past five years. Newly discovered examples that do not report biological activity are not included. PMID:26133553

  12. [New natural products from the marine-derived Aspergillus fungi-A review].

    PubMed

    Zhao, Chengying; Liu, Haishan; Zhu, Weiming

    2016-03-04

    Marine-derived fungi were the main source of marine microbial natural products (NPs) due to their complex genetic background, chemodiversity and high yield of NPs. According to our previous survey for marine microbial NPs from 2010 to 2013, Aspergillus fungi have received the most of attention among all the marine-derived fungi, which accounted for 31% NPs of the marine fungal origins. This paper reviewed the sources, chemical structures and bioactivites of all the 512 new marine NPs of Aspergillus fungal origins from 1992 to 2014. These marine NPs have diverse chemical structures including polyketides, fatty acids, sterols and terpenoids, alkaloids, peptides, and so on, 36% of which displayed bioactivities such as cytotoxicity, antimicrobial activity, antioxidant and insecticidal activity. Nitrogen compounds are the major secondary metabolites accounting for 52% NPs from the marine-derived Aspergillus fungi. Nitrogen compounds are also the class with the highest ratio of bioactive compounds, 40% of which are bioactive. Plinabulin, a dehydrodiketopiperazine derivative of halimide had been ended its phase II trial and has received its phase III study from the third quarter of 2015 for the treatment of advanced, metastatic non-small cell lung cancer.

  13. Peptides, Peptidomimetics, and Polypeptides from Marine Sources: A Wealth of Natural Sources for Pharmaceutical Applications

    PubMed Central

    Sable, Rushikesh; Parajuli, Pravin; Jois, Seetharama

    2017-01-01

    Nature provides a variety of peptides that are expressed in most living species. Evolutionary pressure and natural selection have created and optimized these peptides to bind to receptors with high affinity. Hence, natural resources provide an abundant chemical space to be explored in peptide-based drug discovery. Marine peptides can be extracted by simple solvent extraction techniques. The advancement of analytical techniques has made it possible to obtain pure peptides from natural resources. Extracted peptides have been evaluated as possible therapeutic agents for a wide range of diseases, including antibacterial, antifungal, antidiabetic and anticancer activity as well as cardiovascular and neurotoxin activity. Although marine resources provide thousands of possible peptides, only a few peptides derived from marine sources have reached the pharmaceutical market. This review focuses on some of the peptides derived from marine sources in the past ten years and gives a brief review of those that are currently in clinical trials or on the market. PMID:28441741

  14. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties

    PubMed Central

    2013-01-01

    For their various bioactivities, biomaterials derived from marine algae are important ingredients in many products, such as cosmetics and drugs for treating cancer and other diseases. This mini-review comprehensively compares the bioactivities and biological functions of biomaterials from red, green, brown, and blue-green algae. The anti-oxidative effects and bioactivities of several different crude extracts of algae have been evaluated both in vitro and in vivo. Natural products derived from marine algae protect cells by modulating the effects of oxidative stress. Because oxidative stress plays important roles in inflammatory reactions and in carcinogenesis, marine algal natural products have potential for use in anti-cancer and anti-inflammatory drugs. PMID:23724847

  15. Natural products with health benefits from marine biological resources

    USDA-ARS?s Scientific Manuscript database

    The ocean is the cradle of lives, which provides a diverse array of intriguing natural products that has captured scientists’ attention in the past few decades due to their significant and extremely potent biological activities. In addition to being rich sources for pharmaceutical drugs, marine nat...

  16. Medicinal benefits of marine invertebrates: sources for discovering natural drug candidates.

    PubMed

    De Zoysa, Mahanama

    2012-01-01

    Marine invertebrates are one of the major groups of organisms, which could be diversified under the major taxonomic groups of Porifera, Cnidaria, Mollusca, Arthropoda, Echinodermata, and many other minor phyla. To date, range of medicinal benefits and a significant number of marine natural products (MNPs) have been discovered from marine invertebrates. Seafood diet from edible marine invertebrates such as mollusks and crustaceans has been linked with various medicinal benefits to improve human health. Among marine invertebrates, spongers from phylum Porifera is the most dominant group responsible for discovering large number of MNPs, which have been used as template to develop therapeutic drugs. MNPs isolated from invertebrates have shown wide range of therapeutic properties including antimicrobial, antioxidant, antihypertensive, anticoagulant, anticancer, anti-inflammatory, wound healing and immune modulator, and other medicinal effects. Therefore, marine invertebrates are rich sources of chemical diversity and health benefits for developing drug candidates, cosmetics, nutritional supplements, and molecular probes that can be supported to increase the healthy life span of human. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success

    PubMed Central

    Martins, Ana; Vieira, Helena; Gaspar, Helena; Santos, Susana

    2014-01-01

    The marine environment harbors a number of macro and micro organisms that have developed unique metabolic abilities to ensure their survival in diverse and hostile habitats, resulting in the biosynthesis of an array of secondary metabolites with specific activities. Several of these metabolites are high-value commercial products for the pharmaceutical and cosmeceutical industries. The aim of this review is to outline the paths of marine natural products discovery and development, with a special focus on the compounds that successfully reached the market and particularly looking at the approaches tackled by the pharmaceutical and cosmetic companies that succeeded in marketing those products. The main challenges faced during marine bioactives discovery and development programs were analyzed and grouped in three categories: biodiversity (accessibility to marine resources and efficient screening), supply and technical (sustainable production of the bioactives and knowledge of the mechanism of action) and market (processes, costs, partnerships and marketing). Tips to surpass these challenges are given in order to improve the market entry success rates of highly promising marine bioactives in the current pipelines, highlighting what can be learned from the successful and unsuccessful stories that can be applied to novel and/or ongoing marine natural products discovery and development programs. PMID:24549205

  18. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections.

    PubMed

    Abdelmohsen, Usama Ramadan; Balasubramanian, Srikkanth; Oelschlaeger, Tobias A; Grkovic, Tanja; Pham, Ngoc B; Quinn, Ronald J; Hentschel, Ute

    2017-02-01

    Antibiotics have revolutionised medicine in many aspects, and their discovery is considered a turning point in human history. However, the most serious consequence of the use of antibiotics is the concomitant development of resistance against them. The marine environment has proven to be a very rich source of diverse natural products with significant antibacterial, antifungal, antiviral, antiparasitic, antitumour, anti-inflammatory, antioxidant, and immunomodulatory activities. Many marine natural products (MNPs)-for example, neoechinulin B-have been found to be promising drug candidates to alleviate the mortality and morbidity rates caused by drug-resistant infections, and several MNP-based anti-infectives have already entered phase 1, 2, and 3 clinical trials, with six approved for usage by the US Food and Drug Administration and one by the EU. In this Review, we discuss the diversity of marine natural products that have shown in-vivo efficacy or in-vitro potential against drug-resistant infections of fungal, viral, and parasitic origin, and describe their mechanism of action. We highlight the drug-like physicochemical properties of the reported natural products that have bioactivity against drug-resistant pathogens in order to assess their drug potential. Difficulty in isolation and purification procedures, toxicity associated with the active compound, ecological impacts on natural environment, and insufficient investments by pharmaceutical companies are some of the clear reasons behind market failures and a poor pipeline of MNPs available to date. However, the diverse abundance of natural products in the marine environment could serve as a ray of light for the therapy of drug-resistant infections. Development of resistance-resistant antibiotics could be achieved via the coordinated networking of clinicians, microbiologists, natural product chemists, and pharmacologists together with pharmaceutical venture capitalist companies. Copyright © 2017 Elsevier Ltd

  19. Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology.

    PubMed

    Gogineni, Vedanjali; Hamann, Mark T

    2018-01-01

    The oceans are a uniquely rich source of bioactive metabolites, of which sponges have been shown to be among the most prolific producers of diverse bioactive secondary metabolites with valuable therapeutic potential. Much attention has been focused on marine bioactive peptides due to their novel chemistry and diverse biological properties. As summarized in this review, marine peptides are known to exhibit various biological activities such as antiviral, anti-proliferative, antioxidant, anti-coagulant, anti-hypertensive, anti-cancer, antidiabetic, antiobesity, and calcium-binding activities. This review focuses on the chemistry and biology of peptides isolated from sponges, bacteria, cyanobacteria, fungi, ascidians, and other marine sources. The role of marine invertebrate microbiomes in natural products biosynthesis is discussed in this review along with the biosynthesis of modified peptides from different marine sources. The status of peptides in various phases of clinical trials is presented, as well as the development of modified peptides including optimization of PK and bioavailability. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Marinopyrroles: Unique Drug Discoveries Based on Marine Natural Products.

    PubMed

    Li, Rongshi

    2016-01-01

    Natural products provide a successful supply of new chemical entities (NCEs) for drug discovery to treat human diseases. Approximately half of the NCEs are based on natural products and their derivatives. Notably, marine natural products, a largely untapped resource, have contributed to drug discovery and development with eight drugs or cosmeceuticals approved by the U.S. Food and Drug Administration and European Medicines Agency, and ten candidates undergoing clinical trials. Collaborative efforts from drug developers, biologists, organic, medicinal, and natural product chemists have elevated drug discoveries to new levels. These efforts are expected to continue to improve the efficiency of natural product-based drugs. Marinopyrroles are examined here as a case study for potential anticancer and antibiotic agents. © 2015 Wiley Periodicals, Inc.

  1. A database of natural products and chemical entities from marine habitat

    PubMed Central

    Babu, Padavala Ajay; Puppala, Suma Sree; Aswini, Satyavarapu Lakshmi; Vani, Metta Ramya; Kumar, Chinta Narasimha; Prasanna, Tallapragada

    2008-01-01

    Marine compound database consists of marine natural products and chemical entities, collected from various literature sources, which are known to possess bioactivity against human diseases. The database is constructed using html code. The 12 categories of 182 compounds are provided with the source, compound name, 2-dimensional structure, bioactivity and clinical trial information. The database is freely available online and can be accessed at http://www.progenebio.in/mcdb/index.htm PMID:19238254

  2. Natural seepage of crude oil into the marine environment

    USGS Publications Warehouse

    Kvenvolden, K.A.; Cooper, C.K.

    2003-01-01

    Recent global estimates of crude-oil seepage rates suggest that about 47% of crude oil currently entering the marine environment is from natural seeps, whereas 53% results from leaks and spills during the extraction, transportation, refining, storage, and utilization of petroleum. The amount of natural crude-oil seepage is currently estimated to be 600,000 metric tons per year, with a range of uncertainty of 200,000 to 2,000,000 metric tons per year. Thus, natural oil seeps may be the single most important source of oil that enters the ocean, exceeding each of the various sources of crude oil that enters the ocean through its exploitation by humankind.

  3. Marine Natural Products with P-Glycoprotein Inhibitor Properties

    PubMed Central

    Lopez, Dioxelis; Martinez-Luis, Sergio

    2014-01-01

    P-glycoprotein (P-gp) is a protein belonging to the ATP-binding cassette (ABC) transporters superfamily that has clinical relevance due to its role in drug metabolism and multi-drug resistance (MDR) in several human pathogens and diseases. P-gp is a major cause of drug resistance in cancer, parasitic diseases, epilepsy and other disorders. This review article aims to summarize the research findings on the marine natural products with P-glycoprotein inhibitor properties. Natural compounds that modulate P-gp offer great possibilities for semi-synthetic modification to create new drugs and are valuable research tools to understand the function of complex ABC transporters. PMID:24451193

  4. Antiviral Activity of Natural Products Extracted from Marine Organisms

    PubMed Central

    Uzair, Bushra; Mahmood, Zahra; Tabassum, Sobia

    2011-01-01

    Many epidemics have broken out over the centuries. Hundreds and thousands of humans have died over a disease. Available treatments for infectious diseases have always been limited. Some infections are more deadly than the others, especially viral pathogens. These pathogens have continuously resisted all kinds of medical treatment, due to a need for new treatments to be developed. Drugs are present in nature and are also synthesized in vitro and they help in combating diseases and restoring health. Synthesizing drugs is a hard and time consuming task, which requires a lot of man power and financial aid. However, the natural compounds are just lying around on the earth, may it be land or water. Over a thousand novel compounds isolated from marine organisms are used as antiviral agents. Others are being pharmacologically tested. Today, over forty antiviral compounds are present in the pharmacological market. Some of these compounds are undergoing clinical and preclinical stages. Marine compounds are paving the way for a new trend in modern medicine. PMID:23678429

  5. Marine Sponge Derived Natural Products between 2001 and 2010: Trends and Opportunities for Discovery of Bioactives

    PubMed Central

    Mehbub, Mohammad Ferdous; Lei, Jie; Franco, Christopher; Zhang, Wei

    2014-01-01

    Marine sponges belonging to the phylum Porifera (Metazoa), evolutionarily the oldest animals are the single best source of marine natural products. The present review presents a comprehensive overview of the source, taxonomy, country of origin or geographical position, chemical class, and biological activity of sponge-derived new natural products discovered between 2001 and 2010. The data has been analyzed with a view to gaining an outlook on the future trends and opportunities in the search for new compounds and their sources from marine sponges. PMID:25196730

  6. Phylogenetic Tree Analysis of the Cold-Hot Nature of Traditional Chinese Marine Medicine for Possible Anticancer Activity

    PubMed Central

    Song, Xuxia; Li, Xuebo; Zhang, Fengcong; Wang, Changyun

    2017-01-01

    Traditional Chinese Marine Medicine (TCMM) represents one of the medicinal resources for research and development of novel anticancer drugs. In this study, to investigate the presence of anticancer activity (AA) displayed by cold or hot nature of TCMM, we analyzed the association relationship and the distribution regularity of TCMMs with different nature (613 TCMMs originated from 1,091 species of marine organisms) via association rules mining and phylogenetic tree analysis. The screened association rules were collected from three taxonomy groups: (1) Bacteria superkingdom, Phaeophyceae class, Fucales order, Sargassaceae family, and Sargassum genus; (2) Viridiplantae kingdom, Streptophyta phylum, Malpighiales class, and Rhizophoraceae family; (3) Holothuroidea class, Aspidochirotida order, and Holothuria genus. Our analyses showed that TCMMs with closer taxonomic relationship were more likely to possess anticancer bioactivity. We found that the cluster pattern of marine organisms with reported AA tended to cluster with cold nature TCMMs. Moreover, TCMMs with salty-cold nature demonstrated properties for softening hard mass and removing stasis to treat cancers, and species within Metazoa or Viridiplantae kingdom of cold nature were more likely to contain AA properties. We propose that TCMMs from these marine groups may enable focused bioprospecting for discovery of novel anticancer drugs derived from marine bioresources. PMID:28191021

  7. Recent Advances in the Discovery and Development of Marine Natural Products with Cardiovascular Pharmacological Effects.

    PubMed

    Zhou, Jie-Bin; Luo, Rong; Zheng, Ying-Lin; Pang, Ji-Yan

    2018-01-01

    Numerous studies have indicated that marine natural products are one of the most important sources of the lead compounds in drug discovery for their unique structures, various bioactivities and less side effects. In this review, the marine natural products with cardiovascular pharmacological effects reported after 2000 will be presented. Their structural types, relevant biological activities, origin of isolation and information of strain species will be discussed in detail. Finally, by describing our studies as an example, we also discuss the chances and challenges for translating marine-derived compounds into preclinical or clinical trials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Radiochemical techniques for determining some naturally occurring radionuclides in marine environmental materials

    NASA Astrophysics Data System (ADS)

    Baker, C. W.

    1984-06-01

    The determination of some of the naturally-occurring, alpha-emitting radionuclides in marine environmental materials, is of interest for several reasons. Radium and radon nuclides are potentially useful as oceanographic tracers. Lead and thorium nuclides may be used to study sedimentation rates, mixing processes and bioturbation in sediments. Radium and polonium nuclides are incorporated into food chains and the data may provide a perspective against which to assess the significance, for marine organisms, of exposure to radiation in a marine radioactive waste disposal situation. This paper discusses the manner in which samples are taken, and the radiochemical methods which have been employed to measure the nuclides, together with some data produced.

  9. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status.

    PubMed

    Fang, Wan-Yin; Dahiya, Rajiv; Qin, Hua-Li; Mourya, Rita; Maharaj, Sandeep

    2016-10-26

    Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs.

  10. Natural Proline-Rich Cyclopolypeptides from Marine Organisms: Chemistry, Synthetic Methodologies and Biological Status

    PubMed Central

    Fang, Wan-Yin; Dahiya, Rajiv; Qin, Hua-Li; Mourya, Rita; Maharaj, Sandeep

    2016-01-01

    Peptides have gained increased interest as therapeutics during recent years. More than 60 peptide drugs have reached the market for the benefit of patients and several hundreds of novel therapeutic peptides are in preclinical and clinical development. The key contributor to this success is the potent and specific, yet safe, mode of action of peptides. Among the wide range of biologically-active peptides, naturally-occurring marine-derived cyclopolypeptides exhibit a broad range of unusual and potent pharmacological activities. Because of their size and complexity, proline-rich cyclic peptides (PRCPs) occupy a crucial chemical space in drug discovery that may provide useful scaffolds for modulating more challenging biological targets, such as protein-protein interactions and allosteric binding sites. Diverse pharmacological activities of natural cyclic peptides from marine sponges, tunicates and cyanobacteria have encouraged efforts to develop cyclic peptides with well-known synthetic methods, including solid-phase and solution-phase techniques of peptide synthesis. The present review highlights the natural resources, unique structural features and the most relevant biological properties of proline-rich peptides of marine-origin, focusing on the potential therapeutic role that the PRCPs may play as a promising source of new peptide-based novel drugs. PMID:27792168

  11. The Fate of Marine Bacterial Exopolysaccharide in Natural Marine Microbial Communities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zilian; Chen, Yi; Wang, Rui

    Most marine bacteria produce exopolysaccharides (EPS), and bacterial EPS represent an important source of dissolved organic carbon in marine ecosystems. It was proposed that bacterial EPS rich in uronic acid is resistant to mineralization by microbes and thus has a long residence time in global oceans. To confirm this hypothesis, bacterial EPS rich in galacturonic acid was isolated from Alteromonas sp. JL2810. The EPS was used to amend natural seawater to investigate the bioavailability of this EPS by native populations, in the presence and absence of ammonium and phosphate amendment. The data indicated that the bacterial EPS could not bemore » completely consumed during the cultivation period and that the bioavailability of EPS was not only determined by its intrinsic properties, but was also determined by other factors such as the availability of inorganic nutrients. During the experiment, the humic-like component of fluorescent dissolved organic matter (FDOM) was freshly produced. Bacterial community structure analysis indicated that the class Flavobacteria of the phylum Bacteroidetes was the major contributor for the utilization of EPS. This report is the first to indicate that Flavobacteria are a major contributor to bacterial EPS degradation. Finally, the fraction of EPS that could not be completely utilized and the FDOM (e.g., humic acid-like substances) produced de novo may be refractory and may contribute to the carbon storage in the oceans.« less

  12. The Fate of Marine Bacterial Exopolysaccharide in Natural Marine Microbial Communities

    DOE PAGES

    Zhang, Zilian; Chen, Yi; Wang, Rui; ...

    2015-11-16

    Most marine bacteria produce exopolysaccharides (EPS), and bacterial EPS represent an important source of dissolved organic carbon in marine ecosystems. It was proposed that bacterial EPS rich in uronic acid is resistant to mineralization by microbes and thus has a long residence time in global oceans. To confirm this hypothesis, bacterial EPS rich in galacturonic acid was isolated from Alteromonas sp. JL2810. The EPS was used to amend natural seawater to investigate the bioavailability of this EPS by native populations, in the presence and absence of ammonium and phosphate amendment. The data indicated that the bacterial EPS could not bemore » completely consumed during the cultivation period and that the bioavailability of EPS was not only determined by its intrinsic properties, but was also determined by other factors such as the availability of inorganic nutrients. During the experiment, the humic-like component of fluorescent dissolved organic matter (FDOM) was freshly produced. Bacterial community structure analysis indicated that the class Flavobacteria of the phylum Bacteroidetes was the major contributor for the utilization of EPS. This report is the first to indicate that Flavobacteria are a major contributor to bacterial EPS degradation. Finally, the fraction of EPS that could not be completely utilized and the FDOM (e.g., humic acid-like substances) produced de novo may be refractory and may contribute to the carbon storage in the oceans.« less

  13. Anthropogenic and natural disturbances to marine benthic communities in Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenihan, H.; Oliver, J.S.

    1995-05-01

    Sampling and field experiments were conducted from 1975 to 1990 to test how the structure of marine benthic communities around McMurdo Station, Antarctica varied with levels of anthropogenic contaminants in marine sediments. The structure of communities (e.g., infauna density, species composition, and life history characteristics) in contaminated and uncontaminated areas were compared with the structure of communities influenced by two large-scale natural disturbances, anchor ice formation and uplift or iceberg scour. Benthic communities changed radically along a steep spatial gradient of anthropogenic hydrocarbon, metal, and PCB contamination around McMurdo Station. The heavily contaminated end of the gradient, Winter Quarters Bay,more » was low in infaunal and epifaunal abundance and was dominated by a few opportunistic species of polychaete worms. The edge of the heavily contaminated bay, the transition area, contained several motile polychaete species with less opportunistic life histories. Uncontaminated sedimentary habitats harbored dense tube mats of infaunal animals numerically dominated by populations of polychaete worms, crustaceans, and a large suspension feeding bivalve. These species are generally large and relatively sessile, except for several crustacean species living among the tubes. Although the community patterns around anthropogenic and natural disturbances were similar, particularly motile and opportunistic species at heavily disturbed and marginal areas, the natural disturbances cover much greater areas of the sea floor about the entire Antarctic continent. On the other hand, recovery from chemical contamination is likely to take many more decades than recovery from natural disturbances as contaminant degradation is a slow process. 77 refs., 6 figs., 5 tabs.« less

  14. Recent Advances in the Discovery and Development of Marine Microbial Natural Products

    PubMed Central

    Xiong, Zhi-Qiang; Wang, Jian-Feng; Hao, Yu-You; Wang, Yong

    2013-01-01

    Marine microbial natural products (MMNPs) have attracted increasing attention from microbiologists, taxonomists, ecologists, agronomists, chemists and evolutionary biologists during the last few decades. Numerous studies have indicated that diverse marine microbes appear to have the capacity to produce an impressive array of MMNPs exhibiting a wide variety of biological activities such as antimicrobial, anti-tumor, anti-inflammatory and anti-cardiovascular agents. Marine microorganisms represent an underexplored reservoir for the discovery of MMNPs with unique scaffolds and for exploitation in the pharmaceutical and agricultural industries. This review focuses on MMNPs discovery and development over the past decades, including innovative isolation and culture methods, strategies for discovering novel MMNPs via routine screenings, metagenomics, genomics, combinatorial biosynthesis, and synthetic biology. The potential problems and future directions for exploring MMNPs are also discussed. PMID:23528949

  15. Recent advances in the discovery and development of marine microbial natural products.

    PubMed

    Xiong, Zhi-Qiang; Wang, Jian-Feng; Hao, Yu-You; Wang, Yong

    2013-03-08

    Marine microbial natural products (MMNPs) have attracted increasing attention from microbiologists, taxonomists, ecologists, agronomists, chemists and evolutionary biologists during the last few decades. Numerous studies have indicated that diverse marine microbes appear to have the capacity to produce an impressive array of MMNPs exhibiting a wide variety of biological activities such as antimicrobial, anti-tumor, anti-inflammatory and anti-cardiovascular agents. Marine microorganisms represent an underexplored reservoir for the discovery of MMNPs with unique scaffolds and for exploitation in the pharmaceutical and agricultural industries. This review focuses on MMNPs discovery and development over the past decades, including innovative isolation and culture methods, strategies for discovering novel MMNPs via routine screenings, metagenomics, genomics, combinatorial biosynthesis, and synthetic biology. The potential problems and future directions for exploring MMNPs are also discussed.

  16. Integrating natural and social sciences to manage sustainably vectors of change in the marine environment: Dogger Bank transnational case study

    NASA Astrophysics Data System (ADS)

    Burdon, Daryl; Boyes, Suzanne J.; Elliott, Michael; Smyth, Katie; Atkins, Jonathan P.; Barnes, Richard A.; Wurzel, Rüdiger K.

    2018-02-01

    The management of marine resources is a complex process driven by the dynamics of the natural system and the influence of stakeholders including policy-makers. An integration of natural and social sciences research is required by policy-makers to better understand, and manage sustainably, natural changes and anthropogenic activities within particular marine systems. Given the uncertain development of activities in the marine environment, future scenarios assessments can be used to investigate whether marine policy measures are robust and sustainable. This paper develops an interdisciplinary framework, which incorporates future scenarios assessments, and identifies four main types of evaluation needed to integrate natural and social sciences research to support the integrated management of the marine environment: environmental policy and governance assessments; ecosystem services, indicators and valuation; modelling tools for management evaluations, and risk assessment and risk management. The importance of stakeholder engagement within each evaluation method is highlighted. The paper focuses on the transnational spatial marine management of the Dogger Bank, in the central North Sea, a site which is very important ecologically, economically and politically. Current management practices are reviewed, and research tools to support future management decisions are applied and discussed in relation to two main vectors of change affecting the Dogger Bank, namely commercial fisheries and offshore wind farm developments, and in relation to the need for nature conservation. The input of local knowledge through stakeholder engagement is highlighted as a necessary requirement to produce site-specific policy recommendations for the future management of the Dogger Bank. We present wider policy recommendations to integrate natural and social sciences in a global marine context.

  17. Contribution of synthetic and naturally occurring organobromine compounds to bromine mass in marine organisms.

    PubMed

    Wan, Yi; Jones, Paul D; Wiseman, Steve; Chang, Hong; Chorney, Dave; Kannan, Kurunthachalam; Zhang, Kun; Hu, Jian-Ying; Khim, Jong Seong; Tanabe, Shinsuke; Lam, Michael H W; Giesy, John P

    2010-08-15

    An extraction, separation, and purification method was developed for the identification and quantification of total bromine (TBr), extractable organobromine (EOBr), and five classes of identified EOBrs. Instrumental neutron activation analysis (INAA) was utilized to quantify EOBr and TBr. The method was then applied to liver samples of tuna, albatross, and polar bear collected from remote marine locations. Polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs), bromophenols (BRPs), hydroxylated (OH-) and methoxylated (MeO-) PBDEs were analyzed as identified EOBr. The majority of the bromine in these marine organisms was nonextractable or inorganic, with EOBr accounting for 10-28% of the TBr. Of the identified EOBr, in tuna and albatross, naturally occurring compounds, including MeO-PBDEs, OH-PBDEs, and BPRs, were prevalent. However, the identifiable EOBr in polar bears consisted primarily of synthetic compounds, including PBDEs and PBBs. Overall, 0.08-0.11% and 0.008-0.012% of EOBr and TBr, respectively, were identified. The proportion of EOBr that was identified in marine organisms was relatively small compared to the proportions for organofluorine and organochlorine compounds. This could be related to the great diversity of naturally occurring organobromine compounds in the environment. Naturally occurring brominated fatty acids were estimated to be the predominant compounds in the EOBr fraction.

  18. Half a Century of Hawaiian Marine Natural Products.

    PubMed

    Hagiwara, Kehau A; Wright, Anthony D

    2016-06-01

    The following review covers the primary literature concerning marine natural products isolated for the first time from organisms collected around the islands of Hawaii published in the 51-year period 1964 to July 2015. The review is divided into seven main sections based on major taxonomic groupings; algae, sponges, mollusks, miscellaneous invertebrates, cyanobacteria, bacteria, and fungi. The aim of the review is to discuss the compounds and information concerning their original biological activity and other potentially interesting properties. The majority of the 320 structures of isolated compounds are not shown directly in the review but are contained in the Supporting Information section in 22 figures, Figs. 1 S-22 S. The Supporting Information section also contains Table 1 S that has information relating to the taxonomic identification of the source organism of each compound, collection location of the source organism, a trivial or semi-systematic name for each compound, as well as its general structural class. The authors hope that this review will be the spawning ground for other reviews and the basis for a great deal more research into the marine life found in Hawaiian waters. Georg Thieme Verlag KG Stuttgart · New York.

  19. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012.

    PubMed

    Hu, Yiwen; Chen, Jiahui; Hu, Guping; Yu, Jianchen; Zhu, Xun; Lin, Yongcheng; Chen, Shengping; Yuan, Jie

    2015-01-07

    Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development.

  20. Statistical Research on the Bioactivity of New Marine Natural Products Discovered during the 28 Years from 1985 to 2012

    PubMed Central

    Hu, Yiwen; Chen, Jiahui; Hu, Guping; Yu, Jianchen; Zhu, Xun; Lin, Yongcheng; Chen, Shengping; Yuan, Jie

    2015-01-01

    Every year, hundreds of new compounds are discovered from the metabolites of marine organisms. Finding new and useful compounds is one of the crucial drivers for this field of research. Here we describe the statistics of bioactive compounds discovered from marine organisms from 1985 to 2012. This work is based on our database, which contains information on more than 15,000 chemical substances including 4196 bioactive marine natural products. We performed a comprehensive statistical analysis to understand the characteristics of the novel bioactive compounds and detail temporal trends, chemical structures, species distribution, and research progress. We hope this meta-analysis will provide useful information for research into the bioactivity of marine natural products and drug development. PMID:25574736

  1. Temporal Stability of the Microbial Community in Sewage-Polluted Seawater Exposed to Natural Sunlight Cycles and Marine Microbiota

    PubMed Central

    Sassoubre, Lauren M.; Yamahara, Kevan M.

    2015-01-01

    Billions of gallons of untreated wastewater enter the coastal ocean each year. Once sewage microorganisms are in the marine environment, they are exposed to environmental stressors, such as sunlight and predation. Previous research has investigated the fate of individual sewage microorganisms in seawater but not the entire sewage microbial community. The present study used next-generation sequencing (NGS) to examine how the microbial community in sewage-impacted seawater changes over 48 h when exposed to natural sunlight cycles and marine microbiota. We compared the results from microcosms composed of unfiltered seawater (containing naturally occurring marine microbiota) and filtered seawater (containing no marine microbiota) to investigate the effect of marine microbiota. We also compared the results from microcosms that were exposed to natural sunlight cycles with those from microcosms kept in the dark to investigate the effect of sunlight. The microbial community composition and the relative abundance of operational taxonomic units (OTUs) changed over 48 h in all microcosms. Exposure to sunlight had a significant effect on both community composition and OTU abundance. The effect of marine microbiota, however, was minimal. The proportion of sewage-derived microorganisms present in the microcosms decreased rapidly within 48 h, and the decrease was the most pronounced in the presence of both sunlight and marine microbiota, where the proportion decreased from 85% to 3% of the total microbial community. The results from this study demonstrate the strong effect that sunlight has on microbial community composition, as measured by NGS, and the importance of considering temporal effects in future applications of NGS to identify microbial pollution sources. PMID:25576619

  2. Using the Data From Accidents and Natural Disasters to Improve Marine Debris Modeling

    NASA Astrophysics Data System (ADS)

    Maximenko, N. A.; Hafner, J.; MacFadyen, A.; Kamachi, M.; Murray, C. C.

    2016-02-01

    In the absence of satisfactory marine debris observing system, drift models provide a unique tool that can be used to identify main pathways and accumulation areas of the natural and anthropogenic debris, including the plastic pollution having increasing impact on the environment and raising concern of the society. Main problems, limiting the utility of model simulations, include the lack of accurate information on distribution, timing, strength and composition of sources of marine debris and the complexity of the hydrodynamics of an object, floating on the surface of a rough sea. To calculate the drift, commonly, models estimate surface currents first and then add the object motion relative to the water. Importantly, ocean surface velocity can't be measured with the existing instruments. For various applications it is derived from subsurface (such as 15-meter drifter trajectories) and satellite (altimetry, scatterometry) data using simple theories (geostrophy, Ekman spiral, etc.). Similarly, even the best ocean general circulation models (OGCM's), utilizing different parameterizations of the mixed layer, significantly disagree on the ocean surface velocities. Understanding debris motion under the direct wind force and in interaction with the breaking wind waves seems to be a task of even greater complexity. In this presentation, we demonstrate how the data of documented natural disasters (such as tsunamis, hurricanes and floods) and other accidents generating marine debris with known times and coordinates of start and/or end points of the trajectories, can be used to calibrate drift models and obtain meaningful quantitative results that can be generalized for other sources of debris and used to plan the future marine debris observing system. On these examples we also demonstrate how the oceanic and atmospheric circulations couple together to determine the pathways and destination areas of different types of the floating marine debris.

  3. Marine Natural Products Revisited.

    ERIC Educational Resources Information Center

    Chang, Clifford W. J.

    1978-01-01

    Reports the chemistry of saxitoxin, a paralytic shellfish poison, and other toxins, including the structure of aplysiatoxins. Discusses the chemical signals and defense agents used in intra- and inter- species communication; anticancer agents; and organometallics in the marine environment. (MA)

  4. Indole alkaloid marine natural products: An established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases

    PubMed Central

    Gul, Waseem; Hamann, Mark T.

    2016-01-01

    The marine environment produces natural products from a variety of structural classes exhibiting activity against numerous disease targets. Historically marine natural products have largely been explored as anticancer agents. The indole alkaloids are a class of marine natural products that show unique promise in the development of new drug leads. This report reviews the literature on indole alkaloids of marine origin and also highlights our own research. Specific biological activities of indole alkaloids presented here include: cytotoxicity, antiviral, antiparasitic, anti-inflammatory, serotonin antagonism, Ca-releasing, calmodulin antagonism, and other pharmacological activities. PMID:16236327

  5. How to boost marine fungal research: A first step towards a multidisciplinary approach by combining molecular fungal ecology and natural products chemistry.

    PubMed

    Reich, Marlis; Labes, Antje

    2017-12-01

    Marine fungi have attracted attention in recent years due to increased appreciation of their functional role in ecosystems and as important sources of new natural products. The concomitant development of various "omic" technologies has boosted fungal research in the fields of biodiversity, physiological ecology and natural product biosynthesis. Each of these research areas has its own research agenda, scientific language and quality standards, which have so far hindered an interdisciplinary exchange. Inter- and transdisciplinary interactions are, however, vital for: (i) a detailed understanding of the ecological role of marine fungi, (ii) unlocking their hidden potential for natural product discovery, and (iii) designing access routes for biotechnological production. In this review and opinion paper, we describe the two different "worlds" of marine fungal natural product chemists and marine fungal molecular ecologists. The individual scientific approaches and tools employed are summarised and explained, and enriched with a first common glossary. We propose a strategy to find a multidisciplinary approach towards a comprehensive view on marine fungi and their chemical potential. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Natural products from marine organisms with neuroprotective activity in the experimental models of Alzheimer's disease, Parkinson's disease and ischemic brain stroke: their molecular targets and action mechanisms.

    PubMed

    Choi, Dong-Young; Choi, Hyukjae

    2015-02-01

    Continuous increases in the incidence of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and brain stroke demand the urgent development of therapeutics. Marine organisms are well-known producers of natural products with diverse structures and pharmacological activities. Therefore, researchers have endeavored to identify marine natural products with neuroprotective effects. In this regard, this review summarizes therapeutic targets for AD, PD, and ischemic brain stroke and marine natural products with pharmacological activities on the targets according to taxonomies of marine organisms. Furthermore, several marine natural products on the clinical trials for the treatment of neurological disorders are discussed.

  7. Modeling of Marine Natural Hazards in the Lesser Antilles

    NASA Astrophysics Data System (ADS)

    Zahibo, Narcisse; Nikolkina, Irina; Pelinovsky, Efim

    2010-05-01

    The Caribbean Sea countries are often affected by various marine natural hazards: hurricanes and cyclones, tsunamis and flooding. The historical data of marine natural hazards for the Lesser Antilles and specially, for Guadeloupe are presented briefly. Numerical simulation of several historical tsunamis in the Caribbean Sea (1755 Lisbon trans-Atlantic tsunami, 1867 Virgin Island earthquake tsunami, 2003 Montserrat volcano tsunami) are performed within the framework of the nonlinear-shallow theory. Numerical results demonstrate the importance of the real bathymetry variability with respect to the direction of propagation of tsunami wave and its characteristics. The prognostic tsunami wave height distribution along the Caribbean Coast is computed using various forms of seismic and hydrodynamics sources. These results are used to estimate the far-field potential for tsunami hazards at coastal locations in the Caribbean Sea. The nonlinear shallow-water theory is also applied to model storm surges induced by tropical cyclones, in particular, cyclones "Lilli" in 2002 and "Dean" in 2007. Obtained results are compared with observed data. The numerical models have been tested against known analytical solutions of the nonlinear shallow-water wave equations. Obtained results are described in details in [1-7]. References [1] N. Zahibo and E. Pelinovsky, Natural Hazards and Earth System Sciences, 1, 221 (2001). [2] N. Zahibo, E. Pelinovsky, A. Yalciner, A. Kurkin, A. Koselkov and A. Zaitsev, Oceanologica Acta, 26, 609 (2003). [3] N. Zahibo, E. Pelinovsky, A. Kurkin and A. Kozelkov, Science Tsunami Hazards. 21, 202 (2003). [4] E. Pelinovsky, N. Zahibo, P. Dunkley, M. Edmonds, R. Herd, T. Talipova, A. Kozelkov and I. Nikolkina, Science of Tsunami Hazards, 22, 44 (2004). [5] N. Zahibo, E. Pelinovsky, E. Okal, A. Yalciner, C. Kharif, T. Talipova and A. Kozelkov, Science of Tsunami Hazards, 23, 25 (2005). [6] N. Zahibo, E. Pelinovsky, T. Talipova, A. Rabinovich, A. Kurkin and I

  8. 43 CFR 15.2 - Removal or destruction of natural features and marine life.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... LARGO CORAL REEF PRESERVE § 15.2 Removal or destruction of natural features and marine life. No person... sand, gravel or minerals, corals, sea feathers and fans, shells and shell fish starfishes or other... this Preserve. No rope, wire or other contrivance shall be attached to any coral, rock or other...

  9. 43 CFR 15.2 - Removal or destruction of natural features and marine life.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... LARGO CORAL REEF PRESERVE § 15.2 Removal or destruction of natural features and marine life. No person... sand, gravel or minerals, corals, sea feathers and fans, shells and shell fish starfishes or other... this Preserve. No rope, wire or other contrivance shall be attached to any coral, rock or other...

  10. 43 CFR 15.2 - Removal or destruction of natural features and marine life.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... LARGO CORAL REEF PRESERVE § 15.2 Removal or destruction of natural features and marine life. No person... sand, gravel or minerals, corals, sea feathers and fans, shells and shell fish starfishes or other... this Preserve. No rope, wire or other contrivance shall be attached to any coral, rock or other...

  11. 43 CFR 15.2 - Removal or destruction of natural features and marine life.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... LARGO CORAL REEF PRESERVE § 15.2 Removal or destruction of natural features and marine life. No person... sand, gravel or minerals, corals, sea feathers and fans, shells and shell fish starfishes or other... this Preserve. No rope, wire or other contrivance shall be attached to any coral, rock or other...

  12. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs

    PubMed Central

    Wu, Ze-Hong; Wang, Yu; Wang, Chang-Yun; Xu, Ying

    2017-01-01

    Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC50 values < 5 μg/mL and LC50/EC50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities. PMID:28846626

  13. Mini-Review: Antifouling Natural Products from Marine Microorganisms and Their Synthetic Analogs.

    PubMed

    Wang, Kai-Ling; Wu, Ze-Hong; Wang, Yu; Wang, Chang-Yun; Xu, Ying

    2017-08-28

    Biofouling causes huge economic loss and generates serious ecological issues worldwide. Marine coatings incorporated with antifouling (AF) compounds are the most common practices to prevent biofouling. With a ban of organotins and an increase in the restrictions regarding the use of other AF alternatives, exploring effective and environmentally friendly AF compounds has become an urgent demand for marine coating industries. Marine microorganisms, which have the largest biodiversity, represent a rich and important source of bioactive compounds and have many medical and industrial applications. This review summarizes 89 natural products from marine microorganisms and 13 of their synthetic analogs with AF EC 50 values ≤ 25 μg/mL from 1995 (the first report about marine microorganism-derived AF compounds) to April 2017. Some compounds with the EC 50 values < 5 μg/mL and LC 50 /EC 50 ratios > 50 are highlighted as potential AF compounds, and the preliminary analysis of structure-relationship (SAR) of these compounds is also discussed briefly. In the last part, current challenges and future research perspectives are proposed based on opinions from many previous reviews. To provide clear guidance for the readers, the AF compounds from microorganisms and their synthetic analogs in this review are categorized into ten types, including fatty acids, lactones, terpenes, steroids, benzenoids, phenyl ethers, polyketides, alkaloids, nucleosides and peptides. In addition to the major AF compounds which targets macro-foulers, this review also includes compounds with antibiofilm activity since micro-foulers also contribute significantly to the biofouling communities.

  14. Cheminformatic Insight into the Differences between Terrestrial and Marine Originated Natural Products.

    PubMed

    Shang, Jun; Hu, Ben; Wang, Junmei; Zhu, Feng; Kang, Yu; Li, Dan; Sun, Huiyong; Kong, De-Xin; Hou, Tingjun

    2018-06-07

    This is a new golden age for drug discovery based on natural products derived from both marine and terrestrial sources. Herein, a straightforward but important question is "what are the major structural differences between marine natural products (MNPs) and terrestrial natural products (TNPs)?" To answer this question, we analyzed the important physicochemical properties, structural features, and drug-likeness of the two types of natural products and discussed their differences from the perspective of evolution. In general, MNPs have lower solubility and are often larger than TNPs. On average, particularly from the perspective of unique fragments and scaffolds, MNPs usually possess more long chains and large rings, especially 8- to 10-membered rings. MNPs also have more nitrogen atoms and halogens, notably bromines, and fewer oxygen atoms, suggesting that MNPs may be synthesized by more diverse biosynthetic pathways than TNPs. Analysis of the frequently occurring Murcko frameworks in MNPs and TNPS also reveals a striking difference between MNPs and TNPs. The scaffolds of the former tend to be longer and often contain ester bonds connected to 10-membered rings, while the scaffolds of the latter tend to be shorter and often bear more stable ring systems and bond types. Besides, the prediction from the naïve Bayesian drug-likeness classification model suggests that most compounds in MNPs and TNPs are drug-like, although MNPs are slightly more drug-like than TNPs. We believe that MNPs and TNPs with novel drug-like scaffolds have great potential to be drug leads or drug candidates in drug discovery campaigns.

  15. Marine Extremes and Natural Hazards: when the key is variability.

    NASA Astrophysics Data System (ADS)

    Marone, Eduardo; Camargo, Ricardo; Salcedo Castro, Julio

    2014-05-01

    At EGU2013 we used the work we are conducting regarding marine extreme events and natural hazards to exploit the distance that separate the scientific community and the non academic society, trying to show where bridges need to be built an how an ethical behavior among the scientists needs to be in place to succeed. We concluded that our actions as scientists have not been the most appropriate in communicating outside the academy our results, particularly when our findings have to do with natural hazards which could contribute to loss of life and the environmental quality that sustains it. Even if one of the barriers that separate the academy from society is the "language", too cryptic even for a well educated (not scientific) citizen in many cases, we scientists complicated even more the problems when we stop worrying about some basic concepts regarding the scientific method once upon a time were teach at basic school levels, particularly concerning differences as accuracy and precision, or the concept of uncertainty and the errors which permeate any observation or scientific "prediction". Science teaching at basic levels was not lost, but changed in the XXth century, concentrating in the so many new advancements and abandoning classical but necessary learning processes just about how sciences is done and why. When studying marine extreme events, we use statistic, stochastic methods, deterministic analysis, logical and numerical modeling, etc. However, our results are still very far away of being accurate, while our precision, however is improving just a little, it is still far away of ideal. That appears to be somehow obvious if we look just the observed vs. the modeled data. Nevertheless, if we look not the absolute values of our results, but the "rhythm" of their variability and compare these cadences with the beats observed in nature, new patterns arose, and clues about how to act regarding natural hazards and extreme events became more clear. We are being

  16. Some structures of marine natural products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finer-Moore, J.S.

    1979-07-01

    Applications of x-ray crystallographic methods to marine chemistry are discussed. Results of research on a biosynthetic problem: diterpenes from Dictyotaceae are discussed under the following section headings: history of the problem; dictyoxepin; dictyodial; and dictyolactone. Studies on marine ecology are reported under the following headings: symbiosis and antibiosis; metabolites from opisthobranch molluscs, including, dolabelladiene, 9-isocyanopupukeanane and 2-isocyanopupukeanane, and crispatone; metabolites of goronians and soft corals, including zooxanthellae and the metabolism of coelenterates, ophirin, sinularene, and erectene. (JGB)

  17. Contemporary Strategies for the Synthesis of Tetrahydropyran Derivatives: Application to Total Synthesis of Neopeltolide, a Marine Macrolide Natural Product

    PubMed Central

    Fuwa, Haruhiko

    2016-01-01

    Tetrahydropyrans are structural motifs that are abundantly present in a range of biologically important marine natural products. As such, significant efforts have been paid to the development of efficient and versatile methods for the synthesis of tetrahydropyran derivatives. Neopeltolide, a potent antiproliferative marine natural product, has been an attractive target compound for synthetic chemists because of its complex structure comprised of a 14-membered macrolactone embedded with a tetrahydropyran ring, and twenty total and formal syntheses of this natural product have been reported so far. This review summarizes the total and formal syntheses of neopeltolide and its analogues, highlighting the synthetic strategies exploited for constructing the tetrahydropyran ring. PMID:27023567

  18. Marine Spongin: Naturally Prefabricated 3D Scaffold-Based Biomaterial

    PubMed Central

    Jesionowski, Teofil; Norman, Małgorzata; Żółtowska-Aksamitowska, Sonia; Petrenko, Iaroslav; Ehrlich, Hermann

    2018-01-01

    The biosynthesis, chemistry, structural features and functionality of spongin as a halogenated scleroprotein of keratosan demosponges are still paradigms. This review has the principal goal of providing thorough and comprehensive coverage of spongin as a naturally prefabricated 3D biomaterial with multifaceted applications. The history of spongin’s discovery and use in the form of commercial sponges, including their marine farming strategies, have been analyzed and are discussed here. Physicochemical and material properties of spongin-based scaffolds are also presented. The review also focuses on prospects and trends in applications of spongin for technology, materials science and biomedicine. Special attention is paid to applications in tissue engineering, adsorption of dyes and extreme biomimetics. PMID:29522478

  19. Emerging biopharmaceuticals from marine actinobacteria.

    PubMed

    Hassan, Syed Shams Ul; Anjum, Komal; Abbas, Syed Qamar; Akhter, Najeeb; Shagufta, Bibi Ibtesam; Shah, Sayed Asmat Ali; Tasneem, Umber

    2017-01-01

    Actinobacteria are quotidian microorganisms in the marine world, playing a crucial ecological role in the recycling of refractory biomaterials and producing novel secondary metabolites with pharmaceutical applications. Actinobacteria have been isolated from the huge area of marine organisms including sponges, tunicates, corals, mollusks, crabs, mangroves and seaweeds. Natural products investigation of the marine actinobacteria revealed that they can synthesize numerous natural products including alkaloids, polyketides, peptides, isoprenoids, phenazines, sterols, and others. These natural products have a potential to provide future drugs against crucial diseases like cancer, HIV, microbial and protozoal infections and severe inflammations. Therefore, marine actinobacteria portray as a pivotal resource for marine drugs. It is an upcoming field of research to probe a novel and pharmaceutically important secondary metabolites from marine actinobacteria. In this review, we attempt to summarize the present knowledge on the diversity, chemistry and mechanism of action of marine actinobacteria-derived secondary metabolites from 2007 to 2016. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Natural marine bacteria as model organisms for the hazard-assessment of consumer products containing silver nanoparticles.

    PubMed

    Echavarri-Bravo, Virginia; Paterson, Lynn; Aspray, Thomas J; Porter, Joanne S; Winson, Michael K; Hartl, Mark G J

    2017-09-01

    Scarce information is available regarding the fate and toxicology of engineered silver nanoparticles (AgNPs) in the marine environment, especially when compared to other environmental compartments. Hence, the antibacterial activity of the NM-300 AgNPs (OECD programme) and a household product containing colloidal AgNPs (Mesosilver) was investigated using marine bacteria, pure cultures and natural mixed populations (microcosm approach). Bacterial susceptibility to AgNPs was species-specific, with Gram negative bacteria being more resistant than the Gram positive species (NM-300 concentration used ranged between 0.062 and 1.5 mg L -1 ), and the Mesosilver product was more toxic than the NM-300. Bacterial viability and the physiological status (O 2 uptake measured by respirometry) of the microbial community in the microcosm was negatively affected at an initial concentration of 1 mg L -1 NM-300. The high chloride concentrations in the media/seawater led to the formation of silver-chloro complexes thus enhancing AgNP toxicity. We recommend the use of natural marine bacteria as models when assessing the environmental relevant antibacterial properties of products containing nanosilver. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Adsorption of C.I. Natural Red 4 onto Spongin Skeleton of Marine Demosponge

    PubMed Central

    Norman, Małgorzata; Bartczak, Przemysław; Zdarta, Jakub; Tylus, Włodzimierz; Szatkowski, Tomasz; Stelling, Allison L.; Ehrlich, Hermann; Jesionowski, Teofil

    2014-01-01

    C.I. Natural Red 4 dye, also known as carmine or cochineal, was adsorbed onto the surface of spongin-based fibrous skeleton of Hippospongia communis marine demosponge for the first time. The influence of the initial concentration of dye, the contact time, and the pH of the solution on the adsorption process was investigated. The results presented here confirm the effectiveness of the proposed method for developing a novel dye/biopolymer hybrid material. The kinetics of the adsorption of carmine onto a marine sponge were also determined. The experimental data correspond directly to a pseudo-second-order model for adsorption kinetics (r2 = 0.979–0.999). The hybrid product was subjected to various types of analysis (FT-IR, Raman, 13C CP/MAS NMR, XPS) to investigate the nature of the interactions between the spongin (adsorbent) and the dye (the adsorbate). The dominant interactions between the dye and spongin were found to be hydrogen bonds and electrostatic effects. Combining the dye with a spongin support resulted with a novel hybrid material that is potentially attractive for bioactive applications and drug delivery systems. PMID:28787926

  2. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters.

    PubMed

    Schorn, Michelle A; Alanjary, Mohammad M; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R; Ziemert, Nadine; Moore, Bradley S

    2016-12-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites.

  3. Sequencing rare marine actinomycete genomes reveals high density of unique natural product biosynthetic gene clusters

    PubMed Central

    Schorn, Michelle A.; Alanjary, Mohammad M.; Aguinaldo, Kristen; Korobeynikov, Anton; Podell, Sheila; Patin, Nastassia; Lincecum, Tommie; Jensen, Paul R.; Ziemert, Nadine

    2016-01-01

    Traditional natural product discovery methods have nearly exhausted the accessible diversity of microbial chemicals, making new sources and techniques paramount in the search for new molecules. Marine actinomycete bacteria have recently come into the spotlight as fruitful producers of structurally diverse secondary metabolites, and remain relatively untapped. In this study, we sequenced 21 marine-derived actinomycete strains, rarely studied for their secondary metabolite potential and under-represented in current genomic databases. We found that genome size and phylogeny were good predictors of biosynthetic gene cluster diversity, with larger genomes rivalling the well-known marine producers in the Streptomyces and Salinispora genera. Genomes in the Micrococcineae suborder, however, had consistently the lowest number of biosynthetic gene clusters. By networking individual gene clusters into gene cluster families, we were able to computationally estimate the degree of novelty each genus contributed to the current sequence databases. Based on the similarity measures between all actinobacteria in the Joint Genome Institute's Atlas of Biosynthetic gene Clusters database, rare marine genera show a high degree of novelty and diversity, with Corynebacterium, Gordonia, Nocardiopsis, Saccharomonospora and Pseudonocardia genera representing the highest gene cluster diversity. This research validates that rare marine actinomycetes are important candidates for exploration, as they are relatively unstudied, and their relatives are historically rich in secondary metabolites. PMID:27902408

  4. Trends in the discovery of new marine natural products from invertebrates over the last two decades--where and what are we bioprospecting?

    PubMed

    Leal, Miguel Costa; Puga, João; Serôdio, João; Gomes, Newton C M; Calado, Ricardo

    2012-01-01

    It is acknowledged that marine invertebrates produce bioactive natural products that may be useful for developing new drugs. By exploring untapped geographical sources and/or novel groups of organisms one can maximize the search for new marine drugs to treat human diseases. The goal of this paper is to analyse the trends associated with the discovery of new marine natural products from invertebrates (NMNPI) over the last two decades. The analysis considers different taxonomical levels and geographical approaches of bioprospected species. Additionally, this research is also directed to provide new insights into less bioprospected taxa and world regions. In order to gather the information available on NMNPI, the yearly-published reviews of Marine Natural Products covering 1990-2009 were surveyed. Information on source organisms, specifically taxonomical information and collection sites, was assembled together with additional geographical information collected from the articles originally describing the new natural product. Almost 10000 NMNPI were discovered since 1990, with a pronounced increase between decades. Porifera and Cnidaria were the two dominant sources of NMNPI worldwide. The exception was polar regions where Echinodermata dominated. The majority of species that yielded the new natural products belong to only one class of each Porifera and Cnidaria phyla (Demospongiae and Anthozoa, respectively). Increased bioprospecting efforts were observed in the Pacific Ocean, particularly in Asian countries that are associated with the Japan Biodiversity Hotspot and the Kuroshio Current. Although results show comparably less NMNPI from polar regions, the number of new natural products per species is similar to that recorded for other regions. The present study provides information to future bioprospecting efforts addressing previously unexplored taxonomic groups and/or regions. We also highlight how marine invertebrates, which in some cases have no commercial value

  5. Bioactive Natural Products of Marine Sponges from the Genus Hyrtios.

    PubMed

    Shady, Nourhan Hisham; El-Hossary, Ebaa M; Fouad, Mostafa A; Gulder, Tobias A M; Kamel, Mohamed Salah; Abdelmohsen, Usama Ramadan

    2017-05-11

    Marine sponges are known as a rich source for novel bioactive compounds with valuable pharmacological potential. One of the most predominant sponge genera is Hyrtios , reported to have various species such as Hyrtios erectus , Hyrtios reticulatus , Hyrtios gumminae , Hyrtios communis , and Hyrtios tubulatus and a number of undescribed species. Members of the genus Hyrtios are a rich source of natural products with diverse and valuable biological activities, represented by different chemical classes including alkaloids, sesterterpenes and sesquiterpenes. This review covers the literature until June 2016, providing a complete survey of all compounds isolated from the genus Hyrtios with their corresponding biological activities whenever applicable.

  6. Marine cosmeceuticals.

    PubMed

    Kim, Se-Kwon

    2014-03-01

    Recently, a great deal of interest has been expressed in the cosmetic industry regarding marine-derived cosmetic active ingredients due to their numerous beneficial effects on human skin health. Bioactive substances derived from marine resources have diverse functional roles as natural skin care agents, and these properties can be applied to the development of novel cosmetics as well as nutricosmetics (from edible seaweeds and edible marine animals). This contribution focuses on marine-derived cosmeceutical active ingredients and presents an overview of their health beneficial effects on human skin. © 2014 Wiley Periodicals, Inc.

  7. New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18.

    PubMed

    Paulus, Constanze; Rebets, Yuriy; Tokovenko, Bogdan; Nadmid, Suvd; Terekhova, Larisa P; Myronovskyi, Maksym; Zotchev, Sergey B; Rückert, Christian; Braig, Simone; Zahler, Stefan; Kalinowski, Jörn; Luzhetskyy, Andriy

    2017-02-10

    Marine actinobacteria are drawing more and more attention as a promising source of new natural products. Here we report isolation, genome sequencing and metabolic profiling of new strain Streptomyces sp. MP131-18 isolated from marine sediment sample collected in the Trondheim Fjord, Norway. The 16S rRNA and multilocus phylogenetic analysis showed that MP131-18 belongs to the genus Streptomyces. The genome of MP131-18 isolate was sequenced, and 36 gene clusters involved in the biosynthesis of 18 different types of secondary metabolites were predicted using antiSMASH analysis. The combined genomics-metabolics profiling of the strain led to the identification of several new biologically active compounds. As a result, the family of bisindole pyrroles spiroindimicins was extended with two new members, spiroindimicins E and F. Furthermore, prediction of the biosynthetic pathway for unusual α-pyrone lagunapyrone isolated from MP131-18 resulted in foresight and identification of two new compounds of this family - lagunapyrones D and E. The diversity of identified and predicted compounds from Streptomyces sp. MP131-18 demonstrates that marine-derived actinomycetes are not only a promising source of new natural products, but also represent a valuable pool of genes for combinatorial biosynthesis of secondary metabolites.

  8. New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18

    PubMed Central

    Paulus, Constanze; Rebets, Yuriy; Tokovenko, Bogdan; Nadmid, Suvd; Terekhova, Larisa P.; Myronovskyi, Maksym; Zotchev, Sergey B.; Rückert, Christian; Braig, Simone; Zahler, Stefan; Kalinowski, Jörn; Luzhetskyy, Andriy

    2017-01-01

    Marine actinobacteria are drawing more and more attention as a promising source of new natural products. Here we report isolation, genome sequencing and metabolic profiling of new strain Streptomyces sp. MP131-18 isolated from marine sediment sample collected in the Trondheim Fjord, Norway. The 16S rRNA and multilocus phylogenetic analysis showed that MP131-18 belongs to the genus Streptomyces. The genome of MP131-18 isolate was sequenced, and 36 gene clusters involved in the biosynthesis of 18 different types of secondary metabolites were predicted using antiSMASH analysis. The combined genomics-metabolics profiling of the strain led to the identification of several new biologically active compounds. As a result, the family of bisindole pyrroles spiroindimicins was extended with two new members, spiroindimicins E and F. Furthermore, prediction of the biosynthetic pathway for unusual α-pyrone lagunapyrone isolated from MP131-18 resulted in foresight and identification of two new compounds of this family – lagunapyrones D and E. The diversity of identified and predicted compounds from Streptomyces sp. MP131-18 demonstrates that marine-derived actinomycetes are not only a promising source of new natural products, but also represent a valuable pool of genes for combinatorial biosynthesis of secondary metabolites. PMID:28186197

  9. Global distribution of naturally occurring marine hypoxia on continental margins

    NASA Astrophysics Data System (ADS)

    Helly, John J.; Levin, Lisa A.

    2004-09-01

    Hypoxia in the ocean influences biogeochemical cycling of elements, the distribution of marine species and the economic well being of many coastal countries. Previous delineations of hypoxic environments focus on those in enclosed seas where hypoxia may be exacerbated by anthropogenically induced eutrophication. Permanently hypoxic water masses in the open ocean, referred to as oxygen minimum zones, impinge on a much larger seafloor surface area along continental margins of the eastern Pacific, Indian and western Atlantic Oceans. We provide the first global quantification of naturally hypoxic continental margin floor by determining upper and lower oxygen minimum zone depth boundaries from hydrographic data and computing the area between the isobaths using seafloor topography. This approach reveals that there are over one million km 2 of permanently hypoxic shelf and bathyal sea floor, where dissolved oxygen is <0.5 ml l -1; over half (59%) occurs in the northern Indian Ocean. We also document strong variation in the intensity, vertical position and thickness of the OMZ as a function of latitude in the eastern Pacific Ocean and as a function of longitude in the northern Indian Ocean. Seafloor OMZs are regions of low biodiversity and are inhospitable to most commercially valuable marine resources, but support a fascinating array of protozoan and metazoan adaptations to hypoxic conditions.

  10. Natural variability of marine ecosystems inferred from a coupled climate to ecosystem simulation

    NASA Astrophysics Data System (ADS)

    Le Mézo, Priscilla; Lefort, Stelly; Séférian, Roland; Aumont, Olivier; Maury, Olivier; Murtugudde, Raghu; Bopp, Laurent

    2016-01-01

    This modeling study analyzes the simulated natural variability of pelagic ecosystems in the North Atlantic and North Pacific. Our model system includes a global Earth System Model (IPSL-CM5A-LR), the biogeochemical model PISCES and the ecosystem model APECOSM that simulates upper trophic level organisms using a size-based approach and three interactive pelagic communities (epipelagic, migratory and mesopelagic). Analyzing an idealized (e.g., no anthropogenic forcing) 300-yr long pre-industrial simulation, we find that low and high frequency variability is dominant for the large and small organisms, respectively. Our model shows that the size-range exhibiting the largest variability at a given frequency, defined as the resonant range, also depends on the community. At a given frequency, the resonant range of the epipelagic community includes larger organisms than that of the migratory community and similarly, the latter includes larger organisms than the resonant range of the mesopelagic community. This study shows that the simulated temporal variability of marine pelagic organisms' abundance is not only influenced by natural climate fluctuations but also by the structure of the pelagic community. As a consequence, the size- and community-dependent response of marine ecosystems to climate variability could impact the sustainability of fisheries in a warming world.

  11. Trends in the Discovery of New Marine Natural Products from Invertebrates over the Last Two Decades – Where and What Are We Bioprospecting?

    PubMed Central

    Leal, Miguel Costa; Puga, João; Serôdio, João; Gomes, Newton C. M.; Calado, Ricardo

    2012-01-01

    It is acknowledged that marine invertebrates produce bioactive natural products that may be useful for developing new drugs. By exploring untapped geographical sources and/or novel groups of organisms one can maximize the search for new marine drugs to treat human diseases. The goal of this paper is to analyse the trends associated with the discovery of new marine natural products from invertebrates (NMNPI) over the last two decades. The analysis considers different taxonomical levels and geographical approaches of bioprospected species. Additionally, this research is also directed to provide new insights into less bioprospected taxa and world regions. In order to gather the information available on NMNPI, the yearly-published reviews of Marine Natural Products covering 1990–2009 were surveyed. Information on source organisms, specifically taxonomical information and collection sites, was assembled together with additional geographical information collected from the articles originally describing the new natural product. Almost 10000 NMNPI were discovered since 1990, with a pronounced increase between decades. Porifera and Cnidaria were the two dominant sources of NMNPI worldwide. The exception was polar regions where Echinodermata dominated. The majority of species that yielded the new natural products belong to only one class of each Porifera and Cnidaria phyla (Demospongiae and Anthozoa, respectively). Increased bioprospecting efforts were observed in the Pacific Ocean, particularly in Asian countries that are associated with the Japan Biodiversity Hotspot and the Kuroshio Current. Although results show comparably less NMNPI from polar regions, the number of new natural products per species is similar to that recorded for other regions. The present study provides information to future bioprospecting efforts addressing previously unexplored taxonomic groups and/or regions. We also highlight how marine invertebrates, which in some cases have no commercial value

  12. Natural abundances of carbon isotopes in acetate from a coastal marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Martens, C. S.; Des Marais, D. J.

    1987-01-01

    Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.

  13. Marine biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the naturemore » of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.« less

  14. Marine natural products for multi-targeted cancer treatment: A future insight.

    PubMed

    Kumar, Maushmi S; Adki, Kaveri M

    2018-05-30

    Cancer is world's second largest alarming disease, which involves abnormal cell growth and have potential to spread to other parts of the body. Most of the available anticancer drugs are designed to act on specific targets by altering the activity of involved transporters and genes. As cancer cells exhibit complex cellular machinery, the regeneration of cancer tissues and chemo resistance towards the therapy has been the main obstacle in cancer treatment. This fact encourages the researchers to explore the multitargeted use of existing medicines to overcome the shortcomings of chemotherapy for alternative and safer treatment strategies. Recent developments in genomics-proteomics and an understanding of the molecular pharmacology of cancer have also challenged researchers to come up with target-based drugs. The literature supports the evidence of natural compounds exhibiting antioxidant, antimitotic, anti-inflammatory, antibiotic as well as anticancer activity. In this review, we have selected marine sponges as a prolific source of bioactive compounds which can be explored for their possible use in cancer and have tried to link their role in cancer pathway. To prove this, we revisited the literature for the selection of cancer genes for the multitargeted use of existing drugs and natural products. We used Cytoscape network analysis and Search tool for retrieval of interacting genes/ proteins (STRING) to study the possible interactions to show the links between the antioxidants, antibiotics, anti-inflammatory and antimitotic agents and their targets for their possible use in cancer. We included total 78 pathways, their genes and natural compounds from the above four pharmacological classes used in cancer treatment for multitargeted approach. Based on the Cytoscape network analysis results, we shortlist 22 genes based on their average shortest path length connecting one node to all other nodes in a network. These selected genes are CDKN2A, FH, VHL, STK11, SUFU, RB1

  15. 76 FR 11205 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Construction and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... Importing Marine Mammals; Taking Marine Mammals Incidental to Construction and Operation of a Liquefied Natural Gas Deepwater Port in the Gulf of Mexico AGENCY: National Marine Fisheries Service (NMFS... request from Port Dolphin Energy LLC (Port Dolphin) for authorization for the take, by Level B harassment...

  16. Optimization of a natural medium for cellulase by a marine Aspergillus niger using response surface methodology.

    PubMed

    Xue, Dong-Sheng; Chen, Hui-Yin; Lin, Dong-Qiang; Guan, Yi-Xin; Yao, Shan-Jing

    2012-08-01

    The components of a natural medium were optimized to produce cellulase from a marine Aspergillus niger under solid state fermentation conditions by response surface methodology. Eichhornia crassipes and natural seawater were used as a major substrate and a source of mineral salts, respectively. Mineral salts of natural seawater could increase cellulase production. Raw corn cob and raw rice straw showed a significant positive effect on cellulase production. The optimum natural medium consisted of 76.9 % E. crassipes (w/w), 8.9 % raw corn cob (w/w), 3.5 % raw rice straw (w/w), 10.7 % raw wheat bran (w/w), and natural seawater (2.33 times the weight of the dry substrates). Incubation for 96 h in the natural medium increased the biomass to the maximum. The cellulase production was 17.80 U/g the dry weight of substrates after incubation for 144 h. The natural medium avoided supplying chemicals and pretreating substrates. It is promising for future practical fermentation of environment-friendly producing cellulase.

  17. Carotenoids in Marine Animals

    PubMed Central

    Maoka, Takashi

    2011-01-01

    Marine animals contain various carotenoids that show structural diversity. These marine animals accumulate carotenoids from foods such as algae and other animals and modify them through metabolic reactions. Many of the carotenoids present in marine animals are metabolites of β-carotene, fucoxanthin, peridinin, diatoxanthin, alloxanthin, and astaxanthin, etc. Carotenoids found in these animals provide the food chain as well as metabolic pathways. In the present review, I will describe marine animal carotenoids from natural product chemistry, metabolism, food chain, and chemosystematic viewpoints, and also describe new structural carotenoids isolated from marine animals over the last decade. PMID:21566799

  18. Sea urchin fertilization assay: an evaluation of assumptions related to sample salinity adjustment and use of natural and synthetic marine waters for testing.

    PubMed

    Jonczyk, E; Gilron, G; Zajdlik, B

    2001-04-01

    Most industrial effluents discharged into the marine coastal environment are freshwater in nature and therefore require manipulation prior to testing with marine organisms. The sea urchin fertilization test is a common marine bioassay used for routine environmental monitoring, investigative evaluations, and/or regulatory testing of effluents and sediment pore waters. The existing Canadian and U.S. Environmental Protection Agencies test procedures using sea urchin (and sand dollar) gametes allow for sample salinity adjustment using either brine or dry salts. Moreover, these procedures also allow for the use of either natural or synthetic marine water for culturing/holding test organisms and for full-scale testing. At present, it is unclear to what extent these variables affect test results for whole effluents. The test methods simply state that there are no data available and that the use of artificial dry sea salts should be considered provisional. We conducted a series of concurrent experiments aimed at comparing the two different treatments of sample salinity adjustment and the use of natural versus synthetic seawater in order to test these assumptions and evaluate effects on the estimated end points generated by the sea urchin fertilization sublethal toxicity test. Results from these experiments indicated that there is no significant difference in test end points when dry salts or brine are used for sample salinity adjustment. Similarly, results obtained from parallel (split-sample) industrial effluent tests with natural and artificial seawater suggest that both dilution waters produce similar test results. However, data obtained from concurrent tests with the reference toxicant, copper sulfate, showed higher variability and greater sensitivity when using natural seawater as control/dilution water.

  19. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films

    PubMed Central

    Syranidou, Evdokia; Karkanorachaki, Katerina; Amorotti, Filippo; Repouskou, Eftychia; Kroll, Kevin; Kolvenbach, Boris; Corvini, Philippe F-X; Fava, Fabio

    2017-01-01

    This study investigated the potential of bacterial-mediated polyethylene (PE) degradation in a two-phase microcosm experiment. During phase I, naturally weathered PE films were incubated for 6 months with the indigenous marine community alone as well as bioaugmented with strains able to grow in minimal medium with linear low-density polyethylene (LLDPE) as the sole carbon source. At the end of phase I the developed biofilm was harvested and re-inoculated with naturally weathered PE films. Bacteria from both treatments were able to establish an active population on the PE surfaces as the biofilm community developed in a time dependent way. Moreover, a convergence in the composition of these communities was observed towards an efficient PE degrading microbial network, comprising of indigenous species. In acclimated communities, genera affiliated with synthetic (PE) and natural (cellulose) polymer degraders as well as hydrocarbon degrading bacteria were enriched. The acclimated consortia (indigenous and bioaugmented) reduced more efficiently the weight of PE films in comparison to non-acclimated bacteria. The SEM images revealed a dense and compact biofilm layer and signs of bio-erosion on the surface of the films. Rheological results suggest that the polymers after microbial treatment had wider molecular mass distribution and a marginally smaller average molar mass suggesting biodegradation as opposed to abiotic degradation. Modifications on the surface chemistry were observed throughout phase II while the FTIR profiles of microbially treated films at month 6 were similar to the profiles of virgin PE. Taking into account the results, we can suggest that the tailored indigenous marine community represents an efficient consortium for degrading weathered PE plastics. PMID:28841722

  20. Isotopic assessment of marine food consumption by natural-foraging chacma baboons on the Cape Peninsula, South Africa.

    PubMed

    Lewis, Matthew C; West, Adam G; O'Riain, M Justin

    2018-01-01

    Stable isotope analysis has been used to investigate consumption of marine resources in a variety of terrestrial mammals, including humans, but not yet in extant nonhuman primates. We sought to test the efficacy of stable isotope analysis as a tool for such studies by comparing isotope- and observation-based estimates of marine food consumption by a troop of noncommensal, free-ranging chacma baboons. We determined δ 13 C and δ 15 N values of baboon hair (n = 9) and fecal samples (n = 144), and principal food items (n = 362). These values were used as input for diet models, the outputs of which were compared to observation-based estimates of marine food consumption. Fecal δ 13 C values ranged from -29.3‰ to -25.6‰. δ 15 N values ranged from 0.9‰ to 6.3‰ and were positively correlated with a measure of marine foraging during the dietary integration period. Mean (± SD) δ 13 C values of adult male and female baboon hairs were -21.6‰ (± 0.1) and -21.8‰ (± 0.3) respectively, and corresponding δ 15 N values were 5.0‰ (± 0.3) and 3.9‰ (± 0.2). Models indicated that marine contributions were ≤10% of baboon diet within any season, and contributed ≤17% of dietary protein through the year. Model output and observational data were in agreement, both indicating that despite their abundance in the intertidal region, marine foods comprised only a small proportion of baboon diet. This suggests that stable isotope analysis is a viable tool for investigating marine food consumption by natural-foraging primates in temperate regions. © 2017 Wiley Periodicals, Inc.

  1. Production of Enzymes from Marine Actinobacteria.

    PubMed

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies. © 2016 Elsevier Inc. All rights reserved.

  2. Status of marine biomedical research.

    PubMed Central

    Bessey, O

    1976-01-01

    A meeting on Marine Biomedical Research, sponsored by the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health and the Smithsonian Institution Museum of Natural History, was attended by approximately 125 scientists, directors and representatives from many of the country's marine biological laboratories, and government agencies whose interests and responsibilites are in the marine biology and health areas. The purpose of the meeting was to explore the undeveloped research opportunities in the area of marine biology for the advancement of our understanding of human health problems and to provide information on the current status of marine biology laboratories. The meeting was devoted to presentations and discussions in four general areas: (1)Marine Species as Models for Human Disease; (2)Environmental Carcinogenesis and Mutagenesis; (3)Human Health and the Marine Environment--infectious agents and naturally occurring and foreign toxins; and (4)Drugs from the seas. Representatives from twelve of the country's approximatley 40 marine laboratories discussed their organization, developmental history, scientific programs, facilities, and present status of their support. The presentations served as a background and stimulated very lively analytical and constructive discussions of the undeveloped research and education potential residing in the marine environment and biological laboratories for a better understanding of many human health problems; some scientific areas that should be developed to realize this potential; and the needs and problems of marine laboratories that require attention and support if they are to survive and realize their possibilities. PMID:944630

  3. Antimycobacterial Metabolites from Marine Invertebrates.

    PubMed

    Daletos, Georgios; Ancheeva, Elena; Chaidir, Chaidir; Kalscheuer, Rainer; Proksch, Peter

    2016-10-01

    Marine organisms play an important role in natural product-based drug research due to accumulation of structurally unique and bioactive metabolites. The exploration of marine-derived compounds may significantly extend the scientific knowledge of potential scaffolds for antibiotic drug discovery. Development of novel antitubercular agents is especially significant as the emergence of drug-resistant Mycobacterium tuberculosis strains remains threateningly high. Marine invertebrates (i.e., sponges, corals, gorgonians) as a source of new chemical entities are the center of research for several scientific groups, and the wide spectrum of biological activities of marine-derived compounds encourages scientists to carry out investigations in the field of antibiotic research, including tuberculosis treatment. The present review covers published data on antitubercular natural products from marine invertebrates grouped according to their biogenetic origin. Studies on the structure-activity relationships of these important leads are highlighted as well. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The effects of oil spills on marine fish: Implications of spatial variation in natural mortality.

    PubMed

    Langangen, Ø; Olsen, E; Stige, L C; Ohlberger, J; Yaragina, N A; Vikebø, F B; Bogstad, B; Stenseth, N C; Hjermann, D Ø

    2017-06-15

    The effects of oil spills on marine biological systems are of great concern, especially in regions with high biological production of harvested resources such as in the Northeastern Atlantic. The scientific studies of the impact of oil spills on fish stocks tend to ignore that spatial patterns of natural mortality may influence the magnitude of the impact over time. Here, we first illustrate how spatial variation in natural mortality may affect the population impact by considering a thought experiment. Second, we consider an empirically based example of Northeast Arctic cod to extend the concept to a realistic setting. Finally, we present a scenario-based investigation of how the degree of spatial variation in natural mortality affects the impact over a gradient of oil spill sizes. Including the effects of spatial variations in natural mortality tends to widen the impact distribution, hence increasing the probability of both high and low impact events. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Marine products with anti-protozoal activity: a review.

    PubMed

    García, Marley; Monzote, Lianet

    2014-01-01

    The marine organisms are a rich source of varied natural products with unique functionality. A variety of natural products of new molecular structures with diverse biological activities have been reported from marine flora and fauna for treatment and/or prevention of human diseases. The present review briefly illustrates current status of marine products as antiprotozoal agents. The in vitro and in vivo studies of marine algae, invertebrates and micro-organism against different protozoa parasites are included. The marine products studied, according to international criterions for selection of more promisory products in the different models reported, demonstrated their potentialities as antiprozoal agents. Herein, the interest of scientific community to search new alternatives from marine environment has been demonstrated.

  6. Biological Targets and Mechanisms of Action of Natural Products from Marine Cyanobacteria

    PubMed Central

    Salvador-Reyes, Lilibeth A.

    2015-01-01

    Marine cyanobacteria are an ancient group of organisms and prolific producers of bioactive secondary metabolites. These compounds are presumably optimized by evolution over billions of years to exert high affinity for their intended biological target in the ecologically relevant organism but likely also possess activity in different biological contexts such as human cells. Screening of marine cyanobacterial extracts for bioactive natural products has largely focused on cancer cell viability; however, diversification of the screening platform led to the characterization of many new bioactive compounds. Targets of compounds have oftentimes been elusive if the compounds were discovered through phenotypic assays. Over the past few years, technology has advanced to determine mechanism of action (MOA) and targets through reverse chemical genetic and proteomic approaches, which has been applied to certain cyanobacterial compounds and will be discussed in this review. Some cyanobacterial molecules are the most-potent-in-class inhibitors and therefore may become valuable tools for chemical biology to probe protein function but also be templates for novel drugs, assuming in vitro potency translates into cellular and in vivo activity. Our review will focus on compounds for which the direct targets have been deciphered or which were found to target a novel pathway, and link them to disease states where target modulation may be beneficial. PMID:25571978

  7. Evidence of a natural marine source of oxalic acid and a possible link to glyoxal

    NASA Astrophysics Data System (ADS)

    Rinaldi, Matteo; Decesari, Stefano; Carbone, Claudio; Finessi, Emanuela; Fuzzi, Sandro; Ceburnis, Darius; O'Dowd, Colin D.; Sciare, Jean; Burrows, John P.; Vrekoussis, Mihalis; Ervens, Barbara; Tsigaridis, Kostas; Facchini, Maria Cristina

    2011-08-01

    This paper presents results supporting the existence of a natural source of oxalic acid over the oceans. Oxalate was detected in "clean-sector" marine aerosol samples at Mace Head (Ireland) (53°20'N, 9°54'W) during 2006, and at Amsterdam Island (37°48'S, 77°34'E) from 2003 to 2007, in concentrations ranging from 2.7 to 39 ng m-3 and from 0.31 to 17 ng m-3, respectively. The oxalate concentration showed a clear seasonal trend at both sites, with maxima in spring-summer and minima in fall-winter, being consistent with other marine biogenic aerosol components (e.g., methanesulfonic acid, non-sea-salt sulfate, and aliphatic amines). The observed oxalate was distributed along the whole aerosol size spectrum, with both a submicrometer and a supermicrometer mode, unlike the dominant submicrometer mode encountered in many polluted environments. Given its mass size distribution, the results suggest that over remote oceanic regions oxalate is produced through a combination of different formation processes. It is proposed that the cloud-mediated oxidation of gaseous glyoxal, recently detected over remote oceanic regions, may be an important source of submicrometer oxalate in the marine boundary layer. Supporting this hypothesis, satellite-retrieved glyoxal column concentrations over the two sampling sites exhibited the same seasonal concentration trend of oxalate. Furthermore, chemical box model simulations showed that the observed submicrometer oxalate concentrations were consistent with the in-cloud oxidation of typical marine air glyoxal mixing ratios, as retrieved by satellite measurements, at both sites.

  8. [Application of chemical ecology in controlling marine fouling organisms].

    PubMed

    Fang, Fang; Yan, Tao; Liu, Qing

    2005-10-01

    Many marine organisms can produce secondary metabolites beneficial to the protection of marine environments against fouling, and thus, applying chemo-ecological methods to extract the natural antifoulants from marine organisms to resolve the problems relevant to marine fouling is a new thinking in resent years. Its aim is to search for high efficient and non-toxic antifoulants to replace the existing chemically synthetic ones which are unfortunately found to have widespread toxic effects on marine environment. Although we know few about the antifouling mechanisms of secondary metabolites, many natural products have been proved to have antifouling activity. Therefore, basic and applied researches on the ecological roles of these natural compounds, their action mechanisms, coating compatibility, controlled release, and field test are required in the future.

  9. A renaissance in marine pharmacology: from preclinical curiosity to clinical reality.

    PubMed

    Glaser, Keith B; Mayer, Alejandro M S

    2009-09-01

    Marine pharmacology, the pharmacology of marine natural products, has been for some time more associated with marine natural products chemistry rather than mainstay pharmacology. However, in recent years a renaissance has occurred in this area of research, and has seen the US Food & Drug Administration (FDA) approval in 2004 of Prialt (ziconotide, omega-conotoxin MVIIA) the synthetic equivalent of a conopeptide found in marine snails, used for the management of severe chronic pain. Furthermore Yondelis) (trabectedin, ET-743) an antitumor agent scovered in a marine colonial tunicate, and now produced synthetically, receiving Orphan Drug designation from the European Commission (EC) and FDA for soft tissue sarcomas and ovarian cancer and its registration in 2007 in the EU for the treatment of soft tissue sarcoma. The approval/marketing of so few marine natural products has come after many years of research primarily by the academic community and the sporadic involvement of major pharmaceutical companies. This commentary, through the opinions provided by several leaders in the marine natural products field, will examine the potential reasons and perceptions from both the academic and pharmaceutical communities regarding the development of marine natural products as viable therapeutic entities.

  10. Global patterns of extinction risk in marine and non-marine systems.

    PubMed

    Webb, Thomas J; Mindel, Beth L

    2015-02-16

    Despite increasing concern over the effects of human activities on marine ecosystems, extinction in the sea remains scarce: 19-24 out of a total of >850 recorded extinctions implies a 9-fold lower marine extinction rate compared to non-marine systems. The extent of threats faced by marine systems, and their resilience to them, receive considerable attention, but the detectability of marine extinctions is less well understood. Before its extinction or threat status is recorded, a species must be both taxonomically described and then formally assessed; lower rates of either process for marine species could thus impact patterns of extinction risk, especially as species missing from taxonomic inventories may often be more vulnerable than described species. We combine data on taxonomic description with conservation assessments from the International Union for Conservation of Nature (IUCN) to test these possibilities across almost all marine and non-marine eukaryotes. We find that the 9-fold lower rate of recorded extinctions and 4-fold lower rate of ongoing extinction risk across marine species can be explained in part by differences in the proportion of species assessed by the IUCN (3% cf. 4% of non-marine species). Furthermore, once taxonomic knowledge and conservation assessments pass a threshold level, differences in extinction risk between marine and non-marine groups largely disappear. Indeed, across the best-studied taxonomic groups, there is no difference between marine and non-marine systems, with on average between 20% and 25% of species being threatened with extinction, regardless of realm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Preparation of metagenomic libraries from naturally occurring marine viruses.

    PubMed

    Solonenko, Sergei A; Sullivan, Matthew B

    2013-01-01

    Microbes are now well recognized as major drivers of the biogeochemical cycling that fuels the Earth, and their viruses (phages) are known to be abundant and important in microbial mortality, horizontal gene transfer, and modulating microbial metabolic output. Investigation of environmental phages has been frustrated by an inability to culture the vast majority of naturally occurring diversity coupled with the lack of robust, quantitative, culture-independent methods for studying this uncultured majority. However, for double-stranded DNA phages, a quantitative viral metagenomic sample-to-sequence workflow now exists. Here, we review these advances with special emphasis on the technical details of preparing DNA sequencing libraries for metagenomic sequencing from environmentally relevant low-input DNA samples. Library preparation steps broadly involve manipulating the sample DNA by fragmentation, end repair and adaptor ligation, size fractionation, and amplification. One critical area of future research and development is parallel advances for alternate nucleic acid types such as single-stranded DNA and RNA viruses that are also abundant in nature. Combinations of recent advances in fragmentation (e.g., acoustic shearing and tagmentation), ligation reactions (adaptor-to-template ratio reference table availability), size fractionation (non-gel-sizing), and amplification (linear amplification for deep sequencing and linker amplification protocols) enhance our ability to generate quantitatively representative metagenomic datasets from low-input DNA samples. Such datasets are already providing new insights into the role of viruses in marine systems and will continue to do so as new environments are explored and synergies and paradigms emerge from large-scale comparative analyses. © 2013 Elsevier Inc. All rights reserved.

  12. Distribution of naturally occurring radioactivity and ¹³⁷Cs in the marine sediment of Farasan Island, southern Red Sea, Saudi Arabia.

    PubMed

    Al-Zahrany, A A; Farouk, M A; Al-Yousef, A A

    2012-11-01

    The present work is a part of a project dedicated to measure the marine radioactivity near the Saudi Arabian coasts of the Red Sea and Arabian Gulf for establishing a marine radioactivity database, which includes necessary information on the background levels of both naturally occurring and man-made radionuclides in the marine environment. Farasan Islands is a group of 84 islands (archipelago), under the administration of the Kingdom of Saudi Arabia, in the Red Sea with its main island of Farasan, which is 50 km off the coast of Jazan City. The levels of natural radioactivity of (238)U, (235)U, (226)Ra, (232)Th and (40)K and man-made radionuclides such as (137)Cs in the grab sediment and water samples around Farasan Island have been measured using gamma-ray spectroscopy. The average activity concentrations of (238)U, (235)U, (226)Ra, (232)Th, (40)K and (137)Cs in the sediment samples were found to be 35.46, 1.75, 3.31, 0.92, 34.34 and 0.14 Bq kg(-1), respectively.

  13. Biodiversity conservation should focus on no-take Marine Reserves: 94% of Marine Protected Areas allow fishing.

    PubMed

    Costello, Mark J; Ballantine, Bill

    2015-09-01

    Conservation needs places where nature is left wild; but only a quarter of coastal countries have no-take Marine Reserves. 'Marine Protected Areas' (MPAs) have been used to indicate conservation progress but we found that 94% allow fishing and thus cannot protect all aspects of biodiversity. Biodiversity conservation should focus on Marine Reserves, not MPAs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products

    PubMed Central

    Carballo, José Luis; Hernández-Inda, Zaira L; Pérez, Pilar; García-Grávalos, María D

    2002-01-01

    Background The brine shrimp lethality assay is considered a useful tool for preliminary assessment of toxicity. It has also been suggested for screening pharmacological activities in plant extracts. However, we think that it is necessary to evaluate the suitability of the brine shrimp methods before they are used as a general bio-assay to test natural marine products for pharmacological activity. Material and Methods The bioactivity of the isopropanolic (2-PrOH) extracts of 14 species of marine invertebrates and 6 species of macroalgae was evaluated with the shrimp lethality assay (lethality assay), as well as with another assay based on the inhibition of hatching of the cyst (hatchability assay). The extracts were also assayed for cytotoxicity against two human cell lines, lung carcinoma A-549 and colon carcinoma HT-29, in order to assess the sensitivity of the shrimp assays to detect cytotoxic activity. Results Two sponges (Hyatella sp, Dysidea sp.), two gorgonians (Pacifigorgia adamsii, Muricea sp.), one tunicate (Polyclinum laxum), and three echinoderms (Holothuria impatiens, Pseudoconus californica and Pharia pyramidata) showed a strong cytostatic (growth inhibition) and cytotoxic effect. The hatchability assay showed a strong activity in 4 of the species active against the two human cell lines tested (Hyatella sp, Dysidea sp., Pacifigorgia adamsii and Muricea sp.), and the lethality assay also showed a high lethality in 4 of them (Pacifigorgia adamsii, Muricea sp., Polyclinum laxum, and Pharia pyramidata). Each bioassay detected activity in 50% of the species that were considered active against the two human cell lines tested. However, the simultaneous use of both bioassays increased the percentage to 75%. Conclusions Our results seem consistent with the correlation previously established between cytotoxicity and brine shrimp lethality in plant extracts. We suggest using both bioassays simultaneously to test natural marine products for pharmacological

  15. Marine natural hazards in coastal zone: observations, analysis and modelling (Plinius Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Didenkulova, Ira

    2010-05-01

    Giant surface waves approaching the coast frequently cause extensive coastal flooding, destruction of coastal constructions and loss of lives. Such waves can be generated by various phenomena: strong storms and cyclones, underwater earthquakes, high-speed ferries, aerial and submarine landslides. The most famous examples of such events are the catastrophic tsunami in the Indian Ocean, which occurred on 26 December 2004 and hurricane Katrina (28 August 2005) in the Atlantic Ocean. The huge storm in the Baltic Sea on 9 January 2005, which produced unexpectedly long waves in many areas of the Baltic Sea and the influence of unusually high surge created by long waves from high-speed ferries, should also be mentioned as examples of regional marine natural hazards connected with extensive runup of certain types of waves. The processes of wave shoaling and runup for all these different marine natural hazards (tsunami, coastal freak waves, ship waves) are studied based on rigorous solutions of nonlinear shallow-water theory. The key and novel results presented here are: i) parameterization of basic formulas for extreme runup characteristics for bell-shape waves, showing that they weakly depend on the initial wave shape, which is usually unknown in real sea conditions; ii) runup analysis of periodic asymmetric waves with a steep front, as such waves are penetrating inland over large distances and with larger velocities than symmetric waves; iii) statistical analysis of irregular wave runup demonstrating that wave nonlinearity nearshore does not influence on the probability distribution of the velocity of the moving shoreline and its moments, and influences on the vertical displacement of the moving shoreline (runup). Wave runup on convex beaches and in narrow bays, which allow abnormal wave amplification is also discussed. Described analytical results are used for explanation of observed extreme runup of tsunami, freak (sneaker) waves and ship waves on different coasts

  16. Marine Natural Product Honaucin A Attenuates Inflammation by Activating the Nrf2-ARE Pathway.

    PubMed

    Mascuch, Samantha J; Boudreau, Paul D; Carland, Tristan M; Pierce, N Tessa; Olson, Joshua; Hensler, Mary E; Choi, Hyukjae; Campanale, Joseph; Hamdoun, Amro; Nizet, Victor; Gerwick, William H; Gaasterland, Teresa; Gerwick, Lena

    2018-03-23

    The cyanobacterial marine natural product honaucin A inhibits mammalian innate inflammation in vitro and in vivo. To decipher its mechanism of action, RNA sequencing was used to evaluate differences in gene expression of cultured macrophages following honaucin A treatment. This analysis led to the hypothesis that honaucin A exerts its anti-inflammatory activity through activation of the cytoprotective nuclear erythroid 2-related factor 2 (Nrf2)-antioxidant response element/electrophile response element (ARE/EpRE) signaling pathway. Activation of this pathway by honaucin A in cultured human MCF7 cells was confirmed using an Nrf2 luciferase reporter assay. In vitro alkylation experiments with the natural product and N-acetyl-l-cysteine suggest that honaucin A activates this pathway through covalent interaction with the sulfhydryl residues of the cytosolic repressor protein Keap1. Honaucin A presents a potential therapeutic lead for diseases with an inflammatory component modulated by Nrf2-ARE.

  17. Major bioactive metabolites from marine fungi: A Review.

    PubMed

    Hasan, Saba; Ansari, Mohammad Israil; Ahmad, Anis; Mishra, Maitreyi

    2015-01-01

    Biologists and chemists of the world have been attracted towards marine natural products for the last five decades. Approximately 16,000 marine natural products have been isolated from marine organisms which have been reported in approximately 6,800 publications, proving marine microorganisms to be a invaluable source for the production of novel antibiotic, anti tumor, and anti inflammatory agents. The marine fungi particularly those associated with marine alga, sponge, invertebrates, and sediments appear to be a rich source for secondary metabolites, possessing Antibiotic, antiviral, antifungal and antiyeast activities. Besides, a few growth stimulant properties which may be useful in studies on wound healing, carcinogenic properties, and in the study of cancers are reported. Recent investigations on marine filamentous fungi looking for biologically active secondary metabolites indicate the tremendous potential of them as a source of new medicines. The present study reviews about some important bioactive metabolites reported from marine fungal strains which are anti bacterial, anti tumour and anti inflammatory in action. It highlights the chemistry and biological activity of the major bioactive alkaloids, polyketides, terpenoids, isoprenoid and non-isoprenoid compounds, quinones, isolated from marine fungi.

  18. Secondary metabolites from marine-derived microorganisms.

    PubMed

    Chen, Gang; Wang, Hai-Feng; Pei, Yue-Hu

    2014-01-01

    In the search for novel and bioactive molecules for drug discovery, marine-derived natural resources, especially marine microorganisms are becoming an important and interesting research area. This study covers the literature published after 2008 on secondary metabolites of marine-derived microorganisms. The emphasis was on new compounds with the relevant biological activities, strain information, and country of origin. New compounds without biological activity were not included.

  19. Towards adaptive management of the natural capital: Disentangling trade-offs among marine activities and seagrass meadows.

    PubMed

    Bas Ventín, Leticia; de Souza Troncoso, Jesús; Villasante, Sebastián

    2015-12-15

    This paper investigates the ecological, social and institutional dimensions of the synergies and trade-offs between seagrasses and human activities operating in the Natura 2000 protected site of San Simón Bay (Galicia, NW Spain). By means of a multidisciplinary approach that brings together the development of a biological inventory combined with participatory mapping processes we get key spatial and contextual understanding regarding how, where and why marine users interact with seagrasses and how seagrasses are considered in policy making. The results highlight the fisheries' reliance on seagrass meadows and the controversial links with shellfisheries. The study also reveals unresolved conflicts among those management plans that promote the protection of natural values and those responsible for the exploitation of marine resources. We conclude that the adoption of pre-planning bottom-up participatory processes is crucial for the design of realistic strategies where both seagrasses and human activities were considered as a couple system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria

    PubMed Central

    Agarwal, Vinayak; El Gamal, Abrahim A.; Yamanaka, Kazuya; Poth, Dennis; Kersten, Roland D.; Schorn, Michelle; Allen, Eric E.; Moore, Bradley S.

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) and polybrominated bipyrroles are natural products that bioaccumulate in the marine food chain. PBDEs have attracted widespread attention due to their persistence in the environment and potential toxicity to humans. However, the natural origins of PBDE biosynthesis are not known. Here we report marine bacteria as producers of PBDEs and establish a genetic and molecular foundation for their production that unifies paradigms for the elaboration of bromophenols and bromopyrroles abundant in marine biota. We provide biochemical evidence of marine brominase enzymes revealing decarboxylative-halogenation enzymology previously unknown among halogenating enzymes. Biosynthetic motifs discovered in our study were used to mine sequence databases to discover unrealized marine bacterial producers of organobromine compounds. PMID:24974229

  1. High content live cell imaging for the discovery of new antimalarial marine natural products

    PubMed Central

    2012-01-01

    Background The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. Methods A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Results Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Conclusion Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. PMID:22214291

  2. High content live cell imaging for the discovery of new antimalarial marine natural products.

    PubMed

    Cervantes, Serena; Stout, Paige E; Prudhomme, Jacques; Engel, Sebastian; Bruton, Matthew; Cervantes, Michael; Carter, David; Tae-Chang, Young; Hay, Mark E; Aalbersberg, William; Kubanek, Julia; Le Roch, Karine G

    2012-01-03

    The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. © 2011 Cervantes et al; licensee BioMed Central Ltd.

  3. Marine Natural Product Bis-indole Alkaloid Caulerpin: Chemistry and Biology.

    PubMed

    Lunagariya, Jignesh; Bhadja, Poonam; Zhong, Shenghui; Vekariya, Rohit; Xu, Shihai

    2017-09-27

    Marine bis-indole alkaloids comprise a large and increasingly growing class of secondary metabolites, and continue to deliver a great variety of structural templates. The alkaloids derived from marine resources play a crucial role in medicinal chemistry and as chemical agents. In particular, bis-indole alkaloid caulerpin isolated from marine green algae Caulerpa and a red algae Chondria armata at various places around the world, and tested against several therapeutic areas such as anti-diabetic, antinociceptive, anti-inflammatory, anti-tumor, anti-larvicidal, anti-herpes, anti-tubercular, anti-microbial and immunostimulating activity as well as means of other chemical agents. Herein, we summarized discovery of caulerpin, and its potential medicinal and chemical applications in chronological order with various aspects. Additionally, synthesis of caulerpin, its functional analogues, and structural isomer have also been reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Parasites and marine invasions

    USGS Publications Warehouse

    Torchin, M.E.; Lafferty, K.D.; Kuris, A.M.

    2002-01-01

    Introduced marine species are a major environmental and economic problem. The rate of these biological invasions has substantially increased in recent years due to the globalization of the world's economies. The damage caused by invasive species is often a result of the higher densities and larger sizes they attain compared to where they are native. A prominent hypothesis explaining the success of introduced species is that they are relatively free of the effects of natural enemies. Most notably, they may encounter fewer parasites in their introduced range compared to their native range. Parasites are ubiquitous and pervasive in marine systems, yet their role in marine invasions is relatively unexplored. Although data on parasites of marine organisms exist, the extent to which parasites can mediate marine invasions, or the extent to which invasive parasites and pathogens are responsible for infecting or potentially decimating native marine species have not been examined. In this review, we present a theoretical framework to model invasion success and examine the evidence for a relationship between parasite presence and the success of introduced marine species. For this, we compare the prevalence and species richness of parasites in several introduced populations of marine species with populations where they are native. We also discuss the potential impacts of introduced marine parasites on native ecosystems.

  5. Metagenomic approaches to identify and isolate bioactive natural products from microbiota of marine sponges.

    PubMed

    Gurgui, Cristian; Piel, Jörn

    2010-01-01

    Many marine sponges harbor massive consortia of symbiotic bacteria belonging to diverse phyla. Sponges are also an unusually rich source of biologically active natural products, and evidence is accumulating that these compounds might often be synthesized by the symbionts. Since the study of sponge-associated bacteria is generally hampered by very low cultivation rates, cultivation-independent, metagenomic methods have recently been applied to sponges. These methods allow for the isolation of biosynthetic gene clusters that can ultimately be exploited to develop sustainable natural product sources by heterologous expression. However, general challenges encountered in sponge metagenomic research are the poor quality of the isolated DNA with respect to size and yield, the difficulty to identify genes of interest among numerous homologs, insufficient clone numbers in metagenomic libraries, and time-consuming screening procedures to identify and isolate rare positive clones. Here, we give an overview of methods that address these problems and can be used to streamline isolation of biosynthetic and other genes of interest.

  6. Natural Marine and Synthetic Xenobiotics Get on Nematode's Nerves: Neuro-Stimulating and Neurotoxic Findings in Caenorhabditis elegans.

    PubMed

    Lieke, Thora; Steinberg, Christian E W; Ju, Jingjuan; Saul, Nadine

    2015-05-06

    Marine algae release a plethora of organic halogenated compounds, many of them with unknown ecological impact if environmentally realistic concentrations are applied. One major compound is dibromoacetic acid (DBAA) which was tested for neurotoxicity in the invertebrate model organism Caenorhabditis elegans (C. elegans). This natural compound was compared with the widespread synthetic xenobiotic tetrabromobisphenol-A (TBBP-A) found in marine sediments and mussels. We found a neuro-stimulating effect for DBAA; this is contradictory to existing toxicological reports of mammals that applied comparatively high dosages. For TBBP-A, we found a hormetic concentration-effect relationship. As chemicals rarely occur isolated in the environment, a combination of both organobromines was also examined. Surprisingly, the presence of DBAA increased the toxicity of TBBP-A. Our results demonstrated that organohalogens have the potential to affect single organisms especially by altering the neurological processes, even with promoting effects on exposed organisms.

  7. A Tropical Marine Microbial Natural Products Geobibliography as an Example of Desktop Exploration of Current Research Using Web Visualisation Tools

    PubMed Central

    Mukherjee, Joydeep; Llewellyn, Lyndon E; Evans-Illidge, Elizabeth A

    2008-01-01

    Microbial marine biodiscovery is a recent scientific endeavour developing at a time when information and other technologies are also undergoing great technical strides. Global visualisation of datasets is now becoming available to the world through powerful and readily available software such as Worldwind™, ArcGIS Explorer™ and Google Earth™. Overlaying custom information upon these tools is within the hands of every scientist and more and more scientific organisations are making data available that can also be integrated into these global visualisation tools. The integrated global view that these tools enable provides a powerful desktop exploration tool. Here we demonstrate the value of this approach to marine microbial biodiscovery by developing a geobibliography that incorporates citations on tropical and near-tropical marine microbial natural products research with Google Earth™ and additional ancillary global data sets. The tools and software used are all readily available and the reader is able to use and install the material described in this article. PMID:19172194

  8. Alpha-emitting nuclides in the marine environment

    NASA Astrophysics Data System (ADS)

    Pentreath, R. J.

    1984-06-01

    The occurrence of alpha-emitting nuclides and their daughter products in the marine environment continues to be a subject of study for many reasons. Those nuclides which occur naturally, in the uranium, thorium and actinium series, are of interest because of their value in determining the rates of geological and geochemical processes in the oceans. Studies of them address such problems as the determination of rates of transfer of particulate matter, deposition rates, bioturbation rates, and so on. Two of the natural alpha-series nuclides in which a different interest has been expressed are 210Po and 226Ra, because their concentrations in marine organisms are such that they contribute to a significant fraction of the background dose rates sustained both by the organisms themselves and by consumers of marine fish and shellfish. To this pool of naturally-occurring nuclides, human activities have added the transuranium nuclides, both from the atmospheric testing of nuclear devices and from the authorized discharges of radioactive wastes into coastal waters and the deep sea. Studies have therefore been made to understand the chemistry of these radionuclides in sea water, their association with sedimentary materials, and their accumulation by marine organisms, the last of these being of particular interest because the transuranics are essentially "novel" elements to the marine fauna and flora. The need to predict the long-term behaviour of these nuclides has, in turn, stimulated research on those naturally-occurring nuclides which may behave in a similar manner.

  9. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi

    PubMed Central

    Jin, Liming; Quan, Chunshan; Hou, Xiyan; Fan, Shengdi

    2016-01-01

    In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed. PMID:27110799

  10. Review of research on impacts to biota of discharges of naturally occurring radionuclides in produced water to the marine environment.

    PubMed

    Hosseini, Ali; Brown, Justin E; Gwynn, Justin P; Dowdall, Mark

    2012-11-01

    Produced water has been described as the largest volume waste stream in the exploration and production process of oil and gas. It is accompanied by discharges of naturally occurring radionuclides raising concerns over the potential radiological impacts of produced water on marine biota. In the Northern European marine environment, radioactivity in produced water has received substantial attention owing to the OSPAR Radioactive Substances Strategy which aims at achieving 'concentrations in the environment near background values for naturally occurring radioactive substances'. This review provides an overview of published research on the impacts to biota from naturally occurring radionuclides discharged in produced water by the offshore oil and gas industry. In addition to summarising studies and data that deal directly with the issue of dose and effect, the review also considers studies related to the impact of added chemicals on the fate of discharged radionuclides. The review clearly illustrates that only a limited number of studies have investigated possible impacts on biota from naturally occurring radionuclides present in produced water. Hence, although these studies indicate that the risk to the environment from naturally occurring radionuclides discharged in produced water is negligible, the substantial uncertainties involved in the assessments of impact make it difficult to be conclusive. With regard to the complexity involved in the problem under consideration there is a pressing need to supplement existing data and acquire new knowledge. Finally, the present work identifies some knowledge gaps to indicate future research requirements. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Total Synthesis of Hyperforin.

    PubMed

    Ting, Chi P; Maimone, Thomas J

    2015-08-26

    A 10-step total synthesis of the polycyclic polyprenylated acylphloroglucinol (PPAP) natural product hyperforin from 2-methylcyclopent-2-en-1-one is reported. This route was enabled by a diketene annulation reaction and an oxidative ring expansion strategy designed to complement the presumed biosynthesis of this complex meroterpene. The described work enables the preparation of a highly substituted bicyclo[3.3.1]nonane-1,3,5-trione motif in only six steps and thus serves as a platform for the construction of easily synthesized, highly diverse PPAPs modifiable at every position.

  12. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea

    PubMed Central

    Horak, Rachel E A; Qin, Wei; Schauer, Andy J; Armbrust, E Virginia; Ingalls, Anitra E; Moffett, James W; Stahl, David A; Devol, Allan H

    2013-01-01

    Archaeal ammonia oxidizers (AOAs) are increasingly recognized as prominent members of natural microbial assemblages. Evidence that links the presence of AOA with in situ ammonia oxidation activity is limited, and the abiotic factors that regulate the distribution of AOA natural assemblages are not well defined. We used quantitative PCR to enumerate amoA (encodes α-subunit of ammonia monooxygenase) abundances; AOA amoA gene copies greatly outnumbered ammonia-oxidizing bacteria and amoA transcripts were derived primarily from AOA throughout the water column of Hood Canal, Puget Sound, WA, USA. We generated a Michaelis–Menten kinetics curve for ammonia oxidation by the natural community and found that the measured Km of 98±14 nmol l−1 was close to that for cultivated AOA representative Nitrosopumilus maritimus SCM1. Temperature did not have a significant effect on ammonia oxidation rates for incubation temperatures ranging from 8 to 20 °C, which is within the temperature range for depths of measurable ammonia oxidation at the site. This study provides substantial evidence, through both amoA gene copies and transcript abundances and the kinetics response, that AOA are the dominant active ammonia oxidizers in this marine environment. We propose that future ammonia oxidation experiments use a Km for the natural community to better constrain ammonia oxidation rates determined with the commonly used 15NH4+ dilution technique. PMID:23657360

  13. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea.

    PubMed

    Horak, Rachel E A; Qin, Wei; Schauer, Andy J; Armbrust, E Virginia; Ingalls, Anitra E; Moffett, James W; Stahl, David A; Devol, Allan H

    2013-10-01

    Archaeal ammonia oxidizers (AOAs) are increasingly recognized as prominent members of natural microbial assemblages. Evidence that links the presence of AOA with in situ ammonia oxidation activity is limited, and the abiotic factors that regulate the distribution of AOA natural assemblages are not well defined. We used quantitative PCR to enumerate amoA (encodes α-subunit of ammonia monooxygenase) abundances; AOA amoA gene copies greatly outnumbered ammonia-oxidizing bacteria and amoA transcripts were derived primarily from AOA throughout the water column of Hood Canal, Puget Sound, WA, USA. We generated a Michaelis-Menten kinetics curve for ammonia oxidation by the natural community and found that the measured Km of 98±14 nmol l(-1) was close to that for cultivated AOA representative Nitrosopumilus maritimus SCM1. Temperature did not have a significant effect on ammonia oxidation rates for incubation temperatures ranging from 8 to 20 °C, which is within the temperature range for depths of measurable ammonia oxidation at the site. This study provides substantial evidence, through both amoA gene copies and transcript abundances and the kinetics response, that AOA are the dominant active ammonia oxidizers in this marine environment. We propose that future ammonia oxidation experiments use a Km for the natural community to better constrain ammonia oxidation rates determined with the commonly used (15)NH4(+) dilution technique.

  14. In vitro, in vivo and in silico analysis of the anticancer and estrogen-like activity of guava leaf extracts.

    PubMed

    Rizzo, L Y; Longato, G B; Ruiz, A Lt G; Tinti, S V; Possenti, A; Vendramini-Costa, D B; Sartoratto, A; Figueira, G M; Silva, F L N; Eberlin, M N; Souza, T A C B; Murakami, M T; Rizzo, E; Foglio, M A; Kiessling, F; Lammers, T; Carvalho, J E

    2014-01-01

    Anticancer drug research based on natural compounds enabled the discovery of many drugs currently used in cancer therapy. Here, we report the in vitro, in vivo and in silico anticancer and estrogen-like activity of Psidium guajava L. (guava) extracts and enriched mixture containing the meroterpenes guajadial, psidial A and psiguadial A and B. All samples were evaluated in vitro for anticancer activity against nine human cancer lines: K562 (leukemia), MCF7 (breast), NCI/ADR-RES (resistant ovarian cancer), NCI-H460 (lung), UACC-62 (melanoma), PC-3 (prostate), HT-29 (colon), OVCAR-3 (ovarian) and 786-0 (kidney). Psidium guajava's active compounds displayed similar physicochemical properties to estradiol and tamoxifen, as in silico molecular docking studies demonstrated that they fit into the estrogen receptors (ERs). The meroterpene-enriched fraction was also evaluated in vivo in a Solid Ehrlich murine breast adenocarcinoma model, and showed to be highly effective in inhibiting tumor growth, also demonstrating uterus increase in comparison to negative controls. The ability of guajadial, psidial A and psiguadials A and B to reduce tumor growth and stimulate uterus proliferation, as well as their in silico docking similarity to tamoxifen, suggest that these compounds may act as Selective Estrogen Receptors Modulators (SERMs), therefore holding significant potential for anticancer therapy.

  15. Artificial reefs and marine protected areas: a study in willingness to pay to access Folkestone Marine Reserve, Barbados, West Indies

    PubMed Central

    Wheeler, Philip M.; Johnson, Magnus L.

    2016-01-01

    Artificial reefs in marine protected areas provide additional habitat for biodiversity viewing, and therefore may offer an innovative management solution for managing for coral reef recovery and resilience. Marine park user fees can generate revenue to help manage and maintain natural and artificial reefs. Using a stated preference survey, this study investigates the present consumer surplus associated with visitor use of a marine protected area in Barbados. Two hypothetical markets were presented to differentiate between respondents use values of either: (a) natural reefs within the marine reserve or (b) artificial reef habitat for recreational enhancement. Information was also collected on visitors’ perceptions of artificial reefs, reef material preferences and reef conservation awareness. From a sample of 250 visitors on snorkel trips, we estimate a mean willingness to pay of US$18.33 (median—US$15) for natural reef use and a mean value of US$17.58 (median—US$12.50) for artificial reef use. The number of marine species viewed, age of respondent, familiarity with the Folkestone Marine Reserve and level of environmental concern were statistically significant in influencing willingness to pay. Regression analyses indicate visitors are willing to pay a significant amount to view marine life, especially turtles. Our results suggest that user fees could provide a considerable source of income to aid reef conservation in Barbados. In addition, the substantial use value reported for artificial reefs indicates a reef substitution policy may be supported by visitors to the Folkestone Marine Reserve. We discuss our findings and highlight directions for future research that include the need to collect data to establish visitors’ non-use values to fund reef management. PMID:27547521

  16. From Darwin to the Census of Marine Life: Marine Biology as Big Science

    PubMed Central

    Vermeulen, Niki

    2013-01-01

    With the development of the Human Genome Project, a heated debate emerged on biology becoming ‘big science’. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international ‘Census of Marine Life’ (CoML) making an inventory of life in the world's oceans. Discussing various aspects of collaboration – including size, internationalisation, research practice, technological developments, application, and public communication – I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different ‘collective ways of knowing’. PMID:23342119

  17. From darwin to the census of marine life: marine biology as big science.

    PubMed

    Vermeulen, Niki

    2013-01-01

    With the development of the Human Genome Project, a heated debate emerged on biology becoming 'big science'. However, biology already has a long tradition of collaboration, as natural historians were part of the first collective scientific efforts: exploring the variety of life on earth. Such mappings of life still continue today, and if field biology is gradually becoming an important subject of studies into big science, research into life in the world's oceans is not taken into account yet. This paper therefore explores marine biology as big science, presenting the historical development of marine research towards the international 'Census of Marine Life' (CoML) making an inventory of life in the world's oceans. Discussing various aspects of collaboration--including size, internationalisation, research practice, technological developments, application, and public communication--I will ask if CoML still resembles traditional collaborations to collect life. While showing both continuity and change, I will argue that marine biology is a form of natural history: a specific way of working together in biology that has transformed substantially in interaction with recent developments in the life sciences and society. As a result, the paper does not only give an overview of transformations towards large scale research in marine biology, but also shines a new light on big biology, suggesting new ways to deepen the understanding of collaboration in the life sciences by distinguishing between different 'collective ways of knowing'.

  18. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters.

    PubMed

    Yoo, Yeong Du; Seong, Kyeong Ah; Jeong, Hae Jin; Yih, Wonho; Rho, Jung-Rae; Nam, Seung Won; Kim, Hyung Seop

    2017-09-01

    Cryptophytes are ubiquitous and one of the major phototrophic components in marine plankton communities. They often cause red tides in the waters of many countries. Understanding the bloom dynamics of cryptophytes is, therefore, of great importance. A critical step in this understanding is unveiling their trophic modes. Prior to this study, several freshwater cryptophyte species and marine Cryptomonas sp. and Geminifera cryophila were revealed to be mixotrophic. The trophic mode of the common marine cryptophyte species, Teleaulax amphioxeia has not been investigated yet. Thus, to explore the mixotrophic ability of T. amphioxeia by assessing the types of prey species that this species is able to feed on, the protoplasms of T. amphioxeia cells were carefully examined under an epifluorescence microscope and a transmission electron microscope after adding each of the diverse prey species. Furthermore, T. amphioxeia ingestion rates heterotrophic bacteria and the cyanobacterium Synechococcus sp. were measured as a function of prey concentration. Moreover, the feeding of natural populations of cryptophytes on natural populations of heterotrophic bacteria was assessed in Masan Bay in April 2006. This study reported for the first time, to our knowledge, that T. amphioxeia is a mixotrophic species. Among the prey organisms offered, T. amphioxeia fed only on heterotrophic bacteria and Synechococcus sp. The ingestion rates of T. amphioxeia on heterotrophic bacteria or Synechococcus sp. rapidly increased with increasing prey concentrations up to 8.6×10 6 cells ml -1 , but slowly at higher prey concentrations. The maximum ingestion rates of T. amphioxeia on heterotrophic bacteria and Synechococcus sp. reached 0.7 and 0.3 cells predator -1  h -1 , respectively. During the field experiments, the ingestion rates and grazing coefficients of cryptophytes on natural populations of heterotrophic bacteria were 0.3-8.3 cells predator -1 h -1 and 0.012-0.033d -1 , respectively. Marine

  19. Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications.

    PubMed

    Manivasagan, Panchanathan; Oh, Junghwan

    2016-01-01

    Research on marine polysaccharide-based nanomaterials is emerging in nanobiotechnological fields such as drug delivery, gene delivery, tissue engineering, cancer therapy, wound dressing, biosensors, and water treatment. Important properties of the marine polysaccharides include biocompatibility, biodegradability, nontoxicity, low cost, and abundance. Most of the marine polysaccharides are derived from natural sources such as fucoidan, alginates, carrageenan, agarose, porphyran, ulvan, mauran, chitin, chitosan, and chitooligosaccharide. Marine polysaccharides are very important biological macromolecules that widely exist in marine organisms. Marine polysaccharides exhibit a vast variety of structures and are still under-exploited and thus should be considered as a novel source of natural products for drug discovery. An enormous variety of polysaccharides can be extracted from marine organisms such as algae, crustaceans, and microorganisms. Marine polysaccharides have been shown to have a variety of biological and biomedical properties. Recently, research and development of marine polysaccharide-based nanomaterials have received considerable attention as one of the major resources for nanotechnological applications. This review highlights the recent research on marine polysaccharide-based nanomaterials for biotechnological and biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Natural Marine and Synthetic Xenobiotics Get on Nematode’s Nerves: Neuro-Stimulating and Neurotoxic Findings in Caenorhabditis elegans

    PubMed Central

    Lieke, Thora; Steinberg, Christian E. W.; Ju, Jingjuan; Saul, Nadine

    2015-01-01

    Marine algae release a plethora of organic halogenated compounds, many of them with unknown ecological impact if environmentally realistic concentrations are applied. One major compound is dibromoacetic acid (DBAA) which was tested for neurotoxicity in the invertebrate model organism Caenorhabditis elegans (C. elegans). This natural compound was compared with the widespread synthetic xenobiotic tetrabromobisphenol-A (TBBP-A) found in marine sediments and mussels. We found a neuro-stimulating effect for DBAA; this is contradictory to existing toxicological reports of mammals that applied comparatively high dosages. For TBBP-A, we found a hormetic concentration-effect relationship. As chemicals rarely occur isolated in the environment, a combination of both organobromines was also examined. Surprisingly, the presence of DBAA increased the toxicity of TBBP-A. Our results demonstrated that organohalogens have the potential to affect single organisms especially by altering the neurological processes, even with promoting effects on exposed organisms. PMID:25955755

  1. Career Education: The Marine Science Occupations Cluster.

    ERIC Educational Resources Information Center

    Farning, Maxwell

    This paper discusses career opportunities in eight broad groups of marine science occupations: (1) harbor construction and maintenance, (2) ship construction, (3) merchant marine activities, (4) towboating, (5) longshoring, (6) fishing and fish farming, (7) petroleum and natural gas exploration and extraction, and (8) research activities. The…

  2. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action †

    PubMed Central

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-01-01

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories. PMID:23880931

  3. Recent Advances in Marine Enzymes for Biotechnological Processes.

    PubMed

    Lima, R N; Porto, A L M

    In the last decade, new trends in the food and pharmaceutical industries have increased concern for the quality and safety of products. The use of biocatalytic processes using marine enzymes has become an important and useful natural product for biotechnological applications. Bioprocesses using biocatalysts like marine enzymes (fungi, bacteria, plants, animals, algae, etc.) offer hyperthermostability, salt tolerance, barophilicity, cold adaptability, chemoselectivity, regioselectivity, and stereoselectivity. Currently, enzymatic methods are used to produce a large variety of products that humans consume, and the specific nature of the enzymes including processing under mild pH and temperature conditions result in fewer unwanted side-effects and by-products. This offers high selectivity in industrial processes. The marine habitat has been become increasingly studied because it represents a huge source potential biocatalysts. Enzymes include oxidoreductases, hydrolases, transferases, isomerases, ligases, and lyases that can be used in food and pharmaceutical applications. Finally, recent advances in biotechnological processes using enzymes of marine organisms (bacterial, fungi, algal, and sponges) are described and also our work on marine organisms from South America, especially marine-derived fungi and bacteria involved in biotransformations and biodegradation of organic compounds. © 2016 Elsevier Inc. All rights reserved.

  4. Marine Pharmacology in 2012-2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action.

    PubMed

    Mayer, Alejandro M S; Rodríguez, Abimael D; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2017-08-29

    The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998-2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012-2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.

  5. Marine proteomics: a critical assessment of an emerging technology.

    PubMed

    Slattery, Marc; Ankisetty, Sridevi; Corrales, Jone; Marsh-Hunkin, K Erica; Gochfeld, Deborah J; Willett, Kristine L; Rimoldi, John M

    2012-10-26

    The application of proteomics to marine sciences has increased in recent years because the proteome represents the interface between genotypic and phenotypic variability and, thus, corresponds to the broadest possible biomarker for eco-physiological responses and adaptations. Likewise, proteomics can provide important functional information regarding biosynthetic pathways, as well as insights into mechanism of action, of novel marine natural products. The goal of this review is to (1) explore the application of proteomics methodologies to marine systems, (2) assess the technical approaches that have been used, and (3) evaluate the pros and cons of this proteomic research, with the intent of providing a critical analysis of its future roles in marine sciences. To date, proteomics techniques have been utilized to investigate marine microbe, plant, invertebrate, and vertebrate physiology, developmental biology, seafood safety, susceptibility to disease, and responses to environmental change. However, marine proteomics studies often suffer from poor experimental design, sample processing/optimization difficulties, and data analysis/interpretation issues. Moreover, a major limitation is the lack of available annotated genomes and proteomes for most marine organisms, including several "model species". Even with these challenges in mind, there is no doubt that marine proteomics is a rapidly expanding and powerful integrative molecular research tool from which our knowledge of the marine environment, and the natural products from this resource, will be significantly expanded.

  6. International Union for Conservation of Nature and Natural Resources (IUCN) Bulletin, New Series Vol. 7, No. 12.

    ERIC Educational Resources Information Center

    International Union for Conservation of Nature and Natural Resources, Morges, (Switzerland).

    Described is the International Union for Conservation of Nature and Natural Resources (IUCN) marine program which centers around the world wildlife fund marine program. The program has been divided into three phases - launch, main, and follow-up; the launch phase is described. Action plans are described for each sub-program. Each action plan…

  7. 78 FR 69049 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ..., Maintenance, and Repair of the Northeast Gateway Liquefied Natural Gas Port and the Algonquin Pipeline Lateral... pipeline which interconnects the Port to an offshore natural gas pipeline known as the HubLine. The... Gas Transmission, L.L.C. (Algonquin), for authorization to take marine mammals, by harassment...

  8. Identification of new anti-inflammatory agents based on nitrosporeusine natural products of marine origin.

    PubMed

    Philkhana, Satish Chandra; Verma, Abhishek Kumar; Jachak, Gorakhnath R; Hazra, Bibhabasu; Basu, Anirban; Reddy, D Srinivasa

    2017-07-28

    Nitrosporeusines A and B are two recently isolated marine natural products with novel skeleton and exceptional biological profile. Interesting antiviral activity of nitrosporeusines and promising potential in curing various diseases, evident from positive data from various animal models, led us to investigate their anti-inflammatory potential. Accordingly, we planned and synthesized nitrosporeusines A and B in racemic as well as enantiopure forms. The natural product synthesis was followed by preparation of several analogues, and all the synthesized compounds were evaluated for in vitro and in vivo anti-inflammatory potential. Among them, compounds 25, 29 and 40 significantly reduced levels of nitric oxide (NO), reactive oxygen species (ROS) and pro-inflammatory cytokines. In addition, these compounds suppressed several pro-inflammatory mediators including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-κB (NF-κB), and thereby can be emerged as potent anti-inflammatory compounds. Furthermore, all possible isomers of lead compound 25 were synthesized, characterized and profiled in same set of assays and found that one of the enantiomer (-)-25a was superior among them. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Marine bioacoustics and technology: The new world of marine acoustic ecology

    NASA Astrophysics Data System (ADS)

    Hastings, Mardi C.; Au, Whitlow W. L.

    2012-11-01

    Marine animals use sound for communication, navigation, predator avoidance, and prey detection. Thus the rise in acoustic energy associated with increasing human activity in the ocean has potential to impact the lives of marine animals. Thirty years ago marine bioacoustics primarily focused on evaluating effects of human-generated sound on hearing and behavior by testing captive animals and visually observing wild animals. Since that time rapidly changing electronic and computing technologies have yielded three tools that revolutionized how bioacousticians study marine animals. These tools are (1) portable systems for measuring electrophysiological auditory evoked potentials, (2) miniaturized tags equipped with positioning sensors and acoustic recording devices for continuous short-term acoustical observation rather than intermittent visual observation, and (3) passive acoustic monitoring (PAM) systems for remote long-term acoustic observations at specific locations. The beauty of these breakthroughs is their direct applicability to wild animals in natural habitats rather than only to animals held in captivity. Hearing capabilities of many wild species including polar bears, beaked whales, and reef fishes have now been assessed by measuring their auditory evoked potentials. Miniaturized acoustic tags temporarily attached to an animal to record its movements and acoustic environment have revealed the acoustic foraging behavior of sperm and beaked whales. Now tags are being adapted to fishes in effort to understand their behavior in the presence of noise. Moving and static PAM systems automatically detect and characterize biological and physical features of an ocean area without adding any acoustic energy to the environment. PAM is becoming a powerful technique for understanding and managing marine habitats. This paper will review the influence of these transformative tools on the knowledge base of marine bioacoustics and elucidation of relationships between marine

  10. Marine Peptides: Bioactivities and Applications

    PubMed Central

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho

    2015-01-01

    Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products. PMID:26132844

  11. Planktonic foraminiferal abnormalities in coastal and open marine eastern Mediterranean environments: A natural stress monitoring approach in recent and early Holocene marine systems

    NASA Astrophysics Data System (ADS)

    Antonarakou, A.; Kontakiotis, G.; Zarkogiannis, S.; Mortyn, P. G.; Drinia, H.; Koskeridou, E.; Anastasakis, G.

    2018-05-01

    Marine environmental status can be assessed through the study of bio-indicator species. Here, we monitor natural environmental stress by the occurrence of morphologically abnormal planktonic foraminiferal specimens from a suite of surface sediments in the eastern Mediterranean Sea. We also compare Scanning Electron Microscopy (SEM) abnormality observations from sapropel S1-derived sediments in the Aegean, Libyan and Levantine basins, since they provide a direct record of a natural stress experiment that took place over past time scales. At initial sapropel deposition levels, we observe increased growth asymmetry in Globigerinoides ruber twinned and twisted individuals, possibly associated with eutrophication and anoxia. In modern material, a range of malformations and aberrant morphologies from slight deformity with smaller or overdeveloped chambers to more severe deformity with abnormally protruding or misplaced chambers, distorted spirals, and double tests is also observed, as a result of the hypersaline, oligotrophic and oxygen-depleted nature of the Mediterranean Sea water column. Overall, we highlight the current use of the relative abundance of abnormal tests as a bio-indicator for monitoring natural stress, especially the occurrence of twin specimens as indicative of high-salinity stress conditions, and further illustrate the necessity to map both their spatial and temporal distribution for accurate paleoenvironmental reconstructions. Such an approach presents the advantage to rapidly provide information over wide spatial and temporal scales, extending our ability to monitor a wide variety of environments (from coastal to the open-sea). However, further investigations should extend this approach to test the robustness of our findings in a number of similar oceanic settings.

  12. Marine Pharmacology in 2005-6: Antitumour and Cytotoxic Compounds

    PubMed Central

    Mayer, Alejandro M.S.; Gustafson, Kirk R.

    2009-01-01

    During 2005 and 2006, marine pharmacology research directed towards the discovery and development of novel antitumour agents was reported in 171 peer-reviewed articles. The purpose of this article is to present a structured review of the antitumour and cytotoxic properties of 136 marine natural products, many of which are novel compounds that belong to diverse structural classes, including polyketides, terpenes, steroids, and peptides. The organisms yielding these bioactive marine compounds included invertebrate animals, algae, fungi and bacteria. Antitumour pharmacological studies were conducted with 42 structurally defined marine natural products in a number of experimental and clinical models which further defined their mechanisms of action. Particularly potent in vitro cytotoxicity data generated with murine and human tumour cell lines was reported for 94 novel marine chemicals with as yet undetermined mechanisms of action. Noteworthy is the fact that marine anticancer research was sustained by a global collaborative effort, involving researchers from Australia, Belgium, Benin, Brazil, Canada, China, Egypt, France, Germany, India, Indonesia, Italy, Japan, Mexico, the Netherlands, New Zealand, Panama, the Philippines, Slovenia, South Korea, Spain, Sweden, Taiwan, Thailand, United Kingdom, and the United States. Finally, this 2005-6 overview of the marine pharmacology literature highlights the fact that the discovery of novel marine antitumour agents continued at the same active pace as during 1998-2004. PMID:18701274

  13. New natural products isolated from Metarhizium robertsii ARSEF 23 by chemical screening and identification of the gene cluster through engineered biosynthesis in Aspergillus nidulans A1145.

    PubMed

    Kato, Hiroki; Tsunematsu, Yuta; Yamamoto, Tsuyoshi; Namiki, Takuya; Kishimoto, Shinji; Noguchi, Hiroshi; Watanabe, Kenji

    2016-07-01

    To rapidly identify novel natural products and their associated biosynthetic genes from underutilized and genetically difficult-to-manipulate microbes, we developed a method that uses (1) chemical screening to isolate novel microbial secondary metabolites, (2) bioinformatic analyses to identify a potential biosynthetic gene cluster and (3) heterologous expression of the genes in a convenient host to confirm the identity of the gene cluster and the proposed biosynthetic mechanism. The chemical screen was achieved by searching known natural product databases with data from liquid chromatographic and high-resolution mass spectrometric analyses collected on the extract from a target microbe culture. Using this method, we were able to isolate two new meroterpenes, subglutinols C (1) and D (2), from an entomopathogenic filamentous fungus Metarhizium robertsii ARSEF 23. Bioinformatics analysis of the genome allowed us to identify a gene cluster likely to be responsible for the formation of subglutinols. Heterologous expression of three genes from the gene cluster encoding a polyketide synthase, a prenyltransferase and a geranylgeranyl pyrophosphate synthase in Aspergillus nidulans A1145 afforded an α-pyrone-fused uncyclized diterpene, the expected intermediate of the subglutinol biosynthesis, thereby confirming the gene cluster to be responsible for the subglutinol biosynthesis. These results indicate the usefulness of our methodology in isolating new natural products and identifying their associated biosynthetic gene cluster from microbes that are not amenable to genetic manipulation. Our method should facilitate the natural product discovery efforts by expediting the identification of new secondary metabolites and their associated biosynthetic genes from a wider source of microbes.

  14. Marine Pharmacology in 2012–2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action †

    PubMed Central

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2017-01-01

    The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories. PMID:28850074

  15. USGS St. Petersburg Coastal and Marine Science Center

    USGS Publications Warehouse

    2011-01-01

    Extreme storms, sea-level rise, and the health of marine communities are some of the major societal and environmental issues impacting our Nation's marine and coastal realm. The U.S. Geological Survey (USGS) in St. Petersburg, Fla., investigates processes related to these ecosystems and the societal implications of natural hazards and resource sustainability. As one of three centers nationwide conducting research within the USGS Coastal and Marine Geology Program, the center is integral towards developing an understanding of physical processes that will contribute to rational decisions regarding the use and stewardship of national coastal and marine environments.

  16. Praziquantel degradation in marine aquarium water.

    PubMed

    Thomas, Amber; Dawson, Matthew R; Ellis, Helen; Stamper, M Andrew

    2016-01-01

    Praziquantel (PZQ) is a drug commonly utilized to treat both human schistosomiasis and some parasitic infections and infestations in animals. In the aquarium industry, PZQ can be administered in a "bath" to treat the presence of ectoparasites on both the gills and skin of fish and elasmobranchs. In order to fully treat an infestation, the bath treatment has to maintain therapeutic levels of PZQ over a period of days or weeks. It has long been assumed that, once administered, PZQ is stable in a marine environment throughout the treatment interval and must be mechanically removed, but no controlled experiments have been conducted to validate that claim. This study aimed to determine if PZQ would break down naturally within a marine aquarium below its 2 ppm therapeutic level during a typical 30-day treatment: and if so, does the presence of fish or the elimination of all living biological material impact the degradation of PZQ? Three 650 L marine aquarium systems, each containing 12 fish (French grunts: Haemulon flavolineatum), and three 650 L marine aquariums each containing no fish were treated with PZQ (2 ppm) and concentrations were measured daily for 30 days. After one round of treatment, the PZQ was no longer detectable in any system after 8 (±1) days. The subsequent two PZQ treatments yielded even faster PZQ breakdown (non-detectable after 2 days and 2 ± 1 day, respectively) with slight variations between systems. Linear mixed effects models of the data indicate that day and trial most impact PZQ degradation, while the presence of fish was not a factor in the best-fit models. In a completely sterilized marine system (0.5 L) PZQ concentration remained unchanged over 15 days, suggesting that PZQ may be stable in a marine system during this time period. The degradation observed in non-sterile marine systems in this study may be microbial in nature. This work should be taken into consideration when providing PZQ bath treatments to marine animals to ensure maximum

  17. Praziquantel degradation in marine aquarium water

    PubMed Central

    Dawson, Matthew R.; Ellis, Helen; Stamper, M. Andrew

    2016-01-01

    Praziquantel (PZQ) is a drug commonly utilized to treat both human schistosomiasis and some parasitic infections and infestations in animals. In the aquarium industry, PZQ can be administered in a “bath” to treat the presence of ectoparasites on both the gills and skin of fish and elasmobranchs. In order to fully treat an infestation, the bath treatment has to maintain therapeutic levels of PZQ over a period of days or weeks. It has long been assumed that, once administered, PZQ is stable in a marine environment throughout the treatment interval and must be mechanically removed, but no controlled experiments have been conducted to validate that claim. This study aimed to determine if PZQ would break down naturally within a marine aquarium below its 2 ppm therapeutic level during a typical 30-day treatment: and if so, does the presence of fish or the elimination of all living biological material impact the degradation of PZQ? Three 650 L marine aquarium systems, each containing 12 fish (French grunts: Haemulon flavolineatum), and three 650 L marine aquariums each containing no fish were treated with PZQ (2 ppm) and concentrations were measured daily for 30 days. After one round of treatment, the PZQ was no longer detectable in any system after 8 (±1) days. The subsequent two PZQ treatments yielded even faster PZQ breakdown (non-detectable after 2 days and 2 ± 1 day, respectively) with slight variations between systems. Linear mixed effects models of the data indicate that day and trial most impact PZQ degradation, while the presence of fish was not a factor in the best-fit models. In a completely sterilized marine system (0.5 L) PZQ concentration remained unchanged over 15 days, suggesting that PZQ may be stable in a marine system during this time period. The degradation observed in non-sterile marine systems in this study may be microbial in nature. This work should be taken into consideration when providing PZQ bath treatments to marine animals to ensure

  18. Screening of Marine Actinomycetes from Segara Anakan for Natural Pigment and Hydrolytic Activities

    NASA Astrophysics Data System (ADS)

    Asnani, A.; Ryandini, D.; Suwandri

    2016-02-01

    Marine actinomycetes have become sources of great interest to natural product chemistry due to their new chemical entities and bioactive metabolites. Since April 2010, we have screened actinobacteria from five sites that represent different ecosystems of Segara Anakan lagoon. In this present study we focus on specific isolates, K-2C which covers 1) actinomycetes identification based on morphology observation and 16S rRNA gene; 2) fermentation and isolation of pigment; 3) structure determination of pigment; and 4) hydrolytic enzymes characterization; Methodologies relevant to the studies were implemented accordingly. The results indicated that K-2C was likely Streptomyces fradiae strain RSU15, and the best fermentation medium should contain starch and casein with 21 days of incubation. The isolate has extracellular as well as intracellular pigments. Isolated pigments gave purple color with λmax of 529.00 nm. The pigment was structurally characterized. Interestingly, Streptomyces K-2C was able to produce potential hydrolytic enzymes such as amylase, cellulase, protease, lipase, urease, and nitrate reductase.

  19. Future direction in marine bacterial agarases for industrial applications.

    PubMed

    Jahromi, Saeid Tamadoni; Barzkar, Noora

    2018-06-16

    The marine ecosystem has been known to be a rich source of novel enzymes. Agarase is a key enzyme that can hydrolyze agar in the marine environment. Marine bacterial agarase has been isolated from various sources, such as sediments, coastal water, and deep sea and from the surface of crustaceans and seaweeds. This review presents an account of the agarase production of marine bacteria. General information about agar, agarase, isolation, and purification of marine bacterial agarases; the biochemical properties of native agarase from marine bacteria; the biochemical properties of recombinant marine bacterial agarases from engineered microorganisms; and the industrial future of marine bacterial agarases is analyzed. With recent biotechnological processes, researchers need novel functional enzymes like agarase from marine resources, such as marine bacteria, that can be used for diverse applications in the biotechnological industry. Marine bacterial agarases might be of significant interest to the industry because they are safe and are a natural source. This review highlights the potential of marine bacteria as important sources of agarase for application in various industries.

  20. Natural products and morphogenic activity of γ-Proteobacteria associated with the marine hydroid polyp Hydractinia echinata.

    PubMed

    Guo, Huijuan; Rischer, Maja; Sperfeld, Martin; Weigel, Christiane; Menzel, Klaus Dieter; Clardy, Jon; Beemelmanns, Christine

    2017-11-15

    Illumina 16S rRNA gene sequencing was used to profile the associated bacterial community of the marine hydroid Hydractinia echinata, a long-standing model system in developmental biology. 56 associated bacteria were isolated and evaluated for their antimicrobial activity. Three strains were selected for further in-depth chemical analysis leading to the identification of 17 natural products. Several γ-Proteobacteria were found to induce settlement of the motile larvae, but only six isolates induced the metamorphosis to the primary polyp stage within 24h. Our study paves the way to better understand how bacterial partners contribute to protection, homeostasis and propagation of the hydroid polyp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Understanding Marine Biocorrosion: Experiments with Artificial and Natural Seawater

    DTIC Science & Technology

    2015-11-04

    study of microbiologically infl uenced marine corrosion (MIMC) and the consideration of nutrients for microorganisms. Recent MIMC investigations have...conclusion of the experiment the concentration of sulphide was below the detection limit (Figure 13.3 ). Generally, KW seawater had higher numbers of...sulphides. Supporting their hypothesis, diagnostic catechols, which are known aerobic degradation products of hydrocarbons, were detected in the NRL

  2. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds

    PubMed Central

    Savoca, Matthew S.; Wohlfeil, Martha E.; Ebeler, Susan E.; Nevitt, Gabrielle A.

    2016-01-01

    Plastic debris is ingested by hundreds of species of organisms, from zooplankton to baleen whales, but how such a diversity of consumers can mistake plastic for their natural prey is largely unknown. The sensory mechanisms underlying plastic detection and consumption have rarely been examined within the context of sensory signals driving marine food web dynamics. We demonstrate experimentally that marine-seasoned microplastics produce a dimethyl sulfide (DMS) signature that is also a keystone odorant for natural trophic interactions. We further demonstrate a positive relationship between DMS responsiveness and plastic ingestion frequency using procellariiform seabirds as a model taxonomic group. Together, these results suggest that plastic debris emits the scent of a marine infochemical, creating an olfactory trap for susceptible marine wildlife. PMID:28861463

  3. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms.

    PubMed

    Satpute, Surekha K; Banat, Ibrahim M; Dhakephalkar, Prashant K; Banpurkar, Arun G; Chopade, Balu A

    2010-01-01

    Marine biosphere offers wealthy flora and fauna, which represents a vast natural resource of imperative functional commercial grade products. Among the various bioactive compounds, biosurfactant (BS)/bioemulsifiers (BE) are attracting major interest and attention due to their structural and functional diversity. The versatile properties of surface active molecules find numerous applications in various industries. Marine microorganisms such as Acinetobacter, Arthrobacter, Pseudomonas, Halomonas, Myroides, Corynebacteria, Bacillus, Alteromonas sp. have been studied for production of BS/BE and exopolysaccharides (EPS). Due to the enormity of marine biosphere, most of the marine microbial world remains unexplored. The discovery of potent BS/BE producing marine microorganism would enhance the use of environmental biodegradable surface active molecule and hopefully reduce total dependence or number of new application oriented towards the chemical synthetic surfactant industry. Our present review gives comprehensive information on BS/BE which has been reported to be produced by marine microorganisms and their possible potential future applications.

  4. On the Nature and Extent of Optically Thin Marine low Clouds

    NASA Technical Reports Server (NTRS)

    Leahy, L. V.; Wood, R.; Charlson, R. J.; Hostetler, C. A.; Rogers, R. R.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    Macrophysical properties of optically thin marine low clouds over the nonpolar oceans (60 deg S-60 deg N) are measured using 2 years of full-resolution nighttime data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Optically thin clouds, defined as the subset of marine low clouds that do not fully attenuate the lidar signal, comprise almost half of the low clouds over the marine domain. Regionally, the fraction of low clouds that are optically thin (f(sub thin,cld)) exhibits a strong inverse relationship with the low-cloud cover, with maxima in the tropical trades (f(sub thin,cld) greater than 0.8) and minima in regions of persistent marine stratocumulus and in midlatitudes (f(sub thin,cld) less than 0.3). Domain-wide, a power law fit describes the cloud length distribution, with exponent beta = 2.03 +/- 0.06 (+/-95% confidence interval). On average, the fraction of a cloud that is optically thin decreases from approximately 1 for clouds smaller than 2 km to less than 0.3 for clouds larger than 30 km. This relationship is found to be independent of region, so that geographical variations in the cloud length distribution explain three quarters of the variance in f(sub thin,cld). Comparing collocated trade cumulus observations from CALIOP and the airborne High Spectral Resolution Lidar reveals that clouds with lengths smaller than are resolvable with CALIOP contribute approximately half of the low clouds in the region sampled. A bounded cascade model is constructed to match the observations from the trades. The model shows that the observed optically thin cloud behavior is consistent with a power law scaling of cloud optical depth and suggests that most optically thin clouds only partially fill the CALIOP footprint.

  5. Antineoplastic agents. 536. New sources of naturally occurring cancer cell growth inhibitors from marine organisms, terrestrial plants, and microorganisms(1a,).

    PubMed

    Pettit, George R; Hogan, Fiona; Xu, Jun-Ping; Tan, Rui; Nogawa, Toshihiko; Cichacz, Zbigniew; Pettit, Robin K; Du, Jiang; Ye, Qing-Hua; Cragg, Gordon M; Herald, Cherry L; Hoard, Michael S; Goswami, Animesh; Searcy, Justin; Tackett, Larry; Doubek, Dennis L; Williams, Lee; Hooper, John N A; Schmidt, Jean M; Chapuis, Jean-Charles; Tackett, Denise N; Craciunescu, Felicia

    2008-03-01

    Bioassay-guided fractionation of extracts of various plants, marine organisms, and microorganisms has led to the discovery of new natural sources of a number of known compounds that have significant biological activity. The isolation of interesting and valuable cancer cell growth inhibitors including majusculamide C ( 1), axinastatin 5 ( 5), bengazoles A ( 6), B ( 7), and E ( 8), manzamine A ( 10), jaspamide ( 11), and neoechinulin A ( 19) has been summarized.

  6. Natural Products as Aromatase Inhibitors

    PubMed Central

    Balunas, Marcy J.; Su, Bin; Brueggemeier, Robert W.; Kinghorn, A. Douglas

    2010-01-01

    With the clinical success of several synthetic aromatase inhibitors (AIs) in the treatment of postmenopausal estrogen receptor-positive breast cancer, researchers have also been investigating also the potential of natural products as AIs. Natural products from terrestrial and marine organisms provide a chemically diverse array of compounds not always available through current synthetic chemistry techniques. Natural products that have been used traditionally for nutritional or medicinal purposes (e.g., botanical dietary supplements) may also afford AIs with reduced side effects. A thorough review of the literature regarding natural product extracts and secondary metabolites of plant, microbial, and marine origin that have been shown to exhibit aromatase inhibitory activity is presented herein. PMID:18690828

  7. Marine carbohydrates of wastewater treatment.

    PubMed

    Sudha, Prasad N; Gomathi, Thandapani; Vinodhini, P Angelin; Nasreen, K

    2014-01-01

    Our natural heritage (rivers, seas, and oceans) has been exploited, mistreated, and contaminated because of industrialization, globalization, population growth, urbanization with increased wealth, and more extravagant lifestyles. The scenario gets worse when the effluents or contaminants are discharged directly. So wastewater treatment is a very important and necessary in nowadays to purify wastewater before it enters a body of natural water, or it is applied to the land, or it is reused. Various methods are available for treating wastewater but with many disadvantages. Recently, numerous approaches have been studied for the development of cheaper and more effective technologies, both to decrease the amount of wastewater produced and to improve the quality of the treated effluent. Biosorption is an emerging technology, which uses natural materials as adsorbents for wastewater treatment. Low-cost adsorbents of polysaccharide-based materials obtained from marine, such as chitin, chitosan, alginate, agar, and carrageenan, are acting as rescue for wastewater treatment. This chapter reviews the treatment of wastewater up to the present time using marine polysaccharides and its derivatives. Special attention is paid to the advantages of the natural adsorbents, which are a wonderful gift for human survival. © 2014 Elsevier Inc. All rights reserved.

  8. New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade.

    PubMed

    Mi, Yue; Zhang, Jinrong; He, Shan; Yan, Xiaojun

    2017-05-05

    Marine cyanobacteria are significant sources of structurally diverse marine natural products with broad biological activities. In the past 10 years, excellent progress has been made in the discovery of marine cyanobacteria-derived peptides with diverse chemical structures. Most of these peptides exhibit strong pharmacological activities, such as neurotoxicity and cytotoxicity. In the present review, we summarized peptides isolated from marine cyanobacteria since 2007.

  9. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics

    PubMed Central

    Silber, Johanna; Kramer, Annemarie; Labes, Antje; Tasdemir, Deniz

    2016-01-01

    Filamentous fungi are well known for their capability of producing antibiotic natural products. Recent studies have demonstrated the potential of antimicrobials with vast chemodiversity from marine fungi. Development of such natural products into lead compounds requires sustainable supply. Marine biotechnology can significantly contribute to the production of new antibiotics at various levels of the process chain including discovery, production, downstream processing, and lead development. However, the number of biotechnological processes described for large-scale production from marine fungi is far from the sum of the newly-discovered natural antibiotics. Methods and technologies applied in marine fungal biotechnology largely derive from analogous terrestrial processes and rarely reflect the specific demands of the marine fungi. The current developments in metabolic engineering and marine microbiology are not yet transferred into processes, but offer numerous options for improvement of production processes and establishment of new process chains. This review summarises the current state in biotechnological production of marine fungal antibiotics and points out the enormous potential of biotechnology in all stages of the discovery-to-development pipeline. At the same time, the literature survey reveals that more biotechnology transfer and method developments are needed for a sustainable and innovative production of marine fungal antibiotics. PMID:27455283

  10. From Discovery to Production: Biotechnology of Marine Fungi for the Production of New Antibiotics.

    PubMed

    Silber, Johanna; Kramer, Annemarie; Labes, Antje; Tasdemir, Deniz

    2016-07-21

    Filamentous fungi are well known for their capability of producing antibiotic natural products. Recent studies have demonstrated the potential of antimicrobials with vast chemodiversity from marine fungi. Development of such natural products into lead compounds requires sustainable supply. Marine biotechnology can significantly contribute to the production of new antibiotics at various levels of the process chain including discovery, production, downstream processing, and lead development. However, the number of biotechnological processes described for large-scale production from marine fungi is far from the sum of the newly-discovered natural antibiotics. Methods and technologies applied in marine fungal biotechnology largely derive from analogous terrestrial processes and rarely reflect the specific demands of the marine fungi. The current developments in metabolic engineering and marine microbiology are not yet transferred into processes, but offer numerous options for improvement of production processes and establishment of new process chains. This review summarises the current state in biotechnological production of marine fungal antibiotics and points out the enormous potential of biotechnology in all stages of the discovery-to-development pipeline. At the same time, the literature survey reveals that more biotechnology transfer and method developments are needed for a sustainable and innovative production of marine fungal antibiotics.

  11. Marine protected areas increase resilience among coral reef communities.

    PubMed

    Mellin, Camille; Aaron MacNeil, M; Cheal, Alistair J; Emslie, Michael J; Julian Caley, M

    2016-06-01

    With marine biodiversity declining globally at accelerating rates, maximising the effectiveness of conservation has become a key goal for local, national and international regulators. Marine protected areas (MPAs) have been widely advocated for conserving and managing marine biodiversity yet, despite extensive research, their benefits for conserving non-target species and wider ecosystem functions remain unclear. Here, we demonstrate that MPAs can increase the resilience of coral reef communities to natural disturbances, including coral bleaching, coral diseases, Acanthaster planci outbreaks and storms. Using a 20-year time series from Australia's Great Barrier Reef, we show that within MPAs, (1) reef community composition was 21-38% more stable; (2) the magnitude of disturbance impacts was 30% lower and (3) subsequent recovery was 20% faster that in adjacent unprotected habitats. Our results demonstrate that MPAs can increase the resilience of marine communities to natural disturbance possibly through herbivory, trophic cascades and portfolio effects. © 2016 John Wiley & Sons Ltd/CNRS.

  12. Expanding the Described Metabolome of the Marine Cyanobacterium Moorea producens JHB through Orthogonal Natural Products Workflows

    PubMed Central

    Boudreau, Paul D.; Monroe, Emily A.; Mehrotra, Suneet; Desfor, Shane; Korobeynikov, Anton; Sherman, David H.; Murray, Thomas F.; Gerwick, Lena; Dorrestein, Pieter C.; Gerwick, William H.

    2015-01-01

    Moorea producens JHB, a Jamaican strain of tropical filamentous marine cyanobacteria, has been extensively studied by traditional natural products techniques. These previous bioassay and structure guided isolations led to the discovery of two exciting classes of natural products, hectochlorin (1) and jamaicamides A (2) and B (3). In the current study, mass spectrometry-based ‘molecular networking’ was used to visualize the metabolome of Moorea producens JHB, and both guided and enhanced the isolation workflow, revealing additional metabolites in these compound classes. Further, we developed additional insight into the metabolic capabilities of this strain by genome sequencing analysis, which subsequently led to the isolation of a compound unrelated to the jamaicamide and hectochlorin families. Another approach involved stimulation of the biosynthesis of a minor jamaicamide metabolite by cultivation in modified media, and provided insights about the underlying biosynthetic machinery as well as preliminary structure-activity information within this structure class. This study demonstrated that these orthogonal approaches are complementary and enrich secondary metabolomic coverage even in an extensively studied bacterial strain. PMID:26222584

  13. Phylogenetic Inferences Reveal a Large Extent of Novel Biodiversity in Chemically Rich Tropical Marine Cyanobacteria

    PubMed Central

    Gunasekera, Sarath P.; Gerwick, William H.

    2013-01-01

    Benthic marine cyanobacteria are known for their prolific biosynthetic capacities to produce structurally diverse secondary metabolites with biomedical application and their ability to form cyanobacterial harmful algal blooms. In an effort to provide taxonomic clarity to better guide future natural product drug discovery investigations and harmful algal bloom monitoring, this study investigated the taxonomy of tropical and subtropical natural product-producing marine cyanobacteria on the basis of their evolutionary relatedness. Our phylogenetic inferences of marine cyanobacterial strains responsible for over 100 bioactive secondary metabolites revealed an uneven taxonomic distribution, with a few groups being responsible for the vast majority of these molecules. Our data also suggest a high degree of novel biodiversity among natural product-producing strains that was previously overlooked by traditional morphology-based taxonomic approaches. This unrecognized biodiversity is primarily due to a lack of proper classification systems since the taxonomy of tropical and subtropical, benthic marine cyanobacteria has only recently been analyzed by phylogenetic methods. This evolutionary study provides a framework for a more robust classification system to better understand the taxonomy of tropical and subtropical marine cyanobacteria and the distribution of natural products in marine cyanobacteria. PMID:23315747

  14. Marine-derived angiogenesis inhibitors for cancer therapy.

    PubMed

    Wang, Ying-Qing; Miao, Ze-Hong

    2013-03-15

    Angiogenesis inhibitors have been successfully used for cancer therapy in the clinic. Many marine-derived natural products and their analogues have been reported to show antiangiogenic activities. Compared with the drugs in the clinic, these agents display interesting characteristics, including diverse sources, unique chemical structures, special modes of action, and distinct activity and toxicity profiles. This review will first provide an overview of the current marine-derived angiogenesis inhibitors based on their primary targets and/or mechanisms of action. Then, the marine-derived antiangiogenic protein kinase inhibitors will be focused on. And finally, the clinical trials of the marine-derived antiangiogenic agents will be discussed, with special emphasis on their application potentials, problems and possible coping strategies in their future development as anticancer drugs.

  15. Marine Structural Biomaterials in Medical Biomimicry.

    PubMed

    Green, David W; Lee, Jong-Min; Jung, Han-Sung

    2015-10-01

    Marine biomaterials display properties, behaviors, and functions that have not been artificially matched in relation to their hierarchical construction, crack-stopping properties, growth adaptation, and energy efficiency. The discovery and understanding of such features that are characteristic of natural biomaterials can be used to manufacture more energy-efficient and lightweight materials. However, a more detailed understanding of the design of natural biomaterials with good performance and the mechanism of their design is required. Far-reaching biomolecular characterization of biomaterials and biostructures from the ocean world is possible with sophisticated analytical methods, such as whole-genome RNA-seq, and de novo transcriptome sequencing and mass spectrophotometry-based sequencing. In combination with detailed material characterization, the elements in newly discovered biomaterials and their properties can be reconstituted into biomimetic or bio-inspired materials. A major aim of harnessing marine biomaterials is their translation into biomimetic counterparts. To achieve full translation, the genome, proteome, and hierarchical material characteristics, and their profiles in space and time, have to be associated to allow for smooth biomimetic translation. In this article, we highlight the novel science of marine biomimicry from a materials perspective. We focus on areas of material design and fabrication that have excelled in marine biological models, such as embedded interfaces, chiral organization, and the use of specialized composite material-on-material designs. Our emphasis is primarily on key materials with high value in healthcare in which we evaluate their future prospects. Marine biomaterials are among the most exquisite and powerful aspects in materials science today.

  16. New marine natural products from sponges (Porifera) of the order Dictyoceratida (2001 to 2012); a promising source for drug discovery, exploration and future prospects.

    PubMed

    Mehbub, Mohammad F; Perkins, Michael V; Zhang, Wei; Franco, Christopher M M

    2016-01-01

    The discovery of new drugs can no longer rely primarily on terrestrial resources, as they have been heavily exploited for over a century. During the last few decades marine sources, particularly sponges, have proven to be a most promising source of new natural products for drug discovery. This review considers the order Dictyoceratida in the Phylum Porifera from which the largest number of new marine natural products have been reported over the period 2001-2012. This paper examines all the sponges from the order Dictyoceratida that were reported as new compounds during the time period in a comprehensive manner. The distinctive physical characteristics and the geographical distribution of the different families are presented. The wide structural diversity of the compounds produced and the variety of biological activities they exhibited is highlighted. As a representative of sponges, insights into this order and avenues for future effective natural product discovery are presented. The research institutions associated with the various studies are also highlighted with the aim of facilitating collaborative relationships, as well as to acknowledge the major international contributors to the discovery of novel sponge metabolites. The order Dictyoceratida is a valuable source of novel chemical structures which will continue to contribute to a new era of drug discovery. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. New Peptides Isolated from Marine Cyanobacteria, an Overview over the Past Decade

    PubMed Central

    Mi, Yue; Zhang, Jinrong; He, Shan; Yan, Xiaojun

    2017-01-01

    Marine cyanobacteria are significant sources of structurally diverse marine natural products with broad biological activities. In the past 10 years, excellent progress has been made in the discovery of marine cyanobacteria-derived peptides with diverse chemical structures. Most of these peptides exhibit strong pharmacological activities, such as neurotoxicity and cytotoxicity. In the present review, we summarized peptides isolated from marine cyanobacteria since 2007. PMID:28475149

  18. Fish Assemblages Associated with Natural and Anthropogenically-Modified Habitats in a Marine Embayment: Comparison of Baited Videos and Opera-House Traps

    PubMed Central

    Wakefield, Corey B.; Lewis, Paul D.; Coutts, Teresa B.; Fairclough, David V.; Langlois, Timothy J.

    2013-01-01

    Marine embayments and estuaries play an important role in the ecology and life history of many fish species. Cockburn Sound is one of a relative paucity of marine embayments on the west coast of Australia. Its sheltered waters and close proximity to a capital city have resulted in anthropogenic intrusion and extensive seascape modification. This study aimed to compare the sampling efficiencies of baited videos and fish traps in determining the relative abundance and diversity of temperate demersal fish species associated with naturally occurring (seagrass, limestone outcrops and soft sediment) and modified (rockwall and dredge channel) habitats in Cockburn Sound. Baited videos sampled a greater range of species in higher total and mean abundances than fish traps. This larger amount of data collected by baited videos allowed for greater discrimination of fish assemblages between habitats. The markedly higher diversity and abundances of fish associated with seagrass and limestone outcrops, and the fact that these habitats are very limited within Cockburn Sound, suggests they play an important role in the fish ecology of this embayment. Fish assemblages associated with modified habitats comprised a subset of species in lower abundances when compared to natural habitats with similar physical characteristics. This suggests modified habitats may not have provided the necessary resource requirements (e.g. shelter and/or diet) for some species, resulting in alterations to the natural trophic structure and interspecific interactions. Baited videos provided a more efficient and non-extractive method for comparing fish assemblages and habitat associations of smaller bodied species and juveniles in a turbid environment. PMID:23555847

  19. Fish assemblages associated with natural and anthropogenically-modified habitats in a marine embayment: comparison of baited videos and opera-house traps.

    PubMed

    Wakefield, Corey B; Lewis, Paul D; Coutts, Teresa B; Fairclough, David V; Langlois, Timothy J

    2013-01-01

    Marine embayments and estuaries play an important role in the ecology and life history of many fish species. Cockburn Sound is one of a relative paucity of marine embayments on the west coast of Australia. Its sheltered waters and close proximity to a capital city have resulted in anthropogenic intrusion and extensive seascape modification. This study aimed to compare the sampling efficiencies of baited videos and fish traps in determining the relative abundance and diversity of temperate demersal fish species associated with naturally occurring (seagrass, limestone outcrops and soft sediment) and modified (rockwall and dredge channel) habitats in Cockburn Sound. Baited videos sampled a greater range of species in higher total and mean abundances than fish traps. This larger amount of data collected by baited videos allowed for greater discrimination of fish assemblages between habitats. The markedly higher diversity and abundances of fish associated with seagrass and limestone outcrops, and the fact that these habitats are very limited within Cockburn Sound, suggests they play an important role in the fish ecology of this embayment. Fish assemblages associated with modified habitats comprised a subset of species in lower abundances when compared to natural habitats with similar physical characteristics. This suggests modified habitats may not have provided the necessary resource requirements (e.g. shelter and/or diet) for some species, resulting in alterations to the natural trophic structure and interspecific interactions. Baited videos provided a more efficient and non-extractive method for comparing fish assemblages and habitat associations of smaller bodied species and juveniles in a turbid environment.

  20. Natural and Human Impacts on the Coastal Environment of Taiwan Recorded in Marine Sediments During the last century

    NASA Astrophysics Data System (ADS)

    Li, H.; Chen, Z.; Huh, C.; Chen, K.; Lin, Y.; Hsu, F.

    2012-12-01

    Located at tropical-to-subtropical region on the Pacific rim, Taiwan has very high erosion rate due to steep topography and heavy rainfall especially typhoons. The high sedimentation rates in Taiwan Strait allow us to retrieve high-resolution marine records which reveal natural changes and human impacts on the coastal environment of Taiwan over the past 100 years. Five gravity and box cores well dated by 210Pb and 137Cs methods were analyzed for elemental concentrations in the acid-leachable phase, total organic carbon (TOC), δ13CTOC, δ13C and δ18O of carbonates. The results show that: (1) Positive correlation between TOC and typhoon rainfall since 1940 indicate that decline of vegetation coverage resulted in intensification of soil erosion. The δ13CTOC values illustrate that the organic carbon in the sediments was originated mainly from land input. (2) The δ18O difference between foraminiferal shells and carbonate grains can be used for rainfall reconstruction. (3) The Ca concentrations mainly from carbonates in the sediments were decreased since AD 1940, reflecting changes in sedimentary source and ocean acidfication. As development of the land use, more and more soil erosion caused depletion of authigenic marine sediments in the coast region. Ocean acidification led to less carbonate formation in seawater. (4) Since 1920, Pb concentration rapidly increased and peaked at ~1970 as Pb input from gasoline usage. Pb concentration dropped from 1970 to 1975 perhaps due to unleaded gasoline replacement. (5) In the nearshore environment, heavy metals such as Mn, Cu and Pb in the acid-leachable phase of the sediments strongly increased from 1950 to 1965 then kept relatively high level, reflecting heavy metal contamination from industrial source. The human impact on the coastal region of Taiwan not only caused changes in marine sediments and ocean water, but also disturbed the marine ecosystem. This study has been funded by NSC-100-3113-E-002-009: Study of CO2 capture

  1. The influence of natural dissolved organic matter on herbicide toxicity to marine microalgae is species-dependent.

    PubMed

    Coquillé, Nathalie; Ménard, Dominique; Rouxel, Julien; Dupraz, Valentin; Éon, Mélissa; Pardon, Patrick; Budzinski, Hélène; Morin, Soizic; Parlanti, Édith; Stachowski-Haberkorn, Sabine

    2018-05-01

    Microalgae, which are the foundation of aquatic food webs, may be the indirect target of herbicides used for agricultural and urban applications. Microalgae also interact with other compounds from their environment, such as natural dissolved organic matter (DOM), which can itself interact with herbicides. This study aimed to evaluate the influence of natural DOM on the toxicity of three herbicides (diuron, irgarol and S-metolachlor), singly and in ternary mixtures, to two marine microalgae, Chaetoceros calcitrans and Tetraselmis suecica, in monospecific, non-axenic cultures. Effects on growth, photosynthetic efficiency (Ф' M ) and relative lipid content were evaluated. The chemical environment (herbicide and nutrient concentrations, dissolved organic carbon and DOM optical properties) was also monitored to assess any changes during the experiments. The results show that, without DOM, the highest irgarol concentration (I0.5: 0.5 mg.L -1 ) and the strongest mixture (M2: irgarol 0.5 μg.L -1  + diuron 0.5 μg.L -1  + S-metolachlor 5.0 μg.L -1 ) significantly decreased all parameters for both species. Similar impacts were induced by I0.5 and M2 in C. calcitrans (around -56% for growth, -50% for relative lipid content and -28% for Ф' M ), but a significantly higher toxicity of M2 was observed in T. suecica (-56% and -62% with I0.5 and M2 for growth, respectively), suggesting a possible interaction between molecules. With DOM added to the culture media, a significant inhibition of these three parameters was also observed with I0.5 and M2 for both species. Furthermore, DOM modulated herbicide toxicity, which was decreased for C. calcitrans (-51% growth at I0.5 and M2) and increased for T. suecica (-64% and -75% growth at I0.5 and M2, respectively). In addition to the direct and/or indirect (via their associated bacteria) use of molecules present in natural DOM, the characterization of the chemical environment showed that the toxic effects observed on

  2. Marine pharmacology in 2005–6: Marine Compounds with Anthelmintic, Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiprotozoal, Antituberculosis, and Antiviral Activities; affecting the Cardiovascular, Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M. S.; Rodriguez, Abimael D.; Berlinck, Roberto G. S.; Hamann, Mark T.

    2009-01-01

    BACKGROUND The review presents the 2005–2006 peer-reviewed marine pharmacology literature, and follows a similar format to the authors’ 1998–2004 reviews. The preclinical pharmacology of chemically characterized marine compounds isolated from marine animals, algae, fungi and bacteria is systematically presented. RESULTS Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiprotozoal, antituberculosis and antiviral activities were reported for 78 marine chemicals. Additionally 47 marine compounds were reported to affect the cardiovascular, immune and nervous system as well as possess anti-inflammatory effects. Finally, 58 marine compounds were shown to bind to a variety of molecular targets, and thus could potentially contribute to several pharmacological classes. CONCLUSIONS Marine pharmacology research during 2005–2006 was truly global in nature, involving investigators from 32 countries, and the United States, and contributed 183 marine chemical leads to the research pipeline aimed at the discovery of novel therapeutic agents. SIGNIFICANCE Continued preclinical and clinical research with marine natural products demonstrating a broad spectrum of pharmacological activity and will probably result in novel therapeutic agents for the treatment of multiple disease categories. PMID:19303911

  3. Mosaic patterns of B-vitamin synthesis and utilization in a natural marine microbial community.

    PubMed

    Gómez-Consarnau, Laura; Sachdeva, Rohan; Gifford, Scott M; Cutter, Lynda S; Fuhrman, Jed A; Sañudo-Wilhelmy, Sergio A; Moran, Mary Ann

    2018-04-16

    Aquatic environments contain large communities of microorganisms whose synergistic interactions mediate the cycling of major and trace nutrients, including vitamins. B-vitamins are essential coenzymes that many organisms cannot synthesize. Thus, their exchange among de novo synthesizers and auxotrophs is expected to play an important role in the microbial consortia and explain some of the temporal and spatial changes observed in diversity. In this study, we analyzed metatranscriptomes of a natural marine microbial community, diel sampled quarterly over one year to try to identify the potential major B-vitamin synthesizers and consumers. Transcriptomic data showed that the best-represented taxa dominated the expression of synthesis genes for some B-vitamins but lacked transcripts for others. For instance, Rhodobacterales dominated the expression of vitamin-B 12 synthesis, but not of vitamin-B 7 , whose synthesis transcripts were mainly represented by Flavobacteria. In contrast, bacterial groups that constituted less than 4% of the community (e.g., Verrucomicrobia) accounted for most of the vitamin-B 1 synthesis transcripts. Furthermore, ambient vitamin-B 1 concentrations were higher in samples collected during the day, and were positively correlated with chlorophyll-a concentrations. Our analysis supports the hypothesis that the mosaic of metabolic interdependencies through B-vitamin synthesis and exchange are key processes that contribute to shaping microbial communities in nature. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Silent oceans: ocean acidification impoverishes natural soundscapes by altering sound production of the world's noisiest marine invertebrate.

    PubMed

    Rossi, Tullio; Connell, Sean D; Nagelkerken, Ivan

    2016-03-16

    Soundscapes are multidimensional spaces that carry meaningful information for many species about the location and quality of nearby and distant resources. Because soundscapes are the sum of the acoustic signals produced by individual organisms and their interactions, they can be used as a proxy for the condition of whole ecosystems and their occupants. Ocean acidification resulting from anthropogenic CO2 emissions is known to have profound effects on marine life. However, despite the increasingly recognized ecological importance of soundscapes, there is no empirical test of whether ocean acidification can affect biological sound production. Using field recordings obtained from three geographically separated natural CO2 vents, we show that forecasted end-of-century ocean acidification conditions can profoundly reduce the biological sound level and frequency of snapping shrimp snaps. Snapping shrimp were among the noisiest marine organisms and the suppression of their sound production at vents was responsible for the vast majority of the soundscape alteration observed. To assess mechanisms that could account for these observations, we tested whether long-term exposure (two to three months) to elevated CO2 induced a similar reduction in the snapping behaviour (loudness and frequency) of snapping shrimp. The results indicated that the soniferous behaviour of these animals was substantially reduced in both frequency (snaps per minute) and sound level of snaps produced. As coastal marine soundscapes are dominated by biological sounds produced by snapping shrimp, the observed suppression of this component of soundscapes could have important and possibly pervasive ecological consequences for organisms that use soundscapes as a source of information. This trend towards silence could be of particular importance for those species whose larval stages use sound for orientation towards settlement habitats. © 2016 The Author(s).

  5. Silent oceans: ocean acidification impoverishes natural soundscapes by altering sound production of the world's noisiest marine invertebrate

    PubMed Central

    Rossi, Tullio; Connell, Sean D.; Nagelkerken, Ivan

    2016-01-01

    Soundscapes are multidimensional spaces that carry meaningful information for many species about the location and quality of nearby and distant resources. Because soundscapes are the sum of the acoustic signals produced by individual organisms and their interactions, they can be used as a proxy for the condition of whole ecosystems and their occupants. Ocean acidification resulting from anthropogenic CO2 emissions is known to have profound effects on marine life. However, despite the increasingly recognized ecological importance of soundscapes, there is no empirical test of whether ocean acidification can affect biological sound production. Using field recordings obtained from three geographically separated natural CO2 vents, we show that forecasted end-of-century ocean acidification conditions can profoundly reduce the biological sound level and frequency of snapping shrimp snaps. Snapping shrimp were among the noisiest marine organisms and the suppression of their sound production at vents was responsible for the vast majority of the soundscape alteration observed. To assess mechanisms that could account for these observations, we tested whether long-term exposure (two to three months) to elevated CO2 induced a similar reduction in the snapping behaviour (loudness and frequency) of snapping shrimp. The results indicated that the soniferous behaviour of these animals was substantially reduced in both frequency (snaps per minute) and sound level of snaps produced. As coastal marine soundscapes are dominated by biological sounds produced by snapping shrimp, the observed suppression of this component of soundscapes could have important and possibly pervasive ecological consequences for organisms that use soundscapes as a source of information. This trend towards silence could be of particular importance for those species whose larval stages use sound for orientation towards settlement habitats. PMID:26984624

  6. Bio-mining the microbial treasures of the ocean: new natural products.

    PubMed

    Imhoff, Johannes F; Labes, Antje; Wiese, Jutta

    2011-01-01

    The biological resources of the oceans have been exploited since ancient human history, mainly by catching fish and harvesting algae. Research on natural products with special emphasis on marine animals and also algae during the last decades of the 20th century has revealed the importance of marine organisms as producers of substances useful for the treatment of human diseases. Though a large number of bioactive substances have been identified, some many years ago, only recently the first drugs from the oceans were approved. Quite astonishingly, the immense diversity of microbes in the marine environments and their almost untouched capacity to produce natural products and therefore the importance of microbes for marine biotechnology was realized on a broad basis by the scientific communities only recently. This has strengthened worldwide research activities dealing with the exploration of marine microorganisms for biotechnological applications, which comprise the production of bioactive compounds for pharmaceutical use, as well as the development of other valuable products, such as enzymes, nutraceuticals and cosmetics. While the focus in these fields was mainly on marine bacteria, also marine fungi now receive growing attention. Although culture-dependent studies continue to provide interesting new chemical structures with biological activities at a high rate and represent highly promising approaches for the search of new drugs, exploration and use of genomic and metagenomic resources are considered to further increase this potential. Many efforts are made for the sustainable exploration of marine microbial resources. Large culture collections specifically of marine bacteria and marine fungi are available. Compound libraries of marine natural products, even of highly purified substances, were established. The expectations into the commercial exploitation of marine microbial resources has given rise to numerous institutions worldwide, basic research facilities as

  7. Carotenoids from Marine Organisms: Biological Functions and Industrial Applications

    PubMed Central

    Galasso, Christian; Corinaldesi, Cinzia; Sansone, Clementina

    2017-01-01

    As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene) that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein), which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i) the biological functions of carotenoids and their benefits for human health, (ii) the most common carotenoids from marine organisms and (iii) carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production. PMID:29168774

  8. [Spatio-temporal problems of geographic information system in marine fishery].

    PubMed

    Su, Fenzhen; Zhou, Chenghu; Du, Yunyan; Zhang, Tianyu; Shao, Quanqin

    2003-09-01

    In marine fisheries, it is very important to understand and grasp the spatio-temporal nature. Geographical Information System (GIS) has been applied to describe or forecast the dynamic trend of resources or to set up evaluation model, which is one of high technologies in modern marine fisheries. Based on the review of the development of marine fishery GIS (MFGIS), four spatio-temporal problems it occurred were discussed, and the possible resolutions were prospected.

  9. Antimicrobial Peptides from Marine Proteobacteria

    PubMed Central

    Desriac, Florie; Jégou, Camille; Balnois, Eric; Brillet, Benjamin; Le Chevalier, Patrick; Fleury, Yannick

    2013-01-01

    After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs. PMID:24084784

  10. Bioremediation of Industrial Waste Through Enzyme Producing Marine Microorganisms.

    PubMed

    Sivaperumal, P; Kamala, K; Rajaram, R

    Bioremediation process using microorganisms is a kind of nature-friendly and cost-effective clean green technology. Recently, biodegradation of industrial wastes using enzymes from marine microorganisms has been reported worldwide. The prospectus research activity in remediation area would contribute toward the development of advanced bioprocess technology. To minimize industrial wastes, marine enzymes could constitute a novel alternative in terms of waste treatment. Nowadays, the evidence on the mechanisms of bioremediation-related enzymes from marine microorganisms has been extensively studied. This review also will provide information about enzymes from various marine microorganisms and their complexity in the biodegradation of comprehensive range of industrial wastes. © 2017 Elsevier Inc. All rights reserved.

  11. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine δ13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 μgC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 μgC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 μgC, and a blank isotopic

  12. States in a free state of nature: aboriginal criteria for 21st-century marine minerals resource management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hull, E.W.S.

    1987-01-01

    This paper explores principles of international law for managing nonsovereign marine minerals under conditions of severe chronic global shortage - which herein is defined as existing whenever exploitation consistently exceeds natural rates of renewal restoration. The main data source lies in how man has managed shortage in the past, where the most fertile ground is found in the ways of the natural societies of pre-Neolithic man and contemporary hunter-gatherer bands. The result has a broader compass than the original goal namely the means (a) to restore ecological balance to man's relationship to his resource environment, and (b) to achieve universalmore » fairness of individual access to the global patrimony. These goals may be realized without sudden disruption of the international community of sovereign States or its economic system of laissez-faire capitalism. The means to these ends posit the readoption of aboriginal Ethics to order the adaptive relationship of man to man and of man to Nature, including the revitalization of the original social compact of reciprocal rights and obligations among all individuals. The turn to aboriginal Ethics suggests a series of proposals for managing global shortage implemented by economic incentives and penalties which are compatible with the ways of contemporary international society.« less

  13. Multiyear predictability of tropical marine productivity

    PubMed Central

    Séférian, Roland; Bopp, Laurent; Gehlen, Marion; Swingedouw, Didier; Mignot, Juliette; Guilyardi, Eric; Servonnat, Jérôme

    2014-01-01

    With the emergence of decadal predictability simulations, research toward forecasting variations of the climate system now covers a large range of timescales. However, assessment of the capacity to predict natural variations of relevant biogeochemical variables like carbon fluxes, pH, or marine primary productivity remains unexplored. Among these, the net primary productivity (NPP) is of particular relevance in a forecasting perspective. Indeed, in regions like the tropical Pacific (30°N–30°S), NPP exhibits natural fluctuations at interannual to decadal timescales that have large impacts on marine ecosystems and fisheries. Here, we investigate predictions of NPP variations over the last decades (i.e., from 1997 to 2011) with an Earth system model within the tropical Pacific. Results suggest a predictive skill for NPP of 3 y, which is higher than that of sea surface temperature (1 y). We attribute the higher predictability of NPP to the poleward advection of nutrient anomalies (nitrate and iron), which sustain fluctuations in phytoplankton productivity over several years. These results open previously unidentified perspectives to the development of science-based management approaches to marine resources relying on integrated physical-biogeochemical forecasting systems. PMID:25071174

  14. An ecological approach supporting the management of sea-uses and natural capital in marine coastal areas

    NASA Astrophysics Data System (ADS)

    Marcelli, Marco; Carli, Filippo M.; Bonamano, Simone; Frattarelli, Francesco; Mancini, Emanuele; Paladini de Mendoza, Francesco; Peviani, Maximo; Piermattei, Viviana

    2015-04-01

    The purpose of our work is to create a multi-layer map of marine areas and adjacent territories (SeaUseMap), which takes into account both the different sea uses and the value of marine ecosystems, calculated on the basis of services and benefits produced by the different biocenosis. Marine coastal areas are characterized by the simultaneous presence of ecological conditions favorable to life and, at the same time, they are home to many human activities of particular economic relevance. Ecological processes occurring in coastal areas are particularly important and when we consider their contribution to the value of the "natural capital" (Costanza et Al. 1997, 2008, 2014), we can observe that this is often higher than the contribution from terrestrial ecosystems. Our work is done in northern Lazio (Civitavecchia), a highly populated area where many uses of the sea are superimposed: tourism, fisheries, industry, shipping and ports, historical and cultural heritage. Our goal is to create a tool to support decision-making, where ecosystem values and uses of the sea can be simultaneously represented. The ecosystem values are calculated based on an analysis of benthic biocoenoses: the basic ecological units that, in the Mediterranean Sea, have been identified, defined, analyzed and used since the 60s (Perez & Picard 1964) to date as a working tool (Boudouresque & Fresi 1976). Land surface, instead, was analyzed from available maps, produced within the Corine Land Cover project. Some application examples to support the decision-making are shown, with particular reference to the localization of suitable areas for wave energy production and the esteem of ecological damages generated in case of maritime accidents (e.g., Costa Concordia). According to Costanza 2008, we have developed our own operational method, which is suitable for this specific case of benefit assessment from benthic communities. In this framework, we base our strategy on the ability of the benthic

  15. Marine molecular biology: an emerging field of biological sciences.

    PubMed

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  16. Horizontal transfers of Mariner transposons between mammals and insects.

    PubMed

    Oliveira, Sarah G; Bao, Weidong; Martins, Cesar; Jurka, Jerzy

    2012-09-26

    Active transposable elements (TEs) can be passed between genomes of different species by horizontal transfer (HT). This may help them to avoid vertical extinction due to elimination by natural selection or silencing. HT is relatively frequent within eukaryotic taxa, but rare between distant species. Closely related Mariner-type DNA transposon families, collectively named as Mariner-1_Tbel families, are present in the genomes of two ants and two mammalian genomes. Consensus sequences of the four families show pairwise identities greater than 95%. In addition, mammalian Mariner1_BT family shows a close evolutionary relationship with some insect Mariner families. Mammalian Mariner1_BT type sequences are present only in species from three groups including ruminants, tooth whales (Odontoceti), and New World leaf-nosed bats (Phyllostomidae). Horizontal transfer accounts for the presence of Mariner_Tbel and Mariner1_BT families in mammals. Mariner_Tbel family was introduced into hedgehog and tree shrew genomes approximately 100 to 69 million years ago (MYA). Most likely, these TE families were transferred from insects to mammals, but details of the transfer remain unknown.

  17. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential.

    PubMed

    Ruocco, Nadia; Costantini, Susan; Guariniello, Stefano; Costantini, Maria

    2016-04-27

    Carbohydrates, also called saccharides, are molecules composed of carbon, hydrogen, and oxygen. They are the most abundant biomolecules and essential components of many natural products and have attracted the attention of researchers because of their numerous human health benefits. Among carbohydrates the polysaccharides represent some of the most abundant bioactive substances in marine organisms. In fact, many marine macro- and microorganisms are good resources of carbohydrates with diverse applications due to their biofunctional properties. By acting on cell proliferation and cycle, and by modulating different metabolic pathways, marine polysaccharides (including mainly chitin, chitosan, fucoidan, carrageenan and alginate) also have numerous pharmaceutical activities, such as antioxidative, antibacterial, antiviral, immuno-stimulatory, anticoagulant and anticancer effects. Moreover, these polysaccharides have many general beneficial effects for human health, and have therefore been developed into potential cosmeceuticals and nutraceuticals. In this review we describe current advances in the development of marine polysaccharides for nutraceutical, cosmeceutical and pharmacological applications. Research in this field is opening new doors for harnessing the potential of marine natural products.

  18. 76 FR 35995 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Operation and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... of the Neptune Liquefied Natural Gas Facility of Massachusetts; Correction AGENCY: National Marine... rule; correction. SUMMARY: NMFS, upon application from Neptune LNG LLC (Neptune), issued regulations... activities, at the Neptune Deepwater Port (the Port) in Massachusetts Bay for a period of 5 years. The final...

  19. Investigation of the Anti-Prostate Cancer Properties of Marine-Derived Compounds

    PubMed Central

    Fan, Meiqi; Nath, Amit Kumar; Tang, Yujiao; Choi, Young-Jin; Debnath, Trishna; Choi, Eun-Ju

    2018-01-01

    This review focuses on marine compounds with anti-prostate cancer properties. Marine species are unique and have great potential for the discovery of anticancer drugs. Marine sources are taxonomically diverse and include bacteria, cyanobacteria, fungi, algae, and mangroves. Marine-derived compounds, including nucleotides, amides, quinones, polyethers, and peptides are biologically active compounds isolated from marine organisms such as sponges, ascidians, gorgonians, soft corals, and bryozoans, including those mentioned above. Several compound classes such as macrolides and alkaloids include drugs with anti-cancer mechanisms, such as antioxidants, anti-angiogenics, antiproliferatives, and apoptosis-inducing drugs. Despite the diversity of marine species, most marine-derived bioactive compounds have not yet been evaluated. Our objective is to explore marine compounds to identify new treatment strategies for prostate cancer. This review discusses chemically and pharmacologically diverse marine natural compounds and their sources in the context of prostate cancer drug treatment. PMID:29757237

  20. Special issue Oceans and Humans Health: the ecology of marine opportunists.

    PubMed

    Burge, Colleen A; Kim, Catherine J S; Lyles, Jillian M; Harvell, C Drew

    2013-05-01

    Opportunistic marine pathogens, like opportunistic terrestrial pathogens, are ubiquitous in the environment (waters, sediments, and organisms) and only cause disease in immune-compromised or stressed hosts. In this review, we discuss four host-pathogen interactions within the marine environment that are typically considered opportunistic: sea fan coral-fungus, eelgrass-Labyrinthula zosterae, sea fan-Labyrinthulomycetes, and hard clam-Quahog Parasite Unknown with particular focus on disease ecology, parasite pathology, host response, and known associated environmental conditions. Disease is a natural part of all ecosystems; however, in some cases, a shift in the balance between the host, pathogen, and the environment may lead to epizootics in natural or cultured populations. In marine systems, host-microbe interactions are less understood than their terrestrial counterparts. The biological and physical changes to the world's oceans, coupled with other anthropogenic influences, will likely lead to more opportunistic diseases in the marine environment.

  1. Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds

    PubMed Central

    Dhakal, Dipesh; Pokhrel, Anaya Raj; Shrestha, Biplav; Sohng, Jae Kyung

    2017-01-01

    Actinobacteria are prolific producers of thousands of biologically active natural compounds with diverse activities. More than half of these bioactive compounds have been isolated from members belonging to actinobacteria. Recently, rare actinobacteria existing at different environmental settings such as high altitudes, volcanic areas, and marine environment have attracted attention. It has been speculated that physiological or biochemical pressures under such harsh environmental conditions can lead to the production of diversified natural compounds. Hence, marine environment has been focused for the discovery of novel natural products with biological potency. Many novel and promising bioactive compounds with versatile medicinal, industrial, or agricultural uses have been isolated and characterized. The natural compounds cannot be directly used as drug or other purposes, so they are structurally modified and diversified to ameliorate their biological or chemical properties. Versatile synthetic biological tools, metabolic engineering techniques, and chemical synthesis platform can be used to assist such structural modification. This review summarizes the latest studies on marine rare actinobacteria and their natural products with focus on recent approaches for structural and functional diversification of such microbial chemicals for attaining better applications. PMID:28663748

  2. The Antiviral Activities and Mechanisms of Marine Polysaccharides: An Overview

    PubMed Central

    Wang, Wei; Wang, Shi-Xin; Guan, Hua-Shi

    2012-01-01

    Recently, the studies on the antiviral activities of marine natural products, especially marine polysaccharides, are attracting more and more attention all over the world. Marine-derived polysaccharides and their lower molecular weight oligosaccharide derivatives have been shown to possess a variety of antiviral activities. This paper will review the recent progress in research on the antiviral activities and the mechanisms of these polysaccharides obtained from marine organisms. In particular, it will provide an update on the antiviral actions of the sulfated polysaccharides derived from marine algae including carrageenans, alginates, and fucans, relating to their structure features and the structure–activity relationships. In addition, the recent findings on the different mechanisms of antiviral actions of marine polysaccharides and their potential for therapeutic application will also be summarized in detail. PMID:23235364

  3. PH DEPENDENT TOXICITY OF FIVE METALS TO THREE MARINE ORGANISMS

    EPA Science Inventory

    The pH of natural marine systems is relatively stable; this may explain why metal toxicity changes with pH have not been well documented. However, changes in metal toxicity with pH in marine waters are of concern in toxicity testing. During porewater toxicity testing pH can chang...

  4. Marine toxins and nonmarine toxins: convergence or symbiotic organisms?

    PubMed

    Daly, John W

    2004-08-01

    Bioactive marine natural products occur only rarely in nonmarine sources. The converse also is true. Divergent evolutionary pathways for the biosynthesis of bioactive secondary metabolites seem to be the rule. Marine biosynthetic pathways lead to a wide variety of different structural classes, among which polyethers, macrolides, terpenes, unusual amino acids/peptides, and alkaloids are notable. Nonmarine biosynthetic pathways also lead to a similar wide variety of structural classes. However, the structures are usually quite different from the marine analogues. The alkaloids of plants are notable, but again there appears little convergence between the marine and nonmarine alkaloids. However, tetrodotoxin, a remarkable, highly polar, marine alkaloid, does occur in various amphibians. The occurrence and possible origin of tetrodotoxin and congeners, including chiriquitoxin, and of the saxitoxin analogue zetekitoxin in amphibians are reviewed.

  5. Antifungal and antibacterial activity of marine microorganisms.

    PubMed

    El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A

    2014-03-01

    In order to explore marine microorganisms with pharmaceutical potential, marine bacteria, collected from different coastal areas of the Moroccan Atlantic Ocean, were previously isolated from seawater, sediment, marine invertebrates and seaweeds. The antimicrobial activities of these microorganisms were investigated against the pathogens involved in human pathologies. Whole cultures of 34 marine microorganisms were screened for antimicrobial activities using the method of agar diffusion against three Gram-positive bacteria, two Gram-negative bacteria, and against yeast. The results showed that among the 34 isolates studied, 28 (82%) strains have antimicrobial activity against at least one pathogen studied, 11 (32%) strains have antifungal activity and 24 (76%) strains are active against Gram-positive bacteria, while 21 (62%) strains are active against Gram-negative bacteria. Among isolates having antimicrobial activity, 14 were identified and were assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms can produce antibiotic substance; therefore, these marine microorganisms were expected to be potential resources of natural antibiotic products. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Climate of the Arctic marine environment.

    PubMed

    Walsh, John E

    2008-03-01

    The climate of the Arctic marine environment is characterized by strong seasonality in the incoming solar radiation and by tremendous spatial variations arising from a variety of surface types, including open ocean, sea ice, large islands, and proximity to major landmasses. Interannual and decadal-scale variations are prominent features of Arctic climate, complicating the distinction between natural and anthropogenically driven variations. Nevertheless, climate models consistently indicate that the Arctic is the most climatically sensitive region of the Northern Hemisphere, especially near the sea ice margins. The Arctic marine environment has shown changes over the past several decades, and these changes are part of a broader global warming that exceeds the range of natural variability over the past 1000 years. Record minima of sea ice coverage during the past few summers and increased melt from Greenland have important implications for the hydrographic regime of the Arctic marine environment. The recent changes in the atmosphere (temperature, precipitation, pressure), sea ice, and ocean appear to be a coordinated response to systematic variations of the large-scale atmospheric circulation, superimposed on a general warming that is likely associated with increasing greenhouse gases. The changes have been sufficiently large in some sectors (e.g., the Bering/Chukchi Seas) that consequences for marine ecosystems appear to be underway. Global climate models indicate an additional warming of several degrees Celsius in much of the Arctic marine environment by 2050. However, the warming is seasonal (largest in autumn and winter), spatially variable, and closely associated with further retreat of sea ice. Additional changes predicted for 2050 are a general decrease of sea level pressure (largest in the Bering sector) and an increase of precipitation. While predictions of changes in storminess cannot be made with confidence, the predicted reduction of sea ice cover will

  7. Impact of Marine Drugs on Animal Reproductive Processes

    PubMed Central

    Silvestre, Francesco; Tosti, Elisabetta

    2009-01-01

    The discovery and description of bioactive substances from natural sources has been a research topic for the last 50 years. In this respect, marine animals have been used to extract many new compounds exerting different actions. Reproduction is a complex process whose main steps are the production and maturation of gametes, their activation, the fertilisation and the beginning of development. In the literature it has been shown that many substances extracted from marine organisms may have profound influence on the reproductive behaviour, function and reproductive strategies and survival of species. However, despite the central importance of reproduction and thus the maintenance of species, there are still few studies on how reproductive mechanisms are impacted by marine bioactive drugs. At present, studies in either marine and terrestrial animals have been particularly important in identifying what specific fine reproductive mechanisms are affected by marine-derived substances. In this review we describe the main steps of the biology of reproduction and the impact of substances from marine environment and organisms on the reproductive processes. PMID:20098597

  8. Scanning Electron Microscope Observations of Marine Microorganisms on Surfaces Coated with Antifouling Paints.

    DTIC Science & Technology

    1981-06-01

    sessile marine inverte- brates in Monterey harbor. Veliger 17 (supplement): 1-35. 1977. The nature of primary organic films in the marine environment and...I A10A4h 605 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/S 11/3 SCANING ELECTRON MICROSCOPE OBSERVATIONS OF MARINE MICROORANI-E-C(U) UNLSSIFIED N*2...Scanning Electron Microscope Observations Master’s thesis; of Marine Microorganisms on Surfaces June 1981 Coated with Ant ifouling Paints 6.PERFORMING

  9. Air-breathing adaptation in a marine Devonian lungfish.

    PubMed

    Clement, Alice M; Long, John A

    2010-08-23

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43-48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus.

  10. Air-breathing adaptation in a marine Devonian lungfish

    PubMed Central

    Clement, Alice M.; Long, John A.

    2010-01-01

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43–48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus. PMID:20147310

  11. Investigations of the marine flora and fauna of the Fiji Islands.

    PubMed

    Feussner, Klaus-Dieter; Ragini, Kavita; Kumar, Rohitesh; Soapi, Katy M; Aalbersberg, William G; Harper, Mary Kay; Carte, Brad; Ireland, Chris M

    2012-12-01

    Over the past 30 years, approximately 140 papers have been published on marine natural products chemistry and related research from the Fiji Islands. These came about from studies starting in the early 1980s by the research groups of Crews at the University of California Santa Cruz, Ireland at the University of Utah, Gerwick from the Scripps Institution of Oceanography, the University of California at San Diego and the more recent groups of Hay at the Georgia Institute of Technology (GIT) and Jaspars from the University of Aberdeen. This review covers both known and novel marine-derived natural products and their biological activities. The marine organisms reviewed include invertebrates, plants and microorganisms, highlighting the vast structural diversity of compounds isolated from these organisms. Increasingly during this period, natural products chemists at the University of the South Pacific have been partners in this research, leading in 2006 to the development of a Centre for Drug Discovery and Conservation (CDDC).

  12. Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems.

    PubMed

    Mostofa, Khan M G; Liu, Cong-Qiang; Vione, Davide; Gao, Kunshan; Ogawa, Hiroshi

    2013-11-01

    Algal toxins or red-tide toxins produced during algal blooms are naturally-derived toxic emerging contaminants (ECs) that may kill organisms, including humans, through contaminated fish or seafood. Other ECs produced either naturally or anthropogenically ultimately flow into marine waters. Pharmaceuticals are also an important pollution source, mostly due to overproduction and incorrect disposal. Ship breaking and recycle industries (SBRIs) can also release various pollutants and substantially deteriorate habitats and marine biodiversity. Overfishing is significantly increasing due to the global food crisis, caused by an increasing world population. Organic matter (OM) pollution and global warming (GW) are key factors that exacerbate these challenges (e.g. algal blooms), to which acidification in marine waters should be added as well. Sources, factors, mechanisms and possible remedial measures of these challenges to marine ecosystems are discussed, including their eventual impact on all forms of life including humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The Smithsonian-led Marine Global Earth Observatory (MarineGEO): Proposed Model for a Collaborative Network Linking Marine Biodiversity to Ecosystem Processes

    NASA Astrophysics Data System (ADS)

    Duffy, J. E.

    2016-02-01

    Biodiversity - the variety of functional types of organisms - is the engine of marine ecosystem processes, including productivity, nutrient cycling, and carbon sequestration. Biodiversity remains a black box in much of ocean science, despite wide recognition that effectively managing human interactions with marine ecosystems requires understanding both structure and functional consequences of biodiversity. Moreover, the inherent complexity of biological systems puts a premium on data-rich, comparative approaches, which are best met via collaborative networks. The Smithsonian Institution's MarineGEO program links a growing network of partners conducting parallel, comparative research to understand change in marine biodiversity and ecosystems, natural and anthropogenic drivers of that change, and the ecological processes mediating it. The focus is on nearshore, seabed-associated systems where biodiversity and human population are concentrated and interact most, yet which fall through the cracks of existing ocean observing programs. MarineGEO offers a standardized toolbox of research modules that efficiently capture key elements of biological diversity and its importance in ecological processes across a range of habitats. The toolbox integrates high-tech (DNA-based, imaging) and low-tech protocols (diver surveys, rapid assays of consumer activity) adaptable to differing institutional capacity and resources. The model for long-term sustainability involves leveraging in-kind support among partners, adoption of best practices wherever possible, engagement of students and citizen scientists, and benefits of training, networking, and global relevance as incentives for participation. Here I highlight several MarineGEO comparative research projects demonstrating the value of standardized, scalable assays and parallel experiments for measuring fish and invertebrate diversity, recruitment, benthic herbivory and generalist predation, decomposition, and carbon sequestration. Key

  14. Physiological effects of five different marine natural organic matters (NOMs) and three different metals (Cu, Pb, Zn) on early life stages of the blue mussel (Mytilus galloprovincialis).

    PubMed

    Nogueira, Lygia Sega; Bianchini, Adalto; Smith, Scott; Jorge, Marianna Basso; Diamond, Rachael L; Wood, Chris M

    2017-01-01

    Metals are present in aquatic environments as a result of natural and anthropogenic inputs, and may induce toxicity to organisms. One of the main factors that influence this toxicity in fresh water is natural organic matter (NOM) but all NOMs are not the same in this regard. In sea water, possible protection by marine NOMs is not well understood. Thus, our study isolated marine NOMs by solid-phase extraction from five different sites and characterized them by excitation-emission fluorescence analysis-one inshore (terrigenous origin), two offshore (autochthonous origin), and two intermediate in composition (indicative of a mixed origin). The physiological effects of these five NOMS alone (at 8 mg/L), of three metals alone (copper, lead and zinc at 6 µg Cu/L, 20 µg Pb/L, and 25 µg Zn/L respectively), and of each metal in combination with each NOM, were evaluated in 48-h exposures of mussel larvae. Endpoints were whole body Ca 2+ +Mg 2+ -ATPase activity, carbonic anhydrase activity and lipid peroxidation. By themselves, NOMs increased lipid peroxidation, Ca 2+ +Mg 2+ -ATPase, and/or carbonic anhydrase activities (significant in seven of 15 NOM-endpoint combinations), whereas metals by themselves did not affect the first two endpoints, but Cu and Pb increased carbonic anhydrase activities. In combination, the effects of NOMs predominated, with the metal exerting no additional effect in 33 out of 45 combinations. While NOM effects varied amongst different isolates, there was no clear pattern with respect to optical or chemical properties. When NOMs were treated as a single source by data averaging, NOM had no effect on Ca 2+ +Mg 2+ -ATPase activity but markedly stimulated carbonic anhydrase activity and lipid peroxidation, and there were no additional effects of any metal. Our results indicate that marine NOMs may have direct effects on this model marine organism, as well as protective effects against metal toxicity, and the quality of marine NOMs may be an important

  15. Physiological effects of five different marine natural organic matters (NOMs) and three different metals (Cu, Pb, Zn) on early life stages of the blue mussel (Mytilus galloprovincialis)

    PubMed Central

    Bianchini, Adalto; Smith, Scott; Jorge, Marianna Basso; Diamond, Rachael L.; Wood, Chris M.

    2017-01-01

    Metals are present in aquatic environments as a result of natural and anthropogenic inputs, and may induce toxicity to organisms. One of the main factors that influence this toxicity in fresh water is natural organic matter (NOM) but all NOMs are not the same in this regard. In sea water, possible protection by marine NOMs is not well understood. Thus, our study isolated marine NOMs by solid-phase extraction from five different sites and characterized them by excitation-emission fluorescence analysis—one inshore (terrigenous origin), two offshore (autochthonous origin), and two intermediate in composition (indicative of a mixed origin). The physiological effects of these five NOMS alone (at 8 mg/L), of three metals alone (copper, lead and zinc at 6 µg Cu/L, 20 µg Pb/L, and 25 µg Zn/L respectively), and of each metal in combination with each NOM, were evaluated in 48-h exposures of mussel larvae. Endpoints were whole body Ca2++Mg2+-ATPase activity, carbonic anhydrase activity and lipid peroxidation. By themselves, NOMs increased lipid peroxidation, Ca2++Mg2+-ATPase, and/or carbonic anhydrase activities (significant in seven of 15 NOM-endpoint combinations), whereas metals by themselves did not affect the first two endpoints, but Cu and Pb increased carbonic anhydrase activities. In combination, the effects of NOMs predominated, with the metal exerting no additional effect in 33 out of 45 combinations. While NOM effects varied amongst different isolates, there was no clear pattern with respect to optical or chemical properties. When NOMs were treated as a single source by data averaging, NOM had no effect on Ca2++Mg2+-ATPase activity but markedly stimulated carbonic anhydrase activity and lipid peroxidation, and there were no additional effects of any metal. Our results indicate that marine NOMs may have direct effects on this model marine organism, as well as protective effects against metal toxicity, and the quality of marine NOMs may be an important factor in

  16. Marine Fungi: A Source of Potential Anticancer Compounds

    PubMed Central

    Deshmukh, Sunil K.; Prakash, Ved; Ranjan, Nihar

    2018-01-01

    Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012–2016 against specific cancer cell lines. PMID:29354097

  17. Defining the Marine Corps for the Long War

    DTIC Science & Technology

    2009-03-20

    will adopt a specific regional orientation with specialized manpower and training. Foreign Area Officer (FAO), Regional Affairs Officer (RAO) and...less company grade in the Marine Corps Reserve is a natural and positive consequence of the way the Marine Corps develops its officer corps. It...Support Element • Law Enforcement Element 3rd ANGLICO 4th ANGLICO 3rd FORECON 4th FORECON supports supports supports SC MAGTF SOUTH * MFR directs each

  18. Investigating Nature's Mysteries for Drug Development

    Cancer.gov

    More than half of the drugs approved to treat cancer come from a natural product or a natural product prototype. Scientists in NCI-Frederick's Natural Products Branch are exploring ways to harness chemicals produced by marine invertebrates, other animals, plants, and microbes for cancer drug discovery.

  19. Chloride-induced corrosion of steel in cracked concrete – Part I: Experimental studies under accelerated and natural marine environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otieno, M., E-mail: Mike.Otieno@wits.ac.za; Beushausen, H.; Alexander, M.

    Parallel corrosion experiments were carried out for 2¼ years by exposing one half of 210 beam specimens (120 × 130 × 375 mm long) to accelerated laboratory corrosion (cyclic wetting and drying) while the other half underwent natural corrosion in a marine tidal zone. Experimental variables were crack width w{sub cr} (0, incipient crack, 0.4, 0.7 mm), cover c (20, 40 mm), binder type (PC, PC/GGBS, PC/FA) and w/b ratio (0.40, 0.55). Results show that corrosion rate (i{sub corr}) was affected by the experimental variables in the following manner: i{sub corr} increased with increase in crack width, and decreased withmore » increase in concrete quality and cover depth. The results also show that the corrosion performance of concretes in the field under natural corrosion cannot be inferred from its performance in the laboratory under accelerated corrosion. Other factors such as corrosion process should be taken into account.« less

  20. Neanderthal exploitation of marine mammals in Gibraltar

    PubMed Central

    Stringer, C. B.; Finlayson, J. C.; Barton, R. N. E.; Fernández-Jalvo, Y.; Cáceres, I.; Sabin, R. C.; Rhodes, E. J.; Currant, A. P.; Rodríguez-Vidal, J.; Giles-Pacheco, F.; Riquelme-Cantal, J. A.

    2008-01-01

    Two coastal sites in Gibraltar, Vanguard and Gorham's Caves, located at Governor's Beach on the eastern side of the Rock, are especially relevant to the study of Neanderthals. Vanguard Cave provides evidence of marine food supply (mollusks, seal, dolphin, and fish). Further evidence of marine mammal remains was also found in the occupation levels at Gorham's Cave associated with Upper Paleolithic and Mousterian technologies [Finlayson C, et al. (2006) Nature 443:850–853]. The stratigraphic sequence of Gibraltar sites allows us to compare behaviors and subsistence strategies of Neanderthals during the Middle Paleolithic observed at Vanguard and Gorham's Cave sites. This evidence suggests that such use of marine resources was not a rare behavior and represents focused visits to the coast and estuaries. PMID:18809913

  1. 76 FR 62778 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    .... Nonetheless, NMFS uses the data on cetacean distribution within Massachusetts Bay, such as those published by... proposed Northeast Gateway Port and Pipeline Lateral. A notice of availability was published by MARAD on... Northeast Gateway Liquefied Natural Gas Port Facility in Massachusetts Bay AGENCY: National Marine Fisheries...

  2. The use of marine-derived bioactive compounds as potential hepatoprotective agents

    PubMed Central

    Nair, Dileep G; Weiskirchen, Ralf; Al-Musharafi, Salma K

    2015-01-01

    The marine environment may be explored as a rich source for novel drugs. A number of marine-derived compounds have been isolated and identified, and their therapeutic effects and pharmacological profiles are characterized. In the present review, we highlight the recent studies using marine compounds as potential hepatoprotective agents for the treatment of liver fibrotic diseases and discuss the proposed mechanisms of their activities. In addition, we discuss the significance of similar studies in Oman, where the rich marine life provides a potential for the isolation of novel natural, bioactive products that display therapeutic effects on liver diseases. PMID:25500871

  3. Marine carotenoids: Bioactivities and potential benefits to human health.

    PubMed

    Chuyen, Hoang Van; Eun, Jong-Bang

    2017-08-13

    Among natural pigments, carotenoids play important roles in physiological functions. The characteristics of carotenoids and their effects on human health have been reported for a long time, but most studies have focused on carotenoids from vegetables, fruits, and other parts of higher plants. Few reports are available on carotenoids from marine sources, such as seaweeds, microalgae, and marine animals, which have attracted attention in recent decades. Hundreds of carotenoids have been identified and isolated from marine organisms and their beneficial physiological functions, such as anticancer, antiobesity, antidiabetic, anti-inflammatory, and cardioprotective activities have been reported. The purpose of this review is to discuss the literature on the beneficial bioactivities of some of the most abundant marine carotenoids, including fucoxanthin, astaxanthin, cantaxanthin, peridinin, fucoxanthinol, and halocynthiaxanthin.

  4. Nonribosomal Peptides from Marine Microbes and Their Antimicrobial and Anticancer Potential

    PubMed Central

    Agrawal, Shivankar; Acharya, Debabrata; Adholeya, Alok; Barrow, Colin J.; Deshmukh, Sunil K.

    2017-01-01

    Marine environments are largely unexplored and can be a source of new molecules for the treatment of many diseases such as malaria, cancer, tuberculosis, HIV etc. The Marine environment is one of the untapped bioresource of getting pharmacologically active nonribosomal peptides (NRPs). Bioprospecting of marine microbes have achieved many remarkable milestones in pharmaceutics. Till date, more than 50% of drugs which are in clinical use belong to the nonribosomal peptide or mixed polyketide-nonribosomal peptide families of natural products isolated from marine bacteria, cyanobacteria and fungi. In recent years large numbers of nonribosomal have been discovered from marine microbes using multi-disciplinary approaches. The present review covers the NRPs discovered from marine microbes and their pharmacological potential along with role of genomics, proteomics and bioinformatics in discovery and development of nonribosomal peptides drugs. PMID:29209209

  5. Influenza Virus Infection of Marine Mammals.

    PubMed

    Fereidouni, Sasan; Munoz, Olga; Von Dobschuetz, Sophie; De Nardi, Marco

    2016-03-01

    Interspecies transmission may play a key role in the evolution and ecology of influenza A viruses. The importance of marine mammals as hosts or carriers of potential zoonotic pathogens such as highly pathogenic H5 and H7 influenza viruses is not well understood. The fact that influenza viruses are some of the few zoonotic pathogens known to have caused infection in marine mammals, evidence for direct transmission of influenza A virus H7N7 subtype from seals to man, transmission of pandemic H1N1 influenza viruses to seals and also limited evidence for long-term persistence of influenza B viruses in seal populations without significant genetic change, makes monitoring of influenza viruses in marine mammal populations worth being performed. In addition, such monitoring studies could be a great tool to better understand the ecology of influenza viruses in nature.

  6. Valuable natural products from marine and freshwater macroalgae obtained from supercritical fluid extracts.

    PubMed

    Messyasz, Beata; Michalak, Izabela; Łęska, Bogusława; Schroeder, Grzegorz; Górka, Bogusława; Korzeniowska, Karolina; Lipok, Jacek; Wieczorek, Piotr; Rój, Edward; Wilk, Radosław; Dobrzyńska-Inger, Agnieszka; Górecki, Henryk; Chojnacka, Katarzyna

    2018-01-01

    The biologically active compounds (fatty acids, pigments, phenolics, and flavonoid content) were studied in supercritical fluid extracts from the biomass of marine ( Ulva clathrata , Cladophora glomerata , Polysiphonia fucoides , and their multi-species mixture) and freshwater ( C. glomerata ) macroalgae. Different extraction techniques were used in order to compare differences in the biologically active compound composition of the macroalgal extracts. The results indicated that the saturated and unsaturated fatty acids ranged from C9:0 to C22:0. The analysis of differences in the composition of unsaturated to saturated fatty acids in extracts showed that palmitic acid (C16:0) and oleic acid (C18:1, n-9) reached the highest value not only in marine monospecies and multi-species biomass but also in the freshwater macroalga C. glomerata . When comparing the similarity between the concentration of fatty acids and the ratio of the concentration of unsaturated fatty acids to saturated in macroalgal extracts, we found small but not statistically significant variations in values between years (up to 10%). This is acceptable for applications as a stable raw material for industrial purposes. Significantly higher values of fatty acids, carotenoids, and chlorophylls were obtained in the case of SC-CO 2 extraction. The active ingredients of polyphenols, possessing antioxidant activity ranged from approximately 2-4%. Moreover, flavonoids represented less than 10% of the total content of polyphenolic compounds. The extraction efficiency of polyphenols was higher from a mixture of marine algae for the ultrasound-assisted extraction compared to freshwater. All these findings show that marine and freshwater macroalgae, as a raw material, have the optimal biologically active compounds composition for cosmetics.

  7. Random mutagenesis of the hyperthermophilic archaeon Pyrococcus furiosus using in vitro mariner transposition and natural transformation.

    PubMed

    Guschinskaya, Natalia; Brunel, Romain; Tourte, Maxime; Lipscomb, Gina L; Adams, Michael W W; Oger, Philippe; Charpentier, Xavier

    2016-11-08

    Transposition mutagenesis is a powerful tool to identify the function of genes, reveal essential genes and generally to unravel the genetic basis of living organisms. However, transposon-mediated mutagenesis has only been successfully applied to a limited number of archaeal species and has never been reported in Thermococcales. Here, we report random insertion mutagenesis in the hyperthermophilic archaeon Pyrococcus furiosus. The strategy takes advantage of the natural transformability of derivatives of the P. furiosus COM1 strain and of in vitro Mariner-based transposition. A transposon bearing a genetic marker is randomly transposed in vitro in genomic DNA that is then used for natural transformation of P. furiosus. A small-scale transposition reaction routinely generates several hundred and up to two thousands transformants. Southern analysis and sequencing showed that the obtained mutants contain a single and random genomic insertion. Polyploidy has been reported in Thermococcales and P. furiosus is suspected of being polyploid. Yet, about half of the mutants obtained on the first selection are homozygous for the transposon insertion. Two rounds of isolation on selective medium were sufficient to obtain gene conversion in initially heterozygous mutants. This transposition mutagenesis strategy will greatly facilitate functional exploration of the Thermococcales genomes.

  8. Bioactive sterols from marine resources and their potential benefits for human health.

    PubMed

    Kim, Se-Kwon; Van Ta, Quang

    2012-01-01

    Bioactive agents from marine resources have shown their valuable health beneficial effects. Therefore, increase knowledge on novel functional ingredients with biological activities from marine animal and microbe has gained much attention. Sterols are recognized as potential in development functional food ingredients and pharmaceutical agents. Marine resources, with a great diversity, can be a very interesting natural resource of sterols. This chapter focuses on biological activities of marine animal and microbe sterols with potential health beneficial applications in functional foods and pharmaceuticals. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. From marine ecology to biological oceanography

    NASA Astrophysics Data System (ADS)

    Mills, Eric L.

    1995-03-01

    Looking back from the 1990s it seems natural to view the work done in the Biologische Anstalt Helgoland by Friedrich Heincke and his colleagues, beginning in 1892, as marine ecology or marine biology, and that done in Kiel, under Victor Hensen and Karl Brandt, as biological oceanography. But historical analysis shows this view to be untenable. Biological oceanography, as a research category and a profession, does not appear until at least the 1950's. In the German tradition of marine research, “Ozeanographie”, originating in 19th century physical geography, did not include the biological sciences. The categories “Meereskunde” and “Meeresforschung” covered all aspects of marine research in Germany from the 1890's to the present day. “Meeresbiologie” like that of Brandt, Heincke, and other German marine scientists, fitted comfortably into these. But in North America no such satisfactory professional or definitional structure existed before the late 1950's. G. A. Riley, one of the first biological oceanographers, fought against descriptive, nonquantitative American ecology. In 1951 he described biological oceanography as the “ecology of marine populations”, linking it with quantitative population ecology in the U.S.A. By the end of the 1960's the U.S. National Science Foundation had recognized biological oceanography as a research area supported separately from marine biology. There was no need for the category “biological oceanography” in German marine science because its subject matter lay under the umbrella of “Meereskunde” or “Meeresforschung”. But in North America, biological oceanography — a fundamental fusion of physics and chemistry with marine biology — was created to give this marine science a status higher than that of the conceptually overloaded ecological sciences. The sociologists Durkheim and Mauss claimed in 1903 that, “the classification of things reproduces the classification of men”; similarly, in science, the

  10. 76 FR 43639 - Takes of Marine Mammals Incidental to Specified Activities; Taking Marine Mammals Incidental to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-21

    ... Operation of the Northeast Gateway Liquefied Natural Gas Port Facility in Massachusetts Bay AGENCY: National... application from Tetra Tech EC, Inc., on behalf of the Northeast Gateway[supreg] Energy Bridge TM L.P. (Northeast Gateway or NEG), for authorization to take marine mammals, by harassment, incidental to operating...

  11. A marine sponge associated strain of Bacillus subtilis and other marine bacteria can produce anticholinesterase compounds.

    PubMed

    Pandey, Sony; Sree, Ayinampudi; Sethi, Dipti Priya; Kumar, Chityal Ganesh; Kakollu, Sudha; Chowdhury, Lipsa; Dash, Soumya Suchismita

    2014-02-15

    Acetylcholinesterase (AChE) inhibitors or anticholinesterases reduce the activity of enzyme acetylcholinesterase that degrades the neurotransmitter acetylcholine in the brain. The inhibitors have a significant pharmacological role in neurodegenerative diseases like Alzheimer's and Parkinson's etc. Although plants have been a significant source of these compounds, there are very few sporadic reports of microorganisms producing such inhibitors. Anticholinesterase activity in bacterial associates of marine soft corals and sponges were not previously reported. We screened 887 marine bacteria for the presence of acetylcholinesterase inhibitors, in a microplate based assay, and found that 140 (15.8%) of them inhibit the electric eel enzyme, acetylcholinesterase. Majority of the active isolates were bacterial associates of soft corals followed by sediment isolates while most of the potent inhibitors belonged to the bacterial associates of marine sponges. Maximum inhibition (54%) was exhibited by a bacterial strain M18SP4P (ii), isolated from the marine sponge Fasciospongia cavernosa. Based on phenotypic characterization and 16S rDNA sequencing, the strain was identified as Bacillus subtilis - revealing yet another activity in a strain of the model organism that is considered to be a cell factory. TLC bioautography of the methanol extract of this culture, showed the presence of two major components having this activity, when compared to Galanthamine, the positive control. From the results of our study, we conclude that acetylcholinesterase inhibitors are quite prevalent in marine bacteria, particularly the bacterial associates of marine invertebrates. Several potential AChE inhibitors in marine bacteria are waiting to be discovered to provide easily manipulable natural sources for the mass production of these therapeutic compounds.

  12. The first total synthesis and biological evaluation of marine natural products ma'edamines A and B.

    PubMed

    Saha, Sanjay; Venkata Ramana Reddy, Ch; Chiranjeevi, T; Addepally, Uma; Chinta Rao, T S; Patro, Balaram

    2013-02-15

    We have developed the first total syntheses of marine natural products ma'edamines A (18) and B (20). Structurally, they contain a pyrazine-2-(1H)-one core and were screened for antiproliferative activity on several cancer cell lines. Out of the six cell lines tested, ma'edamines A and B showed significant cytotoxicity against human colon cancer line COLO 205 (IC(50) 7.9 and 10.3 μM, respectively), breast cancer cell line MCF-7 (IC(50): 6.9 and 10.5 μM, respectively) and human lung adenocarcinoma cell line A549 (IC(50): 12.2 and 15.4 μM, respectively). The apoptotic effect of ma'edamines was confirmed by comet assay. Hence ma'edamines are likely to be useful as leads for development of a new class of anti-cancer agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Marine bioactives and potential application in sports.

    PubMed

    Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D'Orazio, Nicolantonio

    2014-04-30

    An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports.

  14. Marine Bioactives and Potential Application in Sports

    PubMed Central

    Gammone, Maria Alessandra; Gemello, Eugenio; Riccioni, Graziano; D’Orazio, Nicolantonio

    2014-01-01

    An enriched diet with antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic compounds, has always been suggested to improve oxidative stress, preventing related diseases. In this respect, marine natural product (MNP), such as COX inhibitors, marine steroids, molecules interfering with factors involved in the modulation of gene expression (such as NF-κB), macrolides, many antioxidant agents, thermogenic substances and even substances that could help the immune system and that result in the protection of cartilage, have been recently gaining attention. The marine world represents a reserve of bioactive ingredients, with considerable potential as functional food. Substances, such as chitin, chitosan, n-3 oils, carotenoids, vitamins, minerals and bioactive peptides, can provide several health benefits, such as the reduction of cardiovascular diseases, anti-inflammatory and anticarcinogenic activities. In addition, new marine bioactive substances with potential anti-inflammatory, antioxidant and thermogenic capacity may provide health benefits and performance improvement, especially in those who practice physical activity, because of their increased free radical and Reacting Oxygen Species (ROS) production during exercise, and, particularly, in athletes. The aim of this review is to examine the potential pharmacological properties and application of many marine bioactive substances in sports. PMID:24796298

  15. Bacteria From Marine Sponges: A Source of New Drugs.

    PubMed

    Bibi, Fehmida; Faheem, Muhammad; Azhar, Esam I; Yasir, Muhammad; Alvi, Sana A; Kamal, Mohammad A; Ullah, Ikram; Naseer, Muhammad I

    2017-01-01

    Sponges are rich source of bioactive natural products synthesized by the symbiotic bacteria belonging to different phyla. Due to a competition for space and nutrients the marine bacteria associated with sponges could produce more antibiotic substances. To explore the proactive potential of marine microbes extensive research has been done. These bioactive metabolites have some unique properties that are pharmaceutically important. For this review, we have performed a non-systematic search of the available literature though various online search engines. This review provides an insight that how majority of active metabolites have been identified from marine invertebrates of which sponges predominate. Sponges harbor abundant and diverse microorganisms, which are the sources of a range of marine bioactive metabolites. From sponges and their associated microorganisms, approximately 5,300 different natural compounds are known. Current research on sponge-microbe interaction and their active metabolites has become a focal point for many researchers. Various active metabolites derived from sponges are now known to be produced by their symbiotic microflora. In this review, we attempt to report the latest studies regarding capability of bacteria from sponges as producers of bioactive metabolite. Moreover, these sponge associated bacteria are an important source of different enzymes of industrial significance. In present review, we will address some novel approaches for discovering marine metabolites from bacteria that have the greatest potential to be used in clinical treatments. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. The role of marine reserves in achieving sustainable fisheries

    PubMed Central

    Roberts, Callum M.; Hawkins, Julie P.; Gell, Fiona R.

    2005-01-01

    Many fishery management tools currently in use have conservation value. They are designed to maintain stocks of commercially important species above target levels. However, their limitations are evident from continuing declines in fish stocks throughout the world. We make the case that to reverse fishery declines, safeguard marine life and sustain ecosystem processes, extensive marine reserves that are off limits to fishing must become part of the management strategy. Marine reserves should be incorporated into modern fishery management because they can achieve many things that conventional tools cannot. Only complete and permanent protection from fishing can protect the most sensitive habitats and vulnerable species. Only reserves will allow the development of natural, extended age structures of target species, maintain their genetic variability and prevent deleterious evolutionary change from the effects of fishing. Species with natural age structures will sustain higher rates of reproduction and will be more resilient to environmental variability. Higher stock levels maintained by reserves will provide insurance against management failure, including risk-prone quota setting, provided the broader conservation role of reserves is firmly established and legislatively protected. Fishery management measures outside protected areas are necessary to complement the protection offered by marine reserves, but cannot substitute for it. PMID:15713592

  17. Empirical links between natural mortality and recovery in marine fishes.

    PubMed

    Hutchings, Jeffrey A; Kuparinen, Anna

    2017-06-14

    Probability of species recovery is thought to be correlated with specific aspects of organismal life history, such as age at maturity and longevity, and how these affect rates of natural mortality ( M ) and maximum per capita population growth ( r max ). Despite strong theoretical underpinnings, these correlates have been based on predicted rather than realized population trajectories following threat mitigation. Here, we examine the level of empirical support for postulated links between a suite of life-history traits (related to maturity, age, size and growth) and recovery in marine fishes. Following threat mitigation (medium time since cessation of overfishing = 20 years), 71% of 55 temperate populations had fully recovered, the remainder exhibiting, on average, negligible change (impaired recovery). Singly, life-history traits did not influence recovery status. In combination, however, those that jointly reflect length-based mortality at maturity, M α , revealed that recovered populations have higher M α , which we hypothesize to reflect local adaptations associated with greater r max But, within populations, the smaller sizes at maturity generated by overfishing are predicted to increase M α , slowing recovery and increasing its uncertainty. We conclude that recovery potential is greater for populations adapted to high M but that temporal increases in M concomitant with smaller size at maturity will have the opposite effect. The recovery metric documented here ( M α ) has a sound theoretical basis, is significantly correlated with direct estimates of M that directly reflect r max , is not reliant on data-intensive time series, can be readily estimated, and offers an empirically defensible correlate of recovery, given its clear links to the positive and impaired responses to threat mitigation that have been observed in fish populations over the past three decades. © 2017 The Author(s).

  18. Environmental impacts of heavy metals, rare earth elements and natural radionuclides in marine sediment from Ras Tanura, Saudi Arabia along the Arabian Gulf.

    PubMed

    El-Taher, Atef; Alshahri, Fatimh; Elsaman, Reda

    2018-02-01

    Ras Tanura city is one of the most important cities in Saudi Arabia because of the presence of the largest and oldest oil refinery in the Middle East which was began operations in September 1945. Also its contains gas plant and two ports. The concentration of natural radionuclides, heavy metals and rare earth elements were measured in marine sediment samples collected from Ras Tanura. The specific activities of 238 U, 226 Ra, 232 Th, 40 K and 137 Cs (Bq/kg) were measured using A hyper-pure Germanium detector (HPGe), and ranged from (20.4 ± 4.0-55.1 ± 9.9), (6.71 ± 0.7-46.1 ± 4.5), (3.51 ± 0.5-18.2 ± 1.5), (105 ± 4.4-492 ± 13) and from (0.33 ± 0.04-2.10 ± 0.4) for 238 U, 226 Ra, 232 Th, 40 K and 137 Cs respectively. Heavy metals and rare earth elements were measured using ICPE-9820 Plasma Atomic Emission Spectrometer. Also the frequency distributions for all radioactive variables in sediment samples were analyzed. Finally the radiological hazards due to natural radionuclides in marine sediment were calculated to the public and it's diagramed by Surfer program in maps. Comparing with the international recommended values, its values found to be within the international level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evolutionary potential of marine phytoplankton under ocean acidification.

    PubMed

    Collins, Sinéad; Rost, Björn; Rynearson, Tatiana A

    2014-01-01

    Marine phytoplankton have many obvious characters, such as rapid cell division rates and large population sizes, that give them the capacity to evolve in response to global change on timescales of weeks, months or decades. However, few studies directly investigate if this adaptive potential is likely to be realized. Because of this, evidence of to whether and how marine phytoplankton may evolve in response to global change is sparse. Here, we review studies that help predict evolutionary responses to global change in marine phytoplankton. We find limited support from experimental evolution that some taxa of marine phytoplankton may adapt to ocean acidification, and strong indications from studies of variation and structure in natural populations that selection on standing genetic variation is likely. Furthermore, we highlight the large body of literature on plastic responses to ocean acidification available, and evolutionary theory that may be used to link plastic and evolutionary responses. Because of the taxonomic breadth spanned by marine phytoplankton, and the diversity of roles they fill in ocean ecosystems and biogeochemical cycles, we stress the necessity of treating taxa or functional groups individually.

  20. Marine Algae as Source of Novel Antileishmanial Drugs: A Review.

    PubMed

    Tchokouaha Yamthe, Lauve Rachel; Appiah-Opong, Regina; Tsouh Fokou, Patrick Valere; Tsabang, Nole; Fekam Boyom, Fabrice; Nyarko, Alexander Kwadwo; Wilson, Michael David

    2017-10-29

    Leishmaniasis is a vector-borne neglected tropical disease caused by protozoan parasites of the Leishmania genus and transmitted by the female Phlebotomus and Lutzomyia sand flies. The currently prescribed therapies still rely on pentavalent antimonials, pentamidine, paromomycin, liposomal amphotericin B, and miltefosine. However, their low efficacy, long-course treatment regimen, high toxicity, adverse side effects, induction of parasite resistance and high cost require the need for better drugs given that antileishmanial vaccines may not be available in the near future. Although most drugs are still derived from terrestrial sources, the interest in marine organisms as a potential source of promising novel bioactive natural agents has increased in recent years. About 28,000 compounds of marine origin have been isolated with hundreds of new chemical entities. Recent trends in drug research from natural resources indicated the high interest of aquatic eukaryotic photosynthetic organisms, marine algae in the search for new chemical entities given their broad spectrum and high bioactivities including antileishmanial potential. This current review describes prepared extracts and compounds from marine macroalgae along with their antileishmanial activity and provides prospective insights for antileishmanial drug discovery.

  1. Marine Algae as Source of Novel Antileishmanial Drugs: A Review

    PubMed Central

    Tchokouaha Yamthe, Lauve Rachel; Appiah-Opong, Regina; Tsabang, Nole; Nyarko, Alexander Kwadwo

    2017-01-01

    Leishmaniasis is a vector-borne neglected tropical disease caused by protozoan parasites of the Leishmania genus and transmitted by the female Phlebotomus and Lutzomyia sand flies. The currently prescribed therapies still rely on pentavalent antimonials, pentamidine, paromomycin, liposomal amphotericin B, and miltefosine. However, their low efficacy, long-course treatment regimen, high toxicity, adverse side effects, induction of parasite resistance and high cost require the need for better drugs given that antileishmanial vaccines may not be available in the near future. Although most drugs are still derived from terrestrial sources, the interest in marine organisms as a potential source of promising novel bioactive natural agents has increased in recent years. About 28,000 compounds of marine origin have been isolated with hundreds of new chemical entities. Recent trends in drug research from natural resources indicated the high interest of aquatic eukaryotic photosynthetic organisms, marine algae in the search for new chemical entities given their broad spectrum and high bioactivities including antileishmanial potential. This current review describes prepared extracts and compounds from marine macroalgae along with their antileishmanial activity and provides prospective insights for antileishmanial drug discovery. PMID:29109372

  2. Questions as indicators of ocean literacy: students' online asynchronous discussion with a marine scientist

    NASA Astrophysics Data System (ADS)

    Fauville, Géraldine

    2017-11-01

    In this article, 61 high-school students learned about ocean acidification through a virtual laboratory followed by a virtual lecture and an asynchronous discussion with a marine scientist on an online platform: VoiceThread. This study focuses on the students' development of ocean literacy when prompted to ask questions to the scientist. The students' questions were thematically analysed to assess (1) the kind of reasoning that can be discerned as premises of the students' questions and (2) what possibilities for enhancing ocean literacy emerge in this instructional activity. The results show how interacting with a scientist gives the students an entry point to the world of natural sciences with its complexity, uncertainty and choices that go beyond the idealised form in which natural sciences often are presented in school. This activity offers an affordable way of bringing marine science to school by providing extensive expertise from a marine scientist. Students get a chance to mobilise their pre-existing knowledge in the field of marine science. The holistic expertise of the marine scientist allows students to explore and reason around a very wide range of ideas and aspect of natural sciences that goes beyond the range offered by the school settings.

  3. Alkynyl-Containing Peptides of Marine Origin: A Review

    PubMed Central

    Chai, Qiu-Ye; Yang, Zhen; Lin, Hou-Wen; Han, Bing-Nan

    2016-01-01

    Since the 1990s, a number of terminal alkynyl residue-containing cyclic/acyclic peptides have been identified from marine organisms, especially cyanobacteria and marine mollusks. This review has presented 66 peptides, which covers over 90% marine peptides with terminal alkynyl fatty acyl units. In fact, more than 90% of these peptides described in the literature are of cyanobacterial origin. Interestingly, all the linear peptides featured with terminal alkyne were solely discovered from marine cyanobacteria. The objective of this article is to provide an overview on the types, structural characterization of these unusual terminal alkynyl fatty acyl units, as well as the sources and biological functions of their composed peptides. Many of these peptides have a variety of biological activities, including antitumor, antibacterial, antimalarial, etc. Further, we have also discussed the evident biosynthetic origin responsible for formation of terminal alkynes of natural PKS (polyketide synthase)/NRPS (nonribosome peptide synthetase) hybrids. PMID:27886049

  4. Bioactive secondary metabolites from marine microbes for drug discovery.

    PubMed

    Nikapitiya, Chamilani

    2012-01-01

    The isolation and extraction of novel bioactive secondary metabolites from marine microorganisms have a biomedical potential for future drug discovery as the oceans cover 70% of the planet's surface and life on earth originates from sea. Wide range of novel bioactive secondary metabolites exhibiting pharmacodynamic properties has been isolated from marine microorganisms and many to be discovered. The compounds isolated from marine organisms (macro and micro) are important in their natural form and also as templates for synthetic modifications for the treatments for variety of deadly to minor diseases. Many technical issues are yet to overcome before wide-scale bioprospecting of marine microorganisms becomes a reality. This chapter focuses on some novel secondary metabolites having antitumor, antivirus, enzyme inhibitor, and other bioactive properties identified and isolated from marine microorganisms including bacteria, actinomycetes, fungi, and cyanobacteria, which could serve as potentials for drug discovery after their clinical trials. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. 76 FR 28421 - Marine Mammals; File No. 15646

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... Rebecca Dickhut, Ph.D., Virginia Institute of Marine Science, P.O. Box 1346, Route 1208 Greate Road... following archived samples will be imported from the Swedish Museum of Natural History: fur, blood, and fat...

  6. 77 FR 19646 - Marine Mammals; File No. 17178

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... Virginia Institute of Marine Science [Responsible Party: Elizabeth Canuel, Ph.D.], P.O. Box 1346, Route... will be imported from the Swedish Museum of Natural History: fur, blood, and fat biopsies from up to...

  7. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    PubMed Central

    Mondol, Muhammad Abdul Mojid; Shin, Hee Jae; Islam, Mohammad Tofazzal

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed. PMID:23941823

  8. Toxicity of ammonia to three marine fish and three marine invertebrates.

    PubMed

    Boardman, Gregory D; Starbuck, Steven M; Hudgins, Douglas B; Li, Xiayoun; Kuhn, David D

    2004-04-01

    Laboratory toxicity tests were performed to obtain more data on the toxicity of ammonia to saltwater organisms. The standards for in-stream ammonia limits in marine environments presently are based on toxicity tests involving both freshwater and saltwater organisms. Acute tests (48 and 96 h) were performed at 20 degrees C, and chronic tests (7 days) were performed at 25 degrees C. Synthetic seawater and natural seawater from the Chesapeake Bay were used and compared. Included among the organisms tested were sheepshead minnow (14 days old), summer flounder (2 months old), Atlantic silverside (14 days old), mysid shrimp (less than 2 days old), ghost shrimp (10 days old), and quahog clam (9 months old). Based on these results, it seems the chronic criterion for ammonia in marine environments could be increased from 0.035 to 0.081 mg/L un-ionized ammonia, which would, of course, increase the chronic limit for total ammonia under typical saltwater conditions by a factor of 2.31. No difference was observed in the toxicity of ammonia in natural water compared to synthetic water for both the summer flounder and Atlantic silverside. Furthermore, the Atlantic silverside became more sensitive to ammonia as the salinity was increased from 14 to 22 ppt, but exhibited no change in toxicity response from 22 to 30 ppt. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 134-142, 2004

  9. Effects of Pollutants on Marine Life Probed

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses research activities conducted by scientists from the United State of America, Canada, and the United Kingdom to determine the long-term effects on natural marine ecosystems, especially plankton communities, of such pollutants as heavy metals, synthetic hydrocarbons, and petroleum hydrocarbons. (CC)

  10. Investigations of the marine flora and fauna of the Islands of Palau.

    PubMed

    John Faulkner, D; Newman, David J; Cragg, Gordon M

    2004-02-01

    The Islands of Palau have proven to be an excellent source of bioactive marine natural products primarily as a result of the systematic studies from the late 1970s by the research groups of Scheuer at the University of Hawaii, Faulkner at the Scripps Oceanographic Institution/University of California at San Diego, and Paul at the University of Guam. Their efforts were materially aided by the excellent facilities provided by the Government of Palau and for the last 10 years, those of the NCI's shallow water collection contractor, the Coral Reef Research Foundation. This review covers the structures and biological activities where noted, of the multitudinous marine-derived natural products isolated from the marine flora and fauna of this nation and demonstrates the enormous variety of novel structures elaborated by these organisms.

  11. Hybridization among the ancient mariners: characterization of marine turtle hybrids with molecular genetic assays.

    PubMed

    Karl, S A; Bowen, B W; Avise, J C

    1995-01-01

    Reports of hybridization between marine turtle species (family Cheloniidae) have been difficult to authenticate based solely on morphological evidence. Here we employ molecular genetic assays to document the sporadic, natural occurrence of viable interspecific hybrids between species representing four of the five genera of cheloniid sea turtles. Using multiple DNA markers from single-copy nuclear loci, eight suspected hybrids (based on morphology) were confirmed to be the products of matings involving the loggerhead turtle (Caretta caretta) x Kemp's ridley (Lepidochelys kempii) (N = 1 specimen), loggerhead turtle x hawksbill (Eretmochelys imbricata) (N = 2), loggerhead turtle x green turtle (Chelonia mydas) (N = 4), and green turtle x hawksbill (N = 1). Molecular markers from mitochondrial DNA permitted identification of the maternal parental species in each cross. The species involved in these hybridization events represent evolutionary lineages thought to have separated 10-75 million years ago (mya) and thus may be among the oldest vertebrate lineages capable of producing viable hybrids in nature. In some cases, human intervention with the life cycles of marine turtles (e.g., through habitat alteration, captive rearing, or attempts to establish new breeding sites) may have increased the opportunities for interspecific hybridization.

  12. Secondary metabolites from marine microorganisms.

    PubMed

    Kelecom, Alphonse

    2002-03-01

    After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  13. The nature and function of microbial enzymes in subsurface marine sediments

    NASA Astrophysics Data System (ADS)

    Steen, A. D.; Schmidt, J.

    2016-02-01

    Isotopic and genomic evidence indicates that marine sediments contain populations of active heterotrophic microorganisms which appear to metabolize old, detrital, apparently recalcitrant organic matter. In surface communities, heterotrophs use extracellular enzymes to access complex organic matter. In subsurface sediments, in which microbial doubling times can be on the order of hundreds or thousands of years, it is not clear whether extracellular enzymes could remain stable and active long enough to constitute a 'profitable' stragtegy for accessing complex organic carbon. Here we present evidence that a wide range of extracellular enzyme are active in subsurface sediments from two different environments: the White Oak River, NC, and deep (up to 80 m) sediments of the Baltic Sea Basin recovered from IODP Expedition 347. In the White Oak River, enzymes from deeper sediments appear to be better-adapted to highly-degraded organic matter than enzymes from surface sediments. In the Baltic Sea, preliminary data suggest that enzymes related to nitrogen acquisition are preferentially expressed. By characterizing the extracellular enzymes present in marine sediments, we hope to achieve a better understanding of the mechanisms that control sedimentary organic matter remineralization and preservation.

  14. Enzymatic Reductive Dehalogenation Controls the Biosynthesis of Marine Bacterial Pyrroles.

    PubMed

    El Gamal, Abrahim; Agarwal, Vinayak; Rahman, Imran; Moore, Bradley S

    2016-10-12

    Enzymes capable of performing dehalogenating reactions have attracted tremendous contemporary attention due to their potential application in the bioremediation of anthropogenic polyhalogenated persistent organic pollutants. Nature, in particular the marine environment, is also a prolific source of polyhalogenated organic natural products. The study of the biosynthesis of these natural products has furnished a diverse array of halogenation biocatalysts, but thus far no examples of dehalogenating enzymes have been reported from a secondary metabolic pathway. Here we show that the penultimate step in the biosynthesis of the highly brominated marine bacterial product pentabromopseudilin is catalyzed by an unusual debrominase Bmp8 that utilizes a redox thiol mechanism to remove the C-2 bromine atom of 2,3,4,5-tetrabromopyrrole to facilitate oxidative coupling to 2,4-dibromophenol. To the best of our knowledge, Bmp8 is first example of a dehalogenating enzyme from the established genetic and biochemical context of a natural product biosynthetic pathway.

  15. 43 CFR 15.2 - Removal or destruction of natural features and marine life.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... marine invertebrates, seaweeds, grasses, or any soil, rock, artifacts, stones or other materials. No... this Preserve. No rope, wire or other contrivance shall be attached to any coral, rock or other...

  16. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals...

  17. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals...

  18. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals...

  19. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals...

  20. 49 CFR 1242.27 - Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals, motor vehicle loading and distribution facilities, and... Structures § 1242.27 Coal marine terminals, ore marine terminals, TOFC/COFC terminals, other marine terminals...

  1. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    PubMed Central

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  2. Novel anti-infective compounds from marine bacteria.

    PubMed

    Rahman, Hafizur; Austin, Brian; Mitchell, Wilfrid J; Morris, Peter C; Jamieson, Derek J; Adams, David R; Spragg, Andrew Mearns; Schweizer, Michael

    2010-03-05

    As a result of the continuous evolution of microbial pathogens towards antibiotic-resistance, there have been demands for the development of new and effective antimicrobial compounds. Since the 1960s, the scientific literature has accumulated many publications about novel pharmaceutical compounds produced by a diverse range of marine bacteria. Indeed, marine micro-organisms continue to be a productive and successful focus for natural products research, with many newly isolated compounds possessing potentially valuable pharmacological activities. In this regard, the marine environment will undoubtedly prove to be an increasingly important source of novel antimicrobial metabolites, and selective or targeted approaches are already enabling the recovery of a significant number of antibiotic-producing micro-organisms. The aim of this review is to consider advances made in the discovery of new secondary metabolites derived from marine bacteria, and in particular those effective against the so called "superbugs", including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE), which are largely responsible for the increase in numbers of hospital acquired, i.e., nosocomial, infections.

  3. Marine-Lenhart syndrome with papillary thyroid carcinoma.

    PubMed

    Atmaca, Hulusi; Çolak, Ramis; Yazici, Zihni Acar; Kefeli, Mehmet; Tosun, Fevziye Canbaz

    2015-04-01

    Graves' disease with accompanying functioning nodules is known as Marine-Lenhart syndrome. Autonomously functioning thyroid nodules (AFTNs) also within Graves' thyroid tissue are almost always bening in nature. A 45-year-old man developed hyperthyroidism due to the coexistence of Graves' disease and AFTN. Total thyroidectomy was performed. The hyperfunctioning nodule with centrally hypoactive foci detected by technetium-99m thyroid scanning was histologically diagnosed as papillary thyroid carcinoma that was 2.5 cm in diameter. We report the presence of papillary thyroid carcinoma within AFTN in patients with Marine-Lenhart syndrome, which has not been reported so far.

  4. A Collaborative and Mutually Beneficial Tribal Marine Science Workshop Format for Tribal Natural Resource Professionals, Marine Educators, and Researchers

    ERIC Educational Resources Information Center

    Matsumoto, George I.; Needham, Cathy; Opheim, Michael; Chen, Glenn

    2014-01-01

    The Tribal Marine Science Workshop has run annually since 2010. The workshop takes place at the Kasitsna Bay Laboratory, owned by the National Oceanic and Atmospheric Administration (NOAA) and operated by NOAA and the University of Alaska, Fairbanks, near Seldovia, Alaska. It is hosted by the Seldovia Village Tribe, sponsored by the Bureau of…

  5. Fractionation of iron isotopes during leaching of natural particles by acidic and circumneutral leaches and development of an optimal leach for marine particulate iron isotopes

    NASA Astrophysics Data System (ADS)

    Revels, Brandi N.; Zhang, Ruifeng; Adkins, Jess F.; John, Seth G.

    2015-10-01

    Iron (Fe) is an essential nutrient for life on land and in the oceans. Iron stable isotope ratios (δ56Fe) can be used to study the biogeochemical cycling of Fe between particulate and dissolved phases in terrestrial and marine environments. We have investigated the dissolution of Fe from natural particles both to understand the mechanisms of Fe dissolution, and to choose a leach appropriate for extracting labile Fe phases of marine particles. With a goal of finding leaches which would be appropriate for studying dissolved-particle interactions in an oxic water column, three particle types were chosen including oxic seafloor sediments (MESS-3), terrestrial dust (Arizona Test Dust - A2 Fine), and ocean sediment trap material from the Cariaco basin. Four leaches were tested, including three acidic leaches similar to leaches previously applied to marine particles and sediments (25% acetic acid, 0.01 N HCl, and 0.5 N HCl) and a pH 8 oxalate-EDTA leach meant to mimic the dissolution of particles by organic complexation, as occurs in natural seawater. Each leach was applied for three different times (10 min, 2 h, 24 h) at three different temperatures (25 °C, 60 °C, 90 °C). MESS-3 was also leached under various redox conditions (0.02 M hydroxylamine hydrochloride or 0.02 M hydrogen peroxide). For all three sample types tested, we find a consistent relationship between the amount of Fe leached and leachate δ56Fe for all of the acidic leaches, and a different relationship between the amount of Fe leached and leachate δ56Fe for the oxalate-EDTA leach, suggesting that Fe was released through proton-promoted dissolution for all acidic leaches and by ligand-promoted dissolution for the oxalate-EDTA leach. Fe isotope fractionations of up to 2‰ were observed during acidic leaching of MESS-3 and Cariaco sediment trap material, but not for Arizona Test Dust, suggesting that sample composition influences fractionation, perhaps because Fe isotopes are greatly fractionated

  6. Tides. Marine Science Curriculum Aid No. 5. Sea Grant Report 80-2.

    ERIC Educational Resources Information Center

    McDonald, Judy

    This manual, developed for use in Alaskan secondary schools, is one of a continuing series designed to provide basic information about the marine environment and Alaskan marine resources. The first part of the manual presents information about tides, focusing on: the nature of tides; cause of tides; factors related to tidal movement; types of…

  7. Augmentative Biocontrol in Natural Marine Habitats: Persistence, Spread and Non-Target Effects of the Sea Urchin Evechinus chloroticus

    PubMed Central

    Atalah, Javier; Hopkins, Grant A.; Forrest, Barrie M.

    2013-01-01

    Augmentative biocontrol aims to control established pest populations through enhancement of their indigenous enemies. To our knowledge, this approach has not been applied at an operational scale in natural marine habitats, in part because of the perceived risk of adverse non-target effects on native ecosystems. In this paper, we focus on the persistence, spread and non-target effects of the sea urchin Evechinus chloroticus when used as biocontrol agent to eradicate an invasive kelp from Fiordland, New Zealand. Rocky reef macrobenthic assemblages were monitored over 17 months in areas where the indigenous algal canopy was either removed or left intact prior to the translocation of a large number of urchins (>50 ind.·m−2). Urchin densities in treated areas significantly declined ∼9 months after transplant, and began spreading to adjacent sites. At the end of the 17-month study, densities had declined to ∼5 ind.·m−2. Compared to controls, treatment sites showed persistent shifts from kelp forest to urchin barrens, which were accompanied by significant reductions in taxa richness. Although these non-target effects were pronounced, they were considered to be localised and reversible, and arguably outweigh the irreversible and more profound ecological impacts associated with the establishment of an invasive species in a region of high conservation value. Augmentative biocontrol, used in conjunction with traditional control methods, represents a promising tool for the integrated management of marine pests. PMID:24260376

  8. Pleistocene reduction of polar ice caps: Evidence from Cariaco Basin marine sediments

    USGS Publications Warehouse

    Poore, R.Z.; Dowsett, H.J.

    2001-01-01

    Sea level is projected to rise between 13 and 94 cm over the next 100 yr due to continued climate warming. The sea-level projections assume that polar ice sheets will remain stable or even increase on time scales of centuries, but controversial geologic evidence suggests that current polar ice sheets have been eliminated or greatly reduced during previous Pleistocene interglacials indicating that modern polar ice sheets have become unstable within the natural range of interglacial climates. Sea level may have been more than 20 m higher than today during a presumably very warm interglacial about 400 ka during marine isotope stage 11. Because of the implications for future sea level rise, additional study of the conflicting evidence for warmer conditions and higher sea level during marine isotope stage 11 is needed. Here we present microfossil and isotopic data from marine sediments of the Cariaco Basin supporting the interpretation that global sea level was 10-20 m higher than today during marine isotope stage 11. The increased sea level requires reduction in modern polar ice sheets and is consistent with the interpretation that the West Antarctic ice sheet and the Greenland ice sheet were absent or greatly reduced during marine isotope stage 11. Our results show a warm marine isotope stage 11 interglacial climate with sea level as high as or above modern sea level that lasted for 25 to 30 k.y. Variations in Earth's orbit around the sun (Milankovitch cycles) are considered to be a primary external force driving glacial-interglacial cycles. Current and marine isotope stage 11 Milankovitch forcing are very similar, suggesting that the present interglacial (Holocene) that began ca. 10 ka will continue for another 15 to 20 k.y. Therefore any anthropogenic climate warming will accelerate the natural process toward reduction in polar ice sheets. The potential for increased rates of sea level rise related to polar ice sheet decay should be considered as a potential natural

  9. [Studies on metabolites from marine microorganism Aspergillus terreus collected from nature reserve region of mangrove].

    PubMed

    Shen, Yi; Zou, Jianhua; Dai, Jungui

    2011-09-01

    To search for new antitumor active lead compounds from marine microorganism. A marine strain, Aspergillus terreus, was cultured and up-scaled in artificial seawater media, from which the metabolites were isolated and elucidated by using modern spectroscopy techniques. Twelve compounds were isolated from mycelia and fermentation broth of A. terreus. Compounds 1-4 were steroids, compounds 5-8 were organic acids and esters, compound 9 was an alkaloid, compound 10 was an isocoumarin, compound 11 was ceramide, compound 12 was propenyl cyclic pentanediol.

  10. Natural Organohalogens: A New Frontier for Medicinal Agents?

    NASA Astrophysics Data System (ADS)

    Gribble, Gordon W.

    2004-10-01

    More than 4000 naturally occurring organohalogen compounds are known. These include a relatively small number of abiogenic organohalogens from volcanoes, forest fires, geothermal processes, and meteorites, and a very large number of biogenic organohalogens produced by myriad living organisms as part of their chemical makeup that serve as hormones, pheromones, repellents, and natural pesticides. From the chemically simple methyl chloride, methyl bromide, and chloroform to the structurally complex vancomycin, pyrroindomycin, and bastadins, the diversity of these organohalogens is unsurpassed among natural products. Most natural organohalogens contain chlorine (2300) or bromine (2100), but a significant number contain iodine (120) or fluorine (30). Several hundred marine natural products contain both chlorine and bromine. The present article focuses on newly discovered biogenic organohalogens, with an emphasis on those biologically active examples from marine organisms, bacteria, terrestrial plants, and higher life forms including humans.

  11. Bacteria Mediate Methylation of Iodine in Marine and Terrestrial Environments

    PubMed Central

    Amachi, Seigo; Kamagata, Yoichi; Kanagawa, Takahiro; Muramatsu, Yasuyuki

    2001-01-01

    Methyl iodide (CH3I) plays an important role in the natural iodine cycle and participates in atmospheric ozone destruction. However, the main source of this compound in nature is still unclear. Here we report that a wide variety of bacteria including terrestrial and marine bacteria are capable of methylating the environmental level of iodide (0.1 μM). Of the strains tested, Rhizobium sp. strain MRCD 19 was chosen for further analysis, and it was found that the cell extract catalyzed the methylation of iodide with S-adenosyl-l-methionine as the methyl donor. These results strongly indicate that bacteria contribute to iodine transfer from the terrestrial and marine ecosystems into the atmosphere. PMID:11375186

  12. Marine biological diversity: Some important issues, opportunities and critical research needs

    NASA Astrophysics Data System (ADS)

    Butman, Cheryl Ann; Carlton, James T.

    1995-07-01

    Marine biological diversity is changing, dramatically in some cases, and most recent changes are due to broad-scale human activities. Knowledge of "biodiversity" — the variety of genomes (the genetic material specifying all characteristics and functions within an organism), species and ecosystems — is the foundation for understanding and predicting how human and natural effects can change the ocean's ecosystems. Evaluating the scale and ultimate consequences to life in the sea of a plethora of anthropogenic effects is difficult, however, because there is inadequate knowledge of both the patterns of and the processes that control marine biodiversity. Recognizing change and evaluating its consequences require sufficient knowledge of present and historical natural patterns of biodiversity, and sufficient understanding of how and why these patterns vary in space and time. Data on biodiversity patterns and their causes are sorely lacking for most marine ecosystems. Adequate understanding of what creates and maintains diversity must be the scientific underpinning for policy decisions regarding pollutant and waste disposal, habitat alteration, fisheries management and the preservation of threatened or endangered species. The inability, at this time, to provide such information to policy makers may have important implications for the conservation of marine life [Norse, 1993].

  13. Polymerization of Quinone-Crosslinked Marine Bioadhesive Protein

    DTIC Science & Technology

    1988-10-05

    T. (1988) Adhesive protein of ribbed mussels: a natural glue with some features of collagen . To: J. Biol. Chem. Rzepecki, L., Nagafuchi, T. and...protein as inducing agent in the settlement of Mytilus edulis larvae", and "Hemolytic toxins of two marine jellyfish ", respectively. Tatsuhiko

  14. Effects of nanomaterials on marine invertebrates.

    PubMed

    Canesi, Laura; Corsi, Ilaria

    2016-09-15

    The development of nanotechnology will inevitably lead to the release of consistent amounts of nanomaterials (NMs) and nanoparticles (NPs) into marine ecosystems. Ecotoxicological studies have been carried out to identify potential biological targets of NPs, and suitable models for predicting their impact on the health of the marine environment. Recent studies in invertebrates mainly focused on NP accumulation and sub-lethal effects, rather than acute toxicity. Among marine invertebrates, bivalves represent by large the most studied group, with polychaetes and echinoderms also emerging as significant targets of NPs. However, major scientific gaps still need to be filled. In this work, factors affecting the fate of NPs in the marine environment, and their consequent uptake/accumulation/toxicity in marine invertebrates will be summarized. The results show that in different model species, NP accumulation mainly occurs in digestive tract and gills. Data on sub-lethal effects and modes of action of different types of NPs (mainly metal oxides and metal based NPs) in marine invertebrates will be reviewed, in particular on immune function, oxidative stress and embryo development. Moreover, the possibility that such effects may be influenced by NP interactions with biomolecules in both external and internal environment will be introduced. In natural environmental media, NP interactions with polysaccharides, proteins and colloids may affect their agglomeration/aggregation and consequent bioavailability. Moreover, once within the organism, NPs are known to interact with plasma proteins, forming a protein corona that can affect particle uptake and toxicity in target cells in a physiological environment. These interactions, leading to the formation of eco-bio-coronas, may be crucial in determining particle behavior and effects also in marine biota. In order to classify NPs into groups and predict the implications of their release into the marine environment, information on

  15. Communication masking in marine mammals: A review and research strategy.

    PubMed

    Erbe, Christine; Reichmuth, Colleen; Cunningham, Kane; Lucke, Klaus; Dooling, Robert

    2016-02-15

    Underwater noise, whether of natural or anthropogenic origin, has the ability to interfere with the way in which marine mammals receive acoustic signals (i.e., for communication, social interaction, foraging, navigation, etc.). This phenomenon, termed auditory masking, has been well studied in humans and terrestrial vertebrates (in particular birds), but less so in marine mammals. Anthropogenic underwater noise seems to be increasing in parts of the world's oceans and concerns about associated bioacoustic effects, including masking, are growing. In this article, we review our understanding of masking in marine mammals, summarise data on marine mammal hearing as they relate to masking (including audiograms, critical ratios, critical bandwidths, and auditory integration times), discuss masking release processes of receivers (including comodulation masking release and spatial release from masking) and anti-masking strategies of signalers (e.g. Lombard effect), and set a research framework for improved assessment of potential masking in marine mammals. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Conventional and Unconventional Antimicrobials from Fish, Marine Invertebrates and Micro-algae

    PubMed Central

    Smith, Valerie J.; Desbois, Andrew P.; Dyrynda, Elisabeth A.

    2010-01-01

    All eukaryotic organisms, single-celled or multi-cellular, produce a diverse array of natural anti-infective agents that, in addition to conventional antimicrobial peptides, also include proteins and other molecules often not regarded as part of the innate defences. Examples range from histones, fatty acids, and other structural components of cells to pigments and regulatory proteins. These probably represent very ancient defence factors that have been re-used in new ways during evolution. This review discusses the nature, biological role in host protection and potential biotechnological uses of some of these compounds, focusing on those from fish, marine invertebrates and marine micro-algae. PMID:20479976

  17. Thalassosamide, a Siderophore Discovered from the Marine-Derived Bacterium Thalassospira profundimaris.

    PubMed

    Zhang, Fan; Barns, Kenneth; Hoffmann, F Michael; Braun, Doug R; Andes, David R; Bugni, Tim S

    2017-09-22

    Here we describe the rapid identification and prioritization of novel active marine natural products using an improved dereplication strategy. During the course of our screening of marine natural product libraries, a new cyclic trihydroxamate compound, thalassosamide, was discovered from the α-proteobacterium Thalassospira profundimaris. Its structure was determined by 2D NMR and MS/MS experiments, and the absolute configuration of the lysine-derived units was established by Marfey's analysis, whereas that of C-9, 9', and 9″ was determined via the circular dichroism data of the [Rh 2 (OCOCF 3 ) 4 ] complex and DFT NMR calculations. Thalassosamide showed moderate in vivo efficacy against Pseudomonas aeruginosa.

  18. Anti-Biofilm Performance of Three Natural Products against Initial Bacterial Attachment

    PubMed Central

    Salta, Maria; Wharton, Julian A.; Dennington, Simon P.; Stoodley, Paul; Stokes, Keith R.

    2013-01-01

    Marine bacteria contribute significantly towards the fouling consortium, both directly (modern foul release coatings fail to prevent “slime” attachment) and indirectly (biofilms often excrete chemical cues that attract macrofouling settlement). This study assessed the natural product anti-biofilm performance of an extract of the seaweed, Chondrus crispus, and two isolated compounds from terrestrial sources, (+)-usnic acid and juglone, against two marine biofilm forming bacteria, Cobetia marina and Marinobacter hydrocarbonoclasticus. Bioassays were developed using quantitative imaging and fluorescent labelling to test the natural products over a range of concentrations against initial bacterial attachment. All natural products affected bacterial attachment; however, juglone demonstrated the best anti-biofilm performance against both bacterial species at a concentration range between 5–20 ppm. In addition, for the first time, a dose-dependent inhibition (hormetic) response was observed for natural products against marine biofilm forming bacteria. PMID:24192819

  19. Understanding Marine Mussel Adhesion

    PubMed Central

    Roberto, Francisco F.

    2007-01-01

    In addition to identifying the proteins that have a role in underwater adhesion by marine mussels, research efforts have focused on identifying the genes responsible for the adhesive proteins, environmental factors that may influence protein production, and strategies for producing natural adhesives similar to the native mussel adhesive proteins. The production-scale availability of recombinant mussel adhesive proteins will enable researchers to formulate adhesives that are water-impervious and ecologically safe and can bind materials ranging from glass, plastics, metals, and wood to materials, such as bone or teeth, biological organisms, and other chemicals or molecules. Unfortunately, as of yet scientists have been unable to duplicate the processes that marine mussels use to create adhesive structures. This study provides a background on adhesive proteins identified in the blue mussel, Mytilus edulis, and introduces our research interests and discusses the future for continued research related to mussel adhesion. PMID:17990038

  20. Economic geology of natural gas hydrate

    USGS Publications Warehouse

    Max, M.D.; Johnson, A.H.; Dillon, William P.

    2006-01-01

    This is the first book that attempts to broadly integrate the most recent knowledge in the fields of hydrate nucleation and growth in permafrost regions and marine sediments. Gas hydrate reactant supply, growth models, and implications for pore fill by natural gas hydrate are discussed for both seawater precursors in marine sediments and for permafrost hydrate. These models for forming hydrate concentrations that will constitute targets for exploration are discussed, along with exploration methods. Thermodynamic models for the controlled conversion of hydrate to natural gas, which can be recovered using conventional industry practices, suggest that a number of different types of hydrate occurrence are likely to be practical sources of hydrate natural gas. Current progress in the various aspects of commercial development of hydrate gas deposits are discussed, along with the principal extractive issues that have yet to be resolved.

  1. A simultaneous estimation of the mass of Mars and its natural satellites, Phobos and Deimos, from the orbital perturbations on the Mariner 9, Viking 1, and Viking 2 orbiters

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Smith, D. E.; Fricke, S. K.; Mccarthy, J. J.

    1993-01-01

    The natural satellites of Mars, Phobos and Deimos, caused perturbations on the orbits of the Mariner 9, and the Viking spacecraft that were used to estimate the satellite masses. The Viking spacecraft were specifically targeted to make close flybys (within a few hundred kilometers) of Phobos in February 1977 and of Deimos in October 1977. These close encounters were used to estimate the moon's gravitational constant, GM (the universal constant of gravitation multiplied by the satellite mass). However, the Viking and Mariner 9 spacecraft made numerous flybys of Phobos and Deimos at distances of a few thousand kilometers. The tracking data from these more 'distant' encounters were processed to estimate the masses of Mars, Phobos, and Deimos.

  2. Marine intervals in Neogene fluvial deposits of western Amazonia

    NASA Astrophysics Data System (ADS)

    Boonstra, Melanie; Troelstra, Simon; Lammertsma, Emmy; Hoorn, Carina

    2014-05-01

    Amazonia is one of the most species rich areas on Earth, but this high diversity is not homogeneous over the entire region. Highest mammal and tree-alpha diversity is found in the fluvio-lacustrine Pebas system, a Neogene wetland associated with rapid radiation of species. The estuarine to marine origin of various modern Amazonian fish, plants, and invertebrates has been associated with past marine ingressions into this freshwater Pebas system. The exact nature and age of these invasions is, however, debated. Here we present new evidence from fluvial and fluvio-lacustrine deposits of Neogene age in southeast Colombia, that point to periods of widespread marine conditions in western Amazonia. Our evidence is based on an analysis of marine palynomorphs, such as organic linings of foraminifera and dinoflagellate cysts, present in dark sandy clay sediments that outcrop along the Caqueta and Amazon rivers. Characteristically, the foraminiferal linings can be assigned to three benthic morphotypes only, e.g. Ammonia, Elphidium and Trochammina. This low diversity assemblage is associated with estuarine/marginal marine conditions. No distinct marine elements such as shelf or planktonic species were encountered. The observed foraminiferal linings and dinocyst assemblages are typical for a (eutrophic) shallow marine environment, suggesting that the Pebas freshwater wetland system occasionally changed to (marginal) marine. Although some reworked elements are found, a typical Neogene dinocyst taxon is commonly found supporting in situ deposition. Sedimentological features typical for tidal conditions that are reported for sites in Peru and northeastern Brazil likely relate to these marine ingressions. Sea level changes as well as foreland basin development related to Andes formation may have facilitated the entry of marine water during the Neogene.

  3. Ecosystem Pen Pals: Using Place-Based Marine Science and Culture to Connect Students

    ERIC Educational Resources Information Center

    Wiener, Carlie S.; Matsumoto, Karen

    2014-01-01

    The marine environment provides a unique context for students to explore both natural and cultural connections. This paper reports preliminary findings on Ecosystem Pen Pals, an ocean literacy program for 4th and 5th graders focused on using a pen pal model for integrating traditional ecological knowledge into marine science. Surveys with…

  4. Digitizing mass spectrometry data to explore the chemical diversity and distribution of marine cyanobacteria and algae

    PubMed Central

    Luzzatto-Knaan, Tal; Garg, Neha; Wang, Mingxun; Glukhov, Evgenia; Peng, Yao; Ackermann, Gail; Amir, Amnon; Duggan, Brendan M; Ryazanov, Sergey; Gerwick, Lena; Knight, Rob; Alexandrov, Theodore; Bandeira, Nuno; Gerwick, William H; Dorrestein, Pieter C

    2017-01-01

    Natural product screening programs have uncovered molecules from diverse natural sources with various biological activities and unique structures. However, much is yet underexplored and additional information is hidden in these exceptional collections. We applied untargeted mass spectrometry approaches to capture the chemical space and dispersal patterns of metabolites from an in-house library of marine cyanobacterial and algal collections. Remarkably, 86% of the metabolomics signals detected were not found in other available datasets of similar nature, supporting the hypothesis that marine cyanobacteria and algae possess distinctive metabolomes. The data were plotted onto a world map representing eight major sampling sites, and revealed potential geographic locations with high chemical diversity. We demonstrate the use of these inventories as a tool to explore the diversity and distribution of natural products. Finally, we utilized this tool to guide the isolation of a new cyclic lipopeptide, yuvalamide A, from a marine cyanobacterium. DOI: http://dx.doi.org/10.7554/eLife.24214.001 PMID:28492366

  5. Marine Vehicle Sensor Network Architecture and Protocol Designs for Ocean Observation

    PubMed Central

    Zhang, Shaowei; Yu, Jiancheng; Zhang, Aiqun; Yang, Lei; Shu, Yeqiang

    2012-01-01

    The micro-scale and meso-scale ocean dynamic processes which are nonlinear and have large variability, have a significant impact on the fisheries, natural resources, and marine climatology. A rapid, refined and sophisticated observation system is therefore needed in marine scientific research. The maneuverability and controllability of mobile sensor platforms make them a preferred choice to establish ocean observing networks, compared to the static sensor observing platform. In this study, marine vehicles are utilized as the nodes of mobile sensor networks for coverage sampling of a regional ocean area and ocean feature tracking. A synoptic analysis about marine vehicle dynamic control, multi vehicles mission assignment and path planning methods, and ocean feature tracking and observing techniques is given. Combined with the observation plan in the South China Sea, we provide an overview of the mobile sensor networks established with marine vehicles, and the corresponding simulation results. PMID:22368475

  6. Quantifying the Spatial Ecology of Wide-Ranging Marine Species in the Gulf of California: Implications for Marine Conservation Planning

    PubMed Central

    Anadón, José Daniel; D'Agrosa, Caterina; Gondor, Anne; Gerber, Leah R.

    2011-01-01

    There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25–40%), particularly, the best quality habitats (46–57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks. PMID:22163013

  7. Quantifying the spatial ecology of wide-ranging marine species in the Gulf of California: implications for marine conservation planning.

    PubMed

    Anadón, José Daniel; D'Agrosa, Caterina; Gondor, Anne; Gerber, Leah R

    2011-01-01

    There is growing interest in systematic establishment of marine protected area (MPA) networks and representative conservation sites. This movement toward networks of no-take zones requires that reserves are deliberately and adequately spaced for connectivity. Here, we test the network functionality of an ecoregional assessment configuration of marine conservation areas by evaluating the habitat protection and connectivity offered to wide-ranging fauna in the Gulf of California (GOC, Mexico). We first use expert opinion to identify representative species of wide-ranging fauna of the GOC. These include leopard grouper, hammerhead sharks, California brown pelicans and green sea turtles. Analyzing habitat models with both structural and functional connectivity indexes, our results indicate that the configuration includes large proportions of biologically important habitat for the four species considered (25-40%), particularly, the best quality habitats (46-57%). Our results also show that connectivity levels offered by the conservation area design for these four species may be similar to connectivity levels offered by the entire Gulf of California, thus indicating that connectivity offered by the areas may resemble natural connectivity. The selected focal species comprise different life histories among marine or marine-related vertebrates and are associated with those habitats holding the most biodiversity values (i.e. coastal habitats); our results thus suggest that the proposed configuration may function as a network for connectivity and may adequately represent the marine megafauna in the GOC, including the potential connectivity among habitat patches. This work highlights the range of approaches that can be used to quantify habitat protection and connectivity for wide-ranging marine species in marine reserve networks.

  8. Status of marine pollution research in South Africa (1960-present).

    PubMed

    Wepener, V; Degger, N

    2012-07-01

    The published literature on marine pollution monitoring research in South Africa from 1960 to present was evaluated. There has been a general decline in the number of papers from the 1980s and this can be linked to the absence of a marine pollution monitoring programme in South Africa. General trends observed were that contaminant exposure monitoring of metals predominates the research conducted to date. Monitoring results indicate that there has been a general decrease in metal concentrations in South African coastal waters and concentrations of metals and most organics in mussels are lower than in other industrialised nations. This is reflected in the general pristine nature and high biodiversity of the South African coastline. The establishment of a national marine pollution monitoring framework would stimulate marine pollution research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. 33 CFR 72.01-25 - Marine broadcast notice to mariners.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Marine broadcast notice to... SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-25 Marine broadcast notice to... mines. Radio stations broadcasting marine information are listed in “Radio Navigational Aids” (National...

  10. 33 CFR 72.01-25 - Marine broadcast notice to mariners.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Marine broadcast notice to... SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-25 Marine broadcast notice to... mines. Radio stations broadcasting marine information are listed in “Radio Navigational Aids” (National...

  11. 33 CFR 72.01-25 - Marine broadcast notice to mariners.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Marine broadcast notice to... SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-25 Marine broadcast notice to... mines. Radio stations broadcasting marine information are listed in “Radio Navigational Aids” (National...

  12. Analysing the natural population growth of a large marine mammal after a depletive harvest.

    PubMed

    Romero, M A; Grandi, M F; Koen-Alonso, M; Svendsen, G; Ocampo Reinaldo, M; García, N A; Dans, S L; González, R; Crespo, E A

    2017-07-13

    An understanding of the underlying processes and comprehensive history of population growth after a harvest-driven depletion is necessary when assessing the long-term effectiveness of management and conservation strategies. The South American sea lion (SASL), Otaria flavescens, is the most conspicuous marine mammal along the South American coasts, where it has been heavily exploited. As a consequence of this exploitation, many of its populations were decimated during the early 20th century but currently show a clear recovery. The aim of this study was to assess SASL population recovery by applying a Bayesian state-space modelling framework. We were particularly interested in understanding how the population responds at low densities, how human-induced mortality interplays with natural mechanisms, and how density-dependence may regulate population growth. The observed population trajectory of SASL shows a non-linear relationship with density, recovering with a maximum increase rate of 0.055. However, 50 years after hunting cessation, the population still represents only 40% of its pre-exploitation abundance. Considering that the SASL population in this region represents approximately 72% of the species abundance within the Atlantic Ocean, the present analysis provides insights into the potential mechanisms regulating the dynamics of SASL populations across the global distributional range of the species.

  13. 33 CFR 72.01-25 - Marine broadcast notice to mariners.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Marine broadcast notice to mariners. 72.01-25 Section 72.01-25 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION MARINE INFORMATION Notices to Mariners § 72.01-25 Marine broadcast notice to...

  14. Integrating parasitology and marine ecology: Seven challenges towards greater synergy

    NASA Astrophysics Data System (ADS)

    Poulin, Robert; Blasco-Costa, Isabel; Randhawa, Haseeb S.

    2016-07-01

    Despite their very different historical origins as scientific disciplines, parasitology and marine ecology have already combined successfully to make important contributions to our understanding of the functioning of natural ecosystems. For example, robust assessments of the contribution of parasites to ecosystem biomass and energetics, and of their impact on community-wide biodiversity and food web structure, have all been made for the first time in marine systems. Nevertheless, for the marriage between parasitology and marine ecology to remain fruitful, several challenges must first be overcome. We discuss seven such challenges on the road to a greater synergy between these disciplines: (1) Raising awareness of parasitism as an ecological force by increasing the proportion of articles about parasites and diseases in marine ecology journals; (2) Making greater use of theory and conceptual frameworks from marine ecology to guide parasitological research; (3) Speeding up or at least maintaining the current rate at which marine parasites are found and described; (4) Elucidating a greater proportion of life cycles in all major groups of marine parasites; (5) Increasing the number of host-parasite model systems on which our knowledge is based; (6) Extending parasitological research offshore and into ocean depths; and (7) Developing, as needed, new epidemiological theory and transmission models for the marine environment. None of these challenges is insurmountable, and addressing just a few of them should guarantee that parasitology and marine ecology will continue to join forces and make further substantial contributions.

  15. [Isolation and structural elucidation of secondary metabolites from marine Streptomyces sp. SCSIO 1934].

    PubMed

    Niu, Siwen; Li, Sumei; Tian, Xinpeng; Hu, Tao; Ju, Jianhua; Ynag, Xiaohong; Zhang, Si; Zhang, Changsheng

    2011-07-01

    Marine Actinobacteria are emerging as new resources for bioactive natural products with promise in novel drug discovery. In recent years, the richness and diversity of marine Actinobacteria from the South China Sea and their ability in producing bioactive products have been investigated. The objective of this work is to isolate and identify bioactive secondary metabolites from a marine actinobacterium SCSIO 1934 derived from sediments of South China Sea. The strain was identified as a Streptomyces spieces by analyzing its 16S rDNA sequence. Streptomyces sp. SCSIO 1934 was fermented under optimized conditions and seven bioactive secondary metabolites were isolated and purified by chromatographic methods including colum chromatography over silica gel and Sephadex LH-20. Their structures were elucidated as 17-O-demethylgeldanamycin (1), lebstatin (2), 17-O-demethyllebstatin (3), nigericin (4), nigericin sodium salt (5), abierixin (6), respectively, by detailed NMR spectroscopic data (1H, 13C, COSY, HSQC and HMBC). This work provided a new marine actinobacterium Streptomyces sp. SCSIO 1934, capable of producing diverse bioactive natural products.

  16. Marine conservation and accession: the future for the Croatian Adriatic.

    PubMed

    Mackelworth, Peter; Holcer, Draško; Jovanović, Jelena; Fortuna, Caterina

    2011-04-01

    The European Union (EU) is the world's largest trading bloc and the most influential supra-national organisation in the region. The EU has been the goal for many eastern European States, for Croatia accession remains a priority and underpins many of its national policies. However, entry into the EU requires certain commitments and concessions. In October 2003 the Croatian parliament declared an ecological and fisheries protection zone in the Adriatic. Under pressure the zone was suspended, finally entering into force in March 2008 exempting EU States. There are other marine conflicts between Croatia and the EU, particularly the contested maritime border with Slovenia, and the development of the Croatian fishing fleet in opposition to the Common Fisheries Policy. Conversely, attempts to harmonise Croatian Nature Protection with the EU Habitats Directive, facilitated by pre-accession funding, has galvanised conservation policy. Since 2005 two marine protected areas have been declared, significantly increasing the marine ecosystem under protection. Finally, the development of the Marine Strategy Framework Directive is the latest EU attempt to integrate environmental policy in the maritime realm. This will have an effect not only on member States but neighbouring countries. For marine nature protection to be effective in the region the Adriatic Sea needs to be viewed as a mutually important shared and limited resource not a bargaining chip. Negotiations of the EU and Croatia have been watched closely by the other Balkan States and precedents set in this case have the potential to affect EU expansion to the East.

  17. Marine Conservation and Accession: The Future for the Croatian Adriatic

    NASA Astrophysics Data System (ADS)

    Mackelworth, Peter; Holcer, Draško; Jovanović, Jelena; Fortuna, Caterina

    2011-04-01

    The European Union (EU) is the world's largest trading bloc and the most influential supra-national organisation in the region. The EU has been the goal for many eastern European States, for Croatia accession remains a priority and underpins many of its national policies. However, entry into the EU requires certain commitments and concessions. In October 2003 the Croatian parliament declared an ecological and fisheries protection zone in the Adriatic. Under pressure the zone was suspended, finally entering into force in March 2008 exempting EU States. There are other marine conflicts between Croatia and the EU, particularly the contested maritime border with Slovenia, and the development of the Croatian fishing fleet in opposition to the Common Fisheries Policy. Conversely, attempts to harmonise Croatian Nature Protection with the EU Habitats Directive, facilitated by pre-accession funding, has galvanised conservation policy. Since 2005 two marine protected areas have been declared, significantly increasing the marine ecosystem under protection. Finally, the development of the Marine Strategy Framework Directive is the latest EU attempt to integrate environmental policy in the maritime realm. This will have an effect not only on member States but neighbouring countries. For marine nature protection to be effective in the region the Adriatic Sea needs to be viewed as a mutually important shared and limited resource not a bargaining chip. Negotiations of the EU and Croatia have been watched closely by the other Balkan States and precedents set in this case have the potential to affect EU expansion to the East.

  18. Inhibition of biofouling by marine microorganisms and their metabolites.

    PubMed

    Dobretsov, Sergey; Dahms, Hans-Uwe; Qian, Peri-Yuan

    2006-01-01

    Development of microbial biofilms and the recruitment of propagules on the surfaces of man-made structures in the marine environment cause serious problems for the navies and for marine industries around the world. Current antifouling technology is based on the application of toxic substances that can be harmful to the natural environment. For this reason and the global ban of tributyl tin (TBT), there is a need for the development of "environmentally-friendly" antifoulants. Marine microbes are promising potential sources of non-toxic or less-toxic antifouling compounds as they can produce substances that inhibit not only the attachment and/or growth of microorganisms but also the settlement of invertebrate larvae and macroalgal spores. However, so far only few antilarval settlement compounds have been isolated and identified from bacteria. In this review knowledge about antifouling compounds produced by marine bacteria and diatoms are summarised and evaluated and future research directions are highlighted.

  19. Diversity and evolution of marine phytoplankton.

    PubMed

    Simon, Nathalie; Cras, Anne-Lise; Foulon, Elodie; Lemée, Rodolphe

    2009-01-01

    Marine phytoplankton organisms account for more than 45% of the photosynthetic net primary production on Earth. They are distributed across many of the major clades of the tree of life and include prokaryotes, and eukaryotes that acquired photosynthesis through the process of endosymbiosis. If the number of extant described species is relatively low compared to the diversity of the terrestrial plants, recent insights into the genetic diversity of natural assemblages have revealed a large unsuspected diversity at different taxonomic levels. Wide infra-specific diversity is also being discovered in many widespread and well known morphological species. This review summarizes data obtained in the fields of ecology, evolutionary biology, physiology and genomics that have improved our understanding of the biodiversity and evolution of marine phytoplankton.

  20. Isolation of a New Natural Product and Cytotoxic and Antimicrobial Activities of Extracts from Fungi of Indonesian Marine Habitats

    PubMed Central

    Tarman, Kustiariyah; Lindequist, Ulrike; Wende, Kristian; Porzel, Andrea; Arnold, Norbert; Wessjohann, Ludger A.

    2011-01-01

    In the search for bioactive compounds, 11 fungal strains were isolated from Indonesian marine habitats. Ethyl acetate extracts of their culture broth were tested for cytotoxic activity against a urinary bladder carcinoma cell line and for antifungal and antibacterial activities against fish and human pathogenic bacteria as well as against plant and human pathogenic fungi. The crude extract of a sterile algicolous fungus (KT31), isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex P.C. Silva exhibited potent cytotoxic activity with an IC50 value of 1.5 μg/mL. Another fungal strain (KT29) displayed fungicidal properties against the plant pathogenic fungus Cladosporium cucumerinum Ell. et Arth. at 50 μg/spot. 2-Carboxy-8-methoxy-naphthalene-1-ol (1) could be isolated as a new natural product. PMID:21556160

  1. Marine and Freshwater Feedstocks as a Precursor for Nitrogen-Containing Carbons: A Review

    PubMed Central

    Ilnicka, Anna; Lukaszewicz, Jerzy P.

    2018-01-01

    Marine-derived as well as freshwater feedstock offers important benefits, such as abundance, morphological and structural variety, and the presence of multiple elements, including nitrogen and carbon. Therefore, these renewal resources may be useful for obtaining N- and C-containing materials that can be manufactured by various methods, such as pyrolysis and hydrothermal processes supported by means of chemical and physical activators. However, every synthesis concept relies on an efficient transfer of nitrogen and carbon from marine/freshwater feedstock to the final product. This paper reviews the advantages of marine feedstock over synthetic and natural but non-marine resources as precursors for the manufacturing of N-doped activated carbons. The manufacturing procedure influences some crucial properties of nitrogen-doped carbon materials, such as pore structure and the chemical composition of the surface. An extensive review is given on the relationship between carbon materials manufacturing from marine feedstock and the elemental content of nitrogen, together with a description of the chemical bonding of nitrogen atoms at the surface. N-doped carbons may serve as effective adsorbents for the removal of pollutants from the gas or liquid phase. Non-recognized areas of adsorption-based applications for nitrogen-doped carbons are presented, too. The paper proves that nitrogen-doped carbon materials belong to most of the prospective electrode materials for electrochemical energy conversion and storage technologies such as fuel cells, air–metal batteries, and supercapacitors, as well as for bioimaging. The reviewed material belongs to the widely understood field of marine biotechnology in relation to marine natural products. PMID:29701697

  2. An overview of polybrominated diphenyl ethers (PBDEs) in the marine environment

    NASA Astrophysics Data System (ADS)

    Lee, Hyo Jin; Kim, Gi Beum

    2015-06-01

    Polybrominated diphenyl ethers (PBDEs), which are used extensively as brominated flame retardants, are found ubiquitously in marine environments worldwide. In this paper, we review all available data on the occurrence and trends of PBDEs in marine environments. PBDE levels in different marine environmental compartments vary from nanograms per gram to micrograms per gram, and differ widely, depending on the exposed species and the collection site. The PBDE congener profiles in biota, which are dominated by the lower brominated congeners, such as BDE-47 and BDE-99, are different from those in sediments, where BDE-209 is dominant. Temporal trends in PBDE levels in sediment cores vary considerably, depending on the region or country studied, with possible correlations with the historic and current use of PBDEs. Low brominated BDE congeners have the potential for bioaccumulation in marine organisms, but BDE- 209 has a very low potential for bioaccumulating within the marine food web. The toxicological effects of PBDEs on marine organisms are largely unknown. However, PBDE isomers may be sufficient to elicit adverse effects in some marine organisms. Here, we discuss naturally occurring brominated diphenyl ethers and recommend further research to improve future monitoring.

  3. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria

    PubMed Central

    Falanga, Annarita; Lombardi, Lucia; Franci, Gianluigi; Vitiello, Mariateresa; Iovene, Maria Rosaria; Morelli, Giancarlo; Galdiero, Massimiliano; Galdiero, Stefania

    2016-01-01

    The discovery of antibiotics for the treatment of bacterial infections brought the idea that bacteria would no longer endanger human health. However, bacterial diseases still represent a worldwide treat. The ability of microorganisms to develop resistance, together with the indiscriminate use of antibiotics, is mainly responsible for this situation; thus, resistance has compelled the scientific community to search for novel therapeutics. In this scenario, antimicrobial peptides (AMPs) provide a promising strategy against a wide array of pathogenic microorganisms, being able to act directly as antimicrobial agents but also being important regulators of the innate immune system. This review is an attempt to explore marine AMPs as a rich source of molecules with antimicrobial activity. In fact, the sea is poorly explored in terms of AMPs, but it represents a resource with plentiful antibacterial agents performing their role in a harsh environment. For the application of AMPs in the medical field limitations correlated to their peptide nature, their inactivation by environmental pH, presence of salts, proteases, or other components have to be solved. Thus, these peptides may act as templates for the design of more potent and less toxic compounds. PMID:27213366

  4. Marine Antimicrobial Peptides: Nature Provides Templates for the Design of Novel Compounds against Pathogenic Bacteria.

    PubMed

    Falanga, Annarita; Lombardi, Lucia; Franci, Gianluigi; Vitiello, Mariateresa; Iovene, Maria Rosaria; Morelli, Giancarlo; Galdiero, Massimiliano; Galdiero, Stefania

    2016-05-21

    The discovery of antibiotics for the treatment of bacterial infections brought the idea that bacteria would no longer endanger human health. However, bacterial diseases still represent a worldwide treat. The ability of microorganisms to develop resistance, together with the indiscriminate use of antibiotics, is mainly responsible for this situation; thus, resistance has compelled the scientific community to search for novel therapeutics. In this scenario, antimicrobial peptides (AMPs) provide a promising strategy against a wide array of pathogenic microorganisms, being able to act directly as antimicrobial agents but also being important regulators of the innate immune system. This review is an attempt to explore marine AMPs as a rich source of molecules with antimicrobial activity. In fact, the sea is poorly explored in terms of AMPs, but it represents a resource with plentiful antibacterial agents performing their role in a harsh environment. For the application of AMPs in the medical field limitations correlated to their peptide nature, their inactivation by environmental pH, presence of salts, proteases, or other components have to be solved. Thus, these peptides may act as templates for the design of more potent and less toxic compounds.

  5. Natural radionuclides tracing in marine surface waters along the northern coast of Oman Sea by combining the radioactivity analysis, oceanic currents and the SWAN model results.

    PubMed

    Zare, Mohammad Reza; Mostajaboddavati, Mojtaba; Kamali, Mahdi; Tari, Marziyeh; Mosayebi, Sanaz; Mortazavi, Mohammad Seddigh

    2015-03-15

    This study aims to establish a managed sampling plan for rapid estimate of natural radio-nuclides diffusion in the northern coast of the Oman Sea. First, the natural radioactivity analysis in 36 high volume surface water samples was carried out using a portable high-resolution gamma-ray spectrometry. Second, the oceanic currents in the northern coast were investigated. Then, the third generation spectral SWAN model was utilized to simulate wave parameters. Direction of natural radioactivity propagation was coupled with the preferable wave vectors and oceanic currents direction that face to any marine pollution, these last two factors will contribute to increase or decrease of pollution in each grid. The results were indicated that the natural radioactivity concentration between the grids 8600 and 8604 is gathered in the grid 8600 and between the grids 8605 and 8608 is propagated toward middle part of Oman Sea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Use of natural pH variation to increase the flocculation of the marine microalgae Nannochloropsis oculata.

    PubMed

    Sales, Rafael; Abreu, Paulo Cesar

    2015-02-01

    Microalgae is largely used in aquaculture as feed. More recently, these microorganisms have been considered as an important feedstock for biodiesel production. However, the concentration of produced biomass represents a large parcel of production costs. In this study, we have evaluated the influence of natural pH variation of culture medium, caused by photosynthetic activity, on the flocculation of the marine microalgae Nannochloropsis oculata. Experiments were conducted with the same culture with different pH values (8.5 and 9.6), obtained after exposing the cells to different light conditions. For each pH value, different treatments were composed by adding 0, 5, 10, and 30 mM of NaOH and the flocculant Flopam® (FO4800 SH) at concentrations of 0, 0.5, 1, and 5 ppm. Higher flocculation efficiencies were obtained for the culture with pH 9.6 in comparison to 8.5 for the same NaOH and Flopam concentrations. Lower concentrations of base and flocculant were needed for flocculating the culture in higher pH, representing an economy of 20 % in the costs of crop harvesting.

  7. Chemical screening method for the rapid identification of microbial sources of marine invertebrate-associated metabolites.

    PubMed

    Berrue, Fabrice; Withers, Sydnor T; Haltli, Brad; Withers, Jo; Kerr, Russell G

    2011-03-21

    Marine invertebrates have proven to be a rich source of secondary metabolites. The growing recognition that marine microorganisms associated with invertebrate hosts are involved in the biosynthesis of secondary metabolites offers new alternatives for the discovery and development of marine natural products. However, the discovery of microorganisms producing secondary metabolites previously attributed to an invertebrate host poses a significant challenge. This study describes an efficient chemical screening method utilizing a 96-well plate-based bacterial cultivation strategy to identify and isolate microbial producers of marine invertebrate-associated metabolites.

  8. Habitus Disposition within Culture of Land and Marine Sasi in Moluccas

    NASA Astrophysics Data System (ADS)

    Azuz, Faidah; Mony, Farida

    2018-05-01

    The Moluccan embraces a local wisdom namely sasi. It functions is a tool to manage their natural resources. The land and marine sasi belongs to the customs territory, yet along with the development of the community, this culture experiences various transformations. Therefore, it is necessary to explore, identify, and compare the transformations of sasi on the land and the marine. The research was conducted at Morella village and Haruku, both are within the administrative territory of the District of Central Moluccas. Observations and in-depth interviews were held to obtain data. The result of this research shows that there is a shifting in the implementation of sasi which was held by the customary leader (habitus disposition). Nevertheless, the shifting from custom to ordinary tradition is only found on plant sasi. Meanwhile, the marine sasi remains within the customs territory. A unique finding has shown at land sasi which has a connection with religion. Meanwhile, the marine sasi does not have many links to religion. Finally, this research provides recommendations to conduct further identification and analysis of sasi shifting on wider area coverage such as in Southeast Moluccas. It also recommends conducting further research on the implementation of sasi on more diverse natural resources.

  9. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements-A Review.

    PubMed

    Bilal, Muhammad; Rasheed, Tahir; Sosa-Hernández, Juan Eduardo; Raza, Ali; Nabeel, Faran; Iqbal, Hafiz M N

    2018-02-19

    In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed.

  10. Biosorption: An Interplay between Marine Algae and Potentially Toxic Elements—A Review

    PubMed Central

    Bilal, Muhammad; Rasheed, Tahir; Raza, Ali; Nabeel, Faran

    2018-01-01

    In recent decades, environmental pollution has emerged as a core issue, around the globe, rendering it of fundamental concern to eco-toxicologists, environmental biologists, eco-chemists, pathologists, and researchers from other fields. The dissolution of polluting agents is a leading cause of environmental pollution of all key spheres including the hydrosphere, lithosphere, and biosphere, among others. The widespread occurrence of various pollutants including toxic heavy metals and other emerging hazardous contaminants is a serious concern. With increasing scientific knowledge, socioeconomic awareness, human health problems, and ecological apprehensions, people are more concerned about adverse health outcomes. Against this background, several removal methods have been proposed and implemented with the aim of addressing environmental pollution and sustainable and eco-friendly development. Among them, the biosorption of pollutants using naturally inspired sources, e.g., marine algae, has considerable advantages. In the past few years, marine algae have been extensively studied due to their natural origin, overall cost-effective ratio, and effectiveness against a broader pollutant range; thus, they are considered a potential alternative to the conventional methods used for environmental decontamination. Herein, an effort has been made to highlight the importance of marine algae as naturally inspired biosorbents and their role in biosorption. Biosorption mechanisms and factors affecting biosorption activities are also discussed in this review. The utilization of marine algae as a biosorbent for the removal of numerous potentially toxic elements has also been reviewed. PMID:29463058

  11. Drivers and hotspots of extinction risk in marine mammals.

    PubMed

    Davidson, Ana D; Boyer, Alison G; Kim, Hwahwan; Pompa-Mansilla, Sandra; Hamilton, Marcus J; Costa, Daniel P; Ceballos, Gerardo; Brown, James H

    2012-02-28

    The world's oceans are undergoing profound changes as a result of human activities. However, the consequences of escalating human impacts on marine mammal biodiversity remain poorly understood. The International Union for the Conservation of Nature (IUCN) identifies 25% of marine mammals as at risk of extinction, but the conservation status of nearly 40% of marine mammals remains unknown due to insufficient data. Predictive models of extinction risk are crucial to informing present and future conservation needs, yet such models have not been developed for marine mammals. In this paper, we: (i) used powerful machine-learning and spatial-modeling approaches to understand the intrinsic and extrinsic drivers of marine mammal extinction risk; (ii) used this information to predict risk across all marine mammals, including IUCN "Data Deficient" species; and (iii) conducted a spatially explicit assessment of these results to understand how risk is distributed across the world's oceans. Rate of offspring production was the most important predictor of risk. Additional predictors included taxonomic group, small geographic range area, and small social group size. Although the interaction of both intrinsic and extrinsic variables was important in predicting risk, overall, intrinsic traits were more important than extrinsic variables. In addition to the 32 species already on the IUCN Red List, our model identified 15 more species, suggesting that 37% of all marine mammals are at risk of extinction. Most at-risk species occur in coastal areas and in productive regions of the high seas. We identify 13 global hotspots of risk and show how they overlap with human impacts and Marine Protected Areas.

  12. [Elementary exploration of the origin and development of marine Chinese materia medica].

    PubMed

    Guan, Hua-Shi; Fu, Xian-Jun; Wu, Qiang-Ming; Wang, Chang-Yun; Wang, Yu; Jiang, Deng-Zhao

    2009-05-01

    According to archaeological discoveries, humans began to make use of marine natural resources early in the Palaeolithic era. In the Spring and Autumn period and Warring States period, they began to use marine life as medicines and also had simple cognitions on their efficacy and processing. In the Qin and Han dynasties, people further deepened the understanding of the marine Chinese materia medica and created prescriptions making use of marine drugs. In the Tang and Song period, the number of marine Chinese materia medica species and corresponding prescriptions apparently increased. The cognitions of the property, flavor, efficacy as well as the compatible principle of marine Chinese materia medica was further deepened and the scope of their treatment also significantly expanded. In the Ming and Qing dynasties, the cognition of the marine Chinese materia medica was mainly the conclusions of the previous experience. After the founding of the People's Republic of China (PRC), with the development of science and technologies, the ability of exploiting and utilizing the marine Chinese materia medica by people dramatically increased, and the species of marine Chinese materia medica reached more than one thousand. However, the development of marine Chinese materia medica is confronted with new problems; although the number of species of marine Chinese materia medica increased, the understanding of their property and flavor is obviously lagging behind, which seriously affects the clinical application of marine Chinese materia medica.

  13. Anticancer and cancer preventive compounds from edible marine organisms.

    PubMed

    Correia-da-Silva, Marta; Sousa, Emília; Pinto, Madalena M M; Kijjoa, Anake

    2017-10-01

    A direct impact of food on health, which demonstrates that dietary habit is one of the most important determinants of chronic diseases such as cancers, has led to an increased interest of the consumers toward natural bioactive compounds as functional ingredients or nutraceuticals. Epidemiological studies revealed that the populations of many Asian countries with high consumption of fish and seafood have low prevalence of particular type of cancers such as lung, breast, colorectal and prostate cancers. This observation has led to extensive investigations of the benefits of compounds present in edible marine organisms such as fish, marine invertebrates (mollusks, echinoderms) and marine algae as cancer chemopreventive agents. Interestingly, many of these marine organisms not only constitute as seafood delicacy but also as ingredients used in folk medicine of some East and Southeast Asian countries. The results of the investigations on extracts and compounds from fish (cods, anchovy, eel and also fish protein hydrolysates), mollusks (mussel, oyster, clams and abalone), as well as from sea cucumbers on the in vivo/in vitro anticancer/antitumor activities can, in part, support the health benefits of these edible marine organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology

    PubMed Central

    DeLong, Edward F.; Béjà, Oded; González, José M.; Pedrós-Alió, Carlos

    2016-01-01

    SUMMARY The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of “heterotrophic” bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes. PMID:27630250

  15. Analytical Procedures for Extractable Organotins in Soft Tissues of Marine Organisms.

    DTIC Science & Technology

    1987-09-01

    and international concern about the effects of tributyltins on the marine environment. Tributyltins ( TBT ) are introduced into the waterways...commercial and recreational vessels and are proposed for use on naval ships in the near future. Due to the toxic nature of TBT . there is an extreme need...to assess its impact and fate in relation to non-target organisms. To evaluate the interactive roles of TBT and marine organisms, it is necessary to

  16. A Common Metadata System for Marine Data Portals

    NASA Astrophysics Data System (ADS)

    Wosniok, C.; Breitbach, G.; Lehfeldt, R.

    2012-04-01

    Processing and allocation of marine datasets depend on the nature of the data resulting from field campaigns, continuous monitoring and numerical modeling. Two research and development projects in northern Germany manage different types of marine data. Due to different data characteristics and institutional frameworks separate data portals are required. This paper describes the integration of distributed marine data in Germany. The Marine Data Infrastructure of Germany (MDI-DE) supports public authorities in the German coastal zone with the implementation of European directives like INSPIRE or the Marine Strategy Framework Directive. This is carried out through setting up standardized web services within a network of participating coastal agencies and the installation of a common data portal (http://www.mdi-de.org), which integrates distributed marine data concerning coastal engineering, coastal water protection and nature conservation in an interoperable and harmonized manner for administrative and scientific purposes as well as for information of the general public. The Coastal Observation System for Northern and Arctic Seas (COSYNA) aims at developing and testing analysis systems for the operational synoptic description of the environmental status of the North Sea and of Arctic coastal waters. This is done by establishing a network of monitoring facilities and the provision of its data in near-real-time. In situ measurements with poles, ferry boxes, and buoys, together with remote sensing measurements, and the data assimilation of these data into simulation results enables COSYNA to provide pre-operational 'products', that are beyond the present routinely applied techniques in observation and modelling. The data allocation in near-real-time requires thoroughly executed data validation, which is processed on the fly before data is passed on to the COSYNA portal (http://kofserver2.hzg.de/codm/). Both projects apply OGC standards such as Web Mapping Service (WMS

  17. Mini-review: Inhibition of biofouling by marine microorganisms.

    PubMed

    Dobretsov, Sergey; Abed, Raeid M M; Teplitski, Max

    2013-01-01

    Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.

  18. Marine Polysaccharides from Algae with Potential Biomedical Applications

    PubMed Central

    de Jesus Raposo, Maria Filomena; de Morais, Alcina Maria Bernardo; de Morais, Rui Manuel Santos Costa

    2015-01-01

    There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae. PMID:25988519

  19. Development of novel drugs from marine surface associated microorganisms.

    PubMed

    Penesyan, Anahit; Kjelleberg, Staffan; Egan, Suhelen

    2010-03-01

    While the oceans cover more than 70% of the Earth's surface, marine derived microbial natural products have been largely unexplored. The marine environment is a habitat for many unique microorganisms, which produce biologically active compounds ("bioactives") to adapt to particular environmental conditions. For example, marine surface associated microorganisms have proven to be a rich source for novel bioactives because of the necessity to evolve allelochemicals capable of protecting the producer from the fierce competition that exists between microorganisms on the surfaces of marine eukaryotes. Chemically driven interactions are also important for the establishment of cross-relationships between microbes and their eukaryotic hosts, in which organisms producing antimicrobial compounds ("antimicrobials"), may protect the host surface against over colonisation in return for a nutrient rich environment. As is the case for bioactive discovery in general, progress in the detection and characterization of marine microbial bioactives has been limited by a number of obstacles, such as unsuitable culture conditions, laborious purification processes, and a lack of de-replication. However many of these limitations are now being overcome due to improved microbial cultivation techniques, microbial (meta-) genomic analysis and novel sensitive analytical tools for structural elucidation. Here we discuss how these technical advances, together with a better understanding of microbial and chemical ecology, will inevitably translate into an increase in the discovery and development of novel drugs from marine microbial sources in the future.

  20. Marine biodiversity of Aotearoa New Zealand.

    PubMed

    Gordon, Dennis P; Beaumont, Jennifer; MacDiarmid, Alison; Robertson, Donald A; Ahyong, Shane T

    2010-08-02

    diversity in the EEZ may be expected to equal that in the ERMS region. This equivalence invites testable hypotheses to explain it. There are 177 naturalized alien species in New Zealand coastal waters, mostly in ports and harbours. Marine-taxonomic expertise in New Zealand covers a broad number of taxa but is, proportionately, at or near its lowest level since the Second World War. Nevertheless, collections are well supported by funding and are continually added to. Threats and protection measures concerning New Zealand's marine biodiversity are commented on, along with potential and priorities for future research.

  1. Marine Biodiversity of Aotearoa New Zealand

    PubMed Central

    Gordon, Dennis P.; Beaumont, Jennifer; MacDiarmid, Alison; Robertson, Donald A.; Ahyong, Shane T.

    2010-01-01

    in the EEZ may be expected to equal that in the ERMS region. This equivalence invites testable hypotheses to explain it. There are 177 naturalized alien species in New Zealand coastal waters, mostly in ports and harbours. Marine-taxonomic expertise in New Zealand covers a broad number of taxa but is, proportionately, at or near its lowest level since the Second World War. Nevertheless, collections are well supported by funding and are continually added to. Threats and protection measures concerning New Zealand's marine biodiversity are commented on, along with potential and priorities for future research. PMID:20689846

  2. Influence of marine engine simulator training to marine engineer's competence

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai

    2011-12-01

    Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.

  3. Influence of marine engine simulator training to marine engineer's competence

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Cheng, Xiangxin; Ma, Qiang; Song, Xiufu; Liu, Xinjian; Wang, Lianhai

    2012-01-01

    Marine engine simulator is broadly used in maritime education and training. Maritime education and training institutions usually use this facility to cultivate the hands-on ability and fault-treat ability of marine engineers and students. In this study, the structure and main function of DMS-2005 marine engine simulator is briefly introduced, several teaching methods are discussed. By using Delphi method and AHP method, a comprehensive evaluation system is built and the competence of marine engineers is assessed. After analyzing the calculating data, some conclusions can be drawn: comprehensive evaluation system could be used to assess marine engineer's competence; the training of marine engine simulator is propitious to enhance marine engineers' integrated ability, especially on the aspect of judgment of abnormal situation capacity, emergency treatment ability and safe operation ability.

  4. Transfer of marine mercury to mountain lakes.

    PubMed

    Hansson, Sophia V; Sonke, Jeroen; Galop, Didier; Bareille, Gilles; Jean, Séverine; Le Roux, Gaël

    2017-10-05

    Stocking is a worldwide activity on geographical and historical scales. The rate of non-native fish introductions have more than doubled over the last decades yet the effect on natural ecosystems, in the scope of biologically mediated transport and biomagnification of Hg and Hg-isotopes, is unknown. Using geochemistry (THg) and stable isotopes (N, Sr and Hg), we evaluate natal origin and trophic position of brown trout (Salmo trutta fario), as well as mercury biomagnification trends and potential pollution sources to three high-altitude lakes. Farmed trout show Hg-isotope signatures similar to marine biota whereas wild trout shows Hg-isotope signatures typical of fresh water lakes. Stocked trout initially show Hg-isotope signatures similar to marine biota. As the stocked trout age and shifts diet to a higher trophic level, THg concentrations increase and the marine Hg isotope signatures, induced via farm fish feed, shift to locally produced MeHg with lower δ 202 Hg and higher Δ 199 Hg. We conclude that stocking acts a humanly induced biovector that transfers marine Hg to freshwater ecosystems, which is seen in the Hg-isotopic signature up to five years after stocking events occurred. This points to the need of further investigations of the role of stocking in MeHg exposure to freshwater ecosystems.

  5. Infection of phytoplankton by aerosolized marine viruses

    PubMed Central

    Sharoni, Shlomit; Trainic, Miri; Schatz, Daniella; Lehahn, Yoav; Flores, Michel J.; Bidle, Kay D.; Ben-Dor, Shifra; Rudich, Yinon; Vardi, Assaf

    2015-01-01

    Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host–virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host–virus “arms race” during bloom succession and consequently the turnover of carbon in the ocean. PMID:25964340

  6. Saving sea turtles: the evolution of the IUCN Marine Turtle Group.

    PubMed

    Davis, Frederick R

    2005-09-01

    When Peter Scott became chairman of the Survival Service Commission of the International Union for the Conservation of Nature and Natural Resources (IUCN) in 1963, he invited Archie Carr to chair the Marine Turtle Group (MTG). A leading authority on the ecology and conservation of sea turtles, Carr believed that the MTG could be the first international forum for sea turtle research and conservation. The assembly of data for the IUCN Red Data Book revealed which species of turtles were threatened with extinction and the array of risks that they faced. Although Carr and Scott differed on what courses of action should be taken in light of this, the MTG did emerge as an important international congress that remains an inspiration to current marine protection efforts.

  7. Effectiveness of marine protected areas in managing the drivers of ecosystem change: a case of Mnazi Bay Marine Park, Tanzania.

    PubMed

    Machumu, Milali Ernest; Yakupitiyage, Amararatne

    2013-04-01

    Marine protected areas (MPAs) are being promoted in Tanzania to mitigate the drivers of ecosystem change such as overfishing and other anthropogenic impacts on marine resources. The effectiveness of MPAs in managing those drivers was assessed in three ecological zones, seafront, mangrove, and riverine of Mnazi Bay Marine Park, using Participatory Community Analysis techniques, questionnaire survey, checklist and fishery resource assessment methods. Eleven major drivers of ecosystem change were identified. Resource dependence had a major effect in all ecological zones of the park. The results indicated that the park's legislations/regulations, management procedures, and conservation efforts are reasonably effective in managing its resources. The positive signs accrued from conservation efforts have been realized by the communities in terms of increased catch/income, awareness and compliance. However, some natural and anthropogenic drivers continued to threaten the park's sustainability. Furthermore, implementation of resource use and benefit sharing mechanisms still remained a considerable challenge to be addressed.

  8. Current and potential uses of bioactive molecules from marine processing waste.

    PubMed

    Suleria, Hafiz Ansar Rasul; Masci, Paul; Gobe, Glenda; Osborne, Simone

    2016-03-15

    Food industries produce huge amounts of processing waste that are often disposed of incurring expenses and impacting upon the environment. For these and other reasons, food processing waste streams, in particular marine processing waste streams, are gaining popularity amongst pharmaceutical, cosmetic and nutraceutical industries as sources of bioactive molecules. In the last 30 years, there has been a gradual increase in processed marine products with a concomitant increase in waste streams that include viscera, heads, skins, fins, bones, trimmings and shellfish waste. In 2010, these waste streams equated to approximately 24 million tonnes of mostly unused resources. Marine processing waste streams not only represent an abundant resource, they are also enriched with structurally diverse molecules that possess a broad panel of bioactivities including anti-oxidant, anti-coagulant, anti-thrombotic, anti-cancer and immune-stimulatory activities. Retrieval and characterisation of bioactive molecules from marine processing waste also contributes valuable information to the vast field of marine natural product discovery. This review summarises the current use of bioactive molecules from marine processing waste in different products and industries. Moreover, this review summarises new research into processing waste streams and the potential for adoption by industries in the creation of new products containing marine processing waste bioactives. © 2015 Society of Chemical Industry.

  9. Neuroprotective Properties of the Marine Carotenoid Astaxanthin and Omega-3 Fatty Acids, and Perspectives for the Natural Combination of Both in Krill Oil

    PubMed Central

    Barros, Marcelo P.; Poppe, Sandra C.; Bondan, Eduardo F.

    2014-01-01

    The consumption of marine fishes and general seafood has long been recommended by several medical authorities as a long-term nutritional intervention to preserve mental health, hinder neurodegenerative processes, and sustain cognitive capacities in humans. Most of the neurological benefits provided by frequent seafood consumption comes from adequate uptake of omega-3 and omega-6 polyunsaturated fatty acids, n-3/n-6 PUFAs, and antioxidants. Optimal n-3/n-6 PUFAs ratios allow efficient inflammatory responses that prevent the initiation and progression of many neurological disorders. Moreover, interesting in vivo and clinical studies with the marine antioxidant carotenoid astaxanthin (present in salmon, shrimp, and lobster) have shown promising results against free radical-promoted neurodegenerative processes and cognition loss. This review presents the state-of-the-art applications of n-3/n-6 PUFAs and astaxanthin as nutraceuticals against neurodegenerative diseases associated with exacerbated oxidative stress in CNS. The fundamental “neurohormesis” principle is discussed throughout this paper. Finally, new perspectives for the application of a natural combination of the aforementioned anti-inflammatory and antioxidant agents (found in krill oil) are also presented herewith. PMID:24667135

  10. Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources

    PubMed

    Clarke; Davis; Kapustin; Eisele; Chen; Paluch; Lenschow; Bandy; Thornton; Moore; Mauldin; Tanner; Litchy; Carroll; Collins; Albercook

    1998-10-02

    New particle formation in a tropical marine boundary layer setting was characterized during NASA's Pacific Exploratory Mission-Tropics A program. It represents the clearest demonstration to date of aerosol nucleation and growth being linked to the natural marine sulfur cycle. This conclusion was based on real-time observations of dimethylsulfide, sulfur dioxide, sulfuric acid (gas), hydroxide, ozone, temperature, relative humidity, aerosol size and number distribution, and total aerosol surface area. Classic binary nucleation theory predicts no nucleation under the observed marine boundary layer conditions.

  11. Characterizing marine particles and their impact on biogeochemical cycles in the GEOTRACES program

    NASA Astrophysics Data System (ADS)

    Anderson, Robert F.; Hayes, Christopher T.

    2015-04-01

    Trace elements and their isotopes (TEIs) are of priority interest in several subdisciplines of oceanography. For example, the vital role of trace element micronutrients in regulating the growth of marine organisms, which, in turn, may influence the structure and composition of marine ecosystems, is now well established (Morel and Price, 2003; Twining and Baines, 2013). Natural distributions of some TEIs have been severely impacted by anthropogenic emissions, leading to substantial perturbations of natural ocean inventories. Pb and Hg, for example, (Lamborg et al., 2002; Schaule and Patterson, 1981), may represent a significant threat to human food supply. Furthermore, much of our knowledge of past variability in the ocean environment, including the ocean's role in climate change, has been developed using TEI proxies archived in marine substrates such as sediments, corals and microfossils. Research in each of these areas relies on a comprehensive knowledge of the distributions of TEIs in the ocean, and on the sensitivity of these distributions to changing environmental conditions. With numerous processes affecting the regional supply and removal of TEIs in the ocean, a comprehensive understanding of the marine biogeochemical cycles of TEIs can be attained only by a global, coordinated, international effort. GEOTRACES, an international program designed to study the marine biogeochemical cycles of trace elements and their isotopes (Anderson et al., 2014; Henderson et al., 2007), aims to achieve these goals.

  12. Incorporation of Nicotine into Silicone Coatings for Marine Applications

    NASA Astrophysics Data System (ADS)

    Jaramillo, Sandy Tuyet

    PDMS-based marine coatings presently used are limited by their inability to mitigate microfouling which limits their application to high speed vessels. PDMS coatings are favored when viable, due to their foul release properties of macrofouling organisms. Natural products have been investigated for antifouling properties for potential use in these marine antifouling coatings but few have incorporated natural products into coatings or coating systems. The purpose of the research was to establish the corrosion inhibiting properties of nicotine and to incorporate nicotine, a biodegradable and readily available natural product, into a PDMS coating to demonstrate the use of a natural product in a coating for marine applications. The corrosion inhibiting properties of nicotine was examined using potentiodynamic polarization scans, material characterization techniques such as scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction, quartz crystal microbalance and electrochemical impedance spectroscopy. Nicotine was determined to be an anodic corrosion inhibitor for mild steel immersed in simulated seawater with the ability to precipitate a protective calcium carbonate film. Electrochemical impedance spectroscopy was used to evaluate the performance of the developed nicotine incorporated coatings on mild steel immersed in simulated seawater over 21 days of immersion. The coatings with 2 wt.% of nicotine incorporated in the coating with a ratio of 1:30 of additional platinum catalyst to nicotine exhibited the best performance for intact coatings. This coating had the most favorable balance of the amount of nicotine and platinum catalyst of all the coatings evaluated. Overall, all nicotine incorporated coatings had a performance improvement when compared to the control PDMS coating. Of the nicotine incorporated coatings that were tested with an artificial pin-hole defect, the 2PDMS coating also exhibited the best performance with significant

  13. Development of innovative tools for understanding marine biodiversity and assessing good environmental status, within the European Marine Strategy Framework Directive

    NASA Astrophysics Data System (ADS)

    Borja, Angel; Uyarra, María C.

    2014-05-01

    Marine natural resources and ecosystem services constitute the natural capital that supports economies, societies and individual well-being. Good governance requires a quantification of the interactions and trade-offs among ecosystem services and understanding of how biodiversity underpins ecosystem functions and services across time, scales and sectors. Marine biodiversity is a key descriptor for the assessment within the Marine Strategy Framework Directive (MSFD), approved in 2008, which comprises a total of 11 descriptors. However, the relationships between pressures from human activities and climatic influences and their effects on marine biological diversity are still only partially understood. Hence, these relationships need to be better understood in order to fully achieve a good environmental status (GEnS), as required by the MSFD. This contribution is based upon the FP7 EU project DEVOTES (DEVelopment Of innovative Tools for understanding marine biodiversity and assessing good Environmental Status), which focus on developing innovative conceptual frameworks, methods and coherent, shared protocols to provide consistent datasets and knowledge at different scales, within four regional seas (Black Sea, Mediterranean, Atlantic and Baltic Sea). This project is developing innovative approaches to valuate biodiversity and ecosystem services and to develop public goods and sustainable economic activities from them. The research will benefit sea users and stakeholders, and will contribute to assess and monitor the environmental status of marine waters. The main objectives are: (i) to improve our understanding of the impact of human activities and variations associated to climate on marine biodiversity, (ii) to test indicators (referred in the Commission Decision on GEnS) and develop new ones for assessment at several ecological levels (species, habitat, ecosystems) and for the characterization and status classification of the marine waters, (iii) to develop, test

  14. Short-Term and Long-Term Biological Effects of Chronic Chemical Contamination on Natural Populations of a Marine Bivalve.

    PubMed

    Breitwieser, Marine; Viricel, Amélia; Graber, Marianne; Murillo, Laurence; Becquet, Vanessa; Churlaud, Carine; Fruitier-Arnaudin, Ingrid; Huet, Valérie; Lacroix, Camille; Pante, Eric; Le Floch, Stéphane; Thomas-Guyon, Hélène

    2016-01-01

    Understanding the effects of chronic chemical contamination on natural populations of marine organisms is complex due to the combined effects of different types of pollutants and environmental parameters that can modulate the physiological responses to stress. Here, we present the effects of a chronic contamination in a marine bivalve by combining multiple approaches that provide information on individual and population health. We sampled variegated scallops (Mimachlamys varia) at sites characterized by different contaminants and contamination levels to study the short and long-term (intergenerational) responses of this species to physiological stress. We used biomarkers (SOD, MDA, GST, laccase, citrate synthase and phosphatases) as indicators of oxidative stress, immune system alteration, mitochondrial respiration and general metabolism, and measured population genetic diversity at each site. In parallel, concentration of 14 trace metals and 45 organic contaminants (PAHs, PCBs, pesticides) in tissues were measured. Scallops were collected outside and during their reproductive season to investigate temporal variability in contaminant and biomarker levels. Our analyses revealed that the levels of two biomarkers (Laccase-type phenoloxidase and malondialdehyde) were significantly correlated with Cd concentration. Additionally, we observed significant seasonal differences for four of the five biomarkers, which is likely due to the scallop reproductive status at time of sampling. As a source of concern, a location that was identified as a reference site on the basis of inorganic contaminant levels presented the same level of some persistent organic pollutants (DDT and its metabolites) than more impacted sites. Finally, potential long-term effects of heavy metal contamination were observed for variegated scallops as genetic diversity was depressed in the most polluted sites.

  15. Short-Term and Long-Term Biological Effects of Chronic Chemical Contamination on Natural Populations of a Marine Bivalve

    PubMed Central

    Graber, Marianne; Murillo, Laurence; Becquet, Vanessa; Churlaud, Carine; Fruitier-Arnaudin, Ingrid; Huet, Valérie; Lacroix, Camille; Pante, Eric; Le Floch, Stéphane; Thomas-Guyon, Hélène

    2016-01-01

    Understanding the effects of chronic chemical contamination on natural populations of marine organisms is complex due to the combined effects of different types of pollutants and environmental parameters that can modulate the physiological responses to stress. Here, we present the effects of a chronic contamination in a marine bivalve by combining multiple approaches that provide information on individual and population health. We sampled variegated scallops (Mimachlamys varia) at sites characterized by different contaminants and contamination levels to study the short and long-term (intergenerational) responses of this species to physiological stress. We used biomarkers (SOD, MDA, GST, laccase, citrate synthase and phosphatases) as indicators of oxidative stress, immune system alteration, mitochondrial respiration and general metabolism, and measured population genetic diversity at each site. In parallel, concentration of 14 trace metals and 45 organic contaminants (PAHs, PCBs, pesticides) in tissues were measured. Scallops were collected outside and during their reproductive season to investigate temporal variability in contaminant and biomarker levels. Our analyses revealed that the levels of two biomarkers (Laccase-type phenoloxidase and malondialdehyde) were significantly correlated with Cd concentration. Additionally, we observed significant seasonal differences for four of the five biomarkers, which is likely due to the scallop reproductive status at time of sampling. As a source of concern, a location that was identified as a reference site on the basis of inorganic contaminant levels presented the same level of some persistent organic pollutants (DDT and its metabolites) than more impacted sites. Finally, potential long-term effects of heavy metal contamination were observed for variegated scallops as genetic diversity was depressed in the most polluted sites. PMID:26938082

  16. Marine Microorganism: An Underexplored Source of l-Asparaginase.

    PubMed

    Prihanto, A A; Wakayama, M

    l-Asparaginase (EC 3.5.1.1) is an enzyme that catalyzes the hydrolysis of l-asparagine to l-aspartic acid. This enzyme has an important role in medicine and food. l-Asparaginase is a potential drug in cancer therapy. Furthermore, it is also applied for reducing acrylamide, a carcinogenic compound in baked and fried foods. Until now, approved l-asparaginases for both applications are few due to their lack of appropriate properties. As a result, researchers have been enthusiastically seeking new sources of enzyme with better performance. A great number of terrestrial l-asparaginase-producing microorganisms have been reported but unfortunately, almost all failed to meet criteria for cancer therapy and acrylamide reducing agent. As a largest area than Earth, marine environment, by contrast, has not been optimally explored yet. So far, a great challenge facing an exploration of marine microorganisms is mainly due to their harsh, mysterious, and dangerous environment. It is clear that marine environment, a gigantic potential source for marine natural products is scantily revealed, although several approaches and technologies have been developed. This chapter presents the historical of l-asparaginase discovery and applications. It is also discussed, how the marine environment, even though offering a great potency but is still one of the less explored area for l-asparaginase-producing microorganisms. © 2016 Elsevier Inc. All rights reserved.

  17. Marine Corps Drawdown, Force Structure Initiatives, and Roles and Missions: Background and Issues for Congress

    DTIC Science & Technology

    2014-01-09

    force of 150,000 Marines—a strength level Marine Corps leadership has characterized as unviable to execute our current defense strategy. The Marines...have instituted a number of force shaping programs to reach the 174,000 endstrength. They believe this force level can be achieved through natural...8 Current Planned Drawdown Levels

  18. Marine Invertebrate Metabolites with Anticancer Activities: Solutions to the “Supply Problem”

    PubMed Central

    Gomes, Nelson G. M.; Dasari, Ramesh; Chandra, Sunena; Kiss, Robert; Kornienko, Alexander

    2016-01-01

    Marine invertebrates provide a rich source of metabolites with anticancer activities and several marine-derived agents have been approved for the treatment of cancer. However, the limited supply of promising anticancer metabolites from their natural sources is a major hurdle to their preclinical and clinical development. Thus, the lack of a sustainable large-scale supply has been an important challenge facing chemists and biologists involved in marine-based drug discovery. In the current review we describe the main strategies aimed to overcome the supply problem. These include: marine invertebrate aquaculture, invertebrate and symbiont cell culture, culture-independent strategies, total chemical synthesis, semi-synthesis, and a number of hybrid strategies. We provide examples illustrating the application of these strategies for the supply of marine invertebrate-derived anticancer agents. Finally, we encourage the scientific community to develop scalable methods to obtain selected metabolites, which in the authors’ opinion should be pursued due to their most promising anticancer activities. PMID:27213412

  19. Molecular Architecture and Biomedical Leads of Terpenes from Red Sea Marine Invertebrates

    PubMed Central

    Hegazy, Mohamed Elamir F.; Mohamed, Tarik A.; Alhammady, Montaser A.; Shaheen, Alaa M.; Reda, Eman H.; Elshamy, Abdelsamed I.; Aziz, Mina; Paré, Paul W.

    2015-01-01

    Marine invertebrates including sponges, soft coral, tunicates, mollusks and bryozoan have proved to be a prolific source of bioactive natural products. Among marine-derived metabolites, terpenoids have provided a vast array of molecular architectures. These isoprenoid-derived metabolites also exhibit highly specialized biological activities ranging from nerve regeneration to blood-sugar regulation. As a result, intense research activity has been devoted to characterizing invertebrate terpenes from both a chemical and biological standpoint. This review focuses on the chemistry and biology of terpene metabolites isolated from the Red Sea ecosystem, a unique marine biome with one of the highest levels of biodiversity and specifically rich in invertebrate species. PMID:26006713

  20. Development of Anticorrosive Polymer Nanocomposite Coating for Corrosion Protection in Marine Environment

    NASA Astrophysics Data System (ADS)

    Mardare, L.; Benea, L.

    2017-06-01

    The marine environment is considered to be a highly aggressive environment for metal materials. Steels are the most common materials being used for shipbuilding. Corrosion is a major cause of structural deterioration in marine and offshore structures. Corrosion of carbon steel in marine environment becomes serious due to the highly corrosive nature of seawater with high salinity and microorganism. To protect metallic materials particularly steel against corrosion occurrence various organic and inorganic coatings are used. The most used are the polymeric protective coatings. The nanostructured TiO2 polymer coating is able to offer higher protection to steel against corrosion, and performed relatively better than other polymer coatings.

  1. Molecular architecture and biomedical leads of terpenes from red sea marine invertebrates.

    PubMed

    Hegazy, Mohamed Elamir F; Mohamed, Tarik A; Alhammady, Montaser A; Shaheen, Alaa M; Reda, Eman H; Elshamy, Abdelsamed I; Aziz, Mina; Paré, Paul W

    2015-05-20

    Marine invertebrates including sponges, soft coral, tunicates, mollusks and bryozoan have proved to be a prolific source of bioactive natural products. Among marine-derived metabolites, terpenoids have provided a vast array of molecular architectures. These isoprenoid-derived metabolites also exhibit highly specialized biological activities ranging from nerve regeneration to blood-sugar regulation. As a result, intense research activity has been devoted to characterizing invertebrate terpenes from both a chemical and biological standpoint. This review focuses on the chemistry and biology of terpene metabolites isolated from the Red Sea ecosystem, a unique marine biome with one of the highest levels of biodiversity and specifically rich in invertebrate species.

  2. Marine04 Marine radiocarbon age calibration, 26 ? 0 ka BP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughen, K; Baille, M; Bard, E

    2004-11-01

    New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration datasets extend an additional 2000 years, from 0-26 ka cal BP (Before Present, 0 cal BP = AD 1950), and provide much higher resolution, greater precision and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically dated tree-ring samples, converted with a box-diffusion model to marine mixed-layer ages, cover the period from 0-10.5 ka cal BP. Beyond 10.5 ka cal BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals.more » The marine records are corrected with site-specific {sup 14}C reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 ka cal BP. A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the radiocarbon age to calculate the underlying calibration curve. The marine datasets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring datasets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al.« less

  3. Martian lineaments from Mariner 6 and 7 photographs

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Ingerson, F. E.

    1973-01-01

    Mariner 6 and 7 photographs were used to investigate the nature and importance of linear surface trends on Mars. Cross correlations of frequency-azimuth distributions of linear trends from different Mariner frames indicate that lineations not recognized as topographic features have a component of pseudoforms, probably introduced during digital reconstruction of the pictures. Similar statistical tests may aid in the analysis of surface trends from future satellites and space probes. The most reliable data were separated into photometrically defined provinces. Meridiani Sinus and Margaritifer Sinus display five major trends in common, which are interpreted as extensions of crustal weaknesses related to the enormous equatorial canyon revealed in Mariner 6 and 9 pictures. Alignments of crater wall segments generally match these trends and suggest structural control of crater plan. Crater chains, however, do not match these trends and are interpreted as secondary impacts. Rose diagrams of lineations in Deucalionis Regio exhibit much more complexity and are believed to reflect a better preserved or more complex geologic history.

  4. Geochemistry of Upper Cretaceous non-marine - marine cycles (Gosau Group, Austria)

    NASA Astrophysics Data System (ADS)

    Hofer, G.; Wagreich, M.; Draganits, E.; Neuhuber, S.; Grundtner, M. L.; Bottig, M.

    2012-04-01

    Early Campanian non-marine - marine cycles of the Grünbach Formation (Gosau Group, Northern Calcareous Alps, Austria) within the Grünbach Syncline have been investigated geochemically. The succession of the Grünbach Formation comprises clay, marl, siltstone, sandstone as well as rare conglomerate and coal deposited in a marginal marine to terrestrial environment. We sampled a 45 m section of an artificial trench at Maiersdorf, Lower Austria. Additionally, cored sections of equivalent boreholes of the Glinzendorf and Gießhübl Syncline and Slovakia have been investigated for their stable isotopic composition. Based on geochemical proxies (whole rock geochemistry and bulk carbon and oxygen isotopy) as well as microfossil data, five marine to non-marine cycles are reconstructed for the profile of the Grünbach Formation. Marine intervals were identified basically by the presence of nannofossils and by higher mean δ13C ratios (-4.5 ‰ VPDB), boron contents (165.8 ppm) and B/Al* ratios (167.2) compared to non-marine interpreted sections (mean δ13C: -6.3 ‰, B: 139.0 ppm, B/Al*: 149.4). A statistically significant differentiation between marine and non-marine samples is possible using the aluminium-normalized boron ratio and, to a lower degree, the absolute boron values. Generally non-marine samples of the various Gosau synclines have significantly lower mean δ13C values (-5.3 ‰ ) compared to the mean (-1.4 ‰ ) of marine samples. The discrimination between a marine and non-marine group using δ18O is also statistically highly significant. A duration of a few 100 kyrs is estimated for single non-marine - marine cycle of the Grünbach Formation. Both eustatic sea-level changes due to climate cycles and tectonically induced subsidence may have controlled the depositional cyclicity. Low subsidence rates and uniform provenance data argue against a purely tectonic origin of the cycles and are in favor for a mainly climatic control of these transgressive

  5. A High-Resolution LC-MS-Based Secondary Metabolite Fingerprint Database of Marine Bacteria

    PubMed Central

    Lu, Liang; Wang, Jijie; Xu, Ying; Wang, Kailing; Hu, Yingwei; Tian, Renmao; Yang, Bo; Lai, Qiliang; Li, Yongxin; Zhang, Weipeng; Shao, Zongze; Lam, Henry; Qian, Pei-Yuan

    2014-01-01

    Marine bacteria are the most widely distributed organisms in the ocean environment and produce a wide variety of secondary metabolites. However, traditional screening for bioactive natural compounds is greatly hindered by the lack of a systematic way of cataloguing the chemical profiles of bacterial strains found in nature. Here we present a chemical fingerprint database of marine bacteria based on their secondary metabolite profiles, acquired by high-resolution LC-MS. Till now, 1,430 bacterial strains spanning 168 known species collected from different marine environments were cultured and profiled. Using this database, we demonstrated that secondary metabolite profile similarity is approximately, but not always, correlated with taxonomical similarity. We also validated the ability of this database to find species-specific metabolites, as well as to discover known bioactive compounds from previously unknown sources. An online interface to this database, as well as the accompanying software, is provided freely for the community to use. PMID:25298017

  6. Patterns of marine debris distribution on the beaches of Rottnest Island, Western Australia.

    PubMed

    Smith, Stephen D A; Gillies, Chris L; Shortland-Jones, Helen

    2014-11-15

    Rottnest Island, Western Australia, receives >500,000 visitors y(-1), who are mainly attracted by the Island's natural values. Marine debris is a threat to both these natural values and to Island wildlife, and is consequently an important issue for managers. Engaging with volunteers, we quantified marine debris at 16 beach sites around the Island. The highest loads occurred on the SW coast and primarily comprised items originating from fishing activities. Sites on the NE coast, where >95% of the Island's accommodation is located, supported the highest abundance of items deposited in situ (e.g. bottles and cigarette butts). We conclude that marine debris management may require a range of strategies to address the different primary sources. Raising awareness through education and intervention may be highly effective at popular beaches on the NE coast, but broader liaison with commercial and recreational fishers will be necessary to address the issue at the Island scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Cooperation in marine affairs: Evidence from the Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Harakunarak, Ampai

    1998-12-01

    This study argues that the evolving process of interstate cooperation based upon power interests could operate regardless of the formal or expressed will of governments to make binding agreements. The study developed a comprehensive model for interstate cooperation in which state interests were part of conditions for the mutual problem-solving process. The model was then tested against three marine issues in the Gulf of Thailand: offshore hydrocarbon development associated with maritime boundary delimitation, marine fisheries, and marine pollution. Literature review, newspapers and periodicals, on-line databases, and unstructured interviews were primary sources of data. The analysis found that consultation accounted for cooperative interaction among the realist Gulf of Thailand states. Evidence from three tested marine issues suggested that frequent contact and subsequent effects of a greater exchange of knowledge and information can at least stabilize relationships between the states. Informality and non-binding nature of the interactive process offered the states the needed flexibility in designing and implementing effective marine management in the Gulf of Thailand. The study discussed a modified realist framework and some implications for a future study of informal regimes and compliance with interstate agreements.

  8. Trade-Off Between Dimethyl Sulfide and Isoprene Emissions from Marine Phytoplankton.

    PubMed

    Dani, K G Srikanta; Loreto, Francesco

    2017-05-01

    Marine phytoplankton emit volatile organic compounds (VOCs) such as dimethyl sulfide (DMS) and isoprene that influence air quality, cloud dynamics, and planetary albedo. We show that globally (i) marine phytoplankton taxa tend to emit either DMS or isoprene, and (ii) sea-water surface concentration and emission hotspots of DMS and isoprene have opposite latitudinal gradients. We argue that a convergence of antioxidant functions between DMS and isoprene is possible, driven by potential metabolic competition for photosynthetic substrates. Linking phytoplankton emission traits to their latitudinal niches, we hypothesize that natural selection favors DMS emission in cold (polar) waters and isoprene emission in warm (tropical) oceans, and that global warming may expand the geographic range of marine isoprene-emitters. A trade-off between DMS and isoprene at metabolic, organismal, and geographic levels may have important consequences for future marine biosphere-atmosphere interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Marine Biogeochemistry of Zinc Isotopes

    DTIC Science & Technology

    2007-06-01

    hydrothermal fluids and minerals, cultured marine phytoplankton, natural plankton, and seawater. By measuring Zn isotopes in a diverse array of...variations were discovered in hydrothermal fluids and minerals, with hydrothermal fluids ranging in 6 66Zn from 0.02 %o to +0.93 %o, and chimney minerals...drives much of the Zn isotope fractionation in hydrothermal systems. In cultured diatoms, a relationship was discovered between Zn transport by

  10. Marine exposure of preservative-treated small wood panels

    Treesearch

    B. R. Johnson; D. I. Gutzmer

    1984-01-01

    Small wood panels treated with many different chemicals have been exposed to limnorian and teredine marine borers in the sea at Key West, Florida. These preservatives and treatments include creosotes with and without modification, waterborne salts, salt-creosote dual treatments, chemical modifications of wood, and modified polymers. In spite of the accelerated nature...

  11. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases.

    PubMed

    Raposo, Maria Filomena de Jesus; de Morais, Alcina Maria Miranda Bernardo; de Morais, Rui Manuel Santos Costa

    2015-08-14

    Epidemiological studies have shown a relation between antioxidants and the prevention of several chronic diseases. Microalgae are a potential novel source of bioactive molecules, including a wide range of different carotenoids that can be used as nutraceuticals, food supplements and novel food products. The objective of this review is (i) to update the research that has been carried out on the most known carotenoids produced by marine microalgae, including reporting on their high potentialities to produce other less known important compounds; (ii) to compile the work that has been done in order to establish some relationship between carotenoids and oxidative protection and treatment; (iii) to summarize the association of oxidative stress and the various reactive species including free radicals with several human diseases; and (iv) to provide evidence of the potential of carotenoids from marine microalgae to be used as therapeutics to treat or prevent these oxidative stress-related diseases.

  12. Highlights of marine invertebrate-derived biosynthetic products: Their biomedical potential and possible production by microbial associants

    PubMed Central

    Radjasa, Ocky K.; Vaske, Yvette M.; Navarro, Gabriel; Vervoort, Hélène C.; Tenney, Karen; Linington, Roger G.; Crews, Phillip

    2011-01-01

    Coral reefs are among the most productive marine ecosystems and are the source of a large group of structurally unique biosynthetic products. Annual reviews of marine natural products continue to illustrate that the most prolific source of bioactive compounds consist of coral reef invertebrates—sponges, ascidians, mollusks, and bryozoans. This account examines recent milestone developments pertaining to compounds from invertebrates designated as therapeutic leads for biomedical discovery. The focus is on the secondary metabolites, their inspirational structural scaffolds and the possible role of microorganism associants in their biosynthesis. Also important are the increasing concerns regarding the collection of reef invertebrates for the discovery process. The case examples considered here will be useful to insure that future research to unearth bioactive invertebrate-derived compounds will be carried out in a sustainable and environmentally conscious fashion. Our account begins with some observations pertaining to the natural history of these organisms. Many still believe that a serious obstacle to the ultimate development of a marine natural product isolated from coral reef invertebrates is the problem of compound supply. Recent achievements through total synthesis can now be drawn on to forcefully cast this myth aside. The tools of semisynthesis of complex natural products or insights from SAR efforts to simplify an active pharmacophore are at hand and demand discussion. Equally exciting is the prospect that invertebrate-associated micro-organisms may represent the next frontier to accelerate the development of high priority therapeutic candidates. Currently in the United States there are two FDA approved marine-derived therapeutic drugs and two others that are often cited as being marine-inspired. This record will be examined first followed by an analysis of a dozen of our favorite examples of coral reef invertebrate natural products having therapeutic

  13. Marine Biota and Psychological Well-Being

    PubMed Central

    Cracknell, Deborah; White, Mathew P.; Pahl, Sabine; Nichols, Wallace J.; Depledge, Michael H.

    2015-01-01

    Exposure to natural environments can have calming and stress-reducing effects on humans. Moreover, previous studies suggest that these benefits may be greater in areas with higher species richness. Our study took advantage of a “natural experiment” to examine people’s behavioral, physiological, and psychological reactions to increases in levels of marine biota in a large aquarium exhibit during three stages of restocking: Unstocked, Partially stocked, and Fully stocked. We found that increased biota levels were associated with longer spontaneous viewing of the exhibit, greater reductions in heart rate, greater increases in self-reported mood, and higher interest. We suggest that higher biota levels, even in managed settings, may be associated with important well-being and health benefits, particularly for individuals not able to access the natural analogues of managed environments. PMID:27818525

  14. 50 CFR 216.25 - Exempted marine mammals and marine mammal products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Exempted marine mammals and marine mammal products. 216.25 Section 216.25 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKING...

  15. 50 CFR 216.25 - Exempted marine mammals and marine mammal products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Exempted marine mammals and marine mammal products. 216.25 Section 216.25 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKING...

  16. 50 CFR 216.25 - Exempted marine mammals and marine mammal products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Exempted marine mammals and marine mammal products. 216.25 Section 216.25 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKING...

  17. 50 CFR 216.25 - Exempted marine mammals and marine mammal products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Exempted marine mammals and marine mammal products. 216.25 Section 216.25 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKING...

  18. 50 CFR 216.25 - Exempted marine mammals and marine mammal products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Exempted marine mammals and marine mammal products. 216.25 Section 216.25 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS REGULATIONS GOVERNING THE TAKING...

  19. Marine Publications

    Science.gov Websites

    ) - Free Marine Service Charts (MSC) list frequencies, schedules and locations of stations disseminating ) (Page 2) Free6 NWS Observing Handbook NO.1 (05/10) Free 6 Marine Report User Guide Worldwide Marine ) Tsunami Safety Brochure TSUNAMI The Great Waves - Free 11 NOAA SEA GRANT PUBLICATIONS Hawaii Boater's

  20. New Waves in Marine Science Symposium: Marine Animal Communication.

    ERIC Educational Resources Information Center

    Allen, Betty, Comp.

    1989-01-01

    Presented are the abstracts from three research projects on marine social systems which were a part of a marine science symposium. Five sets of activities on marine animal communication are included, one each for grades K-2, 3-5, 6-8 and 9-12, and informal education. (CW)

  1. Volatile Halogenated Organic Compounds Released to Seawater from Temperate Marine Macroalgae

    NASA Astrophysics Data System (ADS)

    Gschwend, Philip M.; Macfarlane, John K.; Newman, Kathleen A.

    1985-03-01

    Volatile halogenated organic compounds synthesized by various industrial processes are troublesome pollutants because they are persistent in terrestrial ecosystems and because they may be present in sufficient quantities to alter the natural atmospheric cycles of the halogens. Certain of these compounds, including polybromomethanes and several previously unobserved alkyl monohalides and dihalides, appear to be natural products of the marine environment. A variety of temperate marine macroalgae (the brown algae Ascophyllum nodosum and Fucus vesiculosis, the green algae Enteromorpha linza and Ulva lacta, and the red alga Gigartina stellata) not only contain volatile halogenated organic compounds but also release them to seawater at rates of nanograms to micrograms of each compound per gram of dry algae per day. The macroalgae may be an important source of bromine-containing material released to the atmosphere.

  2. The Evaluation and Utilization of Marine-derived Bioactive Compounds with Anti-obesity Effect.

    PubMed

    Jin, Qiu; Yu, Huahua; Li, Pengcheng

    2018-01-01

    Obesity is a global epidemic throughout the world. There is thus increasing interest in searching for natural bioactive compounds with anti-obesity effect. A number of marine compounds have been regarded as potential sources of bioactive compounds and are associated with an anti-obesity effect. Marine-derived compounds with anti-obesity effect and their current applications, methods and indicators for the evaluation of anti-obesity activity are summarized in this review. in order to make contributions to the development of marine-derived functional food against obesity. In this review, an overview of marine-derived compounds with anti-obesity effect, including marine polysaccharides, marine lipid, marine peptides, marine carotenoids is intensively made with an emphasis on their efficacy and mechanism of action. Meanwhile, methods and indicators for the evaluation of anti-obesity activity are discussed. We summarize these methods into three categories: in vitro assay (including adsorption experiments and enzyme inhibitory assay), cell line study, animal experiments and clinical experiments. In addition, a brief introduction of the current applications of marine bioactive compounds with anti-obesity activity is discussed. Marine environment is a rich source of both biological and chemical diversity. In the past decades, numerous novel compounds with anti-obesity activity have been obtained from marine organisms, and many of them have been applied to industrial production such as functional foods and pharmaceuticals. Further studies are needed to explore the above-mentioned facts. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Field evaluations of marine oil spill bioremediation.

    PubMed Central

    Swannell, R P; Lee, K; McDonagh, M

    1996-01-01

    Bioremediation is defined as the act of adding or improving the availability of materials (e.g., nutrients, microorganisms, or oxygen) to contaminated environments to cause an acceleration of natural biodegradative processes. The results of field experiments and trials following actual spill incidents have been reviewed to evaluate the feasibility of this approach as a treatment for oil contamination in the marine environment. The ubiquity of oil-degrading microorganisms in the marine environment is well established, and research has demonstrated the capability of the indigenous microflora to degrade many components of petroleum shortly after exposure. Studies have identified numerous factors which affect the natural biodegradation rates of oil, such as the origin and concentration of oil, the availability of oil-degrading microorganisms, nutrient concentrations, oxygen levels, climatic conditions, and sediment characteristics. Bioremediation strategies based on the application of fertilizers have been shown to stimulate the biodegradation rates of oil in aerobic intertidal sediments such as sand and cobble. The ratio of oil loading to nitrogen concentration within the interstitial water has been identified to be the principal controlling factor influencing the success of this bioremediation strategy. However, the need for the seeding of natural environments with hydrocarbon-degrading bacteria has not been clearly demonstrated under natural environmental conditions. It is suggested that bioremediation should now take its place among the many techniques available for the treatment of oil spills, although there is still a clear need to set operational limits for its use. On the basis of the available evidence, we have proposed preliminary operational guidelines for bioremediation on shoreline environments. PMID:8801437

  4. 18. Marine Railway #1, location in foreground; Marine Railway #2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Marine Railway #1, location in foreground; Marine Railway #2 (broken cradle) center; cradle for Marine Railway #3 on right. - Thames Tow Boat Company, Foot of Farnsworth Street, New London, New London County, CT

  5. Potential Synergies between Nature-Based Tourism and Sustainable Use of Marine Resources: Insights from Dive Tourism in Territorial User Rights for Fisheries in Chile.

    PubMed

    Biggs, Duan; Amar, Francisca; Valdebenito, Abel; Gelcich, Stefan

    2016-01-01

    Novel solutions to conserve biodiversity whilst allowing for resource harvesting are urgently needed. In marine systems, Territorial User Rights for Fisheries (TURFs) are promoted to enable sustainable use of resources. We investigate the potential for synergies between nature-based tourism and TURFs on Chile's central coast. Of 135 recreational divers surveyed, 77% indicated that the fish species they preferred sighting were declining and 80% indicated that they would dive more often in TURFs, which have higher abundance of favoured species. Regression analysis shows that respondents that perceive that TURFs fulfil a conservation function are more willing to pay to dive in a TURF. However, respondents who understand the bureaucratic functioning of a TURF are less willing to pay, and there is diversity in how divers feel payments should be made. A participatory approach is required to navigate these complexities to achieve synergies between nature-based tourism and resource harvesting in TURFs.

  6. Marine envenomations.

    PubMed

    Berling, Ingrid; Isbister, Geoffrey

    2015-01-01

    Marine stings are common but most are minor and do not require medical intervention. Severe and systemic marine envenoming is uncommon, but includes box jellyfish stings, Irukandji syndrome, major stingray trauma and blue-ringed octopus envenoming. Almost all marine injuries are caused by jellyfish stings, and penetrating injuries from spiny fish, stingrays or sea urchins. This article describes the presentation and management of marine envenomations and injuries that may occur in Australia. First aid for jellyfish includes tentacle removal, application of vinegar for box jellyfish, and hot water immersion (45°C for 20 min) for bluebottle jellyfish stings. Basic life support is essential for severe marine envenomings that result in cardiac collapse or paralysis. Irukandji syndrome causes severe generalised pain, autonomic excess and minimal local pain, which may require large amounts of analgesia, and, uncommonly, myocardial depression and pulmonary oedema occur. Penetrating marine injuries can cause significant trauma depending on location of the injury. Large and unclean wounds may have delayed healing and secondary infection if not adequately irrigated, debrided and observed.

  7. The Natural Classroom: A Directory of Field Courses, Programs, and Expeditions in the Natural Sciences.

    ERIC Educational Resources Information Center

    Edelman, Jack R.

    The purpose of this book is to increase awareness of the numerous seminars, short courses, field courses, workshops, and programs for teachers, students, naturalists, and independent scholars. These programs emphasize the natural sciences including general biology, botany, zoology, ecology, marine biology, ichthyology, microbiology, natural…

  8. Marine habitat mapping at Labuan Marine Park, Federal Territory of Labuan, Malaysia

    NASA Astrophysics Data System (ADS)

    Mustajap, Fazliana; Saleh, Ejria; Madin, John; Hamid, Shahimah Abdul

    2015-06-01

    Marine habitat mapping has recently become essential in coastal marine science research. It is one of the efforts to understand marine ecosystems, and thus to protect them. Habitat mapping is integral to marine-related industries such as fisheries, aquaculture, forestry and tourism. An assessment of marine habitat mapping was conducted at Labuan Marine Park (LMP), a marine protected area in the Federal Territory of Labuan. It is surrounded by shallow water within its islands (Kuraman, Rusukan Kecil and Rusukan Besar) with an area of 39.7 km2. The objectives of the study are to identify the substrate and types of marine habitat present within the park. Side scan sonar (SSS) (Aquascan TM) was used to determine the substrates and habitat while ground truthings were done through field observation and SCUBA diving survey. Seabed classification and marine habitat was based on NOAA's biogeography program. Three substrate types (sand, rock, silt) were identified in this area. The major marine habitats identified are corals, macro algae and small patches of sea grass. The study area is an important refuge for spawning and juvenile fish and supports the livelihood of the coastal communities on Labuan Island. Therefore, proper management is crucial in order to better maintain the marine protected area. The findings are significant and provide detailed baseline information on marine habitat for conservation, protection and future management in LMP.

  9. Little Sink Research Natural Area: guidebook supplement 31.

    Treesearch

    Reid Schuller; Ronald L. Exeter

    2007-01-01

    This guidebook describes the Little Sink Research Natural Area, a 32.38-ha (80-ac) tract occupying an area of geologically unstable marine siltstone exhibiting natural geomorphic disturbances including landslides, slump benches, scarps, basins and ponds. The area supports forested stands dominated by Douglas-fir (Pseudotsuga menziesii) as well as...

  10. The chemistry and biology of guanidine natural products.

    PubMed

    Berlinck, Roberto G S; Bertonha, Ariane F; Takaki, Mirelle; Rodriguez, Julie P G

    2017-11-15

    Covering: 2015 and 2016The chemistry and biology of natural guanidines isolated from microbial culture media, from marine invertebrates, as well as from terrestrial plants and animals, are reviewed. Emphasis is directed to the biosynthesis, total synthesis, ecological roles as well as on the evolution of guanidines isolated from natural sources.

  11. Biomineralization processes of calcite induced by bacteria isolated from marine sediments

    PubMed Central

    Wei, Shiping; Cui, Hongpeng; Jiang, Zhenglong; Liu, Hao; He, Hao; Fang, Nianqiao

    2015-01-01

    Biomineralization is a known natural phenomenon associated with a wide range of bacterial species. Bacterial-induced calcium carbonate precipitation by marine isolates was investigated in this study. Three genera of ureolytic bacteria, Sporosarcina sp., Bacillus sp. and Brevundimonas sp. were observed to precipitate calcium carbonate minerals. Of these species, Sporosarcina sp. dominated the cultured isolates. B. lentus CP28 generated higher urease activity and facilitated more efficient precipitation of calcium carbonate at 3.24 ± 0.25 × 10−4 mg/cell. X-ray diffraction indicated that the dominant calcium carbonate phase was calcite. Scanning electron microscopy showed that morphologies of the minerals were dominated by cubic, rhombic and polygonal plate-like crystals. The dynamic process of microbial calcium carbonate precipitation revealed that B. lentus CP28 precipitated calcite crystals through the enzymatic hydrolysis of urea, and that when ammonium ion concentrations reached 746 mM and the pH reached 9.6, that favored calcite precipitation at a higher level of 96 mg/L. The results of this research provide evidence that a variety of marine bacteria can induce calcium carbonate precipitation, and may influence the marine carbonate cycle in natural environments. PMID:26273260

  12. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats

    PubMed Central

    Simon, Meinhard; Scheuner, Carmen; Meier-Kolthoff, Jan P; Brinkhoff, Thorsten; Wagner-Döbler, Irene; Ulbrich, Marcus; Klenk, Hans-Peter; Schomburg, Dietmar; Petersen, Jörn; Göker, Markus

    2017-01-01

    Marine Rhodobacteraceae (Alphaproteobacteria) are key players of biogeochemical cycling, comprise up to 30% of bacterial communities in pelagic environments and are often mutualists of eukaryotes. As ‘Roseobacter clade', these ‘roseobacters' are assumed to be monophyletic, but non-marine Rhodobacteraceae have not yet been included in phylogenomic analyses. Therefore, we analysed 106 genome sequences, particularly emphasizing gene sampling and its effect on phylogenetic stability, and investigated relationships between marine versus non-marine habitat, evolutionary origin and genomic adaptations. Our analyses, providing no unequivocal evidence for the monophyly of roseobacters, indicate several shifts between marine and non-marine habitats that occurred independently and were accompanied by characteristic changes in genomic content of orthologs, enzymes and metabolic pathways. Non-marine Rhodobacteraceae gained high-affinity transporters to cope with much lower sulphate concentrations and lost genes related to the reduced sodium chloride and organohalogen concentrations in their habitats. Marine Rhodobacteraceae gained genes required for fucoidan desulphonation and synthesis of the plant hormone indole 3-acetic acid and the compatible solutes ectoin and carnitin. However, neither plasmid composition, even though typical for the family, nor the degree of oligotrophy shows a systematic difference between marine and non-marine Rhodobacteraceae. We suggest the operational term ‘Roseobacter group' for the marine Rhodobacteraceae strains. PMID:28106881

  13. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats.

    PubMed

    Simon, Meinhard; Scheuner, Carmen; Meier-Kolthoff, Jan P; Brinkhoff, Thorsten; Wagner-Döbler, Irene; Ulbrich, Marcus; Klenk, Hans-Peter; Schomburg, Dietmar; Petersen, Jörn; Göker, Markus

    2017-06-01

    Marine Rhodobacteraceae (Alphaproteobacteria) are key players of biogeochemical cycling, comprise up to 30% of bacterial communities in pelagic environments and are often mutualists of eukaryotes. As 'Roseobacter clade', these 'roseobacters' are assumed to be monophyletic, but non-marine Rhodobacteraceae have not yet been included in phylogenomic analyses. Therefore, we analysed 106 genome sequences, particularly emphasizing gene sampling and its effect on phylogenetic stability, and investigated relationships between marine versus non-marine habitat, evolutionary origin and genomic adaptations. Our analyses, providing no unequivocal evidence for the monophyly of roseobacters, indicate several shifts between marine and non-marine habitats that occurred independently and were accompanied by characteristic changes in genomic content of orthologs, enzymes and metabolic pathways. Non-marine Rhodobacteraceae gained high-affinity transporters to cope with much lower sulphate concentrations and lost genes related to the reduced sodium chloride and organohalogen concentrations in their habitats. Marine Rhodobacteraceae gained genes required for fucoidan desulphonation and synthesis of the plant hormone indole 3-acetic acid and the compatible solutes ectoin and carnitin. However, neither plasmid composition, even though typical for the family, nor the degree of oligotrophy shows a systematic difference between marine and non-marine Rhodobacteraceae. We suggest the operational term 'Roseobacter group' for the marine Rhodobacteraceae strains.

  14. Carotenoids from Marine Microalgae: A Valuable Natural Source for the Prevention of Chronic Diseases

    PubMed Central

    Raposo, Maria Filomena de Jesus; de Morais, Alcina Maria Miranda Bernardo; de Morais, Rui Manuel Santos Costa

    2015-01-01

    Epidemiological studies have shown a relation between antioxidants and the prevention of several chronic diseases. Microalgae are a potential novel source of bioactive molecules, including a wide range of different carotenoids that can be used as nutraceuticals, food supplements and novel food products. The objective of this review is (i) to update the research that has been carried out on the most known carotenoids produced by marine microalgae, including reporting on their high potentialities to produce other less known important compounds; (ii) to compile the work that has been done in order to establish some relationship between carotenoids and oxidative protection and treatment; (iii) to summarize the association of oxidative stress and the various reactive species including free radicals with several human diseases; and (iv) to provide evidence of the potential of carotenoids from marine microalgae to be used as therapeutics to treat or prevent these oxidative stress-related diseases. PMID:26287216

  15. The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms.

    PubMed

    Reen, F Jerry; Romano, Stefano; Dobson, Alan D W; O'Gara, Fergal

    2015-07-31

    Unlocking the rich harvest of marine microbial ecosystems has the potential to both safeguard the existence of our species for the future, while also presenting significant lifestyle benefits for commercial gain. However, while significant advances have been made in the field of marine biodiscovery, leading to the introduction of new classes of therapeutics for clinical medicine, cosmetics and industrial products, much of what this natural ecosystem has to offer is locked in, and essentially hidden from our screening methods. Releasing this silent potential represents a significant technological challenge, the key to which is a comprehensive understanding of what controls these systems. Heterologous expression systems have been successful in awakening a number of these cryptic marine biosynthetic gene clusters (BGCs). However, this approach is limited by the typically large size of the encoding sequences. More recently, focus has shifted to the regulatory proteins associated with each BGC, many of which are signal responsive raising the possibility of exogenous activation. Abundant among these are the LysR-type family of transcriptional regulators, which are known to control production of microbial aromatic systems. Although the environmental signals that activate these regulatory systems remain unknown, it offers the exciting possibility of evoking mimic molecules and synthetic expression systems to drive production of potentially novel natural products in microorganisms. Success in this field has the potential to provide a quantum leap forward in medical and industrial bio-product development. To achieve these new endpoints, it is clear that the integrated efforts of bioinformaticians and natural product chemists will be required as we strive to uncover new and potentially unique structures from silent or cryptic marine gene clusters.

  16. The Sound of Silence: Activating Silent Biosynthetic Gene Clusters in Marine Microorganisms

    PubMed Central

    Reen, F. Jerry; Romano, Stefano; Dobson, Alan D.W.; O’Gara, Fergal

    2015-01-01

    Unlocking the rich harvest of marine microbial ecosystems has the potential to both safeguard the existence of our species for the future, while also presenting significant lifestyle benefits for commercial gain. However, while significant advances have been made in the field of marine biodiscovery, leading to the introduction of new classes of therapeutics for clinical medicine, cosmetics and industrial products, much of what this natural ecosystem has to offer is locked in, and essentially hidden from our screening methods. Releasing this silent potential represents a significant technological challenge, the key to which is a comprehensive understanding of what controls these systems. Heterologous expression systems have been successful in awakening a number of these cryptic marine biosynthetic gene clusters (BGCs). However, this approach is limited by the typically large size of the encoding sequences. More recently, focus has shifted to the regulatory proteins associated with each BGC, many of which are signal responsive raising the possibility of exogenous activation. Abundant among these are the LysR-type family of transcriptional regulators, which are known to control production of microbial aromatic systems. Although the environmental signals that activate these regulatory systems remain unknown, it offers the exciting possibility of evoking mimic molecules and synthetic expression systems to drive production of potentially novel natural products in microorganisms. Success in this field has the potential to provide a quantum leap forward in medical and industrial bio-product development. To achieve these new endpoints, it is clear that the integrated efforts of bioinformaticians and natural product chemists will be required as we strive to uncover new and potentially unique structures from silent or cryptic marine gene clusters. PMID:26264003

  17. Plate tectonic regulation of global marine animal diversity.

    PubMed

    Zaffos, Andrew; Finnegan, Seth; Peters, Shanan E

    2017-05-30

    Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657-659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence-breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity.

  18. Plate tectonic regulation of global marine animal diversity

    NASA Astrophysics Data System (ADS)

    Zaffos, Andrew; Finnegan, Seth; Peters, Shanan E.

    2017-05-01

    Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657-659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence-breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity.

  19. Ecosystem service provision: an operational way for marine biodiversity conservation and management.

    PubMed

    Cognetti, Giuseppe; Maltagliati, Ferruccio

    2010-11-01

    Since no extensive conceptual framework has been developed on the issues of ecosystem service (ES) and service provider (SP) in the marine environment, we have made an attempt to apply these to the conservation and management of marine biodiversity. Within this context, an accurate individuation of SPs, namely the biological component of a given ecosystem that supports human activities is fundamental. SPs are the agents responsible for making the ES-based approach operational. The application of these concepts to the marine environment should be based on an model different to the terrestrial one. In the latter, the basic model envisages a matrix of a human-altered landscape with fragments of original biodiversity; conversely, in the marine environment the model provides fragments where human activities are carried out and the matrix is represented by the original biodiversity. We have identified three main classes of ES provision: in natural, disturbed and human-controlled environments. Economic valuation of marine ESs is an essential condition for making conservation strategies financially sustainable, as it may stimulate the perceived need for investing in protection and exploitation of marine resources. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Predicting Natural Neuroprotection in Marine Mammals: Environmental and Biological Factors Affecting the Vulnerability to Acoustically Mediated Tissue Trauma in Marine Species

    DTIC Science & Technology

    2013-09-30

    comparing both globin deposition profiles from carcasses ranging in age from neonates to adults, as well as the change in mass-specific metabolic demands...to acoustically mediated trauma, 1) molecular and biochemical evaluation of neuroprotection at the tissue level, and 2) whole animal /physiological...Noren, UCSC.) The second component of this study examined the susceptibility of marine mammals to decompression illness at the whole animal

  1. View west along Marine Barracks Way at rear of Marine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View west along Marine Barracks Way at rear of Marine Corps Officers' Housing, with carports on left and duplex on right - U.S. Naval Base, Pearl Harbor, Marine Corps Officers' Duplex Quarters, Salvor Street & Russell Avenue, Pearl City, Honolulu County, HI

  2. Evaluation of Basalt Fibre Composites for Marine Applications

    NASA Astrophysics Data System (ADS)

    Davies, P.; Verbouwe, W.

    2018-04-01

    Basalt fibres offer potential for use in marine structures, but few data exist to evaluate the influence of seawater immersion on their mechanical behaviour. This paper provides the results from a study in which basalt fibre reinforced epoxy composites were aged in natural seawater at different temperatures. Tests were performed under quasi-static and cyclic loading, first in the as-received state then after saturation in natural seawater. Results are compared to those for an E-glass reinforced composite with the same epoxy matrix. They indicate similar mechanical performance for both materials after seawater saturation.

  3. A new insight into the particulate iodine in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Huang, R.-J.; Thorenz, U. R.; Kundel, M.; Kampf, C.; Vogel, A.; Ceburnis, D.; O'Dowd, C. D.

    2012-04-01

    Especially within the last few years the role of iodine in the lower troposphere has received increasing attention. In addition to the potential to affect the atmospheric oxidation capacity in a variety of ways such as catalytic destruction of ozone, the importance of iodine in the natural new particle formation (via secondary gas-to-particle conversion) in the marine boundary layer (MBL) is responsible for the increased interest and is motivated by the role of marine aerosol particles in the global radiation budget. One goal of current research activities is the identification and quantification of natural particle formation processes in the MBL. Although some progress has been made in recent years, the chemical species, reaction cycling and evolution of particulate iodine are still poorly understood, which in turn hinders our knowledge of the marine new particle formation processes. Here we will present results from recent field campaigns carried out at the Mace Head Atmospheric Research Station on the west coast of Ireland. The speciation of particulate iodine is performed by a newly developed precolumn derivatization and solid phase extraction preseparation method in combination with liquid chromatographic/mass spectrometric determination. The diurnal and seasonal variation as well as the cycling of different iodine species in the marine aerosols will be discussed. Furthermore, the linkage between gaseous reactive iodine species and particulate iodine will be presented.

  4. 50 CFR 18.25 - Exempted marine mammals or marine mammal products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... effective date of the foreign law making the taking or sale, as the case may be, of such marine mammals or... mammals or marine mammal products. (a) The provisions of the Act and these regulations shall not apply: (1... marine mammal portion of such product consists solely of a marine mammal taken before such date. (b) The...

  5. 50 CFR 18.25 - Exempted marine mammals or marine mammal products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... effective date of the foreign law making the taking or sale, as the case may be, of such marine mammals or... mammals or marine mammal products. (a) The provisions of the Act and these regulations shall not apply: (1... marine mammal portion of such product consists solely of a marine mammal taken before such date. (b) The...

  6. 50 CFR 18.25 - Exempted marine mammals or marine mammal products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... effective date of the foreign law making the taking or sale, as the case may be, of such marine mammals or... mammals or marine mammal products. (a) The provisions of the Act and these regulations shall not apply: (1... marine mammal portion of such product consists solely of a marine mammal taken before such date. (b) The...

  7. 50 CFR 18.25 - Exempted marine mammals or marine mammal products.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... effective date of the foreign law making the taking or sale, as the case may be, of such marine mammals or... mammals or marine mammal products. (a) The provisions of the Act and these regulations shall not apply: (1... marine mammal portion of such product consists solely of a marine mammal taken before such date. (b) The...

  8. 50 CFR 18.25 - Exempted marine mammals or marine mammal products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... effective date of the foreign law making the taking or sale, as the case may be, of such marine mammals or... mammals or marine mammal products. (a) The provisions of the Act and these regulations shall not apply: (1... marine mammal portion of such product consists solely of a marine mammal taken before such date. (b) The...

  9. Marine record of late quaternary glacial-interglacial fluctuations in the Ross Sea and evidence for rapid, episodic sea level change due to marine ice sheet collapse

    NASA Technical Reports Server (NTRS)

    Anderson, John B.

    1991-01-01

    Some of the questions to be addressed by SeaRISE include: (1) what was the configuration of the West Antarctic ice sheet during the last glacial maximum; (2) What is its configuration during a glacial minimum; and (3) has it, or any marine ice sheet, undergone episodic rapid mass wasting. These questions are addressed in terms of what is known about the history of the marine ice sheet, specifically in Ross Sea, and what further studies are required to resolve these problems. A second question concerns the extent to which disintegration of marine ice sheets may result in rises in sea level that are episodic in nature and extremely rapid, as suggested by several glaciologists. Evidence that rapid, episodic sea level changes have occurred during the Holocene is also reviewed.

  10. The role of environmental biotechnology in exploring, exploiting, monitoring, preserving, protecting and decontaminating the marine environment.

    PubMed

    Kalogerakis, Nicolas; Arff, Johanne; Banat, Ibrahim M; Broch, Ole Jacob; Daffonchio, Daniele; Edvardsen, Torgeir; Eguiraun, Harkaitz; Giuliano, Laura; Handå, Aleksander; López-de-Ipiña, Karmele; Marigomez, Ionan; Martinez, Iciar; Øie, Gunvor; Rojo, Fernando; Skjermo, Jorunn; Zanaroli, Giulio; Fava, Fabio

    2015-01-25

    In light of the Marine Strategy Framework Directive (MSFD) and the EU Thematic Strategy on the Sustainable Use of Natural Resources, environmental biotechnology could make significant contributions in the exploitation of marine resources and addressing key marine environmental problems. In this paper 14 propositions are presented focusing on (i) the contamination of the marine environment, and more particularly how to optimize the use of biotechnology-related tools and strategies for predicting and monitoring contamination and developing mitigation measures; (ii) the exploitation of the marine biological and genetic resources to progress with the sustainable, eco-compatible use of the maritime space (issues are very diversified and include, for example, waste treatment and recycling, anti-biofouling agents; bio-plastics); (iii) environmental/marine biotechnology as a driver for a sustainable economic growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Radionuclide concentration processes in marine organisms: A comprehensive review.

    PubMed

    Carvalho, Fernando P

    2018-06-01

    The first measurements made of artificial radionuclides released into the marine environment did reveal that radionuclides are concentrated by marine biological species. The need to report radionuclide accumulation in biota in different conditions and geographical areas prompted the use of concentration factors as a convenient way to describe the accumulation of radionuclides in biota relative to radionuclide concentrations in seawater. Later, concentration factors became a tool in modelling radionuclide distribution and transfer in aquatic environments and to predicting radioactivity in organisms. Many environmental parameters can modify the biokinetics of accumulation and elimination of radionuclides in marine biota, but concentration factors remained a convenient way to describe concentration processes of radioactive and stable isotopes in aquatic organisms. Revision of CF values is periodically undertaken by international organizations, such as the International Atomic Energy Agency (IAEA), to make updated information available to the international community. A brief commented review of radionuclide concentration processes and concentration factors in marine organisms is presented for key groups of radionuclides such as fission products, activation products, transuranium elements, and naturally-occurring radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. ALASKA MARINE VHF VOICE

    Science.gov Websites

    Tsunamis 406 EPIRB's National Weather Service Marine Forecasts ALASKA MARINE VHF VOICE Marine Forecast greater danger near shore or any shallow waters? NATIONAL WEATHER SERVICE PRODUCTS VIA ALASKA MARINE VHF VOICE NOAA broadcasts offshore forecasts, nearshore forecasts and storm warnings on marine VHF channels

  13. Marine pharmacology in 2003-4: marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action.

    PubMed

    Mayer, Alejandro M S; Rodríguez, Abimael D; Berlinck, Roberto G S; Hamann, Mark T

    2007-05-01

    The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity.

  14. Marine pharmacology in 2003-4: Marine Compounds with Anthelminthic, Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antiprotozoal, Antituberculosis, and Antiviral Activities; affecting the Cardiovascular, Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action

    PubMed Central

    Mayer, Alejandro M.S.; Rodriguez, Abimael D.; Berlinck, Roberto G.S.; Hamann, Mark T.

    2007-01-01

    The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity. PMID:17392033

  15. Glycobiology of Reproductive Processes in Marine Animals: The State of the Art

    PubMed Central

    Gallo, Alessandra; Costantini, Maria

    2012-01-01

    Glycobiology is the study of complex carbohydrates in biological systems and represents a developing field of science that has made huge advances in the last half century. In fact, it combines all branches of biomedical research, revealing the vast and diverse forms of carbohydrate structures that exist in nature. Advances in structure determination have enabled scientists to study the function of complex carbohydrates in more depth and to determine the role that they play in a wide range of biological processes. Glycobiology research in marine systems has primarily focused on reproduction, in particular for what concern the chemical communication between the gametes. The current status of marine glycobiology is primarily descriptive, devoted to characterizing marine glycoconjugates with potential biomedical and biotechnological applications. In this review, we describe the current status of the glycobiology in the reproductive processes from gametogenesis to fertilization and embryo development of marine animals. PMID:23247316

  16. Chemistry of Marine Ligands and Siderophores

    PubMed Central

    Vraspir, Julia M.; Butler, Alison

    2011-01-01

    Marine microorganisms are presented with unique challenges to obtain essential metal ions required to survive and thrive in the ocean. The production of organic ligands to complex transition metal ions is one strategy to both facilitate uptake of specific metals, such as iron, and to mitigate the potential toxic effects of other metal ions, such as copper. A number of important trace metal ions are complexed by organic ligands in seawater, including iron, cobalt, nickel, copper, zinc, and cadmium, thus defining the speciation of these metal ions in the ocean. In the case of iron, siderophores have been identified and structurally characterized. Siderophores are low molecular weight iron-binding ligands produced by marine bacteria. Although progress has been made toward the identity of in situ iron-binding ligands, few compounds have been identified that coordinate the other trace metals. Deciphering the chemical structures and production stimuli of naturally produced organic ligands and the organisms they come from is fundamental to understanding metal speciation and bioavailability. The current evidence for marine ligands, with an emphasis on siderophores, and discussion of the importance and implications of metal-binding ligands in controlling metal speciation and cycling within the world’s oceans are presented. PMID:21141029

  17. Anti-Candida and anti-Cryptococcus antifungal produced by marine microorganisms.

    PubMed

    El Amraoui, B; El Amraoui, M; Cohen, N; Fassouane, A

    2014-12-01

    In order to search for antifungal from biological origin, we performed a screening of marine microorganisms isolated from seawater, seaweed, sediment and marine invertebrates collected from different coastal areas of the Moroccan Atlantic Ocean. The antifungal activities of these isolates were investigated against the pathogenic yeasts involved in medical mycology. Whole cultures of 34 marine microorganisms were screened for antifungal activities using the method of agar diffusion against four yeasts. The results showed that among the 34 isolates studied, 13 (38%) strains have antifungal activity against at least one out of four yeast species, 11 isolates have anti-Candida albicans CIP 48.72 activity, 12 isolates have anti-C. albicans CIP 884.65 activity, 13 isolates have anti-Cryptococcus neoformans activity and only 6 isolates are actives against Candida tropicalis R2 resistant to nystatin and amphotericin B. Nine isolates showed strong fungicidal activity. Fourteen microorganisms were identified and assigned to the genera Acinetobacter, Aeromonas, Alcaligenes, Bacillus, Chromobacterium, Enterococcus, Pantoea, and Pseudomonas. Due to a competitive role for space and nutrient, the marine microorganisms could produce more antimicrobials; therefore these marine microorganisms were expected to be potential resources of natural products such as those we research: anti-Candida and anti-Cryptococcus fungicides. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Characteristic Assessment of Diesel-degrading Bacteria Immobilized on Natural Organic Carriers in Marine Environment: the Degradation Activity and Nutrient.

    PubMed

    Xue, Jianliang; Wu, Yanan; Liu, Zhixiu; Li, Menglu; Sun, Xiyu; Wang, Huajun; Liu, Bing

    2017-08-17

    Oil spill has led to severe environmental and ecological problems. Due to the harsh environmental conditions, the bioremediation technology is not successfully used to remedy the oil spill in marine environment. In this study, immobilization technology was used to immobilize bacteria on natural organic carriers (i.e., wood chips and maize straw). The higher surface area of in wood chips leads to larger biomass density (0.0242 gVSS/g) than that of maize straw of 0.0097 gVSS/g carrier. Compared with biodegradation efficiency of free bacteria (44.79%), the immobilized bacteria on wood chips and maize straw reached to 73.39% and 52.28%, respectively. The high biological activity of the immobilized bacteria can be also explained by nutrients, such as TN (total nitrogen) and TP (total phosphorus), released from wood chips and maize straw, which was 8.83 mg/g and 5.53 mg/g, 0.0624 mg/g and 0.0099 mg/g, respectively.

  19. Antiviral lead compounds from marine sponges.

    PubMed

    Sagar, Sunil; Kaur, Mandeep; Minneman, Kenneth P

    2010-10-11

    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hoped to be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed.

  20. A multi-mineral natural product from red marine algae reduces colon polyp formation in C57BL/6 mice

    PubMed Central

    Aslam, Muhammad N.; Bergin, Ingrid; Naik, Madhav; Paruchuri, Tejaswi; Hampton, Anna; Rehman, Muneeb; Dame, Michael K; Rush, Howard; Varani, James

    2013-01-01

    The goal of this study was to determine if a multi-mineral natural product derived from red marine algae, could reduce colon polyp formation in mice on a high fat diet. C57BL/6 mice were maintained for up to 18 months either on a high-fat “Western-style” diet or on a low-fat diet (AIN 76A), with or without the multi-mineral-supplement. To summarize, colon polyps were detected in 22 of 70 mice (31%) on the high-fat diet, but in only 2 of 70 mice (3%) receiving the mineral-supplemented high-fat diet (p<0.0001). Colon polyps were detected in 16 of 70 mice (23%) in the low-fat group; not significantly different from high-fat group but significantly higher than the high-fat-supplemented group (p=0.0006). This was in spite of the fact that the calcium level in the low-fat diet was comparable to the level of calcium in the high-fat diet containing the multi-mineral-product. Supplementation of the low-fat diet reduced the incidence to 8 of 70 mice (11% incidence). Taken together, these findings demonstrate that a multi-mineral natural product can protect mice on a high-fat diet against adenomatous polyp formation in the colon. These data suggest that increased calcium alone is insufficient to explain the lower incidence of colon polyps. PMID:23035966

  1. Potential Synergies between Nature-Based Tourism and Sustainable Use of Marine Resources: Insights from Dive Tourism in Territorial User Rights for Fisheries in Chile

    PubMed Central

    Biggs, Duan; Amar, Francisca; Valdebenito, Abel; Gelcich, Stefan

    2016-01-01

    Novel solutions to conserve biodiversity whilst allowing for resource harvesting are urgently needed. In marine systems, Territorial User Rights for Fisheries (TURFs) are promoted to enable sustainable use of resources. We investigate the potential for synergies between nature-based tourism and TURFs on Chile’s central coast. Of 135 recreational divers surveyed, 77% indicated that the fish species they preferred sighting were declining and 80% indicated that they would dive more often in TURFs, which have higher abundance of favoured species. Regression analysis shows that respondents that perceive that TURFs fulfil a conservation function are more willing to pay to dive in a TURF. However, respondents who understand the bureaucratic functioning of a TURF are less willing to pay, and there is diversity in how divers feel payments should be made. A participatory approach is required to navigate these complexities to achieve synergies between nature-based tourism and resource harvesting in TURFs. PMID:27023451

  2. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment

    PubMed Central

    Duran, Robert; Cravo-Laureau, Cristiana

    2016-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and originate from natural sources and anthropogenic activities. PAHs enter the marine environment in two main ways, corresponding to chronic pollution or acute pollution by oil spills. The global PAH fluxes in marine environments are controlled by the microbial degradation and the biological pump, which plays a role in particle settling and in sequestration through bioaccumulation. Due to their low water solubility and hydrophobic nature, PAHs tightly adhere to sediments leading to accumulation in coastal and deep sediments. Microbial assemblages play an important role in determining the fate of PAHs in water and sediments, supporting the functioning of biogeochemical cycles and the microbial loop. This review summarises the knowledge recently acquired in terms of both chronic and acute PAH pollution. The importance of the microbial ecology in PAH-polluted marine ecosystems is highlighted as well as the importance of gaining further in-depth knowledge of the environmental services provided by microorganisms. PMID:28201512

  3. Marine Biotoxins: Occurrence, Toxicity, and Detection Methods

    NASA Astrophysics Data System (ADS)

    Asakawa, M.

    2017-04-01

    This review summarizes the role of marine organisms as vectors of marine biotoxins, and discusses the need for surveillance to protect public health and ensure the quality of seafood. I Paralytic shellfish poison (PSP) and PSP-bearing organisms-PSP is produced by toxic dinoflagellates species belonging to the genera Alexandrium, Gymnodinium, and Pyrodinium. Traditionally, PSP monitoring programs have only considered filter-feeding molluscs that concentrate these toxic algae, however, increasing attention is now being paid to higher-order predators that carry PSP, such as carnivorous gastropods and crustaceans. II. Tetrodotoxin (TTX) and TTX-bearing organisms - TTX is the most common natural marine toxin that causes food poisonings in Japan, and poses a serious public health risk. TTX was long believed to be present only in pufferfish. However, TTX was detected in the eggs of California newt Taricha torosa in 1964, and since then it has been detected in a wide variety of species belonging to several different phyla. In this study, the main toxic components in the highly toxic ribbon worm Cephalothrix simula and the greater blue-ringed octopus Hapalochlaena lunulata from Japan were purified and analysed.

  4. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    NASA Astrophysics Data System (ADS)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  5. DMSP Uptake and Retention by Natural Marine Bacteria Relieves Osmotic Stress

    NASA Astrophysics Data System (ADS)

    Motard-Coté, J.; Kiene, R. P.

    2016-02-01

    Dimethylsulfoniopropionate (DMSP) is synthesized and used by many marine phytoplankton species as an osmolyte. Grazing on phytoplankton results in formation of extracellular dissolved DMSP (DMSPd), which is rapidly taken up by bacterioplankton and used as an important carbon and sulfur source. Previous studies have, however, shown that some of the dissolved DMSP (DMSPd) in seawater is taken up by bacterioplankton and not degraded. We tested the hypothesis that retention of untransformed DMSP in cells provides some benefits to marine bacteria. In experiments with coastal seawater filtrates containing mainly bacteria, acute osmotic stresses of +5 and +10 ppt NaCl significantly inhibited bacterial production (BP) over 6 h, while the availability of 20 nM DMSPd relieved most of the BP inhibition. Partial relief of salt-induced inhibition of BP was observed with DMSPd concentrations as low as 2.5 nM, and DMSP was more effective at relieving osmotic stress than other low molecular weight compounds tested. Osmotic stresses resulted in a faster and greater overall uptake of DMSPd and accumulation of untransformed DMSP in bacterial cells (DMSPcell). Retained DMSP reached osmotically-significant intracellular concentrations of 54 mM in salt stressed bacterial populations. Retention of DMSP was accompanied by a lower production of methanethiol (MeSH), suggesting a down regulation of the demethylation/demethylation pathway under osmotic stress. These results show that estuarine bacterioplankton can use DMSP as an osmoprotectant, retaining up to 54% of the available dissolved DMSP untransformed in their cells. This benefit provided by DMSP may help explain why some DMSP is retained in bacteria in the ocean, even under unchanging salinity. This retention slows down the cycling of DMSP, with potential implications for the trophic transfer of DMSP through the food web and its contributions to sulfur and carbon fluxes in the ocean.

  6. New perspectives on sea use management: initial findings from European experience with marine spatial planning.

    PubMed

    Douvere, Fanny; Ehler, Charles N

    2009-01-01

    Increased development pressures on the marine environment and the potential for multiple use conflicts, arising as a result of the current expansion of offshore wind energy, fishing and aquaculture, dredging, mineral extraction, shipping, and the need to meet international and national commitments to biodiversity conservation, have led to increased interest in sea use planning with particular emphasis on marine spatial planning. Several European countries, on their own initiative or driven by the European Union's Marine Strategy and Maritime Policy, the Bergen Declaration of the North Sea Conference, and the EU Recommendation on Integrated Coastal Zone Management, have taken global leadership in implementing marine spatial planning. Belgium, The Netherlands, and Germany in the North Sea, and the United Kingdom in the Irish Sea, have already completed preliminary sea use plans and zoning proposals for marine areas within their national jurisdictions. This paper discusses the nature and context of marine spatial planning, the international legal and policy framework, and the increasing need for marine spatial planning in Europe. In addition, the authors review briefly three marine spatial planning initiatives in the North Sea and conclude with some initial lessons learned from these experiences.

  7. 78 FR 41299 - Regattas and Marine Parades; Great Lakes Annual Marine Events

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... and Marine Parades; Great Lakes Annual Marine Events AGENCY: Coast Guard, DHS. ACTION: Notice of... regattas and marine parades in the Captain of the Port Detroit zone from 9:00 a.m. on June 21, 2013 through... navigable waters immediately prior to, during, and immediately after regattas or marine parades. Enforcement...

  8. A novel marine silk.

    PubMed

    Kronenberger, Katrin; Dicko, Cedric; Vollrath, Fritz

    2012-01-01

    The discovery of a novel silk production system in a marine amphipod provides insights into the wider potential of natural silks. The tube-building corophioid amphipod Crassicorophium bonellii produces from its legs fibrous, adhesive underwater threads that combine barnacle cement biology with aspects of spider silk thread extrusion spinning. We characterised the filamentous silk as a mixture of mucopolysaccharides and protein deriving from glands representing two distinct types. The carbohydrate and protein silk secretion is dominated by complex β-sheet structures and a high content of charged amino acid residues. The filamentous secretion product exits the gland through a pore near the tip of the secretory leg after having moved through a duct, which subdivides into several small ductules all terminating in a spindle-shaped chamber. This chamber communicates with the exterior and may be considered the silk reservoir and processing/mixing space, in which the silk is mechanically and potentially chemically altered and becomes fibrous. We assert that further study of this probably independently evolved, marine arthropod silk processing and secretion system can provide not only important insights into the more complex arachnid and insect silks but also into crustacean adhesion cements.

  9. U.S. Geological Survey coastal and marine geology research; recent highlights and achievements

    USGS Publications Warehouse

    Williams, S. Jeffress; Barnes, Peter W.; Prager, Ellen J.

    2000-01-01

    The USGS Coastal and Marine Geology Program has large-scale national and regional research projects that focus on environmental quality, geologic hazards, natural resources, and information transfer. This Circular highlights recent scientific findings of the program, which play a vital role in the USGS endeavor to understand human interactions with the natural environment and to determine how the fundamental geologic processes controlling the Earth work. The scientific knowledge acquired through USGS research and monitoring is critically needed by planners, government agencies, and the public. Effective communication of the results of this research will enable the USGS Coastal and Marine Geology Program to play an integral part in assisting the Nation in responding the pressing Earth science challenges of the 21st century.

  10. Synthetic biology approaches: Towards sustainable exploitation of marine bioactive molecules.

    PubMed

    Seghal Kiran, G; Ramasamy, Pasiyappazham; Sekar, Sivasankari; Ramu, Meenatchi; Hassan, Saqib; Ninawe, A S; Selvin, Joseph

    2018-06-01

    The discovery of genes responsible for the production of bioactive metabolites via metabolic pathways combined with the advances in synthetic biology tools, has allowed the establishment of numerous microbial cell factories, for instance the yeast cell factories, for the manufacture of highly useful metabolites from renewable biomass. Genome mining and metagenomics are two platforms provide base-line data for reconstruction of genomes and metabolomes which is based in the development of synthetic/semi-synthetic genomes for marine natural products discovery. Engineered biofilms are being innovated on synthetic biology platform using genetic circuits and cell signalling systems as represillators controlling biofilm formation. Recombineering is a process of homologous recombination mediated genetic engineering, includes insertion, deletion or modification of any sequence specifically. Although this discipline considered new to the scientific domain, this field has now developed as promising endeavor on the accomplishment of sustainable exploitation of marine natural products. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Oceans and human health: Emerging public health risks n the marine environment

    PubMed Central

    Fleming, L.E.; Broad, K.; Clement, A.; Dewailly, E.; Elmir, S.; Knap, A.; Pomponi, S.A.; Smith, S.; Gabriele, H. Solo; Walsh, P.

    2008-01-01

    There has been an increasing recognition of the inter-relationship between human health and the oceans. Traditionally, the focus of research and concern has been on the impact of human activities on the oceans, particularly through anthropogenic pollution and the exploitation of marine resources. More recently, there has been recognition of the potential direct impact of the oceans on human health, both detrimental and beneficial. Areas identified include: global change, harmful algal blooms (HABs), microbial and chemical contamination of marine waters and seafood, and marine models and natural products from the seas. It is hoped that through the recognition of the inter-dependence of the health of both humans and the oceans, efforts will be made to restore and preserve the oceans. PMID:16996542

  12. Spatial and temporal variation in marine birds in the north Gulf of Alaska: The value of marine bird monitoring within Gulf Watch Alaska

    USGS Publications Warehouse

    Kuletz, Kathy J.; Esler, Daniel N.

    2015-01-01

    lingering oil, varied widely among species (see Esler et al., this report). Research and monitoring directed at documenting the timelines and mechanisms of wildlife recovery following the Exxon Valdez oil spill led to an unprecedented understanding of oil spill effects on marine birds, as well as previously unknown information about marine bird ecology in the northern GOA. Quantifying effects of anthropogenic influences requires an understanding of variation in marine bird abundance, distribution, and productivity, in relation to naturally occurring dynamics in marine environments continued marine bird work as part of Gulf Watch Alaska will facilitate this. In addition to their value as indicators of marine conditions and anthropogenic influences, marine birds are protected under the Migratory Bird Treaty Act and are managed by the U.S. Fish and Wildlife Service (USFWS). Marine birds have high societal value from a wide variety of interests (e.g., tourism, bird watching, hunting, mythology), and are an important source of subsistence foods in Alaska (Naves and Braem 2014). Because of the conservation interest in marine birds, as well as their value for indicating the status of marine ecosystems, monitoring of marine birds is an important component of many ocean monitoring programs, including Gulf Watch Alaska.

  13. Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes

    NASA Astrophysics Data System (ADS)

    Lovejoy, Nathan R.; Albert, James S.; Crampton, William G. R.

    2006-03-01

    Amazonian rivers contain a remarkable fauna of endemic species derived from taxa that generally occur in oceans and seas. Several hypotheses have been proposed to explain the origin of marine-derived lineages, including opportunistic invasions via estuaries, vicariance related to uplift of the Andes, and vicariance related to Miocene marine incursions and connections. Here, we examine available data for marine-derived lineages of four groups: stingrays (Myliobatiformes), drums (Sciaenidae), anchovies (Engraulididae), and needlefish (Belonidae). Geographic distributions, age estimates (determined using fossils, biogeography, and molecular data sets), and phylogenies for these taxa are most compatible with origination during the Miocene from marine sister groups distributed along the northern coast of South America. We speculate that unique ecological and biogeographic aspects of the Miocene upper Amazonian wetland system, most notably long-term connections with marine systems, facilitated the evolutionary transition from marine to freshwater habitats.

  14. Plate tectonic regulation of global marine animal diversity

    PubMed Central

    Zaffos, Andrew; Finnegan, Seth

    2017-01-01

    Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657–659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence–breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity. PMID:28507147

  15. Marine Nematode Taxonomy in Africa: Promising Prospects Against Scarcity of Information

    PubMed Central

    Boufahja, Fehmi; Semprucci, Federica; Beyrem, Hamouda; Bhadury, Punyasloke

    2015-01-01

    From the late 19th century, Africa has faced heavy exploitation of its natural resources with increasing land/water pollution, and several described species have already become extinct or close to extinction. This could also be the case for marine nematodes, which are the most abundant and diverse benthic group in marine sediments, and play major roles in ecosystem functioning. Compared to Europe and North America, only a handful of investigations on marine nematodes have been conducted to date in Africa. This is due to the scarcity of experienced taxonomists, absence of identification guides, as well as local appropriate infrastructures. A pivotal project has started recently between nematologists from Africa (Tunisia), India, and Europe (Italy) to promote taxonomic study and biodiversity estimation of marine nematodes in the African continent. To do this, as a first step, collection of permanent slides of marine nematodes (235 nominal species and 14 new to science but not yet described) was recently established at the Faculty of Sciences of Bizerte (Tunisia). Capacity building of next generation of African taxonomists have been carried out at level of both traditional and molecular taxonomy (DNA barcoding and next-generation sequencing [NGS]), but they need to be implemented. Indeed, the integration of these two approaches appears crucial to overcome lack of information on the taxonomy, ecology, and biodiversity of marine nematodes from African coastal waters. PMID:26527841

  16. Immunotoxic effects of environmental pollutants in marine mammals.

    PubMed

    Desforges, Jean-Pierre W; Sonne, Christian; Levin, Milton; Siebert, Ursula; De Guise, Sylvain; Dietz, Rune

    2016-01-01

    Due to their marine ecology and life-history, marine mammals accumulate some of the highest levels of environmental contaminants of all wildlife. Given the increasing prevalence and severity of diseases in marine wildlife, it is imperative to understand how pollutants affect the immune system and consequently disease susceptibility. Advancements and adaptations of analytical techniques have facilitated marine mammal immunotoxicology research. Field studies, captive-feeding experiments and in vitro laboratory studies with marine mammals have associated exposure to environmental pollutants, most notable polychlorinated biphenyls (PCBs), organochlorine pesticides and heavy metals, to alterations of both the innate and adaptive arms of immune systems, which include aspects of cellular and humoral immunity. For marine mammals, reported immunotoxicology endpoints fell into several major categories: immune tissue histopathology, haematology/circulating immune cell populations, functional immune assays (lymphocyte proliferation, phagocytosis, respiratory burst, and natural killer cell activity), immunoglobulin production, and cytokine gene expression. Lymphocyte proliferation is by far the most commonly used immune assay, with studies using different organic pollutants and metals predominantly reporting immunosuppressive effects despite the many differences in study design and animal life history. Using combined field and laboratory data, we determined effect threshold levels for suppression of lymphocyte proliferation to be between b0.001-10 ppm for PCBs, 0.002-1.3 ppm for Hg, 0.009-0.06 for MeHg, and 0.1-2.4 for cadmium in polar bears and several pinniped and cetacean species. Similarly, thresholds for suppression of phagocytosis were 0.6-1.4 and 0.08-1.9 ppm for PCBs and mercury, respectively. Although data are lacking for many important immune endpoints and mechanisms of specific immune alterations are not well understood, this review revealed a systemic suppression of

  17. Night-time lighting alters the composition of marine epifaunal communities

    PubMed Central

    Davies, Thomas W.; Coleman, Matthew; Griffith, Katherine M.; Jenkins, Stuart R.

    2015-01-01

    Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities. PMID:25926694

  18. Dynamic modeling of environmental risk associated with drilling discharges to marine sediments.

    PubMed

    Durgut, İsmail; Rye, Henrik; Reed, Mark; Smit, Mathijs G D; Ditlevsen, May Kristin

    2015-10-15

    Drilling discharges are complex mixtures of base-fluids, chemicals and particulates, and may, after discharge to the marine environment, result in adverse effects on benthic communities. A numerical model was developed to estimate the fate of drilling discharges in the marine environment, and associated environmental risks. Environmental risk from deposited drilling waste in marine sediments is generally caused by four types of stressors: oxygen depletion, toxicity, burial and change of grain size. In order to properly model these stressors, natural burial, biodegradation and bioturbation processes were also included. Diagenetic equations provide the basis for quantifying environmental risk. These equations are solved numerically by an implicit-central differencing scheme. The sediment model described here is, together with a fate and risk model focusing on the water column, implemented in the DREAM and OSCAR models, both available within the Marine Environmental Modeling Workbench (MEMW) at SINTEF in Trondheim, Norway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The transboundary nature of seabird ecology: Chapter 8

    USGS Publications Warehouse

    Jodice, Patrick G.R.; Suryan, Robert M.

    2015-01-01

    The term ‘seabird’ is generally applied to avian species that forage in the marine environment over open water. Seabirds typically nest in colonies and are long-lived species with low annual reproductive rates. Seabird breeding sites typically occur on islands or along coasts and as such are often at the boundaries of ecological or political zones. During the breeding season, seabirds cross a very distinct terrestrial/marine ecological boundary on a regular basis to forage. Even relatively ‘local’ species cross multiple jurisdictions within a day (e.g., state lands and waters, and federal waters) while pelagic species may transit through international waters on a daily, weekly, or monthly time-frame. Seabird life-histories expose individuals and populations to environmental conditions affecting both terrestrial and marine habitats. The wide-ranging and transboundary nature of seabird ecology also exposes these species to various environmental and anthropogenic forces such as contamination, commercial fisheries and climate forcing that also are transboundary in nature. Therefore, wherever conservation of seabirds or the management of their populations is the goal, consideration must be given to ecosystem dynamics on land and at sea. Because the jurisdiction of agencies does not cross the land-sea boundary in the same manner as the seabirds they are managing, these efforts are facilitated by multi-agency communication and collaboration. By their very nature and by the nature of the systems that they must function within, seabirds embody the complexity of wildlife ecology and conservation in the twenty-first century.

  20. Climate change threatens the world's marine protected areas

    NASA Astrophysics Data System (ADS)

    Bruno, John F.; Bates, Amanda E.; Cacciapaglia, Chris; Pike, Elizabeth P.; Amstrup, Steven C.; van Hooidonk, Ruben; Henson, Stephanie A.; Aronson, Richard B.

    2018-06-01

    Marine protected areas (MPAs) are a primary management tool for mitigating threats to marine biodiversity1,2. MPAs and the species they protect, however, are increasingly being impacted by climate change. Here we show that, despite local protections, the warming associated with continued business-as-usual emissions (RCP8.5)3 will likely result in further habitat and species losses throughout low-latitude and tropical MPAs4,5. With continued business-as-usual emissions, mean sea-surface temperatures within MPAs are projected to increase 0.035 °C per year and warm an additional 2.8 °C by 2100. Under these conditions, the time of emergence (the year when sea-surface temperature and oxygen concentration exceed natural variability) is mid-century in 42% of 309 no-take marine reserves. Moreover, projected warming rates and the existing `community thermal safety margin' (the inherent buffer against warming based on the thermal sensitivity of constituent species) both vary among ecoregions and with latitude. The community thermal safety margin will be exceeded by 2050 in the tropics and by 2150 for many higher latitude MPAs. Importantly, the spatial distribution of emergence is stressor-specific. Hence, rearranging MPAs to minimize exposure to one stressor could well increase exposure to another. Continued business-as-usual emissions will likely disrupt many marine ecosystems, reducing the benefits of MPAs.

  1. Marine Origin Collagens and Its Potential Applications

    PubMed Central

    Silva, Tiago H.; Moreira-Silva, Joana; Marques, Ana L. P.; Domingues, Alberta; Bayon, Yves; Reis, Rui L.

    2014-01-01

    Collagens are the most abundant high molecular weight proteins in both invertebrate and vertebrate organisms, including mammals, and possess mainly a structural role, existing different types according with their specific organization in distinct tissues. From this, they have been elected as one of the key biological materials in tissue regeneration approaches. Also, industry is constantly searching for new natural sources of collagen and upgraded methodologies for their production. The most common sources are from bovine and porcine origin, but other ways are making their route, such as recombinant production, but also extraction from marine organisms like fish. Different organisms have been proposed and explored for collagen extraction, allowing the sustainable production of different types of collagens, with properties depending on the kind of organism (and their natural environment) and extraction methodology. Such variety of collagen properties has been further investigated in different ways to render a wide range of applications. The present review aims to shed some light on the contribution of marine collagens for the scientific and technological development of this sector, stressing the opportunities and challenges that they are and most probably will be facing to assume a role as an alternative source for industrial exploitation. PMID:25490254

  2. Net Production and Consumption of Fluorescent Colored Dissolved Organic Matter by Natural Bacterial Assemblages Growing on Marine Phytoplankton Exudates▿

    PubMed Central

    Romera-Castillo, Cristina; Sarmento, Hugo; Álvarez-Salgado, Xosé Antón; Gasol, Josep M.; Marrasé, Celia

    2011-01-01

    An understanding of the distribution of colored dissolved organic matter (CDOM) in the oceans and its role in the global carbon cycle requires a better knowledge of the colored materials produced and consumed by marine phytoplankton and bacteria. In this work, we examined the net uptake and release of CDOM by a natural bacterial community growing on DOM derived from four phytoplankton species cultured under axenic conditions. Fluorescent humic-like substances exuded by phytoplankton (excitation/emission [Ex/Em] wavelength, 310 nm/392 nm; Coble's peak M) were utilized by bacteria in different proportions depending on the phytoplankton species of origin. Furthermore, bacteria produced humic-like substances that fluoresce at an Ex/Em wavelength of 340 nm/440 nm (Coble's peak C). Differences were also observed in the Ex/Em wavelengths of the protein-like materials (Coble's peak T) produced by phytoplankton and bacteria. The induced fluorescent emission of CDOM produced by prokaryotes was an order of magnitude higher than that of CDOM produced by eukaryotes. We have also examined the final compositions of the bacterial communities growing on the exudates, which differed markedly depending on the phytoplankton species of origin. Alteromonas and Roseobacter were dominant during all the incubations on Chaetoceros sp. and Prorocentrum minimum exudates, respectively. Alteromonas was the dominant group growing on Skeletonema costatum exudates during the exponential growth phase, but it was replaced by Roseobacter afterwards. On Micromonas pusilla exudates, Roseobacter was replaced by Bacteroidetes after the exponential growth phase. Our work shows that fluorescence excitation-emission matrices of CDOM can be a helpful tool for the identification of microbial sources of DOM in the marine environment, but further studies are necessary to explore the association of particular bacterial groups with specific fluorophores. PMID:21742918

  3. Marine pharmacology in 2001–2002: Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action

    PubMed Central

    Mayer, Alejandro M.S.; Hamann, Mark T.

    2016-01-01

    During 2001–2002, research on the pharmacology of marine chemicals continued to be global in nature involving investigators from Argentina, Australia, Brazil, Canada, China, Denmark, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Netherlands, New Zealand, Pakistan, the Philippines, Russia, Singapore, Slovenia, South Africa, South Korea, Spain, Sweden, Switzerland, Thailand, United Kingdom, and the United States. This current article, a sequel to the authors’ 1998, 1999 and 2000 marine pharmacology reviews, classifies 106 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria, on the basis of peer-reviewed preclinical pharmacology. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 56 marine chemicals. An additional 19 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as to possess anti-inflammatory and antidiabetic effects. Finally, 31 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2001–2002 pharmacological research with marine chemicals continued to contribute potentially novel chemical leads for the ongoing global search for therapeutic agents for the treatment of multiple disease categories. PMID:15919242

  4. Admixing dredged marine clay with cement-bentonite for reduction of compressibility

    NASA Astrophysics Data System (ADS)

    Rahilman, Nur Nazihah Nur; Chan, Chee-Ming

    2017-11-01

    Cement-based solidification/stabilization is a method that is widely used for the treatment of dredged marine clay. The key objective for solidification/stabilization is to improve the engineering properties of the originally soft, weak material. Dredged materials are normally low in shear strength and bearing capacity while high incompressibility. In order to improve the material's properties for possible reuse, a study on the one-dimensional compressibility of lightly solidified dredged marine clay admixed with bentonite was conducted. On the other hand, due to the viscous nature, particularly the swelling property, bentonite is a popular volumising agent for backfills. In the present study, standard oedometer test was carried out to examine the compressibility of the treated sample. Complementary strength measurements were also conducted with laboratory vane shear setup on both the untreated and treated dredged marine clay. The results showed that at the same binder content, the addition of bentonite contributed significantly to the reduction of compressibility and rise in undrained shear strength. These improved properties made the otherwise discarded dredged marine soils potentially reusable for reclamation works, for instance.

  5. The phylogenetic significance of colour patterns in marine teleost larvae

    PubMed Central

    Baldwin, Carole C

    2013-01-01

    Ichthyologists, natural-history artists, and tropical-fish aquarists have described, illustrated, or photographed colour patterns in adult marine fishes for centuries, but colour patterns in marine fish larvae have largely been neglected. Yet the pelagic larval stages of many marine fishes exhibit subtle to striking, ephemeral patterns of chromatophores that warrant investigation into their potential taxonomic and phylogenetic significance. Colour patterns in larvae of over 200 species of marine teleosts, primarily from the western Caribbean, were examined from digital colour photographs, and their potential utility in elucidating evolutionary relationships at various taxonomic levels was assessed. Larvae of relatively few basal marine teleosts exhibit erythrophores, xanthophores, or iridophores (i.e. nonmelanistic chromatophores), but one or more of those types of chromatophores are visible in larvae of many basal marine neoteleosts and nearly all marine percomorphs. Whether or not the presence of nonmelanistic chromatophores in pelagic marine larvae diagnoses any major teleost taxonomic group cannot be determined based on the preliminary survey conducted, but there is a trend toward increased colour from elopomorphs to percomorphs. Within percomorphs, patterns of nonmelanistic chromatophores may help resolve or contribute evidence to existing hypotheses of relationships at multiple levels of classification. Mugilid and some beloniform larvae share a unique ontogenetic transformation of colour pattern that lends support to the hypothesis of a close relationship between them. Larvae of some tetraodontiforms and lophiiforms are strikingly similar in having the trunk enclosed in an inflated sac covered with xanthophores, a character that may help resolve the relationships of these enigmatic taxa. Colour patterns in percomorph larvae also appear to diagnose certain groups at the interfamilial, familial, intergeneric, and generic levels. Slight differences in generic

  6. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products.

    PubMed

    Kjer, Julia; Debbab, Abdessamad; Aly, Amal H; Proksch, Peter

    2010-03-01

    Marine-derived fungi have been shown in recent years to produce a plethora of new bioactive secondary metabolites, some of them featuring new carbon frameworks hitherto unprecedented in nature. These compounds are of interest as new lead structures for medicine as well as for plant protection. The aim of this protocol is to give a detailed description of methods useful for the isolation and cultivation of fungi associated with various marine organisms (sponges, algae and mangrove plants) for the extraction, characterization and structure elucidation of biologically active secondary metabolites produced by these marine-derived endophytic fungi, and for the preliminary evaluation of their pharmacological properties based on rapid 'in house' screening systems. Some results exemplifying the positive outcomes of the protocol are given at the end. From sampling in marine environment to completion of the structure elucidation and bioactivity screening, a period of at least 3 months has to be scheduled.

  7. A Text Analysis of the Marine Corps Fitness Report

    DTIC Science & Technology

    2017-06-01

    difficulty in quantitatively analyzing textual. The study pulls 835 anonymous and non-attributable surveys between 2005 and 2009 from the Center for... quantitative assessments of performance. 14. SUBJECT TERMS natural language processing, fitness reports, computational linguistics, manpower 15. NUMBER...Corps provide word-picture guidance to distinguish talented Marines and promote conformity in issuing quantitative assessments of performance. vi

  8. The role of sustained observations in tracking impacts of environmental change on marine biodiversity and ecosystems

    PubMed Central

    Mieszkowska, N.; Sugden, H.; Firth, L. B.; Hawkins, S. J.

    2014-01-01

    Marine biodiversity currently faces unprecedented threats from multiple pressures arising from human activities. Global drivers such as climate change and ocean acidification interact with regional eutrophication, exploitation of commercial fish stocks and localized pressures including pollution, coastal development and the extraction of aggregates and fuel, causing alteration and degradation of habitats and communities. Segregating natural from anthropogenically induced change in marine ecosystems requires long-term, sustained observations of marine biota. In this review, we outline the history of biological recording in the coastal and shelf seas of the UK and Ireland and highlight where sustained observations have contributed new understanding of how anthropogenic activities have impacted on marine biodiversity. The contributions of sustained observations, from those collected at observatories, single station platforms and multiple-site programmes to the emergent field of multiple stressor impacts research, are discussed, along with implications for management and sustainable governance of marine resources in an era of unprecedented use of the marine environment. PMID:25157190

  9. 76 FR 80331 - Foreign-Trade Subzone 41H Application for Expansion; Mercury Marine (Marine Propulsion Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Application for Expansion; Mercury Marine (Marine Propulsion Products), Fond du Lac and Oshkosh, WI An... of FTZ 41, on behalf of Mercury Marine, operator of Subzone 41H at Mercury Marine's marine propulsion... manufacturing of marine propulsion products at Mercury Marine's facilities located in Fond du Lac and Oshkosh...

  10. RNA:DNA Ratio and Other Nucleic Acid Derived Indices in Marine Ecology

    PubMed Central

    Chícharo, Maria Alexandra; Chícharo, Luis

    2008-01-01

    Some of most used indicators in marine ecology are nucleic acid-derived indices. They can be divided by target levels in three groups: 1) at the organism level as ecophysiologic indicators, indicators such as RNA:DNA ratios, DNA:dry weight and RNA:protein, 2) at the population level, indicators such as growth rate, starvation incidence or fisheries impact indicators, and 3) at the community level, indicators such as trophic interactions, exergy indices and prey identification. The nucleic acids derived indices, especially RNA:DNA ratio, have been applied with success as indicators of nutritional condition, well been and growth in marine organisms. They are also useful as indicators of natural or anthropogenic impacts in marine population and communities, such as upwelling or dredge fisheries, respectively. They can help in understanding important issues of marine ecology such as trophic interactions in marine environment, fish and invertebrate recruitment failure and biodiversity changes, without laborious work of counting, measuring and identification of small marine organisms. Besides the objective of integrate nucleic acid derived indices across levels of organization, the paper will also include a general characterization of most used nucleic acid derived indices in marine ecology and also advantages and limitations of them. We can conclude that using indicators, such RNA:DNA ratios and other nucleic acids derived indices concomitantly with organism and ecosystems measures of responses to climate change (distribution, abundance, activity, metabolic rate, survival) will allow for the development of more rigorous and realistic predictions of the effects of anthropogenic climate change on marine systems. PMID:19325815

  11. Spatial distribution of marine litter along italian coastal areas in the Pelagos sanctuary (Ligurian Sea - NW Mediterranean Sea): A focus on natural and urban beaches.

    PubMed

    Giovacchini, Alice; Merlino, Silvia; Locritani, Marina; Stroobant, Mascha

    2018-05-01

    Our paper will show data on quantity, typology, distribution of beach litter (Anthropogenic Marine Debris - AMD) within a coastal macroarea surrounding the Pelagos Sanctuary, an International Protected Area in the NW Mediterranean Sea. AMD Monitoring and characterisation have been performed by using SEACleaner Protocol: an adapted version of UNEP/IOC, OSPAR and EU guidelines. 11 beaches located in 5 different areas, have been monitored with a total amount of thirty three surveys, from January 2014 to December 2015, during different seasons. Three kinds of beaches have been considered: Natural (belonging to MPAs), Urbanized and Urban. A total of 34,027 items on a total area of 32,154 m 2 have been removed and classified. Spatial difference in abundance and composition of AMDs - as well as beach environmental quality - has been detected. Natural sites, and particularly protected areas close to river mouths show a major density compared to other areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Effects of Disturbance on Populations of Marine Mammals

    DTIC Science & Technology

    2015-09-30

    will respond to alternative scenarios of human activities, from those that produce sound to climate change to changes in human density and...develop transferable models of the population-level effects of anthropogenic and natural disturbances on marine mammals. Disturbances can affect the...physiology or behavior of animals, which in turn may lead to changes in demographic rates and viability. Population-level effects of disturbance

  13. Marine Mammals :: NOAA Fisheries

    Science.gov Websites

    Education Grants Scholarships and Fellowships Teacher at Sea Climate Stewards Get Involved Dolphin Smart » Sign up for FishNews GO OPR Home Species Marine Mammals Sea Turtles Marine & Anadromous Fish Marine Marine Mammal Database National Tissue Bank Prescott Grants Sea Turtles Unusual Mortality Events Permits

  14. Marine’ Character of the United States Marine Band

    DTIC Science & Technology

    2008-04-01

    Classical Music Hall ofFame on May 24, 1998.14 In celebration of 200 years of service to our country and the Corps, the Marine Band was received as the guest...Saxophones LJ Cellos iH Guitar i Y Bassoons H Harp y Vocalists 1 31 AppendixE Current U.S. Marine Band Fitness Report « z o t3 ill en U.S. Marine Band FITNESS

  15. Human-induced marine ecological degradation: micropaleontological perspectives

    PubMed Central

    Yasuhara, Moriaki; Hunt, Gene; Breitburg, Denise; Tsujimoto, Akira; Katsuki, Kota

    2012-01-01

    We analyzed published downcore microfossil records from 150 studies and reinterpreted them from an ecological degradation perspective to address the following critical but still imperfectly answered questions: (1) How is the timing of human-induced degradation of marine ecosystems different among regions? (2) What are the dominant causes of human-induced marine ecological degradation? (3) How can we better document natural variability and thereby avoid the problem of shifting baselines of comparison as degradation progresses over time? The results indicated that: (1) ecological degradation in marine systems began significantly earlier in Europe and North America (∼1800s) compared with Asia (post-1900) due to earlier industrialization in European and North American countries, (2) ecological degradation accelerated globally in the late 20th century due to post-World War II economic growth, (3) recovery from the degraded state in late 20th century following various restoration efforts and environmental regulations occurred only in limited localities. Although complex in detail, typical signs of ecological degradation were diversity decline, dramatic changes in total abundance, decrease in benthic and/or sensitive species, and increase in planktic, resistant, toxic, and/or introduced species. The predominant cause of degradation detected in these microfossil records was nutrient enrichment and the resulting symptoms of eutrophication, including hypoxia. Other causes also played considerable roles in some areas, including severe metal pollution around mining sites, water acidification by acidic wastewater, and salinity changes from construction of causeways, dikes, and channels, deforestation, and land clearance. Microfossils enable reconstruction of the ecological history of the past 102–103 years or even more, and, in conjunction with statistical modeling approaches using independent proxy records of climate and human-induced environmental changes, future research

  16. Human-induced marine ecological degradation: micropaleontological perspectives.

    PubMed

    Yasuhara, Moriaki; Hunt, Gene; Breitburg, Denise; Tsujimoto, Akira; Katsuki, Kota

    2012-12-01

    We analyzed published downcore microfossil records from 150 studies and reinterpreted them from an ecological degradation perspective to address the following critical but still imperfectly answered questions: (1) How is the timing of human-induced degradation of marine ecosystems different among regions? (2) What are the dominant causes of human-induced marine ecological degradation? (3) How can we better document natural variability and thereby avoid the problem of shifting baselines of comparison as degradation progresses over time? The results indicated that: (1) ecological degradation in marine systems began significantly earlier in Europe and North America (∼1800s) compared with Asia (post-1900) due to earlier industrialization in European and North American countries, (2) ecological degradation accelerated globally in the late 20th century due to post-World War II economic growth, (3) recovery from the degraded state in late 20th century following various restoration efforts and environmental regulations occurred only in limited localities. Although complex in detail, typical signs of ecological degradation were diversity decline, dramatic changes in total abundance, decrease in benthic and/or sensitive species, and increase in planktic, resistant, toxic, and/or introduced species. The predominant cause of degradation detected in these microfossil records was nutrient enrichment and the resulting symptoms of eutrophication, including hypoxia. Other causes also played considerable roles in some areas, including severe metal pollution around mining sites, water acidification by acidic wastewater, and salinity changes from construction of causeways, dikes, and channels, deforestation, and land clearance. Microfossils enable reconstruction of the ecological history of the past 10(2)-10(3) years or even more, and, in conjunction with statistical modeling approaches using independent proxy records of climate and human-induced environmental changes, future

  17. Marin Tsunami (video)

    USGS Publications Warehouse

    Filmed and edited by: Loeffler, Kurt; Gesell, Justine

    2010-01-01

    Tsunamis are a constant threat to the coasts of our world. Although tsunamis are infrequent along the West coast of the United States, it is possible and necessary to prepare for potential tsunami hazards to minimize loss of life and property. Community awareness programs are important, as they strive to create an informed society by providing education and training. The Marin coast could be struck by a tsunami. Whether you live in Marin County, visit the beaches, or rent or own a home near the coast, it is vital to understand the tsunami threat and take preparation seriously. Marin Tsunami tells the story of what several West Marin communities are doing to be prepared. This video was produced by the US Geological Survey (USGS) in cooperation with the Marin Office of Emergency Services.

  18. Sustainable production of biologically active molecules of marine based origin.

    PubMed

    Murray, Patrick M; Moane, Siobhan; Collins, Catherine; Beletskaya, Tanya; Thomas, Olivier P; Duarte, Alysson W F; Nobre, Fernando S; Owoyemi, Ifeloju O; Pagnocca, Fernando C; Sette, L D; McHugh, Edward; Causse, Eric; Pérez-López, Paula; Feijoo, Gumersindo; Moreira, Ma T; Rubiolo, Juan; Leirós, Marta; Botana, Luis M; Pinteus, Susete; Alves, Celso; Horta, André; Pedrosa, Rui; Jeffryes, Clayton; Agathos, Spiros N; Allewaert, Celine; Verween, Annick; Vyverman, Wim; Laptev, Ivan; Sineoky, Sergei; Bisio, Angela; Manconi, Renata; Ledda, Fabio; Marchi, Mario; Pronzato, Roberto; Walsh, Daniel J

    2013-09-25

    The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Mariner-C Spacecraft Model

    NASA Image and Video Library

    1964-06-21

    A model of the Mariner-C spacecraft at the National Aeronautics and Space Administration (NASA) Lewis Research Center for a June 1964 Conference on New Technology. Mariner-C and Mariner-D were identical spacecraft designed by the Jet Propulsion Laboratory to flyby Mars and photograph the Martian surface. Mariner-C was launched on November 4, 1964, but the payload shroud did not jettison properly and the spacecraft’s battery power did not function. The mission ended unsuccessfully two days later. Mariner-D was launched as designed on November 28, 1964 and became the first successful mission to Mars. It was the first time a planet was photographed from space. Mariner-D’s 21 photographs revealed an inhospitable and barren landscape. The two Mariner spacecraft were launched by Atlas-Agena-D rockets. Lewis had taken over management of the Agena Program in October 1962. There had been five failures and two partial failures in the 17 Agena launches before being taken over by NASA Lewis. Lewis, however, oversaw 28 successful Agena missions between 1962 and 1968, including several Rangers and the Mariner Venus '67.

  20. Marine actinomycetes: a new source of compounds against the human malaria parasite.

    PubMed

    Prudhomme, Jacques; McDaniel, Eric; Ponts, Nadia; Bertani, Stéphane; Fenical, William; Jensen, Paul; Le Roch, Karine

    2008-06-04

    Malaria continues to be a devastating parasitic disease that causes the death of 2 million individuals annually. The increase in multi-drug resistance together with the absence of an efficient vaccine hastens the need for speedy and comprehensive antimalarial drug discovery and development. Throughout history, traditional herbal remedies or natural products have been a reliable source of antimalarial agents, e.g. quinine and artemisinin. Today, one emerging source of small molecule drug leads is the world's oceans. Included among the source of marine natural products are marine microorganisms such as the recently described actinomycete. Members of the genus Salinispora have yielded a wealth of new secondary metabolites including salinosporamide A, a molecule currently advancing through clinical trials as an anticancer agent. Because of the biological activity of metabolites being isolated from marine microorganisms, our group became interested in exploring the potential efficacy of these compounds against the malaria parasite. We screened 80 bacterial crude extracts for their activity against malaria growth. We established that the pure compound, salinosporamide A, produced by the marine actinomycete, Salinispora tropica, shows strong inhibitory activity against the erythrocytic stages of the parasite cycle. Biochemical experiments support the likely inhibition of the parasite 20S proteasome. Crystal structure modeling of salinosporamide A and the parasite catalytic 20S subunit further confirm this hypothesis. Ultimately we showed that salinosporamide A protected mice against deadly malaria infection when administered at an extremely low dosage. These findings underline the potential of secondary metabolites, derived from marine microorganisms, to inhibit Plasmodium growth. More specifically, we highlight the effect of proteasome inhibitors such as salinosporamide A on in vitro and in vivo parasite development. Salinosporamide A (NPI-0052) now being advanced to

  1. Evaluation of a flow cytometry method to determine size and real refractive index distributions in natural marine particle populations.

    PubMed

    Agagliate, Jacopo; Röttgers, Rüdiger; Twardowski, Michael S; McKee, David

    2018-03-01

    A flow cytometric (FC) method was developed to retrieve particle size distributions (PSDs) and real refractive index (n r ) information in natural waters. Geometry and signal response of the sensors within the flow cytometer (CytoSense, CytoBuoy b.v., Netherlands) were characterized to form a scattering inversion model based on Mie theory. The procedure produced a mesh of diameter and n r isolines where each particle is assigned the diameter and n r values of the closest node, producing PSDs and particle real refractive index distributions. The method was validated using polystyrene bead standards of known diameter and polydisperse suspensions of oil with known n r , and subsequently applied to natural samples collected across a broad range of UK shelf seas. FC PSDs were compared with independent PSDs produced from data of two LISST-100X instruments (type B and type C). PSD slopes and features were found to be consistent between the FC and the two LISST-100X instruments, but LISST concentrations were found in disagreement with FC concentrations and with each other. FC n r values were found to agree with expected refractive index values of typical marine particle components across all samples considered. The determination of particle size and refractive index distributions enabled by the FC method has potential to facilitate identification of the contribution of individual subpopulations to the bulk inherent optical properties and biogeochemical properties of the particle population.

  2. Intermittent Noise Induces Physiological Stress in a Coastal Marine Fish

    PubMed Central

    Nichols, Tye A.; Anderson, Todd W.; Širović, Ana

    2015-01-01

    Anthropogenic noise in the ocean has increased substantially in recent decades, and motorized vessels produce what is likely the most common form of underwater noise pollution. Noise has the potential to induce physiological stress in marine fishes, which may have negative ecological consequences. In this study, physiological effects of increased noise (playback of boat noise recorded in the field) on a coastal marine fish (the giant kelpfish, Heterostichus rostratus) were investigated by measuring the stress responses (cortisol concentration) of fish to increased noise of various temporal dynamics and noise levels. Giant kelpfish exhibited acute stress responses when exposed to intermittent noise, but not to continuous noise or control conditions (playback of recorded natural ambient sound). These results suggest that variability in the acoustic environment may be more important than the period of noise exposure for inducing stress in a marine fish, and provide information regarding noise levels at which physiological responses occur. PMID:26402068

  3. A study on biological activity of marine fungi from different habitats in coastal regions.

    PubMed

    Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange

    2016-01-01

    In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results showed that fungi isolation from the mangrove habitats had stronger antibacterial activity than others, and the stains isolated from the estuarial habitats had the least antibacterial activity. However, the strains separated from beach habitats strongly inhibited tumor cell proliferation in vitro, and fungi of mangrove forest habitats had the weakest activity of inhibiting tumor. Meanwhile, 195 fungal strains belonged to 46 families, 84 genera, 142 species and also showed 137 different types of activity combinations by analyzing the inhibitory activity of the metabolites fungi for 4 strains of pathogenic bacteria and B-16 cells. The study investigated the biological activity of marine fungi isolated from different habitats in Haikou coastal regions. The results help us to understand bioactive metabolites of marine fungi from different habitats, and how to selected biological activity fungi from various marine habitats effectively.

  4. Factors Influencing Expanded Use of Urban Marine Habitats by Foraging Wading Birds

    EPA Science Inventory

    Urban marine habitats are often utilized by wildlife for foraging and other activities despite surrounding anthropogenic impact or disturbance. However little is known of the ecological factors that determine habitat value of these and other remnant natural habitats. We examine...

  5. Environmental epigenetics: A promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates.

    PubMed

    Suarez-Ulloa, Victoria; Gonzalez-Romero, Rodrigo; Eirin-Lopez, Jose M

    2015-09-15

    Environmental epigenetics investigates the cause-effect relationships between specific environmental factors and the subsequent epigenetic modifications triggering adaptive responses in the cell. Given the dynamic and potentially reversible nature of the different types of epigenetic marks, environmental epigenetics constitutes a promising venue for developing fast and sensible biomonitoring programs. Indeed, several epigenetic biomarkers have been successfully developed and applied in traditional model organisms (e.g., human and mouse). Nevertheless, the lack of epigenetic knowledge in other ecologically and environmentally relevant organisms has hampered the application of these tools in a broader range of ecosystems, most notably in the marine environment. Fortunately, that scenario is now changing thanks to the growing availability of complete reference genome sequences along with the development of high-throughput DNA sequencing and bioinformatic methods. Altogether, these resources make the epigenetic study of marine organisms (and more specifically marine invertebrates) a reality. By building on this knowledge, the present work provides a timely perspective highlighting the extraordinary potential of environmental epigenetic analyses as a promising source of rapid and sensible tools for pollution biomonitoring, using marine invertebrates as sentinel organisms. This strategy represents an innovative, groundbreaking approach, improving the conservation and management of natural resources in the oceans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Breaking through the crisis in marine conservation and management: insights from the philosophies of Ed Ricketts.

    PubMed

    Sagarin, Raphael D; Crowder, Larry B

    2009-02-01

    Over the last decade, 2 major U.S. commissions on ocean policy and a wide range of independent sources have argued that ocean ecosystems are in a period of crisis and that current policies are inadequate to prevent further ecological damage. These sources have advocated ecosystem-based management as an approach to address conservation issues in the oceans, but managers remain uncertain as to how to implement ecosystem-based approaches in the real world. We argue that the philosophies of Edward F. Ricketts, a mid-20th-century marine ecologist, offer a framework and clear guidance for taking an ecosystem approach to marine conservation. Ricketts' philosophies, which were grounded in basic observations of natural history, espoused building a holistic picture of the natural world, including the influence of humans, through repeated observation. This approach, when applied to conservation, grounds management in what is observable in nature, encourages early action in the face of uncertainty, and supports an adaptive approach to management as new information becomes available. Ricketts' philosophy of "breaking through," which focuses on getting beyond crisis and conflict through honest debate of different parties' needs (rather than forcing compromise of differing positions), emphasizes the social dimension of natural resource management. New observational technologies, long-term ecological data sets, and especially advances in the social sciences made available since Ricketts' time greatly enhance the utility of Ricketts' philosophy of marine conservation.

  7. Marine derived bioactive compounds for treatment of Alzheimer's disease.

    PubMed

    Lakshmi, Sreeja; Prakash, Parvathi; Essa, Musthafa M; Qoronfleh, Walid M; Akbar, Mohammed; Song, Byoung-Joon; Kumar, Suresh; Elumalai, Preetham

    2018-06-01

    Alzheimer's disease (AD ) is mounting as social and economic encumbrance which are accompanied by deficits in cognition and memory. Over the past decades, Alzheimer's disease (AD) holds the frontline as one of the biggest healthcare issues in the world. AD is an age related neurodegenerative disorder marked by a decline in memory and an impairment of cognition. Inspite of tedious scientific effort, AD is still devoid of pharmacotherapeutic strategies for treatment as well as prevention. Current treatment strategies using drugs are symbolic in nature as they treat disease manifestation though are found effective in treating cognition. Inclination of science towards naturopathic treatments aiming at preventing the disease is highly vocal. Application of marine-derived bioactive compounds, has been gaining attention as mode of therapies against AD. Inspired by the vastness and biodiversity richness of the marine environment,  role of  marine metabolites in developing new therapies targeting brain with special emphasis to neurodegeneration is heading as an arable field. This review summarizes select-few examples highlighted as therapeutical applications for neurodegenerative disorders with special emphasis on AD.

  8. From Marine Venoms to Drugs: Efficiently Supported by a Combination of Transcriptomics and Proteomics

    PubMed Central

    Xie, Bing; Huang, Yu; Baumann, Kate; Fry, Bryan Grieg; Shi, Qiong

    2017-01-01

    The potential of marine natural products to become new drugs is vast; however, research is still in its infancy. The chemical and biological diversity of marine toxins is immeasurable and as such an extraordinary resource for the discovery of new drugs. With the rapid development of next-generation sequencing (NGS) and liquid chromatography–tandem mass spectrometry (LC-MS/MS), it has been much easier and faster to identify more toxins and predict their functions with bioinformatics pipelines, which pave the way for novel drug developments. Here we provide an overview of related bioinformatics pipelines that have been supported by a combination of transcriptomics and proteomics for identification and function prediction of novel marine toxins. PMID:28358320

  9. From Marine Venoms to Drugs: Efficiently Supported by a Combination of Transcriptomics and Proteomics.

    PubMed

    Xie, Bing; Huang, Yu; Baumann, Kate; Fry, Bryan Grieg; Shi, Qiong

    2017-03-30

    The potential of marine natural products to become new drugs is vast; however, research is still in its infancy. The chemical and biological diversity of marine toxins is immeasurable and as such an extraordinary resource for the discovery of new drugs. With the rapid development of next-generation sequencing (NGS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), it has been much easier and faster to identify more toxins and predict their functions with bioinformatics pipelines, which pave the way for novel drug developments. Here we provide an overview of related bioinformatics pipelines that have been supported by a combination of transcriptomics and proteomics for identification and function prediction of novel marine toxins.

  10. Space Weather Impacts to Mariners

    Science.gov Websites

    Tsunamis 406 EPIRB's National Weather Service Marine Forecasts SPACE WEATHER IMPACTS TO MARINERS Marine present an even greater danger near shore or any shallow waters? Space Weather Impacts to Mariners Don't ), Notices to Mariners, Special Paragraphs: "(73) SPACE WEATHER IMPACTS. There is a growing potential

  11. Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products

    PubMed Central

    Corinaldesi, Cinzia; Barone, Giulio; Marcellini, Francesca; Dell’Anno, Antonio; Danovaro, Roberto

    2017-01-01

    The oceans encompass a wide range of habitats and environmental conditions, which host a huge microbial biodiversity. The unique characteristics of several marine systems have driven a variety of biological adaptations, leading to the production of a large spectrum of bioactive molecules. Fungi, fungi-like protists (such as thraustochytrids) and bacteria are among the marine organisms with the highest potential of producing bioactive compounds, which can be exploited for several commercial purposes, including cosmetic and cosmeceutical ones. Mycosporines and mycosporine-like amino acids, carotenoids, exopolysaccharides, fatty acids, chitosan and other compounds from these microorganisms might represent a sustainable, low-cost and fast-production alternative to other natural molecules used in photo-protective, anti-aging and skin-whitening products for face, body and hair care. Here, we review the existing knowledge of these compounds produced by marine microorganisms, highlighting the marine habitats where such compounds are preferentially produced and their potential application in cosmetic and cosmeceutical fields. PMID:28417932

  12. Monitoring ship noise to assess the impact of coastal developments on marine mammals.

    PubMed

    Merchant, Nathan D; Pirotta, Enrico; Barton, Tim R; Thompson, Paul M

    2014-01-15

    The potential impacts of underwater noise on marine mammals are widely recognised, but uncertainty over variability in baseline noise levels often constrains efforts to manage these impacts. This paper characterises natural and anthropogenic contributors to underwater noise at two sites in the Moray Firth Special Area of Conservation, an important marine mammal habitat that may be exposed to increased shipping activity from proposed offshore energy developments. We aimed to establish a pre-development baseline, and to develop ship noise monitoring methods using Automatic Identification System (AIS) and time-lapse video to record trends in noise levels and shipping activity. Our results detail the noise levels currently experienced by a locally protected bottlenose dolphin population, explore the relationship between broadband sound exposure levels and the indicators proposed in response to the EU Marine Strategy Framework Directive, and provide a ship noise assessment toolkit which can be applied in other coastal marine environments. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products.

    PubMed

    Corinaldesi, Cinzia; Barone, Giulio; Marcellini, Francesca; Dell'Anno, Antonio; Danovaro, Roberto

    2017-04-12

    The oceans encompass a wide range of habitats and environmental conditions, which host a huge microbial biodiversity. The unique characteristics of several marine systems have driven a variety of biological adaptations, leading to the production of a large spectrum of bioactive molecules. Fungi, fungi-like protists (such as thraustochytrids) and bacteria are among the marine organisms with the highest potential of producing bioactive compounds, which can be exploited for several commercial purposes, including cosmetic and cosmeceutical ones. Mycosporines and mycosporine-like amino acids, carotenoids, exopolysaccharides, fatty acids, chitosan and other compounds from these microorganisms might represent a sustainable, low-cost and fast-production alternative to other natural molecules used in photo-protective, anti-aging and skin-whitening products for face, body and hair care. Here, we review the existing knowledge of these compounds produced by marine microorganisms, highlighting the marine habitats where such compounds are preferentially produced and their potential application in cosmetic and cosmeceutical fields.

  14. Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon

    PubMed Central

    Ingalls, Anitra E.; Shah, Sunita R.; Hansman, Roberta L.; Aluwihare, Lihini I.; Santos, Guaciara M.; Druffel, Ellen R. M.; Pearson, Ann

    2006-01-01

    An ammonia-oxidizing, carbon-fixing archaeon, Candidatus “Nitrosopumilus maritimus,” recently was isolated from a salt-water aquarium, definitively confirming that chemoautotrophy exists among the marine archaea. However, in other incubation studies, pelagic archaea also were capable of using organic carbon. It has remained unknown what fraction of the total marine archaeal community is autotrophic in situ. If archaea live primarily as autotrophs in the natural environment, a large ammonia-oxidizing population would play a significant role in marine nitrification. Here we use the natural distribution of radiocarbon in archaeal membrane lipids to quantify the bulk carbon metabolism of archaea at two depths in the subtropical North Pacific gyre. Our compound-specific radiocarbon data show that the archaea in surface waters incorporate modern carbon into their membrane lipids, and archaea at 670 m incorporate carbon that is slightly more isotopically enriched than inorganic carbon at the same depth. An isotopic mass balance model shows that the dominant metabolism at depth indeed is autotrophy (83%), whereas heterotrophic consumption of modern organic carbon accounts for the remainder of archaeal biomass. These results reflect the in situ production of the total community that produces tetraether lipids and are not subject to biases associated with incubation and/or culture experiments. The data suggest either that the marine archaeal community includes both autotrophs and heterotrophs or is a single population with a uniformly mixotrophic metabolism. The metabolic and phylogenetic diversity of the marine archaea warrants further exploration; these organisms may play a major role in the marine cycles of nitrogen and carbon. PMID:16614070

  15. Antimicrobial activities of novel cultivable bacteria isolated from marine sponge Tedania anhelans

    NASA Astrophysics Data System (ADS)

    Zeng, Zhen; Zhao, Jing; Ke, Caihuan; Wang, Dexiang

    2013-05-01

    Marine sponge Tedania anhelans distributes throughout the intertidal zone of Fujian, southeastern China, and is a potential source of natural bioactive products. The sponge harbors a large number of bacterial groups that have been identified using various techniques, including fluorescent in situ hybridization (FISH). Fractionation of dissociated sponge allowed isolation of 25 bacterial species. Based on 16S rRNA gene sequencing, phylogenetic analysis attributed most of these eubacteria to α- Proteobacteria, γ- Proteobacteria, Cytophaga / Flavobacterium / Bacteroidetes (CFB group), and the family Bacillaceae of Gram-positive bacteria. In sequence similarity, five putatively novel species were identified with less than 98% similarity to other strains in the NCBI database. Tests for antimicrobial activities were performed against Gram-positive bacteria, Gram-negative bacteria, fungi, antitumor indicators Escherichia coli 343/591 (with DNA repair deficiency), regular E. coli 343/636 (with different DNA repair capacity), and 10 bacterial isolates exhibited inhibitory bioactivities. Among these strains, three isolates were detected involving function gene NRPS-A domains, which were most closely related to the amino acid sequences of linear gramicidin synthetase and pyoverdine synthetase. These results contribute to our knowledge of the microbes associated with marine sponges and further reveal novel bacterial resources for the screening of bioactive marine natural products.

  16. Discovery of potent broad spectrum antivirals derived from marine actinobacteria.

    PubMed

    Raveh, Avi; Delekta, Phillip C; Dobry, Craig J; Peng, Weiping; Schultz, Pamela J; Blakely, Pennelope K; Tai, Andrew W; Matainaho, Teatulohi; Irani, David N; Sherman, David H; Miller, David J

    2013-01-01

    Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the

  17. Discovery of Potent Broad Spectrum Antivirals Derived from Marine Actinobacteria

    PubMed Central

    Raveh, Avi; Delekta, Phillip C.; Dobry, Craig J.; Peng, Weiping; Schultz, Pamela J.; Blakely, Pennelope K.; Tai, Andrew W.; Matainaho, Teatulohi; Irani, David N.; Sherman, David H.; Miller, David J.

    2013-01-01

    Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the

  18. Protection of Marine Mammals.

    PubMed

    Knoll, Michaela; Ciaccia, Ettore; Dekeling, René; Kvadsheim, Petter; Liddell, Kate; Gunnarsson, Stig-Lennart; Ludwig, Stefan; Nissen, Ivor; Lorenzen, Dirk; Kreimeyer, Roman; Pavan, Gianni; Meneghetti, Nello; Nordlund, Nina; Benders, Frank; van der Zwan, Timo; van Zon, Tim; Fraser, Leanne; Johansson, Torbjörn; Garmelius, Martin

    2016-01-01

    Within the European Defense Agency (EDA), the Protection of Marine Mammals (PoMM) project, a comprehensive common marine mammal database essential for risk mitigation tools, was established. The database, built on an extensive dataset collection with the focus on areas of operational interest for European navies, consists of annual and seasonal distribution and density maps, random and systematic sightings, an encyclopedia providing knowledge on the characteristics of 126 marine mammal species, data on marine mammal protection areas, and audio information including numerous examples of various vocalizations. Special investigations on marine mammal acoustics were carried out to improve the detection and classification capabilities.

  19. Marine Biomedicine

    ERIC Educational Resources Information Center

    Bang, Frederik B.

    1977-01-01

    Describes early scientific research involving marine invertebrate pathologic processes that may have led to new insights into human disease. Discussed are inquiries of Metchnikoff, Loeb, and Cantacuzene (immunolgic responses in sea stars, horseshoe crabs, and marine worms, respectively). Describes current research stemming from these early…

  20. Marine Biology

    ERIC Educational Resources Information Center

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  1. Characterizing Marine Soundscapes.

    PubMed

    Erbe, Christine; McCauley, Robert; Gavrilov, Alexander

    2016-01-01

    The study of marine soundscapes is becoming widespread and the amount of data collected is increasing rapidly. Data owners (typically academia, industry, government, and defense) are negotiating data sharing and generating potential for data syntheses, comparative studies, analyses of trends, and large-scale and long-term acoustic ecology research. A problem is the lack of standards and commonly agreed protocols for the recording of marine soundscapes, data analysis, and reporting that make a synthesis and comparison of results difficult. We provide a brief overview of the components in a marine soundscape, the hard- and software tools for recording and analyzing marine soundscapes, and common reporting formats.

  2. Preliminary report on the commercial viability of gas production from natural gas hydrates

    USGS Publications Warehouse

    Walsh, M.R.; Hancock, S.H.; Wilson, S.J.; Patil, S.L.; Moridis, G.J.; Boswell, R.; Collett, T.S.; Koh, C.A.; Sloan, E.D.

    2009-01-01

    Economic studies on simulated gas hydrate reservoirs have been compiled to estimate the price of natural gas that may lead to economically viable production from the most promising gas hydrate accumulations. As a first estimate, $CDN2005 12/Mscf is the lowest gas price that would allow economically viable production from gas hydrates in the absence of associated free gas, while an underlying gas deposit will reduce the viability price estimate to $CDN2005 7.50/Mscf. Results from a recent analysis of the simulated production of natural gas from marine hydrate deposits are also considered in this report; on an IROR basis, it is $US2008 3.50-4.00/Mscf more expensive to produce marine hydrates than conventional marine gas assuming the existence of sufficiently large marine hydrate accumulations. While these prices represent the best available estimates, the economic evaluation of a specific project is highly dependent on the producibility of the target zone, the amount of gas in place, the associated geologic and depositional environment, existing pipeline infrastructure, and local tariffs and taxes. ?? 2009 Elsevier B.V.

  3. The developing framework of marine ecotoxicology: Pollutants as a variable in marine ecosystems?

    USGS Publications Warehouse

    Luoma, Samuel N.

    1996-01-01

    Marine ecosystems include a subset in which at least some interrelated geochemical, biochemical, physiological, population and community characteristics are changed by pollutants. Moderate contamination is relatively widespread in coastal and estuarine ecosystems, so the subset of ecosystems with at least some processes affected could be relatively large. Pollutant influences have changed and will probably continue to change on time scales of decades. Biological exposures and dose in such ecosystems are species-specific and determined by how the species is exposed to different environmental media and the geochemistry of individual pollutants within those media. Bioaccumulation models offer significant promise for interpreting such exposures. Biological responses to pollutants need to be more directly linked to exposure and dose. At the level of the individual this might be improved by better understanding relationships between tissue concentrations of pollutants and responses to pollutants. Multi-discipline field and laboratory studies combined with advanced understanding of some basic processes have reduced the ambiguities in interpreting a few physiological/organismic responses to pollutants in nature. Recognition of pollutant-induced patterns in population responses could lead to similar advances. A rational framework for ecotoxicology is developing, but its further advance is dependent upon better integration of ecotoxicology with basic marine ecology and biology.

  4. Total synthesis and structural revision of the marine macrolide neopeltolide.

    PubMed

    Custar, Daniel W; Zabawa, Thomas P; Scheidt, Karl A

    2008-01-23

    The total synthesis and structural revision of the marine natural product neopeltolide is reported. The key bond-forming step involves a Lewis acid-catalyzed intramolecular cyclization to install the tetrahydropyran ring and the macrocycle simultaneously. This type of cyclization is the first of its kind and assembles the carbon backbone of the natural product efficiently. The synthesis of the reported structure revealed differences in the data between the natural and synthetic material. After significant investigation, the diastereomeric molecule with the C11 and C13 configurations inverted was synthesized using the initial route. This compound matches the data reported for neopeltolide (1H, 13C, HRMS, IR, NOESY, [alpha]), thereby establishing the correct overall structure for this potent macrolide natural product, including the relative and absolute stereochemistry.

  5. "And DPSIR begat DAPSI(W)R(M)!" - A unifying framework for marine environmental management.

    PubMed

    Elliott, M; Burdon, D; Atkins, J P; Borja, A; Cormier, R; de Jonge, V N; Turner, R K

    2017-05-15

    The marine environment is a complex system formed by interactions between ecological structure and functioning, physico-chemical processes and socio-economic systems. An increase in competing marine uses and users requires a holistic approach to marine management which considers the environmental, economic and societal impacts of all activities. If managed sustainably, the marine environment will deliver a range of ecosystem services which lead to benefits for society. In order to understand the complexity of the system, the DPSIR (Driver-Pressure-State-Impact-Response) approach has long been a valuable problem-structuring framework used to assess the causes, consequences and responses to change in a holistic way. Despite DPSIR being used for a long time, there is still confusion over the definition of its terms and so to be appropriate for current marine management, we contend that this confusion needs to be addressed. Our viewpoint advocates that DPSIR should be extended to DAPSI(W)R(M) (pronounced dap-see-worm) in which Drivers of basic human needs require Activities which lead to Pressures. The Pressures are the mechanisms of State change on the natural system which then leads to Impacts (on human Welfare). Those then require Responses (as Measures). Furthermore, because of the complexity of any managed sea area in terms of multiple Activities, there is the need for a linked-DAPSI(W)R(M) framework, and then the connectivity between marine ecosystems and ecosystems in the catchment and further at sea, requires an interlinked, nested-DAPSI(W)R(M) framework to reflect the continuum between adjacent ecosystems. Finally, the unifying framework for integrated marine management is completed by encompassing ecosystem structure and functioning, ecosystem services and societal benefits. Hence, DAPSI(W)R(M) links the socio-ecological system of the effects of changes to the natural system on the human uses and benefits of the marine system. However, to deliver these

  6. Mass-dependent cadmium isotopic variations in nature with emphasis on the marine environment

    NASA Astrophysics Data System (ADS)

    Schmitt, Anne-Désirée; Galer, Stephen J. G.; Abouchami, Wafa

    2009-01-01

    We report a survey of natural mass-dependent cadmium isotope fractionation measured by thermal ionization mass spectrometry using a double-spike technique (DS-TIMS). Over sixty samples of natural terrestrial Cd from diverse environments, including MORB, OIB, continental loess, hydrogenic and hydrothermal ferromanganese deposits, and sphalerites (both oceanic and from major continental ore deposits) were analysed. Our results are expressed in terms of ɛ 112/110Cd, which are deviations in 112Cd/ 110Cd from our in-house JMC Cd standard in parts per 10 4. The total ɛ 112/110Cd variation is relatively small, with a range of only 5 ɛ-units, and is one-to-two orders of magnitude smaller than that previously found in meteorites. The MORB, OIB and loess ɛ 112/110Cd values are similar and provide a good estimate for the bulk silicate Earth (BSE) value which is - 0.95 ± 0.12 relative to our Cd standard (ɛ 112/110Cd = + 0.16 relative to Münster JMC Cd). Taken together, these data suggest little Cd isotope fractionation takes place during crust-mantle segregation. Cd isotopic compositions of continental sphalerite (ZnS) deposits worldwide and high-temperature oceanic hydrothermal sulphides show remarkably similar ɛ 112/110Cd values, consistent with our estimate for the BSE. In contrast, mid-temperature oceanic sulphides from a single extinct hydrothermal chimney display over 4 ɛ-units variation — along with the most negative values. These variations are most probably caused by precipitation/redissolution of sulphide phases en route within the hydrothermal system. The ɛ 112/110Cd variability found in worldwide marine Fe-Mn deposits reflects the seawater Cd isotope signal upon precipitation from ambient seawater. A decrease in ɛ 112/110Cd is observed in passing from shallow-water Fe-Mn deposits to those from deeper waters (> 2000 m depth). This shift is explained by biological fractionation related to the uptake of dissolved seawater Cd by phytoplankton in the upper

  7. A regional high resolution model of the marine mercury cycle.

    NASA Astrophysics Data System (ADS)

    Bieser, J.; Daewel, U.; Schrum, C.

    2017-12-01

    One of the main sources for mercury intoxication is the uptake of methylmercury from sea food. However, only little is known about the dynamics of methylmercury in the marine environment and its accumulation along the food chain. To further our understanding of the pathways from anthropogenic emissions of elemental mercury to the bio-accumulation of methylmercury in fish we developed the first regional Eulerian three dimensional multi-media chemistry transport model (MECOSMO) that includes atmosphere, ocean, and ecosystem. The marine part of the model includes a complete representation of the marine ecosystem ranging from phytoplankton up to higher trophic levels, including fish. We used the MECOSMO model to reconstruct mercury concentrations in water and biota in the North- and Baltic Sea for the past 60 years. Based on our model we examined the natural short and longterm variability of the system as well as long term trends in the distribution and amount of methylmercury in water and fish. Based on our findings we show how models can be utilized to develop future measurement strategies for marine mercury. Finally, the presented modelling system can be used to project the impact of future perturbations in the system (i.e.: emission reductions, climate change, nutrient control) on the mercury accumulation in sea food. Thereby, supporting the implementation of the Minamata Convention on Mercury on a regional scale by enabling us to estimate the impact of emission reductions on the marine mercury cycle.

  8. The Worldwide Marine Radiocarbon Reservoir Effect: Definitions, Mechanisms, and Prospects

    NASA Astrophysics Data System (ADS)

    Alves, Eduardo Q.; Macario, Kita; Ascough, Philippa; Bronk Ramsey, Christopher

    2018-03-01

    When a carbon reservoir has a lower radiocarbon content than the atmosphere, this is referred to as a reservoir effect. This is expressed as an offset between the radiocarbon ages of samples from the two reservoirs at a single point in time. The marine reservoir effect (MRE) has been a major concern in the radiocarbon community, as it introduces an additional source of error that is often difficult to accurately quantify. For this reason, researchers are often reluctant to date marine material where they have another option. The influence of this phenomenon makes the study of the MRE important for a broad range of applications. The advent of Accelerator Mass Spectrometry (AMS) has reduced sample size requirements and increased measurement precision, in turn increasing the number of studies seeking to measure marine samples. These studies rely on overcoming the influence of the MRE on marine radiocarbon dates through the worldwide quantification of the local parameter ΔR, that is, the local variation from the global average MRE. Furthermore, the strong dependence on ocean dynamics makes the MRE a useful indicator for changes in oceanic circulation, carbon exchange between reservoirs, and the fate of atmospheric CO2, all of which impact Earth's climate. This article explores data from the Marine Reservoir Database and reviews the place of natural radiocarbon in oceanic records, focusing on key questions (e.g., changes in ocean dynamics) that have been answered by MRE studies and on their application to different subjects.

  9. Degradation of marine ecosystems and decline of fishery resources in marine protected areas in the US Virgin Islands

    USGS Publications Warehouse

    Rogers, C.S.; Beets, J.

    2001-01-01

    The large number of marine protected areas (MPAs) in the Caribbean (over 100) gives a misleading impression of the amount of protection the reefs and other marine resources in this region are receiving. This review synthesizes information on marine resources in two of the first MPAs established in the USA, namely Virgin Islands National Park (1962) and Buck Island Reef National Monument (1961), and provides compelling evidence that greater protection is needed, based on data from some of the longest running research projects on coral reefs, reef fish assemblages, and seagrass beds for the Caribbean. Most of the stresses affecting marine resources throughout the Caribbean (e.g. damage from boats, hurricanes and coral diseases) are also causing deterioration in these MPAs. Living coral cover has decreased and macroalgal cover has increased. Seagrass densities have decreased because of storms and anchor damage. Intensive fishing in the US Virgin Islands has caused loss of spawning aggregations and decreases in mean fish size and abundance. Groupers and snappers are far less abundant and herbivorous fishes comprise a greater proportion of samples than in the 1960s. Effects of intensive fishing are evident even within MPA boundaries. Although only traditional fishing with traps of 'conventional design' is allowed, commercial trap fishing is occurring. Visual samples of fishes inside and outside Virgin Islands National 'Park showed no significant differences in number of species, biomass, or mean size of fishes. Similarly, the number of fishes per trap was statistically similar inside and outside park waters. These MPAs have not been effective because an unprecedented combination of natural and human factors is assaulting the resources, some of the greatest damage is from stresses outside the control of park managers (e.g. hurricanes), and enforcement of the few regulations has been limited. Fully functioning MPAs which prohibit fishing and other extractive uses (e.g. no

  10. Pink salmon ( Oncorhynchus gorbuscha) marine survival rates reflect early marine carbon source dependency

    NASA Astrophysics Data System (ADS)

    Kline, Thomas C., Jr.; Boldt, Jennifer L.; Farley, Edward V., Jr.; Haldorson, Lewis J.; Helle, John H.

    2008-05-01

    Marine survival rate (the number of adult salmon returning divided by the number of salmon fry released) of pink salmon runs propagated by Prince William Sound, Alaska (PWS) salmon hatcheries is highly variable resulting in large year-to-year run size variation, which ranged from ∼20 to ∼50 million during 1998-2004. Marine survival rate was hypothesized to be determined during their early marine life stage, a time period corresponding to the first growing season after entering the marine environment while they are still in coastal waters. Based on the predictable relationships of 13C/ 12C ratios in food webs and the existence of regional 13C/ 12C gradients in organic carbon, 13C/ 12C ratios of early marine pink salmon were measured to test whether marine survival rate was related to food web processes. Year-to-year variation in marine survival rate was inversely correlated to 13C/ 12C ratios of early marine pink salmon, but with differences among hatcheries. The weakest relationship was for pink salmon from the hatchery without historic co-variation of marine survival rate with other PWS hatcheries or wild stocks. Year-to-year variation in 13C/ 12C ratio of early marine stage pink salmon in combination with regional spatial gradients of 13C/ 12C ratio measured in zooplankton suggested that marine survival was driven by carbon subsidies of oceanic origin (i.e., oceanic zooplankton). The 2001 pink salmon cohort had 13C/ 12C ratios that were very similar to those found for PWS carbon, i.e., when oceanic subsidies were inferred to be nil, and had the lowest marine survival rate (2.6%). Conversely, the 2002 cohort had the highest marine survival (9.7%) and the lowest mean 13C/ 12C ratio. These isotope patterns are consistent with hypotheses that oceanic zooplankton subsidies benefit salmon as food subsidies, or as alternate prey for salmon predators. Oceanic subsidies are manifestations of significant exchange of material between PWS and the Gulf of Alaska. Given

  11. Water and Electricity Do Mix: Studying Plates, Petroleum, and Permafrost using Marine Electromagnetism

    NASA Astrophysics Data System (ADS)

    Constable, S.

    2015-12-01

    Marine magnetotelluric (MT) and controlled-source electromagnetic (CSEM) sounding methods were developed in the early 1980's as deep-water academic tools to study the oceanic lithosphere and mantle. Electrical conductivity is a strong function of porosity, temperature, melting, and volatile content, and so marine MT and CSEM data can be used to address a variety of geological questions related to plate tectonics. These include the distribution of melt at mid-ocean ridges, the fate of fluids in subduction zones, and the nature of the lithosphere-asthenosphere boundary. With the advent of deepwater oil and gas drilling in the late 1990's, marine EM methods were embraced by the exploration community, and are now routinely used to assist in exploration and make drilling decisions for wells costing $100M or more. For countries without conventional hydrocarbon resources, gas hydrate offers the potential for energy production, and marine CSEM methods may be the only effective way to explore for and characterize this resource. The use of EM methods to map geothermal, groundwater, and mineral resources also has application in the marine environment. Water and electricity has proved to be a very successful mix!

  12. Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.

    PubMed

    Kerfahi, Dorsaf; Hall-Spencer, Jason M; Tripathi, Binu M; Milazzo, Marco; Lee, Junghoon; Adams, Jonathan M

    2014-05-01

    The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 μatm, minimum Ω(arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 μatm, minimum Ω(arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 μatm, minimum Ω(arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments.

  13. The role of sustained observations in tracking impacts of environmental change on marine biodiversity and ecosystems.

    PubMed

    Mieszkowska, N; Sugden, H; Firth, L B; Hawkins, S J

    2014-09-28

    Marine biodiversity currently faces unprecedented threats from multiple pressures arising from human activities. Global drivers such as climate change and ocean acidification interact with regional eutrophication, exploitation of commercial fish stocks and localized pressures including pollution, coastal development and the extraction of aggregates and fuel, causing alteration and degradation of habitats and communities. Segregating natural from anthropogenically induced change in marine ecosystems requires long-term, sustained observations of marine biota. In this review, we outline the history of biological recording in the coastal and shelf seas of the UK and Ireland and highlight where sustained observations have contributed new understanding of how anthropogenic activities have impacted on marine biodiversity. The contributions of sustained observations, from those collected at observatories, single station platforms and multiple-site programmes to the emergent field of multiple stressor impacts research, are discussed, along with implications for management and sustainable governance of marine resources in an era of unprecedented use of the marine environment. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Life in the "plastisphere": microbial communities on plastic marine debris.

    PubMed

    Zettler, Erik R; Mincer, Tracy J; Amaral-Zettler, Linda A

    2013-07-02

    Plastics are the most abundant form of marine debris, with global production rising and documented impacts in some marine environments, but the influence of plastic on open ocean ecosystems is poorly understood, particularly for microbial communities. Plastic marine debris (PMD) collected at multiple locations in the North Atlantic was analyzed with scanning electron microscopy (SEM) and next-generation sequencing to characterize the attached microbial communities. We unveiled a diverse microbial community of heterotrophs, autotrophs, predators, and symbionts, a community we refer to as the "Plastisphere". Pits visualized in the PMD surface conformed to bacterial shapes suggesting active hydrolysis of the hydrocarbon polymer. Small-subunit rRNA gene surveys identified several hydrocarbon-degrading bacteria, supporting the possibility that microbes play a role in degrading PMD. Some Plastisphere members may be opportunistic pathogens (the authors, unpublished data) such as specific members of the genus Vibrio that dominated one of our plastic samples. Plastisphere communities are distinct from surrounding surface water, implying that plastic serves as a novel ecological habitat in the open ocean. Plastic has a longer half-life than most natural floating marine substrates, and a hydrophobic surface that promotes microbial colonization and biofilm formation, differing from autochthonous substrates in the upper layers of the ocean.

  15. Aging of microplastics promotes their ingestion by marine zooplankton.

    PubMed

    Vroom, Renske J E; Koelmans, Albert A; Besseling, Ellen; Halsband, Claudia

    2017-12-01

    Microplastics (<5 mm) are ubiquitous in the marine environment and are ingested by zooplankton with possible negative effects on survival, feeding, and fecundity. The majority of laboratory studies has used new and pristine microplastics to test their impacts, while aging processes such as weathering and biofouling alter the characteristics of plastic particles in the marine environment. We investigated zooplankton ingestion of polystyrene beads (15 and 30 μm) and fragments (≤30 μm), and tested the hypothesis that microplastics previously exposed to marine conditions (aged) are ingested at higher rates than pristine microplastics. Polystyrene beads were aged by soaking in natural local seawater for three weeks. Three zooplankton taxa ingested microplastics, excluding the copepod Pseudocalanus spp., but the proportions of individuals ingesting plastic and the number of particles ingested were taxon and life stage specific and dependent on plastic size. All stages of Calanus finmarchicus ingested polystyrene fragments. Aged microbeads were preferred over pristine ones by females of Acartia longiremis as well as juvenile copepodites CV and adults of Calanus finmarchicus. The preference for aged microplastics may be attributed to the formation of a biofilm. Such a coating, made up of natural microbes, may contain similar prey as the copepods feed on in the water column and secrete chemical exudates that aid chemodetection and thus increase the attractiveness of the particles as food items. Much of the ingested plastic was, however, egested within a short time period (2-4 h) and the survival of adult Calanus females was not affected in an 11-day exposure. Negative effects of microplastics ingestion were thus limited. Our findings emphasize, however, that aging plays an important role in the transformation of microplastics at sea and ingestion by grazers, and should thus be considered in future microplastics ingestion studies and estimates of microplastics

  16. Anticancer drug discovery from the marine environment.

    PubMed

    Nastrucci, Candida; Cesario, Alfredo; Russo, Patrizia

    2012-05-01

    Discovery, isolation, biochemical/pharmacological characterization, pre-clinical and clinical trials of drugs derived from the marine environment are continuously developing and increasing. One of the most promising area is cancer therapy. Currently, there are two drugs approved by the Food and Drug Administration (FDA) and European Agency for the Evaluation of Medicinal Products (EMA) in cancer treatment, namely Cytarabine (Cytosar-U1®) and Eribulin (E7389 or Halaven®). Trabectedin (ET-743 or Yondelis1®), approved by EMA, is completing key Phase III studies in the U.S. for final approval. It was estimated that 118 marine natural products (MNPs) are currently in preclinical trials, 22 MNPs in clinical trials and 3 MNPs on the market. The characteristics and selectivity profiles of new drugs for cancer therapy, as well as drugs disclosed in related patent applications, will be the focus of this review, providing a brief and ready to use reference.

  17. Chemical ecology of marine angiosperms: opportunities at the interface of marine and terrestrial systems.

    PubMed

    Sieg, R Drew; Kubanek, Julia

    2013-06-01

    This review examines the state of the field for chemically mediated interactions involving marine angiosperms (seagrasses, mangroves, and salt marsh angiosperms). Small-scale interactions among these plants and their herbivores, pathogens, fouling organisms, and competitors are explored, as are community-level effects of plant secondary metabolites. At larger spatial scales, secondary metabolites from marine angiosperms function as reliable cues for larval settlement, molting, or habitat selection by fish and invertebrates, and can influence community structure and ecosystem function. Several recent studies illustrate the importance of chemical defenses from these plants that deter feeding by herbivores and infection by pathogens, but the extent to which allelopathic compounds kill or inhibit the growth of competitors is less clear. While some phenolic compounds such as ferulic acid and caffeic acid act as critical defenses against herbivores and pathogens, we find that a high total concentration of phenolic compounds within bulk plant tissues is not a strong predictor of defense. Residual chemical defenses prevent shredding or degradation of plant detritus by detritivores and microbes, delaying the time before plant matter can enter the microbial loop. Mangroves, marsh plants, and seagrasses remain plentiful sources of new natural products, but ecological functions are known for only a small proportion of these compounds. As new analytical techniques are incorporated into ecological studies, opportunities are emerging for chemical ecologists to test how subtle environmental cues affect the production and release of marine angiosperm chemical defenses or signaling molecules. Throughout this review, we point to areas for future study, highlighting opportunities for new directions in chemical ecology that will advance our understanding of ecological interactions in these valuable ecosystems.

  18. Otters, Marine

    USGS Publications Warehouse

    Estes, James A.; Bodkin, James L.; Ben-David, M.; Perrin, William F.; Würsing, Bernd; Thewissen, J.G.M.

    2009-01-01

    The otters (Mustelidae; Lutrinae) provide an exceptional perspective into the evolution of marine living by mammals. Most extant marine mammals (e.g. the cetaceans, pinnipeds, and sirenians) have been so highly modified by long periods of selection for life in the sea that they bear little resemblance to their terrestrial ancestors. Marine otters, in contrast, are more recent expatriates from freshwater habitats and some species still live in both environments. Contrasts among species within the otters, and among the otters, terrestrial mammals, and the more highly adapted pinnipeds and cetaceans provide powerful insights into mammalian adaptations to life in the sea (Estes, 1989). Among the marine mammals, sea otters (Enhydra lutris, Fig. 1) provide the clearest understanding of consumer-induced effects on ecosystem function. This is due in part to opportunities provided by history and in part to the relative ease with which shallow coastal systems where sea otters live can be observed and studied. Although more difficult to study than sea otters, other otter species reveal the connectivity among the marine, freshwater, and terrestrial systems. These three qualities of the otters – their comparative biology, their role as predators, and their role as agents of ecosystem connectivity – are what make them interesting to marine mammalogy.The following account provides a broad overview of the comparative biology and ecology of the otters, with particular emphasis on those species or populations that live in the sea. Sea otters are features prominently, in part because they live exclusively in the sea whereas other otters have obligate associations with freshwater and terrestrial environments (Kenyon, 1969; Riedman and Estes, 1990).

  19. How Do Radionuclides Accumulate in Marine Organisms? A Case Study of Europium with Aplysina cavernicola

    DOE PAGES

    Maloubier, Melody; Shuh, David K.; Minasian, Stefan G.; ...

    2016-09-15

    In the ocean, complex interactions between natural and anthropogenic radionuclides, seawater, and diverse marine biota provide a unique window through which to examine ecosystem and trophic transfer mechanisms in cases of accidental dissemination. The nature of interaction between radionuclides, the marine environment, and marine species is therefore essential for better understanding transfer mechanisms from the hydrosphere to the biosphere. Although data pertaining to the rate of global transfer are often available, little is known regarding the mechanism of environmental transport and uptake of heavy radionuclides by marine species. Among marine species, sponges are immobile active filter feeders and have beenmore » identified as hyperaccumulators of several heavy metals. We have selected the Mediterranean sponge Aplysina cavernicola as a model species for this study. Actinide elements are not the only source of radioactive release in cases of civilian nuclear events; however, their physicochemical transfer mechanisms to marine species remain largely unknown. We have targeted europium(III) as a representative of the trivalent actinides such as americium or curium. To unravel biological uptake mechanisms of europium in A. cavernicola, we have combined radiometric (γ) measurements with spectroscopic (time-resolved laser-induced fluorescence spectroscopy, TRLIFS, and X-ray absorption near-edge structure, XANES) and imaging (transmission electron microscopy, TEM, and scanning transmission X-ray microscopy, STXM) techniques. Here, we have observed that the colloids of NaEu(CO 3) 2 ·nH 2O formed in seawater are taken up by A. cavernicola with no evidence that lethal dose has been reached in our working conditions. Spectroscopic results suggest that there is no change of speciation during uptake. Finally, TEM and STXM images recorded at different locations across a sponge cross section, together with differential cell separation, indicate the presence of europium

  20. How Do Radionuclides Accumulate in Marine Organisms? A Case Study of Europium with Aplysina cavernicola

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloubier, Melody; Shuh, David K.; Minasian, Stefan G.

    In the ocean, complex interactions between natural and anthropogenic radionuclides, seawater, and diverse marine biota provide a unique window through which to examine ecosystem and trophic transfer mechanisms in cases of accidental dissemination. The nature of interaction between radionuclides, the marine environment, and marine species is therefore essential for better understanding transfer mechanisms from the hydrosphere to the biosphere. Although data pertaining to the rate of global transfer are often available, little is known regarding the mechanism of environmental transport and uptake of heavy radionuclides by marine species. Among marine species, sponges are immobile active filter feeders and have beenmore » identified as hyperaccumulators of several heavy metals. We have selected the Mediterranean sponge Aplysina cavernicola as a model species for this study. Actinide elements are not the only source of radioactive release in cases of civilian nuclear events; however, their physicochemical transfer mechanisms to marine species remain largely unknown. We have targeted europium(III) as a representative of the trivalent actinides such as americium or curium. To unravel biological uptake mechanisms of europium in A. cavernicola, we have combined radiometric (γ) measurements with spectroscopic (time-resolved laser-induced fluorescence spectroscopy, TRLIFS, and X-ray absorption near-edge structure, XANES) and imaging (transmission electron microscopy, TEM, and scanning transmission X-ray microscopy, STXM) techniques. Here, we have observed that the colloids of NaEu(CO 3) 2 ·nH 2O formed in seawater are taken up by A. cavernicola with no evidence that lethal dose has been reached in our working conditions. Spectroscopic results suggest that there is no change of speciation during uptake. Finally, TEM and STXM images recorded at different locations across a sponge cross section, together with differential cell separation, indicate the presence of europium

  1. Mariner-Venus 1967

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Detailed information on the spacecraft performance, mission operations, and tracking and data acquisition is presented for the Mariner Venus 1967 and Mariner Venus 1967 extension projects. Scientific and engineering results and conclusions are discussed, and include the scientific mission, encounter with Venus, observations near Earth, and cruise phase of the mission. Flight path analysis, spacecraft subsystems, and mission-related hardware and computer program development are covered. The scientific experiments carried by Mariner 5 were ultraviolet photometer, solar plasma probe, helium magnetometer, trapped radiation detector, S-band radio occultation, dual-frequency radio propagation, and celestial mechanics. The engineering experience gained by converting a space Mariner Mars 1964 spacecraft into one flown to Venus is also described.

  2. Marine Life Study

    NASA Technical Reports Server (NTRS)

    1988-01-01

    As a result of widespread ocean dumping and other pollution problems, marine scientists at Morgan State University are studying the populations of various marine organisms to determine the effects of pollution. They are also compiling data on the aging of marine organisms. There now exists a new method of determining the age of the surf clam. They are applying digital image processing to clam aging investigations. Computer creates digitized images of clam sections with annual rings. The image is enhanced -- manipulated to emphasize certain features in order to improve and amplify the information that can be extracted from the image. Also useful in other marine organisms that have growth bands making it easier to get an accurate count.

  3. Parasites and marine invasions: Ecological and evolutionary perspectives

    NASA Astrophysics Data System (ADS)

    Goedknegt, M. Anouk; Feis, Marieke E.; Wegner, K. Mathias; Luttikhuizen, Pieternella C.; Buschbaum, Christian; Camphuysen, Kees (C. J.); van der Meer, Jaap; Thieltges, David W.

    2016-07-01

    Worldwide, marine and coastal ecosystems are heavily invaded by introduced species and the potential role of parasites in the success and impact of marine invasions has been increasingly recognized. In this review, we link recent theoretical developments in invasion ecology with empirical studies from marine ecosystems in order to provide a conceptual framework for studying the role of parasites and their hosts in marine invasions. Based on an extensive literature search, we identified six mechanisms in which invaders directly or indirectly affect parasite and host populations and communities: I) invaders can lose some or all of their parasites during the invasion process (parasite release or reduction), often causing a competitive advantage over native species; II) invaders can also act as a host for native parasites, which may indirectly amplify the parasite load of native hosts (parasite spillback); III) invaders can also be parasites themselves and be introduced without needing co-introduction of the host (introduction of free-living infective stages); IV) alternatively, parasites may be introduced together with their hosts (parasite co-introduction with host); V) consequently, these co-introduced parasites can sometimes also infect native hosts (parasite spillover); and VI) invasive species may be neither a host nor a parasite, but nevertheless affect native parasite host interactions by interfering with parasite transmission (transmission interference). We discuss the ecological and evolutionary implications of each of these mechanisms and generally note several substantial effects on natural communities and ecosystems via i) mass mortalities of native populations creating strong selection gradients, ii) indirect changes in species interactions within communities and iii) trophic cascading and knock-on effects in food webs that may affect ecosystem function and services. Our review demonstrates a wide range of ecological and evolutionary implications of

  4. Natural products as reservoirs of novel therapeutic agents.

    PubMed

    Mushtaq, Sadaf; Abbasi, Bilal Haider; Uzair, Bushra; Abbasi, Rashda

    2018-01-01

    Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it.

  5. Accurate Quantification of Laminarin in Marine Organic Matter with Enzymes from Marine Microbes.

    PubMed

    Becker, Stefan; Scheffel, André; Polz, Martin F; Hehemann, Jan-Hendrik

    2017-05-01

    Marine algae produce a variety of glycans, which fulfill diverse biological functions and fuel the carbon and energy demands of heterotrophic microbes. A common approach to analysis of marine organic matter uses acid to hydrolyze the glycans into measurable monosaccharides. The monosaccharides may be derived from different glycans that are built with the same monosaccharides, however, and this approach does not distinguish between glycans in natural samples. Here we use enzymes to digest selectively and thereby quantify laminarin in particulate organic matter. Environmental metaproteome data revealed carbohydrate-active enzymes from marine flavobacteria as tools for selective hydrolysis of the algal β-glucan laminarin. The enzymes digested laminarin into glucose and oligosaccharides, which we measured with standard methods to establish the amounts of laminarin in the samples. We cloned, expressed, purified, and characterized three new glycoside hydrolases (GHs) of Formosa bacteria: two are endo-β-1,3-glucanases, of the GH16 and GH17 families, and the other is a GH30 exo-β-1,6-glucanase. Formosa sp. nov strain Hel1_33_131 GH30 (FbGH30) removed the β-1,6-glucose side chains, and Formosa agariphila GH17A (FaGH17A) and FaGH16A hydrolyzed the β-1,3-glucose backbone of laminarin. Specificity profiling with a library of glucan oligosaccharides and polysaccharides revealed that FaGH17A and FbGH30 were highly specific enzymes, while FaGH16A also hydrolyzed mixed-linked glucans with β-1,4-glucose. Therefore, we chose the more specific FaGH17A and FbGH30 to quantify laminarin in two cultured diatoms, namely, Thalassiosira weissflogii and Thalassiosira pseudonana , and in seawater samples from the North Sea and the Arctic Ocean. Combined, these results demonstrate the potential of enzymes for faster, stereospecific, and sequence-specific analysis of select glycans in marine organic matter. IMPORTANCE Marine algae synthesize substantial amounts of the glucose polymer

  6. 78 FR 30870 - Nomination of Existing Marine Protected Areas to the National System of Marine Protected Areas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-23

    ... Reserve Big Flat State Marine Conservation Area Big River Estuary State Marine Conservation Area Bird Rock... Conservation Area Navarro River Estuary State Marine Conservation Area Painted Cave (Santa Cruz Island) State... Marine Conservation Area Ten Mile Estuary State Marine Conservation Area Ten Mile State Marine Reserve...

  7. A data acquisition system for marine and ecological research.

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1971-01-01

    Description of a self-contained portable data acquisition system for use in marine and ecological research. The compact lightweight data acquisition system is capable of recording 14 variables in its present configuration and is suitable for use in either a boat, pickup truck, or light aircraft. This system will provide the acquisition of reliable data on the structure of the environment and the effect of man-made and natural activities on the observed phenomenon. Utilizing both self-contained analog recording and a telemetry transmitter for real-time digital readout and recording, the prototype system has undergone extensive testing. Currently undergoing component performance upgrading, the prototype system has been utilized in several environmental science investigations associated with air pollution investigations and weather modification and is currently being used for marine data acquisition.

  8. Descriptive sensory analysis of marinated and non-marinated wooden breast fillet portions.

    PubMed

    Maxwell, A D; Bowker, B C; Zhuang, H; Chatterjee, D; Adhikari, K

    2018-05-14

    The wooden breast (WB) myopathy influences muscle composition and texture characteristics in broiler breast meat. It is unknown if marination reduces the negative influence of WB on meat sensory quality or if WB effects are uniform throughout the Pectoralis major. The objective of this study was to determine the effects of marination on the sensory attributes and instrumental shear force measurements of the ventral (skin-side) and dorsal (bone-side) portions of normal and severe WB meat. Sixty butterfly fillets (30 normal and 30 severe WB) were selected from the deboning line of a commercial processing plant. Individual fillets were portioned into ventral and dorsal halves. Portions from one side of each butterfly were used as non-marinated controls, and portions from the other side were vacuum-tumble marinated (16 rpm, -0.6 atm, 4°C, 20 min) with 20% (wt/wt) marinade to meat ratio. Marinade was formulated to target a concentration of 0.75% (w/v) salt and 0.45% (w/v) sodium tripolyphosphate in the final product. Descriptive sensory analysis (9 trained panelists) was conducted to evaluate visual, texture, and flavor attributes (0-15 point scale) of breast portions along with Warner-Bratzler shear force. Significant interaction effects between WB and marination were not observed for the sensory attributes. Greater springiness, cohesiveness, hardness, fibrousness, and chewiness scores were observed in WB samples (P < 0.001). Marination decreased cohesiveness, hardness, and chewiness (P < 0.05) and increased juiciness (P = 0.002). The effects of WB on sensory texture attributes were more apparent in the ventral portions of the breast fillets. Flavor attributes (salty and brothy) increased (P < 0.001) with marination. In non-marinated samples, shear force was similar between normal and WB samples. In marinated samples, however, shear force was greater (P < 0.001) in WB samples. Data suggest that the WB effect on meat sensory quality is not uniform throughout the

  9. Marine infectious disease ecology

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2017-01-01

    To put marine disease impacts in context requires a broad perspective on the roles infectious agents have in the ocean. Parasites infect most marine vertebrate and invertebrate species, and parasites and predators can have comparable biomass density, suggesting they play comparable parts as consumers in marine food webs. Although some parasites might increase with disturbance, most probably decline as food webs unravel. There are several ways to adapt epidemiological theory to the marine environment. In particular, because the ocean represents a three-dimensional moving habitat for hosts and parasites, models should open up the spatial scales at which infective stages and host larvae travel. In addition to open recruitment and dimensionality, marine parasites are subject to fishing, filter feeders, dosedependent infection, environmental forcing, and death-based transmission. Adding such considerations to marine disease models will make it easier to predict which infectious diseases will increase or decrease in a changing ocean.

  10. A unifying paradigm for naphthoquinone-based meroterpenoid (bio)synthesis

    NASA Astrophysics Data System (ADS)

    Miles, Zachary D.; Diethelm, Stefan; Pepper, Henry P.; Huang, David M.; George, Jonathan H.; Moore, Bradley S.

    2017-12-01

    Bacterial meroterpenoids constitute an important class of natural products with diverse biological properties and therapeutic potential. The biosynthetic logic for their production is unknown and defies explanation via classical biochemical paradigms. A large subgroup of naphthoquinone-based meroterpenoids exhibits a substitution pattern of the polyketide-derived aromatic core that seemingly contradicts the established reactivity pattern of polyketide phenol nucleophiles and terpene diphosphate electrophiles. We report the discovery of a hitherto unprecedented enzyme-promoted α-hydroxyketone rearrangement catalysed by vanadium-dependent haloperoxidases to account for these discrepancies in the merochlorin and napyradiomycin class of meroterpenoid antibiotics, and we demonstrate that the α-hydroxyketone rearrangement is potentially a conserved biosynthetic reaction in this molecular class. The biosynthetic α-hydroxyketone rearrangement was applied in a concise total synthesis of naphthomevalin, a prominent member of the napyradiomycin meroterpenes, and sheds further light on the mechanism of this unifying enzymatic transformation.

  11. Rapid emergence of climate change in environmental drivers of marine ecosystems.

    PubMed

    Henson, Stephanie A; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L

    2017-03-07

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a 'business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike.

  12. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches

    PubMed Central

    Silva, Tiago H.; Alves, Anabela; Popa, Elena G.; Reys, Lara L.; Gomes, Manuela E.; Sousa, Rui A.; Silva, Simone S.; Mano, João F.; Reis, Rui L.

    2012-01-01

    Biomedical field is constantly requesting for new biomaterials, with innovative properties. Natural polymers appear as materials of election for this goal due to their biocompatibility and biodegradability. In particular, materials found in marine environment are of great interest since the chemical and biological diversity found in this environment is almost uncountable and continuously growing with the research in deeper waters. Moreover, there is also a slower risk of these materials to pose illnesses to humans. In particular, sulfated polysaccharides can be found in marine environment, in different algae species. These polysaccharides don’t have equivalent in the terrestrial plants and resembles the chemical and biological properties of mammalian glycosaminoglycans. In this perspective, are receiving growing interest for application on health-related fields. On this review, we will focus on the biomedical applications of marine algae sulfated polymers, in particular on the development of innovative systems for tissue engineering and drug delivery approaches. PMID:23507892

  13. Rapid emergence of climate change in environmental drivers of marine ecosystems

    PubMed Central

    Henson, Stephanie A.; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G.; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L.

    2017-01-01

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a ‘business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike. PMID:28267144

  14. Immediate ecotoxicological effects of short-lived oil spills on marine biota

    PubMed Central

    Brussaard, Corina P. D.; Peperzak, Louis; Beggah, Siham; Wick, Lukas Y.; Wuerz, Birgit; Weber, Jan; Samuel Arey, J.; van der Burg, Bart; Jonas, Arjen; Huisman, Johannes; van der Meer, Jan Roelof

    2016-01-01

    Marine environments are frequently exposed to oil spills as a result of transportation, oil drilling or fuel usage. Whereas large oil spills and their effects have been widely documented, more common and recurrent small spills typically escape attention. To fill this important gap in the assessment of oil-spill effects, we performed two independent supervised full sea releases of 5 m3 of crude oil, complemented by on-board mesocosm studies and sampling of accidentally encountered slicks. Using rapid on-board biological assays, we detect high bioavailability and toxicity of dissolved and dispersed oil within 24 h after the spills, occurring fairly deep (8 m) below the slicks. Selective decline of marine plankton is observed, equally relevant for early stages of larger spills. Our results demonstrate that, contrary to common thinking, even small spills have immediate adverse biological effects and their recurrent nature is likely to affect marine ecosystem functioning. PMID:27041738

  15. Immediate ecotoxicological effects of short-lived oil spills on marine biota.

    PubMed

    Brussaard, Corina P D; Peperzak, Louis; Beggah, Siham; Wick, Lukas Y; Wuerz, Birgit; Weber, Jan; Samuel Arey, J; van der Burg, Bart; Jonas, Arjen; Huisman, Johannes; van der Meer, Jan Roelof

    2016-04-04

    Marine environments are frequently exposed to oil spills as a result of transportation, oil drilling or fuel usage. Whereas large oil spills and their effects have been widely documented, more common and recurrent small spills typically escape attention. To fill this important gap in the assessment of oil-spill effects, we performed two independent supervised full sea releases of 5 m(3) of crude oil, complemented by on-board mesocosm studies and sampling of accidentally encountered slicks. Using rapid on-board biological assays, we detect high bioavailability and toxicity of dissolved and dispersed oil within 24 h after the spills, occurring fairly deep (8 m) below the slicks. Selective decline of marine plankton is observed, equally relevant for early stages of larger spills. Our results demonstrate that, contrary to common thinking, even small spills have immediate adverse biological effects and their recurrent nature is likely to affect marine ecosystem functioning.

  16. Rapid emergence of climate change in environmental drivers of marine ecosystems

    NASA Astrophysics Data System (ADS)

    Henson, Stephanie A.; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G.; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L.

    2017-03-01

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a `business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike.

  17. Using metatranscriptomics to understand the roles of Fe(II)-oxidizing microbes in marine hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Glazer, B. T.; Mcallister, S.; Polson, S. W.; Chan, C. S. Y.

    2015-12-01

    Fe(II)-oxidizing microbes (FeOM) are thought to be key players in marine Fe cycling, particularly at hydrothermal vents. However, we do not have tools to track their activity, largely because we do not know the genes involved in neutrophilic chemolithotrophic Fe oxidation. Researchers have used gene homology between FeOM isolates to suggest several genes that may be involved in Fe(II) oxidation, including the Fe oxidase cyc2 found in the Zetaproteobacteria type strain Mariprofundus ferrooxydans, as well as all other known neutrophilic microaerophilic FeOM. Although many Zetaproteobacteria are found within natural Fe mats, close relatives of Fe(II)-oxidizing isolates are rarely present. Therefore, one goal of this study was to determine the activity of putative Fe(II) oxidation genes in dominant OTUs found in natural environments. We collected Fe mats from hydrothermal vents at Loihi Seamount, Hawaii, preserving RNA in situ. By analyzing metatranscriptomes of different Fe mat niches, we were able to determine the OTUs involved and the gene expression patterns associated with Fe(II) oxidation in the marine environment. Analysis of metatranscriptomic data confirms that the Zetaproteobacteria express the various genes necessary to support the Fe mat community through chemoautotrophic growth. Globally ubiquitous and even some rare species of the Zetaproteobacteria were active, with different relative abundances depending on Fe mat niches defined by fluid flow and geochemistry. Initial results show that genes thought to be involved in the electron transport pathway from Fe(II) to O2, including cyc2, are some of the most highly expressed genes in marine Fe microbial mats. Species-specific variants of these genes suggest that many of the Zetaproteobacteria species, spanning the breadth of the diversity of the class, are expressing genes necessary for Fe(II) oxidation within natural Fe mat niches. Understanding the differential expression of these genes in different niches

  18. Conceptual geoinformation model of natural hazards risk assessment

    NASA Astrophysics Data System (ADS)

    Kulygin, Valerii

    2016-04-01

    Natural hazards are the major threat to safe interactions between nature and society. The assessment of the natural hazards impacts and their consequences is important in spatial planning and resource management. Today there is a challenge to advance our understanding of how socio-economical and climate changes will affect the frequency and magnitude of hydro-meteorological hazards and associated risks. However, the impacts from different types of natural hazards on various marine and coastal economic activities are not of the same type. In this study, the conceptual geomodel of risk assessment is presented to highlight the differentiation by the type of economic activities in extreme events risk assessment. The marine and coastal ecosystems are considered as the objects of management, on the one hand, and as the place of natural hazards' origin, on the other hand. One of the key elements in describing of such systems is the spatial characterization of their components. Assessment of ecosystem state is based on ecosystem indicators (indexes). They are used to identify the changes in time. The scenario approach is utilized to account for the spatio-temporal dynamics and uncertainty factors. Two types of scenarios are considered: scenarios of using ecosystem services by economic activities and scenarios of extreme events and related hazards. The reported study was funded by RFBR, according to the research project No. 16-35-60043 mol_a_dk.

  19. Marine Web Portal as an Interface between Users and Marine Data and Information Sources

    NASA Astrophysics Data System (ADS)

    Palazov, A.; Stefanov, A.; Marinova, V.; Slabakova, V.

    2012-04-01

    Fundamental elements of the success of marine data and information management system and an effective support of marine and maritime economic activities are the speed and the ease with which users can identify, locate, get access, exchange and use oceanographic and marine data and information. There are a lot of activities and bodies have been identified as marine data and information users, such as: science, government and local authorities, port authorities, shipping, marine industry, fishery and aquaculture, tourist industry, environmental protection, coast protection, oil spills combat, Search and Rescue, national security, civil protection, and general public. On other hand diverse sources of real-time and historical marine data and information exist and generally they are fragmented, distributed in different places and sometimes unknown for the users. The marine web portal concept is to build common web based interface which will provide users fast and easy access to all available marine data and information sources, both historical and real-time such as: marine data bases, observing systems, forecasting systems, atlases etc. The service is regionally oriented to meet user needs. The main advantage of the portal is that it provides general look "at glance" on all available marine data and information as well as direct user to easy discover data and information in interest. It is planned to provide personalization ability, which will give the user instrument to tailor visualization according its personal needs.

  20. 76 FR 72680 - Marine Mammals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    .... 15750] Marine Mammals AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric... research on marine mammals in Alaska. ADDRESSES: The permit and related documents are available for review... requested permit has been issued under the authority of the Marine Mammal Protection Act of 1972, as amended...