Science.gov

Sample records for marine pore waters

  1. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores

    SciTech Connect

    Hooten, R.L.; Carr, R.S.

    1998-01-01

    An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciata zoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH{sub 3}) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH{sub 3} than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH{sub 3} concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciata zoospore germination was not affected by samples with high NH{sub 3} concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH{sub 3} and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH{sub 3}.

  2. Development and application of a marine sediment pore-water toxicity test using Ulva fasciata zoospores

    USGS Publications Warehouse

    Hooten, R.L.; Carr, R.S.

    1998-01-01

    An acute (96 h) pore-water toxicity test protocol using germination and growth of Ulva fasciata zoospores as endpoints was developed to test the toxicity of marine and estuarine sediment pore-water samples. Tests with an organic toxicant (sodium dodecyl sulfate; SDS), three metals (Cd, Cu, and Zn), and ammonia (NH3) were conducted to determine zoospore sensitivity. Zoospore germination and gametophyte growth were as sensitive to SDS as sea urchin (Arbacia punctulata) fertilization and embryological development. Zoospore sensitivity to metals was greater than or comparable to that of adult macroalgae. Zoospores were less sensitive to NH3 than were other commonly used toxicity test organisms. Test results using this algal assay with sediment pore-water samples with high NH3 concentrations were compared with results from sea urchin fertilization and embryological development tests for the same samples. Ulva fasciata zoospore germination was not affected by samples with high NH3 concentrations that were toxic in both sea urchin tests. Zoospore tolerance of NH3 and sensitivity to other contaminants indicate that their response may be useful in toxicity identification evaluation studies with pore-water samples that contain high concentrations of unionized NH3.

  3. Variations of marine pore water salinity and chlorinity in Gulf of Alaska sediments (IODP Expedition 341)

    NASA Astrophysics Data System (ADS)

    März, Christian; Mix, Alan C.; McClymont, Erin; Nakamura, Atsunori; Berbel, Glaucia; Gulick, Sean; Jaeger, John; Schneider (LeVay), Leah

    2014-05-01

    Pore waters of marine sediments usually have salinities and chlorinities similar to the overlying sea water, ranging around 34-35 psu (Practical Salinity Units) and around 550 mM Cl-, respectively. This is because these parameters are conservative in the sense that they do not significantly participate in biogeochemical cycles. However, pore water studies carried out in the frame of the International Ocean Discovery Program (IODP) and its predecessors have shown that salinities and chlorinities of marine pore waters can substantially deviate from the modern bottom water composition in a number of environmental settings, and various processes have been suggested to explain these phenomena. Also during the recent IODP Expedition 341 that drilled five sites in the Gulf of Alaska (Northeast Pacific Ocean) from the deep Surveyor Fan across the continental slope to the glaciomarine shelf deposits, several occurrences of pore waters with salinities and chlorinities significantly different from respective bottom waters were encountered during shipboard analyses. At the pelagic Sites U1417 and U1418 (~4,200 and ~3,700 m water depth, respectively), salinity and chlorinity maxima occur around 20-50 m sediment depth, but values gradually decrease with increasing drilling depths (down to 30 psu in ~600 m sediment depth). While the pore water freshening at depth is most likely an effect of clay mineral dehydration due to increasing burial depth, the shallow salinity and chlorinity maxima are interpreted as relicts of more saline bottom waters that existed in the North Pacific during the Last Glacial Maximum (Adkins et al., 2002). In contrast, the glaciomarine slope and shelf deposits at Site U1419 to U1421 (~200 to 1,000 m water depth) are characterised by unexpectedly low salinitiy and chlorinity values (as low as 16 psu and 295 mM Cl-, respectively) already in very shallow sediment depths (~10 m), and their records do not show systematic trends with sediment depth. Freshening

  4. Relative role of pore water versus ingested sediment in bioavailability of organic contaminants in marine sediments

    SciTech Connect

    Forbes, T.L.; Hansen, R.; Kure, L.K.; Forbes, V.E.; Giessing, A. |

    1998-12-01

    Experimental data for fluoranthene and feeding selectivity in combination with reaction-diffusion modeling suggest that ingestion of contaminated sediment may often be the dominant uptake pathway for deposit-feeding invertebrates in sediments. A dietary absorption efficiency of 56% and accompanying forage ratio of 2.4 were measured using natural sediment that had been dual-labeled ({sup 14}C:{sup 51}Cr) with fluoranthene and fed to the marine deposit-feeding polychaete Capitella species I. Only 3 to 4% of the total absorption could be accounted for by desorption during gut passage. These data were then used as input into a reaction-diffusion model to calculate the importance of uptake from ingested sediment relative to pore-water exposure. The calculations predict a fluoranthene dietary uptake flux that is 20 to 30 times greater than that due to pore water. Factors that act to modify or control the formation of local chemical gradients, boundary layers, or dietary absorption rates including particle selection or burrow construction will be important in determining the relative importance of potential exposure pathways. From a chemical perspective, the kinetics of the adsorption and desorption process are especially important as they will strongly influence the boundary layer immediately surrounding burrowing animals or irrigated tubes. The most important biological factors likely include irrigation behavior and burrow density and size.

  5. Stable silicon isotope signatures of marine pore waters - Biogenic opal dissolution versus authigenic clay mineral formation

    NASA Astrophysics Data System (ADS)

    Ehlert, Claudia; Doering, Kristin; Wallmann, Klaus; Scholz, Florian; Sommer, Stefan; Grasse, Patricia; Geilert, Sonja; Frank, Martin

    2016-10-01

    Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment-water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm-2 yr-1. The fractionation factor between the precipitates and the pore waters is estimated at -2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.

  6. The marine geochemistry of actinium-227: Evidence for its migration through sediment pore water

    SciTech Connect

    Nozaki, Yoshiyuki; Yamada, Masatoshi ); Nikaido, Hirofumi )

    1990-10-01

    {sup 227}Ac with a half life of 21.8 years has a potential utility as a tracer of deep water circulation and mixing studies on time scales less than 100 years. Here the authors present the first measurement of {sup 227}Ac profile in the pore water of Northwest Pacific deep-sea sediment and in the {approximately}10,000 m long water column of Izu-Ogasawara Trench. The results clearly show that {sup 227}Ac is supplied from the sediment to the overlying water through migration in the pore water. The model calculation indicates that the molecular diffusion alone through sediment porewater can support only a half of the standing crop of excess {sup 227}Ac in the water column and the enhanced supply of {sup 227}Ac by particle mixing is necessary to account for the remainder. Thus, bioturbation in the deep sea plays an important role in controlling the flux of some short-lived radionuclides such as {sup 227}Ac and {sup 228}Ra across the sediment-water interface.

  7. Vitamin B1 in marine sediments: pore water concentration gradient drives benthic flux with potential biological implications

    PubMed Central

    Monteverde, Danielle R.; Gómez-Consarnau, Laura; Cutter, Lynda; Chong, Lauren; Berelson, William; Sañudo-Wilhelmy, Sergio A.

    2015-01-01

    Vitamin B1, or thiamin, can limit primary productivity in marine environments, however the major marine environmental sources of this essential coenzyme remain largely unknown. Vitamin B1 can only be produced by organisms that possess its complete synthesis pathway, while other organisms meet their cellular B1 quota by scavenging the coenzyme from exogenous sources. Due to high bacterial cell density and diversity, marine sediments could represent some of the highest concentrations of putative B1 producers, yet these environments have received little attention as a possible source of B1 to the overlying water column. Here we report the first dissolved pore water profiles of B1 measured in cores collected in two consecutive years from Santa Monica Basin, CA. Vitamin B1 concentrations were fairly consistent between the two years ranging from 30 pM up to 770 pM. A consistent maximum at ~5 cm sediment depth covaried with dissolved concentrations of iron. Pore water concentrations were higher than water column levels and represented some of the highest known environmental concentrations of B1 measured to date, (over two times higher than maximum water column concentrations) suggesting increased rates of cellular production and release within the sediments. A one dimensional diffusion-transport model applied to the B1 profile was used to estimate a diffusive benthic flux of ~0.7 nmol m−2 d−1. This is an estimated flux across the sediment-water interface in a deep sea basin; if similar magnitude B-vitamin fluxes occur in shallow coastal waters, benthic input could prove to be a significant B1-source to the water column and may play an important role in supplying this organic growth factor to auxotrophic primary producers. PMID:26029181

  8. Vitamin B1 in marine sediments: pore water concentration gradient drives benthic flux with potential biological implications.

    PubMed

    Monteverde, Danielle R; Gómez-Consarnau, Laura; Cutter, Lynda; Chong, Lauren; Berelson, William; Sañudo-Wilhelmy, Sergio A

    2015-01-01

    Vitamin B1, or thiamin, can limit primary productivity in marine environments, however the major marine environmental sources of this essential coenzyme remain largely unknown. Vitamin B1 can only be produced by organisms that possess its complete synthesis pathway, while other organisms meet their cellular B1 quota by scavenging the coenzyme from exogenous sources. Due to high bacterial cell density and diversity, marine sediments could represent some of the highest concentrations of putative B1 producers, yet these environments have received little attention as a possible source of B1 to the overlying water column. Here we report the first dissolved pore water profiles of B1 measured in cores collected in two consecutive years from Santa Monica Basin, CA. Vitamin B1 concentrations were fairly consistent between the two years ranging from 30 pM up to 770 pM. A consistent maximum at ~5 cm sediment depth covaried with dissolved concentrations of iron. Pore water concentrations were higher than water column levels and represented some of the highest known environmental concentrations of B1 measured to date, (over two times higher than maximum water column concentrations) suggesting increased rates of cellular production and release within the sediments. A one dimensional diffusion-transport model applied to the B1 profile was used to estimate a diffusive benthic flux of ~0.7 nmol m(-2) d(-1). This is an estimated flux across the sediment-water interface in a deep sea basin; if similar magnitude B-vitamin fluxes occur in shallow coastal waters, benthic input could prove to be a significant B1-source to the water column and may play an important role in supplying this organic growth factor to auxotrophic primary producers.

  9. Pore water distributions of dissolved copper and copper-complexing ligands in estuarine and coastal marine sediments

    SciTech Connect

    Skrabal, S.A.; Donat, J.R.; Burdige, D.J.

    2000-06-01

    The distributions and seasonal variability of total dissolved Cu (TDCu) and Cu-complexing ligands in sediment pore waters have been investigated at two contrasting sites in the Chesapeake Bay. Two ligand classes, which differ on the basis of the conditional stability constants (K{prime}{sub cond}) of their Cu complexes, were detected at all depths at both sites. For comparison, one pore water profile from a slope station off of the Chesapeake Bay also showed the presence of two ligand classes. Virtually all TDCu fluxing from these sediments is complexed during sediment-water exchange. A relatively small fraction of the TDCu is exchanged as inorganic species, which are widely regarded as the most bioavailable form of Cu. Total ligand concentrations are 15 to >100 times higher in the upper intervals of the pore waters relative to ligand concentrations in the bottom waters of the Chesapeake Bay (30--60 nM), consistent with previous observations of fluxes of these ligands from the sediments to overlying waters. These results suggest that sediments are potentially significant sources of Cu-complexing ligands to the overlying waters of the Chesapeake Bay, and perhaps, other shallow water estuarine and coastal environments. Copper-complexing ligands released from sediment pore waters may play an important role in influencing Cu speciation in overlying waters.

  10. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin

    USGS Publications Warehouse

    Zheng, Yen; Anderson, Robert F.; VanGeen, A.; Kuwabara, J.

    2000-01-01

    Pore water and sediment Mo concentrations were measured in a suite of multicores collected at four sites along the northeastern flank of the Santa Barbara Basin to examine the connection between authigenic Mo formation and pore water sulfide concentration. Only at the deepest site (580 m), where pore water sulfide concentrations rise to >0.1 ??M right below the sediment water interface, was there active authigenic Mo formation. At shallower sites (550,430, and 340 m), where pore water sulfide concentrations were consistently <0.05 ??M, Mo precipitation was not occuring at the time of sampling. A sulfide concentration of ???0.1 ??M appears to be a threshold for the onset of Mo-Fe-S co-precipitation. A second threshold sulfide concentration of ???100 ??M is required for Mo precipitation without Fe, possibly as Mo-S or as particle-bound Mo. Mass budgets for Mo were constructed by combining pore water and sediment results for Mo with analyses of sediment trap material from Santa Barbara Basin as well as sediment accumulation rates derived from 210Pb. The calculations show that most of the authigenic Mo in the sediment at the deepest site is supplied by diffusion from overlying bottom waters. There is, however, a non-lithogenic particulate Mo associated with sinking particles that contributes ???15% to the total authigenic Mo accumulation. Analysis of sediment trap samples and supernant brine solutions indicates the presence of non-lithogenic particulate Mo, a large fraction of which is easily remobilized and, perhaps, associated with Mn-oxides. Our observations show that even with the very high flux of organic carbon reaching the sediment of Santa Barbara Basin, active formation of sedimentary authigenic Mo requires a bottom water oxygen concentration below 3 ??M. However, small but measurable rates of authigenic Mo accumulation were observed at sites where bottom water oxygen ranged between 5 and 23 ??M, indicating that the formation of authigenic Mo occured in the

  11. Calcium-ammonium exchange experiments on clay minerals using a (45)Ca tracer technique in marine pore water.

    PubMed

    Ockert, Charlotte; Wehrmann, Laura M; Kaufhold, Stephan; Ferdelman, Tim G; Teichert, Barbara M A; Gussone, Nikolaus

    2014-01-01

    Understanding cation exchange processes is important for evaluating early diagenetic and synsedimentary processes taking place in marine sediments. To quantify calcium (Ca) exchange and Ca-ammonium exchange in a seawater environment, we performed experiments with a radioactive (45)Ca tracer on clay mineral standards (Fithian illite, montmorillonite and kaolinite) and marine sediments from the North Atlantic Integrated Ocean Drilling Program Site U1306A in artificial seawater (ASW). The results show that equilibrium during the initial attachment of Ca as well as the exchange of Ca by [Formula: see text] is attained in less than 2 min. On average 8-20% of the exchangeable sites of the clay minerals were occupied by Ca in a seawater medium. The conditional selectivity coefficient, describing the [Formula: see text] exchange in ASW is mineral specific and it was determined to be 0.07 for montmorillonite, 0.05 for a natural marine sediment and 0.013 for Fithian illite.

  12. Calcium-ammonium exchange experiments on clay minerals using a (45)Ca tracer technique in marine pore water.

    PubMed

    Ockert, Charlotte; Wehrmann, Laura M; Kaufhold, Stephan; Ferdelman, Tim G; Teichert, Barbara M A; Gussone, Nikolaus

    2014-01-01

    Understanding cation exchange processes is important for evaluating early diagenetic and synsedimentary processes taking place in marine sediments. To quantify calcium (Ca) exchange and Ca-ammonium exchange in a seawater environment, we performed experiments with a radioactive (45)Ca tracer on clay mineral standards (Fithian illite, montmorillonite and kaolinite) and marine sediments from the North Atlantic Integrated Ocean Drilling Program Site U1306A in artificial seawater (ASW). The results show that equilibrium during the initial attachment of Ca as well as the exchange of Ca by [Formula: see text] is attained in less than 2 min. On average 8-20% of the exchangeable sites of the clay minerals were occupied by Ca in a seawater medium. The conditional selectivity coefficient, describing the [Formula: see text] exchange in ASW is mineral specific and it was determined to be 0.07 for montmorillonite, 0.05 for a natural marine sediment and 0.013 for Fithian illite. PMID:24437731

  13. Extending electromagnetic methods to map coastal pore water salinities

    USGS Publications Warehouse

    Greenwood, Wm. J.; Kruse, S.; Swarzenski, P.

    2006-01-01

    The feasibility of mapping pore water salinity based on surface electromagnetic (EM) methods over land and shallow marine water is examined in a coastal wetland on Tampa Bay, Florida. Forward models predict that useful information on seabed conductivity can be obtained through <1.5 m of saline water, using floating EM-31 and EM-34 instruments from Geonics Ltd. The EM-31 functioned as predicted when compared against resistivity soundings and pore water samples and proved valuable for profiling in otherwise inaccessible terrain due to its relatively small size. Experiments with the EM-34 in marine water, however, did not reproduce the theoretical instrument response. The most effective technique for predicting pore water conductivities based on EM data entailed (1) computing formation factors from resistivity surveys and pore water samples at representative sites and (2) combining these formation factors with onshore and offshore EM-31 readings for broader spatial coverage. This method proved successful for imaging zones of elevated pore water conductivities/ salinities associated with mangrove forests, presumably caused by salt water exclusion by mangrove roots. These zones extend 5 to 10 m seaward from mangrove trunks fringing Tampa Bay. Modeling indicates that EM-31 measurements lack the resolution necessary to image the subtle pore water conductivity variations expected in association with diffuse submarine ground water discharge of fresher water in the marine water of Tampa Bay. The technique has potential for locating high-contrast zones and other pore water salinity anomalies in areas not accessible to conventional marine- or land-based resistivity arrays and hence may be useful for studies of coastal-wetland ecosystems. Copyright ?? 2005 National Ground Water Association.

  14. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments

    NASA Astrophysics Data System (ADS)

    Hensen, Christian; Zabel, Matthias; Pfeifer, Kerstin; Schwenk, Tilmann; Kasten, Sabine; Riedinger, Natascha; Schulz, Horst D.; Boetius, Antje

    2003-07-01

    Gravity driven mass-flow deposits proven by sedimentary and digital echosounder data are indicative for prevailing dynamic sedimentary conditions along the continental margin of the western Argentine Basin. In this study we present geochemical data from a total of 23 gravity cores. Pore-water SO 4 is generally depleted within a few meters below the sediment surface by anaerobic oxidation of methane (AOM). The different shapes of SO 4 profiles (concave, kink- and s-type) can be consistently explained by sedimentary slides possibly in combination with changes in the CH 4 flux from below, thus, mostly representing transient pore-water conditions. Since slides may keep their original sedimentary signature, a combined analysis and numerical modeling of geochemical, physical properties, and hydro acoustic data could be applied in order to reconstruct the sedimentary history. We present first order estimates of the dating of sedimentary events for an area where conventional stratigraphic methods failed to this day. The results of the investigated sites suggest that present day conditions are the result of events that occurred decades to thousands of years ago and promote a persisting mass transport from the shelf into the deep-sea, depositing high amounts of reactive compounds. The high abundance of reactive iron phases in this region maintains low hydrogen sulfide levels in the sediments by a nearly quantitative precipitation of all reduced sulfate by AOM. For the total region we estimate a SO 4 (or CH 4) flux of 6.6 × 10 10 moles per year into the zone of AOM. Projected to the global continental slope and rise area, this may sum up to about 2.6 × 10 12 moles per year. Provided that the sulfur is completely fixed in the sediments it is about twice the global value of the recent global sulfur burial in marine sediments of 1.2 × 10 12 moles per year as previously estimated. Thus, AOM obviously contributes very significantly to the regulation of global sulfur reservoirs

  15. Mangrove pore water exchange across a latitudinal gradient

    NASA Astrophysics Data System (ADS)

    Tait, Douglas R.; Maher, Damien T.; Macklin, Paul A.; Santos, Isaac R.

    2016-04-01

    We combined observations of the natural tracer radon (222Rn) with hydrodynamic models across a broad latitudinal gradient covering several climate zones to estimate pore water exchange rates in mangroves. Pore water exchange ranged from 2.1 to 35.5 cm d-1 from temperate to tropical regions and averaged 16.3 ± 5.1 cm d-1. If upscaled to the global weighted mangrove area, pore water exchange in mangroves would recirculate the entire volume of water overlying the continental shelf in less than 153 years. Although pore water exchange (recirculated seawater) and river discharge represent different pathways for water entering the coastal ocean, the estimated global mangrove pore water exchange would be equal to approximately one third of annual global river discharge to the ocean (3.84 × 1013 m3 yr-1). Because biogeochemical processes in mangroves are largely dependent on pore water exchange, these large exchange rates have major implications for coastal nutrient, carbon, and greenhouse gas cycling in tropical marine systems.

  16. Determination of 1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene and related compounds in marine pore water by automated thermal desorption-gas chromatography/mass spectrometry using disposable optical fiber.

    PubMed

    Eganhouse, Robert P; DiFilippo, Erica L

    2015-10-01

    A method is described for determination of ten DDT-related compounds in marine pore water based on equilibrium solid-phase microextraction (SPME) using commercial polydimethylsiloxane-coated optical fiber with analysis by automated thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Thermally cleaned fiber was directly exposed to sediments and allowed to reach equilibrium under static conditions at the in situ field temperature. Following removal, fibers were rinsed, dried and cut into appropriate lengths for storage in leak-tight containers at -20°C. Analysis by TD-GC/MS under full scan (FS) and selected ion monitoring (SIM) modes was then performed. Pore-water method detection limits in FS and SIM modes were estimated at 0.05-2.4ng/L and 0.7-16pg/L, respectively. Precision of the method, including contributions from fiber handling, was less than 10%. Analysis of independently prepared solutions containing eight DDT compounds yielded concentrations that were within 6.9±5.5% and 0.1±14% of the actual concentrations in FS and SIM modes, respectively. The use of optical fiber with automated analysis allows for studies at high temporal and/or spatial resolution as well as for monitoring programs over large spatial and/or long temporal scales with adequate sample replication. This greatly enhances the flexibility of the technique and improves the ability to meet quality control objectives at significantly lower cost. PMID:26346188

  17. Enhanced submarine ground water discharge form mixing of pore water and estuarine water

    USGS Publications Warehouse

    Martin, Jonathan B.; Cable, Jaye E.; Swarzenski, Peter W.; Lindenberg, Mary K.

    2004-01-01

    Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl− concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ∼70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ∼70 cmbsf. Cl− profiles indicate average linear velocities of ∼0.014 cm/d at depths > ∼70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ∼70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.

  18. Displacement of soil pore water by trichloroethylene

    USGS Publications Warehouse

    Wershaw, R. L.; Aiken, G.R.; Imbrigiotta, T.E.; Goldberg, M.C.

    1994-01-01

    Dense nonaqueous phase liquids (DNAPLS) are important pollutants because of their widespread use as chemical and industrial solvents. An example of the pollution caused by the discharge of DNAPLs is found at the Picatinny Arsenal, New Jersey, where trichloroethylene (TCE) has been discharged directly into the unsaturated zone. This discharge has resulted in the formation of a plume of TCE-contaminated water in the aquifer downgradient of the discharge. A zone of dark-colored groundwater containing a high dissolved organic C content has been found near the point of discharge of the TCE. The colored-water plume extends from the point of discharge at least 30 m (100 feet) downgradient. Fulvic acids isolated from the colored-waters plume, from water from a background well that has not been affected by the discharge of chlorinated solvents, and from soil pore water collected in a lysimeter installed at an uncontaminated site upgradient of the study area have been compared. Nuclear magnetic resonance spectra of the fulvic acids from the colored waters and from the lysimeter are very similar, but are markedly different from the nuclear magnetic resonance spectrum of the fulvic acid from the background well. The three-dimensional fluorescence spectrum and the DOC fractionation profile of the colored groundwater and the soil pore water are very similar to each other, but quite different from those of the background water. It is proposed from these observations that this colored water is soil pore water that has been displaced by a separate DNAPL liquid phase downward to the saturated zone.

  19. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea

    NASA Astrophysics Data System (ADS)

    Snyder, Glen T.; Hiruta, Akihiro; Matsumoto, Ryo; Dickens, Gerald R.; Tomaru, Hitoshi; Takeuchi, Rika; Komatsubara, Junko; Ishida, Yasushi; Yu, Hua

    2007-06-01

    Umitaka Spur, situated on an unusual collisional plate boundary along the eastern margin of the Japan Sea, hosts gas seeps, pock-marks, collapse structures, and gas hydrates. Piston cores were recovered from this ridge to understand carbon cycling, pore fluid gradients and authigenic mineralization above a methane-charged system. We present the chemistry of fluids and solids from three cores adjacent to seep locations. High fluxes of CH 4 and alkalinity transport carbon from a deep zone of methanogenesis toward the seafloor. Methane, however, reacts with SO42- across a shallow sulfate-methane transition (SMT), which generates additional alkalinity and HS -. A fraction of these CH 4 oxidation products form authigenic carbonate and pyrite. These minerals are not readily apparent from visual inspection of split cores, because they exist as micritic coatings on microfossils or as framboidal pyrite. They are, however, readily observed in chemical analyses as peaks of "labile" Ca, Sr, Ba or S in sediment at or near the SMT. Carbon inputs and outputs nicely balance across the SMT in all three cores if one considers four relevant fluxes: loss of alkalinity to the seafloor, addition of methane from below, addition of alkalinity from below, and carbonate precipitation. Importantly, in all cores, the magnitude of the fluxes decreases in this order. Although some carbon rising from depth forms authigenic carbonate, most (>80%) escapes to the ocean as alkalinity. Nonetheless, authigenic fronts in sediment on Umitaka Spur are a significant reservoir of inorganic carbon. Given calculated pore fluid fluxes for Ca and Sr, the fronts require tens of thousands of years to form, suggesting that the present state and loss of carbon represent long-lived processes.

  20. Pore networks in continental and marine mudstones: Characteristics and controls on sealing behavior

    USGS Publications Warehouse

    Heath, J.E.; Dewers, T.A.; McPherson, B.J.O.L.; Petrusak, R.; Chidsey, T.C.; Rinehart, A.J.; Mozley, P.S.

    2011-01-01

    Mudstone pore networks are strong modifiers of sedimentary basin fluid dynamics and have a critical role in the distribution of hydrocarbons and containment of injected fluids. Using core samples from continental and marine mudstones, we investigate properties of pore types and networks from a variety of geologic environments, together with estimates of capillary beam- scanning electron microscopy, suggest seven dominant mudstone pore types distinguished by geometry and connectivity. A dominant planar pore type occurs in all investigated mudstones and generally has high coordination numbers (i.e., number of neighboring connected pores). Connected networks of pores of this type contribute to high mercury capillary pressures due to small pore throats at the junctions of connected pores and likely control most matrix transport in these mudstones. Other pore types are related to authigenic (e.g., replacement or pore-lining precipitation) clay minerals and pyrite nodules; pores in clay packets adjacent to larger, more competent clastic grains; pores in organic phases; and stylolitic and microfracture-related pores. Pores within regions of authigenic clay minerals often form small isolated networks (<3 ??m). Pores in stringers of organic phases occur as tubular pores or slit- and/or sheet-like pores. These form short, connected lengths in 3D reconstructions, but appear to form networks no larger than a few microns in size. Sealing efficiency of the studied mudstones increases with greater distal depositional environments and greater maximum depth of burial. ?? 2011 Geological Society of America.

  1. Silver speciation in wastewater effluent, surface waters, and pore waters

    SciTech Connect

    Adams, N.W.H.; Kramer, J.R.

    1999-12-01

    Silver, inorganic sulfide, and thiol compounds were measured in municipal wastewater effluent, receiving waters, and pore waters from an anoxic lake sediment in order to predict silver speciation in these systems. The authors found submicromolar concentrations of inorganic sulfide even in fully oxic surface water. This inorganic sulfide is likely to exist in the form of colloidal metal sulfides, which have been shown to be stable under oxidizing conditions for periods of several hours. Inorganic sulfide in both the wastewater effluent and receiving waters was found to be 200 to 300 times in excess of silver concentrations, whereas inorganic sulfide in pore waters was 1,000 to 15,000 times in excess of silver concentrations. With sulfide in excess of silver, the authors predict silver sulfide complexes to dominate silver speciation. Thiols were present at low nanomolar levels in pore waters but were not detectable in wastewater effluent or receiving waters. Thiols do not appear to be important to silver speciation in these freshwater systems. Partitioning of silver into particular, colloidal, and dissolved size fractions showed that a significant proportion of silver is in the colloidal and dissolved phases. Dissolved phase concentrations were relatively constant in the treatment plant effluent and receiving waters, suggesting that silver in the <10-kDa size fraction is strongly complexed by ligands that are not significantly affected by aggregation or sorption processes.

  2. Pore Water Convection in Carbonaceous Chondrite Planetesimals

    NASA Astrophysics Data System (ADS)

    Travis, B. J.; Schubert, G.

    2004-12-01

    initial temperature, we use 170 K, assume a constant exterior temperature of 170 K, and apply a radiation surface temperature boundary condition. We then consider variations from the reference case for three variables: permeability (10 darcys), radius (80 km) and radiogenic heat content (50 % increase). Our simulations demonstrate that hydrothermal convection should occur for a range of parameter values and would last for several millions of years. In all of the simulations, radiogenic heating creates a water phase in about 0.6 Myr. The liquid phase lasts at least 4, to over 20 Myr, depending on the case. The center warms to peak temperatures of 360 to 450 K. Convection starts after sufficient cooling at the outer regions (but inside the outer frozen shell) has occurred to create a sufficiently strong radial temperature gradient. In these simulations, boiling does not occur, but, for a time, the systems are not far from that state. In all the simulations the convection is characterized by a mix of plumes and sheets, with plumes sharply defined for the more strongly convecting cases (10 darcys, and 50% increased heating cases). Roughly half the interior experiences water fluxes of 100--200 pore volumes. High pore volume flux facilitates extensive chemical reactions.

  3. Fouling Study of Silicon Oxide Pores Exposed to Tap Water

    SciTech Connect

    Nilsson, J.; Bourcier, W.L.; Lee, J.R.I.; Letant, S.E.; /LLNL, Livermore

    2007-07-12

    We report on the fouling of Focused Ion Beam (FIB)-fabricated silicon oxide nanopores after exposure to tap water for two weeks. Pore clogging was monitored by Scanning Electron Microscopy (SEM) on both bare silicon oxide and chemically functionalized nanopores. While fouling occurred on hydrophilic silicon oxide pore walls, the hydrophobic nature of alkane chains prevented clogging on the chemically functionalized pore walls. These results have implications for nanopore sensing platform design.

  4. The dielectric properties of water within model transbilayer pores.

    PubMed Central

    Sansom, M S; Smith, G R; Adcock, C; Biggin, P C

    1997-01-01

    Ion channels contain extended columns of water molecules within their transbilayer pores. The dynamic properties of such intrapore water have been shown to differ from those of water in its bulk state. In previous molecular dynamics simulations of two classes of model pore (parallel bundles of Ala20 alpha-helices and antiparallel barrels of Ala10 beta-strands), a substantially reduced translational and rotational mobility of waters was observed within the pore relative to bulk water. Molecular dynamics simulations in the presence of a transpore electrostatic field (i.e., a voltage drop along the pore axis) have been used to estimate the resultant polarization (due to reorientation) of the intrapore water, and hence to determine the local dielectric behavior within the pore. It is shown that the local dielectric constant of water within a pore is reduced for models formed by parallel alpha-helix bundles, but not by those formed by beta-barrels. This result is discussed in the context of electrostatics calculations of ion permeation through channels, and the effect of the local dielectric of water within a helix bundle pore is illustrated with a simple Poisson-Boltzmann calculation. Images FIGURE 1 PMID:9370434

  5. Optimization of a pressurization methodology for extracting pore-water.

    PubMed

    Lopes, Isabel; Ribeiro, Rui

    2005-12-01

    Sediment toxicity can be assessed by conducting pore-water toxicity assays with standard water column organisms. Several methods have been developed for sampling pore-water. Centrifugation and pressurization methods are recommended when large volumes of pore-water are required to perform toxicity assays. Nevertheless, these methods involve sediment transportation and storage in laboratory, which can alter sediment toxicity. Therefore, an extraction method for large volumes that could be employed in the field site would be highly desirable. This study aimed to optimize and further evaluate an existing sediment pressurizing device with low construction costs, easy to carry and operate in the field, and presenting minimal chemical reactivity. The latter characteristic was achieved by lining the device interior with Teflon, by using large pore filters (50 microm), and by using an inert gas (nitrogen). Pore-water extraction efficiency and the toxicities of pore-water samples obtained by pressurization and by refrigerated centrifugation were compared. An artificial sediment (70% sand, 20% kaolin and 10% alpha-cellulose) spiked with an alcohol (phenol), a surfactant (SDS), a metal (copper), an organophosphate pesticide (parathion), and a natural sediment contaminated with acid mine drainage, were assayed for toxicity using Microtox assays. Sediment pressurization was found to be as efficient to extract pore-water as centrifugation, being more cost effective and adequate for field use.

  6. Hydrochemical reactions and origin of offshore relatively fresh pore water from core samples in Hong Kong

    NASA Astrophysics Data System (ADS)

    Kwong, Hiu Tung; Jiao, Jiu Jimmy

    2016-06-01

    The existence of relatively fresh pore water offshore has been well recognised over the globe but studies on the chemistry of the pore water from offshore geological formations are extremely limited. This study aims to characterize the hydrochemistry of the submarine groundwater body in Hong Kong. It looks into the major ion concentrations and the stable isotopic compositions of pore water extracted from core samples from an offshore 42.30-m vibrocore in the southwestern Hong Kong waters. A minimum Cl- level of about one-third of that in typical seawater was noted in the terrestrial sediments, suggesting the presence of offshore relatively fresh water. Unexpectedly high NH4+ levels are attributed to organic matter decomposition in the terrestrial sediments. The leaching of shells due to exposure of marine sediments at sea-level low stands raises the Mg2+ and Ca2+ concentrations. Base Exchange Indices show weak cation exchange reactions in which Na+ and K+ are released while Mg2+ and Ca2+ are adsorbed. Isotopic compositions of pore water reveal that the low-salinity water is probably the relic water sequestered in fluvial systems during relative sea-level low stands. Cores properly stored in a freezer for a long time has been used to study the pore water chemistry. For the first time, this study introduces an approach to correct the measured data by considering the possible evaporation effect during the transportation and storage of the samples. Corrections for evaporation were applied to the major ion concentrations and the stable isotopic compositions of pore water measured. It is found that the corrections determined by the Cl- mass balance approach are more reliable. The corrected measurements give more reasonable observations and hence allow sensible conclusions on the hydrochemical reactions and the origin of pore water.

  7. Effects of salinity variations on pore water flow in salt marshes

    NASA Astrophysics Data System (ADS)

    Shen, Chengji; Jin, Guangqiu; Xin, Pei; Kong, Jun; Li, Ling

    2015-06-01

    Spatial and temporal salinity variations in surface water and pore water commonly exist in salt marshes under the combined influence of tidal inundation, precipitation, evapotranspiration, and inland freshwater input. Laboratory experiments and numerical simulations were conducted to investigate how density gradients associated with salinity variations affect pore water flow in the salt marsh system. The results showed that upward salinity (density) gradients could lead to flow instability and the formation of salt fingers. These fingers, varying in size with the distance from the creek, modified significantly the pore water flow field, especially in the marsh interior. While the flow instability enhanced local salt transport and mixing considerably, the net effect was small, causing only a slight increase in the overall mass exchange across the marsh surface. In contrast, downward salinity gradients exerted less influence on the pore water flow in the marsh soil and slightly weakened the surface water and groundwater exchange across the marsh surface. Numerical simulations revealed similar density effects on pore water flow at the field scale under realistic conditions. These findings have important implications for studies of marsh soil conditions concerning plant growth as well as nutrient exchange between the marsh and coastal marine system.

  8. Marine Biodiversity in Japanese Waters

    PubMed Central

    Fujikura, Katsunori; Lindsay, Dhugal; Kitazato, Hiroshi; Nishida, Shuhei; Shirayama, Yoshihisa

    2010-01-01

    To understand marine biodiversity in Japanese waters, we have compiled information on the marine biota in Japanese waters, including the number of described species (species richness), the history of marine biology research in Japan, the state of knowledge, the number of endemic species, the number of identified but undescribed species, the number of known introduced species, and the number of taxonomic experts and identification guides, with consideration of the general ocean environmental background, such as the physical and geological settings. A total of 33,629 species have been reported to occur in Japanese waters. The state of knowledge was extremely variable, with taxa containing many inconspicuous, smaller species tending to be less well known. The total number of identified but undescribed species was at least 121,913. The total number of described species combined with the number of identified but undescribed species reached 155,542. This is the best estimate of the total number of species in Japanese waters and indicates that more than 70% of Japan's marine biodiversity remains un-described. The number of species reported as introduced into Japanese waters was 39. This is the first attempt to estimate species richness for all marine species in Japanese waters. Although its marine biota can be considered relatively well known, at least within the Asian-Pacific region, considering the vast number of different marine environments such as coral reefs, ocean trenches, ice-bound waters, methane seeps, and hydrothermal vents, much work remains to be done. We expect global change to have a tremendous impact on marine biodiversity and ecosystems. Japan is in a particularly suitable geographic situation and has a lot of facilities for conducting marine science research. Japan has an important responsibility to contribute to our understanding of life in the oceans. PMID:20689840

  9. A robust model for pore-water chemistry of clayrock

    NASA Astrophysics Data System (ADS)

    Gaucher, E. C.; Tournassat, C.; Pearson, F. J.; Blanc, P.; Crouzet, C.; Lerouge, C.; Altmann, S.

    2009-11-01

    The chemistry of pore water is an important property of clayrocks being considered as host rocks for long-term storage of radioactive waste. It may be difficult, if not impossible, to obtain water samples for chemical analysis from such rocks because of their low hydraulic conductivity. This paper presents an approach for calculating the pore-water compositions of clayrocks from laboratory-measured properties of core samples, including their leachable Cl and SO 4 concentrations and analysed exchangeable cations, and from mineral and cation exchange equilibria based on the formation mineralogy. New core sampling and analysis procedures are presented that reduce or quantify side reactions such as sample oxidation (e.g. pyrite) and soluble mineral dissolution (celestite, SrSO 4) that affect measured SO 4 concentrations and exchangeable cation distributions. The model considers phase equilibria only with minerals that are observed in the formation including the principal clay phases. The model has been used to calculate the composition of mobile pore water in the Callovo-Oxfordian clayrock and validated against measurements of water chemistry made in an underground research laboratory in that formation. The model reproduces the measured, in situ pore-water composition without any estimated parameters. All required parameters can be obtained from core sample analysis. We highlight the need to consider only those mineral phases which can be shown to be in equilibrium with contacting pore water. The consequence of this is that some conceptual models available in the literature appear not to be appropriate for modelling clayrocks, particularly those considering high temperature and/or high pressure detrital phases as chemical buffers of pore water. The robustness of our model with respect to uncertainties in the log K values of clay phases is also demonstrated. Large uncertainties in log K values for clay minerals have relatively small effects on modelled pore-water

  10. Pore Water Collection, Analysis and Evolution: The Need for Standardization.

    PubMed

    Gruzalski, Jacob G; Markwiese, James T; Carriker, Neil E; Rogers, William J; Vitale, Rock J; Thal, David I

    2016-01-01

    Investigating the ecological impacts of contaminants released into the environment requires integration of multiple lines of evidence. Collection and analysis of interstitial water is an often-used line of evidence for developing benthic exposure estimates in aquatic ecosystems. It is a well-established principle that chemical and toxicity data on interstitial water samples should represent in-situ conditions; i.e., sample integrity must be maintained throughout the sample collection process to avoid alteration of the in-situ geochemical conditions. Unfortunately, collection and processing of pore water is not standardized to address possible geochemical transformations introduced by atmospheric exposure. Furthermore, there are no suitable benchmarks (ecological or human health) against which to evaluate adverse effects from chemicals in pore water; i.e., empirical data is lacking on the toxicity of inorganic contaminants in sediment interstitial water. It is clear that pore water data is best evaluated by considering the bioavailability of trace elements and the partitioning of contaminants between the aqueous and solid phases. It is also evident that there is a need for sediment researchers and regulatory agencies to collaborate in developing a standardized approach for sediment/pore water collection and data evaluation. Without such guidelines, the number of different pore water collection and extraction techniques will continue to expand, and investigators will continue to evaluate potentially questionable data by comparison to inappropriate criteria. PMID:26613987

  11. Deep Water, Shallow Water: Marine Animal Homes.

    ERIC Educational Resources Information Center

    Soltow, Willow

    1984-01-01

    Examines the diversity of life in the oceans and ways in which teachers can explore ocean habitats with their students without leaving the classroom. Topic areas considered include: restricted habitats, people and marine habitats, pollution, incidental kills, and the commercial and recreational uses of marine waters. (JN)

  12. Methane hydrate stability in pore water: A simple theoretical approach for geophysical applications

    NASA Astrophysics Data System (ADS)

    Dickens, Gerald R.; Quinby-Hunt, Mary S.

    1997-01-01

    Geophysicists have recently expressed an interest in understanding how pore water composition affects CH4 hydrate stability conditions in the marine environment. It has previously been shown in the chemical engineering literature that CH4 hydrate stability conditions in electrolyte solutions are related to the activity of water (aw). Here we present additional experimental data in support of this relationship and then use the relationship to address issues relevant to geophysicists. Pressure and temperature conditions of CH4 hydrate dissociation were determined for 10 solutions containing variable concentrations of Cl-, SO42- Br-, Na+, K+, Mg2+, NH4+, and Cu2+. The reciprocal temperature offset of CH4 hydrate dissociation between the CH4-pure water system and each of these solutions (and for other electrolyte solutions in literature) is directly related to the logarithm of the activity of water (lnaw). Stability conditions for CH4 hydrate in any pore water system therefore can be predicted simply and accurately by calculating lnaw. The effect of salinity variation and chemical diagenesis on CH4 hydrate stability conditions in the marine environment can be evaluated by determining how these processes affect lnaw of pore water.

  13. Impacts of simulated drought on pore water chemistry of peatlands.

    PubMed

    Juckers, Myra; Watmough, Shaun A

    2014-01-01

    Northern peatlands are increasingly threatened by climate change and industrial activities. This study examined the impact of simulated droughts on pore water chemistry at six peatlands in Sudbury, Ontario, that differ in copper (Cu), nickel (Ni) and cobalt (Co) contamination, including a site that had been previously limed. All sites responded similarly to simulated drought: pore water pH declined significantly following the 30 day drought and the decline was greater following the 60 day drought treatment. The decline in pore water pH was due to increasing sulphate concentrations, whereas nitrate increased more in the 60 day drought treatment. Decreases in pH were accompanied by large increases in Ni and Co that greatly exceeded provincial water quality guidelines. In contrast, dissolved organic carbon (DOC) concentrations decreased significantly following drought, along with concentrations of Cu and Al, which are strongly complexed by organic acids.

  14. Pore-water chemistry explains zinc phytotoxicity in soil.

    PubMed

    Kader, Mohammed; Lamb, Dane T; Correll, Ray; Megharaj, Mallavarapu; Naidu, Ravi

    2015-12-01

    Zinc (Zn) is a widespread soil contaminant arising from a numerous anthropogenic sources. However, adequately predicting toxicity of Zn to ecological receptors remains difficult due to the complexity of soil characteristics. In this study, we examined solid-solution partitioning using pore-water data and toxicity of Zn to cucumber (Cucumis sativus L.) in spiked soils. Pore-water effective concentration (ECx, x=10%, 20% and 50% reduction) values were negatively related to pH, indicating lower Zn pore water concentration were needed to cause phytotoxicity at high pH soils. Total dissolved zinc (Znpw) and free zinc (Zn(2+)) in soil-pore water successfully described 78% and 80.3% of the variation in relative growth (%) in the full dataset. When the complete data set was used (10 soils), the estimated EC50pw was 450 and 79.2 µM for Znpw and Zn(2+), respectively. Total added Zn, soil pore water pH (pHpw) and dissolve organic carbon (DOC) were the best predictors of Znpw and Zn(2+) in pore-water. The EC10 (total loading) values ranged from 179 to 5214 mg/kg, depending on soil type. Only pH measurements in soil were related to ECx total Zn data. The strongest relationship to ECx overall was pHca, although pHw and pHpw were in general related to Zn ECx. Similarly, when a solution-only model was used to predict Zn in shoot, DOC was negatively related to Zn in shoot, indicating a reduction in uptake/ translocation of Zn from solution with increasing DOC.

  15. Evaporation of Topopah Spring tuff pore water

    SciTech Connect

    Dibley, M J; Knauss, K G; Rosenberg, N D

    1999-09-10

    We report on the results to date for experiments on the evaporative chemical evolution of a CaSO, rich water representative of Topopah Spring Tuff porewater from Yucca Mountain. Data include anion and cation analysis and qualitative mineral identification for a series of open system experiments, with and without crushed tuff present, conducted at sub-boiling temperatures.

  16. Benthic invertebrate bioassays with toxic sediment and pore water

    USGS Publications Warehouse

    Giesy, John P.; Rosiu, Cornell J.; Graney, Robert L.; Henry, Mary G.

    1990-01-01

    The relative sensitivities of bioassays to determine the toxicity of sediments were investigated and three methods of making the sample dilutions required to generate dose-response relationships were compared. The assays studied were: (a) Microtox®, a 15-min assay ofPhotobacterium phosphoreum bioluminescence inhibition by pore water; (b) 48-h Daphnia magnalethality test in pore water; (c) 10-d subchronic assay of lethality to and reduction of weight gain by Chironomus tentans performed in either whole sediment or pore water; (d) 168-h acute lethality assay of Hexagenia limbata in either whole sediment or pore water. The three methods of diluting sediments were: (a) extracting pore water from the toxic location and dilution with pore water from the control station; (b) diluting whole sediment from the toxic location with control whole sediment from a reference location, then extracting pore water; and (c) diluting toxic, whole sediment with whole sediment from a reference location, then using the whole sediment in bioassays. Based on lethality, H. limbata was the most sensitive organism to the toxicity of Detroit River sediment. Lethality of D. magna in pore water was similar to that of H. limbata in whole sediment and can be used to predict effects of whole sediment toxicity to H. limbata. The concentration required to cause a 50% reduction in C. tentans growth (10-d EC50) was approximately that which caused 50% lethality of D. magna (48-h LC50) and was similar to the toxicity that restricts benthic invertebrate colonization of contaminated sediments. While the three dilution techniques gave similar results with some assays, they gave very different results in other assays. The dose-response relationships determined by the three dilution techniques would be expected to vary with sediment, toxicant and bioassay type, and the dose-response relationship derived from each technique needs to be interpreted accordingly.

  17. Unstable Pore-Water Flow in Intertidal Wetlands

    NASA Astrophysics Data System (ADS)

    Barry, D. A.; Shen, C.; Li, L.

    2014-12-01

    Salt marshes are important intertidal wetlands strongly influenced by interactions between surface water and groundwater. Bordered by coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur over vastly different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil condition, particularly aeration, which influences the marsh plant growth. Numerous studies have been carried out to examine the pore-water flow process in the marsh soil driven by tides, focusing on stable flow with the assumption of homogeneity in soil and fluid properties. This assumption, however, is questionable given the actual inhomogeneous conditions in the field. For example, the salinity of surface water in the tidal creek varies temporally and spatially due to the influence of rainfall and evapotranspiration as well as the freshwater input from upland areas to the estuary, creating density gradients across the marsh surface and within the marsh soil. Many marshes possess soil stratigraphy with low-permeability mud typically overlying high-permeability sandy deposits. Macropores such as crab burrows are commonly distributed in salt marsh sediments. All these conditions are prone to the development of non-uniform, unstable preferential pore-water flow in the marsh soil, for example, funnelling and fingering. Here we present results from laboratory experiments and numerical simulations to explore such unstable flow. In particular, the analysis aims to address how the unstable flow modifies patterns of local pore-water movement and solute transport, as well as the overall exchange between the marsh soil and

  18. Molecular characterization of dissolved organic matter in pore water of continental shelf sediments

    NASA Astrophysics Data System (ADS)

    Schmidt, Frauke; Elvert, Marcus; Koch, Boris P.; Witt, Matthias; Hinrichs, Kai-Uwe

    2009-06-01

    Dissolved organic matter (DOM) in sediment pore water is a complex molecular mixture reflecting various sources and biogeochemical processes. In order to constrain those sources and processes, molecular variations of pore water DOM in surface sediments from the NW Iberian shelf were analyzed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and compared to river and marine water column DOM. Weighted average molecular element ratios of oxygen to carbon ((O/C) wa) and hydrogen to carbon ((H/C) wa) provided general information about DOM sources. DOM in local rivers was more oxygenated ((O/C) wa 0.52) and contained less hydrogen ((H/C) wa 1.15) than marine pore water DOM (mean (O/C) wa 0.50, mean (H/C) wa 1.26). The relative abundance of specific compound groups, such as highly oxygenated aromatic compounds or nitrogen-bearing compounds with low H/C ratios, correspond to a high concentration of lignin phenols (160 μg/g sediment dry weight) and a high TOC/TN ratio (13.3) in the sedimentary organic matter and were therefore assigned to terrestrial sources. The lower degree of unsaturation and a higher relative abundance of nitrogen-bearing compounds in the pore water DOM reflected microbial activity within the sediment. One sampling site on the shelf with a high sediment accumulation, and a humic-rich river sample showed a wide range of sulfur compounds in the DOM, accompanied by a higher abundance of lipid biomarkers for sulfate-reducing bacteria, probably indicating early diagenetic sulfurization of organic matter.

  19. Occurrence of arsenic in sediment pore waters in the central Kanto Plain, Japan

    NASA Astrophysics Data System (ADS)

    Hachinohe, Shoichi; Hamamoto, Hideki; Ishiyama, Takashi; Hossain, Sushmita; Oguchi, Chiaki T.

    2014-05-01

    The Kanto Plain is known as the largest plain in Japan, where marine sediments are widely developed because of cyclic iteration of global sea-level changes even 50 km or more inland from the present shoreline. In this area, dependence on groundwater for water requirements is relatively high; in particular, around 40 % of the municipal water supply is dependent on groundwater. Arsenic levels greater than that permitted by the environmental standards of Japan have been detected in groundwater in this area. Therefore, to evaluate occurrences of arsenic and other related elements in pore waters contained in natural sediment layers, we measured the levels of various inorganic chemical substances such as arsenic (As), iron (Fe), and sulfur (S) and major dissolved ions such as sulfate (SO42-), calcium (Ca2+), and sodium (Na+). Pore waters were collected from sediment samples that were obtained by a drilling from the river bottom down to 44 m depth; pore water samples were obtained immediately after extraction of sediments. The sedimentary facies in the vertical profile are continental, transitional, and marine, including two aquifers. The upper aquifer (15-20 m) contains fine to medium sand, whereas the lower aquifer (37-44 m) contains medium to coarse and gravelly sand. Arsenic and other inorganic elements were measured by an inductively coupled plasma mass spectrometer (ICP/MS) and an inductively coupled plasma atomic emission spectrometer (ICP/AES), and major dissolved ions were measured by an ion chromatograph analyzer. The total content of chemical elements was measured by X-ray fluorescence analysis using solid sediment samples. We obtained the following results. The arsenic concentrations in pore waters in marine silt and clay sediments (approximately 0.04 mg/L) were about five times higher than that in continental sediments (approximately 0.008 mg/L). The highest concentration of arsenic (0.074 mg/L) was detected at a depth of 13 m, which is immediately above the

  20. Hydrogeology and hydrodynamics of coral reef pore waters

    SciTech Connect

    Buddemeier, R.W.; Oberdorfer, J.A.

    1988-06-29

    A wide variety of forces can produce head gradients that drive the flow and advective mixing of internal coral reef pore waters. Oscillatory gradients that produce mixing result from wave and tide action. Sustained gradients result from wave and tide-induced setup and ponding, from currents impinging on the reef structure, from groundwater heads, and from density differenced (temperature or salinity gradients). These gradients and the permeabilities and porosities of reef sediments are such that most macropore environments are dominated by advection rather than diffusion. The various driving forces must be analyzed to determine the individual and combined magnitudes of their effects on a specific reef pore-water system. Pore-water movement controls sediment diagenesis, the exchange of nutrients between sediments and benthos, and coastal/island groundwater resources. Because of the complexity of forcing functions, their interactions with specific local reef environments, experimental studies require careful incorporation of these considerations into their design and interpretation. 8 refs., 3 figs., 1 tab.

  1. Toxicity of sediments and pore water from Brunswick Estuary, Georgia

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Geitner, H.

    1993-01-01

    A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 ug/g (dry weight), with the highest concentrations found in surface (0?8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox? bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 ug/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 ug/g. On a molar basis, acid-volatile sulfide concentrations (20?45 umol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.

  2. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  3. Pore water colloid properties in argillaceous sedimentary rocks.

    PubMed

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  4. On pore-fluid viscosity and the wave properties of saturated granular materials including marine sediments.

    PubMed

    Buckingham, Michael J

    2007-09-01

    The grain-shearing (GS) theory of wave propagation in a saturated granular material, such as a marine sediment, is extended to include the effects of the viscosity of the molecularly thin layer of pore fluid separating contiguous grains. An equivalent mechanical system consisting of a saturating, strain-hardening dashpot in series with a Hookean spring represents the intergranular interactions. Designated the VGS theory, the new model returns dispersion curves that differ mildly from those of the GS theory at lower frequencies, below 10 kHz, where effects due to the viscosity of the pore fluid may be non-negligible. At higher frequencies, the VGS dispersion curves approach those of the GS theory asymptotically. The VGS theory is shown to match the SAX99 dispersion curves reasonably well over the broad frequency band of the measurements, from 1 to 400 kHz. This includes the frequency regime between 1 and 10 kHz occupied by Schock's chirp sonar data, where the viscosity of the pore fluid appears to have a discernible effect on the dispersion curves.

  5. The Water Retention Curves in THF Hydrate-Bearing Sediments - Experimental Measurement and Pore Scale Simulation

    NASA Astrophysics Data System (ADS)

    Mahabadi, N.; Zheng, X.; Dai, S.; Seol, Y.; Zapata, C.; Yun, T.; Jang, J.

    2015-12-01

    The water retention curve (WRC) of hydrate-bearing sediments is critically important to understand the behaviour of hydrate dissociation for gas production. Most gas hydrates in marine environment have been formed from an aqueous phase (gas-dissolved water). However, the gas hydrate formation from an aqueous phase in a laboratory requires long period due to low gas solubility in water and is also associated with many experimental difficulties such as hydrate dissolution, difficult hydrate saturation control, and dynamic hydrate dissolution and formation. In this study, tetrahydrofuran (THF) is chosen to form THF hydrate because the formation process is faster than gas hydrate formation and hydrate saturation is easy to control. THF hydrate is formed at water-excess condition. Therefore, there is only water in the pore space after a target THF hydrate saturation is obtained. The pore habit of THF hydrate is investigated by visual observation in a transparent micromodel and X-ray computed tomography images; and the water retention curves are obtained under different THF hydrate saturation conditions. Targeted THF hydrate saturations are Sh=0, 0.2, 0.4, 0.6 and 0.8. Results shown that at a given water saturation the capillary pressure increases as THF hydrate saturation increases. And the gas entry pressure increases with increasing hydrate saturation. The WRC obtained by experiments is also compared with the results of a pore-network model simulation and Lattice Boltzmann Method. The fitting parameters of van Genuchten equation for different hydrate saturation conditions are suggested for the use as input parameters of reservoir simulators.

  6. Processes in the pore waters of peat deposits

    SciTech Connect

    Levshenko, T.V.; Efremova, A.G.; Galkina, Z.M.; Surkova, T.E.; Tolstov, K.A.

    1983-01-01

    The composition of the waters of modern peat bogs that have developed in the intracontinental regions under the conditions of bogs of the high-moor, mixed, and lowmoor types have been investigated for the case of a number of peat deposits of the Smolensk, Volgorad, and Pskov provinces. During the work the pH of the deposits and the C1-, Alk, SO/sup 2/-, Ca/sup 2 +/, Mg/sup 2 +/, K- contents of the pore water of modern peat beds were studied. The thickness of the deposits studied amounted to 5-7 m. Samples were taken every 0.5 m in depth. The water was separated from the deposits by pressing out.

  7. Methods for pore water extraction from unsaturated zone tuff, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Scofield, K.M.

    2006-01-01

    Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits collected from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate. Pore water samples collected from the intermediate pressure ranges should prevent the influence of re-dissolved, evaporative salts and the addition of ion-deficient water from clays and zeolites. Chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no substantial fractionation of solutes.

  8. Effects of a nearshore wastewater discharge: Water column and sediment pore water toxicity

    SciTech Connect

    Krause, P.R.; Carr, R.S.

    1995-12-31

    The relationship between water column and sediment pore water toxicity was investigated near a municipal-industrial wastewater discharge in southern Texas. Toxicity associated with effluent distributions in the water column are known to vary in both time and space. Toxicity of sediment, however, is often more stable over time. Sediment can serve as a long-term integrator of toxicity in areas subject to chronic exposure of effluents. This study addressed the relationship between water column toxicity and that found in the sediments on both spatial and temporal scales. Four 2 Km transacts were established around a nearshore wastewater outfall. Eight stations along each transact were sampled for both surface waters and sediment pore water toxicity. Toxicity was determined using a modified sea urchin fertilization test. Surface waters were sampled and tested for eight consecutive months, while sediment pore waters were sampled on three occasions over the length of this study. Results have shown that toxicity in receiving waters was a good indicator to trace movements of the highly variable effluent plume. The distribution of effluent in the water column, and hence water column toxicity, was primarily driven by local wind conditions. Toxicity in sediment porewater was, much less variable and more evenly distributed over the study site. Sediment pore water toxicity was also a good predictor of the distribution of benthic infaunal invertebrates over much of the study site.

  9. The Effect of Pore Connectivity on Water Adsorption Isotherms in Non-activated Graphitic Nanopores

    SciTech Connect

    StrioloDr., A; Gubbins, Dr. K. E.; Chialvo, Ariel A; Cummings, Peter T

    2005-01-01

    The adsorption of water in graphitic carbons is usually simulated via a weighted average of the adsorption isotherms simulated in carbon-slit pore of different widths. By following this procedure, details about pore morphology and pore connectivity may be overlooked. Towards a better match between virtual and real experiments, we present simulated adsorption isotherms for SPC/E model water in porous carbons composed by interconnected carbon-slit pores. The pores are separated from each other by one graphene layer. Imperfections (lack of carbon atoms) in the graphene layers result in interconnections between pores. The grand canonical Monte Carlo algorithm is used here to simulate water adsorption. Our results show that while the qualitative features obtained in the simulation of independent slit-shaped pores are reproduced when interconnected pores are considered, the adsorption isotherms rise more gradually and the adsorption/desorption hysteresis loops are narrower in the latter case.

  10. Transient streaming potentials under varying pore-water ionic strength

    NASA Astrophysics Data System (ADS)

    Malama, B.

    2014-12-01

    Streaming potentials (SP) are generated when polar fluids such as groundwater flow through porous media that have charged mineral surfaces. This is due to the flow-shearing of the diffuse layer of the electric double layer (EDL), which is known to form in the fluid phase at the fluid-rock interface. Previous works have suggested that the EDL vanishes at high pore-fluid ionic strengths resulting in vanishing SP signals. However, recent observations in sea-water intrusion applications by Jackson and coworkers indicate that measurable SP signals are obtainable in flows of fluids with high ionic strengths through silica sand. We demonstrate the repeatability of these observations through a series of laboratory flow experiments performed on 98% silica sand in a falling-head permeameter with brines of concentrations ranging from 0.001M to about 5 M NaCl. The results of the experiments, which clearly show measurable SP signals even at the highest concentration of 5 M NaCl, are reported. They are also used to estimate the hydraulic conductivity and electrokinetic coupling coefficient. The linearity assumption for the relation between pressure and SP differentials is evaluated for high pore-water NaCl concentrations. Additionally, displacement of one brine by another of different NaCl concentration yields dramatic transient SP responses that may be harnessed in the development of early-detection/warning technologies for sea-water intrusion applications. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S Department of Energy.

  11. Organic geochemistry and pore water chemistry of sediments from Mangrove Lake, Bermuda

    USGS Publications Warehouse

    Hatcher, P.G.; Simoneit, B.R.T.; MacKenzie, F.T.; Neumann, A.C.; Thorstenson, D.C.; Gerchakov, S.M.

    1982-01-01

    Mangrove Lake, Bermuda, is a small coastal, brackish-water lake that has accumulated 14 m of banded, gelatinous, sapropelic sediments in less than 104 yr. Stratigraphic evidence indicates that Mangrove Lake's sedimentary environment has undergone three major depositional changes (peat, freshwater gel, brackish-water gel) as a result of sea level changes. The deposits were examined geochemically in an effort to delineate sedimentological and diagenetic changes. Gas and pore water studies include measurements of sulfides, ammonia, methane, nitrogen gas, calcium, magnesium, chloride, alkalinity, and pH. Results indicate that sulfate reduction is complete, and some evidence is presented for bacterial denitrification and metal sulfide precipitation. The organic-rich sapropel is predominantly algal in origin, composed mostly of carbohydrates and insoluble macromolecular organic matter called humin with minor amounts of proteins, lipids, and humic acids. Carbohydrates and proteins undergo hydrolysis with depth in the marine sapropel but tend to be preserved in the freshwater sapropel. The humin, which has a predominantly aliphatic structure, increases linearly with depth and composes the greatest fraction of the organic matter. Humic acids are minor components and are more like polysaccharides than typical marine humic acids. Fatty acid distributions reveal that the lipids are of an algal and/or terrestrial plant source. Normal alkanes with a total concentration of 75 ppm exhibit two distribution maxima. One is centered about n-C22 with no odd/even predominance, suggestive of a degraded algal source. The other is centered at n-C31 with a distinct odd/even predominance indicative of a vascular plant origin. Stratigraphic changes in the sediment correlate to observed changes in the gas and pore water chemistry and the organic geochemistry. ?? 1982.

  12. Toxicity of ammonia in pore-water and in the water column to freshwater benthic invertebrates

    SciTech Connect

    Whiteman, F.W.; Kahl, M.D.; Rau, D.M.; Balcer, M.D.; Ankley, G.T.

    1994-12-31

    Ammonia has been mentioned as both a primary toxicant and a factor that can produce false positive results in laboratory sediment tests using benthic invertebrates. This study developed a sediment dosing system that percolates an ammonia solution through sediment to achieve target porewater ammonia concentrations that remain stable over four and ten day spiked sediment tests. Ten day flow-through water-only tests and ten day spiked sediment tests were used to determine the toxicity of ammonia in the water column and in the sediment pore-water to the oligochaete Lumbriculus variegatus and the midge Chironomus tentans. Four-day tests were run with the amphipod Hyalella azteca. The relationship between water column ammonia toxicity and sediment pore-water ammonia toxicity is influenced by the organism`s association with the sediment. For Lumbriculus variegatus and Chironomus tentans that burrow into the sediment and are in direct contact with the porewater, the pore-water LC50 for ammonia is 30--40% higher than the water-only LC50 for each species. Hyalella azteca is epibenthic and avoids ammonia spiked sediment, thus ammonia in the water column is considerably more toxic than the pore-water ammonia with the porewater LC50 about 800% higher than the water only LC50.

  13. Invariance of single-file water mobility in gramicidin-like peptidic pores as function of pore length.

    PubMed

    Portella, Guillem; Pohl, Peter; de Groot, Bert L

    2007-06-01

    We investigated the structural and energetic determinants underlying water permeation through peptidic nanopores, motivated by recent experimental findings that indicate that water mobility in single-file water channels displays nonlinear length dependence. To address the molecular mechanism determining the observed length dependence, we studied water permeability in a series of designed gramicidin-like channels of different length using atomistic molecular dynamics simulations. We found that within the studied range of length the osmotic water permeability is independent of pore length. This result is at variance with textbook models, where the relationship is assumed to be linear. Energetic analysis shows that loss of solvation rather than specific water binding sites in the pore form the main energetic barrier for water permeation, consistent with our dynamics results. For this situation, we propose a modified expression for osmotic permeability that fully takes into account water motion collectivity and does not depend on the pore length. Different schematic barrier profiles are discussed that explain both experimental and computational interpretations, and we propose a set of experiments aimed at validation of the presented results. Implications of the results for the design of peptidic channels with desired permeation characteristics are discussed.

  14. METHODS FOR PORE WATER EXTRACTION FROM UNSATURATED ZONE TUFF, YUCCA MOUNTAIN, NEVADA

    SciTech Connect

    K.M. SCOFIELD

    2006-03-22

    Assessing the performance of the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, requires an understanding of the chemistry of the water that moves through the host rock. The uniaxial compression method used to extract pore water from samples of tuffaceous borehole core was successful only for nonwelded tuff. An ultracentrifugation method was adopted to extract pore water from samples of the densely welded tuff of the proposed repository horizon. Tests were performed using both methods to determine the efficiency of pore water extraction and the potential effects on pore water chemistry. Test results indicate that uniaxial compression is most efficient for extracting pore water from nonwelded tuff, while ultracentrifugation is more successful in extracting pore water from densely welded tuff. Pore water splits taken from a single nonwelded tuff core during uniaxial compression tests have shown changes in pore water chemistry with increasing pressure for calcium, chloride, sulfate, and nitrate, while the chemistry of pore water splits from welded and nonwelded tuffs using ultracentrifugation indicates that there is no significant fractionation of solutes.

  15. Integrated landslide monitoring: rainfalls, pore water pressures and surface movements

    NASA Astrophysics Data System (ADS)

    Berti, M.; Casula, G.; Elmi, C.; Fabris, M.; Ghirotti, M.; Loddo, F.; Mora, P.; Pesci, A.; Simoni, A.

    2003-04-01

    Rainfall-induced landslides involving clay-rich soils are widely represented in the Apennines. They cover up to 30% of the slopes forming the relief constituted by chaotic clayey units and are typically subject to repeated reactivations of the movement which are often triggered by a series of discrete failures located in the upper part (headscarp). Failures and movement can then propagate downslope and reactivate the whole landslide deposit which displays a typical elongated body, limited depth and a fan-shaped toe as a result of successive slow earth-flow like movements. An experimental monitoring programme was designed and is currently operating on the Rocca Pitigliana landslide whose characteristics well represent the above described type of movements. Its last parossistic movement date back to 1999 and, since then, remedial works were realized on behalf of local authorities. They basically consist of surficial and deep drainage works located on the landslide body. Experimental activities focus on the main headscarp whose morphology and sub-surface water circulation scheme were unaffected by the interventions. The monitoring approach includes measuring rainfalls and pore-pressure responses in both saturated and unsaturated soils. Surficial movements are continuously measured by means of GPS permanent stations and by wire extensometers which allow real time control of headscarp activity. Main aim of the monitoring activities is to provide experimental data, which can be used to test various existing hydrologic models and to identify triggering conditions. Since the ‘70s, many hydrologic models have been proposed to describe the pore water pressure distribution within the soil and its response to precipitation. The topic has recently drawn growing attention because of the recognized importance in landslide triggering but still experimental data are very much needed in order to obtain and validate capable predicting tools. This is mostly due to the multiple and

  16. Influence of Water Table Depth on Pore Water Chemistry and Trihalomethane Formation Potential in Peatlands.

    PubMed

    Gough, Rachel; Holliman, Peter J; Fenner, Nathalie; Peacock, Mike; Freeman, Christopher

    2016-02-01

    Drained peatland catchments are reported to produce more colored, dissolved organic carbon (DOC)-rich water, presenting problems for potable water treatment. The blocking of peatland drainage ditches to restore the water table is increasingly being considered as a strategy to address this deterioration in water quality. However, the effect of ditch blocking on the potential of DOC to form trihalomethanes (THMs) has not been assessed. In this study, the effect of peat rewetting on pore water DOC concentration and characteristics (including THM formation potential [THMFP]) was assessed over 12 months using peat cores collected from two drained peatland sites. The data show little evidence of differences in DOC concentration or characteristics between the different treatments. The absence of any difference in the THMFP of pore water between treatments suggests that, in the short term at least, ditch blocking may not have an effect on the THMFP of waters draining peatland catchments. PMID:26803099

  17. The one-dimensional compression method for extraction of pore water from unsaturated tuff and effects on pore-water chemistry

    SciTech Connect

    Higgins, J.D.; Burger, P.A.; Yang, L.C.

    1997-12-31

    Study of the hydrologic system at Yucca Mountain, Nevada, requires extraction of pore-water samples from unsaturated tuff bedrock. Two generations of compression cells have been designed and tested for extracting representative, unaltered pore-water samples from unsaturated tuff cores. The one-dimensional compression cell has a maximum compressive stress rating of 552 MPa. Results from 86 tests show that the minimum degree of saturation for successful extraction of pore water was about 14% for non welded tuff and about 61% for densely welded tuff. The high-pressure, one-dimensional compression cell has a maximum compressive stress rating of 827 MPa. Results from 109 tests show that the minimum degree of saturation for successful extraction of pore water was about 7.5% for non welded tuff and about 34% for densely welded tuff. Geochemical analyses show that, in general, there is a decrease in ion concentration of pore waters as extraction pressures increase. Only small changes in pore-water composition occur during the one-dimensional extraction test.

  18. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  19. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  20. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  1. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in...

  2. Dissolved sulfide distributions in the water column and sediment pore waters of the Santa Barbara Basin

    USGS Publications Warehouse

    Kuwabara, J.S.; VanGeen, A.; McCorkle, D.C.; Bernhard, J.M.

    1999-01-01

    Dissolved sulfide concentrations in the water column and in sediment pore waters were measured by square-wave voltammetry (nanomolar detection limit) during three cruises to the Santa Barbara Basin in February 1995, November-December 1995, and April 1997. In the water column, sulfide concentrations measured outside the basin averaged 3 ?? 1 nM (n = 28) in the 0 to 600 m depth range. Inside the basin, dissolved sulfides increased to reach values of up to 15 nM at depths >400 m. A suite of box cores and multicores collected at four sites along the northeastern flank of the basin showed considerable range in surficial (400 ??M at 10 cm. Decreases in water-column nitrate below the sill depth indicate nitrate consumption (-55 to -137 ??mole m-2 h-1) similar to nearby Santa Monica Basin. Peaks in pore-water iron concentrations were generally observed between 2 and 5 cm depth with shallowest peaks at the 590 m site. These observations, including observations of the benthic microfauna, suggest that the extent to which the sulfide flux, sustained by elevated pore-water concentrations, reaches the water column may be modulated by the abundance of sulfide-oxidizing bacteria in addition to iron redox and precipitation reactions.

  3. Produced water discharges into marine ecosystems

    SciTech Connect

    Pitre, R.L.

    1984-05-01

    Formation waters which are produced in conjunction with oil or gas are discharged into offshore areas throughout the world. The produced water volume in petroleum production can vary from 20% to 150% of the oil production volume. Salinities of produced water can vary from 1,000 to 250,000 ppm. Before produced waters are discharged to the ocean, they are passed through oil-water separators to reduce the oil content to acceptable levels. Temperatures of the produced water stream are normally about 45/sup 0/ C. The small amounts of oil released in produced water discharges will either evaporate to the atmosphere or be degraded by marine organisms. Biodegradation can be enhanced with the addition of nutrients. Within the OCS of the United States, produced waters are regulated by NPDES permits issued by the U.S. Environmental Protection Agency. Produced waters from a Cities Service platform located in an area of coral reefs offshore of the Philippine Islands have been discharged to the surrounding seas for several years with no environmental harm. Environmental impacts from produced water discharges into marine waters are very minimal and have never caused a problem. Therefore, there is no precedent for stricter governmental regulation of produced water discharges into marine ecosystems.

  4. Diffusive Release of Uranium from Contaminated Sediments into Capillary Fringe Pore Water

    SciTech Connect

    Rod, Kenton A.; Wellman, Dawn M.; Flury, Markus; Pierce, Eric M.; Harsh, James B.

    2012-09-13

    We investigated the dynamics of U release between pore water fractions, during river stage changes from two contaminated capillary fringe sediments. Samples were from 7.0 m and 7.6 m below ground surface (bgs) in the Hanford 300 area. Sediments were packed into columns and saturated with Hanford groundwater for three to 84 days. After specified times, > 48 µm radius (calculated) sediment pores were drained, followed by draining pores to 15 µm radius. U release in the first two weeks was similar between sediments and pore sizes with a range of 4.4 to 5.6 µM U in the 14 day sample. The 7.0 m bgs sediment U declined in the larger pores to 0.22 µM at day 84, whereas the small pores released U to 6.7 µM at day 84. The 7.6 m bgs sediment released 1.4 µM on day 84, in the large pores, but continuously released U from the smaller pores (13.2 uM on day 84). The continuous release of U has resulted in a diffusion gradient from the smaller to larger pores. The observed differences in U pore-water concentrations between the two sediment samples were attributed to co-precipitation of U with carbonates. A mineral phase in the sediments was also identified as an U-carbonate species, similar to rutherfordine [UO2(CO3)].

  5. Bottom sediments and pore waters near a hydrothermal vent in Lake Baikal (Frolikha Bay)

    USGS Publications Warehouse

    Granina, L.Z.; Klerkx, J.; Callender, E.; Leermakers, M.; Golobokova, L.P.

    2007-01-01

    We discuss the redox environments and the compositions of bottom sediments and sedimentary pore waters in the region of a hydrothermal vent in Frolikha Bay, Lake Baikal. According to our results, the submarine vent and its companion nearby spring on land originate from a common source. The most convincing evidence for their relation comes from the proximity of stable oxygen and hydrogen isotope compositions in pore waters and in the spring water. The isotope composition indicates a meteoric origin of pore waters, but their major- and minor-element chemistry bears imprint of deep water which may seep through permeable faulted crust. Although pore waters near the submarine vent have a specific enrichment in major and minor constituents, hydrothermal discharge at the Baikal bottom causes a minor impact on the lake water chemistry, unlike the case of freshwater geothermal lakes in the East-African Rift and North America. ?? 2007.

  6. Stable isotope geochemistry of pore waters from the New Jersey shelf - No evidence for Pleistocene melt water

    NASA Astrophysics Data System (ADS)

    van Geldern, Robert; Hayashi, Takeshi; Böttcher, Michael E.; Mottl, Michael J.; Barth, Johannes A. C.; Stadler, Susanne

    2013-04-01

    Ocean Drilling Program, Volume 313, Tokyo, available at: http://publications.iodp.org/proceedings/313/313toc.htm. van Geldern, R., Hayashi, T., Böttcher, M. E., Mottl, M. J., Barth, J. A. C., and Stadler, S., 2013, Stable isotope geochemistry of pore waters and marine sediments from the New Jersey shelf: Methane formation and fluid origin: Geosphere, v. 9, no. 1, p. in press.

  7. The influence of extraction procedure on ion concentrations in sediment pore water

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Jackson, B.P.

    1998-01-01

    Sediment pore water has the potential to yield important information on sediment quality, but the influence of isolation procedures on the chemistry and toxicity are not completely known and consensus on methods used for the isolation from sediment has not been reached. To provide additional insight into the influence of collection procedures on pore water chemistry, anion (filtered only) and cation concentrations were measured in filtered and unfiltered pore water isolated from four sediments using three different procedures: dialysis, centrifugation and vacuum. Peepers were constructed using 24-cell culture plates and cellulose membranes, and vacuum extractors consisted of fused-glass air stones attached with airline tubing to 60cc syringes. Centrifugation was accomplished at two speeds (2,500 and 10,000 x g) for 30 min in a refrigerated centrifuge maintained at 4?C. Only minor differences in chemical characteristics and cation and anion concentrations were found among the different collecting methods with differences being sediment specific. Filtering of the pore water did not appreciably reduce major cation concentrations, but trace metals (Cu and Pb) were markedly reduced. Although the extraction methods evaluated produced pore waters of similar chemistries, the vacuum extractor provided the following advantages over the other methods: (1) ease of extraction, (2) volumes of pore water isolated, (3) minimal preparation time and (4) least time required for extraction of pore water from multiple samples at one time.

  8. The effects of pore structure on the behavior of water in lignite coal and activated carbon.

    PubMed

    Nwaka, Daniel; Tahmasebi, Arash; Tian, Lu; Yu, Jianglong

    2016-09-01

    The effects of physical structure (pore structure) on behavior of water in lignite coal and activated carbon (AC) samples were investigated by using Differential Scanning Calorimetry (DSC) and low-temperature X-ray diffraction (XRD) techniques. AC samples with different pore structures were prepared at 800°C in steam and the results were compared with that of parent lignite coal. The DSC results confirmed the presence of two types of freezable water that freeze at -8°C (free water) and -42°C (freezable bound water). A shift in peak position of free water (FW) towards lower temperature was observed in AC samples compared to the lignite coal with decreasing water loading. The amount of free water (FW) increased with increasing gasification conversion. The amounts of free and freezable bound water (FBW) in AC samples were calculated and correlated to pore volume and average pore size. The amount of FW in AC samples is well correlated to the pore volume and average pore size of the samples, while an opposite trend was observed for FBW. The low-temperature XRD analysis confirmed the existence of non-freezable water (NFW) in coal and AC with the boundary between the freezable and non-freezable water (NFW) determined. PMID:27254256

  9. Relating salt marsh pore water geochemistry patterns to vegetation zones and hydrologic influences

    NASA Astrophysics Data System (ADS)

    Moffett, Kevan B.; Gorelick, Steven M.

    2016-03-01

    Physical, chemical, and biological factors influence vegetation zonation in salt marshes and other wetlands, but connections among these factors could be better understood. If salt marsh vegetation and marsh pore water geochemistry coorganize, e.g., via continuous plant water uptake and persistently unsaturated sediments controlling vegetation zone-specific pore water geochemistry, this could complement known physical mechanisms of marsh self-organization. A high-resolution survey of pore water geochemistry was conducted among five salt marsh vegetation zones at the same intertidal elevation. Sampling transects were arrayed both parallel and perpendicular to tidal channels. Pore water geochemistry patterns were both horizontally differentiated, corresponding to vegetation zonation, and vertically differentiated, relating to root influences. The geochemical patterns across the site were less broadly related to marsh hydrology than to vegetation zonation. Mechanisms contributing to geochemical differentiation included: root-induced oxidation and nutrient (P) depletion, surface and creek-bank sediment flushing by rainfall or tides, evapotranspiration creating aerated pore space for partial sediment flushing in some areas while persistently saturated conditions hindered pore water renewal in others, and evapoconcentration of pore water solutes overall. The concentrated pore waters draining to the tidal creeks accounted for 41% of ebb tide solutes (median of 14 elements), including being a potentially toxic source of Ni but a slight sink for Zn, at least during the short, winter study period in southern San Francisco Bay. Heterogeneous vegetation effects on pore water geochemistry are not only significant locally within the marsh but may broadly influence marsh-estuary solute exchange and ecology.

  10. Pore Water Pressure Response of a Soil Subjected to Traffic Loading under Saturated and Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Cary, Carlos

    This study presents the results of one of the first attempts to characterize the pore water pressure response of soils subjected to traffic loading under saturated and unsaturated conditions. It is widely known that pore water pressure develops within the soil pores as a response to external stimulus. Also, it has been recognized that the development of pores water pressure contributes to the degradation of the resilient modulus of unbound materials. In the last decades several efforts have been directed to model the effect of air and water pore pressures upon resilient modulus. However, none of them consider dynamic variations in pressures but rather are based on equilibrium values corresponding to initial conditions. The measurement of this response is challenging especially in soils under unsaturated conditions. Models are needed not only to overcome testing limitations but also to understand the dynamic behavior of internal pore pressures that under critical conditions may even lead to failure. A testing program was conducted to characterize the pore water pressure response of a low plasticity fine clayey sand subjected to dynamic loading. The bulk stress, initial matric suction and dwelling time parameters were controlled and their effects were analyzed. The results were used to attempt models capable of predicting the accumulated excess pore pressure at any given time during the traffic loading and unloading phases. Important findings regarding the influence of the controlled variables challenge common beliefs. The accumulated excess pore water pressure was found to be higher for unsaturated soil specimens than for saturated soil specimens. The maximum pore water pressure always increased when the high bulk stress level was applied. Higher dwelling time was found to decelerate the accumulation of pore water pressure. In addition, it was found that the higher the dwelling time, the lower the maximum pore water pressure. It was concluded that upon further

  11. Size effects of pore density and solute size on water osmosis through nanoporous membrane.

    PubMed

    Zhao, Kuiwen; Wu, Huiying

    2012-11-15

    Understanding the behavior of osmotic transport across nanoporous membranes at molecular level is critical to their design and applications, and it is also beneficial to the comprehension of the mechanism of biological transmembrane transport processes. Pore density is an important parameter for nanoporous membranes. To better understand the influence of pore density on osmotic transport, we have performed systematic molecular dynamics simulations on water osmosis across nanoporous membranes with different pore densities (i.e., number of pores per unit area of membrane). The simulation results reveal that significant size effects occur when the pore density is so high that the center-to-center distance between neighboring nanopores is comparable to the solute size. The size effects are independent of the pore diameter and solute concentration. A simple quantitative correlation between pore density, solute size, and osmotic flux has been established. The results are excellently consistent with the theoretical predictions. It is also shown that solute hydration plays an important role in real osmotic processes. Solute hydration strengthens the size effects of pore density on osmotic processes due to the enlarged effective solute size induced by hydration. The influence of pore density, solute size, and solute hydration on water osmosis through nanoporous membranes can be introduced to eliminate the deviations of real osmotic processes from ideal behavior.

  12. Size effects of pore density and solute size on water osmosis through nanoporous membrane.

    PubMed

    Zhao, Kuiwen; Wu, Huiying

    2012-11-15

    Understanding the behavior of osmotic transport across nanoporous membranes at molecular level is critical to their design and applications, and it is also beneficial to the comprehension of the mechanism of biological transmembrane transport processes. Pore density is an important parameter for nanoporous membranes. To better understand the influence of pore density on osmotic transport, we have performed systematic molecular dynamics simulations on water osmosis across nanoporous membranes with different pore densities (i.e., number of pores per unit area of membrane). The simulation results reveal that significant size effects occur when the pore density is so high that the center-to-center distance between neighboring nanopores is comparable to the solute size. The size effects are independent of the pore diameter and solute concentration. A simple quantitative correlation between pore density, solute size, and osmotic flux has been established. The results are excellently consistent with the theoretical predictions. It is also shown that solute hydration plays an important role in real osmotic processes. Solute hydration strengthens the size effects of pore density on osmotic processes due to the enlarged effective solute size induced by hydration. The influence of pore density, solute size, and solute hydration on water osmosis through nanoporous membranes can be introduced to eliminate the deviations of real osmotic processes from ideal behavior. PMID:23116121

  13. Cracks and pores - Their roles in the transmission of water confined in cementitious materials

    NASA Astrophysics Data System (ADS)

    Bordallo, H. N.; Aldridge, L. P.; Wuttke, J.; Fernando, K.; Bertram, W. K.; Pardo, L. C.

    2010-10-01

    Cement paste is formed through a process called hydration by combining water with a cementitious material. Concrete, the worlds most versatile and most widely used material, can then be obtained when aggregates (sand, gravel, crushed stone) are added to the paste. The quality of hardened concrete is greatly influenced by the water confined in the cementitious materials and how it is transmitted through cracks and pores. Here we demonstrate that the water transport in cracks and capillary pores of hardened cement pastes can be approximately modeled by simple equations. Our findings highlight the significance of arresting the development of cracks in cementitious materials used in repository barriers. We also show that neutron scattering is an advantageous technique for understanding how water transmission is effected by gel pore structures. Defining measurable differences in gel pores may hold a key to prediction of the reduction of water transport through cement barriers.

  14. Molecular dynamics simulations on water permeation through hourglass-shaped nanopores with varying pore geometry

    NASA Astrophysics Data System (ADS)

    Tang, Dai; Yoo, Yeong-Eun; Kim, Daejoong

    2015-05-01

    We investigate the transport of water in hourglass-shaped nanopores using molecular dynamics (MD) simulations. We focus on the hydrodynamic effect by exploiting conical entrance/exit effects and utilizing the single-file fast water flow by limiting the cylinder diameter. We assume that the transport ability facilitated by the hourglass-shaped nanopores can be improved by varying the combination of cone angle and cylindrical pore length. The maximized results for transport properties with geometric parameters, quantified as number flux and osmotic permeability, prove that our assumption is reasonable. Further analysis for the validity of our design concerns the distribution of water inside the pore, e.g., the friction force between water molecules and the pore. Maximization of pore geometry provides a basis for improving the flux and velocity of water transport through nanoscale structural design.

  15. Pore Water Circulation in Isolated Wetlands: Implications to Internal Nutrient Loading.

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Perkins, D. B.; Jawitz, J. W.

    2005-12-01

    The potential of wetland soils to accumulate and release pollutants including nutrients has been the motivation for numerous studies related to measuring the concentration, fate, and transport mechanisms of these substances in soils. While external nutrient loading from anthropogenic sources such as agricultural and cattle areas can be addressed through the implementation of Best Management Practices (BMPs), and interception strategies such as construction of storm-water treatment areas (STAs) in Florida, internal loading through shallow sediments has prevented the rapid improvement of water quality in numerous watersheds in South Florida, including the Lake Okeechobee drainage basin. The internal release of nutrients can occur via two different yet equally important mechanisms: advection and diffusion. These processes may mix the pore water not only within the sediment but also with the overlying water column over short periods of time (e.g., days or weeks). This provides sufficient time for diagenesis to alter the reactive chemical components of nutrients that may ultimately increase the nutrient fluxes to the overlying water column. The objectives of this research are to present a plausible and testable technique to collect pore water samples from saturated wetland soils, and to evaluate the importance of pore water circulation as a mechanism for mobilizing nutrients into the water column from within shallow sediments in isolated wetlands. Pore water sampling can be a difficult task to perform in low permeable wetland soils using standard sampling devices such as pore water equilibrators (peepers) and mechanical vises (Rheeburg squeezers). However, our attempt at using Multisamplers, which is in fact a multi-level piezometer capable of collecting up to ten pore water samples to a depth of 110 cm below the soil-water interface in a single deployment, proved to be a success. The ability to collect samples from multiple depths from a single location is an important

  16. Dynamics of water in the amphiphilic pore of amyloid β fibrils

    NASA Astrophysics Data System (ADS)

    GhattyVenkataKrishna, Pavan K.; Mostofian, Barmak

    2013-09-01

    Alzheimers disease related amyloid peptide, Aβ, forms a fibrillar structure through aggregation. The aggregate is stabilized by a salt bridge that is responsible for the formation of an amphiphilic pore that can accommodate water molecules. None of the reported structures of Aβ, however, contain water. We present results from molecular dynamics simulations on dimeric Aβ fibrils solvated in water. Water penetrates and fills the amphiphilic pore increasing its volume. We observe a thick wire of water that is translationally and rotationally stiff in comparison to bulk water and may be essential for the stabilization of the amyloid Aβ protein.

  17. Comparison of Pore Water Chemical Extracted by Different Forces with In-situ Properties

    NASA Astrophysics Data System (ADS)

    Ito, N.; Machida, I.; Marui, A.; Scheytt, T.; Hebig, K. H.

    2010-12-01

    Due to the difficulty involved for in-situ sampling of groundwater, pore water was extracted from rock core samples for chemical analysis. Available literature indicated that, the chemical constituents of pore water are affected by large extraction force. This study is therefore aimed at discussing the reason behind the change in pore water chemistry when samples are subjected to different extraction forces. The process involved extraction of pore water from sandstone core samples at different pF values by centrifuge method. The pF expresses the tension of water, retained in soil. It is the base 10 logarithm of tension, which is measured as a head of water head in centimeters. The samples of lengths 100 m each were obtained from three locations. Tracer test using Iodine was also conducted to remove pore water polluted by drilling water. Pore water was extracted from a total of 63 samples at three different values of pF (low: up to pF 2.3, medium: pF 2.3 - 3.9, high: pF 3.9 - 4.3). For each pF range the pore water was analyzed for major anions and cations. Results showed variation of ionic concentrations with pF and depth. The average concentrations rose with increase of pF in all ions except for potassium. Based on the concentration distribution of Ca2+, three zones could be defined: (1) Ca2+ concentration, which does not depend on pF, (2) Ca2+ concentration, which increases with the value of pF and (3) Ca2+ showing the same value for medium and high pF values. It is thus concluded that, water chemistry of deep pore water is likely to have reached equilibrium due to almost stagnant flow conditions, whereas shallow water is likely to participate in chemical interactions due to the relatively high flow velocity. The depths of the interfaces of these three zones are almost consistent with geological boundaries of weathered and fine sandstone and there is evidence of a relationship between pore water chemistry and physical rock properties. Using this knowledge, we

  18. Tracking pore-water evolution through clumped isotope analyses of a septarian concretion

    NASA Astrophysics Data System (ADS)

    Miles, B. E.; Loyd, S. J.; Hudson, J.; Dickson, T.; Tripati, A. K.

    2012-12-01

    Septarian concretions have been recognized in many sedimentary units spanning nearly all ages. Although they exhibit a bizarre structure, their widespread occurrence makes septarian concretions more than just simple geologic curiosities. The tapering veins, or "septaria", within these concretions are often filled with complex, relatively late-stage (post-concretion body) isopachous rim and blocky calcite mineral phases, reflecting potentially discrete episodes of successive cementation. Previous studies have used traditional carbonate carbon (δ13C) and oxygen (δ18O) isotope analyses to characterize the diagenetic fluids responsible for vein-filling mineral precipitation. Whereas these studies have provided valuable information concerning mineralization, it is impossible to resolve the individual affects of temperature and pore fluid δ18O on mineral δ18O compositions. Of course as with all diagenetic systems, both temperature and fluid oxygen isotope compositions are integral parameters to quantify in order to characterize carbonate mineral paragenesis. Here, we use the clumped isotope proxy, a paleothermometer that is independent of fluid δ18O values, in order to better constrain the formation environment of a septarian concretion of the Jurassic Ampthill Formation, United Kingdom. This concretion exhibits cements that are typical of many septarian concretions in which distinct vein-filling cementation events can be traced by color differences in carbonate phases. As a result, it is relatively easy to sample subsequent phases along the paragenetic sequence and therefore draw interpretations concerning environmental evolution. The concretion body, isopachous rim and vein-filling calcite exhibit similar clumped isotope temperatures and calculated pore-water δ18O values show a progressive depletion in the respective phases above. The isotopic data along with the crystallographic progression suggest mineral precipitation initially in modified marine fluids with

  19. Field sampling of soil pore water to evaluate trace element mobility and associated environmental risk.

    PubMed

    Moreno-Jiménez, Eduardo; Beesley, Luke; Lepp, Nicholas W; Dickinson, Nicholas M; Hartley, William; Clemente, Rafael

    2011-10-01

    Monitoring soil pollution is a key aspect in sustainable management of contaminated land but there is often debate over what should be monitored to assess ecological risk. Soil pore water, containing the most labile pollutant fraction in soils, can be easily collected in situ offering a routine way to monitor this risk. We present a compilation of data on concentration of trace elements (As, Cd, Cu, Pb, and Zn) in soil pore water collected in field conditions from a range of polluted and non-polluted soils in Spain and the UK during single and repeated monitoring, and propose a simple eco-toxicity test using this media. Sufficient pore water could be extracted for analysis both under semi-arid and temperate conditions, and eco-toxicity comparisons could be effectively made between polluted and non-polluted soils. We propose that in-situ pore water extraction could enhance the realism of risk assessment at some contaminated sites.

  20. The impact of wave loads and pore-water pressure generation on initiation of sediment transport

    USGS Publications Warehouse

    Clukey, E.C.; Kulhawy, F.H.; Liu, P.L.-F.; Tate, G.B.

    1985-01-01

    The build-up of pore-water pressure by waves can lead to sediment liquefaction and subsequent transport by traction currents. This process was investigated by measuring pore-water pressures both in a field experiment and laboratory wave tank tests. Liquefaction was observed in the wave tank tests. The results suggest that sand is less susceptible than silts to wave-induced liquefaction because of the tendency to partially dissipate pore-water pressures. However, previous studies have determined that pore-water pressures must approach liquefaction before current velocities necessary to initiate transport are reduced. Once liquefaction has occurred more sediment can be transported. ?? 1985 Springer-Verlag New York Inc.

  1. Pore-Water Extraction Scale-Up Study for the SX Tank Farm

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus; Wietsma, Thomas W.; Last, George V.; Lanigan, David C.

    2013-01-15

    The phenomena related to pore-water extraction from unsaturated sediments have been previously examined with limited laboratory experiments and numerical modeling. However, key scale-up issues have not yet been addressed. Laboratory experiments and numerical modeling were conducted to specifically examine pore-water extraction for sediment conditions relevant to the vadose zone beneath the SX Tank Farm at Hanford Site in southeastern Washington State. Available SX Tank Farm data were evaluated to generate a conceptual model of the subsurface for a targeted pore-water extraction application in areas with elevated moisture and Tc-99 concentration. The hydraulic properties of the types of porous media representative of the SX Tank Farm target application were determined using sediment mixtures prepared in the laboratory based on available borehole sediment particle size data. Numerical modeling was used as an evaluation tool for scale-up of pore-water extraction for targeted field applications.

  2. Analysis of quasi-periodic pore-network structure of centric marine diatom frustules

    NASA Astrophysics Data System (ADS)

    Cohoon, Gregory A.; Alvarez, Christine E.; Meyers, Keith; Deheyn, Dimitri D.; Hildebrand, Mark; Kieu, Khanh; Norwood, Robert A.

    2015-03-01

    Diatoms are a common type of phytoplankton characterized by their silica exoskeleton known as a frustule. The diatom frustule is composed of two valves and a series of connecting girdle bands. Each diatom species has a unique frustule shape and valves in particular species display an intricate pattern of pores resembling a photonic crystal structure. We used several numerical techniques to analyze the periodic and quasi-periodic valve pore-network structure in diatoms of the Coscinodiscophyceae order. We quantitatively identify defect locations and pore spacing in the valve and use this information to better understand the optical and biological properties of the diatom.

  3. A vacuum-operated pore-water extractor for estuarine and freshwater sediments

    USGS Publications Warehouse

    Winger, Parley V.; Lasier, Peter J.

    1991-01-01

    A vacuum-operated pore-water extractor for estuarine and freshwater sediments was developed and constructed from a fused-glass air stone attached with aquarium airline tubing to a 30 or 60 cc polypropylene syringe. Pore water is extracted by inserting the air stone into the sediment and creating a vacuum by retracting and bracing the syringe plunger. A hand-operated vacuum pump attached to a filtration flask was also evaluated as an alternative vacuum source. The volume and time to extract pore water varies with the number of devices and the sediment particle size. Extraction time is longer for fine sediments than for sandy sediments. Four liters of sediment generally yield between 500 and 1,500 mL of pore water. The sediment that surrounds and accumulates on the air stone acts as a filter, and, except for the first few milliliters, the collected pore water is clear. Because there is no exposure to air or avenue for escape, volatile compounds andin situ characteristics are retained in the extracted pore water.

  4. Dissolved organic matter in anoxic pore waters from Mangrove Lake, Bermuda

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.; Spiker, E. C.; Szeverenyi, N.M.; Maciel, G.E.

    1986-01-01

    Dissolved organic matter and dissolved inorganic chemical species in anoxic pore water from Mangrove Lake, Bermuda sediments were studied to evaluate the role of pore water in the early diagenesis of organic matter. Dissolved sulphate, titration alkalinity, phosphate, and ammonia concentration versus depth profiles were typical of many nearshore clastic sediments and indicated sulphate reduction in the upper 100 cm of sediment. The dissolved organic matter in the pore water was made up predominantly of large molecules, was concentrated from large quantities of pore water by using ultrafiltration and was extensively tudied by using elemental and stable carbon isotope analysis and high-resolution, solid state 13C nuclear magnetic resonance and infrared spectroscopy. The results indicate that this material has a predominantly polysaccharide-like structure and in addition contains a large amount of oxygen-containing functional groups (e.g., carboxyl groups). The 13C nulcear magnetic resonance spectra of the high-molecular-weight dissolved organic matter resemble those of the organic matter in the surface sediments of Mangrove Lake. We propose that this high-molecular-weight organic matter in pore waters represents the partially degraded, labile organic components of the sedimentary organic matter and that pore waters serve as a conduit for removal of these labile organic components from the sediments. The more refractory components are, thus, selectively preserved in the sediments as humic substances (primarily humin). ?? 1986.

  5. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    SciTech Connect

    Diallo, S. O.

    2015-07-16

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation time [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.

  6. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    DOE PAGESBeta

    Diallo, S. O.

    2015-07-16

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation timemore » [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.« less

  7. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    NASA Astrophysics Data System (ADS)

    Diallo, S. O.

    2015-07-01

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (˜12 and 18 Å, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. This suppression is accompanied by a systematic dependence of the average translational diffusion coefficient Dr and relaxation time <τ0> of the restricted water on pore size and temperature. The observed Dr values are tested against a proposed scaling law, in which the translational diffusion coefficient Dr of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient Dc associated with the water bound to the pore walls and the ratio θ of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.

  8. Methylmercury production in the marine water column

    NASA Astrophysics Data System (ADS)

    Topping, G.; Davies, I. M.

    1981-03-01

    Although the biosynthesis of methylmercury in sediments is well established1, this is not necessarily the exclusive natural source of methylmercury entering the marine food chain, particularly commercial fish and shellfish species for human consumption. An examination of mercury levels in freshwater fish2, collected from a lake with a history of industrial mercury contamination, suggested that levels in fish are controlled in part by mercury in suspension and it followed that methylation should occur in the water column. Although methylmercury is present in seawater in coastal areas receiving discharges of waste containing either inorganic mercury3 or methylmercury4 there is no evidence that methylmercury is actually formed in the water column. We now present data which demonstrate that inorganic mercury can be methylated in the water column and we compare this production with that known to occur in marine sediments.

  9. Inorganic and organic sulfur cycling in salt-marsh pore waters

    SciTech Connect

    Luther, G.W. III; Church, T.M.; Scudlark, J.R.; Cosman, M.

    1986-05-09

    Sulfur species in pore waters of the Great Marsh, Delaware, were analyzed seasonally by polarographic methods. The species determined (and their concentrations in micromoles per liter) included inorganic sulfides (less than or equal to3360), polysulfides (less than or equal to326), thiosulfate (less than or equal to104), tetrathionate (less than or equal to302), organic thiols (less than or equal to2411), and organic disulfides (less than or equal to139). Anticipated were bisulfide increases with depth due to sulfate reduction and subsurface sulfate excesses and pH minima, the result of a seasonal redox cycle. Unanticipated was the pervasive presence of thiols (for example, glutathione), particularly during periods of biological production. Salt marshes appear to be unique among marine systems in producing high concentrations of thiols. Polysulfides, thiosulfate, and tetrathionate also exhibited seasonal subsurface maxima. These results suggest a dynamic seasonal cycling of sulfur in salt marshes involving abiological and biological reactions and dissolved and solid sulfur species. The chemosynthetic turnover of pyrite to organic sulfur is a likely pathway for this sulfur cycling. Thus, material, chemical, and energy cycles in wetlands appear to be optimally synergistic.

  10. Adsorption of As(V) inside the pores of porous hematite in water.

    PubMed

    Dai, Min; Xia, Ling; Song, Shaoxian; Peng, Changsheng; Lopez-Valdivieso, Alejandro

    2016-04-15

    As(V) adsorption inside the pores of porous hematite in water has been studied in this work. This study was performed on nonporous hematite and porous hematite prepared from the thermal decomposition of goethite and siderite through the measurements of adsorption isotherm, SEM-EDX, XRD and BET. The results demonstrated that the As(V) adsorption was difficult to be realized inside pores if they were too small. This observation might be due to that the pore entrances were blocked by the adsorbed ions and thus the inside surfaces became invalid for the adsorption. Only if the pore size is large enough, the effective surface area inside pores would be close to that on non-porous hematite for As(V) adsorption. In addition, it was found that siderite is better than goethite for preparing porous hematite with thermal decomposition as adsorbent for arsenic removal.

  11. Eutrophication in the northern Adriatic Sea: Pore water and sediment studies

    SciTech Connect

    Hammond, D.E.; Berelson, W.M. ); Giordani, P.; Langone, L.; Frignani, M.; Ravaioli, M. )

    1990-01-09

    The northern Adriatic Sea has been plagued by problems of eutrophication. This area is relatively shallow (maximum depth = 60m), becoming stratified during the summer months which inhibits oxygen transport to bottom waters. Anthropogenic nutrient loading in rivers entering the northern Adriatic (Po River being the largest) has increased nutrient input to this system and stimulated algal growth. Cores were collected for studies of pore water and solid phase chemistry at 6 stations in this region. [sup 210]Pb was used to constrain sediment accumulation rates and a range of 0-0.5 cm/yr was determined at different stations. Excess [sup 234]Th was only found in the upper 1-2 cm, suggesting that bioturbation is largely restricted to shallow depths. Pore water profiles show evidence of irrigation, and mean diffusive fluxes for oxygen, silica phosphate and ammonia are generally 20-90% of the fluxes obtained from benthic chamber measurements. This is consistent with previous work in this area in which studies of radon fluxes indicated that irrigation plays an important role in sediment-water exchange. Pore water profiles in the northern portion of the study area (near the Po River Delta) were markedly different than profiles in the south; sediments in the north are substantially more acidic and have high concentrations of dissolved iron and phosphate. From the alkalinity vs. TCO[sub 2] relationship in sediment pore waters it appears that differences in reactions involving the reduction of iron oxides and the exchange of magnesium for iron in clays are responsible for this regional difference in pore water properties. Sediments close to the Po apparently undergo more iron-magnesium exchange, while more distal sediments are limited in their ability to do so. Other pore water observations are limited in their ability to do so. Other pore water observations and trends regarding the shape of the silica profiles (which show shallow maxima) will be discussed.

  12. Laser scanning confocal microscopy characterization of water repellent distribution in a sandstone pore network.

    PubMed

    Zoghlami, Karima; Gómez-Gras, David; Corbella, Mercè; Darragi, Fadila

    2008-11-01

    In the present work, we propose the use of the Laser Scanning Confocal Microscopy (LSCM) to determine the effect of water repellents on rock's pore-network configuration and interconnection. The rocks studied are sandstones of Miocene age, a building material that is commonly found in the architectural heritage of Tunisia. The porosity quantitative data of treated and untreated samples, obtained by mercury porosimetry tests, were compared. The results show a slight decrease in total porosity with the water repellent treatment, which reduced both microporosity and macroporosity. This reduction produced a modification in pore size distribution and a shift of the pore access size mode interval toward smaller pore diameters (from the 30-40 microm to the 20-30 microm intervals). The water repellent was observed in SEM images as a continuous film coating grain surfaces; moreover, it was easily visualized in LSCM, by staining the water repellent with Epodye fluorochrome, and the coating thickness was straightforwardly measured (1.5-2 microm). In fact, the combination of mercury intrusion porosimetry data and LSCM observations suggests that the porosity reduction and the shift of the pore diameter mode were mainly due to the general reduction of pore diameters, but also to the plugging of the smallest pores (less than 3-4 microm in diameter) by the water repellent film. Finally, the LSCM technique enabled the reconstruction of 3D views of the water repellent coating film in the pore network, indicating that its distribution was uniform and continuous over the 100 microm thick sample. The LSCM imaging facilitates the integration and interpretation of mercury porosimetry and SEM data. PMID:18767050

  13. Mechanisms of water interaction with pore systems of hydrochar and pyrochar from poplar forestry waste.

    PubMed

    Conte, Pellegrino; Hanke, Ulrich M; Marsala, Valentina; Cimò, Giulia; Alonzo, Giuseppe; Glaser, Bruno

    2014-05-28

    The aim of this study was to understand the water-surface interactions of two chars obtained by gasification (pyrochar) and hydrothermal carbonization (hydrochar) of a poplar biomass. The two samples revealed different chemical compositions as evidenced by solid state (13)C NMR spectroscopy. In fact, hydrochar resulted in a lignin-like material still containing oxygenated functionalities. Pyrochar was a polyaromatic system in which no heteronuclei were detected. After saturation with water, hydrochar and pyrochar were analyzed by fast field cycling (FFC) NMR relaxometry. Results showed that water movement in hydrochar was mainly confined in very small pores. Conversely, water movement in pyrochar led to the conclusion that a larger number of transitional and very large pores were present. These results were confirmed by porosity evaluation derived from gas adsorption. Variable-temperature FFC NMR experiments confirmed a slow-motion regime due to a preferential diffusion of water on the solid surface. Conversely, the higher number of large pores in pyrochar allowed slow movement only up to 50 °C. As the temperature was raised to 80 °C, water interactions with the pore surface became weaker, thereby allowing a three-dimensional water exchange with the bulk liquid. This paper has shown that pore size distribution was more important than chemical composition in affecting water movement in two chemically different charred systems.

  14. Bioavailability of trace contaminants ({sup 241}Am, {sup 57}Co, {sup 137}Cs) to a benthic bivalve from pore waters and sediments

    SciTech Connect

    Gagnon, C.; Stupakoff, I.; Fisher, N.S.

    1995-12-31

    Sediments are major repositories of contaminants in marine ecosystems and can serve as a source of some contaminants for benthic organisms. The authors used the clam Macoma balthica, a species employed in monitoring coastal contamination, to compare experimentally three uptake sources: overlying water, ingested surface sediment and anoxic pore water. They studied the bioavailability of selected radionuclides ({sup 241}Am, {sup 57}Co, {sup 137}Cs) representing a large range of particle reactivity. For comparison, the authors also used CH{sub 3} {sup 203}Hg, which is highly assimilated by marine organisms. Clams were exposed separately to contaminated overlying water, surface oxic sediment and anoxic sediment. Radioactivity in animals was determined at the end of the exposure period. {sup 137}CS, which is not particle reactive in seawater, was not bioaccumulated from any source. {sup 241}Am and {sup 57}Co concentration factors in clams obtained from overlying water were approximately an order of magnitude lower than that of CH{sub 3} {sup 203}Hg. Ingested oxidized sediment particles do not appear to be a significant source for these radionuclides. {sup 241}Am, {sup 57}Co and CH{sub 3} {sup 203}Hg were bioconcentrated from anoxic pore waters, but the highly particle-reactive {sup 241}Am was mostly adsorbed onto the clam`s shell. The bioconcentration of CH{sub 3} {sup 203}Hg from pore waters was, however, only one tenth of that from overlying water.

  15. Paleo-hydrological history in pore water extracted from sedimentary rocks in the coastal area

    NASA Astrophysics Data System (ADS)

    Ikawa, R.; Machida, I.; Koshigai, M.; Nishizaki, S.; Marui, A.; Yoshizawa, T.; Ito, N.

    2010-12-01

    Over the past decade, new utilization methods of underground space development such as geological disposal of high level radioactive waste (HLW) and carbon capture and storage (CCS) have been important issues under discussion in Japan. Coastal areas have been identified as suitable candidate sites for such projects. A good understanding of the structure of seawater/freshwater interface and fault is important due to the fact that it serves as a preferential pathway through which radionuclide can be transported by means of groundwater. There is, however, little available information worldwide on deep groundwater studies in coastal areas. There is also virtually no study has been conducted on the behavior of groundwater and pore water in coastal impermeable sedimentary rocks. In this study, large scale core drilling (1000m depth) has been carried out in coastal area at Hamasato in the Horonobe area of Hokkaido, Japan in order to investigate the geological structure and deep groundwater flow system with the residence time. Pore water with various adsorptivity from drilling core samples was gradually collected by centrifugation and squeezing methods and analyzed for water chemistry. This is aimed at estimating the paleo-hydrological history of the coastal environment by geochemical information from the pore water. Lithoface in the study area consists of sandy r and alternate (sandy and silty) layers intercalations up to 250m deep. Below 250m, shows sand and silt layers. Pore water volume collected in the sand layers by centrifugation method was almost same, contrary to that in the silt layers which decreased with depth. On the other hand, the ratio of pore water with high adsorpivity in silt layers increased with depth. Except the surface layer (<50m), electric conductivity (EC) and Cl values in pore water samples increased with depth below 300m. In this study, we report on the characteristics of seawater/freshwater interface and deep groundwater flow system based on

  16. The representativeness of pore water samples collected from the unsaturated zone using pressure-vacuum lysimeters

    USGS Publications Warehouse

    Peters, C.A.; Healy, R.W.

    1988-01-01

    Studies have indicated that the chemistry of water samples may be altered by the collection technique, creating concern about the representativeness of the pore water samples obtained. A study using soil water pressure-vacuum lysimeters in outwash sand and glacial till deposits demonstrates that for non-dilute-solution samples the effect of pH of sampling with lysimeters is minimal, and that measured major cation and anion concentrations are representative of the natural pore water; trace-metal concentrations can be significantly altered by collection procedures at low concentrations. -from Authors

  17. Influences of Salinity Variations on Pore-water Flow in Salt Marshes

    NASA Astrophysics Data System (ADS)

    Shen, C.; Jin, G.; Xin, P.; Li, L.

    2013-12-01

    Salt marshes are important wetlands at the ocean-land interface with various ecological functions, serving as essential habitats for intertidal fauna, affecting the productivity of coastal waters through nutrient exchange, moderating the greenhouse gas emission and global warming. They are influenced by various physical and biogeochemical processes, among which the pore-water flow and associated solute transport processes play an important role in determining the material exchange between marsh soils and coastal water. Previous studies have examined such processes under the solo or combined effects of tidal fluctuation, evapotranspiration, stratigraphy, inland freshwater input, and topography. However, these investigations have neglected the spatial and temporal salinity variations in surface water and pore-water, which commonly exist in salt marshes due to the impacts of tidal inundation, precipitation and evapotranspiration. The density contrast between the surface water and pore-water may lead to significant modifications of the pore-water flow. Based on results from laboratory experiments and numerical simulations, we will demonstrate that: (1) under upward salinity gradients, flow instabilities in the form of fingers occur once the salinity contrast reaches a certain level, whereas under downward salinity gradients the system is stable; (2) because of the strong tidally-induced advective process occurring near the creek, both the number and size of fingers change gradually from the near-creek zone to the marsh interior; and (3) both upward and downward salinity gradients enhance the exchange between the surface water and pore-water in the marsh sediments. Keywords: Salt marshes; density effect; salinity gradient; pore-water flow; fingers. Instabilities under upward salinity gradient Stable system under downward salinity gradient

  18. Confined Water Determines Transport Properties of Guest Molecules in Narrow Pores.

    PubMed

    Phan, Anh; Cole, David R; Weiß, R Gregor; Dzubiella, Joachim; Striolo, Alberto

    2016-08-23

    We computed the transport of methane through 1 nm wide slit-shaped pores carved out of solid substrates. Models for silica, magnesium oxide, and alumina were used as solid substrates. The pores were filled with water. The results show that the methane permeability through the hydrated pores is strongly dependent on the solid substrate. Detailed analysis of the simulated systems reveals that local properties of confined water, including its structure, and more importantly, evolution of solvation free energy and hydrogen bond structure are responsible for the pronounced differences observed. The simulations are extended to multicomponent systems representative of natural gas, containing methane, ethane, and H2S. The results show that all pores considered have high affinity for H2S, moderate affinity for methane, and low affinity for ethane. The H2S/methane transport selectivity through the hydrated alumina pore is comparable, or superior, to that reported for existing commercial membranes. A multiscale approach was then implemented to demonstrate that a Smoluchowski one-dimensional model is able to reproduce the molecular-level results for short pores when appropriate values for the local self-diffusion coefficients are used as input parameters. We propose that the model can be extended to predict methane transport through uniform hydrated pores of macroscopic length. When verified by experiments, our simulation results could have important implications in applications such as natural gas sweetening and predictions of methane migration through hydraulically fractured shale formations.

  19. Confined Water Determines Transport Properties of Guest Molecules in Narrow Pores.

    PubMed

    Phan, Anh; Cole, David R; Weiß, R Gregor; Dzubiella, Joachim; Striolo, Alberto

    2016-08-23

    We computed the transport of methane through 1 nm wide slit-shaped pores carved out of solid substrates. Models for silica, magnesium oxide, and alumina were used as solid substrates. The pores were filled with water. The results show that the methane permeability through the hydrated pores is strongly dependent on the solid substrate. Detailed analysis of the simulated systems reveals that local properties of confined water, including its structure, and more importantly, evolution of solvation free energy and hydrogen bond structure are responsible for the pronounced differences observed. The simulations are extended to multicomponent systems representative of natural gas, containing methane, ethane, and H2S. The results show that all pores considered have high affinity for H2S, moderate affinity for methane, and low affinity for ethane. The H2S/methane transport selectivity through the hydrated alumina pore is comparable, or superior, to that reported for existing commercial membranes. A multiscale approach was then implemented to demonstrate that a Smoluchowski one-dimensional model is able to reproduce the molecular-level results for short pores when appropriate values for the local self-diffusion coefficients are used as input parameters. We propose that the model can be extended to predict methane transport through uniform hydrated pores of macroscopic length. When verified by experiments, our simulation results could have important implications in applications such as natural gas sweetening and predictions of methane migration through hydraulically fractured shale formations. PMID:27490280

  20. Buffering of Marshall Sandstone pore waters by mineral-water interactions in the overlying glacial drift

    SciTech Connect

    Sibley, D.F.; Westjohn, D.B.; Long, D.T. . Dept. of Geological Sciences Geological Survey, Lansing, MI . Michigan Basin RASA)

    1994-04-01

    The salinity of pore waters in the Marshall Sandstone increases by three orders in magnitude from basin margin to center. Chlorite, dolomite-ankerite and kaolinite cements in the Marshall were analyzed to determine if these cements reflect this salinity gradient. One test of the hypothesis that cements reflect the present pore water salinity gradient is the distribution of cements. If kaolinite formed by influx of freshwater into the Marshall from the basin periphery the distribution of kaolinite would parallel distribution of salinity. However, kaolinite is common in brine bearing and freshwater bearing samples. Another consequence of freshwater recharge from the basin periphery could be dissolution of dolomite-ankerite cements. However, SEM analyses of dolomite-ankerite cements show no evidence of dissolution. Lack of apparent mineral alteration in response to the strong salinity gradient can be explained by the fact that freshwater recharges the Marshall Sandstone through glacial drift. As a result of drift-water interactions, recharge to the Marshall Sandstone may be close to equilibrium with the major diagenetic phases.

  1. Pore-Water Extraction Intermediate-Scale Laboratory Experiments and Numerical Simulations

    SciTech Connect

    Oostrom, Martinus; Freedman, Vicky L.; Wietsma, Thomas W.; Truex, Michael J.

    2011-06-30

    A series of flow cell experiments was conducted to demonstrate the process of water removal through pore-water extraction in unsaturated systems. In this process, a vacuum (negative pressure) is applied at the extraction well establishing gas and water pressure gradients towards the well. The gradient may force water and dissolved contaminants, such as 99Tc, to move towards the well. The tested flow cell configurations consist of packings, with or without fine-grained well pack material, representing, in terms of particle size distribution, subsurface sediments at the SX tank farm. A pore water extraction process should not be considered to be equal to soil vapor extraction because during soil vapor extraction, the main goal may be to maximize gas removal. For pore water extraction systems, pressure gradients in both the gas and water phases need to be considered while for soil vapor extraction purposes, gas phase flow is the only concern. In general, based on the limited set (six) of flow experiments that were conducted, it can be concluded that pore water extraction rates and cumulative outflow are related to water content, the applied vacuum, and the dimensions of the sediment layer providing the extracted water. In particular, it was observed that application of a 100-cm vacuum (negative pressure) in a controlled manner leads to pore-water extraction until the water pressure gradients towards the well approach zero. Increased cumulative outflow was obtained with an increase in initial water content from 0.11 to 0.18, an increase in the applied vacuum to 200 cm, and when the water-supplying sediment was not limited. The experimental matrix was not sufficiently large to come to conclusions regarding maximizing cumulative outflow.

  2. Dynamics of pore-water and salt in estuarine marshes subjected to tide and evaporation

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Shen, C.; Li, L.; Lockington, D. A.

    2015-12-01

    Salt dynamics in estuarine tidal marshes are strongly associated with their intrinsic hydrological processes and ecological behaviors, which are not well understood. Numerical simulations were carried out to investigate the transport and distribution of pore water and salt in a vertical cross section perpendicular to the tidal creek that subjects to spring-neap tide and evaporation. Vaporizing pore water from unsaturated soil surface with salt left in soils, the time-variant actual evaporation is affected by aerodynamic factors as well as soil conditions, including pore-water saturation, solute concentration and the thickness of salt precipitation above the soil surface (efflorescence). Different simulation cases were performed by adjusting the tidal signal, marsh platform slope and soil properties. The simulation analysis indicates that, the tide-averaged soil salinity increases with the reduction of inundation period in a spring-neap tide cycle. As the salt accumulated by evaporation could leave soil from seepage back to seawater during ebbtide, the pore-water salinity at the surface within the tidal range remains close to that of seawater. With the presence of hyper-saline soil and efflorescence, salt flat develops only in the area where capillary connection between evaporating surface and water-saturated soil is maintained while tidal inundation absent. On the contrary, the sandy supratidal marsh where hydrological connections are disrupted keeps a relatively low soil salinity (40-60 ppt) and pore-water saturation as evaporation remains low throughout the tidal cycles.

  3. Dynamics of ethanol and water mixtures observed in a self-adjusting molecularly thin slit pore.

    PubMed

    Severin, N; Sokolov, I M; Rabe, J P

    2014-04-01

    The structure of multicomponent fluids in confined geometries is a key to understanding their properties. However, it remains an experimental challenge to gain molecular-scale resolution information on this structure. Here we show that mono- and multilayers of graphene, conforming to heterogeneous monolayers of molecules in a flexible slit pore between a mica surface and the graphene layers, allow for mapping the phase separation of water and ethanol within such a slit pore. Employing scanning force microscopy, we readily distinguish clusters of ethanol and water molecules due their different sizes, and we show that the phase separated water-ethanol structures become coarser under thicker graphenes. Moreover, we obtain a lower bound for the two-dimensional diffusion coefficient of ethanol in water of D ≥ 2 × 10(-14) m(2) s(-1). Thus, the molecularly thin slit pore provides a powerful tool to control and to investigate mixed fluids in self-adjusting nanopores.

  4. Sediment Core Sectioning and Extraction of Pore Waters under Anoxic Conditions.

    PubMed

    Keimowitz, Alison R; Zheng, Yan; Lee, Ming-Kuo; Natter, Michael; Keevan, Jeffrey

    2016-01-01

    We demonstrate a method for sectioning sediment cores and extracting pore waters while maintaining oxygen-free conditions. A simple, inexpensive system is built and can be transported to a temporary work space close to field sampling site(s) to facilitate rapid analysis. Cores are extruded into a portable glove bag, where they are sectioned and each 1-3 cm thick section (depending on core diameter) is sealed into 50 ml centrifuge tubes. Pore waters are separated with centrifugation outside of the glove bag and then returned to the glove bag for separation from the sediment. These extracted pore water samples can be analyzed immediately. Immediate analyses of redox sensitive species, such as sulfide, iron speciation, and arsenic speciation indicate that oxidation of pore waters is minimal; some samples show approximately 100% of the reduced species, e.g. 100% Fe(II) with no detectable Fe(III). Both sediment and pore water samples can be preserved to maintain chemical species for further analysis upon return to the laboratory. PMID:27023267

  5. Mapping the fluid flow of the Mariana Mounds ridge flank hydrothermal system: Pore water chemical tracers

    SciTech Connect

    Wheat, C.G.; McDuff, R.E.

    1995-05-10

    The authors present a conceptual model of fluid circulation in a ridge flank hydrothermal system, the Mariana Mounds. The model is based on chemical data from pore waters extracted from piston cores and from push cores collected by deep-sea research vessel Alvin in small, meter-sized mounds situated on a local topographic high. These mounds are located within a region of heat flow exceeding that calculated from a conductive model and are zones of strong pore water upflow. The authors have interpreted the chemical data with time-dependent transport-reaction models to estimate pore water velocities. In the mounds themselves pore water velocities reach several meters per year to kilometers per year. Within about 100 m from these zones of focused upflow velocities decrease to several centimeters per year up to tens of centimeters per year. A large area of low heat flow surrounds these heat flow and topographic highs, with upwelling pore water velocities less than 2 cm/yr. In some nearby cores, downwelling of bottom seawater is evident but at speeds less than 2 cm/yr. Downwelling through the sediments appears to be a minor source of seawater recharge to the basaltic basement. The authors conclude that the principal source of seawater recharge to basement is where basement outcrops exist, most likely a scarpt about 2-4 km to the east and southeast of the study area. 71 refs., 14 figs., 3 tabs.

  6. Rare earth element geochemistry in cold-seep pore waters of Hydrate Ridge, northeast Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Himmler, Tobias; Haley, Brian A.; Torres, Marta E.; Klinkhammer, Gary P.; Bohrmann, Gerhard; Peckmann, Jörn

    2013-07-01

    The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reduction as dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE (∑REE) concentrations is evident immediately below the sediment-water interface, which can be related to early diagenetic release of REEs into pore water resulting from the re-mineralization of particulate organic matter. The highest pore water ∑REE concentrations were measured close to the sediment-water interface at ~2 cm depth. Distinct shale-normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shale-normalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in ∑REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.

  7. Effect of the hydroaffinity and topology of pore walls on the structure and dynamics of confined water

    SciTech Connect

    Harrach, Michael F. Klameth, Felix; Drossel, Barbara; Vogel, Michael

    2015-01-21

    We perform molecular dynamics simulations to observe the structure and dynamics of SPC/E water in amorphous silica pores and amorphous ice pores with radii slightly larger than 10 Å. In addition to atomically rough pores, we construct completely smooth pores such that the potential felt at a given distance from the pore wall is an averaged atomic potential. As compared to rough walls, smooth walls induce stronger distortions of water structure for both silica and ice confinements. On the other hand, unlike the smooth pores, the rough pores strongly slow down water dynamics at the pore wall. The slowdown vanishes when reducing the atomic charges in the wall, i.e., when varying the hydroaffinity, while keeping the surface topology, indicating that it is not a geometric effect. Rather, it is due to the fact that the wall atoms provide a static energy landscape along the surface, e.g., fixed anchor-points for hydrogen bonds, to which the water molecules need to adapt, blocking channels for structural rearrangement. In the smooth pores, water dynamics can be faster than in the bulk liquid not only at the pore wall but also in the pore center. Changes in the tetrahedral order rather than in the local density are identified as the main cause for this change of the dynamical behavior in the center of smooth pores.

  8. A simple pore water hydrogen diffusion syringe sampler

    USGS Publications Warehouse

    Vroblesky, D.A.; Chapelle, F.H.; Bradley, P.M.

    2007-01-01

    Molecular hydrogen (H2) is an important intermediate product and electron donor in microbial metabolism. Concentrations of dissolved H 2 are often diagnostic of the predominant terminal electron-accepting processes in ground water systems or aquatic sediments. H2 concentrations are routinely measured in ground water monitoring wells but are rarely measured in saturated aquatic sediments due to a lack of simple and practical sampling methods. This report describes the design and development (including laboratory and field testing) of a simple, syringe-based H 2 sampler in (1) saturated, riparian sediments, (2) surface water bed sediments, and (3) packed intervals of a fractured bedrock borehole that are inaccessible by standard pumped methods. ?? 2007 National Ground Water Association.

  9. Characterizing pore sizes and water structure in stimuli-responsive hydrogels

    SciTech Connect

    Hoffman, A.S.; Antonsen, K.P.; Ashida, T.; Bohnert, J.L.; Dong, L.C.; Nabeshima, Y.; Nagamatsu, S.; Park, T.G.; Sheu, M.S.; Wu, X.S.; Yan, Q.

    1993-12-31

    Hydrogels have been extensively investigated as potential matrices for drug delivery. In particular, hydrogels responsive to pH and temperature changes have been of greatest interest most recently. Proteins and peptide drugs are especially relevant for delivery from such hydrogel matrices due to the relatively {open_quotes}passive{close_quotes} and biocompatible microenvironment which should exist within the hydrogel aqueous pores. The large molecular size of many proteins requires an interconnected large pore structure. Furthermore, the gel pore {open_quotes}walls{close_quotes} should not provide hydrophobic sites for strong interactions with proteins. In the special case of ion exchange release the protein would be attracted by opposite charges on the polymer backbones. Therefore, it is important both to control and to characterize the pore structure and the water character within a hydrogel to be used or protein or peptide drug delivery. This talk will critically review techniques for estimating these two key parameters in hydrogels.

  10. Effects of macro-pores on water flow in coastal subsurface drainage systems

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Yu, Xiayang; Lu, Chunhui; Li, Ling

    2016-01-01

    Leaching through subsurface drainage systems has been widely adopted to ameliorate saline soils. The application of this method to remove salt from reclaimed lands in the coastal zone, however, may be impacted by macro-pores such as crab burrows, which are commonly distributed in the soils. We developed a three-dimensional model to investigate water flow in subsurface drainage systems affected by macro-pores distributed deterministically and randomly through Monte Carlo simulations. The results showed that, for subsurface drainage systems under the condition of continuous surface ponding, macro-pores increased the hydraulic head in the deep soil, which in turn reduced the hydraulic gradient between the surface and deep soil. As a consequence, water infiltration across the soil surface was inhibited. Since salt transport in the soil is dominated by advection, the flow simulation results indicated that macro-pores decreased the efficiency of salt leaching by one order of magnitude, in terms of both the elapsed time and the amount of water required to remove salt over the designed soil leaching depth (0.6 m). The reduction of the leaching efficiency was even greater in drainage systems with a layered soil stratigraphy. Sensitivity analyses demonstrated that with an increased penetration depth or density of macro-pores, the leaching efficiency decreased further. The revealed impact of macro-pores on water flow represents a significant shortcoming of the salt leaching technique when applied to coastal saline soils. Future designs of soil amelioration schemes in the coastal zone should consider and aim to minimize the bypassing effect caused by macro-pores.

  11. Prediction of pore-water pressure response to rainfall using support vector regression

    NASA Astrophysics Data System (ADS)

    Babangida, Nuraddeen Muhammad; Mustafa, Muhammad Raza Ul; Yusuf, Khamaruzaman Wan; Isa, Mohamed Hasnain

    2016-05-01

    Nonlinear complex behavior of pore-water pressure responses to rainfall was modelled using support vector regression (SVR). Pore-water pressure can rise to disturbing levels that may result in slope failure during or after rainfall. Traditionally, monitoring slope pore-water pressure responses to rainfall is tedious and expensive, in that the slope must be instrumented with necessary monitors. Data on rainfall and corresponding responses of pore-water pressure were collected from such a monitoring program at a slope site in Malaysia and used to develop SVR models to predict pore-water pressure fluctuations. Three models, based on their different input configurations, were developed. SVR optimum meta-parameters were obtained using k-fold cross validation and a grid search. Model type 3 was adjudged the best among the models and was used to predict three other points on the slope. For each point, lag intervals of 30 min, 1 h and 2 h were used to make the predictions. The SVR model predictions were compared with predictions made by an artificial neural network model; overall, the SVR model showed slightly better results. Uncertainty quantification analysis was also performed for further model assessment. The uncertainty components were found to be low and tolerable, with d-factor of 0.14 and 74 % of observed data falling within the 95 % confidence bound. The study demonstrated that the SVR model is effective in providing an accurate and quick means of obtaining pore-water pressure response, which may be vital in systems where response information is urgently needed.

  12. Scaling Soil Microbe-Water Interactions from Pores to Ecosystems

    NASA Astrophysics Data System (ADS)

    Manzoni, S.; Katul, G. G.

    2014-12-01

    The spatial scales relevant to soil microbial activity are much finer than scales relevant to whole-ecosystem function and biogeochemical cycling. On the one hand, how to link such different scales and develop scale-aware biogeochemical and ecohydrological models remains a major challenge. On the other hand, resolving these linkages is becoming necessary for testing ecological hypotheses and resolving data-theory inconsistencies. Here, the relation between microbial respiration and soil moisture expressed in water potential is explored. Such relation mediates the water availability effects on ecosystem-level heterotrophic respiration and is of paramount importance for understanding CO2 emissions under increasingly variable rainfall regimes. Respiration has been shown to decline as the soil dries in a remarkably consistent way across climates and soil types (open triangles in Figure). Empirical models based on these respiration-moisture relations are routinely used in Earth System Models to predict moisture effects on ecosystem respiration. It has been hypothesized that this consistency in microbial respiration decline is due to breakage of water film continuity causing in turn solute diffusion limitations in dry conditions. However, this hypothesis appears to be at odds with what is known about soil hydraulic properties. Water film continuity estimated from soil water retention (SWR) measurements at the 'Darcy' scale breaks at far less negative water potential (<-0.1 MPa) levels than where microbial respiration ceases (approximately -15 MPa) as shown in the Figure (violet frequency distribution). Also, this threshold point inferred from SWR shows strong texture dependence, in contrast to the respiration curves. Employing theoretical tools from percolation theory, it is demonstrated that hydrological measurements can be spatially downscaled at a micro-level relevant to microbial activity. Such downscaling resolves the inconsistency between respiration thresholds and

  13. Geochemical dynamics of the Atlantis II Deep (Red Sea): II. Composition of metalliferous sediment pore waters

    NASA Astrophysics Data System (ADS)

    Anschutz, Pierre; Blanc, Gérard; Monnin, Christophe; Boulègue, Jacques

    2000-12-01

    The Atlantis II Deep is an axial depression of the Red Sea filled with highly saline brines and covered by layered metalliferous sediment. We report new data on the vertical distribution of major salts and trace metals dissolved in the pore waters of the metalliferous sediments. We have studied the chemical composition of interstitial waters of two sediment cores of the western (core 684) and southwestern (core 683) basins. The major dissolved elements are Na and Cl. Their concentrations are close to those of the brine overlying the sediment. The pore waters are undersaturated with respect to halite at the in situ conditions (62°C, 220 bars), but are saturated at the shipboard conditions (10°C, 1 bar). The salt and water contents of the bulk sediment show that core 683 contained halite in the solid fraction. A part of it precipitated after core collection, but most of it was present in situ. Thermodynamic calculations with a water-rock interaction model based on Pitzer's ion interaction approach reveal that equilibrium between the pore waters and anhydrite is achieved in sediment layers for which observations report the presence of this mineral. We used a transport model, which shows that molecular diffusion can smooth the profile of dissolved salt and partly erase the pore water record of past variations of salinity in the lower brine. For example, we calculated that the pore water record of modern variation of brine salinity is rapidly smoothed by molecular diffusion. The dissolved transition metals show large variations with depth in the interstitial waters. The profiles of core 683 reflect the possible advection of hydrothermal fluid within the sediment of the southwestern basin. The distribution of dissolved metals in core 684 is the result of diagenetic reactions, mainly the reduction of Mn-oxide with dissolved Fe(II), the recrystallization of primary oxide minerals, and the precipitation of authigenic Mn-carbonates.

  14. Water Imbibition into Rock as Affected by Sample Shape, Pore, Conductivity, and Antecedent Water Content

    SciTech Connect

    R.P. Ewing

    2005-08-29

    Infiltration is often presumed to follow Philip's equation, I = st{sup 1/2}, where I is cumulative infiltration, s is sorptivity, and t is time. This form of the equation is appropriate for short times, and/or for negligible gravitational effects. For a uniform soil, this equation describes a plot of log(mass imbibed) versus log(time), with a slope (imbibition exponent) of 1/2. The equation has also been applied to low-porosity rocks, where the extremely small pores render gravitational forces negligible. Experiments recently performed on a wide variety of rocks produced imbibition exponents from 0.2 to 0.5. Many rock types showed initial imbibition proceeding as I {approx} t{sup 1/4}, then later switched to ''normal'' (t{sup 1/2}) behavior. The distance to the wetting front that corresponds to this cross-over behavior was found to be related to the sample shape: tall thin samples are more likely to exhibit the exponent 1/4, and to cross over to 1/2-type behavior later, while short, squat samples are less likely to display the 1/4-type behavior at all. Additionally, the exponents are sensitive to antecedent water content, with initially wetter samples having smaller values. In this study, we present the experimental data, and provide a consistent and physically-based explanation using percolation theory. The analogy between imbibition and diffusion is used to model imbibition into samples with low pore connectivity, with the exponents and their crossover behavior emerging from a random walk process. All laboratory phenomena--different exponents, crossover behavior, and effects of sample shape and antecedent water content--are reproduced by the model, with similar patterns across experiment and simulation. We conclude both that diffusion is a useful and powerful conceptual model for understanding imbibition, and also that imbibition experiments, being simpler than diffusion measurements, can be used to examine diffusive behavior in rock.

  15. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    SciTech Connect

    Truex, Michael J.; Oostrom, Martinus

    2013-09-01

    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  16. Pore water profiles and early diagenesis of Mn, Cu, and Pb in sediments from large lakes

    SciTech Connect

    McKee, J.D.; Wilson, T.P.; Long, D.T.; Owen, R.M.

    1989-01-01

    Mn, Cu, and Pb were measured in pore waters at a site in the Caribou sub-basin Lake Superior. The pore water profiles show evidence for the post-depositional mobility of the metals, consistent with interpretations made from sediment concentration profiles. The pore water and sediment concentration profiles of Mn appear to be diagenetically linked. Diagenetic modeling results indicate that the measured profiles are not in a steady-state relationship. The cause of the non-steady-state conditions is unclear but may be related to recent changes in sedimentation rates and in Mn/sup 2 +/ oxidation rates. Flux estimates for Cu and Pb show that these metals could be diffusing from the sediment to overlying water. The decomposition or organic matter is suggested as a source for the metals. A significant amount of Cu and Pb brought to the sediment surface during sedimentation appears to be recycled to the pore waters. This suggests that concentration profiles of these metals in the sediment may not be reliable indicators of the timing and amounts of anthropogenic metal input to Lake Superior.

  17. Effects of soil stratigraphy on pore-water flow in a creek-marsh system

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Kong, Jun; Li, Ling; Barry, D. A.

    2012-12-01

    SummaryIn coastal marshes, low-permeability mud is often found overlying high permeability sandy deposits. A recently developed 3D creek-marsh model was used to investigate the effects of soil stratigraphy (a mud layer overlying a sandy-loam layer) on pore-water flow in the marsh. Simulation results showed significant modifications of tide-induced pore-water flow due to the layered soil. The presence of the lower sandy-loam layer with a relatively high hydraulic conductivity not only increased the pore-water flow speed but also changed the flow direction, particularly in the upper mud layer where enhanced vertical flow dominated. Particle tracking revealed large changes in the overall pore-water circulation pattern, and associated particle travel path and time due to the influence of the soil stratigraphy. While the amount of water exchange between the marsh soil and tidal water increased, the residence time of particles in both soil layers was reduced. Sensitivity analysis showed the importance of soil compressibility, capillary rise and hydraulic conductivity contrast between the soil layers in modulating the effect of soil stratigraphy. In particular, the total net influx and efflux across the marsh surface (including the creek/channel bank and bed) increased proportionally with the square root of the lower layer's hydraulic conductivity. These results demonstrated the interplay of tides, marsh topography and soil stratigraphy in controlling the pore-water flow characteristics, which underpin solute transport and transformation as well as the aeration condition in the marsh soil.

  18. Polymerization and Functionalization of Membrane Pores for Water Related Applications

    PubMed Central

    2015-01-01

    Poly(vinylidene fluoride) (PVDF) was modified by chemical treatments in order to create active double bonds to obtain covalent grafting of poly(acrylic acid) (PAA) on membrane. The attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectrum confirms the formation of conjugated C=C double bonds with surface dehydrofluorination. The membrane morphology was studied by scanning electron microscopy (SEM). The surface composition was characterized by X-ray photoelectron spectroscopy (XPS). The thermal stability of the dehydrofluorinated membrane (Def-PVDF) and functionalized membranes were investigated by differential scanning calorimetry (DSC) analysis. The influence of covalently attached PAA on Def-PVDF membrane has been investigated to determine its effect on the transport of water and charged solute. Variations in the solution pH show an effect on both permeability and solute retention in a reversible fashion. Metal nanoparticles were also immobilized in the membrane for the degradation of toxic chlorinated organics from water. In addition, PVDF membranes with an asymmetric and sponge-like morphology were developed by immersion-precipitation phase-inversion methods in both lab-scale and large-scale. The new type of spongy PVDF membrane shows high surface area with higher yield of PAA functionalization. The ion-capacity with Ca2+ ions was also investigated. PMID:26074669

  19. Distribution of dissolved silver in marine waters

    NASA Astrophysics Data System (ADS)

    Barriada, J. L.; Achterberg, E. P.; Tappin, A.; Truscott, J.

    2003-04-01

    Silver is one of the most toxic heavy metals, surpassed only by mercury [1-3]. Monitoring of dissolved silver concentrations in natural waters is therefore of great importance. The determination of dissolved silver in waters is not without challenges, because of its low (picomolar) concentrations. Consequently, there are only a few reported studies in marine waters, which have been performed in USA [4-6] and Japan [7]. The analytical techniques used in the reported studies for the determination of silver in seawater were Graphite Furnace Atomic Absorption Spectroscopy (GFAAS) after solvent extraction [2,4,5], and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) after solvent extraction or solid phase extraction [7,8]. In this contribution, we will present an optimised Magnetic Sector (MS) ICP-MS technique for the determination of dissolved silver in marine waters. The MS-ICP-MS method used anion exchange column to preconcentrate silver from saline waters, and to remove the saline matrix. The ICP-MS method has been used successfully to determine total dissolved silver in estuarine and oceanic samples. Bibliography 1. H. T. Ratte, Environ. Toxicol. Chem. 1999, 18: p. 89-108. 2. R. T. Herrin, A. W. Andren and D. E. Armstrong, Environ. Sci. Technol. 2001, 35: 1953-1958. 3. D. E. Schildkraut, P. T. Dao, J. P. Twist, A. T. Davis and K. A. Robillard, Environ. Toxicol. Chem. 1998, 17: 642-649. 4. E. Breuer, S. A. Sanudo-Wilhelmy and R. C. Aller, Estuaries. 1999, 22:603-615. 5. A. R. Flegal, S. A. Sanudowilhelmy and G. M. Scelfo, Mar. Chem. 1995, 49: 315-320. 6. S. N. Luoma, Y. B. Ho and G. W. Bryan, Mar. Pollut. Bull. 1995, 31: 44-54. 7. Y. Zhang, H. Amakawa and Y. Nozaki, Mar. Chem. 2001, 75: 151-163. 8. L. Yang and R. E. Sturgeon, J. Anal. At. Spectrom. 2002, 17: 88-93.

  20. A multi-level pore-water sampler for permeable sediments

    USGS Publications Warehouse

    Martin, J.B.; Hartl, K.M.; Corbett, D.R.; Swarzenski, P.W.; Cable, J.E.

    2003-01-01

    The construction and operation of a multi-level piezometer (multisampler) designed to collect pore water from permeable sediments up to 230 cm below the sediment-water interface is described. Multisamplers are constructed from 1 1/2 inch schedule 80 PVC pipe. One-quarter-inch flexible PVC tubing leads from eight ports at variable depths to a 1 1/2 inch tee fitting at the top of the PVC pipe. Multisamplers are driven into the sediments using standard fence-post drivers. Water is pumped from the PVC tubing with a peristaltic pump. Field tests in Banana River Lagoon, Florida, demonstrate the utility of multisamplers. These tests include collection of multiple samples from the permeable sediments and reveal mixing between shallow pore water and overlying lagoon water.

  1. Paradoxical One-ion Pore Behavior of the Long β-Helical Peptide of Marine Cytotoxic Polytheonamide B

    NASA Astrophysics Data System (ADS)

    Iwamoto, Masayuki; Matsunaga, Shigeki; Oiki, Shigetoshi

    2014-01-01

    The cytotoxic 48-mer peptide, polytheonamide B (pTB), from a marine sponge forms a β6.3-helix with an inner diameter of 4 Å and a length of 45 Å, features that allow the selective permeation of monovalent cations across targeted cell membranes. To characterize this long, narrow pore, electrophysiological examination using a planar lipid bilayer method was performed. The single-channel current amplitude exhibited saturation for concentrated Cs+ or K+ solution, and the reversal potential in mixed solutions did not exhibit any anomalous mole-fraction behavior. These results suggest the one-ion permeation mechanism. This is in contrast to the short (26 Å) β6.3-helical gramicidin channel, which holds two ions simultaneously. The paradoxical one-ion permeation through the long pTB channel was modeled with a discrete-state Markov model. Ions permeate through the channel by stepping between two binding sites in the pore, but never occupy these sites simultaneously in either pure or mixed ion solution.

  2. Relating soil pore geometry to soil water content dynamics decomposed at multiple frequencies

    NASA Astrophysics Data System (ADS)

    Qin, Mingming; Gimenez, Daniel; Cooper, Miguel

    2016-04-01

    Soil structure is a critical factor determining the response of soil water content to meteorological inputs such as precipitation. Wavelet analysis can be used to filter a signal into several wavelet components, each characterizing a given frequency. The purpose of this research was to investigate relationships between the geometry of soil pore systems and the various wavelet components derived from soil water content dynamics. The two study sites investigated were located in the state of São Paulo, Brazil. Each site was comprised of five soil profiles, the first site was situated along a 300-meter transect with about 10% slope in a tropical semi-deciduous forest, while the second one spanned 230-meter over a Brazilian savanna with a slope of about 6%. For each profile, between two to four Water Content Reflectometer CS615 (Campbell Scientific, Inc.) probes were installed according to horizonation at depths varying between 0.1 m and 2.3 m. Bulk soil, three soil cores, and one undisturbed soil block were sampled from selected horizons for determining particle size distributions, water retention curves, and pore geometry, respectively. Pore shape and size were determined from binary images obtained from resin-impregnated blocks and used to characterize pore geometry. Soil water contents were recorded at a 20-minute interval over a 4-month period. The Mexican hat wavelet was used to decompose soil water content measurements into wavelet components. The responses of wavelet components to wetting and drying cycles were characterized by the median height of the peaks in each wavelet component and were correlated with particular pore shapes and sizes. For instance, large elongated and irregular pores, largely responsible for the transmission of water, were significantly correlated with wavelet components at high frequencies (40 minutes to 48 hours) while rounded pores, typically associated to water retention, were only significantly correlated to lower frequency ranges

  3. Evaporation of J13 and UZ pore waters at Yucca Mountain

    SciTech Connect

    Rosenberg, N D; Gdowski, G E; Knauss, K G

    2000-10-01

    This work is motivated by a need to characterize the chemistry of aqueous films that might form at elevated temperatures on engineered components at the potential high-level, nuclear-waste repository at Yucca Mountain, Nevada. Such aqueous films might form through evaporation of water that seeps into the drifts, or by water vapor absorption by hydroscopic salts directly deposited on these components (possibly from previous evaporation events or possibly from air-blown particles drawn into the drifts through a drift ventilation system). There is no consensus at this time on the chemical composition of water that might come in contact with engineered components at Yucca Mountain. Two possibilities have received the most attention: well J13 water and pore waters from the unsaturated zone (UZ) above the repository horizon. These waters represent the two major types of natural waters at Yucca Mountain. Well J13 water is a dilute Na-HCO{sub 3}-CO{sub 3} water, representative of regional perched water and groundwater. The UZ pore waters are Ca-Cl-SO{sub 4}-rich waters with a higher dissolved ion content. These waters are less well-characterized. We have studied the evaporative evolution of these two major types of waters through a series of open system laboratory experiments, with and without crushed repository-horizon tuff present, conducted at sub-boiling temperatures (75 C-85 C).

  4. Benthic fluxes and pore water studies from sediments of the central equatorial north Pacific: Nutrient diagenesis

    SciTech Connect

    Berelson, W.M.; Hammond, D.E.; Xu, X. ); O'Neill, D. Dames and Moore, Los Angeles, CA ); Chin, C. Moss Landing Marine Lab., CA ); Zukin, J. Dames and Moore, Goleta, CA )

    1990-11-01

    Benthic exchange rates of radon-222, oxygen, nitrate, ammonia, and silica were determined using an in situ benthic flux chamber and by modeling pore water profiles at three sites in the central equatorial north Pacific. A comparison of these results reveals several artifacts of pore water collection and processing. Whole-core squeezer (WCS) silica profiles are influenced by adsorption during squeezing and yield calculated fluxes that are too large. Pore water ammonia profiles show near-surface maxima that appear to be an artifact of core recovery. Near-surface nitrate measurements may also be suspect due to oxidation of the ammonia released, causing anomalously large nitrate gradients that yield over-estimates of benthic exchange rates. Fluxes of radon, oxygen, and nitrate calculated from WCS profiles agree with chamber fluxes to better than 40% at all sites. Fluxes of silica and nitrate calculated from pore water data collected at coarser scales (> 1 cm intervals) agree within 50% with chamber measurements. previous flux estimates from pore water and solid phase models established at two of these sites using data collected 6 years prior to this work differ from these chamber measurements, in some cases by up to a factor of 5 due to modeling uncertainties and temporal variabilities in the delivery of organic matter to a site. The benthic oxygen consumption rates measured at these sites are similar (they average 0.36 {plus minus} 0.03 mmol m{sup {minus}2} day{sup {minus}1}) and are consistent with a trend of oxygen uptake vs. water depth previously established by others on a transect through the oligotrophic north Pacific gyre.

  5. Pore-water pressures associated with clogging of soil pipes: Numerical analysis of laboratory experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clogging of soil pipes due to excessive internal erosion has been hypothesized to cause extreme erosion events such as landslides, debris flows, and gullies, but confirmation of this phenomenon has been lacking. Laboratory and field measurements have failed to measure pore water pressures within pip...

  6. Assessment of metal toxicity in sediment pore water from Lake Macquarie, Australia.

    PubMed

    Doyle, C J; Pablo, F; Lim, R P; Hyne, R V

    2003-04-01

    Recent investigations into the level of heavy metal enrichment in the sediments of Lake Macquarie have indicated that significant contamination has occurred over the past 100 years, with elevated levels of lead, zinc, cadmium, copper, and selenium being observed in most parts of the lake. Pore water extracted from sediments showing the greatest contamination by these metals exhibited toxicity to the larval development of the sea urchin Heliocidaris tuberculata. However, an analysis of pore water metal concentrations revealed that the concentrations of these metals were too low to cause toxicity. Rather, pore water toxicity was highly correlated with manganese for the majority of sites sampled; subsequent spiking experiments confirmed manganese as a cause of toxicity. Current levels of manganese in the sediments of Lake Macquarie have arisen from natural sources and are not the result of anthropogenic activities. These results reiterate the importance of identifying the causes of toxicity in assessments of sediment contamination, particularly when testing sediment pore waters using sensitive early life stages. PMID:12712294

  7. Influence of silver nanoparticles on heavy metals of pore water in contaminated river sediments.

    PubMed

    Tao, Wei; Chen, Guiqiu; Zeng, Guangming; Yan, Ming; Chen, Anwei; Guo, Zhi; Huang, Zhenzhen; He, Kai; Hu, Liang; Wang, Lichao

    2016-11-01

    Despite the increasing knowledge on the discharge of silver nanoparticles (AgNPs) into the environment and their potential toxicity to microorganisms, the interaction of AgNPs with heavy metals remains poorly understood. This study focused on the effect of AgNPs on heavy metal concentration and form in sediment contaminated with heavy metals from the Xiangjiang River. The results showed that the concentration of Cu, Zn, Pb and Cd decreased and then increased with a change in form. The changes in form and concentrations of heavy metals in pore water suggested that Cu and Zn were more likely to be affected compared to Pb and Cd. The concentrations of Hg in sediment pore water in three AgNPs-dosed containers, increased greatly until they reached their peaks at 4.468 ± 0.133, 4.589 ± 0.235, and 5.083 ± 0.084 μg L(-1) in Bare AgNPs, Citrate AgNPs and Tween 80 AgNPs, respectively. The measurements of Hg concentrations in the sediment pore water, combined with SEM and EDX analysis, demonstrated that added AgNPs stabilized in pore water and formed an amalgam with Hg(0), which can affect Hg transportation over long distance.

  8. Pore Distribution and Water Uptake in a Cenosphere-Cement Paste Composite Material

    NASA Astrophysics Data System (ADS)

    Baronins, J.; Setina, J.; Sahmenko, G.; Lagzdina, S.; Shishkin, A.

    2015-11-01

    Alumina silicate cenospheres (CS) is a significant waste material from power plants that use a coal. Use CS as Portland cement replacement material gives opportunity to control physical and mechanical properties and makes a product lighter and more cost-effective. In the frame of this study, Portland cement paste samples were produced by adding CS in the concentration range from 0 to 40 volume %. Water uptake of hardened samples was checked and pore size distribution by using the mercury porosimetry was determined. In a cold climate where the temperature often falls below 0 °C, it is important to avoid the amount of micrometer sized pores in the final structure and to decrease water absorption capacity of material. In winter conditions, water fills such pores and causes additional stresses to their walls by expansion while freezing. It was found that generally water uptake capacity for cement paste samples decreased up to 20% by increasing the concentration of CS up to 40 volume %, at the same time, the volume of micrometer sized opened pores increases.

  9. Influence of silver nanoparticles on heavy metals of pore water in contaminated river sediments.

    PubMed

    Tao, Wei; Chen, Guiqiu; Zeng, Guangming; Yan, Ming; Chen, Anwei; Guo, Zhi; Huang, Zhenzhen; He, Kai; Hu, Liang; Wang, Lichao

    2016-11-01

    Despite the increasing knowledge on the discharge of silver nanoparticles (AgNPs) into the environment and their potential toxicity to microorganisms, the interaction of AgNPs with heavy metals remains poorly understood. This study focused on the effect of AgNPs on heavy metal concentration and form in sediment contaminated with heavy metals from the Xiangjiang River. The results showed that the concentration of Cu, Zn, Pb and Cd decreased and then increased with a change in form. The changes in form and concentrations of heavy metals in pore water suggested that Cu and Zn were more likely to be affected compared to Pb and Cd. The concentrations of Hg in sediment pore water in three AgNPs-dosed containers, increased greatly until they reached their peaks at 4.468 ± 0.133, 4.589 ± 0.235, and 5.083 ± 0.084 μg L(-1) in Bare AgNPs, Citrate AgNPs and Tween 80 AgNPs, respectively. The measurements of Hg concentrations in the sediment pore water, combined with SEM and EDX analysis, demonstrated that added AgNPs stabilized in pore water and formed an amalgam with Hg(0), which can affect Hg transportation over long distance. PMID:27494311

  10. Salt marsh pore water geochemistry does not correlate with microbial community structure

    NASA Astrophysics Data System (ADS)

    Koretsky, Carla M.; Van Cappellen, Philippe; DiChristina, Thomas J.; Kostka, Joel E.; Lowe, Kristi L.; Moore, Charles M.; Roychoudhury, Alakendra N.; Viollier, Eric

    2005-01-01

    Spatial and temporal trends in pore water geochemistry and sediment microbial community structure are compared at three intertidal sites of a saltmarsh on Sapelo Island, GA. The sites include a heavily bioturbated, unvegetated creek bank, a levee with dense growth of Spartina alterniflora, and a more sparsely vegetated ponded marsh site. The redox chemistry of the pore waters ranges from sulfide-dominated at the ponded marsh site to suboxic at the creek bank site. At the three sites, the vertical redox stratification of the pore waters is more compressed in summer than in winter. The trends in redox chemistry reflect opposing effects of sediment respiration and pore water irrigation. Intense and deep burrowing activity by fiddler crabs at the creek bank site results in the efficient oxidation of reduced byproducts of microbial metabolism and, hence, the persistence of suboxic conditions to depths of 50 cm below the sediment surface. Increased supply of labile organic substrates at the vegetated sites promotes microbial degradation processes, leading to sharper redox gradients. At the levee site, this is partly offset by the higher density and deeper penetration of roots and macrofaunal burrows. Surprisingly, the microbial community structure shows little correlation with the variable vertical redox zonation of the pore waters across the saltmarsh. At the three sites, the highest population densities of aerobic microorganisms, iron- plus manganese-reducing bacteria, and sulfate reducers coexist within the upper 10 cm of sediment. The absence of a clear vertical separation of these microorganisms is ascribed to the high supply of labile organic matter and intense mixing of the topmost sediment via bioturbation.

  11. Water Desalination Using Nanoporous Single-Layer Graphene with Tunable Pore Size

    SciTech Connect

    Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; Unocic, Raymond R.; Veith, Gabriel M.; Dai, Sheng; Mahurin, Shannon Mark

    2015-03-23

    Graphene has great potential to serve as a separation membrane due to its unique properties such as chemical and mechanical stability, flexibility and most importantly its one-atom thickness. In this study, we demonstrate first experimental evidence of the use of single-layer porous graphene as a desalination membrane. Nanometer-sized pores are introduced into single layer graphene using a convenient oxygen plasma etching process that permits tuning of the pore size. The resulting porous graphene membrane exhibited high rejection of salt ions and rapid water transport, thus functioning as an efficient water desalination membrane. Salt rejection selectivity of nearly 100% and exceptionally high water fluxes exceeding 105 g m-2 s-1 at 40 C were measured using saturated water vapor as a driving force.

  12. Water Desalination Using Nanoporous Single-Layer Graphene with Tunable Pore Size

    DOE PAGESBeta

    Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; Unocic, Raymond R.; Veith, Gabriel M.; Dai, Sheng; Mahurin, Shannon Mark

    2015-03-23

    Graphene has great potential to serve as a separation membrane due to its unique properties such as chemical and mechanical stability, flexibility and most importantly its one-atom thickness. In this study, we demonstrate first experimental evidence of the use of single-layer porous graphene as a desalination membrane. Nanometer-sized pores are introduced into single layer graphene using a convenient oxygen plasma etching process that permits tuning of the pore size. The resulting porous graphene membrane exhibited high rejection of salt ions and rapid water transport, thus functioning as an efficient water desalination membrane. Salt rejection selectivity of nearly 100% and exceptionallymore » high water fluxes exceeding 105 g m-2 s-1 at 40 C were measured using saturated water vapor as a driving force.« less

  13. Pore-water isotopic compositions and unsaturated-zone flow, Yucca Mountain, Nevada

    SciTech Connect

    Yang, In C.

    2001-04-29

    Isotopic compositions of core-water samples from boreholes USW SD-6 and USW WT-24 indicate that recent water has been introduced at depth. Tritium, carbon, oxygen, and deuterium isotopic compositions all support younger water at depth in the two boreholes. Peaks in tritium concentrations in pore-water samples, indicating younger water than the other samples, observed near the basal vitrophyre of the Topopah Spring Tuff and at the bottom of the CHF and the top of the PP in both boreholes SD-6 and WT-24. Larger {sup 14}C activities in two pore-water samples from WT-24 at the bottom of the CHF and the top of the PP indicate younger water than in other samples from WT-24. More positive {delta}{sup 18}O and {delta}D values indicate younger water in samples of pore water at the bottom of the CHF in boreholes SD-6 and WT-24. The isotopic compositions indicating younger water at depth in boreholes SD-6 and WT-24 occur at the basal vitrophyre zone of the Topopah Spring Tuff and the bottom of the CHF/upper part of the PP, probably from lateral preferential flow through connected fractures (fast-flow paths). The source of the young water at borehole WT-24 probably was recharge from The Prow to the north, which then flowed laterally southward through the highly fractured TSw. The source of the young water at borehole SD-6 probably was water flow from the Solitario Canyon fault to the west, which then flowed laterally through the TSw and CHF.

  14. A method for estimating pore water drainage from marsh soils using rainfall and well records

    NASA Astrophysics Data System (ADS)

    Gardner, Leonard Robert; Gaines, Emily F.

    2008-08-01

    Rainfall events during low tide exposure cause the water table in marshes to rise. If one has long time series of both rain events and water levels in wells along transects from creek bank to marsh interior, one can correlate well response with rain amount. In cases examined so far the well response is found to be a linear function of rain amount. As it is reasonable to assume that the amount of tidal infiltration required to restore the water table to the elevation of the marsh surface is equal to the amount of rain that would be required to do so, one can estimate the annual drainage of pore water from a well site by dividing the mean drawdown of the water table at low tide by the slope of the response versus rain regression and then multiplying the result by the number of tidal drawdowns in a year. Integration of such results along the transect then gives an estimate of the total annual drainage. An example of the use of this method is given for two well transects in a Typha and a Spartina marsh at the Plum Island Estuary Long Term Ecological Research (PIE-LTER) site in Massachusetts, USA. Both transects yielded pore water drainage rates of about 160 m 3 year -1 per meter of channel length. Although the annual volume of pore water drainage is small compared to the annual volume of the tidal prism, its impact on nutrient budgets in the estuary could be large because of the high concentrations of nutrients in marsh pore waters. We also discuss the possible effects of the capillary fringe, air entrapment and tidal forcing during rain events on these results.

  15. A Lattice Boltzmann model for simulating water flow at pore scale in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxian; Crawford, John W.; Young, Iain M.

    2016-07-01

    The Lattice Boltzmann (LB) method is an established prominent model for simulating water flow at pore scale in saturated porous media. However, its application in unsaturated soil is less satisfactory because of the difficulties associated with most two-phase LB models in simulating immiscible fluids, such as water and air, which have contrasting densities and viscosities. While progress has been made in developing LB models for fluids with high density ratio, they are still prone to numerical instability and cannot accurately describe the interfacial friction on water-air interface in unsaturated media. Considering that one important application of the LB model in porous materials is to calculate their hydraulic properties when flow is at steady state, we develop a simple LB model to simulate steady water flow at pore scale in unsaturated soils. The method consists of two steps. The first one is to determine water distribution within the soil structure using a morphological model; once the water distribution is known, its interfaces with air are fixed. The second step is to use a single-phase LB model to simulate water flow by treating the water-air interfaces as free-flow boundaries where the shear resistance of air to water flow is assumed to be negligible. We propose a method to solve such free-flow boundaries, and validate the model against analytical solutions of flows of water film over non-slip walls in both two and three dimensions. We then apply the model to calculate water retention and hydraulic properties of a medium acquired using X-ray computed tomography at resolution of 6 μm. The model is quasi-static, similar to the porous network model, but is an improvement as it directly simulates water flow in the pore geometries acquired by tomography without making any further simplifications.

  16. Temporal and Spatial Pore Water Pressure Distribution Surrounding a Vertical Landfill Leachate Recirculation Well

    PubMed Central

    Kadambala, Ravi; Townsend, Timothy G.; Jain, Pradeep; Singh, Karamjit

    2011-01-01

    Addition of liquids into landfilled waste can result in an increase in pore water pressure, and this in turn may increase concerns with respect to geotechnical stability of the landfilled waste mass. While the impact of vertical well leachate recirculation on landfill pore water pressures has been mathematically modeled, measurements of these systems in operating landfills have not been reported. Pressure readings from vibrating wire piezometers placed in the waste surrounding a liquids addition well at a full-scale operating landfill in Florida were recorded over a 2-year period. Prior to the addition of liquids, measured pore pressures were found to increase with landfill depth, an indication of gas pressure increase and decreasing waste permeability with depth. When liquid addition commenced, piezometers located closer to either the leachate injection well or the landfill surface responded more rapidly to leachate addition relative to those far from the well and those at deeper locations. After liquid addition stopped, measured pore pressures did not immediately drop, but slowly decreased with time. Despite the large pressures present at the bottom of the liquid addition well, much smaller pressures were measured in the surrounding waste. The spatial variation of the pressures recorded in this study suggests that waste permeability is anisotropic and decreases with depth. PMID:21655145

  17. Temporal and spatial pore water pressure distribution surrounding a vertical landfill leachate recirculation well.

    PubMed

    Kadambala, Ravi; Townsend, Timothy G; Jain, Pradeep; Singh, Karamjit

    2011-05-01

    Addition of liquids into landfilled waste can result in an increase in pore water pressure, and this in turn may increase concerns with respect to geotechnical stability of the landfilled waste mass. While the impact of vertical well leachate recirculation on landfill pore water pressures has been mathematically modeled, measurements of these systems in operating landfills have not been reported. Pressure readings from vibrating wire piezometers placed in the waste surrounding a liquids addition well at a full-scale operating landfill in Florida were recorded over a 2-year period. Prior to the addition of liquids, measured pore pressures were found to increase with landfill depth, an indication of gas pressure increase and decreasing waste permeability with depth. When liquid addition commenced, piezometers located closer to either the leachate injection well or the landfill surface responded more rapidly to leachate addition relative to those far from the well and those at deeper locations. After liquid addition stopped, measured pore pressures did not immediately drop, but slowly decreased with time. Despite the large pressures present at the bottom of the liquid addition well, much smaller pressures were measured in the surrounding waste. The spatial variation of the pressures recorded in this study suggests that waste permeability is anisotropic and decreases with depth. PMID:21655145

  18. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Applicable marine water quality criteria. 227.31 Section 227.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING CRITERIA FOR THE EVALUATION OF PERMIT APPLICATIONS FOR OCEAN DUMPING OF MATERIALS Definitions § 227.31 Applicable marine water...

  19. Methanotrophy potential versus methane supply by pore water diffusion in peatlands

    NASA Astrophysics Data System (ADS)

    Hornibrook, E. R. C.; Bowes, H. L.; Culbert, A.; Gallego-Sala, A. V.

    2009-08-01

    Low affinity methanotrophic bacteria consume a significant quantity of methane in wetland soils in the vicinity of plant roots and at the oxic-anoxic interface. Estimates of the efficiency of methanotrophy in peat soils vary widely in part because of differences in approaches employed to quantify methane cycling. High resolution profiles of dissolved methane abundance measured during the summer of 2003 were used to quantity rates of upward methane flux in four peatlands situated in Wales, UK. Aerobic incubations of peat from a minerotrophic and an ombrotrophic mire were used to determine depth distributions of kinetic parameters associated with methane oxidation. The capacity for methanotrophy in a 3 cm thick zone immediately beneath the depth of nil methane abundance in pore water was significantly greater than the rate of upward diffusion of methane in all four peatlands. Rates of methane diffusion in pore water at the minerotrophic peatlands were small (<10%) compared to surface emissions during June to August. The proportions were notably greater in the ombrotrophic bogs because of their typically low methane emission rates. Methanotrophy appears to consume entirely methane transported by pore water diffusion in the four peatlands with the exception of 4 of the 33 gas profiles sampled. Flux rates to the atmosphere regardless are high because of gas transport through vascular plants, in particular, at the minerotrophic sites. Cumulative rainfall amount 3-days prior to sampling correlated well with the distance between the water table level and the depth of 0 μmol l-1 methane, indicating that precipitation events can impact methane distributions in pore water. Further work is needed to characterise the kinetics of methane oxidation spatially and temporally in different wetland types in order to determine generalized relationships for methanotrophy in peatlands that can be incorporated into process-based models of methane cycling in peat soils.

  20. Diagenesis and pore water evolution in the Keuper reservoir, Paris Basin (France)

    SciTech Connect

    Spotl, C.; Matter, A. . Geologisches Inst.); Brevart, O. . Centre Scientifique et Technique Jean Feger)

    1993-09-01

    Keuper (Upper Triassic) fluvial sandstones and nonmarine carbonate rocks form a major oil reservoir in the western Paris Basin at burial depths of [approximately] 2km. Early-diagenetic processes comprise red-bed-type diagenesis and extensive dolocrete formation both in fluvial channels and in fine-grained over-bank sediments. Locally significant paleokarst created vuggy dissolution porosity in the carbonate units and probably also caused leaching of detrital alkali feldspar grains. Oxygen, carbon, and strontium isotope analyses of various eogenetic cements indicate a nonmarine pore-water composition. Ferroan carbonates, authigenic albite and potassium feldspar, quartz, sulfates, sulfides, and clay minerals formed subsequent to major mechanical compaction. Their isotopic compositions record significant changes in the chemistry of the parent pore water. Cl-Br relationships of the present-day pore water reveal that fluids saturated with respect to halite flushed the reservoir during burial. Based on radiogenic dating of illite cements, influx of warm brines into the reservoir most likely occurred during the earliest Cretaceous. The authors suggest that uplift of the Vosges crustal block created a hydraulic head in the eastern part of the basin and established a gravity-driven fluid flow system, displacing interstitial brines from the Keuper evaporites from the eastern part towards the western part of the basin. A second gravity-driven fluid flow system was established during the Oligocene by major uplift, and freshwater flushed the Keuper reservoir, causing brine dilution. The present-day pore water in the study area is still saline and mass-balance calculations indicate that the ratio of basinal brines to Tertiary meteoric water is about 1:2.

  1. Marine sponge cyclic peptide theonellamide A disrupts lipid bilayer integrity without forming distinct membrane pores.

    PubMed

    Espiritu, Rafael Atillo; Cornelio, Kimberly; Kinoshita, Masanao; Matsumori, Nobuaki; Murata, Michio; Nishimura, Shinichi; Kakeya, Hideaki; Yoshida, Minoru; Matsunaga, Shigeki

    2016-06-01

    Theonellamides (TNMs) are antifungal and cytotoxic bicyclic dodecapeptides derived from the marine sponge Theonella sp. These peptides specifically bind to 3β-hydroxysterols, resulting in 1,3-β-D-glucan overproduction and membrane damage in yeasts. The inclusion of cholesterol or ergosterol in phosphatidylcholine membranes significantly enhanced the membrane affinity of theonellamide A (TNM-A) because of its direct interaction with 3β-hydroxyl groups of sterols. To better understand TNM-induced membrane alterations, we investigated the effects of TNM-A on liposome morphology. (31)P nuclear magnetic resonance (NMR) and dynamic light scattering (DLS) measurements revealed that the premixing of TNM-A with lipids induced smaller vesicle formation. When giant unilamellar vesicles were incubated with exogenously added TNM-A, confocal micrographs showed dynamic changes in membrane morphology, which were more frequently observed in cholesterol-containing than sterol-free liposomes. In conjunction with our previous data, these results suggest that the membrane action of TNM-A proceeds in two steps: 1) TNM-A binds to the membrane surface through direct interaction with sterols and 2) accumulated TNM-A modifies the local membrane curvature in a concentration-dependent manner, resulting in dramatic membrane morphological changes and membrane disruption.

  2. Marine sponge cyclic peptide theonellamide A disrupts lipid bilayer integrity without forming distinct membrane pores.

    PubMed

    Espiritu, Rafael Atillo; Cornelio, Kimberly; Kinoshita, Masanao; Matsumori, Nobuaki; Murata, Michio; Nishimura, Shinichi; Kakeya, Hideaki; Yoshida, Minoru; Matsunaga, Shigeki

    2016-06-01

    Theonellamides (TNMs) are antifungal and cytotoxic bicyclic dodecapeptides derived from the marine sponge Theonella sp. These peptides specifically bind to 3β-hydroxysterols, resulting in 1,3-β-D-glucan overproduction and membrane damage in yeasts. The inclusion of cholesterol or ergosterol in phosphatidylcholine membranes significantly enhanced the membrane affinity of theonellamide A (TNM-A) because of its direct interaction with 3β-hydroxyl groups of sterols. To better understand TNM-induced membrane alterations, we investigated the effects of TNM-A on liposome morphology. (31)P nuclear magnetic resonance (NMR) and dynamic light scattering (DLS) measurements revealed that the premixing of TNM-A with lipids induced smaller vesicle formation. When giant unilamellar vesicles were incubated with exogenously added TNM-A, confocal micrographs showed dynamic changes in membrane morphology, which were more frequently observed in cholesterol-containing than sterol-free liposomes. In conjunction with our previous data, these results suggest that the membrane action of TNM-A proceeds in two steps: 1) TNM-A binds to the membrane surface through direct interaction with sterols and 2) accumulated TNM-A modifies the local membrane curvature in a concentration-dependent manner, resulting in dramatic membrane morphological changes and membrane disruption. PMID:27003125

  3. Evaporative Evolution of Carbonate-Rich Brines from Synthetic Topopah Spring Tuff Pore Water, Yucca Mountain

    SciTech Connect

    Sutton, M; Alai, M; Carroll, S A

    2004-04-14

    The evaporation of a range of synthetic pore water solutions representative of the potential high-level-nuclear-waste repository at Yucca Mountain, NV is being investigated. The motivation of this work is to understand and predict the range of brine compositions that may contact the waste containers from evaporation of pore waters, because these brines could form corrosive thin films on the containers and impact their long-term integrity. A relatively complex synthetic Topopah Spring Tuff pore water was progressively concentrated by evaporation in a closed vessel, heated to 95 C in a series of sequential experiments. Periodic samples of the evaporating solution were taken to determine the evolving water chemistry. According to chemical divide theory at 25 C and 95 C our starting solution should evolve towards a high pH carbonate brine. Results at 95 C show that this solution evolves towards a complex brine that contains about 99 mol% Na{sup +} for the cations, and 71 mol% Cl{sup -}, 18 mol% {Sigma}CO{sub 2}(aq), 9 mol%SO{sub 4}{sup 2-} for the anions. Initial modeling of the evaporating solution indicates precipitation of aragonite, halite, silica, sulfate and fluoride phases. The experiments have been used to benchmark the use of the EQ3/6 geochemical code in predicting the evolution of carbonate-rich brines during evaporation.

  4. Chloride ion conduction without water coordination in the pore of ClC protein.

    PubMed

    Ko, Youn Jo; Jo, Won Ho

    2010-02-01

    In the present work, we have found by an atomistic molecular dynamics simulation that hydrogen atoms originating from the residues of a prokaryotic ClC protein (EcClC) stabilize the chloride ion without water molecules in the pore of ClC protein. When the chloride ion conduction is simulated by pulling a chloride ion along the pore axis, the free energy barrier for chloride ion conduction is calculated to be low (4 kcal/mol), although the chloride ion is stripped of its hydration shell as it passes through the dehydrated pore region. The calculation of the number of hydrogen atoms surrounding the chloride ion reveals that water molecules hydrating the chloride ion are replaced by polar and non-polar hydrogen atoms protruding from the protein residues. From the analysis of the pair interaction energy between the chloride ion and these hydrogen atoms, it is realized that the hydrogen atoms from the protein residues stabilize the chloride ion at the dehydrated region instead of water molecules, by which the energetic penalty for detaching water molecules from the permeating ion is compensated.

  5. Estimating methane production rates in bogs and landfills by deuterium enrichment of pore water

    USGS Publications Warehouse

    Siegel, D.I.; Chanton, J.P.; Glaser, P.H.; Chasar, L.S.; Rosenberry, D.O.

    2001-01-01

    Raised bogs and municipal waste landfills harbor large populations of methanogens within their domed deposits of anoxic organic matter. Although the methane emissions from these sites have been estimated by various methods, limited data exist on the activity of the methanogens at depth. We therefore analyzed the stable isotopic signature of the pore waters in two raised bogs from northern Minnesota to identify depth intervals in the peat profile where methanogenic metabolism occurs. Methanogenesis enriched the deuterium (2H) content of the deep peat pore waters by as much as +11% (Vienna Standard Mean Sea Water), which compares to a much greater enrichment factor of +70% in leachate from New York City's Fresh Kills landfill. The bog pore waters were isotopically dated by tritium (3H) to be about 35 years old at 1.5 m depth, whereas the landfill leachate was estimated as ~ 17 years old from Darcy flow calculations. According to an isotopic mass balance the observed deuterium enrichment indicates that about 1.2 g of CH4m-3 d-1 were produced within the deeper peat, compared to about 2.8 g CH4 m-3 d-1 in the landfill. The values for methane production in the bog peat are substantially higher than the flux rates measured at the surface of the bogs or at the landfill, indicating that deeper methane production may be much higher than was previously assumed.

  6. Estimating methane production rates in bogs and landfills by deuterium enrichment of pore water

    NASA Astrophysics Data System (ADS)

    Siegel, D. I.; Chanton, J. R.; Glaser, P. H.; Chasar, L. S.; Rosenberry, D. O.

    2001-12-01

    Raised bogs and municipal waste landfills harbor large populations of methanogens within their domed deposits of anoxic organic matter. Although the methane emissions from these sites have been estimated by various methods, limited data exist on the activity of the methanogens at depth. We therefore analyzed the stable isotopic signature of the pore waters in two raised bogs from northern Minnesota to identify depth intervals in the peat profile where methanogenic metabolism occurs. Methanogenesis enriched the deuterium (2H) content of the deep peat pore waters by as much as +11‰ (Vienna Standard Mean Sea Water), which compares to a much greater enrichment factor of +70‰ in leachate from New York City's Fresh Kills landfill. The bog pore waters were isotopically dated by tritium (3H) to be about 35 years old at 1.5 m depth, whereas the landfill leachate was estimated as ˜17 years old from Darcy flow calculations. According to an isotopic mass balance the observed deuterium enrichment indicates that about 1.2 g of CH4 m-3 d-1 were produced within the deeper peat, compared to about 2.8 g CH4 m-3 d-1 in the landfill. The values for methane production in the bog peat are substantially higher than the flux rates measured at the surface of the bogs or at the landfill, indicating that deeper methane production may be much higher than was previously assumed.

  7. Strontium isotope evolution of pore water and calcite in the Topopah Spring Tuff, Yucca Mountain, Nevada

    SciTech Connect

    Marshall, Brian D.; Futa, Kiyoto

    2001-04-29

    Pore water in the Topopah Spring Tuff has a narrow range of {delta}{sup 87}Sr values that can be calculated from the {delta}{sup 87}Sr values of the rock considering advection through and reaction with the overlying nonwelded tuffs of the PTn. This model can be extended to estimate the variation of {delta}{sup 87}Sr in the pore water through time; this approximates the variation of {delta}{sup 87}Sr measured in calcite fracture coatings. In samples of calcite where no silica can be dated by other methods, strontium isotope data may be the only method to determine ages. In addition, other Sr-bearing minerals in the calcite and opal coatings, such as fluorite, may be dated using the same model.

  8. Mercury cycling in stream ecosystems. 2. Benthic methylmercury production and bed sediment - Pore water partitioning

    USGS Publications Warehouse

    Marvin-DiPasquale, M.; Lutz, M.A.; Brigham, M.E.; Krabbenhoft, D.P.; Aiken, G.R.; Orem, W.H.; Hall, B.D.

    2009-01-01

    Mercury speciation, controls on methylmercury (MeHg) production, and bed sediment - pore water partitioning of total Hg (THg) and MeHg were examined in bed sediment from eight geochemically diverse streams where atmospheric deposition was the predominant Hg input. Across all streams, sediment THg concentrations were best described as a combined function of sediment percent fines (%fines; particles < 63 ??m) and organic content. MeHg concentrations were best described as a combined function of organic content and the activity of the Hg(II)-methylating microbial community and were comparable to MeHg concentrations in streams with Hg inputs from industrial and mining sources. Whole sediment tin-reducible inorganic reactive Hg (Hg(II)R) was used as a proxy measure for the Hg(II) pool available for microbial methylation. In conjunction with radiotracer-derived rate constants of 203Hg(II) methylation, Hg(II)R was used to calculate MeHg production potential rates and to explain the spatial variability in MeHg concentration. The %Hg(II)R (of THg) was low (2.1 ?? 5.7%) and was inversely related to both microbial sulfate reduction rates and sediment total reduced sulfur concentration. While sediment THg concentrations were higher in urban streams, %MeHg and %Hg(II)R were higher in nonurban streams. Sediment pore water distribution coefficients (log Kd's) for both THg and MeHg were inversely related to the log-transformed ratio of pore water dissolved organic carbon (DOC) to bed sediment %fines. The stream with the highest drainage basin wetland density also had the highest pore water DOC ?? 2009 American Chemical Society.

  9. Is hot water immersion an effective treatment for marine envenomation?

    PubMed Central

    Atkinson, P R T; Boyle, A; Hartin, D; McAuley, D

    2006-01-01

    Envenomation by marine creatures is common. As more people dive and snorkel for leisure, the incidence of envenomation injuries presenting to emergency departments has increased. Although most serious envenomations occur in the temperate or tropical waters of the Indo‐Pacific region, North American and European waters also provide a habitat for many stinging creatures. Marine envenomations can be classified as either surface stings or puncture wounds. Antivenom is available for a limited number of specific marine creatures. Various other treatments such as vinegar, fig juice, boiled cactus, heated stones, hot urine, hot water, and ice have been proposed, although many have little scientific basis. The use of heat therapies, previously reserved for penetrating fish spine injuries, has been suggested as treatment for an increasing variety of marine envenomation. This paper reviews the evidence for the effectiveness of hot water immersion (HWI) and other heat therapies in the management of patients presenting with pain due to marine envenomation. PMID:16794088

  10. Pore Water Extraction Test Near 241-SX Tank Farm at the Hanford Site, Washington, USA

    SciTech Connect

    Eberlein, Susan J.; Parker, Danny L.; Tabor, Cynthia L.; Holm, Melissa J.

    2013-11-11

    A proof-of-principle test is underway near the Hanford Site 241-SX Tank Farm. The test will evaluate a potential remediation technology that will use tank farm-deployable equipment to remove contaminated pore water from vadose zone soils. The test system was designed and built to address the constraints of working within a tank farm. Due to radioactive soil contamination and limitations in drilling near tanks, small-diameter direct push drilling techniques applicable to tank farms are being utilized for well placement. To address space and weight limitations in working around tanks and obstacles within tank farms, the above ground portions of the test system have been constructed to allow deployment flexibility. The test system utilizes low vacuum over a sealed well screen to establish flow into an extraction well. Extracted pore water is collected in a well sump,and then pumped to the surface using a small-diameter bladder pump.If pore water extraction using this system can be successfully demonstrated, it may be possible to target local contamination in the vadose zone around underground storage tanks. It is anticipated that the results of this proof-of-principle test will support future decision making regarding interim and final actions for soil contamination within the tank farms.

  11. Ecological impacts of lead mining on Ozark streams: Toxicity of sediment and pore water

    USGS Publications Warehouse

    Besser, J.M.; Brumbaugh, W.G.; Allert, A.L.; Poulton, B.C.; Schmitt, C.J.; Ingersoll, C.G.

    2009-01-01

    We studied the toxicity of sediments downstream of lead-zinc mining areas in southeast Missouri, using chronic sediment toxicity tests with the amphipod, Hyalella azteca, and pore-water toxicity tests with the daphnid, Ceriodaphnia dubia. Tests conducted in 2002 documented reduced survival of amphipods in stream sediments collected near mining areas and reduced survival and reproduction of daphnids in most pore waters tested. Additional amphipod tests conducted in 2004 documented significant toxic effects of sediments from three streams downstream of mining areas: Strother Creek, West Fork Black River, and Bee Fork. Greatest toxicity occurred in sediments from a 6-km reach of upper Strother Creek, but significant toxic effects occurred in sediments collected at least 14 km downstream of mining in all three watersheds. Toxic effects were significantly correlated with metal concentrations (nickel, zinc, cadmium, and lead) in sediments and pore waters and were generally consistent with predictions of metal toxicity risks based on sediment quality guidelines, although ammonia and manganese may also have contributed to toxicity at a few sites. Responses of amphipods in sediment toxicity tests were significantly correlated with characteristics of benthic invertebrate communities in study streams. These results indicate that toxicity of metals associated with sediments contributes to adverse ecological effects in streams draining the Viburnum Trend mining district.

  12. Characteristics of fluoride in pore-water at accidental hydrofluoric acid spillage site, Gumi, Korea

    NASA Astrophysics Data System (ADS)

    Kwon, E. H.; Lee, H. A.; Lee, J.; Kim, D.; Lee, S.; Yoon, H. O.

    2015-12-01

    A leakage accident of hydrofluoric acid (HF) occurred in Gumi, South Korea at Sep. 2012. The study site is located in the borderline between a large-scale industrial complex and a rural area. The HF plume was made immediately, and moved toward the rural area through air. After the accident, 212 ha of farm land were influenced and most of crops were withered. To recover the soil, CaO was applied after six months. Although several studies have done to estimate the extension and movement of HF plume in the air and to assess the impact on human health or plant after the incident, the long-term fate of fluoride (F) in the affected soils is not identified clearly. Thus, this study aimed to understand the behavior of F in the soil after HF releasing from accident site through chemical analysis and geochemical modeling. Within the radius of 1 km of accident site, 16 pore-water and soil samples were collected. The semi-quantitative soil composition (i.e., Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti), total F, total P, OM contents in soil, and soil pH have already been measured, and pore-water compositions are also identified. From these experimental and modeling data, we could be evaluate if impact of accident exists until now, and also could be select and identify existing form of fluoride in soil and pore-water.

  13. Mapping of accumulated nitrogen in the sediment pore water of a eutrophic lake in Iowa, USA

    USGS Publications Warehouse

    Iqbal, M.Z.; Fields, C.L.

    2009-01-01

    A large pool of nitrogen in the sediment pore fluid of a eutrophic lake in Iowa, USA, was mapped in this study. Previously, the lake had supported fishing and boating, but today it no longer supports its designated uses as a recreational water body. In the top 5 cm of the lake bottom, the pore water nitrogen ranges between 3.1 and 1,250 ??g/cm3 of sediments, with an average of 160.3 ??g/cm3. Vertically, nitrate concentrations were measured as 153 ??g/cm3 at 0-10 cm, 162 ??g/cm3 at 10-20 cm, and 32 ??g/cm3 at 20-30 cm. Nitrate mass distribution was quantified as 3.67 ?? 103 kg (65%) in the bottom sediments, 172 kg (3%) in suspended particulates, and 1.83 ?? 103 kg (32%) in the dissolved phase. Soil runoff nutrients arrive at the lake from the heavily fertilized lands in the watershed. Upon sedimentation, a large mass of nitrogen desorbs from mineral particles to the relatively immobile pore fluid. Under favorable conditions, this nitrogen diffuses back into the water column, thereby dramatically limiting the lake's capability to process incoming nutrients from farmlands. Consequently, a condition of oxygen deficiency disrupts the post-season biological activities in the lake. ?? 2008 Springer-Verlag.

  14. Diffusive release of uranium from contaminated sediments into capillary fringe pore water

    SciTech Connect

    Rod, Kenton A.; Wellman, Dawn M.; Flury, Markus; Pierce, Eric M.; Harsh, James B.

    2012-10-01

    Despite remediation efforts at the former nuclear weapons facility at the Hanford site (Washington State), leaching of uranium (U) from contaminated sediments to the ground water persists at the Hanford 300 Area. Flooding of contaminated capillary fringe sediments due to seasonal changes in the Columbia River stage has been identified as a reason of continued U supply to ground water. We investigated the release of U from Hanford capillary fringe sediments to pore water. Contaminated Hanford sediments were packed into reservoirs of centrifugal filter devices and saturated with Columbia River water for 3 to 84 days at varying solution-to-solid ratios (1:3, 1:1, 5:1, 10:1, 25:1 mL:g). After specified times, samples were centrifuged to a gravimetric water content of 0.11 ± 0.06 g g-1. Within the first three days, there was an initial rapid release of 6-9% of total U from the sediments into the pore water, independent of the solution-to-solid ratio. After 14 days of reaction, however, the experiments with the narrowest solution-to-solid ratios (1:3 and 1:1 mL:g) showed a decline in dissolved U concentrations. The removal of U from the solution phase was accompanied by removal of Ca and HCO3-. Geochemist workbench simulations, conducted using measured solution concentrations from experiments, indicated that calcite could precipitate in the 1:3 solution-to-solid ratio experiment. After the rapid initial release in the first three days for the 5:1, 10:1, and 25:1 solution-to-solid ratio experiments, there was sustained release of U into the pore water. Up to 22% of total U was released on day 84 for the 25:1 solution-to-solid ratio reaction. This sustained release of U from the sediments had diffusion-limited kinetics.

  15. Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes

    NASA Astrophysics Data System (ADS)

    Sprenger, M.; Volkmann, T. H. M.; Blume, T.; Weiler, M.

    2015-06-01

    Determining the soil hydraulic properties is a prerequisite to physically model transient water flow and solute transport in the vadose zone. Estimating these properties by inverse modelling techniques has become more common within the last 2 decades. While these inverse approaches usually fit simulations to hydrometric data, we expanded the methodology by using independent information about the stable isotope composition of the soil pore water depth profile as a single or additional optimization target. To demonstrate the potential and limits of this approach, we compared the results of three inverse modelling strategies where the fitting targets were (a) pore water isotope concentrations, (b) a combination of pore water isotope concentrations and soil moisture time series, and (c) a two-step approach using first soil moisture data to determine water flow parameters and then the pore water stable isotope concentrations to estimate the solute transport parameters. The analyses were conducted at three study sites with different soil properties and vegetation. The transient unsaturated water flow was simulated by solving the Richards equation numerically with the finite-element code of HYDRUS-1D. The transport of deuterium was simulated with the advection-dispersion equation, and a modified version of HYDRUS was used, allowing deuterium loss during evaporation. The Mualem-van Genuchten and the longitudinal dispersivity parameters were determined for two major soil horizons at each site. The results show that approach (a), using only the pore water isotope content, cannot substitute hydrometric information to derive parameter sets that reflect the observed soil moisture dynamics but gives comparable results when the parameter space is constrained by pedotransfer functions. Approaches (b) and (c), using both the isotope profiles and the soil moisture time series, resulted in good simulation results with regard to the Kling-Gupta efficiency and good parameter

  16. The European Marine Strategy: Noise Monitoring in European Marine Waters from 2014.

    PubMed

    Dekeling, René; Tasker, Mark; Ainslie, Michael; Andersson, Mathias; André, Michel; Borsani, Fabrizio; Brensing, Karsten; Castellote, Manuel; Dalen, John; Folegot, Thomas; van der Graaf, Sandra; Leaper, Russell; Liebschner, Alexander; Pajala, Jukka; Robinson, Stephen; Sigray, Peter; Sutton, Gerry; Thomsen, Frank; Werner, Stefanie; Wittekind, Dietrich; Young, John V

    2016-01-01

    The European Marine Strategy Framework Directive requires European member states to develop strategies for their marine waters leading to programs of measures that achieve or maintain good environmental status (GES) in all European seas by 2020. An essential step toward reaching GES is the establishment of monitoring programs, enabling the state of marine waters to be assessed on a regular basis. A register for impulsive noise-generating activities would enable assessment of their cumulative impacts on wide temporal and spatial scales; monitoring of ambient noise would provide essential insight into current levels and any trend in European waters. PMID:26610961

  17. The European Marine Strategy: Noise Monitoring in European Marine Waters from 2014.

    PubMed

    Dekeling, René; Tasker, Mark; Ainslie, Michael; Andersson, Mathias; André, Michel; Borsani, Fabrizio; Brensing, Karsten; Castellote, Manuel; Dalen, John; Folegot, Thomas; van der Graaf, Sandra; Leaper, Russell; Liebschner, Alexander; Pajala, Jukka; Robinson, Stephen; Sigray, Peter; Sutton, Gerry; Thomsen, Frank; Werner, Stefanie; Wittekind, Dietrich; Young, John V

    2016-01-01

    The European Marine Strategy Framework Directive requires European member states to develop strategies for their marine waters leading to programs of measures that achieve or maintain good environmental status (GES) in all European seas by 2020. An essential step toward reaching GES is the establishment of monitoring programs, enabling the state of marine waters to be assessed on a regular basis. A register for impulsive noise-generating activities would enable assessment of their cumulative impacts on wide temporal and spatial scales; monitoring of ambient noise would provide essential insight into current levels and any trend in European waters.

  18. Elucidating the mechanical effects of pore water pressure increase on the stability of unsaturated soil slopes

    NASA Astrophysics Data System (ADS)

    Buscarnera, G.

    2012-12-01

    The increase of the pore water pressure due to rain infiltration can be a dominant component in the activation of slope failures. This paper shows an application of the theory of material stability to the triggering analysis of this important class of natural hazards. The goal is to identify the mechanisms through which the process of suction removal promotes the initiation of mechanical instabilities. The interplay between increase in pore water pressure, and failure mechanisms is investigated at material point level. In order to account for multiple failure mechanisms, the second-order work criterion is used and different stability indices are devised. The paper shows that the theory of material stability can assess the risk of shear failure and static liquefaction in both saturated and unsaturated contexts. It is shown that the combined use of an enhanced definition of second-order work for unsaturated porous media and a hydro-mechanical constitutive framework enables to retrieve bifurcation conditions for water-infiltration processes in unsaturated deposits. This finding discloses the importance of the coupling terms that incorporate the interaction between the solid skeleton and the pore fluids. As a consequence, these theoretical results suggest that some material properties that are not directly associated with the shearing resistance (e.g., the potential for wetting compaction) can play an important role in the initiation of slope failures. According to the proposed interpretation, the process of pore pressure increase can be understood as a trigger of uncontrolled strains, which at material point level are reflected by the onset of bifurcation conditions.

  19. Pore-to-pore hopping model for the interpretation of the pulsed gradient spin echo attenuation of water diffusion in cell suspension systems.

    PubMed Central

    Jiang, P C; Yu, T Y; Perng, W C; Hwang, L P

    2001-01-01

    A simplified pore-to-pore hopping model for the two-phase diffusion problem is developed for the analysis of the pulsed gradient spin echo (PGSE) attenuation of water diffusion in the condensed cell suspension systems. In this model, the two phases inside and outside the cells are treated as two different kinds of pores, and the spin-bearing molecules perform hopping diffusion between them. The size and the orientations of those two respective pores are considered, and then the diffraction pattern of the PGSE attenuation may be well simulated. Nevertheless, the intensity of the characteristic peak decreases with increasing membrane permeability, from which the exchange time may be estimated. We then analyze the experimental 1H PGSE results of the erythrocytes suspension system. The water-residence lifetime in the erythrocyte is obtained to be 10 ms, which is the same as that estimated from the two-region approximation. Furthermore, the PGSE attenuation curve of addition of p-Chloromercuribenzenesulfonate (p-CMBS) is also discussed. It predicts that the alignment of erythrocytes will become normal to the magnetic field direction after the addition of p-CMBS, and inspection using a light microscope confirms that result. PMID:11371428

  20. Data Qualification Report: Pore Water Data for Use on the Yucca Mountain Project

    SciTech Connect

    H. Miller; R. Monks; C. Warren; W. Wowak

    2000-06-09

    Pore water data associated with Data Tracking Number (DTN) No.LL990702804244.100 are referenced in the Analysis and Model Reports (AMRs) prepared to support the Site Recommendation in determining the suitability of the Yucca Mountain, Nevada as a repository for high-level nuclear waste. It has been determined, in accordance with procedure AP-3.15Q Rev. 1, ICN 1, ''Managing Technical Product Inputs'', Attachment 6 , that the DTN-referenced data are used in AMRs that provide a direct calculation of ''Principal Factors'' for the Post-closure Safety Case or Potentially Disruptive Processes or Events. Therefore, in accordance with the requirements of procedure AP-SIII.2Q, Rev 0, ICN 2, ''Qualification of Unqualified Data and the Documentation of Rationale for Accepted Data'', Section 5.3.1 .a, a Data Qualification Report has been prepared for submittal to the Assistant Manager, Office of Project Execution for concurrence. This report summarizes the findings of the Data Qualification Team assembled to evaluate unqualified ''pore water data'' represented by DTN No. LL990702804244.100. This DTN is currently used in the following AMRs: Drift-Scale Coupled Processes (DST and THC Seepage) Models (CRWMS M&O 2000a), Environment of the Surfaces of the Drip Shield and Waste Package Outer Barrier (CRWMS M&O 2000b), and Engineered Barrier System: Physical and Chemical Environment Model (CRWMS M&O 2000c). Mineral composition of pore water submitted to the Technical Data Management System (TDMS) using the subject DTN were acquired data from the analysis pore water samples sent to Lawrence Livermore National Laboratory's (LLNL) by UFA Ventures, Inc. and analyzed by LLNL's Analytical Sciences/Analytical and Nuclear Chemistry Division (ASD). The purpose and scope of the AMRs that reference the subject DTN and the potential application of pore water data is described below. These AMRs use only that data associated with the specific samples: ESF-HD-PERM-1, ESF-HD-PERM-2, and ESF-HD-PERM-3

  1. Confined water in controlled pore glass CPG-10-120 studied by positron annihilation lifetime spectroscopy and differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Šauša, O.; Mat'ko, I.; Illeková, E.; Macová, E.; Berek, D.

    2015-06-01

    The solidification and melting of water confined in the controlled pore glass (CPG) with average pore size 12.6 nm has been studied by differential scanning calorimetry (DSC) and positron annihilation lifetime spectroscopy (PALS). The fully-filled sample of CPG by water as well as the samples of CPG with different content of water were used. The measurements show the presence of amorphous and crystalline phases of water in this type and size of pores, freezing point depression of a confined liquid and presence of certain transitions at lower temperatures, which could be detected only for cooling regime. The localization of confined water in the partially filled pores of CPG at room temperature was studied.

  2. A USANS/SANS study of the accessibility of pores in the Barnett Shale to methane and water

    USGS Publications Warehouse

    Ruppert, Leslie F.; Sakurovs, Richard; Blach, Tomasz P.; He, Lilin; Melnichenko, Yuri B.; Mildner, David F.; Alcantar-Lopez, Leo

    2013-01-01

    Shale is an increasingly important source of natural gas in the United States. The gas is held in fine pores that need to be accessed by horizontal drilling and hydrofracturing techniques. Understanding the nature of the pores may provide clues to making gas extraction more efficient. We have investigated two Mississippian Barnett Shale samples, combining small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) to determine the pore size distribution of the shale over the size range 10 nm to 10 μm. By adding deuterated methane (CD4) and, separately, deuterated water (D2O) to the shale, we have identified the fraction of pores that are accessible to these compounds over this size range. The total pore size distribution is essentially identical for the two samples. At pore sizes >250 nm, >85% of the pores in both samples are accessible to both CD4 and D2O. However, differences in accessibility to CD4 are observed in the smaller pore sizes (~25 nm). In one sample, CD4 penetrated the smallest pores as effectively as it did the larger ones. In the other sample, less than 70% of the smallest pores (4, but they were still largely penetrable by water, suggesting that small-scale heterogeneities in methane accessibility occur in the shale samples even though the total porosity does not differ. An additional study investigating the dependence of scattered intensity with pressure of CD4 allows for an accurate estimation of the pressure at which the scattered intensity is at a minimum. This study provides information about the composition of the material immediately surrounding the pores. Most of the accessible (open) pores in the 25 nm size range can be associated with either mineral matter or high reflectance organic material. However, a complementary scanning electron microscopy investigation shows that most of the pores in these shale samples are contained in the organic components. The neutron scattering results indicate that the pores are

  3. Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions

    NASA Astrophysics Data System (ADS)

    Curtis, C. D.; Coleman, M. L.; Love, L. G.

    1986-10-01

    Coal measures often contain concretions; segregations of diagenetic minerals originally formed within unconsolidated sediments. Three different types (calcite/pyrite, dolomite/pyrite and siderite) occurring spatially quite close together in the Central Pennine Region of England vary widely in carbon isotope composition (+10.35%. > δ13C > -21.49%.) and in major cation chemistry (Ca, Mg, Fe, Mn). Within some siderite concretions, very high Mn/Fe ratios were found in central subsamples; these were also most enriched in 13C. The Fe/Mg ratio decreases systematically from centre to edge (early, shallow to deeper, later precipitation). The calcite/pyrite and dolomite/pyrite concretions developed completely prior to significant burial. Both have high Mn/Fe ratios but negative δ 13C values (calcite -21.49%., dolomite -8.67 to -10.48%.). All of these patterns can be equated precisely with theories of pore water evolution developed on the basis of geochemical investigations of modem sediments. Microbial processes (sulphate reduction, methanogenesis) contributed significantly, as did thermal decarboxylation (to siderite precipitated at considerable burial depth). Mn(IV) and Fe(III) acted differentially as oxidants; producing CO 2 and increasing alkalinity. The interplay of fresh and marine depositional waters is seen most obviously in the presence or absence of sulphate reduction. This controlled mineral type (iron sulphide or carbonate) as well as isotopic and mineral chemistry.

  4. Marine mammal audibility of selected shallow-water survey sources.

    PubMed

    MacGillivray, Alexander O; Racca, Roberto; Li, Zizheng

    2014-01-01

    Most attention about the acoustic effects of marine survey sound sources on marine mammals has focused on airgun arrays, with other common sources receiving less scrutiny. Sound levels above hearing threshold (sensation levels) were modeled for six marine mammal species and seven different survey sources in shallow water. The model indicated that odontocetes were most likely to hear sounds from mid-frequency sources (fishery, communication, and hydrographic systems), mysticetes from low-frequency sources (sub-bottom profiler and airguns), and pinnipeds from both mid- and low-frequency sources. High-frequency sources (side-scan and multibeam) generated the lowest estimated sensation levels for all marine mammal species groups.

  5. Transgenic nematodes as biosensors for metal stress in soil pore water samples.

    PubMed

    Anbalagan, Charumathi; Lafayette, Ivan; Antoniou-Kourounioti, Melissa; Haque, Mainul; King, John; Johnsen, Bob; Baillie, David; Gutierrez, Carmen; Martin, Jose A Rodriguez; de Pomerai, David

    2012-03-01

    Caenorhabditis elegans strains carrying stress-reporter green fluorescent protein transgenes were used to explore patterns of response to metals. Multiple stress pathways were induced at high doses by most metals tested, including members of the heat shock, oxidative stress, metallothionein (mtl) and xenobiotic response gene families. A mathematical model (to be published separately) of the gene regulatory circuit controlling mtl production predicted that chemically similar divalent metals (classic inducers) should show additive effects on mtl gene induction, whereas chemically dissimilar metals should show interference. These predictions were verified experimentally; thus cadmium and mercury showed additive effects, whereas ferric iron (a weak inducer) significantly reduced the effect of mercury. We applied a similar battery of tests to diluted samples of soil pore water extracted centrifugally after mixing 20% w/w ultrapure water with air-dried soil from an abandoned lead/zinc mine in the Murcia region of Spain. In addition, metal contents of both soil and soil pore water were determined by ICP-MS, and simplified mixtures of soluble metal salts were tested at equivalent final concentrations. The effects of extracted soil pore water (after tenfold dilution) were closely mimicked by mixtures of its principal component ions, and even by the single most prevalent contaminant (zinc) alone, though other metals modulated its effects both positively and negatively. In general, mixtures containing similar (divalent) metal ions exhibited mainly additive effects, whereas admixture of dissimilar (e.g. trivalent) ions often resulted in interference, reducing overall levels of stress-gene induction. These findings were also consistent with model predictions. PMID:22037694

  6. STRONTIUM ISOTOPE EVOLUTION OF PORE WATER AND CALCITE IN THE TOPOPAH SPRING TUFF, YUCCA MOUNTAIN , NEVADA

    SciTech Connect

    B.D. Marshall; K. Futa

    2001-02-07

    Yucca Mountain, a ridge of Miocene volcanic rocks in southwest Nevada, is being characterized as a site for a potential high-level radioactive waste repository. One issue of concern for the future performance of the potential repository is the movement of water in and around the potential repository horizon. Past water movement in this unsaturated zone is indicated by fluid inclusions trapped in calcite coatings on fracture footwall surfaces and in some lithophysal cavities. Some of the fluid inclusions have homogenization temperatures above the present-day geotherm (J.F. Whelan, written communication), so determining the ages of the calcite associated with those fluid inclusions is important in understanding the thermal history of the potential repository site. Calcite ages have been constrained by uranium-lead dating of silica polymorphs (opal and chalcedony) that are present in most coatings. The opal and chalcedony ages indicate that deposition of the calcite and opal coatings in the welded part of the Topopah Spring Tuff (TSw hydrogeologic unit) spanned nearly the entire history of the 12.8-million-year-old rock mass at fairly uniform overall long-term rates of deposition (within a factor of five). Constraining the age of a layer of calcite associated with specific fluid inclusions is complicated. Calcite is commonly bladed with complex textural relations, and datable opal or chalcedony may be millions of years older or younger than the calcite layer or may be absent from the coating entirely. Therefore, a more direct method of dating the calcite is presented in this paper by developing a model for strontium evolution in pore water in the TSw as recorded by the strontium coprecipitated with calcium in the calcite. Although the water that precipitated the calcite in fractures and cavities may not have been in local isotopic equilibrium with the pore water, the strontium isotope composition of all water in the TSw is primarily controlled by water

  7. Use of radium isotopes to examine pore-water exchange in an estuary

    SciTech Connect

    Webster, I.T.; Hancock, G.J.; Murray, A.S.

    1994-12-01

    The measured distributions of four isotopes of Ra along the estuary of the Bega River are used to examine sediment-water columns exchange. Ra is created in estuarine sediments by the radioactive decay of insoluble Th parents residing close to or on the surfaces of the sediment grains. Ra desorbed into the pore water is continuously lost to the water column due to the cyclical draining and filling of the sediments by the tides. The distribution of Ra in the estuary is governed by its rate of loss from the sediments, its advection along the estuary resulting from river discharge into the estuary`s head, tidal mixing, and radioactive decay. These processes are all described in a model. Matching of model-predicted Ra concentrations with measurements allows an estimate of the effective depth in the sediments to which the pore water is exchanged every tidal cycle. This depth is large (15 cm), but it is shown to be reasonable for the Bega estuary. 19 refs., 11 figs., 1 tab.

  8. PORE-WATER ISOTOPIC COMPOSITION AND UNSATURATED-ZONE FLOW, YUCCA MOUNTAIN, NEVADA

    SciTech Connect

    C. Yang

    2000-10-23

    Site characterization at Yucca Mountain, Nevada, the site of a potential high-level radioactive waste repository, has included studies of recharge, flow paths, percolation flux, perched water bodies, and chemical compositions of the water in the thick unsaturated zone (UZ). Samples of pore water from cores of two recently drilled boreholes, USW SD-6 near the ridge top of Yucca Mountain and USW WT-24 north of Yucca mountain, were analyzed for isotopic compositions as part of a study by the US Geological Survey (USGS), in cooperation with the US Department of Energy, under Interagency Agreement DE-AI08-97NV12033. The purpose of this report is to interpret {sup 14}C, {delta}{sup 13}C, {sup 3}H, {delta}D and {delta}{sup 18}O isotopic compositions of pore water from the core of boreholes USW SD-6 and USW WT-24 in relation to sources of recharge and flow paths in the UZ at Yucca Mountain. Borehole designation USW SD-6 and USW WT-24 subsequently will be referred to as SD-6 and WT-24. The sources of recharge and flow paths are important parameters that can be used in a UZ flow model, total system performance assessment (TSPA), and the license application (LA) for the potential repository at Yucca Mountain.

  9. The radiocarbon age of calcite dissolving at the sea floor: Estimates from pore water data

    SciTech Connect

    Martin, W.R.; McNichol, A.P.; McCorkle, D.C.

    2000-04-01

    The authors measured the radiocarbon content and stable isotopic composition of pore water and bottom water {Sigma}CO{sub 2}, sedimentary organic carbon, and CaCO{sub 3} at two sites on the Ceara Rise, one underlying bottom water that is supersaturated with respect to calcite (Site B), the other underlying under saturated bottom water (Site G). The results were combined with pore water O{sub 2}, {Sigma}CO{sub 2}, and Ca{sup 2+} profiles (Martin and Sayles, 1996) to estimate the radiocarbon content of the CaCO{sub 3} that is dissolving in the sediment mixed layer. At Site G, the CaCO{sub 3} that is dissolving in the upper 2 cm of the sediments is clearly younger (richer in {sup 14}C) than the bulk sedimentary CaCO{sub 3}, indicating that nonhomogeneous CaCO{sub 3} dissolution occurs there. The case for nonhomogeneous dissolution is much weaker at the site underlying supersaturated bottom water. The results indicate that nonhomogeneous dissolution occurs in sediments underlying under saturated bottom water, that the dissolution is rapid relative to the rate of homogenization of the CaCO{sub 3} in the mixed layer by bioturbation, and that the dissolution rate of CaCO{sub 3} decreases as it ages in the sediment mixed layer. The results support the hypothesis, based on solid phase analyses, that the preferential dissolution of young (i.e., radiocarbon-rich) CaCO{sub 3} leads to a pattern of increasing radiocarbon age of mixed-layer CaCO{sub 3} as the degree of under saturation of bottom water increases (Keir, 1984; Broecker et al., 1991).

  10. Molecular dynamics study of water and Na+ ions in models of the pore region of the nicotinic acetylcholine receptor.

    PubMed Central

    Smith, G R; Sansom, M S

    1997-01-01

    The nicotinic acetylcholine receptor (nAChR) is an integral membrane protein that forms ligand-gated and cation-selective channels. The central pore is lined by a bundle of five approximately parallel M2 helices, one from each subunit. Candidate model structures of the solvated pore region of a homopentameric (alpha7)5 nAChR channel in the open state, and in two possible forms of the closed state, have been studied using molecular dynamics simulations with restraining potentials. It is found that the mobility of the water is substantially lower within the pore than in bulk, and the water molecules become aligned with the M2 helix dipoles. Hydrogen-bonding patterns in the pore, especially around pore-lining charged and hydrophilic residues, and around exposed regions of the helix backbone, have been determined. Initial studies of systems containing both water and sodium ions together within the pore region have also been conducted. A sodium ion has been introduced into the solvated models at various points along the pore axis and its energy profile evaluated. It is found that the ion causes only a local perturbation of the water structure. The results of these calculations have been used to examine the effectiveness of the central ring of leucines as a component of a gate in the closed-channel model. Images FIGURE 1 PMID:9284304

  11. Geochemistry of surface and pore water at USGS coring sites in wetlands of South Florida, 1994 and 1995

    USGS Publications Warehouse

    Orem, William H.; Lerch, Harry E.; Rawlik, Peter

    2002-01-01

    In this report, we present preliminary data on surface and pore water geochemistry from 22 sites in south Florida sampled during 1994 and 1995. These results are part of a larger study designed to evaluate the role of biogeochemical processes in sediments in the cycling of carbon, nitrogen, phosphorus, and sulfur in the south Florida ecosystem. The data are briefly discussed in regard to regional trends in the concentrations of chemical species, and general diagenetic processes in sediments. These results are part of a larger study designed to evaluate the role of biogeochemical processes in sediments in the cycling of carbon, nitrogen, phosphorus, and sulfur in the south Florida ecosystem. These elements play a crucial role in regulating organic sedimentation, nutrient dynamics, redox conditions, and the biogeochemistry of mercury in the threatened wetlands of south Florida. Pore water samples for chemical analyis were obtained using a piston corer/squeezer designed to avoid compression of the sediment and avoid oxidation and contamination of the pore water samples. Results show distinct regional trends in both surface water and pore water geochemistry. Most chemical species in surface and pore water show peak concentrations in Water Conservation Area 2A, with diminishing concentrations to the south and west into Water Conservation Area 3A, and Everglades National Park. The largest differences observed were for phosphate and sulfide, with concentrations in pore waters in Water Conservation Area 2A up to 500x higher than concentrations observed in freshwater marsh areas of Water Conservation Area 3A and Everglades National Park. Sites near the Hillsboro Canal in Water Conservation Area 2A are heavily contaminated with both phosphorus and sulfur. Pore water profiles for dissolved reactive phosphate suggest that recycling of phosphorus at these contaminated sites occurs primarily in the upper 20 cm of sediment. High levels of sulfide in pore water in Water

  12. Meteoric-like fabrics forming in marine waters. Implications for the use of petrography to identify diagenetic environments

    SciTech Connect

    Melim, L.A.; Swart, P.K.; Maliva, R.G.

    1995-08-01

    Petrographic fabrics have long been used to identify meteoric diagnesis of carbonate sediments. However, on the basis of oxygen isotopic data, we document similar fabrics forming in marine pore fluids in the shallow subsurface of Great Bahama Bank. Therefore, petrographic fabrics alone are not reliable indicators of diagenetic environments, even for shallow-water sediments. In our study, skeletal grainstones show two distinct diagenetic assemblages: either dissolution of aragonitic grains and minimal cementation (high-permeability intervals) or abundant blocky spar cement and neomorphism of aragonitic skeletal grains (low-permeability intervals). These marine-burial fabrics are present as shallow as 110 m below sea level, well above the aragonite compensation depth, a feature that must be considered for models of diagenesis in ancient carbonate sediments. Marine-burial diagenesis may be important in ancient carbonate sediments deposited in moderate water depths or in shallow water during rising sea level where meteoric diagenesis is suppressed. 17 refs., 5 figs.

  13. Mechanism of freezing of water in contact with mesoporous silicas MCM-41, SBA-15 and SBA-16: role of boundary water of pore outlets in freezing.

    PubMed

    Kittaka, Shigeharu; Ueda, Yuki; Fujisaki, Fumika; Iiyama, Taku; Yamaguchi, Toshio

    2011-10-14

    The freezing mechanism of water contacted with mesoporous silicas with uniform pore shapes, both cylindrical and cagelike, was studied by thermodynamic and structural analyses with differential scanning calorimetry (DSC) and X-ray diffraction (XRD) together with adsorption measurements. In the DSC data extra exothermic peaks were found at around 230 K for water confined in SBA-15, in addition to that due to the freezing of pore water. These peaks are most likely to be ascribed to the freezing of water present over the micropore and/or mesopore outlets of coronas in SBA-15. Freezing of water confined in SBA-16 was systematically analysed by DSC with changing the pore size. The freezing temperature was found to be around 232 K, close to the homogeneous nucleation temperature of bulk water, independent of the pore size when the pore diameter (d) < 7.0 nm. Water confined in the cagelike pores of SBA-16 is probably surrounded by a water layer (boundary water) at the outlets of channels to interconnect the pores and of fine corona-like pores, which is similar to that present at the outlet of cylindrical pores in MCM-41 and of cylindrical channels in SBA-15. The presence of the boundary water would be a key for water in SBA-16 to freeze at the homogeneous nucleation temperature. This phenomenon is similar to those well known for water droplets in oil and water droplets of clouds in the sky. The XRD data showed that the cubic ice I(c) was formed in SBA-16 as previously found in SBA-15 when d < 8.0 nm.

  14. Soil-pore water distribution of silver and gold engineered nanoparticles in undisturbed soils under unsaturated conditions.

    PubMed

    Tavares, D S; Rodrigues, S M; Cruz, N; Carvalho, C; Teixeira, T; Carvalho, L; Duarte, A C; Trindade, T; Pereira, E; Römkens, P F A M

    2015-10-01

    Release of engineered nanoparticles (ENPs) to soil is well documented but little is known on the subsequent soil-pore water distribution of ENPs once present in soil. In this study, the availability and mobility of silver (Ag) and gold (Au) ENPs added to agricultural soils were assessed in two separate pot experiments. Pore water samples collected from pots from day 1 to 45 using porous (<0.17 μm) membrane samplers suggest that both Ag and Au are retained almost completely within 24 h with less than 13% of the total added amount present in pore water on day 1. UV-Vis and TEM results showed that AuENPs in pore water were present as both homoaggregates and heteroaggregates until day 3 after which the concentration in pore water was too low to detect the presence of aggregates. A close relation between the concentration of Au and Fe in pore water suggests that the short term solubility of Au is partly controlled by natural soil colloids. Results suggest that under normal aerated soil conditions the actual availability of Ag and AuENPs is low which is relevant in view of risk assessment even though the impact of environmental conditions and soil properties on the reactivity of ENPs (and/or large ENPs aggregates) retained in the solid matrix need to be addressed further. PMID:25965160

  15. Soil-pore water distribution of silver and gold engineered nanoparticles in undisturbed soils under unsaturated conditions.

    PubMed

    Tavares, D S; Rodrigues, S M; Cruz, N; Carvalho, C; Teixeira, T; Carvalho, L; Duarte, A C; Trindade, T; Pereira, E; Römkens, P F A M

    2015-10-01

    Release of engineered nanoparticles (ENPs) to soil is well documented but little is known on the subsequent soil-pore water distribution of ENPs once present in soil. In this study, the availability and mobility of silver (Ag) and gold (Au) ENPs added to agricultural soils were assessed in two separate pot experiments. Pore water samples collected from pots from day 1 to 45 using porous (<0.17 μm) membrane samplers suggest that both Ag and Au are retained almost completely within 24 h with less than 13% of the total added amount present in pore water on day 1. UV-Vis and TEM results showed that AuENPs in pore water were present as both homoaggregates and heteroaggregates until day 3 after which the concentration in pore water was too low to detect the presence of aggregates. A close relation between the concentration of Au and Fe in pore water suggests that the short term solubility of Au is partly controlled by natural soil colloids. Results suggest that under normal aerated soil conditions the actual availability of Ag and AuENPs is low which is relevant in view of risk assessment even though the impact of environmental conditions and soil properties on the reactivity of ENPs (and/or large ENPs aggregates) retained in the solid matrix need to be addressed further.

  16. Pore water chemistry reveals gradients in mineral transformation across a model basaltic hillslope

    NASA Astrophysics Data System (ADS)

    Pohlmann, Michael; Dontsova, Katerina; Root, Robert; Ruiz, Joaquin; Troch, Peter; Chorover, Jon

    2016-06-01

    The extent of weathering incongruency during soil formation from rock controls local carbon and nutrient cycling in ecosystems, as well as the evolution of hydrologic flow paths. Prior studies of basalt weathering, including those that have quantified the dynamics of well-mixed, bench-scale laboratory reactors or characterized the structure and integrated response of field systems, indicate a strong influence of system scale on weathering rate and trajectory. For example, integrated catchment response tends to produce lower weathering rates than do well mixed reactors, but the mechanisms underlying these disparities remain unclear. Here we present pore water geochemistry and physical sensor data gathered during two controlled rainfall-runoff events on a large-scale convergent model hillslope mantled with 1 m uniform depth of granular basaltic porous media. The dense sampler and sensor array (1488 samplers and sensors embedded in 330 m3 of basalt) showed that rainfall-induced dissolution of basaltic glass produced supersaturation of pore waters with respect to multiple secondary solids including allophane, gibbsite, ferrihydrite, birnessite and calcite. The spatial distribution of saturation state was heterogeneous, suggesting an accumulation of solutes leading to precipitation of secondary solids along hydrologic flow paths. Rapid dissolution of primary silicates was widespread throughout the entire hillslope, irrespective of up-gradient flowpath length. However, coherent spatial variations in solution chemistry and saturation indices were observed in depth profiles and between distinct topographic regions of the hillslope. Colloids (110-2000 nm) enriched in iron (Fe), aluminum (Al), and phosphorus (P) were mobile in soil pore waters.

  17. Methylation of inorganic mercury in polar marine waters

    NASA Astrophysics Data System (ADS)

    Lehnherr, Igor; St. Louis, Vincent L.; Hintelmann, Holger; Kirk, Jane L.

    2011-05-01

    Monomethylmercury is a neurotoxin that accumulates in marine organisms, with serious implications for human health. The toxin is of particular concern to northern Inuit peoples, for example, whose traditional diets are composed primarily of marine mammals and fish. The ultimate source of monomethylmercury to marine organisms has remained uncertain, although various potential sources have been proposed, including export from coastal and deep-sea sediments and major river systems, atmospheric deposition and water-column production. Here, we report results from incubation experiments in which we added isotopically labelled inorganic mercury and monomethylmercury to seawater samples collected from a range of sites in the Canadian Arctic Archipelago. Monomethylmercury formed from the methylation of inorganic mercury in all samples. Demethylation of monomethylmercury was also observed in water from all sites. We determined steady-state concentrations of monomethylmercury in marine waters by incorporating the rate constants for monomethylmercury formation and degradation derived from these experiments into a numerical model. We estimate that the conversion of inorganic mercury to monomethylmercury in the water column accounts for around 47% (+/-62%, standard deviation) of the monomethylmercury present in polar marine waters, with site-to-site differences in inorganic mercury and monomethylmercury levels accounting for most of the variability. We suggest that water-column methylation of inorganic mercury is a significant source of monomethylmercury in pelagic marine food webs in the Arctic, and possibly in the world's oceans in general.

  18. Polyethylene passive samplers to determine sediment-pore water distribution coefficients of persistent organic pollutants in five heavily contaminated dredged sediments.

    PubMed

    Charrasse, Benoit; Tixier, Céline; Hennebert, Pierre; Doumenq, Pierre

    2014-02-15

    Pore concentration and partition coefficients of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were determined in sediments from five distinct contaminated sites in France (marine harbour, rivers canals and highway sedimentation tank). The assessment of the risk caused by such micropollutants requires, in most cases, the measurement of their availability. To assess this availability, low density polyethylene (LDPE) membrane samplers were exposed to these sediments under constant and low-level agitation over a period of 46 days. Freely dissolved pore water contaminant concentrations were estimated from the concentration at equilibrium in the LDPE membrane. The depletion of contaminants in the sediments was monitored by the use of performance reference compounds (PRCs). Marked differences in freely dissolved PAH and PCB concentrations and resulting sediment-pore water partition coefficients between these five sediments were observed. Data set was tested onto different empirical and mechanistic models. As final findings, triple domain sorption (a total organic carbon, black carbon and oil phase model) could model PCB data successfully whereas the best fitting for PAH partitioning was obtained by Raoult's Law model. PMID:24360917

  19. Upwelling of hydrothermal solutions through ridge flank sediments shown by pore water profiles

    SciTech Connect

    Maris, C.R.P.; Bender, M.L.

    1982-05-07

    High calcium ion and low magnesium ion concentrations in sediment pore waters in cores from the Galapagos Mounds Hydrothermal Field on the flank of the Galapagos Spreading Center are believed to be due to a calcium-magnesium exchange reaction between circulating seawater and basement basalt. The nonlinearity of the calcium ions and magnesium ion gradients indicates that these discharging hydrothermal solutions on the ridge flank are upwelling at the rate of about 1 centimeter per year through the pelagic sediments of the Mounds Field and at about 20 centimeters per year through the hydrothermal mounds themselves.

  20. Involvement of pore water in the Izu-Ogasawara subduction process: Evidence from argon isotope ratio

    NASA Astrophysics Data System (ADS)

    Shimizu, A.; Sumino, H.; Nagao, K.; Notsu, K.; Hirano, N.; Machida, S.; Ishii, T.

    2006-12-01

    The Izu-Ogasawara volcanic arc is located along the boundary between two oceanic plates, the Pacific plate and the Philippine Sea plate, parallel to the Izu-Ogasawara trench. This arc is suitable to investigate the origin of fluid, which is released from the subducting materials, and play an important role in arc magma generation. This is due to the fact that the contribution of continental crustal component in arc magma can be negligible. How noble gases subduct and are recycled to Earth's surface via arc volcanism in the subduction system is an important issue in the understanding of the evolution history of the Earth's interior. Here we report the recycling of noble gases concurrent with the subduction process, based on the different behaviors of different noble gas species, to investigate the volatile behavior in slab-derived fluid during the subduction processes. We measured noble gas isotopic composition of subducting sediments, basalts and gabbros as input materials, serpentine in the Izu-Ogasawara forearc as a mantle wedge material, and volcanic products in this arc as output materials. The volcanic products show 3He/4He ratios of about 8.0 Ra, which are in the range of the MORB value (8±1 Ra). The 40Ar/36Ar ratios of these samples range from 300 to 620, which are significantly lower than that of the MORB source (up to 40000). On the other hand, subducting gabbros show a similar 3He/4He ratio of the MORB value and the 40Ar/36Ar ratios of input materials range from 420 to 800, some of which are higher than that of the volcanic products. These observations revealed that pore water derived atmospheric argon (40Ar/36Ar = 296) in the subducting slab significantly affects the noble gases in arc magma rather than the input materials measured in this study. The serpentine sample also shows an atmospheric argon isotopic feature, suggesting that the serpentine, which is generated by the interaction of pore water related fluids with wedge mantle peridotite, is a

  1. Sequestration of priority pollutant PAHs from sediment pore water employing semipermeable membrane devices

    USGS Publications Warehouse

    Williamson, K.S.; Petty, J.D.; Huckins, J.N.; Lebo, J.A.; Kaiser, E.M.

    2002-01-01

    Semipermeable membrane devices (SPMDs) were employed to sample sediment pore water in static exposure studies under controlled laboratory conditions using (control pond and formulated) sediments fortified with 15 priority pollutant polycyclic aromatic hydrocarbons (PPPAHs). The sediment fortification level of 750 ng/g was selected on the basis of what might be detected in a sediment sample from a contaminated area. The sampling interval consisted of 0, 4, 7, 14, and 28 days for each study. The analytical methodologies, as well as the extraction and sample cleanup procedures used in the isolation, characterization, and quantitation of 15 PPPAHs at different fortification levels in SPMDs, water, and sediment were reported previously (Williamson, M.S. Thesis, University of Missouri - Columbia, USA; Williamson et al., Chemosphere (This issue - PII: S0045-6535(02)00394-6)) and used for this project. Average (mean) extraction recoveries for each PPPAH congener in each matrix are reported and discussed. No procedural blank extracts (controls) were found to contain any PPPAH residues above the method quantitation limit, therefore, no matrix interferences were detected. The focus of this publication is to demonstrate the ability to sequester environmental contaminants, specifically PPPAHs, from sediment pore water using SPMDs and two different types of fortified sediment.

  2. Liquid CO2 displacement of water in a dual-permeability pore network micromodel.

    PubMed

    Zhang, Changyong; Oostrom, Mart; Grate, Jay W; Wietsma, Thomas W; Warner, Marvin G

    2011-09-01

    Permeability contrasts exist in multilayer geological formations under consideration for carbon sequestration. To improve our understanding of heterogeneous pore-scale displacements, liquid CO(2) (LCO(2))-water displacement was evaluated in a pore network micromodel with two distinct permeability zones. Due to the low viscosity ratio (logM = -1.1), unstable displacement occurred at all injection rates over 2 orders of magnitude. LCO(2) displaced water only in the high permeability zone at low injection rates with the mechanism shifting from capillary fingering to viscous fingering with increasing flow rate. At high injection rates, LCO(2) displaced water in the low permeability zone with capillary fingering as the dominant mechanism. LCO(2) saturation (S(LCO2)) as a function of injection rate was quantified using fluorescent microscopy. In all experiments, more than 50% of LCO(2) resided in the active flowpaths, and this fraction increased as displacement transitioned from capillary to viscous fingering. A continuum-scale two-phase flow model with independently determined fluid and hydraulic parameters was used to predict S(LCO2) in the dual-permeability field. Agreement with the micromodel experiments was obtained for low injection rates. However, the numerical model does not account for the unstable viscous fingering processes observed experimentally at higher rates and hence overestimated S(LCO2).

  3. Liquid CO2 Displacement of Water in a Dual-Permeability Pore Network Micromodel

    SciTech Connect

    Zhang, Changyong; Oostrom, Martinus; Grate, Jay W.; Wietsma, Thomas W.; Warner, Marvin G.

    2011-09-01

    Permeability contrasts exist in multilayer geological formations under consideration for carbon sequestration. To improve our understanding of heterogeneous pore-scale displacements, liquid CO2 (LCO2) - water displacement was evaluated in a pore network micromodel with two distinct permeability zones. Due to the low viscosity ratio (logM = -1.1), unstable displacement occurred at all injection rates over two orders of magnitude. LCO2 displaced water only in the high permeability zone at low injection rates with the mechanism shifting from capillary fingering to viscous fingering with increasing flow rate. At high injection rates, LCO2 displaced water in the low permeability zone with capillary fingering as the dominant mechanism. LCO2 saturation (SLCO2) as a function of injection rate was quantified using fluorescent microscopy. In all experiments, more than 50% of LCO2 resided in the active flowpaths, and this fraction increased as displacement transitioned from capillary to viscous fingering. A continuum-scale two-phase flow model with independently determined fluid and hydraulic parameters was used to predict SLCO2 in the dual-permeability field. Agreement with the micromodel experiments was obtained for low injection rates. However, the numerical model does not account for the unstable viscous fingering processes observed experimentally at higher rates and hence overestimated SLCO2.

  4. Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis

    NASA Technical Reports Server (NTRS)

    Cadenhead, D. A.; Mikhail, R. S.

    1975-01-01

    A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.

  5. Deuterium nuclear magnetic resonance unambiguously quantifies pore and collagen-bound water in cortical bone

    PubMed Central

    Ong, Henry H.; Wright, Alexander C.; Wehrli, Felix W.

    2012-01-01

    Bone water (BW) plays a pivotal role in nutrient transport and conferring bone with its viscoelastic mechanical properties. BW is partitioned between the pore spaces of the Haversian and lacuno-canalicular system, and water predominantly bound to the matrix proteins (essentially collagen). The general model of BW is that the former predominantly experiences fast isotropic molecular reorientation, whereas water in the bone matrix undergoes slower anisotropic rotational diffusion. Here, we provide direct evidence for the correctness of this model and show that unambiguous quantification in situ of these two functionally and dynamically different BW fractions is possible. The approach chosen relies on nuclear magnetic resonance (NMR) of deuterium (2H) that unambiguously separates and quantifies the two fractions on the basis of their distinguishing microdynamic properties. Twenty-four specimens of the human tibial cortex from six donors (3 male, 3 female, ages 27-83 years) were cored and 2H spectra recorded at 62 MHz (9.4 Tesla) on a Bruker Instruments DMX 400 spectrometer after exchange of native BW with 2H2O. Spectra consisted of a doublet signal resulting from quadrupole interaction of water bound to collagen. Doublet splittings were found to depend on the orientation of the osteonal axis with respect to the magnetic field direction (8.2 and 4.3 kHz for parallel and perpendicular orientation, respectively). In contrast, the isotropically reorienting pore-resident water yielded a single resonance line superimposed on the doublet. Nulling of the singlet resonance allowed separation of the two fractions. The results indicate that in human cortical bone 60-80% of detectable BW is collagen-bound. Porosity determined as the difference between total BW and collagen bound water fraction was found to strongly parallel μCT based measurements (R2 = 0.91). Our method provides means for direct validation of emerging relaxation-based measurements of cortical bone porosity by

  6. Praziquantel degradation in marine aquarium water.

    PubMed

    Thomas, Amber; Dawson, Matthew R; Ellis, Helen; Stamper, M Andrew

    2016-01-01

    Praziquantel (PZQ) is a drug commonly utilized to treat both human schistosomiasis and some parasitic infections and infestations in animals. In the aquarium industry, PZQ can be administered in a "bath" to treat the presence of ectoparasites on both the gills and skin of fish and elasmobranchs. In order to fully treat an infestation, the bath treatment has to maintain therapeutic levels of PZQ over a period of days or weeks. It has long been assumed that, once administered, PZQ is stable in a marine environment throughout the treatment interval and must be mechanically removed, but no controlled experiments have been conducted to validate that claim. This study aimed to determine if PZQ would break down naturally within a marine aquarium below its 2 ppm therapeutic level during a typical 30-day treatment: and if so, does the presence of fish or the elimination of all living biological material impact the degradation of PZQ? Three 650 L marine aquarium systems, each containing 12 fish (French grunts: Haemulon flavolineatum), and three 650 L marine aquariums each containing no fish were treated with PZQ (2 ppm) and concentrations were measured daily for 30 days. After one round of treatment, the PZQ was no longer detectable in any system after 8 (±1) days. The subsequent two PZQ treatments yielded even faster PZQ breakdown (non-detectable after 2 days and 2 ± 1 day, respectively) with slight variations between systems. Linear mixed effects models of the data indicate that day and trial most impact PZQ degradation, while the presence of fish was not a factor in the best-fit models. In a completely sterilized marine system (0.5 L) PZQ concentration remained unchanged over 15 days, suggesting that PZQ may be stable in a marine system during this time period. The degradation observed in non-sterile marine systems in this study may be microbial in nature. This work should be taken into consideration when providing PZQ bath treatments to marine animals to ensure maximum

  7. Praziquantel degradation in marine aquarium water.

    PubMed

    Thomas, Amber; Dawson, Matthew R; Ellis, Helen; Stamper, M Andrew

    2016-01-01

    Praziquantel (PZQ) is a drug commonly utilized to treat both human schistosomiasis and some parasitic infections and infestations in animals. In the aquarium industry, PZQ can be administered in a "bath" to treat the presence of ectoparasites on both the gills and skin of fish and elasmobranchs. In order to fully treat an infestation, the bath treatment has to maintain therapeutic levels of PZQ over a period of days or weeks. It has long been assumed that, once administered, PZQ is stable in a marine environment throughout the treatment interval and must be mechanically removed, but no controlled experiments have been conducted to validate that claim. This study aimed to determine if PZQ would break down naturally within a marine aquarium below its 2 ppm therapeutic level during a typical 30-day treatment: and if so, does the presence of fish or the elimination of all living biological material impact the degradation of PZQ? Three 650 L marine aquarium systems, each containing 12 fish (French grunts: Haemulon flavolineatum), and three 650 L marine aquariums each containing no fish were treated with PZQ (2 ppm) and concentrations were measured daily for 30 days. After one round of treatment, the PZQ was no longer detectable in any system after 8 (±1) days. The subsequent two PZQ treatments yielded even faster PZQ breakdown (non-detectable after 2 days and 2 ± 1 day, respectively) with slight variations between systems. Linear mixed effects models of the data indicate that day and trial most impact PZQ degradation, while the presence of fish was not a factor in the best-fit models. In a completely sterilized marine system (0.5 L) PZQ concentration remained unchanged over 15 days, suggesting that PZQ may be stable in a marine system during this time period. The degradation observed in non-sterile marine systems in this study may be microbial in nature. This work should be taken into consideration when providing PZQ bath treatments to marine animals to ensure maximum

  8. Praziquantel degradation in marine aquarium water

    PubMed Central

    Dawson, Matthew R.; Ellis, Helen; Stamper, M. Andrew

    2016-01-01

    Praziquantel (PZQ) is a drug commonly utilized to treat both human schistosomiasis and some parasitic infections and infestations in animals. In the aquarium industry, PZQ can be administered in a “bath” to treat the presence of ectoparasites on both the gills and skin of fish and elasmobranchs. In order to fully treat an infestation, the bath treatment has to maintain therapeutic levels of PZQ over a period of days or weeks. It has long been assumed that, once administered, PZQ is stable in a marine environment throughout the treatment interval and must be mechanically removed, but no controlled experiments have been conducted to validate that claim. This study aimed to determine if PZQ would break down naturally within a marine aquarium below its 2 ppm therapeutic level during a typical 30-day treatment: and if so, does the presence of fish or the elimination of all living biological material impact the degradation of PZQ? Three 650 L marine aquarium systems, each containing 12 fish (French grunts: Haemulon flavolineatum), and three 650 L marine aquariums each containing no fish were treated with PZQ (2 ppm) and concentrations were measured daily for 30 days. After one round of treatment, the PZQ was no longer detectable in any system after 8 (±1) days. The subsequent two PZQ treatments yielded even faster PZQ breakdown (non-detectable after 2 days and 2 ± 1 day, respectively) with slight variations between systems. Linear mixed effects models of the data indicate that day and trial most impact PZQ degradation, while the presence of fish was not a factor in the best-fit models. In a completely sterilized marine system (0.5 L) PZQ concentration remained unchanged over 15 days, suggesting that PZQ may be stable in a marine system during this time period. The degradation observed in non-sterile marine systems in this study may be microbial in nature. This work should be taken into consideration when providing PZQ bath treatments to marine animals to ensure

  9. Predicting copper phytotoxicity based on pore-water pCu.

    PubMed

    Kader, Mohammed; Lamb, Dane T; Wang, Liang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-04-01

    The free ion activity and "biotic ligand" models predict that the free metal ion and other pore-water parameters describe terrestrial phytotoxicity. In this study, pore-water chemistry and measured Cu(2+) was used to describe phytotoxicity of cucumber (Cucumis sativa L) in 10 contrasting soils at different soil Cu loadings. Both soil solution Cu (Cu(pw)) and Cu(2+) successfully described the response variable for all ten soils with R(2) values of 0.73 and 0.66, respectively. Separation of soils as acid and alkaline and fitting separately showed that there was a strongly significant fit for both log Cu(2+) and log Cu(pw) in acidic soils (R(2) = 0.92 and 0.86, respectively) but weakly significant fit for alkaline soils. The pCu EC50 and EC10 values in all acidic soils for cucumber were 5.83 (6.03-5.63) and 7.53 (8.27-7.00), respectively. In our dataset alkaline soils need to be treated individually. In addition, pCu could be predicted based on pH and total concentration alone. Despite only 12 weeks 'ageing' there was quantitative agreement between pCu model from this study and predicted pCu from Sauvé et al. This agreement from studies performed independently indicates that, at least in the case of Cu(2+), the difference in an ageing period of ≥10 years appears minimal. PMID:26738879

  10. Geochemical properties of bentonite pore water in high-level-waste repository condition

    SciTech Connect

    Ohe, Toshiaki; Tsukamoto, Masaki

    1997-04-01

    The chemically favorable nature of bentonite pore water is clarified by the PHREEQE geochemical simulation code. Bentonite is viewed as a candidate buffer material for a high-level-waste repository, and bentonite`s pore water chemistry is expected to result in a reduced Eh and weak alkaline pH region. Pyrite (Fe{sub 2}S), initially contained in bentonite, alters to magnetite (Fe{sub 3}O{sub 4}), and this redox couple reaction controls the oxidation reduction potential. A mild alkaline pH condition is produced mainly by an ion exchange reaction between the sodium in bentonite and the protons in the solution. A geochemical simulation of the ion exchange reactions and the pyrite-magnetite alteration suggests that a favorable chemical condition would exist during the waste glass dissolution and indicates that the Ph and the Eh values are {minus}7.5 to {minus}9.4 and {minus}450 to {minus}320 mV, respectively, when the granitic groundwater intrudes into the compacted bentonite in the repository.

  11. Chabazite: stable cation-exchanger in hyper alkaline concrete pore water.

    PubMed

    Van Tendeloo, Leen; Wangermez, Wauter; Kurttepeli, Mert; de Blochouse, Benny; Bals, Sara; Van Tendeloo, Gustaaf; Martens, Johan A; Maes, André; Kirschhock, Christine E A; Breynaert, Eric

    2015-02-17

    To avoid impact on the environment, facilities for permanent disposal of hazardous waste adopt multibarrier design schemes. As the primary barrier very often consists of cement-based materials, two distinct aspects are essential for the selection of suitable complementary barriers: (1) selective sorption of the contaminants in the repository and (2) long-term chemical stability in hyperalkaline concrete-derived media. A multidisciplinary approach combining experimental strategies from environmental chemistry and materials science is therefore essential to provide a reliable assessment of potential candidate materials. Chabazite is typically synthesized in 1 M KOH solutions but also crystallizes in simulated young cement pore water, a pH 13 aqueous solution mainly containing K(+) and Na(+) cations. Its formation and stability in this medium was evaluated as a function of temperature (60 and 85 °C) over a timeframe of more than 2 years and was also asessed from a mechanistic point of view. Chabazite demonstrates excellent cation-exchange properties in simulated young cement pore water. Comparison of its Cs(+) cation exchange properties at pH 8 and pH 13 unexpectedly demonstrated an increase of the KD with increasing pH. The combined results identify chabazite as a valid candidate for inclusion in engineered barriers for concrete-based waste disposal.

  12. Toxicity identification evaluation of metal-contaminated sediments using an artificial pore water containing dissolved organic carbons

    SciTech Connect

    Boucher, A.M.; Watzin, M.C.

    1999-03-01

    Recent investigations of sediment-associated pollutants in Lake Champlain indicated significant contamination with As, Mn, and Ni in Outer Malletts Bay, Vermont, US. Ceriodaphnia dubia exposed to sediment pore water from several sites in Outer Malletts Bay showed repeatable, acute mortality at only one site. A toxicity identification evaluation (TIE) was conducted on pore water to determine the contaminants causing mortality at this site. Unlike most TIE applications, the dilution water used in these tests was formulated to match the hardness, alkalinity, pH, conductivity, and dissolved organic carbon content of the pore water. Results from phase 1 of the TIE indicated that divalent metals may be responsible for toxicity. Phase 2 results revealed levels of Mn above LC50 values. Spiking experiments employed in phase 3 confirmed Mn as the principal toxicant in sediment pore water. The formulated pore water worked well and helped ensure that toxicant behavior was influenced primarily by each TIE manipulation and not by physical and chemical differences between the dilution and site water. Although the Mn toxicity at this site may be the result of its unique geomorphology, this situation underscores the need to look broadly for potential toxicants when evaluating contaminated sites.

  13. SeamountFlux: Pore water geochemistry and sediment characteristics (Guatemala Basin, East Pacific)

    NASA Astrophysics Data System (ADS)

    Pichler, T.; Poonchai, W.; Schmidt-Schierhorn, F.; Villinger, H. W.

    2011-12-01

    The scientific goal of the project "SeamountFlux" is to study a process, which can possibly contribute significantly to large scale cooling of the oceanic crust. The focus of the study is to investigate the exchange of matter and energy between the ocean and the upper young oceanic crust in the vicinity of unexplained circular depressions in the sedimentary cover, which are widely spread in the equatorial Pacific. A possible model for the formation of these so-called "hydrothermal pits" is the dissolution of calcium carbonate (CaCO3) minerals by upward flowing warm fluids, which are under-saturated in CaCO3. Seamounts are suspected to act as an entrance point for cold seawater, which then equilibrates with the basaltic oceanic crust prior to exiting through the pits. Such a process should affect the thermal structure in and around the pits as well as the geochemistry of the pore water. During cruise SO207 (June/July 2010 on the German RV Sonne) in the vicinity of ODP/IODP Site 1256 and ODP site 844 (Guatemala Basin, eastern equatorial Pacific) we collected 24 gravity cores varying in length between 3.3 m and 10.6 m from 3 distinct working areas. The cores were generally taken along a transect, starting in the center of a pit, across the pit slope to the surrounding seafloor. From these cores a total of 451 pore water samples were collected and analyzed onboard (pH, Eh, Fe, NH4 and alkalinity), as well as in the laboratory (Cl, SO4, Na, Mg, K, Ca, Sr and Mn). First results do not show any obvious evidence for the "hydrothermal" hypotheses. Pore water profiles were more or less identical, whether collected from within or from outside a pit. Chloride, SO4, Na, Mg, K, Ca, and Sr concentrations were identical to those in seawater. Particularly higher Ca and Sr concentrations were to be expected if calcium carbonate dissolution took place within the sediments. With respect to sediment composition and physico-chemical conditions in the pore waters, we observed larger

  14. Pore water pressure variations in Subpermafrost groundwater : Numerical modeling compared with experimental modeling

    NASA Astrophysics Data System (ADS)

    Rivière, Agnès.; Goncalves, Julio; Jost, Anne; Font, Marianne

    2010-05-01

    Development and degradation of permafrost directly affect numerous hydrogeological processes such as thermal regime, exchange between river and groundwater, groundwater flows patterns and groundwater recharge (Michel, 1994). Groundwater in permafrost area is subdivided into two zones: suprapermafrost and subpermafrost which are separated by permafrost. As a result of the volumetric expansion of water upon freezing and assuming ice lenses and frost heave do not form freezing in a saturated aquifer, the progressive formation of permafrost leads to the pressurization of the subpermafrost groundwater (Wang, 2006). Therefore disappearance or aggradation of permafrost modifies the confined or unconfined state of subpermafrost groundwater. Our study focuses on modifications of pore water pressure of subpermafrost groundwater which could appear during thawing and freezing of soil. Numerical simulation allows elucidation of some of these processes. Our numerical model accounts for phase changes for coupled heat transport and variably saturated flow involving cycles of freezing and thawing. The flow model is a combination of a one-dimensional channel flow model which uses Manning-Strickler equation and a two-dimensional vertically groundwater flow model using Richards equation. Numerical simulation of heat transport consisted in a two dimensional model accounting for the effects of latent heat of phase change of water associated with melting/freezing cycles which incorporated the advection-diffusion equation describing heat-transfer in porous media. The change of hydraulic conductivity and thermal conductivity are considered by our numerical model. The model was evaluated by comparing predictions with data from laboratory freezing experiments. Experimental design was undertaken at the Laboratory M2C (Univesité de Caen-Basse Normandie, CNRS, France). The device consisted of a Plexiglas box insulated on all sides except on the top. Precipitation and ambient temperature are

  15. Changes in14c activity over time during vacuum distillation of carbon from rock pore water

    USGS Publications Warehouse

    Davidson, G.R.; Yang, I.C.

    1999-01-01

    The radiocarbon activity of carbon collected by vacuum distillation from a single partially saturated tuff began to decline after approximately 60% of the water and carbon had been extracted. Disproportionate changes in 14C activity and ??13C during distillation rule out simple isotopic fractionation as a causative explanation. Additional phenomena such as matrix diffusion and ion exclusion in micropores may play a role in altering the isotopic value of extracted carbon, but neither can fully account for the observed changes. The most plausible explanation is that distillation recovers carbon from an adsorbed phase that is depleted in 14C relative to DIC in the bulk pore water. ?? 1999 by the Arizona Board of Regents on behalf of the University of Arizona.

  16. Partitioning of PAHs in pore water from mangrove wetlands in Shantou, China.

    PubMed

    Cao, Qi min; Wang, Hua; Qin, Jian qiao; Chen, Gui zhu; Zhang, Yong bei

    2015-01-01

    To investigate the trend of selected polycyclic aromatic hydrocarbons (PAHs) partitioning, fifteen pore water samples collected from the sediments of three mangrove wetlands were analyzed, and the partition coefficients and the partition model for the PAHs were determined by the correlation between K(oc) and octanol-water partition coefficient (K(ow)). The results revealed that the mean Kp values in inner mangrove wetlands were between 143 and 1031 L /Kg; the particulate organic carbon (POC) could strongly adsorb low-ring PAHs; the PAHs partitioning was on a obvious trend transported to particle phase. We suggest that the classic equilibrium model of organic carbon normalized (K(p)=K(oc)f(oc)) may be used to predict the trend of the selected PAHs partitioning. PMID:25450913

  17. Transport of biocolloids in water saturated columns packed with sand: Effect of grain size and pore water velocity.

    PubMed

    Syngouna, Vasiliki I; Chrysikopoulos, Constantinos V

    2011-11-01

    The main objective of this study was to evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three waterborne fecal indicator organisms (Escherichia coli, MS2, and ΦX174) in laboratory-scale columns packed with clean quartz sand. Three different grain sizes and three pore water velocities were examined and the attachment behavior of Escherichia coli, MS2, and ΦX174 onto quartz sand was evaluated. The mass recoveries of the biocolloids examined were shown to be highest for Escherichia coli and lowest for MS2. However, no obvious relationships between mass recoveries and water velocity or grain size could be established from the experimental results. The observed mean dispersivity values for each sand grain size were smaller for bacteria than coliphages, but higher for MS2 than ΦX174. The single collector removal and collision efficiencies were quantified using the classical colloid filtration theory. Furthermore, theoretical collision efficiencies were estimated only for E. coli by the Interaction-Force-Boundary-Layer, and Maxwell approximations. Better agreement between the experimental and Maxwell theoretical collision efficiencies were observed.

  18. Origin and transport of pore fluids in the Nankai accretionary prism inferred from chemical and isotopic compositions of pore water at cold seep sites off Kumano

    NASA Astrophysics Data System (ADS)

    Toki, Tomohiro; Higa, Ryosaku; Ijiri, Akira; Tsunogai, Urumu; Ashi, Juichiro

    2014-12-01

    We used push corers during manned submersible dives to obtain sediment samples of up to 30 cm from the subseafloor at the Oomine Ridge. The concentrations of B in pore water extracted from the sediment samples from cold seep sites were higher than could be explained by organic matter decomposition, suggesting that the seepage fluid at the site was influenced by B derived from smectite-illite alteration, which occurs between 50°C and 160°C. Although the negative δ18OH2O and δDH2O values of the pore fluids cannot be explained by freshwater derived from clay mineral dehydration (CMD), we considered the contribution of pore fluids in the shallow sediments of the accretionary prism, which showed negative δ18OH2O and δDH2O values according to the results obtained during Integrated Ocean Drilling Program (IODP) Expeditions 315 and 316. We calculated the mixing ratios based on a four-end-member mixing model including freshwater derived from CMD, pore fluids in the shallow (SPF) accretionary prism sediment, seawater (SW), and freshwater derived from methane hydrate (MH) dissociation. However, the Oomine seep fluids were unable to be explained without four end members, suggesting that deep-sourced fluids in the accretionary prism influenced the seeping fluids from this area. This finding presents the first evidence of deep-sourced fluids at cold seep sites in the Oomine Ridge, indicating that a megasplay fault is a potential pathway for the deep-sourced fluids.

  19. Cloud top liquid water from lidar observations of marine stratocumulus

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Boers, R.; Hart, W. D.

    1989-01-01

    Marine stratus clouds were simultaneously observed by nadir Nd:YAG lidar measurements and in situ cloud physics measurements. A procedure was applied to derive the two-dimensional vertical cross section of the liquid water from within the cloud top lidar observations. A comparison to direct in-cloud liquid water observations gave good results. The liquid water retrieval was limited to an effective optical depth of 1.5. The true cloud optical thickness was also obtained from the retrieval procedure to a corresponding limit of 3.8. The optical thickness of the observed marine stratus clouds was predominantly below 3.0.

  20. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    USGS Publications Warehouse

    Mower, Timothy E.; Higgins, Jerry D.; Yang, In C.; Peters, Charles A.

    1994-01-01

    Study of the hydrologic system at Yucca Mountain, Nevada, requires the extraction of pore-water samples from welded and nonwelded, unsaturated tuffs. Two compression methods (triaxial compression and one-dimensional compression) were examined to develop a repeatable extraction technique and to investigate the effects of the extraction method on the original pore-fluid composition. A commercially available triaxial cell was modified to collect pore water expelled from tuff cores. The triaxial cell applied a maximum axial stress of 193 MPa and a maximum confining stress of 68 MPa. Results obtained from triaxial compression testing indicated that pore-water samples could be obtained from nonwelded tuff cores that had initial moisture contents as small as 13 percent (by weight of dry soil). Injection of nitrogen gas while the test core was held at the maximum axial stress caused expulsion of additional pore water and reduced the required initial moisture content from 13 to 11 percent. Experimental calculations, together with experience gained from testing moderately welded tuff cores, indicated that the triaxial cell used in this study could not apply adequate axial or confining stress to expel pore water from cores of densely welded tuffs. This concern led to the design, fabrication, and testing of a one-dimensional compression cell. The one-dimensional compression cell used in this study was constructed from hardened 4340-alloy and nickel-alloy steels and could apply a maximum axial stress of 552 MPa. The major components of the device include a corpus ring and sample sleeve to confine the sample, a piston and base platen to apply axial load, and drainage plates to transmit expelled water from the test core out of the cell. One-dimensional compression extracted pore water from nonwelded tuff cores that had initial moisture contents as small as 7.6 percent; pore water was expelled from densely welded tuff cores that had initial moisture contents as small as 7

  1. Effect of pore water velocities and solute input methods on chloride transport in the undisturbed soil columns of Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhou, BeiBei; Wang, QuanJiu

    2016-04-01

    Studies on solute transport under different pore water velocity and solute input methods in undisturbed soil could play instructive roles for crop production. Based on the experiments in the laboratory, the effect of solute input methods with small pulse input and large pulse input, as well as four pore water velocities, on chloride transport in the undisturbed soil columns obtained from the Loess Plateau under controlled condition was studied. Chloride breakthrough curves (BTCs) were generated using the miscible displacement method under water-saturated, steady flow conditions. Using the 0.15 mol L-1 CaCl2 solution as a tracer, a small pulse (0.1 pore volumes) was first induced, and then, after all the solution was wash off, a large pulse (0.5 pore volumes) was conducted. The convection-dispersion equation (CDE) and the two-region model (T-R) were used to describe the BTCs, and their prediction accuracies and fitted parameters were compared as well. All the BTCs obtained for the different input methods and the four pore water velocities were all smooth. However, the shapes of the BTCs varied greatly; small pulse inputs resulted in more rapid attainment of peak values that appeared earlier with increases in pore water velocity, whereas large pulse inputs resulted in an opposite trend. Both models could fit the experimental data well, but the prediction accuracy of the T-R was better. The values of the dispersivity, λ, calculated from the dispersion coefficient obtained from the CDE were about one order of magnitude larger than those calculated from the dispersion coefficient given by the T-R, but the calculated Peclet number, Pe, was lower. The mobile-immobile partition coefficient, β, decreased, while the mass exchange coefficient increased with increases in pore water velocity.

  2. Determining Carbonate Concretion Formation Temperatures and Pore Water δ18O Values Using the Clumped Isotope Approach

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.; Corsetti, F. A.; Tripati, A. K.

    2010-12-01

    The porosity/permeability of siliciclastic strata is affected by post-depositional cementation, but determining at what depth and under what conditions cementation occurs is difficult with standard techniques. The oxygen isotopic composition of solid phase carbonate cements (δ18Ocarb) can be related to temperature (and by extension depth) of formation, and thus has been widely used in diagenetic studies. However, δ18Ocarb paleothermometry requires the prediction or assumption of pore water δ18O (δ18Opw), a parameter that is poorly constrained in past diagenetic environments (for convenience δ18Opw is usually assumed to be 0‰ VSMOW). Here, we use clumped isotope thermometry (CIT)—a fluid δ18O-independent temperature proxy—to avoid the often ambiguous yet necessary δ18Opw assumption applied to δ18Ocarb paleothermometery and reevaluate the temperature of carbonate concretion formation in the Miocene Monterey Formation (dolomite) and the Cretaceous Holz Shale (calcite) of southern California. CIT analysis of Monterey Formation concretions produced slightly increased temperatures of formation versus traditional δ18Ocarb paleothermometry, whereas the Holz Shale concretions produced significantly decreased temperatures. Inputting the CIT-derived temperature into the associated δ18Ocarb-temperature equation allows the calculation of the ancient δ18Opw. Calculated δ18Opw values range from ~ -8 to +2‰ VSMOW, significantly different from coeval seawater. δ18Opw less than 0‰ can be generated by a number of processes including the influx of non-marine fluids and/or hydrate formation, whereas δ18Opw greater than 0‰ can be produced by silicate diagenesis, influx of evaporative brines, or hydrate dissolution. These data demonstrate that pore water modifying diagenetic processes were operating in past environments and emphasize that the formation temperatures of diagenetic carbonates should be calculated using a fluid δ18O-independent approach, such as

  3. Release of Escherichia coli from Foreshore Sand and Pore Water during Intensified Wave Conditions at a Recreational Beach.

    PubMed

    Vogel, Laura J; O'Carroll, Denis M; Edge, Thomas A; Robinson, Clare E

    2016-06-01

    Foreshore beach sands and pore water may act as a reservoir and nonpoint source of fecal indicator bacteria (FIB) to surface waters. This paper presents data collected at a fine sand beach on Lake Huron, Canada over three field events. The data show that foreshore sand erosion as wave height increases results in elevated Escherichia coli concentrations in surface water, as well as depletion of E. coli from the foreshore sand and pore water. E. coli initially attached to foreshore sand rather than initially residing in the pore water was found to be the main contributor to elevated surface water concentrations. Surface water E. coli concentrations were a function of not only wave height (and associated sand erosion) but also the time elapsed since a preceding period of high wave intensity. This finding is important for statistical regression models used to predict beach advisories. While calculations suggest that foreshore sand erosion may be the dominant mechanism for releasing E. coli to surface water during intensified wave conditions at a fine sand beach, comparative characterization of the E. coli distribution at a coarse sand-cobble beach suggests that interstitial pore water flow and discharge may be more important for coarser sand beaches.

  4. Release of Escherichia coli from Foreshore Sand and Pore Water during Intensified Wave Conditions at a Recreational Beach.

    PubMed

    Vogel, Laura J; O'Carroll, Denis M; Edge, Thomas A; Robinson, Clare E

    2016-06-01

    Foreshore beach sands and pore water may act as a reservoir and nonpoint source of fecal indicator bacteria (FIB) to surface waters. This paper presents data collected at a fine sand beach on Lake Huron, Canada over three field events. The data show that foreshore sand erosion as wave height increases results in elevated Escherichia coli concentrations in surface water, as well as depletion of E. coli from the foreshore sand and pore water. E. coli initially attached to foreshore sand rather than initially residing in the pore water was found to be the main contributor to elevated surface water concentrations. Surface water E. coli concentrations were a function of not only wave height (and associated sand erosion) but also the time elapsed since a preceding period of high wave intensity. This finding is important for statistical regression models used to predict beach advisories. While calculations suggest that foreshore sand erosion may be the dominant mechanism for releasing E. coli to surface water during intensified wave conditions at a fine sand beach, comparative characterization of the E. coli distribution at a coarse sand-cobble beach suggests that interstitial pore water flow and discharge may be more important for coarser sand beaches. PMID:27120087

  5. Mercury cycling in boreal ecosystems: The long-term effect of acid rain constituents on peatland pore water methylmercury concentrations

    NASA Astrophysics Data System (ADS)

    Branfireun, Brian A.; Bishop, Kevin; Roulet, Nigel T.; Granberg, Gunnar; Nilsson, Mats

    Sulphate-reducing bacteria have been identified as primary methylators of mercury (Hg) in the laboratory and in field investigations. However, no studies have investigated the effect of long-term deposition of sulphate on methylmercury (MeHg) dynamics in peatlands, which are known to be significant sources of MeHg to downstream waters in the boreal forest zone. As an ancillary experiment to a larger project investigating the effects of acid rain constituents on peatland carbon dynamics, the influence of experimentally elevated Na2SO4 and/or NH4NO3 deposition on peat pore water MeHg concentrations was determined using a simple mesocosm experimental design. After three years, additions of S in amounts equivalent to the 1980s dry and wet deposition in Southern Sweden resulted in peat pore water MeHg concentrations up to six times above background levels. Elevated N loads had no effect on pore water MeHg concentrations.

  6. Toxicity of sediment pore water in Puget Sound (Washington, USA): a review of spatial status and temporal trends.

    PubMed

    Long, Edward R; Carr, R Scott; Biedenbach, James M; Weakland, Sandra; Partridge, Valerie; Dutch, Margaret

    2013-01-01

    Data from toxicity tests of the pore water extracted from Puget Sound sediments were compiled from surveys conducted from 1997 to 2009. Tests were performed on 664 samples collected throughout all of the eight monitoring regions in the Sound, an area encompassing 2,294.1 km(2). Tests were performed with the gametes of the Pacific purple sea urchin, Strongylocentrotus purpuratus, to measure percent fertilization success as an indicator of relative sediment quality. Data were evaluated to determine the incidence, degree of response, geographic patterns, spatial extent, and temporal changes in toxicity. This is the first survey of this kind and magnitude in Puget Sound. In the initial round of surveys of the eight regions, 40 of 381 samples were toxic for an incidence of 10.5 %. Stations classified as toxic represented an estimated total of 107.1 km(2), equivalent to 4.7 % of the total area. Percent sea urchin fertilization ranged from >100 % of the nontoxic, negative controls to 0 %. Toxicity was most prevalent and pervasive in the industrialized harbors and lowest in the deep basins. Conditions were intermediate in deep-water passages, urban bays, and rural bays. A second round of testing in four regions and three selected urban bays was completed 5-10 years following the first round. The incidence and spatial extent of toxicity decreased in two of the regions and two of the bays and increased in the other two regions and the third bay; however, only the latter change was statistically significant. Both the incidence and spatial extent of toxicity were lower in the Sound than in most other US estuaries and marine bays.

  7. Toxicity of sediment pore water in Puget Sound (Washington, USA): a review of spatial status and temporal trends

    USGS Publications Warehouse

    Long, Edward R.; Carr, R. Scott; Biedenbach, James M.; Weakland, Sandra; Partridge, Valerie; Dutch, Margaret

    2013-01-01

    Data from toxicity tests of the pore water extracted from Puget Sound sediments were compiled from surveys conducted from 1997 to 2009. Tests were performed on 664 samples collected throughout all of the eight monitoring regions in the Sound, an area encompassing 2,294.1 km2. Tests were performed with the gametes of the Pacific purple sea urchin, Strongylocentrotus purpuratus, to measure percent fertilization success as an indicator of relative sediment quality. Data were evaluated to determine the incidence, degree of response, geographic patterns, spatial extent, and temporal changes in toxicity. This is the first survey of this kind and magnitude in Puget Sound. In the initial round of surveys of the eight regions, 40 of 381 samples were toxic for an incidence of 10.5 %. Stations classified as toxic represented an estimated total of 107.1 km2, equivalent to 4.7 % of the total area. Percent sea urchin fertilization ranged from >100 % of the nontoxic, negative controls to 0 %. Toxicity was most prevalent and pervasive in the industrialized harbors and lowest in the deep basins. Conditions were intermediate in deep-water passages, urban bays, and rural bays. A second round of testing in four regions and three selected urban bays was completed 5–10 years following the first round. The incidence and spatial extent of toxicity decreased in two of the regions and two of the bays and increased in the other two regions and the third bay; however, only the latter change was statistically significant. Both the incidence and spatial extent of toxicity were lower in the Sound than in most other US estuaries and marine bays.

  8. Mineralogy and pore water chemistry of a boiler ash from a MSW fluidized-bed incinerator.

    PubMed

    Bodénan, F; Guyonnet, D; Piantone, P; Blanc, P

    2010-07-01

    This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al(0), as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al(0) are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction.

  9. Mineralogy and pore water chemistry of a boiler ash from a MSW fluidized-bed incinerator

    SciTech Connect

    Bodenan, F.; Guyonnet, D.; Piantone, P.; Blanc, P.

    2010-07-15

    This paper presents an investigation of the mineralogy and pore water chemistry of a boiler ash sampled from a municipal solid waste fluidized-bed incinerator, subject to 18 months of dynamic leaching in a large percolation column experiment. A particular focus is on the redox behaviour of Cr(VI) in relation to metal aluminium Al{sup 0}, as chromium may represent an environmental or health hazard. The leaching behaviour and interaction between Cr(VI) and Al{sup 0} are interpreted on the basis of mineralogical evolutions observed over the 18-month period and of saturation indices calculated with the geochemical code PhreeqC and reviewed thermodynamic data. Results of mineralogical analyses show in particular the alteration of mineral phases during leaching (e.g. quartz and metal aluminium grains), while geochemical calculations suggest equilibria of percolating fluids with respect to specific mineral phases (e.g. monohydrocalcite and aluminium hydroxide). The combination of leaching data on a large scale and mineralogical analyses document the coupled leaching behaviour of aluminium and chromium, with chromium appearing in the pore fluids in its hexavalent and mobile state once metal aluminium is no longer available for chromium reduction.

  10. Active Sampling Device for Determining Pollutants in Surface and Pore Water – the In Situ Sampler for Biphasic Water Monitoring

    PubMed Central

    Supowit, Samuel D.; Roll, Isaac B.; Dang, Viet D.; Kroll, Kevin J.; Denslow, Nancy D.; Halden, Rolf U.

    2016-01-01

    We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040–0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction. PMID:26905924

  11. Active Sampling Device for Determining Pollutants in Surface and Pore Water – the In Situ Sampler for Biphasic Water Monitoring

    NASA Astrophysics Data System (ADS)

    Supowit, Samuel D.; Roll, Isaac B.; Dang, Viet D.; Kroll, Kevin J.; Denslow, Nancy D.; Halden, Rolf U.

    2016-02-01

    We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040–0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction.

  12. Active Sampling Device for Determining Pollutants in Surface and Pore Water - the In Situ Sampler for Biphasic Water Monitoring

    NASA Astrophysics Data System (ADS)

    Supowit, Samuel D.; Roll, Isaac B.; Dang, Viet D.; Kroll, Kevin J.; Denslow, Nancy D.; Halden, Rolf U.

    2016-02-01

    We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040-0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction.

  13. Active Sampling Device for Determining Pollutants in Surface and Pore Water - the In Situ Sampler for Biphasic Water Monitoring.

    PubMed

    Supowit, Samuel D; Roll, Isaac B; Dang, Viet D; Kroll, Kevin J; Denslow, Nancy D; Halden, Rolf U

    2016-02-24

    We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040-0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction.

  14. Solid-state 13C NMR studies of dissolved organic matter in pore waters from different depositional environments

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.

    1987-01-01

    Dissolved organic matter (DOM) in pore waters from sediments of a number of different depositional environments was isolated by ultrafiltration using membranes with a nominal molecular weight cutoff of 500. This > 500 molecular weight DOM represents 70-98% of the total DOM in these pore waters. We determined the gross chemical structure of this material using both solid-state 13C nuclear magnetic resonance spectroscopy and elemental analysis. Our results show that the DOM in these pore waters appears to exist as two major types: one type dominated by carbohydrates and paraffinic structures and the second dominated by paraffinic and aromatic structures. We suggest that the dominance of one or the other structural type of DOM in the pore water depends on the relative oxidizing/reducing nature of the sediments as well as the source of the detrital organic matter. Under dominantly anaerobic conditions carbohydrates in the sediments are degraded by bacteria and accumulate in the pore water as DOM. However, little or no degradation of lignin occurs under these conditions. In contrast, sediments thought to be predominantly aerobic in character have DOM with diminished carbohydrate and enhanced aromatic character. The aromatic structures in the DOM from these sediments are thought to arise from the degradation of lignin. The large amounts of paraffinic structures in both types of DOM may be due to the degradation of unidentified paraffinic materials in algal or bacterial remains. ?? 1987.

  15. Pilot-scale in situ bioremediation of HMX and RDX in soil pore water in Hawaii.

    PubMed

    Payne, Zachary M; Lamichhane, Krishna M; Babcock, Roger W; Turnbull, Stephen J

    2013-10-01

    A nine-month in situ bioremediation study was conducted in Makua Military Reservation (MMR) in Oahu, Hawaii (USA) to evaluate the potential of molasses to enhance biodegradation of royal demolition explosive (RDX) and high-melting explosive (HMX) contaminated soil below the root zone. MMR has been in operation since the 1940's resulting in subsurface contamination that in some locations exceeds USEPA preliminary remediation goals for these chemicals. A molasses-water mixture (1 : 40 dilution) was applied to a treatment plot and clean water was applied to a control plot via seven flood irrigation events. Pore water samples were collected from 12 lysimeters installed at different depths in 3 boreholes in each test plot. The difference in mean concentrations of RDX in pore water samples from the two test plots was very highly significant (p < 0.001). The concentrations differences with depth were also very highly significant (p < 0.001) and degradation was greatly enhanced at depths from 5 to 13.5 ft. biodegradation was modeled as first order and the rate constant was 0.063 per day at 5 ft and decreased to 0.023 per day at 11 ft to 13.5 ft depth. Enhanced biodegradation of HMX was also observed in molasses treated plot samples but only at a depth of 5 ft. The difference in mean TOC concentration (surrogate for molasses) was highly significant with depth (p = 0.003) and very highly significant with treatment (p < 0.001). Mean total nitrogen concentrations also differed significantly with treatment (p < 0.001) and depth (p = 0.059). The molasses water mixture had a similar infiltration rate to that of plain water (average 4.12 ft per day) and reached the deepest sensor (31 ft) within 5 days of application. Most of the molasses was consumed by soil microorganisms by about 13.5 feet below ground surface and treatment of deeper depths may require greater molasses concentrations and/or more frequent flood irrigation. Use of the bioremediation method described herein

  16. Impact of long term wetting on pore water chemistry in a peat bog in Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Schaper, Jonas; Blodau, Christian; Holger Knorr, Klaus

    2013-04-01

    Peatlands of the northern hemisphere store a remarkable amount of carbon but also contribute to global methane emissions. As large areas in the boreal and subarctic zone are considered to undergo significant climate change it is necessary to understand how these ecosystems react to altered environmental conditions. Since not only temperatures but also precipitation is likely to increase in these regions, it is of particular interest to understand the impact of raised water tables and changing local hydrological flow patterns on peatlands' carbon cycle. We chose a pristine bog that was partly flooded by a reservoir lake created 60 years ago in Ontario, Canada. Water management in the reservoir resulted in seasonal flooding, shifting hydrological flow patterns and vegetation gradients. The impact of partial flooding on pore water chemistry and DIC and CH4 concentrations were studied within surface peat layers. Samples were taken with pore water peepers along the vegetation- and flooding gradient. Turnover rates of DIC and methane were calculated from obtained concentration profiles and peat porosity under the assumption that transport is dominated by diffusion. Values of pH changed remarkably from 4 within the undisturbed bog part to almost 8 at the lake shore. Ca2+ and Mg2+ were the only ions that showed significant distribution patterns with readily increasing concentrations towards the lake water body. CH4 and DIC concentrations also increased towards the lake and peaked in around 100 cm depth right at the shore with maximum concentrations being 2766 μmol L-1 for CH4 and 7543 μmol L-1 for DIC, respectively. Turnover rates also increased towards the shore albeit some uncertainty lies in this finding as steady state condition required for calculations were probably not established and transport was not only dominated by diffusion. Maximum CH4 production rates were modeled to be 36 nmol cm-3 d-1 and maximum DIC production was calculated to 64 nmol cm-3 d-1. Ca2

  17. Hydrologic inferences from strontium isotopes in pore water from the unsaturated zone at Yucca Mountain, Nevada

    SciTech Connect

    Marshall, B.D.; Futa, K.; Peterman, Z.E.

    1997-12-31

    Calcite is ubiquitous at Yucca Mountain, occurring in the soils and as fracture and cavity coatings within the volcanic tuff section. Strontium is a trace element in calcite, generally at the tens to hundreds of ppm level. Because calcite contains very little rubidium and the half-life of the {sup 87}Rb parent is billions of years, the {sup 87}Sr/{sup 86}Sr ratios of the calcite record the ratio in the water from which the calcite precipitated. Dissolution and reprecipitation does not alter these compositions so that, in the absence of other sources of strontium, one would expect the strontium ratios along a flow path to preserve variations inherited from strontium in the soil zone. Strontium isotope compositions of calcites from various settings in the Yucca Mountain region have contributed to the understanding of the unsaturated zone (UZ), especially in distinguishing unsaturated zone calcite from saturated zone calcite. Different populations of calcite have been compared, either to group them together or distinguish them from each other in terms of their strontium isotope compositions. Ground water and perched water have also been analyzed; this paper presents strontium isotope data obtained on pore water.

  18. Diffusive release of uranium from contaminated sediments into capillary fringe pore water

    SciTech Connect

    Rod, Kenton A.; Wellman, Dawn M.; Flury, Markus; Pierce, Eric M; Harsh, James B.

    2012-01-01

    Despite remediation efforts at the former nuclear weapons facility, leaching of uranium (U) from contaminated sediments to the ground water persists at the Hanford site 300 Area. Flooding of contaminated capillary fringe sediments due to seasonal changes in the Columbia River stage has been identified as a source for U supply to ground water. We investigated U release from Hanford capillary fringe sediments by packing sediments into reservoirs of centrifugal filter devices and saturated with Columbia River water for 3 to 84 days at varying solution-to-solid ratios. After specified times, samples were centrifuged. Within the first three days, there was an initial rapid release of 6-9% of total U, independent of the solution-to-solid ratio. After 14 days of reaction, however, the experiments with the narrowest solution-to-solid ratios showed a decline in dissolved U concentrations. The removal of U from the solution phase was accompanied by removal of Ca and HCO3-. Geochemical modeling indicated that calcite could precipitate in the narrowest solution-to-solid ratio experiment. After the rapid initial release in the first three days for the wide solution-to-solid ratio experiments, there was sustained release of U into the pore water. This sustained release of U from the sediments had diffusion-limited kinetics.

  19. Microanalysis of dissolved iron and phosphate in pore waters of hypersaline sediment

    NASA Technical Reports Server (NTRS)

    Haddad, R.; Shaw, T.

    1985-01-01

    Diurnal fluctuations of reduced iron concentrations, expected to occur in reduced sediments in the photic zone, were studied. Iron concentration was compared to O2-H2S, a microcanalysis of sulfate reduction was performed, as well as an examination of diurnal concentration of dissolved phosphate and changes in interstitial CO2. The iron profiles suggest a strong correlation between iron remobilization and processes occurring in the light. Phosphate profiles suggest the removal of phosphate is strongly correlated with precipitation of oxidized iron in the upper 2 mm to 5 mm of the sediments. Pore water CO2 concentrations and carbon isotope ratios are presented. These data are from the analyses of minisediment cores collected from the 42 per mil salt pond and incubated in the laboratory under light and dark conditions.

  20. The Mg isotopic composition of marine pore fluids from ODP Site 807A (Ontong Java Plateau): Implications for the Cenozoic Mg chemistry of the ocean

    NASA Astrophysics Data System (ADS)

    Fantle, M. S.; Teng, F.

    2011-12-01

    carbonates exchange Mg with pore fluids over long time scales, as has been suggested previously [1-2], then the use of Mg isotopes as a paleo-proxy in marine carbonates is complicated. In addition, there is considerable structure in the pore fluid δ26Mg values as a function of depth. Neither the pore fluid isotopic data nor the Mg concentration data fit a simple concave up diffusion profile with depth. Therefore, we hypothesize that there is a component of the pore fluid Mg isotope geochemistry that reflects variations in the Mg isotopic composition of seawater over time, similar to previous attempts at reconstructing seawater Mg concentrations [1]. We use numerical models to simulate deposition, recrystallization, and diffusion over million-year time scales in order to determine seawater δ26Mg over time, constraining recrystallization rates based on previous work [1-2]. References [1] Fantle and DePaolo (2006) GCA, 70, 3883-3904 [2] Fantle and DePaolo (2007), GCA, 71, 2524-2546 [3] Higgins and Schrag (2010), GCA, 74, 5039-5053

  1. DEVELOPMENT OF MARINE WATER QUALITY CRITERIA

    EPA Science Inventory

    The U.S. Environmental Protectional Agency has developed guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. These guidelines provide the method for deriving water quality criteria, including minimum data base...

  2. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification.

    PubMed

    Phelps, T J; Palumbo, A V; Bischoff, B L; Miller, C J; Fagan, L A; McNeilly, M S; Judkins, R R

    2008-07-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 microm in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 microm filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 microm filters can potentially outperform the commercial filter by factors of 100-1,000 fold. PMID:17884208

  3. Plant uptake of elements in soil and pore water: field observations versus model assumptions.

    PubMed

    Raguž, Veronika; Jarsjö, Jerker; Grolander, Sara; Lindborg, Regina; Avila, Rodolfo

    2013-09-15

    Contaminant concentrations in various edible plant parts transfer hazardous substances from polluted areas to animals and humans. Thus, the accurate prediction of plant uptake of elements is of significant importance. The processes involved contain many interacting factors and are, as such, complex. In contrast, the most common way to currently quantify element transfer from soils into plants is relatively simple, using an empirical soil-to-plant transfer factor (TF). This practice is based on theoretical assumptions that have been previously shown to not generally be valid. Using field data on concentrations of 61 basic elements in spring barley, soil and pore water at four agricultural sites in mid-eastern Sweden, we quantify element-specific TFs. Our aim is to investigate to which extent observed element-specific uptake is consistent with TF model assumptions and to which extent TF's can be used to predict observed differences in concentrations between different plant parts (root, stem and ear). Results show that for most elements, plant-ear concentrations are not linearly related to bulk soil concentrations, which is congruent with previous studies. This behaviour violates a basic TF model assumption of linearity. However, substantially better linear correlations are found when weighted average element concentrations in whole plants are used for TF estimation. The highest number of linearly-behaving elements was found when relating average plant concentrations to soil pore-water concentrations. In contrast to other elements, essential elements (micronutrients and macronutrients) exhibited relatively small differences in concentration between different plant parts. Generally, the TF model was shown to work reasonably well for micronutrients, whereas it did not for macronutrients. The results also suggest that plant uptake of elements from sources other than the soil compartment (e.g. from air) may be non-negligible.

  4. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification

    SciTech Connect

    Phelps, Tommy Joe; Palumbo, Anthony Vito; Fagan, Lisa Anne; Bischoff, Brian L; Miller, Curtis Jack; Drake, Meghan M; Judkins, Roddie Reagan

    2008-01-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 {micro}m in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 {micro}m filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 {micro}m filters can potentially outperform the commercial filter by factors of 100-1000 fold.

  5. Rare earth elements in pore waters from Cabo Friós western boundary upwelling system

    NASA Astrophysics Data System (ADS)

    Smoak, J. M.; Silva-Filho, E. V.; Rousseau, T.; Albuquerque, A. L.; Caldeira, P. P.; Moreira, M.

    2015-12-01

    Rare earth elements (REE) are a group of reactive trace elements in aqueous media, they have a coherent chemical behavior with however a subtle and gradual shift in physicochemical properties allowing their use as tracers of sources and processes. Uncertainties on their oceanic inputs and outputs still remains [Arsouze et al., 2009; Siddall et al., 2008; Tachikawa et al., 2003]. The water-sediment interface were early on identified as a relevant REE source due to the high distribution coefficient between sediments and pore waters [Elderfield and Sholkovitz, 1987] and substantially higher concentration then the water column [Abbott et al., 2015; Haley et al., 2004; Sholkovitz et al., 1989; Soyol-Erdene and Huh, 2013]. Here we present a cross shelf transect of 4 short pore waters REE profiles on a 680 km2 mud bank located in the region of Cabo Frio, Brazil. This study reveals similar trends at the four sites: a REE production zone reflected by a maximum in concentration at the top of the sediment evolving with depth toward a REE consumption zone reflected by a minimum in REE concentrations. PAAS normalized patterns shows 1) a progressive depletion in LREE with depth with HREE/LREE ratios comprised between 1.1 and 1.6 in the 2 first centimeters evolving gradually to ratios comprised between 2.8 and 4.7 above 7 cm 2) A sharp gradient in negative Ce anomaly with Ce/Ce* values reaching 0.3. With maximum Nd concentrations comprised between 780 and 1200 pmol.kg and considering that seawater Nd concentrations of Brazilian shelf bottom waters are comprised between 24 and 50 pmol.Kg-1 we apply the Fick´s First Law of diffusion and estimate that 340 +/- 90 nmol. m-2 Y-1 of Nd is released in the Cabo frio´s mudbank. This flux is in the same order of magnitude of recent estimates by [Abbott et al., 2015] in the slope of Oregon´s margin. Unraveling processes responsible for the REE production zone will help to refine the global REE fluxes estimates.

  6. The Water Permeability and Pore Entrance Structure of Aquaporin-4 Depend on Lipid Bilayer Thickness.

    PubMed

    Tong, Jihong; Wu, Zhe; Briggs, Margaret M; Schulten, Klaus; McIntosh, Thomas J

    2016-07-12

    Aquaporin-4 (AQP4), the primary water channel in glial cells of the mammalian brain, plays a critical role in water transport in the central nervous system. Previous experiments have shown that the water permeability of AQP4 depends on the cholesterol content in the lipid bilayer, but it was not clear whether changes in permeability were due to direct cholesterol-AQP4 interactions or to indirect effects caused by cholesterol-induced changes in bilayer elasticity or bilayer thickness. To determine the effects resulting only from bilayer thickness, here we use a combination of experiments and simulations to analyze AQP4 in cholesterol-free phospholipid bilayers with similar elastic properties but different hydrocarbon core thicknesses previously determined by x-ray diffraction. The channel (unit) water permeabilities of AQP4 measured by osmotic-gradient experiments were 3.5 ± 0.2 × 10(-13) cm(3)/s (mean ± SE), 3.0 ± 0.3 × 10(-13) cm(3)/s, 2.5 ± 0.2 × 10(-13) cm(3)/s, and 0.9 ± 0.1 × 10(-13) cm(3)/s in bilayers containing (C22:1)(C22:1)PC, (C20:1)(C20:1)PC, (C16:0)(C18:1)PC, and (C13:0)(C13:0)PC, respectively. Channel permeabilities obtained by molecular dynamics (MD) simulations were 3.3 ± 0.1 × 10(-13) cm(3)/s and 2.5 ± 0.1 × 10(-13) cm(3)/s in (C22:1)(C22:1)PC and (C14:0)(C14:0)PC bilayers, respectively. Both the osmotic-gradient and MD-simulation results indicated that AQP4 channel permeability decreased with decreasing bilayer hydrocarbon thickness. The MD simulations also suggested structural modifications in AQP4 in response to changes in bilayer thickness. Although the simulations showed no appreciable changes to the radius of the pore located in the hydrocarbon region of the bilayers, the simulations indicated that there were changes in both pore length and α-helix organization near the cytoplasmic vestibule of the channel. These structural changes, caused by mismatch between the hydrophobic length of AQP4 and the bilayer hydrocarbon

  7. Assessing sulfate reduction and methane cycling in a high salinity pore water system in the northern Gulf of Mexico

    USGS Publications Warehouse

    Pohlman, J.W.; Ruppel, C.; Hutchinson, D.R.; Downer, R.; Coffin, R.B.

    2008-01-01

    Pore waters extracted from 18 piston cores obtained on and near a salt-cored bathymetric high in Keathley Canyon lease block 151 in the northern Gulf of Mexico contain elevated concentrations of chloride (up to 838 mM) and have pore water chemical concentration profiles that exhibit extensive departures (concavity) from steady-state (linear) diffusive equilibrium with depth. Minimum ??13C dissolved inorganic carbon (DIC) values of -55.9??? to -64.8??? at the sulfate-methane transition (SMT) strongly suggest active anaerobic oxidation of methane (AOM) throughout the study region. However, the nonlinear pore water chemistry-depth profiles make it impossible to determine the vertical extent of active AOM or the potential role of alternate sulfate reduction pathways. Here we utilize the conservative (non-reactive) nature of dissolved chloride to differentiate the effects of biogeochemical activity (e.g., AOM and/or organoclastic sulfate reduction) relative to physical mixing in high salinity Keathley Canyon sediments. In most cases, the DIC and sulfate concentrations in pore waters are consistent with a conservative mixing model that uses chloride concentrations at the seafloor and the SMT as endmembers. Conservative mixing of pore water constituents implies that an undetermined physical process is primarily responsible for the nonlinearity of the pore water-depth profiles. In limited cases where the sulfate and DIC concentrations deviated from conservative mixing between the seafloor and SMT, the ??13C-DIC mixing diagrams suggest that the excess DIC is produced from a 13C-depleted source that could only be accounted for by microbial methane, the dominant form of methane identified during this study. We conclude that AOM is the most prevalent sink for sulfate and that it occurs primarily at the SMT at this Keathley Canyon site.

  8. Determination of acute Zn toxicity in pore water from soils previously treated with sewage sludge using bioluminescence assays

    SciTech Connect

    Chaudri, A.M.; Knight, B.P.; Barbosa-Jefferson, V.L.

    1999-06-01

    The effects of increasing concentrations of Zn and Cu in soil pore water from soils of a long-term sewage sludge field experiment on microbial bioluminescence were investigated. Concentrations of total soluble Zn, free Zn{sup 2+}, and soluble Cu increased sharply in soil pore water with increasing total soil metal concentrations above 140 mg of Zn kg{sup {minus}1} or 100 mg of Cu kg{sup {minus}1}. Two luminescence bioassays were tested, based on two bacteria (Escherichia coli and Pseudomonas fluorescens) with the lux genes encoding bacterial luminescence inserted into them. The bioluminescence response of the two microorganisms declined as total soil Zn, soil pore water soluble Zn, and soil pore water free Zn{sup 2+} concentrations increased. The EC{sub 25} values for E. coli and P. fluorescens were 1.3 {+-} 0.2 and 4.3 {+-} 0.5 mg L{sup {minus}1} on a free Zn{sup 2+} basis, respectively. The EC{sub 50} values were 2.5 {+-} 0.2 and 9.6 {+-} 0.9 mg of free Zn{sup 2+} L{sup {minus}1}, respectively. Copper had no significant effect on bioluminescence in the two assays, even at the largest soil pore water concentration of about 620 {micro}g L{sup {minus}1}, corresponding to a total Cu concentration in bulk soil of about 350 mg kg{sup {minus}1}. Thus, the decline in bioluminescence of the two assays was ascribed to increasing soil pore water free Zn{sup 2+} and not soluble Cu.

  9. Testing geochemical models of bentonite pore water evolution against laboratory experimental data

    NASA Astrophysics Data System (ADS)

    Savage, David; Arthur, Randy; Watson, Claire; Wilson, James; Strömberg, Bo

    The determination of a bentonite pore water composition and understanding its evolution with time underpins many radioactive waste disposal issues, such as buffer erosion, canister corrosion, and radionuclide solubility, sorption, and diffusion, inter alia. Previous modelling approaches have tended to ignore clay dissolution-precipitation reactions, a consequence of which is that montmorillonite is theoretically preserved indefinitely in the repository system. Here, we investigate the applicability of an alternative clay pore fluid evolution model, that incorporates clay dissolution-precipitation reactions as an integral component and test it against well-characterised laboratory experimental data, where key geochemical parameters, Eh and pH, have been measured directly in compacted bentonite. Simulations have been conducted using different computer codes (Geochemist’s Workbench, PHREEQC, and QPAC) to test the applicability of this model. Thermodynamic data for the Gibb’s free energy of formation of MX-80 smectite used in the calculations were estimated using two different methods (‘Polymer’ and ‘Vieillard’ Models). Simulations of ‘end-point’ pH measurements in batch bentonite-water slurry experiments showed different pH values according to the complexity of the system studied. The most complete system investigated revealed pH values were a strong function of partial pressure of carbon dioxide, with pH increasing with decreasing PCO 2 (with log PCO 2 values ranging from -3.5 to -7.5 bars produced pH values ranging from 7.9 to 9.6). A second set of calculations investigated disequilibrium between clay and pore fluid in laboratory squeezing cell tests involving pure water (pH = 9.0) or a 1 M NaOH solution (pH = 12.1). Simulations carried out for 100 days (the same timescale as the experiments) showed that smectite remained far from equilibrium throughout, and that the lowering of pH due to smectite hydrolysis was trivial. However, extending the

  10. Low Methane Concentrations in Sediment Along the Siberian Slope: Inference From Pore Water Geochemistry

    NASA Astrophysics Data System (ADS)

    Miller, C.; Dickens, G. R.; Jakobsson, M.

    2015-12-01

    The Eastern Siberian Arctic Ocean (ESAO) is experiencing some of the fastest rates of climate warming. Additionally, the ESAO hosts 80% of the world's subsea permafrost, and presumably holds large amounts of methane in sediments as gas hydrate and free gas. Despite these vast stores of vulnerable carbon, the ESAO is sparingly explored. Here, we present pore water geochemistry results from cores taken during the SWERUS-C3 international expedition and along five transects. Four of these are along the slopes of Arlis Spur, Central East Siberia, Henrietta Island-Makarov Basin, and Eastern Lomonosov Ridge; one is along the shelf in Herald Trough.Upward methane flux toward the seafloor, as inferred from dissolved sulfate and alkalinity profiles, is negligible on slopes the Arlis Spur, Central East Siberia, and Eastern Lomonosov Ridge. Methane flux from slopes near Henrietta Island and Makarov Basin ranged from 13.7 (367 m water depth) to 16.2 mmol/m2-kyr (964 m water depth). The highest flux on the slope, located at the intersection with Lomonosov Ridge, is 25.8 mmol/m2-kyr. In contrast to the generally low methane fluxes of the continental slope, the shelf sediments in Herald Trough have high upward methane fluxes, with measured rates up to 156.9 mmol/m2-kyr. These methane results are the first of their kind in this climatically sensitive region, and contradict previous assumptions regarding high methane flux rates along the slope.

  11. A statistical mechanical model for the calculation of the permittivity of water in hydrated polymer electrolyte membrane pores

    NASA Astrophysics Data System (ADS)

    Paul, Reginald; Paddison, Stephen J.

    2001-10-01

    An equilibrium statistical mechanical model is derived to compute the spatial variation in the permittivity of water within the hydrated pores of ion-containing polymeric membranes. The fixed anionic groups within the pore are modeled as periodic arrays of point charges. The Helmholtz free energy is calculated from a total Hamiltonian of the pore that includes energy from (1) interactions between the fields generated by the fixed charge groups and the dipoles of the water molecules, (2) "hard core" interactions between the water molecules, and (3) dipole-dipole interactions between the water molecules. The free energy is divided into two parts: (a) a reference free energy associated with five water molecules in a cluster interacting with each other through the hard core potentials and with the fixed charge groups and (b) an excess free energy due to the dipolar interactions between the water molecules in two cluster units. In the present work we calculate the polarization and corresponding permittivity from this reference free energy. We first show that our calculations, even at this level of sophistication, go beyond all the traditional approaches. Furthermore, with our model we compute radial profiles of the permittivity in the pores of the sulfonic acid-based Nafion® and 65% sulfonated poly ether ether ketone ketone polymer electrolyte membranes at several different hydration levels. These numerical results and predictions are in agreement with known experimental measurements.

  12. MONITORING OF PORE WATER PRESSURE AND WATER CONTENT AROUND A HORIZONTAL DRIFT THROUGH EXCAVATION - MEASUREMENT AT THE 140m GALLERY IN THE HORONOBE URL -

    NASA Astrophysics Data System (ADS)

    Yabuuchi, Satoshi; Kunimaru, Takanori; Kishi, Atsuyasu; Komatsu, Mitsuru

    Japan Atomic Energy Agency has been conducting the Horonobe Underground Research Laboratory (URL) project in Horonobe, Hokkaido, as a part of the research and development program on geological disposal of high-level radioactive waste. Pore water pressure and water content around a horizontal drift in the URL have been monitored for over 18 months since before the drift excavation was started. During the drift excavation, both pore water pressure and water content were decreasing. Pore water pressure has been still positive though it continued to decrease with its gradient gradually smaller after excavation, while water content turned to increase about 6 months after the completion of the excavation. It turned to fall again about 5 months later. An unsaturated zone containing gases which were dissolved in groundwater may have been formed around the horizontal drift.

  13. Method for determining stable isotope ratios of dissolved organic carbon in interstitial and other natural marine waters

    NASA Technical Reports Server (NTRS)

    Bauer, J. E.; Haddad, R. I.; Des Marais, D. J.

    1991-01-01

    A procedure is described for the analysis of the stable carbon isotopic composition of dissolved organic carbon (DOC) in natural waters from marine and higher-salinity environments. Rapid (less than 5 min) and complete oxidation of DOC is achieved using a modification of previous photochemical oxidation techniques. The CO2 evolved from DOC oxidation can be collected in less than 10 min for isotopic analysis. The procedure is at present suitable for oxidation and collection of 1-5 micromoles of carbon and has an associated blank of 0.1-0.2 micromole of carbon. Complete photochemical oxidation of DOC standards was demonstrated by quantitative recovery of CO2 as measured manometrically. Isotopic analyses of standards by photochemical and high-temperature sealed-tube combustion methods agreed to within 0.3%. Photochemical oxidation of DOC in a representative sediment pore-water sample was also quantitative, as shown by the excellent agreement between the photochemical and sealed-tube methods. The delta 13C values obtained for pore-water DOC using the two methods of oxidation were identical, suggesting that the modified photochemical method is adequate for the isotopically non-fractionated oxidation of pore-water DOC. The procedure was evaluated through an analysis of DOC in pond and pore waters from a hypersaline microbial mat environment. Concentrations of DOC in the water column over the mat displayed a diel pattern, but the isotopic composition of this DOC remained relatively constant (average delta 13C = -12.4%). Pore-water DOC exhibited a distinct concentration maximum in the mat surface layer, and delta 13C of pore-water DOC was nearly 8% lighter at 1.5-2.0-cm depth than in the mat surface layer (0-0.5-cm depth). These results demonstrate the effectiveness of the method in elucidating differences in DOC concentration and delta 13C over biogeochemically relevant spatial and temporal scales. Carbon isotopic analysis of DOC in natural waters, especially pore waters

  14. Marine water quality under climate change conditions/scenarios

    NASA Astrophysics Data System (ADS)

    Rizzi, Jonathan; Torresan, Silvia; Critto, Andrea; Zabeo, Alex; Brigolin, Daniele; Carniel, Sandro; Pastres, Roberto; Marcomini, Antonio

    2016-04-01

    The increase of sea temperature and the changes in marine currents are generating impacts on coastal waters such as changes in water biogeochemical and physical parameters (e.g. primary production, pH, salinity) leading to progressive degradation of the marine environment. With the main aim of analysing the potential impacts of climate change on coastal water quality, a Regional Risk Assessment (RRA) methodology was developed and applied to coastal marine waters of the North Adriatic (i.e. coastal water bodies of the Veneto and Friuli Venezia Giulia regions, Italy). RRA integrates the outputs of regional models providing information on macronutrients (i.e. dissolved inorganic nitrogen e reactive phosphorus), dissolved oxygen, pH, salinity and temperature, etc., under future climate change scenarios with site-specific environmental and socio-economic indicators (e.g. biotic index, presence and extension of seagrasses, presence of aquaculture). The presented approach uses Geographic Information Systems to manage, analyse, and visualize data and employs Multi-Criteria Decision Analysis for the integration of stakeholders preferences and experts judgments into the evaluation process. RRA outputs are hazard, exposure, vulnerability, risk and damage maps useful for the identification and prioritization of hot-spot areas and vulnerable targets in the considered region. Therefore, the main aim of this contribution is to apply the RRA methodology to integrate, visualize, and rank according to spatial distribution, physical and chemical data concerning the coastal waters of the North Adriatic Sea in order to predict possible changes of the actual water quality.

  15. Monitoring and Analysis of Transient Pore Water Pressures in Large Suspended Rock Slides near Poschiavo, CH

    NASA Astrophysics Data System (ADS)

    de Palézieux, Larissa; Loew, Simon; Zwahlen, Peter

    2016-04-01

    Many mountain slopes in the Alps exhibit large compound rock slides or Deep Seated Gravitational Slope Deformations. Due to the basal rupture plane geometry and the cumulative displacement magnitude such landslide bodies are often strongly deformed, highly fractured and - at least locally - very permeable. This can lead to high infiltration rates and low phreatic groundwater tables. This is also the situation in the studied mountain slopes southwest of Poschiavo, where large suspended rockslides occur, with very little surface runoff at high elevations, and torrents developing only at the elevation of the basal rupture planes. Below the landslide toes, at altitudes below ca. 1700 m a.s.l., groundwater appears forming spring lines or distributed spring clusters. Within the scope of the design of a hydropower pump storage plant in the Poschiavo valley by Lagobianco SA (Repower AG), numerous cored and deep boreholes (of 50 to 300 m depth) have been drilled along the planned pressure tunnel alignement at elevations ranging from 963 to 2538 m a.s.l. in the years 2010 and 2012. In several boreholes Lugeon and transient pressure tests were executed and pore water pressure sensors installed in short monitoring sections at various depths. Most of these boreholes intersect deep rockslides in crystalline rocks and limestones, showing highly fragmented rock masses and cohesionless cataclastic shear zones of several tens of meters thickness. This study explores these borehole observations in landslides and adjacent stable slopes and links them to the general hydrologic and hydrogeologic framework. The analysis of the pore water pressure data shows significant variability in seasonal trends and short-term events (from snow melt and summer rain storms) and remarkable pressure differences over short horizontal and vertical distances. This reflects rock mass damage within landslide bodies and important sealing horizons at their base. Based on water balances, the estimated effective

  16. Monitoring and Analysis of Transient Pore Water Pressures in Large Suspended Rock Slides near Poschiavo, CH

    NASA Astrophysics Data System (ADS)

    de Palézieux, Larissa; Loew, Simon; Zwahlen, Peter

    2016-04-01

    Many mountain slopes in the Alps exhibit large compound rock slides or Deep Seated Gravitational Slope Deformations. Due to the basal rupture plane geometry and the cumulative displacement magnitude such landslide bodies are often strongly deformed, highly fractured and - at least locally - very permeable. This can lead to high infiltration rates and low phreatic groundwater tables. This is also the situation in the studied mountain slopes southwest of Poschiavo, where large suspended rockslides occur, with very little surface runoff at high elevations, and torrents developing only at the elevation of the basal rupture planes. Below the landslide toes, at altitudes below ca. 1700 m a.s.l., groundwater appears forming spring lines or distributed spring clusters. Within the scope of the design of a hydropower pump storage plant in the Poschiavo valley by Lagobianco SA (Repower AG), numerous cored and deep boreholes (of 50 to 300 m depth) have been drilled along the planned pressure tunnel alignement at elevations ranging from 963 to 2538 m a.s.l. in the years 2010 and 2012. In several boreholes Lugeon and transient pressure tests were executed and pore water pressure sensors installed in short monitoring sections at various depths. Most of these boreholes intersect deep rockslides in crystalline rocks and limestones, showing highly fragmented rock masses and cohesionless cataclastic shear zones of several tens of meters thickness. This study explores these borehole observations in landslides and adjacent stable slopes and links them to the general hydrologic and hydrogeologic framework. The analysis of the pore water pressure data shows significant variability in seasonal trends and short-term events (from snow melt and summer rain storms) and remarkable pressure differences over short horizontal and vertical distances. This reflects rock mass damage within landslide bodies and important sealing horizons at their base. Based on water balances, the estimated effective

  17. Metal and Metalloid Size-Fractionation Strategies in Spatial High-Resolution Sediment Pore Water Profiles.

    PubMed

    Fabricius, Anne-Lena; Duester, Lars; Ecker, Dennis; Ternes, Thomas A

    2016-09-01

    Sediment water interfaces (SWIs) are often characterized by steep biogeochemical gradients determining the fate of inorganic and organic substances. Important transport processes at the SWI are sedimentation and resuspension of particulate matter and fluxes of dissolved materials. A microprofiling and micro sampling system (missy), enabling high resolution measurements of sediment parameters in parallel to a direct sampling of sediment pore waters (SPWs), was combined with two fractionation approaches (ultrafiltration (UF) and cloud point extraction (CPE)) to differentiate between colloidal and dissolved fractions at a millimeter scale. An inductively coupled plasma-quadrupole mass spectrometry method established for volumes of 300 μL enabled the combination of the high resolution fractionation with multi-element analyzes. UF and CPE comparably indicated that manganese is predominantly present in dissolved fractions of SPW profiles. Differences found for cobalt and iron showed that the results obtained by size-dependent UF and micelle-mediated CPE do not necessarily coincide, probably due to different fractionation mechanisms. Both methods were identified as suitable for investigating fraction-related element concentrations in SPW along sediment depth profiles at a millimeter scale. The two approaches are discussed with regard to their advantages, limitations, potential sources of errors, further improvements, and potential future applications. PMID:27504804

  18. The lipid geochemistry of interstitial waters of recent marine sediments

    SciTech Connect

    Saliot, A.; Brault, M.; Boussuge, C. )

    1988-04-01

    To elucidate the nature of biogeochemical processes occurring at the water-sediment interface, the authors have analyzed fatty acids, n-alkanes and sterols contained in interstitial waters collected from oxic and anoxic marine sediments in the eastern and western intertropical Atlantic Ocean and in the Arabian Sea. Lipid concentrations in interstitial waters vary widely and are generally much higher than concentrations encountered in the overlying sea water. Higher concentrations in interstitial water are observed in environments favorable for organic input and preservation of the organic matter in the water column and in the surficial sediment. The analysis of biogeochemical markers in the various media of occurrence of the organic matter such as sea water, suspended particles, settling particles and sediment is discussed in terms of differences existing between these media and bio-transformations of the organic matter at the water-sediment interface.

  19. A mini drivepoint sampler for measuring pore water solute concentrations in the hyporheic zone of sand-bottom streams

    USGS Publications Warehouse

    Duff, J.H.; Murphy, F.; Fuller, C.C.; Triska, F.J.

    1998-01-01

    A new method for collecting pore-water samples in sand and gravel streambeds is presented. We developed a mini drivepoint solution sampling (MINIPOINT) technique to collect pore-water samples at 2.5-cm vertical resolution. The sampler consisted of six small-diameter stainless steel drivepoints arranged in a 10-cm-diameter circular array. In a simple procedure, the sampler was installed in the streambed to preset drivepoint depths of 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0 cm. Sampler performance was evaluated in the Shingobee River, Minnesota, and Pinal Creek, Arizona, by measuring the vertical gradient of chloride concentration in pore water beneath the streambed that was established by the uninterrupted injection to the stream for 3 d. Pore-water samples were withdrawn from all drivepoints simultaneously. In the first evaluation, the vertical chloride gradient was unchanged at withdrawal rates between 0.3 and 4.0 ml min-1 but was disturbed at higher rates. In the second evaluation, up to 70 ml of pore water was withdrawn from each drivepoint at a withdrawal rate of 2.5 ml min-1 without disturbing the vertical chloride gradient. Background concentrations of other solutes were also determined with MINIPOINT sampling. Steep vertical gradients were present for biologically reactive solutes such as DO, NH4/+, NO3/-, and dissolved organic C in the top 20 cm of the streambed. These detailed solute profiles in the hyporheic zone could not have been determined without a method for close interval vertical sampling that does not disturb natural hydrologic mixing between stream water and groundwater.

  20. Pore water and groundwater quality; its relation to the latest Pleistocene to Holocene sedimentary facies in Japan

    NASA Astrophysics Data System (ADS)

    Saito, T.; Mon, E.; Hamamoto, S.; Takemura, T.; Saito, H.; Ohnishi, J.; Komatsu, T.

    2011-12-01

    Recently, the ground source heat pump system (GSHP) has been recognized as one of the most energy efficient systems. However, it is reported that there is a possibility of subsurface temperature change by using GSHP. In this study, pore water and groundwater quality and its relation to sediment properties were investigated for predicting the possible future influence of GSHP on subsurface environments. At the study site, a groundwater monitoring well of 50 m depth was installed and core samples for the whole profile were obtained from the borehole. The pore water was extracted from about 20 core samples at given depths and pH and EC were measured. The groundwater was also sampled from shallow (strainer: GL-16.25 m to 17.70 m) and deep (strainer: GL-38.70 m to 40.15 m) aquifers. After sampling, the chemical properties including pH, EC, DO, ORP, inorganic dissolved components and heavy metals were measured. The pore water quality was markedly different in the layer below GL-40 m, which is deposited in Pleistocene. In this layer, pH and heavy metals such as As, Pb, Fe, Ni and Zn were higher compared to upper layers. The results imply that chemical properties of the pore water are affected by sediment properties.

  1. The impact of sampling techniques on soil pore water carbon measurements of an Icelandic Histic Andosol.

    PubMed

    Sigfusson, Bergur; Paton, Graeme I; Gislason, Sigurdur R

    2006-10-01

    The carbon in soil pore water from a Histic Andosol from Western Iceland was studied at three different scales; in the field, in undisturbed outdoor mesocosms and in laboratory repacked microcosms. Pore water was extracted using suction cup lysimeters and hollow-fibre tube sampler devices (Rhizon samplers). There were significant differences in all measured variables, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and pH values between the scales of the experiment. Gaseous constituents of soil solution and pH were more susceptible to changes in scale and the type of sampling devices used. Dissolved inorganic carbon concentrations did not differ significantly between field and mesocosm solutions but where up to 14 times lower in microcosms compared to mesocosms solutions. Rhizon samplers yielded solutions with up to 4.7 times higher DIC concentrations than porous cup lysimeters. Mesocosm surface horizon DOC concentrations were 20 and 2 times higher than in field and microcosms respectively. There was difference in DOC concentration between sampling methods (up to 8 times higher in suction cups than rhizon samplers) above 50 cm depth. Soil solution pH values did not differ between field and mesocosms and mesocosms and microcosms respectively down to 80 cm depth. Direct comparison between field and microcosms was not possible due to the nature of sampling devices. Soil solutions sampled with Rhizon samplers yielded lower pH values (up to 1.3 pH units) than those sampled with suction cups. Twenty percent of annually bound organic carbon at the soils surface under field conditions was lost by leaching of DOC and through decomposition to DIC in disturbed non-vegetated microcosms. This percentage increased to 38% in undisturbed vegetated mesocosms highlighting the importance of surface vegetation in importing carbon to soils. Increased influx of nutrients will increase growth and photosynthesis but decrease carbon sequestration in near surface horizons

  2. Relationships of surface water, pore water, and sediment chemistry in wetlands adjacent to Great Salt Lake, Utah, and potential impacts on plant community health.

    PubMed

    Carling, Gregory T; Richards, David C; Hoven, Heidi; Miller, Theron; Fernandez, Diego P; Rudd, Abigail; Pazmino, Eddy; Johnson, William P

    2013-01-15

    We collected surface water, pore water, and sediment samples at five impounded wetlands adjacent to Great Salt Lake, Utah, during 2010 and 2011 in order to characterize pond chemistry and to compare chemistry with plant community health metrics. We also collected pore water and sediment samples along multiple transects at two sheet flow wetlands during 2011 to investigate a potential link between wetland chemistry and encroachment of invasive emergent plant species. Samples were analyzed for a suite of trace and major elements, nutrients, and relevant field parameters. The extensive sampling campaign provides a broad assessment of Great Salt Lake wetlands, including a range of conditions from reference to highly degraded. We used nonmetric multidimensional scaling (NMS) to characterize the wetland sites based on the multiple parameters measured in surface water, pore water, and sediment. NMS results showed that the impounded wetlands fall along a gradient of high salinity/low trace element concentrations to low salinity/high trace element concentrations, whereas the sheet flow wetlands have both elevated salinity and high trace element concentrations, reflecting either different sources of element loading or different biogeochemical/hydrological processes operating within the wetlands. Other geochemical distinctions were found among the wetlands, including Fe-reducing conditions at two sites and sulfate-reducing conditions at the remaining sites. Plant community health metrics in the impounded wetlands showed negative correlations with specific metal concentrations in sediment (THg, Cu, Zn, Cd, Sb, Pb, Ag, Tl), and negative correlations with nutrient concentrations in surface water (nitrite, phosphate, nitrate). In the sheet flow wetlands, invasive plant species were inversely correlated with pore water salinity. These results indicate that sediment and pore water chemistry play an important role in wetland plant community health, and that monitoring and

  3. Diffusion of Nutrients in an Isolated Wetland Resulting From Shallow Pore Water Gradients Affected by Antecedent Soil Conditions.

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Jawitz, J. W.; Dunne, E. J.; Perkins, D. B.

    2007-05-01

    Historically sequestered nutrients in wetland soils may be gradually released to the water column through the process commonly referred to as internal loading. The watershed for Lake Okeechobee, FL (USA) is heavily agricultural and excess nutrients in this area are drained to the Lake by ditches and canals. Formerly isolated, wetlands in this area have also been extensively ditched and drained. In this study, diffusive fluxes of nutrients were calculated using Fick's First Law from shallow pore water gradients, and later compared to fluxes measured by an incubated laboratory experiment on 10-cm intact soil cores from the same sites. Three intact soil cores from a wetland located on an operational beef farm were used to measure total phosphorus (TP), along with soil properties such as porosity, bulk density, and pH. Simultaneously, pore water concentrations of total organic carbon (TOC), total Kjeldahl nitrogen (TKN), and soluble reactive phosphorus (SRP) were also measured at the same three sites for a period of twelve months, and compared to surface water concentrations during flooded periods. A strong correlation between concentration gradients in pore water SRP and those observed in soil TP, suggests that shallow pore water concentrations reflect antecedent soil conditions. If this is true, then fluxes associated with diffusion and advection could greatly affect the total ground water fluxes across the soil-water interface. Fickian diffusive fluxes, estimated six times over a twelve month sampling period, were found to vary between 7-38 mg.m-2.d-1 for TOC, 1-18 mg.m-2.d-1 for TKN, and 0.04-0.86 mg.m-2.d-1 for SRP. While factors such as wetland stage and hydroperiod may have affected the fluxes, it is ultimately the concentration gradients across the soil-water interface that drives diffusive fluxes.

  4. Spatial and temporal variability in the relationship between water colour and dissolved organic carbon in blanket peat pore waters.

    PubMed

    Wallage, Z E; Holden, J

    2010-11-15

    The transfer of carbon from terrestrial peat to the fluvial environment forms an important component of the peatland carbon cycle, and has major implications for water quality. Dissolved organic carbon (DOC) is generally considered the largest constituent of aquatic carbon and tends to be the most intensively monitored, particularly in peatland catchments. However, many long-term records for DOC are based on proxy studies that use water colour as a surrogate. This paper tests the robustness of using spectrophotometric techniques to monitor water colour, based on absorbance from a single wavelength at 400nm, as a surrogate for true DOC determination. The general ability of spectrophotometric analysis to measure low DOC concentrations depends on the calibration used; thus, the minimum mass of DOC detectable varies considerably and in this study was found to be as high as 10.32mg C L(-1). While there is often a significant correlation between water colour and DOC, it was found that the use of single or even "pooled" regressions to predict DOC concentrations could result in miscalculations of more than 50%. Further, the water colour-DOC relationship in blanket peat pore waters was found to vary significantly between peat layers, land management treatments and through time. Thus, studies using long-term water colour records as a proxy for long-term DOC concentrations in peatlands must be treated with a certain degree of caution, especially in cases where changes may have taken place to DOC production, such as those caused by land management change, during the course of investigation. PMID:20888621

  5. Use of pore-water composition to reconstruct past dissolved inorganic carbon concentration and alkalinity in Pacific bottom water

    NASA Astrophysics Data System (ADS)

    Sauvage, J. F.; Spivack, A. J.; D'Hondt, S. L.; Integrated Ocean Drilling Program Expedition 329 shipboard scientific party

    2011-12-01

    The carbonate system is a crucial component in controlling the pH of the world's oceans and the distribution of CO2 within the ocean, as well as between the ocean and atmosphere. Consequently, dissolved inorganic carbon (DIC) and alkalinity reconstructions bear lots of promise for improving understanding of the ocean's role in the global carbon cycle and climate. We propose and test a method to quantify in situ concentrations of deep-sea carbonate-system components (DIC, alkalinity, CO32-, Ca2+, and minor component concentrations) in pore fluid of deep-sea sediment cores. These concentrations can in turn be used to reconstruct deep-sea carbonate-system chemistry of the geologic past. Alkalinity, DIC and Ca2+ concentrations measured on research vessels differ from in situ values because temperature and pressure changes during core recovery, storage and extraction induce calcium carbonate precipitation and in this way alter the original composition. To reconstruct in situ values, we developed a method that takes advantage of the mathematically over-determined state of the system if three components are measured, given that CaCO3 is saturated and the dissolved carbonate system is at equilibrium in situ. As a result, based on the measured alkalinity, DIC and Ca2+ concentrations, in situ CO2aq, HCO3-, CO32-, and minor species concentrations are calculated by applying an iteration process. This approach allows us to calculate the amount of CaCO3 precipitated during sediment recovery from the seafloor, and hence in situ carbonate system components. We apply our model to pore-water data from two SPG sites rich in calcium carbonate and drilled by Integrated Ocean Drilling Program Expedition 329 (Sites 1367 and 1368). We compared two sample types for this study, (i) samples squeezed and processed within minutes of recovery (rapidly processed) and (ii) samples processed in the following hours/days, and as consequence prone to some substantial alteration (slowly processed

  6. The effects of pressure, temperature, and pore water on velocities in Westerly granite. [for seismic wave propagation

    NASA Technical Reports Server (NTRS)

    Spencer, J. W., Jr.; Nur, A. M.

    1976-01-01

    A description is presented of an experimental assembly which has been developed to conduct concurrent measurements of compressional and shear wave velocities in rocks at high temperatures and confining pressures and with independent control of the pore pressure. The apparatus was used in studies of the joint effects of temperature, external confining pressure, and internal pore water on sonic velocities in Westerly granite. It was found that at a given temperature, confining pressure has a larger accelerating effect on compressional waves in dry rock, whereas at a given confining pressure, temperature has a larger retarding effect on shear waves.

  7. Level and degradation of Deepwater Horizon spilled oil in coastal marsh sediments and pore-water.

    PubMed

    Natter, Michael; Keevan, Jeff; Wang, Yang; Keimowitz, Alison R; Okeke, Benedict C; Son, Ahjeong; Lee, Ming-Kuo

    2012-06-01

    This research investigates the level and degradation of oil at ten selected Gulf saltmarsh sites months after the 2010 BP Macondo-1 well oil spill. Very high levels (10-28%) of organic carbon within the heavily oiled sediments are clearly distinguished from those in pristine sediments (<3%). Dissolved organic carbon in contaminated pore-waters, ranging up to hundreds of mg/kg, are 1 to 2 orders of magnitude higher than those at pristine sites. Heavily oiled sediments are characterized by very high sulfide concentrations (up to 80 mg/kg) and abundance of sulfate reducing bacteria. Geochemical biomarkers and stable carbon isotope analyses fingerprint the presence of oils in sediments. Ratios of selected parameters calculated from the gas chromatograph spectra are in a remarkable narrow range among spilled oils and initial BP crude. At oiled sites dominated by C(4) plants, δ(13)C values of sediments (-20.8 ± 2.0‰) have been shifted significantly lower compared to marsh plants (-14.8 ± 0.6‰) due to the inflow of isotopically lighter oil (-27 ± 0.2‰). Our results show that (1) lighter compounds of oil are quickly degraded by microbes while the heavier fractions of oil still remain and (2) higher inputs of organic matter from the oil spill enhance the key microbial processes associated with sulfate reducing bacteria. PMID:22571231

  8. Measuring Temporal Variability of Methylmercury and Methane in the Pore Waters of a Chesapeake Bay Tidal Marsh

    NASA Astrophysics Data System (ADS)

    Martin, K. R.; Oster, J.; Lapham, L.; Heyes, A.

    2015-12-01

    This study assesses the use of OsmoSampler technology to monitor methylmercury production in a tidal marsh and examines temporal variability of methylmercury in relation to controlling factors. We collected pore water samples in a Chesapeake Bay marsh using continuous pore-fluid sampling devices called OsmoSamplers. OsmoSampler technology has not previously been used to investigate mercury cycling. We designed systems using OsmoSamplers to collect pore water samples for methylmercury, methane, chloride, and sulfate analysis, sampling in a vegetated area and an area devegetated by clipping. Samples were collected over a 27 day period and stored in coils to create a temporal data set of in situ concentrations. This time series allows us to explore the methane-methylmercury connection and the effects of vegetation removal on methylmercury production. Some methanogens are known to methylate mercury, but the relative importance of the methane community in mercury methylation is not well understood. We hypothesized a positive correlation between methane and methylmercury production and a decrease in methylmercury production corresponding to vegetation removal. We also sought to demonstrate the feasibility of using OsmoSamplers to look at methylmercury flux in relation to these controls on mercury methylation. This study is a preliminary exploration of this technology in a marsh environment. Using our system we have successfully collected pore water samples. We present the temporal variability of measured concentrations with a discussion of adjustments for future long-term deployment.

  9. Specific features of soil water exchange and chemistry of pore and ground waters

    NASA Astrophysics Data System (ADS)

    Muromtsev, N. A.; Pylenok, P. I.; Semenov, N. A.; Anisimov, K. B.

    2015-07-01

    The regularities of water infiltration and evaporation of groundwater at different depths of the groundwater table were established for soddy-podzolic and dark gray forest soils. The recharge of the soils with moisture from the groundwater decreased with a lowering of its table, and the infiltration increased. At the high groundwater table (70 cm from the surface), the moisture recharge of the soddy-podzolic soil amounted to 86 mm and the infiltration amounted to 17 mm; at the groundwater table of 145 cm, these values were 13 and 51 mm, respectively. The concentrations of chemical elements in the lysimeters with the high groundwater table were 2-4 times greater than those in the lysimeters with the low groundwater table.

  10. Estimation of water saturated permeability of soils, using 3D soil tomographic images and pore-level transport phenomena modelling

    NASA Astrophysics Data System (ADS)

    Lamorski, Krzysztof; Sławiński, Cezary; Barna, Gyöngyi

    2014-05-01

    There are some important macroscopic properties of the soil porous media such as: saturated permeability and water retention characteristics. These soil characteristics are very important as they determine soil transport processes and are commonly used as a parameters of general models of soil transport processes used extensively for scientific developments and engineering practise. These characteristics are usually measured or estimated using some statistical or phenomenological modelling, i.e. pedotransfer functions. On the physical basis, saturated soil permeability arises from physical transport processes occurring at the pore level. Current progress in modelling techniques, computational methods and X-ray micro-tomographic technology gives opportunity to use direct methods of physical modelling for pore level transport processes. Physically valid description of transport processes at micro-scale based on Navier-Stokes type modelling approach gives chance to recover macroscopic porous medium characteristics from micro-flow modelling. Water microflow transport processes occurring at the pore level are dependent on the microstructure of porous body and interactions between the fluid and the medium. In case of soils, i.e. the medium there exist relatively big pores in which water can move easily but also finer pores are present in which water transport processes are dominated by strong interactions between the medium and the fluid - full physical description of these phenomena is a challenge. Ten samples of different soils were scanned using X-ray computational microtomograph. The diameter of samples was 5 mm. The voxel resolution of CT scan was 2.5 µm. Resulting 3D soil samples images were used for reconstruction of the pore space for further modelling. 3D image threshholding was made to determine the soil grain surface. This surface was triangulated and used for computational mesh construction for the pore space. Numerical modelling of water flow through the

  11. Interaction of Ammonia Gas with Sediments and Pore Water and Induced Uranium Immobilization under Vadose Zone Conditions

    NASA Astrophysics Data System (ADS)

    Zhong, L.; Szecsody, J. E.; Truex, M. J.

    2014-12-01

    Preliminary studies have demonstrated the potential of ammonia gas (NH3) treatment on contaminated sediment as a vadose zone uranium remediation approach. In this work, we conducted batch, column, and flow wedge experiments to study the ammonia gas transport and interaction with sediments and pore water. The uranium immobilization effectiveness of the ammonia gas treatment technology was also evaluated. Ammonia gas quickly partitions into sediment pore water and significantly increases the pH (up to ~13.2) and the electrical conductivity (EC). The rate and range of the increase in both pH and EC are dependent on the ammonia concentration in the gas and the pore water content and chemistry. The pH and EC changes follow a similar pattern. During an ammonia gas injection into a heterogeneous system, it was observed that the NH3 front proceeded faster in layers of lower water content compared to the same sediment layers of higher water content. Elevated pH values (11 to 13.2) initially resulted from the NH3 gas partitioning into the pore water was buffered down to ~ 9 after 7 months of sediment exposure to the air. The rate of NH3 diffusion in sediment is a function of the water content in the sediment. Higher cation/anion concentrations during the ammonia gas treatment indicated mineral dissolution due to pH increase, while lower ionic concentrations after the pH buffering revealed significant mineral precipitation. This precipitation incorporates uranium into mineral structures or provides a coating to uranium minerals, therefore achieving uranium immobilization. Treatment with 5% v/v NH3 gas for one week followed by three weeks buffering resulted in a 75% reduction in the mobile uranium mass. After 2 to 12 months of treatment, the immobile phase of uranium mass increased by up to 2.3 times.

  12. Chlorofluorocarbon-11 removal in anoxic marine waters

    NASA Astrophysics Data System (ADS)

    Bullister, John L.; Lee, Bing-Sun

    Measurements of the chlorofluorocarbons CCl3F (F-11) and CCl2F2 (F-12) made in the subsurface anoxic zones of the Black Sea and Saanich Inlet, B.C., Canada show a pronounced depletion of dissolved F-11. These zones are strongly reducing and are characterized by the absence of dissolved nitrate (NO3-) and the presence of hydrogen sulfide (H2S). Models incorporating the atmospheric input histories of these CFCs and the observed distributions are used to estimate residence times for water in these zones and first order in-situ removal rates for F-11. In contrast, measurements in the mid-depth low-oxygen zone of the eastern Pacific (where NO3- is present and H2S is below detection limits) do not show evidence of similar rapid F-11 removal.

  13. The influence of sulphate deposition on the seasonal variation of peat pore water methyl Hg in a boreal mire.

    PubMed

    Bergman, Inger; Bishop, Kevin; Tu, Qiang; Frech, Wolfgang; Åkerblom, Staffan; Nilsson, Mats

    2012-01-01

    In this paper we investigate the hypothesis that long-term sulphate (SO(4) (2-)) deposition has made peatlands a larger source of methyl mercury (MeHg) to remote boreal lakes. This was done on experimental plots at a boreal, low sedge mire where the effect of long-term addition of SO(4) (2-) on peat pore water MeHg concentrations was observed weekly throughout the snow-free portion of 1999. The additions of SO(4) (2-) started in 1995. The seasonal mean of the pore water MeHg concentrations on the plots with 17 kg ha(-1) yr(-1) of sulphur (S) addition (1.3±0.08 ng L(-1), SE; n = 44) was significantly (p<0.0001) higher than the mean MeHg concentration on the plots with 3 kg ha(-1) yr(-1) of ambient S deposition (0.6±0.02 ng L(-1), SE; n = 44). The temporal variation in pore water MeHg concentrations during the snow free season was larger in the S-addition plots, with an amplitude of >2 ng L(-1) compared to +/-0.5 ng L(-1) in the ambient S deposition plots. The concentrations of pore water MeHg in the S-addition plots were positively correlated (r(2) = 0.21; p = 0.001) to the groundwater level, with the lowest concentrations of MeHg during the period with the lowest groundwater levels. The pore water MeHg concentrations were not correlated to total Hg, DOC concentration or pH. The results from this study indicate that the persistently higher pore water concentrations of MeHg in the S-addition plots are caused by the long-term additions of SO(4) (2-) to the mire surface. Since these waters are an important source of runoff, the results support the hypothesis that SO(4) (2-) deposition has increased the contribution of peatlands to MeHg in downstream aquatic systems. This would mean that the increased deposition of SO(4) (2-) in acid rain has contributed to the modern increase in the MeHg burdens of remote lakes hydrologically connected to peatlands. PMID:23029086

  14. The influence of sulphate deposition on the seasonal variation of peat pore water methyl Hg in a boreal mire.

    PubMed

    Bergman, Inger; Bishop, Kevin; Tu, Qiang; Frech, Wolfgang; Åkerblom, Staffan; Nilsson, Mats

    2012-01-01

    In this paper we investigate the hypothesis that long-term sulphate (SO(4) (2-)) deposition has made peatlands a larger source of methyl mercury (MeHg) to remote boreal lakes. This was done on experimental plots at a boreal, low sedge mire where the effect of long-term addition of SO(4) (2-) on peat pore water MeHg concentrations was observed weekly throughout the snow-free portion of 1999. The additions of SO(4) (2-) started in 1995. The seasonal mean of the pore water MeHg concentrations on the plots with 17 kg ha(-1) yr(-1) of sulphur (S) addition (1.3±0.08 ng L(-1), SE; n = 44) was significantly (p<0.0001) higher than the mean MeHg concentration on the plots with 3 kg ha(-1) yr(-1) of ambient S deposition (0.6±0.02 ng L(-1), SE; n = 44). The temporal variation in pore water MeHg concentrations during the snow free season was larger in the S-addition plots, with an amplitude of >2 ng L(-1) compared to +/-0.5 ng L(-1) in the ambient S deposition plots. The concentrations of pore water MeHg in the S-addition plots were positively correlated (r(2) = 0.21; p = 0.001) to the groundwater level, with the lowest concentrations of MeHg during the period with the lowest groundwater levels. The pore water MeHg concentrations were not correlated to total Hg, DOC concentration or pH. The results from this study indicate that the persistently higher pore water concentrations of MeHg in the S-addition plots are caused by the long-term additions of SO(4) (2-) to the mire surface. Since these waters are an important source of runoff, the results support the hypothesis that SO(4) (2-) deposition has increased the contribution of peatlands to MeHg in downstream aquatic systems. This would mean that the increased deposition of SO(4) (2-) in acid rain has contributed to the modern increase in the MeHg burdens of remote lakes hydrologically connected to peatlands.

  15. Investigation of the Effect of the Tortuous Pore Structure on Water Diffusion through a Polymer Film Using Lattice Boltzmann Simulations.

    PubMed

    Gebäck, Tobias; Marucci, Mariagrazia; Boissier, Catherine; Arnehed, Johan; Heintz, Alexei

    2015-04-23

    Understanding how the pore structure influences the mass transport through a porous material is important in several applications, not the least in the design of polymer film coatings intended to control drug release. In this study, a polymer film made of ethyl cellulose and hydroxypropyl cellulose was investigated. The 3D structure of the films was first experimentally characterized using confocal laser scanning microscopy data and then mathematically reconstructed for the whole film thickness. Lattice Boltzmann simulations were performed to compute the effective diffusion coefficient of water in the film and the results were compared to experimental data. The local porosities and pore sizes were also analyzed to determine how the properties of the internal film structure affect the water effective diffusion coefficient. The results show that the top part of the film has lower porosity, lower pore size, and lower connectivity, which results in a much lower effective diffusion coefficient in this part, largely determining the diffusion rate through the entire film. Furthermore, the local effective diffusion coefficients were not proportional to the local film porosity, indicating that the results cannot be explained by a single tortuosity factor. In summary, the proposed methodology of combining microscopy data, mass transport simulations, and pore space analysis can give valuable insights on how the film structure affects the mass transport through the film.

  16. Effects of hydrophobic treatments of stone on pore water studied by continuous distribution analysis of NMR relaxation times.

    PubMed

    Appolonia, L; Borgia, G C; Bortolotti, V; Brown, R J; Fantazzini, P; Rezzaro, G

    2001-01-01

    The effects of protective hydrophobic products applied to porous media such as stone or mortar vary greatly with the product, the porous medium, and the mode of application. Nuclear Magnetic Resonance (NMR) measurements on fluids in the pore spaces of both treated and untreated samples can give information on the contact of the fluid with the internal surfaces, which is affected by all the above factors. Continuous distributions of relaxation times T(1) and T(2) of water in the pores of both synthetic and natural porous media were obtained before and after hydrophobic treatment. The synthetic porous media are ceramic filter materials characterized by narrow distributions of pore dimensions and show that the treatment does not produce large changes in the relaxation times of the water. For three travertine samples most of a long relaxation time component, presumably from the largest pores, remains after treatment, while the amplitude of an intermediate component is greatly reduced. For three pudding-stone samples, treatment leads to a substantial loss from the long component and an even greater loss from the intermediate component. PMID:11445343

  17. Water permeability and chloride ion diffusion in portland cement mortars: Relationship to sand content and critical pore diameter

    SciTech Connect

    Halamickova, P.; Detwiler, R.J.; Bentz, D.P.; Garboczi, E.J.

    1995-05-01

    The pore structure of hydrated cement in mortar and concrete is quite different from that of neat cement paste. The porous transition zones formed at the aggregate-paste interfaces affect the pore size distribution. The effect of the sand content on the development of pore structure, the permeability to water, and the diffusivity of chloride ions was studied on portland cement mortars. Mortars of two water-to-cement ratios and three sand volume fractions were cast together with pastes and tested at degrees of hydration ranging from 45 to 70%. An electrically-accelerated concentration cell test was used to determine the coefficient of chloride ion diffusion while a high pressure permeability cell was employed to assess liquid permeability. The coefficient of chloride ion diffusion varied linearly with the critical pore radius as determined by mercury intrusion porosimetry while permeability was found to follow a power-law relationship vs. this critical radius. The data set provides an opportunity to directly examine the application of the Katz-Thompson relationship to cement-based materials.

  18. Chlorofluorocarbon-11 removal in anoxic marine waters

    SciTech Connect

    Bullister, J.L.; Lee, B.S.

    1995-07-15

    Measurements of the chlorofluorocarbons CCl{sub 3}F (F-11) and CCl{sub 2}F{sub 2}(F-12) made in the subsurface anoxic zones of the Black Sea and Saanich Inlet, B.C., Canada show a pronounced depletion of dissolved F-11. These zones are strongly reducing and are characterized by the absence of dissolved nitrate (NO{sub 3}{sup {minus}}) and the presence of hydrogen sulfide (H{sub 2}S). Models incorporating the atmospheric input histories of these CFCs and the observed distributions are used to estimate residence times for water in these zones and first order in-situ removal rates for F-11. In contrast, measurements in the mid-depth low-oxygen zone of the eastern Pacific (where NO{sub 3}{sup {minus}} is present and H{sub 2}S is below detection limits) do not show evidence of similar rapid F-11 removal. 22 refs., 3 figs., 1 tab.

  19. Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model

    SciTech Connect

    Liu, Haihu; Valocchi, Albert J.; Werth, Charles J.; Kang, Oinjun; Oostrom, Martinus

    2014-11-01

    A lattice Boltzmann color-fluid model, which was recently proposed by Liu et al. [H. Liu, A.J. Valocchi, and Q. Kang. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Phys. Rev. E, 85:046309, 2012.] based on a concept of continuum surface force, is improved to simulate immiscible two-phase flows in porous media. The new improvements allow the model to account for different kinematic viscosities of both fluids and to model fluid-solid interactions. The capability and accuracy of this model is first validated by two benchmark tests: a layered two-phase flow with a viscosity ratio, and a dynamic capillary intrusion. This model is then used to simulate liquid CO2 (LCO2) displacing water in a dual-permeability pore network. The extent and behavior of LCO2 preferential flow (i.e., fingering) is found to depend on the capillary number (Ca), and three different displacement patterns observed in previous micromodel experiments are reproduced. The predicted variation of LCO2 saturation with Ca, as well as variation of specific interfacial length with LCO2 saturation, are both in good agreement with the experimental observations. To understand the effect of heterogeneity on pore-scale displacement, we also simulate LCO2 displacing water in a randomly heterogeneous pore network, which has the same size and porosity as the dual-permeability pore network. In comparison to the dual-permeability case, the transition from capillary fingering to viscous fingering occurs at a higher Ca, and LCO2 saturation is higher at low Ca but lower at high Ca. In either pore network, the LCO2-water specific interfacial length is found to obey a power-law dependence on LCO2 saturation.

  20. Visualizing Clogging up of Soil Pores in the Tropical Degraded Soils and Their Impact on Green Water Productivity

    NASA Astrophysics Data System (ADS)

    Tebebu, T.; Baver, C.; Stoof, C.; Steenhuis, T. S.

    2013-12-01

    Abstract Restrictive soil layers commonly known as hardpans restrict water and airflow in the soil profile and impede plant root growth below the plow depth. Preventing hardpans to form or ameliorate existing hardpans will allow plants root more deeply, increase water infiltration and reduce runoff, all resulting in greater amounts of water available for the crop (i.e. green water). However, there has been a lack of research on understanding the influence of transported disturbed soil particles (colloids) from the surface to the subsurface to form restrictive soil layers, which is a common occurrence in degraded soils. In this study we investigated the effect of disturbed soil particles on clogging up of soil pores to form hardpans. Unsaturated sand column experiments were performed by applying 0.04 g/ml soil water solution in two sand textures. For each experiment, soil water solution infiltration process was visualized using a bright field microscope and soil particles remained in the sand column was quantified collecting and measuring leachate at the end of the experiment in the soil and water lab of Cornell University. Preliminary results show that accumulation of significant amount of soil particles occur in between sand particles and at air water interfaces, indicating the clogging of soil pores occurs as a result of disturbed fine soil particles transported from the soil surface to the subsurface. Key Words: Soil pore clogging; Hardpans; Green water productivity Visualization of sand column experiment showing the sand column at the start of the experiment (left) and two hours after the second application in that soil particles were accumulated at the air water interfaces(right).

  1. Sediment pore-water toxicity test results and preliminary toxicity identification of post-landfall pore-water samples collected following the Deepwater Horizon oil release, Gulf of Mexico, 2010

    USGS Publications Warehouse

    Biedenbach, James M.; Carr, Robert S.

    2011-01-01

    Pore water from coastal beach and marsh sediments from the northern Gulf of Mexico, pre- and post-landfall of the Deepwater Horizon oil release, were collected and evaluated for toxicity with the sea urchin fertilization and embryological development assays. There were 17 pre-landfall samples and 49 post-landfall samples tested using both assays. Toxicity was determined in four pre-landfall sites and in seven post-landfall sites in one or both assays as compared to a known reference sediment pore-water sample collected in Aransas Bay, Texas. Further analysis and testing of five of the post-landfall toxic samples utilizing Toxicity Identification Evaluation techniques indicated that ammonia, and to a lesser extent metals, contributed to most, if not all, of the observed toxicity in four of the five samples. Results of one sample (MS-39) indicated evidence that ammonia, metals, and non-ionic organics were contributing to the observed toxicity.

  2. Geochemical changes in pore water and reservoir rock due to CO2 injection

    NASA Astrophysics Data System (ADS)

    Huq, Farhana; Blum, Philipp; Nowak, Marcus; Haderlein, Stefan; Grathwohl, Peter

    2010-05-01

    In response to current global warming, carbon capture and storage has been identified as one of the promising option. Thus, it can be an interim solution that is indeed a bridge to the future renewable energy without altering the present mode of energy consumption. Although large natural CO2 sinks are terrestrial eco-system and oceans, geological media or more specifically large sedimentary basins are now the most feasible options for carbon sequestration. At the study site, a former gas field (Altmark), which is located in the South of the Northeast German Basin, CO2 is planned to be injected into the reservoir with high pressure (> 50 bar) and temperature (125°C). Afterwards, CO2 dissolves into the pore water leading to acidification and follow up reactions such as dissolution/precipitation, which potentially change the porosity-permeability of the reservoir and the wetting properties of the mineral surfaces. The Altmark site was chosen due to its large storage capacity, well explored reservoir, high seal integrity due to the presence of massive salt layer (cap rock) and existing infrastructure required for enhanced gas recovery. The main objective of the current study is to quantify the CO2 trapping in aqueous solution under in situ reservoir condition. Therefore, it is necessary to investigate the geochemical changes in fluid composition due to dissolution of minerals under controlled laboratory conditions and to quantify the concentrations of complexing agents that might influence the concentration of total dissolved CO2 in aqueous solution over time. To observe these geochemical and hydraulic changes due to the injection of CO2, a closed system (batch system) technique is developed to study the influence of salinity, temperature, pressure and kinetics on mineral reactions. In addition to the closed system, a flow through (open) autoclave system was constructed. Water saturated sedimentary rock cores (e.g. from the Altmark site; 5cm long, 3cm diameter) are

  3. Contaminated marine sediments: Water column and interstitial toxic effects

    SciTech Connect

    Burgess, R.M.; Schweitzer, K.A.; McKinney, R.A.; Phelps, D.K.

    1993-01-01

    The toxicity that contaminated sediments may introduce into the water column has not been measured extensively. In order to quantify this potential toxicity, the seawater overlying two uncontaminated and three contaminated marine sediments was evaluated in the laboratory with the sea urchin Arbacia punctulata fertilization test. Concentrations of polychlorinated biphenyls (PCBs) and copper, as representative contaminants, were also measured. To characterize sources of toxicity, samples were chemically manipulated using reversed-phase chromatography, cation exchange, and chelation. Water column toxicity and contaminant concentrations were higher in the suspended exposures than in bedded exposures. Interstitial water toxicity and contaminant concentrations were generally greater than either bedded or suspended exposures. Chemical manipulation indicated that the observed toxicity in water column exposures was probably caused by metallic and/or nonionic organic contaminants. Conversely, manipulation of interstitial waters did not result in significantly reduced toxicity, suggesting that other toxicants such as ammonia and hydrogen sulfide may be active.

  4. Contaminated marine sediments: Water column and interstitial toxic effects

    SciTech Connect

    Burgess, R.M.; McKinney, R.A. ); Schweitzer, K.A. ); Phelps, D.K. )

    1993-01-01

    The toxicity that contaminated sediments may introduce into the water column has not been measured extensively. In order to quantify this potential toxicity, the seawater overlying two uncontaminated and three contaminated marine sediments was evaluated in the laboratory with the sea urchin Arbacia punctulata fertilization test. Concentration of polychlorinated biphenyls (PCBs) and copper, as representative contaminants, were also measured. To characterize sources of toxicity, samples were chemically manipulated using reversed-phase chromatography, cation exchange, and chelation. Water column toxicity and contaminant concentrations were higher in the suspended exposures than in bedded exposures. Interstitial water toxicity and contaminant concentrations were generally greater than either bedded or suspended exposures. Chemical manipulation indicated that the observed toxicity in water column exposures was probably caused by metallic and/or nonionic organic contaminants. Conversely, manipulation of interstitial water did not result in significantly reduced toxicity, suggesting that other toxicants such as ammonia and hydrogen sulfide may be active.

  5. Rapid toxicity screening of sediment pore waters using physiological and biochemical biomarkers of Daphnia magna

    SciTech Connect

    Coen, W.M. De; Janssen, C.R.; Persoone, G.

    1995-12-31

    Two new rapid toxicity tests, based on ingestion activity and digestive enzyme activity of D. magna, were developed and evaluated. The ingestion activity was measured using fluorescent latex micro-beads and an automated microplate fluorimeter allowing a sensitive quantification of the feeding activity of the organisms. The activity of the digestive enzymes, 6-galactosidase, esterase and trypsin, was determined in test organism homogenates using the following fluorogenic{sup 1} and chromogenic{sup 2} substrates: 4-methylumbelliferyl-{beta}-D galactoside{sup 1}, fluorescin diacetate{sup 1} and N-Benzoyl-L-arginine-4-nitroanilide{sup 2}. Both biomarker techniques were developed to allow rapid toxicity screening on a routine basis. The toxicity of the pore waters of eight contaminated samples was assessed with the aid of the developed biomarker assays. Comparison of the conventional 24h EC50 values with the EC50 values obtained with the 1.5h ingestion test and the threshold concentrations of the 2h digestive enzyme tests revealed a positive correlation between the different effect concentrations. A similar correlation (r{sup 2} = 0.87) between the conventional 24h EC50 values and 1.5h EC50 values was observed in toxicity tests with pure compounds. Correlation coefficients for the relationships between the 3 enzyme effect concentrations and the 24h EC50 values ranged from 0.95 to 0.98, The positive correlations between the conventional and biomarker effect criteria, observed for both environmental samples and pure compounds, demonstrate the potential use of the developed methods as rapid toxicity screening tools.

  6. Redox processes in pore water of anoxic sediments with shallow gas.

    PubMed

    Ramírez-Pérez, A M; de Blas, E; García-Gil, S

    2015-12-15

    The Ría de Vigo (NW Spain) has a high organic matter content and high rates of sedimentation. The microbial degradation of this organic matter has led to shallow gas accumulations of methane, currently distributed all along the ría. These peculiar characteristics favor the development of anoxic conditions that can determine the dynamics of iron and manganese. In order to study the role played by iron and manganese in the processes that take place in anoxic sediments with shallow gas, four gravity cores were retrieved in anoxic sediments of the Ría de Vigo in November 2012. Methane was present in two of them, below 90cm in the inner zone and below 200cm, in the outer zone. Pore water was collected and analyzed for vertical profiles of pH, sulfide, sulfate, iron and manganese concentrations. Sulfate concentrations decreased with depth but never reached the minimum detection limit. High sulfide concentrations were measured in all cores. The highest sulfide concentrations were found in the inner zone with methane and the lowest were in the outer zone without methane. Concentrations of iron and manganese reached maximum values in the upper layers of the sediment, decreasing with depth, except in the outer zone without gas, where iron and manganese concentration increased strongly toward the bottom of the sediment. In areas with shallow gas iron reduction, sulfate reduction and methane production processes coexist, showing that the traditional redox cascade is highly simplified and suggesting that iron may be involved in a cryptic sulfur cycle and in the oxidation of methane. PMID:26312406

  7. Comparison of Experimental and Model Data for the Evaporation of a Synthetic Topopah Spring Tuff Pore Water, Yucca Mountain, NV

    SciTech Connect

    Alai, M; Sutton, M; Carroll, S

    2003-10-14

    The evaporation of a range of synthetic pore water solutions representative of the potential high-level-nuclear-waste repository at Yucca Mountain, NV is being investigated. The motivation of this work is to understand and predict the range of brine compositions that may contact the waste containers from evaporation of pore waters, because these brines could form corrosive thin films on the containers and impact their long-term integrity. A relatively complex synthetic Topopah Spring Tuff pore water was progressively concentrated by evaporation in a closed vessel, heated to 95 C in a series of sequential experiments. Periodic samples of the evaporating solution were taken to determine the evolving water chemistry. According to chemical divide theory at 25 C and 95 C our starting solution should evolve towards a high pH carbonate brine. Results at 95 C show that this solution evolves towards a complex brine that contains about 99 mol% Na{sup +} for the cations, and 71 mol% Cl{sup -}, 18 mol% {Sigma}CO{sub 2}(aq), 9 mol% SO{sub 4}{sup 2-} for the anions. Initial modeling of the evaporating solution indicates precipitation of aragonite, halite, silica, sulfate and fluoride phases. The experiments have been used to benchmark the use of the EQ3/6 geochemical code in predicting the evolution of carbonate-rich brines during evaporation.

  8. Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: Influent, effluent, pore water, substrate and plant roots.

    PubMed

    Hijosa-Valsero, María; Reyes-Contreras, Carolina; Domínguez, Carmen; Bécares, Eloy; Bayona, Josep M

    2016-02-01

    Seven mesocosm-scale constructed wetlands (CWs) with different design configurations, dealing with primary-treated urban wastewater, were assessed for the concentration, distribution and fate of ten pharmaceutical and personal care products (PPCPs) [ibuprofen, ketoprofen, naproxen, diclofenac, salicylic acid, caffeine, carbamazepine, methyl dihydrojasmonate, galaxolide and tonalide] and eight of their transformation products (TPs). Apart from influent and effluent, various CW compartments were analysed, namely, substrate, plant roots and pore water. PPCP content in pore water depended on the specific CW configuration. Macrophytes can take up PPCPs through their roots. Ibuprofen, salicylic acid, caffeine, methyl dihydrojasmonate, galaxolide and tonalide were present on the root surface with a predominance of galaxolide and caffeine in all the planted systems. Naproxen, ibuprofen, salicylic acid, methyl dihydrojasmonate, galaxolide and tonalide were uptaken by the roots. In order to better understand the removal processes, biomass measurement and biodegradability studies through the characterization of internal-external isomeric linear alkylbenzenes present on the gravel bed were performed. Three TPs namely, ibuprofen-amide, 3-ethylbenzophenone and 4-hydroxy-diclofenac were identified for the first time in wetland pore water and effluent water, which suggests de novo formation (they were not present in the influent). Conversely, O-desmethyl-naproxen was degraded through the wetland passage since it was detected in the influent but not in the subsequent treatment stages. Biodegradation pathways are therefore suggested for most of the studied PPCPs in the assessed CWs.

  9. Geochemistry of pore waters from Shell Oil Company drill holes on the continental slope of the northern Gulf of Mexico

    USGS Publications Warehouse

    Manheim, F. T.; Bischoff, J.L.

    1969-01-01

    Pore waters were analyzed from 6 holes drilled from M.V. "Eureka" as a part of the Shell Oil Co. deeper offshore study. The holes were drilled in water depths of 600-3,000 ft. (approximately 180-550 m) and penetrated up to 1,000 ft. (300 m) of Pliocene-Recent clayey sediments. Salt and anhydrite caprock was encountered in one diapiric structure on the continental slope. Samples from holes drilled near diapiric structures showed systematic increases of pore-water salinity with depth, suggestive of salt diffusion from underlying salt plugs. Anomalous concentrations of K and Br indicate that at least one plug contains late-stage evaporite minerals. Salinities approaching halite saturation were observed. Samples from holes away from diapiric structures showed little change in pore-water chemistry, except for loss of SO4 and other variations attributable to early-stage diagenetic reactions with enclosing sediments. Thus, increased salt concentrations in even shallow sediments from this part of the Gulf appear to provide an indicator of salt masses at depth. ?? 1969.

  10. Behaviour of pharmaceuticals and personal care products in constructed wetland compartments: Influent, effluent, pore water, substrate and plant roots.

    PubMed

    Hijosa-Valsero, María; Reyes-Contreras, Carolina; Domínguez, Carmen; Bécares, Eloy; Bayona, Josep M

    2016-02-01

    Seven mesocosm-scale constructed wetlands (CWs) with different design configurations, dealing with primary-treated urban wastewater, were assessed for the concentration, distribution and fate of ten pharmaceutical and personal care products (PPCPs) [ibuprofen, ketoprofen, naproxen, diclofenac, salicylic acid, caffeine, carbamazepine, methyl dihydrojasmonate, galaxolide and tonalide] and eight of their transformation products (TPs). Apart from influent and effluent, various CW compartments were analysed, namely, substrate, plant roots and pore water. PPCP content in pore water depended on the specific CW configuration. Macrophytes can take up PPCPs through their roots. Ibuprofen, salicylic acid, caffeine, methyl dihydrojasmonate, galaxolide and tonalide were present on the root surface with a predominance of galaxolide and caffeine in all the planted systems. Naproxen, ibuprofen, salicylic acid, methyl dihydrojasmonate, galaxolide and tonalide were uptaken by the roots. In order to better understand the removal processes, biomass measurement and biodegradability studies through the characterization of internal-external isomeric linear alkylbenzenes present on the gravel bed were performed. Three TPs namely, ibuprofen-amide, 3-ethylbenzophenone and 4-hydroxy-diclofenac were identified for the first time in wetland pore water and effluent water, which suggests de novo formation (they were not present in the influent). Conversely, O-desmethyl-naproxen was degraded through the wetland passage since it was detected in the influent but not in the subsequent treatment stages. Biodegradation pathways are therefore suggested for most of the studied PPCPs in the assessed CWs. PMID:26702554

  11. 77 FR 60687 - Record of Decision for the U.S. Marine Corps Basewide Water Infrastructure Project at Marine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... Marine Corps Base Camp Pendleton, California AGENCY: Department of the Navy, DoD. ACTION: Notice of... decision to upgrade and improve the Basewide water infrastructure at Marine Corps Base Camp Pendleton.../basecamppendleton/Pages/BaseStaffandAgencies/Environmental/EAEIS/Home.aspx along with the Final Environmental...

  12. MRI-derived bound and pore water concentrations as predictors of fracture resistance.

    PubMed

    Manhard, Mary Kate; Uppuganti, Sasidhar; Granke, Mathilde; Gochberg, Daniel F; Nyman, Jeffry S; Does, Mark D

    2016-06-01

    Accurately predicting fracture risk in the clinic is challenging because the determinants are multi-factorial. A common approach to fracture risk assessment is to combine X-ray-based imaging methods such as dual-energy X-ray absorptiometry (DXA) with an online Fracture Risk Assessment Tool (FRAX) that includes additional risk factors such as age, family history, and prior fracture incidents. This approach still does not adequately diagnose many individuals at risk, especially those with certain diseases like type 2 diabetes. As such, this study investigated bound water and pore water concentrations (Cbw and Cpw) from ultra-short echo time (UTE) magnetic resonance imaging (MRI) as new predictors of fracture risk. Ex vivo cadaveric arms were imaged with UTE MRI as well as with DXA and high-resolution micro-computed tomography (μCT), and imaging measures were compared to both whole-bone structural and material properties as determined by three-point bending tests of the distal-third radius. While DXA-derived areal bone mineral density (aBMD) and μCT-derived volumetric BMD correlated well with structural strength, they moderately correlated with the estimate material strength with gender being a significant covariate for aBMD. MRI-derived measures of Cbw and Cpw had a similar predictive ability of material strength as aBMD but did so independently of gender. In addition, Cbw was the only imaging parameter to significantly correlate with toughness, the energy dissipated during fracture. Notably, the strength of the correlations with the material properties of bone tended to be higher when a larger endosteal region was used to determine Cbw and Cpw. These results indicate that MRI measures of Cbw and Cpw have the ability to probe bone material properties independent of bone structure or subject gender. In particular, toughness is a property of fracture resistance that is not explained by X-ray based methods. Thus, these MRI-derived measures of Cbw and Cpw in cortical

  13. Sphagnum can 'filter' N deposition, but effects on the plant and pore water depend on the N form.

    PubMed

    Chiwa, Masaaki; Sheppard, Lucy J; Leith, Ian D; Leeson, Sarah R; Tang, Y Sim; Cape, J Neil

    2016-07-15

    The ability of Sphagnum moss to efficiently intercept atmospheric nitrogen (N) has been assumed to be vulnerable to increased N deposition. However, the proposed critical load (20kgNha(-1)yr(-1)) to exceed the capacity of the Sphagnum N filter has not been confirmed. A long-term (11years) and realistic N manipulation on Whim bog was used to study the N filter function of Sphagnum (Sphagnum capillifolium) in response to increased wet N deposition. On this ombrotrophic peatland where ambient deposition was 8kgNha(-1)yr(-1), an additional 8, 24, and 56kgNha(-1)yr(-1) of either ammonium (NH4(+)) or nitrate (NO3(-)) has been applied for 11years. Nutrient status of Sphagnum and pore water quality from the Sphagnum layer were assessed. The N filter function of Sphagnum was still active up to 32kgNha(-1)yr(-1) even after 11years. N saturation of Sphagnum and subsequent increases in dissolved inorganic N (DIN) concentration in pore water occurred only for 56kgNha(-1)yr(-1) of NH4(+) addition. These results indicate that the Sphagnum N filter is more resilient to wet N deposition than previously inferred. However, functionality will be more compromised when NH4(+) dominates wet deposition for high inputs (56kgNha(-1)yr(-1)). The N filter function in response to NO3(-) uptake increased the concentration of dissolved organic N (DON) and associated organic anions in pore water. NH4(+) uptake increased the concentration of base cations and hydrogen ions in pore water though ion exchange. The resilience of the Sphagnum N filter can explain the reported small magnitude of species change in the Whim bog ecosystem exposed to wet N deposition. However, changes in the leaching substances, arising from the assimilation of NO3(-) and NH4(+), may lead to species change. PMID:27058130

  14. Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations

    USGS Publications Warehouse

    Hay, M.B.; Stoliker, D.L.; Davis, J.A.; Zachara, J.M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ???1% of the solid volume and intragranular surface areas of ???20%-35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity. Copyright 2011 by the American Geophysical Union.

  15. Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations

    USGS Publications Warehouse

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-01-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  16. Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations

    NASA Astrophysics Data System (ADS)

    Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.

    2011-10-01

    Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ˜1% of the solid volume and intragranular surface areas of ˜20%-35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.

  17. Ion and water transport in a Nafion{reg_sign} membrane pore: A statistical mechanical model with molecular structure

    SciTech Connect

    Paddison, S.J.; Zawodzinski, T.A. Jr.; Paul, R.

    1998-12-31

    With the well established importance of the coupling of water and protons through electroosmotic drag in operating PEFCs the authors present here a derivation of a mathematical model that focuses on the computation of the mobility of an hydronium ion through an arbitrary cylindrical pore of a PEM with a non-uniform charge distribution on the walls of the pore. The total Hamiltonian is derived for the hydronium ion as it moves through the hydrated pore and is effected by the net potential due to interaction with the solvent molecules and the pendant side chains. The corresponding probability density is derived through solution of the Liouville equation. This probability density is then used to compute the friction tensor for the hydronium ion. The authors find two types of contributions: (a) due to the solvent-ion interactions for which they adopt the conventional continuum model; (b) due to the interaction between the pendant charges and the hydronium ion. The latter is a new result and displays the role of the non-uniform nature of the charge distribution on the pore wall.

  18. Canadian water quality guidelines. Appendix 22: Interim marine and estuarine water quality guidelines for general variables

    SciTech Connect

    1996-12-31

    This document has been prepared in response to the need for marine water quality guidelines for general water quality variables. It presents interim guidelines, summaries of existing guidelines if any, the rationale for the guidelines, and variable-specific background information, and notes gaps in data, for the following variables: Debris, including floating or submerged litter, and settleable matter; dissolved oxygen; pH; salinity; temperature; and suspended solids and turbidity. For the purpose of this document, the marine environment includes shorelines, estuaries up to the freshwater limit, and nearshore and offshore waters.

  19. INTERACTION OF METALS AND ORGAINIC CARBON COLLOIDS IN ANOXIC INTERSTITIAL WATERS OF MARINE SEDIMENTS

    EPA Science Inventory

    Marine colloids are an important component of natural water geochemistry critical to the cycling, speciation and bioavailability of metals in marine sediments. In sediment, metals exist in three phases: particulate, colloidal and dissolved. Dissolved metal concentrations have bee...

  20. Changes in constituent equilibrium leaching and pore water characteristics of a Portland cement mortar as a result of carbonation.

    PubMed

    Garrabrants, A C; Sanchez, F; Kosson, D S

    2004-01-01

    Two equilibrium-based characterization protocols were applied to ground samples of a cement-based material containing metal oxide powders in both noncarbonated and carbonated states. The effects of carbonation were shown through comparison of (i) material buffering capacity, (ii) constituent equilibrium as a function of leachate pH, and (iii) constituent solubility and release as a function of liquid-to-solid (LS) ratio. As expected, the material alkalinity was significantly neutralized during carbonation. In addition, carbonation of the cement material led to the formation of calcium carbonate and a corresponding increase in arsenic release across the entire pH range. The solubility as a function of pH for lead and copper was lower in the alkaline pH range (pH>9) for carbonated samples compared with the parent material. When solubility and release as a function of LS ratio was compared, carbonation was observed to decrease calcium solubility, sodium and potassium release, and ionic strength. In response to carbonate solid formation, chloride and sulfate release as a function of LS ratio was observed to increase. Trends in constituent concentration as a function of LS ratio were extrapolated to estimate pore water composition at a 0.06 mL/g LS ratio. Significant differences were observed upon comparison of estimated pore water composition to leachate concentrations extracted at LS ratio of 5 mL/g. These differences show that practical laboratory extractions cannot be assumed directly representative of pore water concentrations.

  1. Bioavailability of metals and toxicity identification of the sediment pore waters from Plow Shop Pond, Fort Devens, Massachusetts

    SciTech Connect

    Jop, K.; Putt, A.; Shepherd, S.; Askew, A.; Bleiler, J.; Reed, S.; George, C.

    1995-12-31

    Plow Shop Pond is a shallow, 30-acre pond located at Fort Devens, Massachusetts. An ecological risk assessment was conducted at Plow Shop Pond as part of a remedial investigation. Preliminary analysis revealed high concentrations of arsenic, copper, chromium, lead, and mercury in the sediment. Therefore, a laboratory testing program was incorporated into this investigation to assess the toxicity of sediments to aquatic organisms. The screening testing program included short-term chronic exposure of Ceriodaphnia dubia to pore waters, 10-day exposures of Chironomus tentans and Hyalella azteca to bulk sediments and a bioaccumulation study with Lumbriculus variegatus. Survival and reproduction of C. dubia, growth of amphipods and reproduction of oligochaetes appeared to indicate sediment toxicity at some sites within the pond. Although high concentrations of arsenic, copper, mercury and lead were detected in the whole sediments and pore waters, the response could not be correlated to a particular element. Also, relatively low bioaccumulation of methyl mercury and high uptake of inorganic mercury was established for three sediment samples. To characterize and identify the source of toxicity, a toxicity identification evaluation program using sediments collected at several locations was performed. The pore water from these samples was used for fractionation coupled with a 10-day test using H. azteca. Survival and growth were evaluated as endpoints during the exposures. Partitioning of metals and their bioavailability was influenced primarily by organic carbon and AVS concentration. At least two constituents were responsible for the toxicity.

  2. Silicone rubber passive samplers for measuring pore water and exchangeable concentrations of polycyclic aromatic hydrocarbons concentrations in sediments.

    PubMed

    Yates, Kyari; Pollard, Pat; Davies, Ian; Webster, Lynda; Moffat, Colin

    2013-10-01

    The use of a silicone rubber passive sampler for the assessment of the availability of lipophilic organic contaminants in sediments is described. The passive sampler accumulated polycyclic aromatic hydrocarbons (PAHs) from sediments with an equilibration time of 20 days for most PAHs. The method was used to measure the free dissolved concentrations in pore water of 30 PAHs (parent and alkylated), their water exchangeable concentrations and sediment-water partition coefficients in field sediments from a Scottish sea loch that supports fish farming. Fluoranthene and pyrene dominated the PAH concentration composition in the pore waters. The water exchangeable concentration reflected the pyrogenic pollution pattern found in the sediments and indicated that a proportion of the PAHs were not available for exchange with the aqueous phase. Strong linear relationships between organic carbon normalised sediment-water partition coefficients (logK(oc)) and corresponding octanol-water partition coefficients of PAHs were obtained. The logK(oc) values obtained are on average, 0.6 log units higher than literature values commonly used in sediment risk assessments, consequently direct measurements of logK(oc) in field sediments should be used to improve the reliability of risk assessments. PMID:23872250

  3. Influence of pore water velocity on the release of carbofuran and fenamiphos from commercial granulates embedded in a porous matrix.

    PubMed

    Paradelo, Marcos; Pérez-Rodríguez, Paula; Arias-Estévez, Manuel; López-Periago, J Eugenio

    2012-11-01

    Pore water flow velocity can influence the processes involved in the contaminant transport between relative stagnant zones of porous media and their adjacent mobile zones. A particular case of special interest is the occurrence of high flow rates around the controlled release granules containing pesticides buried in soil. The release of the pesticides carbofuran and fenamiphos from commercial controlled release formulations (CRFs) was studied, comparing release tests in a finite volume of water with water flow release tests in saturated packed sand at different seepage velocities. For water release kinetics, the time taken for 50% of the pesticide to be released (T(50)) was 0.64 hours for carbofuran and 1.97 hours for fenamiphos. In general, the release rate was lower in the porous matrix than in the free water tests. The faster release rate for carbofuran was attributed to its higher water diffusivity. The seepage velocity has a strong influence on the pesticide release rate. The dominant release mechanism varies with the progress of release. The evolution of the mechanism is discussed on the basis of the successive steps that involve the moving boundary of the dissolution front of the pesticide inside the granule, the concentration gradient inside the granule and the flow boundary layer resistance to solute diffusion around the granule. The pore water velocity influences the overall release dynamics. Therefore, seepage velocity should be considered in pesticide release to evaluate the risk of pesticide leaching, especially in scenarios with fast infiltration.

  4. Influence of pore water velocity on the release of carbofuran and fenamiphos from commercial granulates embedded in a porous matrix

    NASA Astrophysics Data System (ADS)

    Paradelo, Marcos; Pérez-Rodríguez, Paula; Arias-Estévez, Manuel; López-Periago, J. Eugenio

    2012-11-01

    Pore water flow velocity can influence the processes involved in the contaminant transport between relative stagnant zones of porous media and their adjacent mobile zones. A particular case of special interest is the occurrence of high flow rates around the controlled release granules containing pesticides buried in soil. The release of the pesticides carbofuran and fenamiphos from commercial controlled release formulations (CRFs) was studied, comparing release tests in a finite volume of water with water flow release tests in saturated packed sand at different seepage velocities. For water release kinetics, the time taken for 50% of the pesticide to be released (T50) was 0.64 hours for carbofuran and 1.97 hours for fenamiphos. In general, the release rate was lower in the porous matrix than in the free water tests. The faster release rate for carbofuran was attributed to its higher water diffusivity. The seepage velocity has a strong influence on the pesticide release rate. The dominant release mechanism varies with the progress of release. The evolution of the mechanism is discussed on the basis of the successive steps that involve the moving boundary of the dissolution front of the pesticide inside the granule, the concentration gradient inside the granule and the flow boundary layer resistance to solute diffusion around the granule. The pore water velocity influences the overall release dynamics. Therefore, seepage velocity should be considered in pesticide release to evaluate the risk of pesticide leaching, especially in scenarios with fast infiltration.

  5. Gas Hydrate and Pore Pressure

    NASA Astrophysics Data System (ADS)

    Tinivella, Umberta; Giustiniani, Michela

    2014-05-01

    Many efforts have been devoted to quantify excess pore pressures related to gas hydrate dissociation in marine sediments below the BSR using several approaches. Dissociation of gas hydrates in proximity of the BSR, in response to a change in the physical environment (i.e., temperature and/or pressure regime), can liberate excess gas incrising the local pore fluid pressure in the sediment, so decreasing the effective normal stress. So, gas hydrate dissociation may lead to excess pore pressure resulting in sediment deformation or failure, such as submarine landslides, sediment slumping, pockmarks and mud volcanoes, soft-sediment deformation and giant hummocks. Moreover, excess pore pressure may be the result of gas hydrate dissociation due to continuous sedimentation, tectonic uplift, sea level fall, heating or inhibitor injection. In order to detect the presence of the overpressure below the BSR, we propose two approachs. The fist approach models the BSR depth versus pore pressure; in fact, if the free gas below the BSR is in overpressure condition, the base of the gas hydrate stability is deeper with respect to the hydrostatic case. This effect causes a discrepancy between seismic and theoretical BSR depths. The second approach models the velocities versus gas hydrate and free gas concentrations and pore pressure, considering the approximation of the Biot theory in case of low frequency, i.e. seismic frequency. Knowing the P and S seismic velocity from seismic data analysis, it is possibile to jointly estimate the gas hydrate and free gas concentrations and the pore pressure regime. Alternatively, if the S-wave velocity is not availbale (due to lack of OBS/OBC data), an AVO analysis can be performed in order to extract information about Poisson ratio. Our modeling suggests that the areas characterized by shallow waters (i.e., areas in which human infrastructures, such as pipelines, are present) are significantly affected by the presence of overpressure condition

  6. Evaluation of chloride mass balance of pore water as an indicator of groundwater recharge to the Monterrey Metropolitan Area, Mexico

    NASA Astrophysics Data System (ADS)

    Rosales-Lagarde, Laura; Pasten, Ernesto; Mora, Abrahan; Mahlknecht, Jürgen

    2016-04-01

    Monterrey Metropolitan Area in Nuevo Leon, Mexico, is the third largest metropolitan area and one of the most important industrial sites of Mexico. Groundwater constitutes 40% of the water supply to this urban area. This supply is under constant stress due to the population increase. The unsaturated zone at six sites along two cross-sections was characterized to evaluate the potential of chloride concentration as an indicator of recharge. The selected sites include the range of topographic elevations, vegetation, and annual precipitation of the study area. In each site, boreholes up to 5 m deep were drilled and soil was sampled every 0.5 m. The grain size of each soil sample was determined and pore water extracted to determine the water content percentage, and the chloride, sulfate and nitrate concentration of the pore water. The undersaturated zone consists of alluvial deposits with an average gravel and sand content greater than 60% for all but one of the sampling sites. The pore water content varies from 0.4 to 25% by weight with a decreasing trend as depth increases in areas with agriculture. Sulfate has the highest anion concentration in the pore waters, ranging from 42 to 45,000 mg/L and no apparent distribution pattern along the soil profile columns. Chloride concentration ranges from 8 to 3600 mg/L with an increase in concentration below 1.5 m depth in all the profiles. Chloride and sulfate concentrations with depth are directly correlated suggesting a common input, possibly dissolution-precipitation of evaporite minerals from nearby outcrops or an anthropogenic input. Hence, it is unlikely that chloride behaves as a conservative ion. As a result, its concentration is not likely to be a good indicator of groundwater recharge. Finally; the nitrate concentration ranges from 2 to 96 mg/L nitrate, without a clear pattern along the soil profiles. Low concentration of nitrate in the soil profiles below agricultural areas may suggest denitrification as suggested

  7. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    USGS Publications Warehouse

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  8. The fluidity of boulder debris flows is affected by fine sediment in the pore water

    NASA Astrophysics Data System (ADS)

    Hotta, Norifumi; Kaneko, Takahiro; Iwata, Tomoyuki; Nishimoto, Haruo

    2013-04-01

    Basic equations for debris flows are frequently derived using the simple assumption of monogranular particles. However, actual debris flows include a great diversity of grain sizes, resulting in inherent features such as inverse grading, particle size segregation, and liquefaction of fine sediment. The liquefaction of fine sediment affects the fluidity of debris flows, although the behavior and influence of fine sediment in debris flows have not been examined sufficiently. This study used flume tests to detect the effect of fine sediment on the characteristics of laboratory debris flows consisting of particles with two diameters: one diameter was fixed at a large particle size, while the small diameters were varied with the experimental conditions. From the experiments, the greatest sediment concentration and flow depth were observed in the debris flows mixed with finer sediment, indicating increased flow resistance. Then, the experimental friction coefficient was compared with the theoretical friction coefficient derived by substituting the experimental values into the constitutive equations for debris flow. The theoretical friction coefficient was obtained from two models with different fine-sediment treatments: one assuming that all of the fine sediments were solid particles and the other that the particles consisted of a fluid phase involving pore water liquefaction. A discriminant index was introduced to clarify which contribution from the two models could better explain the experimental results. The comparison of the friction coefficients detected a fully liquefied state for the finest particle mixture with sediment. However, even with the same particle size, the debris flows could be regarded as a liquefied state, a solid state, or a partially liquefied transition state depending on the experimental conditions other than the sediment particle size. These results infer that the liquefaction of fine sediment in debris flows was induced not only by the

  9. Colloid Mobilization in a Fractured Soil: Effect of Pore-Water Exchange between Preferential Flow Paths and Soil Matrix.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2016-03-01

    Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils.

  10. Variations of nitrogen nutrient concentrations in the sediment pore waters of the northwestern Mediterranean continental shelf

    NASA Astrophysics Data System (ADS)

    Fernex, François; Baratie, Raymond; Span, Daniel; Vandelei Fernandes, Lazaro

    1989-09-01

    This contribution presents information on nitrogen nutrients dissolved in the sediment pore waters of the oligotrophic northwestern Mediterranean Sea. The areas studied are situated in various geographical environments, adjacent to or offshore from a river mouth and on wide or narrow parts of the continental shelf. Near the pro-delta of the Rhoˆne River, which carries about 5 × 10 6 t y -1 of solid matter, measurements indicate that the rate of nitrogen nutrient production (ammonification) reaches frequently (or even exceeds) 2 × 10 6 μmol cm -3 s -1. The production rate near the mouth of the Siagne River, a mountain stream, is generally lower, at 10 -7 μmol -3 s -1; exceptionally, it reaches 10 6 to 1.5 × 10 -6 μmol cm -3 s -1. Adjacent to any river mouth, the concentrations of inorganic nitrogen species dissolved in the surficial sediments vary with time. A similar pattern occurs at locations far from a river mouth. High levels of organic matter in the sediments in the latter areas is related to planktonic blooms, which occur mainly in spring. There is more temporal variation in concentrations in sediments just below the sediment-seawater boundary, than in the deeper deposits. Ammonia concentrations increase regularly, with depth, within the sediment. In contrast, the nitrate profiles are frequently irregular and show a concentration maximum at 1 or 2 cm below the interface; then, below a minimum value at 5-8 cm, then a second maximum at 10-15 cm. According to incubation experiments, the production of nitrate occurs at 15-20 cm, where oxygen is still present at concentrations higher than 1-1.5 mg l -1. The low nitrate concentrations at about 6-8 cm appear to result from relatively high denitrifying activity at this level within the sediments. Concentrations of the nitrogen nutrients are generally higher in the surficial sediment pore waters, than in the overlying seawater. There is a flux of these species from the sediment to the seawater. In continental

  11. Pore Network Modeling and Synchrotron Imaging of Liquid Water in the Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Hinebaugh, James Thomas

    Polymer electrolyte membrane (PEM) fuel cells operate at levels of high humidity, leading to condensation throughout the cell components. The porous gas diffusion layer (GDL) must not become over-saturated with liquid water, due to its responsibility in providing diffusion pathways to and from the embedded catalyst sites. Due to the opaque and microscale nature of the GDL, a current challenge of the fuel cell industry is to identify the characteristics that make the GDL more or less robust against flooding. Modeling the system as a pore network is an attractive investigative strategy; however, for flooding simulations to provide meaningful material comparisons, accurate GDL topology and condensation distributions must be provided. The focus of this research is to provide the foundational tools with which to capture both of these requirements. The method of pore network modeling on topologically representative pore networks is demonstrated to describe flooding phenomena within GDL materials. A stochastic modeling algorithm is then developed to create pore spaces with the relevant features of GDL materials. Then, synchrotron based X-ray visualization experiments are developed and conducted to provide insight into condensation conditions. It was found that through-plane porosity distributions have significant effects on the GDL saturation levels. Some GDL manufacturing processes result in high porosity regions which are predicted to become heavily saturated with water if they are positioned between the condensation sites and the exhaust channels. Additionally, it was found that fiber diameter and the volume fraction of binding material applied to the GDL have significant impacts on the GDL heterogeneity and pore size distribution. Representative stochastic models must accurately describe these three material characteristics. In situ, dynamic liquid water behavior was visualized at the Canadian Light source, Inc. synchrotron using imaging and image processing

  12. A pore-scale model of two-phase flow in water-wet rock

    SciTech Connect

    Silin, Dmitriy; Patzek, Tad

    2009-02-01

    A finite-difference discretization of Stokes equations is used to simulate flow in the pore space of natural rocks. Numerical solutions are obtained using the method of artificial compressibility. In conjunction with Maximal Inscribed Spheres method, these computations produce relative permeability curves. The results of computations are in agreement with laboratory measurements.

  13. Seasonal Effects on the Relationships Between Soil Water Content, Pore Water Pressure and Shear Strength and Their Implications for Slope Stability

    NASA Astrophysics Data System (ADS)

    Hughes, P. N.

    2015-12-01

    A soil's shear resistance is mainly dependent upon the magnitude of effective stress. For small to medium height slopes (up to 10m) in clay soils the total stress acting along potential failure planes will be low, therefore the magnitude of effective stress (and hence soil shear strength) will be dominated by the pore-water pressure. The stability of slopes on this scale through periods of increased precipitation is improved by the generation of negative pore pressures (soil suctions) during preceding, warmer, drier periods. These negative pore water pressures increase the effective stress within the soil and cause a corresponding increase in shearing resistance. The relationships between soil water content and pore water pressure (soil water retention curves) are known to be hysteretic, but for the purposes of the majority of slope stability assessments in partially saturated clay soils, these are assumed to be consistent with time. Similarly, the relationship between shear strength and water content is assumed to be consistent over time. This research presents a laboratory study in which specimens of compacted Glacial Till (typical of engineered slopes within the UK) were subjected to repeated cycles of wetting and drying to simulate seasonal cycles. At predetermined water contents, measurements of soil suction were made using tensiometer and dewpoint potentiometer methods. The undrained shear strength of the specimens was then measured using triaxial strength testing equipment. Results indicate that repeated wetting and drying cycles caused a change in the soil water retention behaviour. A reduction in undrained shear strength at corresponding water contents along the wetting and drying paths was also observed. The mechanism for the change in the relationship is believed to be a deterioration in the soil physical structure due to shrink/swell induced micro-cracking. The non-stationarity of these relationships has implications for slope stability assessment.

  14. Chemical analyses of pore water from boreholes USW SD-6 and USW WT-24, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Yang, I.C.; Peterman, Z.E.; Scofield, K.M.

    2003-01-01

    Analyses of pore water extracted from cores of boreholes USW SD-6 in the central part and USW WT-24 in the northern part of Yucca Mountain, Nevada, show significant vertical and lateral variations in dissolved-ion concentrations. Analyses of samples of only a few milliliters of pore water extracted by uniaxial or triaxial compression and by ultracentrifugation methods from adjacent core samples are generally in agreement, within the analytical error of 10% to 15%. However, the values of silica for water obtained by ultracentrifugation are consistently lower than values for water obtained by compression. The larger concentrations probably are due to localized pressure solution of silicate minerals during compression. The shallower water from core in borehole USW SD-6 was extracted from nonwelded units collectively referred to as the Paintbrush Tuff nonwelded (PTn). The deeper water was from core in both boreholes USW SD-6 and USW WT-24 in the nonwelded units referred to as the Calico Hills nonwelded (CHn). Significant differences in mean dissolved-ion concentrations in pore water between the PTn and CHn are (1) decreases in Ca, Mg, SO4, and NO3 and (2) increases in HCO3 and (Na+K)/(Ca+Mg) ratios. The decrease in NO3 and the increase in HCO3 could be the result of denitrification through the oxidation of organic matter. The decrease in Ca and associated increase in (Na+K)/(Ca+Mg) is the result of ion exchange with zeolites in the CHn in borehole USW WT-24. This effect is not nearly as pronounced in borehole USW SD-6, probably reflecting a smaller amount of zeolitization of the CHn in USW SD-6. Geochemical calculations using the PHREEQC code indicate that the pore water from both boreholes USW SD-6 and USW WT-24 is uniformly undersaturated in anhydrite, gypsum, and amorphous silica, but supersaturated in quartz and chalcedony. The saturation of calcite, aragonite, sepiolite, and dolomite is more variable from sample to sample. ?? 2002 Elsevier Science B.V. All rights

  15. Effect of hydrogel particle additives on water-accessible pore structure of sandy soils: a custom pressure plate apparatus and capillary bundle model.

    PubMed

    Wei, Y; Durian, D J

    2013-05-01

    To probe the effects of hydrogel particle additives on the water-accessible pore structure of sandy soils, we introduce a custom pressure plate method in which the volume of water expelled from a wet granular packing is measured as a function of applied pressure. Using a capillary bundle model, we show that the differential change in retained water per pressure increment is directly related to the cumulative cross-sectional area distribution f(r) of the water-accessible pores with radii less than r. This is validated by measurements of water expelled from a model sandy soil composed of 2-mm-diameter glass beads. In particular, it is found that the expelled water is dramatically dependent on sample height and that analysis using the capillary bundle model gives the same pore size distribution for all samples. The distribution is found to be approximately log normal, and the total cross-sectional area fraction of the accessible pore space is found to be f(0)=0.34. We then report on how the pore distribution and total water-accessible area fraction are affected by superabsorbent hydrogel particle additives, uniformly mixed into a fixed-height sample at varying concentrations. Under both fixed volume and free swelling conditions, the total area fraction of water-accessible pore space in a packing decreases exponentially as the gel concentration increases. The size distribution of the pores is significantly modified by the swollen hydrogel particles, such that large pores are clogged while small pores are formed.

  16. Prevalence of microplastics in the marine waters of Qatar.

    PubMed

    Castillo, Azenith B; Al-Maslamani, Ibrahim; Obbard, Jeffrey Philip

    2016-10-15

    Microplastics are firmly recognized as a ubiquitous and growing threat to marine biota and their associated marine habitats worldwide. The evidence of the prevalence of microplastics was documented for the first time in the marine waters of Qatar's Exclusive Economic Zone (EEZ). An optimized and validated protocol was developed for the extraction of microplastics from plankton-rich seawater samples without loss of microplastic debris present and characterized using Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy. In total 30 microplastic polymers have been identified with an average concentration of 0.71particlesm(-3) (range 0-3particlesm(-3)). Polypropylene, low density polyethylene, polyethylene, polystyrene, polyamide, polymethyl methacrylate, cellophane, and acrylonitrile butadiene styrene polymers were characterized with majority of the microplastics either granular shape, sizes ranging from 125μm to 1.82mm or fibrous with sizes from 150μm to 15.98mm. The microplastics are evident in areas where nearby anthropogenic activities, including oil-rig installations and shipping operations are present. PMID:27389452

  17. Prevalence of microplastics in the marine waters of Qatar.

    PubMed

    Castillo, Azenith B; Al-Maslamani, Ibrahim; Obbard, Jeffrey Philip

    2016-10-15

    Microplastics are firmly recognized as a ubiquitous and growing threat to marine biota and their associated marine habitats worldwide. The evidence of the prevalence of microplastics was documented for the first time in the marine waters of Qatar's Exclusive Economic Zone (EEZ). An optimized and validated protocol was developed for the extraction of microplastics from plankton-rich seawater samples without loss of microplastic debris present and characterized using Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy. In total 30 microplastic polymers have been identified with an average concentration of 0.71particlesm(-3) (range 0-3particlesm(-3)). Polypropylene, low density polyethylene, polyethylene, polystyrene, polyamide, polymethyl methacrylate, cellophane, and acrylonitrile butadiene styrene polymers were characterized with majority of the microplastics either granular shape, sizes ranging from 125μm to 1.82mm or fibrous with sizes from 150μm to 15.98mm. The microplastics are evident in areas where nearby anthropogenic activities, including oil-rig installations and shipping operations are present.

  18. Strontium Isotopes in Pore Water as an Indicator of Water Flux at the Proposed High-Level Radioactive Waste Repository, Yucca Mountain, Nevada

    SciTech Connect

    B. Marshall; K. Futa

    2004-02-19

    The proposed high-level radioactive waste repository at Yucca Mountain, Nevada, would be constructed in the high-silica rhyolite (Tptp) member of the Miocene-age Topopah Spring Tuff, a mostly welded ash-flow tuff in the {approx}500-m-thick unsaturated zone. Strontium isotope compositions have been measured in pore water centrifuged from preserved core samples and in leachates of pore-water salts from dried core samples, both from boreholes in the Tptp. Strontium isotope ratios ({sup 87}Sr/{sup 86}Sr) vary systematically with depth in the surface-based boreholes. Ratios in pore water near the surface (0.7114 to 0.7124) reflect the range of ratios in soil carbonate (0.7112 to 0.7125) collected near the boreholes, but ratios in the Tptp (0.7122 to 0.7127) at depths of 150 to 370 m have a narrower range and are more radiogenic due to interaction with the volcanic rocks (primarily non-welded tuffs) above the Tptp. An advection-reaction model relates the rate of strontium dissolution from the rocks with flow velocity. The model results agree with the low transport velocity ({approx}2 cm per year) calculated from carbon-14 data by I.C. Yang (2002, App. Geochem., v. 17, no. 6, p. 807-817). Strontium isotope ratios in pore water from Tptp samples from horizontal boreholes collared in tunnels at the proposed repository horizon have a similar range (0.7121 to 0.7127), also indicating a low transport velocity. Strontium isotope compositions of pore water below the proposed repository in core samples from boreholes drilled vertically downward from tunnel floors are more varied, ranging from 0.7112 to 0.7127. The lower ratios (<0.7121) indicate that some of the pore water in these boreholes was replaced by tunnel construction water, which had an {sup 87}Sr/{sup 86}Sr of 0.7115. Ratios lower than 0.7115 likely reflect interaction of construction water with concrete in the tunnel inverts, which had an {sup 87}Sr/{sup 86}Sr < 0.709. These low Sr ratios indicate penetration of

  19. Strontium Isotopes in Pore Water as an Indicator of Water Flow at the Proposed High-Level Radioactive Waste Repository, Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Marshall, B. D.; Futa, K.

    2004-05-01

    The proposed high-level radioactive waste repository at Yucca Mountain, Nevada, would be constructed in the high-silica rhyolite (Tptp) member of the Miocene-age Topopah Spring Tuff, a mostly welded ash-flow tuff in the ~500-m-thick unsaturated zone. Strontium isotope compositions have been measured in pore water centrifuged from preserved core samples and in leachates of pore-water salts from dried core samples. Strontium isotope ratios (87}Sr/{86Sr) vary systematically with depth in the surface-based boreholes. Ratios in pore water near the surface (0.7114 to 0.7124) reflect the range of ratios in soil carbonate (0.7112 to 0.7125) collected near the boreholes, but ratios in the Tptp (0.7122 to 0.7127) at depths of 150 to 370 m have a narrower range and are more radiogenic due to interaction with the volcanic rocks (primarily non-welded tuffs) above the Tptp. An advection-reaction model relates the rate of strontium dissolution from the rocks with flow velocity. The model results agree with the low transport velocity (~2 cm per year) calculated from carbon-14 data by I.C. Yang (2002, App. Geochem., v. 17, no. 6, p. 807-817). Strontium isotope ratios in pore water from Tptp samples from horizontal boreholes collared in tunnels at the proposed repository horizon have a similar range (0.7121 to 0.7127), also indicating a low transport velocity. Strontium isotope compositions of pore water below the proposed repository in core samples from boreholes drilled vertically downward from tunnel floors are more varied, ranging from 0.7112 to 0.7127. The lower ratios (<0.7121) indicate that some of the pore water in these boreholes was replaced by tunnel construction water, which had an 87}Sr/{86Sr of 0.7115. Ratios lower than 0.7115 likely reflect interaction of construction water with concrete in the tunnel inverts, which had an 87}Sr/{86Sr <0.709. These low Sr ratios indicate penetration of construction water to depths of ~20 m below the tunnels within three years after

  20. Response of pore water Al, Fe and S concentrations to waterlogging in a boreal acid sulphate soil.

    PubMed

    Virtanen, Seija; Simojoki, Asko; Hartikainen, Helinä; Yli-Halla, Markku

    2014-07-01

    Environmental hazards caused by acid sulphate (AS) soils are of worldwide concern. Among various mitigation measures, waterlogging has mainly been studied in subtropical and tropical conditions. To assess the environmental relevance of waterlogging as a mitigation option in boreal AS soils, we arranged a 2.5-year experiment with monolithic lysimeters to monitor changes in the soil redox potential, pH and the concentrations of aluminium (Al), iron (Fe) and sulphur (S) in pore water in response to low and high groundwater levels in four AS soil horizons. The monoliths consisted of acidic oxidized B horizons and a reduced C horizon containing sulphidic material. Eight lysimeters were cropped (reed canary grass, Phalaris arundinacea) and two were bare without a crop. Waterlogging was conducive to reduction reactions causing a slight rise in pH, a substantial increase in Fe (Fepw) and a decrease in Al (Alpw) in the pore water. The increase in Fepw was decisively higher in the cropped waterlogged lysimeters than in the bare ones, which was attributable to the microbiologically catalysed reductive dissolution of poorly ordered iron oxides and secondary minerals. In contrast to warmer climates, Fepw concentrations remained high throughout the experiment, indicating that the reduction was poised in the iron range, while sulphate was not reduced to sulphide. Therefore, the precipitation of iron sulphide was negligible in the environment with a low pH and abundant with poorly ordered Fe oxides. Increased Fe in pore water counteracts the positive effects of waterlogging, when water is flushed from fields to watercourses, where re-oxidation of Fe causes acidity and oxygen depletion. However, waterlogging prevented further oxidation of sulphidic materials and decreased Alpw to one-tenth of the initial concentrations, and even to one-hundredth of the levels in the low water table lysimeters.

  1. An overview of marine biodiversity in United States waters.

    PubMed

    Fautin, Daphne; Dalton, Penelope; Incze, Lewis S; Leong, Jo-Ann C; Pautzke, Clarence; Rosenberg, Andrew; Sandifer, Paul; Sedberry, George; Tunnell, John W; Abbott, Isabella; Brainard, Russell E; Brodeur, Melissa; Eldredge, Lucius G; Feldman, Michael; Moretzsohn, Fabio; Vroom, Peter S; Wainstein, Michelle; Wolff, Nicholas

    2010-01-01

    Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise. PMID:20689852

  2. An overview of marine biodiversity in United States waters

    USGS Publications Warehouse

    Fautin, Daphne G.; Delton, Penelope; Incze, Lewis S.; Leong, Jo-Ann C.; Pautzke, Clarence; Rosenberg, Andrew A.; Sandifer, Paul; Sedberry, George R.; Tunnell, John W.; Abbott, Isabella; Brainard, Russell E.; Brodeur, Melissa; Eldredge, Lucius G.; Feldman, Michael; Moretzsohn, Fabio; Vroom, Peter S.; Wainstein, Michelle; Wolff, Nicholas

    2010-01-01

    Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise.

  3. An Overview of Marine Biodiversity in United States Waters

    PubMed Central

    Fautin, Daphne; Dalton, Penelope; Incze, Lewis S.; Leong, Jo-Ann C.; Pautzke, Clarence; Rosenberg, Andrew; Sandifer, Paul; Sedberry, George; Tunnell, John W.; Abbott, Isabella; Brainard, Russell E.; Brodeur, Melissa; Eldredge, Lucius G.; Feldman, Michael; Moretzsohn, Fabio; Vroom, Peter S.; Wainstein, Michelle; Wolff, Nicholas

    2010-01-01

    Marine biodiversity of the United States (U.S.) is extensively documented, but data assembled by the United States National Committee for the Census of Marine Life demonstrate that even the most complete taxonomic inventories are based on records scattered in space and time. The best-known taxa are those of commercial importance. Body size is directly correlated with knowledge of a species, and knowledge also diminishes with distance from shore and depth. Measures of biodiversity other than species diversity, such as ecosystem and genetic diversity, are poorly documented. Threats to marine biodiversity in the U.S. are the same as those for most of the world: overexploitation of living resources; reduced water quality; coastal development; shipping; invasive species; rising temperature and concentrations of carbon dioxide in the surface ocean, and other changes that may be consequences of global change, including shifting currents; increased number and size of hypoxic or anoxic areas; and increased number and duration of harmful algal blooms. More information must be obtained through field and laboratory research and monitoring that involve innovative sampling techniques (such as genetics and acoustics), but data that already exist must be made accessible. And all data must have a temporal component so trends can be identified. As data are compiled, techniques must be developed to make certain that scales are compatible, to combine and reconcile data collected for various purposes with disparate gear, and to automate taxonomic changes. Information on biotic and abiotic elements of the environment must be interactively linked. Impediments to assembling existing data and collecting new data on marine biodiversity include logistical problems as well as shortages in finances and taxonomic expertise. PMID:20689852

  4. Radium-based pore water fluxes of silica, alkalinity, manganese, DOC, and uranium: A decade of studies in the German Wadden Sea

    NASA Astrophysics Data System (ADS)

    Moore, W. S.; Beck, M.; Riedel, T.; Rutgers van der Loeff, M.; Dellwig, O.; Shaw, T. J.; Schnetger, B.; Brumsack, H.-J.

    2011-11-01

    A decade of studies of metal and nutrient inputs to the back-barrier area of Spiekeroog Island, NW German Wadden Sea, have concluded that pore water discharge provides a significant source of the enrichments of many components measured in the tidal channels during low tide. In this paper we add studies of radium isotopes to help quantify fluxes into and out of this system. Activities of radium isotopes in surface water from tidal channels in the back-barrier area exhibit pronounced changes in concert with the tide, with highest activities occurring near low tide. Other dissolved components: silica, total alkalinity (TA), manganese, and dissolved organic carbon (DOC) exhibit similar changes, with patterns matching the Ra isotopes. Uranium follows a reverse pattern with highest concentrations at high tide. Here we use radium isotope measurements in water column and pore water samples to estimate the fluxes of pore waters that enter the tidal channels during low tide. Using a flushing time of 4 days and the average activities of 224Ra, 223Ra, and 228Ra measured in the back-barrier surface and pore waters, we construct a balance of these isotopes, which is sustained by a deep pore water flux of (2-4) × 10 8 L per tidal cycle. This flux transports Ra and the other enriched components to the tidal channels and causes the observed low tide enrichments. An independent estimate of pore water recharge is based on the depletion of U in the tidal channels. The U-based recharge is about two times greater than the Ra-based discharge; however, other sinks of U could reduce the recharge estimate. The pore waters have wide ranges of enrichment in silica, alkalinity, manganese, DOC, and depletion of U with depth. We estimate concentrations of these components in pore water from the depth expected to contribute the majority of the pore water flux, 3.5 m, to determine fluxes of these components to the tidal channels. Samples from this depth have minimum concentrations of silica

  5. Pore-water chemistry from the ICDP-USGS coer hole in the Chesapeake Bay impact structure--Implications for paleohydrology, microbial habitat, and water resources

    USGS Publications Warehouse

    Sanford, Ward E.; Voytek, Mary A.; Powars, David S.; Jones, Blair F.; Cozzarelli, Isabelle M.; Eganhouse, Robert P.; Cockell, Charles S.

    2009-01-01

    We investigated the groundwater system of the Chesapeake Bay impact structure by analyzing the pore-water chemistry in cores taken from a 1766-m-deep drill hole 10 km north of Cape Charles, Virginia. Pore water was extracted using high-speed centrifuges from over 100 cores sampled from a 1300 m section of the drill hole. The pore-water samples were analyzed for major cations and anions, stable isotopes of water and sulfate, dissolved and total carbon, and bioavailable iron. The results reveal a broad transition between fresh and saline water from 100 to 500 m depth in the post-impact sediment section, and an underlying syn-impact section that is almost entirely filled with brine. The presence of brine in the lowermost post-impact section and the trend in the dissolved chloride with depth suggest a transport process dominated by molecular diffusion and slow, compaction-driven, upward flow. Major ion results indicate residual effects of diagenesis from heating, and a pre-impact origin for the brine. High levels of dissolved organic carbon (6-95 mg/L) and the distribution of electron acceptors indicate an environment that may be favorable for microbial activity throughout the drilled section. The concentration and extent of the brine is much greater than had previously been observed, suggesting its occurrence may be common in the inner crater. However, groundwater flow conditions in the structure may reduce the salt-water-intrusion hazard associated with the brine.

  6. Electrical Resistivity Correlation to Vadose Zone Sediment and Pore-Water Composition for the BC Cribs and Trenches Area

    SciTech Connect

    Serne, R. Jeffrey; Ward, Anderson L.; Um, Wooyong; Bjornstad, Bruce N.; Rucker, Dale F.; Lanigan, David C.; Benecke, Mark W.

    2009-06-01

    This technical report documents the results of geochemical and soil resistivity characterization of sediment obtained from four boreholes drilled in the BC Cribs and Trench area. Vadose zone sediment samples were obtained at a frequency of about every 2.5 ft from approximately 5 ft bgs to borehole total depth. In total, 505 grab samples and 39 six-inch long cores were obtained for characterization. The pore-water chemical composition data, laboratory-scale soil resistivity and other ancillary physical and hydrologic measurements and analyses described in this report are designed to provide a crucial link between direct measurements on sediments and the surface-based electrical-resistivity information obtained via field surveys. A second goal of the sediment characterization was to measure the total and water-leachable concentrations of key contaminants of concern as a function of depth and distance from the footprints of inactive disposal facilities. The total and water-leachable concentrations of key contaminants will be used to update contaminant distribution conceptual models and to provide more data for improving base-line risk predictions and remedial alternative selections. The ERC “ground truthing” exercise for the individual boreholes showed mixed results. In general, the high concentrations of dissolved salts in the pore waters of sediments from C5923, C5924 and C4191 produced a low resistivity “target” in the processed resistivity field surveys, and variability could be seen in the resistivity data that could relate to the variability in pore- water concentrations but the correlations (regression R2 were mediocre ranging from 0.2 to 0.7 at best; where perfect correlation is 1.0). The field-based geophysical data also seemed to suffer from a sort of vertigo, where looking down from the ground surface, the target (e.g., maximum pore-water salt concentration) depth was difficult to resolve. The best correlations between the field electrical

  7. Pore water chemistry in a disturbed and an undisturbed peat forests in Brunei Darussalam: Nutrient and carbon contents

    NASA Astrophysics Data System (ADS)

    Gandois, L.; Cobb, A.; Abu Salim, K.; Chieng Hei, I.; Lim Biaw Leng, L.; Corlett, R.; Harvey, C.

    2010-12-01

    Tropical peat swamp forests in their natural state are important reservoir of biodiversity, carbon and water. However, they are rapidly vanishing due to agricultural conversion (mainly to oil palms), logging, drainage and fire. Peat swamp forests constitute an important contribution to global and regional biodiversity, providing an habitat to rare and threatened species. They encompass a sequence of forest types from the perimeter to the center of mildely elevated domes, and at our site in Brunei, are host to Shorea Albida trees (Anderson, 1983). They constitute a large terrestrial carbon reservoir (tropical peat soils contain up to 70 Pg C, which accounts for 20% of global peat soil carbon and 2% of the global soil carbon (Hirano et al., 2007)). In tropical peat swamp forests, the most important factors controling organic matter accumulation, as well as the biodiversity and structure of the forest, are hydrology and nutrients availability (Page et al., 1999). Study of pore water in peat swamp forest can provide key information on carbon cycle, including biomass production, organic matter decomposition and leaching of carbon in draining water. However, data on pore water chemistry and nutrient concentrations in pristine tropical peatlands, as well as the effect of forest exploitation are scarce. The study area is located in the Belait district in Brunei Darussalam in Borneo Island. Brunei is perhaps the best of the regional guardians of peat forest systems; potentially irreversible damage to peat forest ecosystems has been widespread elsewhere. Two sites, one pristine dome and a logging concession, are being investigated. In order to assess the chemical status of the peat soil, pore water is sampled at different depth along the dome radius. The chemistry of pore water, including pH, conductivity, dissolved oxygen, concentration of major elements, as well as organic carbon content and properties are analyzed. References: Anderson, 1983. The tropical peat swamp of

  8. Changes in the water quality conditions of Kuwait's marine waters: Long term impacts of nutrient enrichment.

    PubMed

    Devlin, M J; Massoud, M S; Hamid, S A; Al-Zaidan, A; Al-Sarawi, H; Al-Enezi, M; Al-Ghofran, L; Smith, A J; Barry, J; Stentiford, G D; Morris, S; da Silva, E T; Lyons, B P

    2015-11-30

    This work analyses a 30 year water quality data set collated from chemical analyses of Kuwait's marine waters. Spatial patterns across six sites in Kuwait Bay and seven sites located in the Arabian Gulf are explored and discussed in terms of the changing influences associated with point and diffuse sources. Statistical modelling demonstrated significant increases for dissolved nutrients over the time period. Kuwait marine waters have been subject to inputs from urban development, untreated sewage discharges and decreasing river flow from the Shatt al-Arab River. Chlorophyll biomass showed a small but significant reduction; the high sewage content of the coastal waters from sewage discharges likely favouring the presence of smaller phytoplankton taxa. This detailed assessment of temporal data of the impacts of sewage inputs into Kuwait's coastal waters establishes an important baseline permitting future assessments to be made as sewage is upgraded, and the river continues to be extracted upstream.

  9. Changes in the water quality conditions of Kuwait's marine waters: Long term impacts of nutrient enrichment.

    PubMed

    Devlin, M J; Massoud, M S; Hamid, S A; Al-Zaidan, A; Al-Sarawi, H; Al-Enezi, M; Al-Ghofran, L; Smith, A J; Barry, J; Stentiford, G D; Morris, S; da Silva, E T; Lyons, B P

    2015-11-30

    This work analyses a 30 year water quality data set collated from chemical analyses of Kuwait's marine waters. Spatial patterns across six sites in Kuwait Bay and seven sites located in the Arabian Gulf are explored and discussed in terms of the changing influences associated with point and diffuse sources. Statistical modelling demonstrated significant increases for dissolved nutrients over the time period. Kuwait marine waters have been subject to inputs from urban development, untreated sewage discharges and decreasing river flow from the Shatt al-Arab River. Chlorophyll biomass showed a small but significant reduction; the high sewage content of the coastal waters from sewage discharges likely favouring the presence of smaller phytoplankton taxa. This detailed assessment of temporal data of the impacts of sewage inputs into Kuwait's coastal waters establishes an important baseline permitting future assessments to be made as sewage is upgraded, and the river continues to be extracted upstream. PMID:26490407

  10. Limits to the sensitivity of living benthic foraminifera to pore water carbon isotope anomalies in methane vent environments

    NASA Astrophysics Data System (ADS)

    Herguera, J. C.; Paull, C. K.; Perez, E.; Ussler, W.; Peltzer, E.

    2014-03-01

    Episodic 13C depletions in the carbon isotopic composition of benthic foraminiferal tests preserved in the stratigraphic record have been interpreted as an active incorporation of methane-derived carbon. Understanding the extent to which these isotope excursions reflect basin-wide fluxes of methane carbon to bottom waters versus a local supply of methane carbon within the sediments in which benthic foraminifera live, or a postmortem diagenetic imprint is critical to the interpretation of δ13C paleoceanographic proxies. Here we evaluate the impact of chemical gradients measured in pore waters adjacent to active methane vents on carbon assimilation by living benthic foraminifera and show that those living near methane vents do not assimilate the distinctly 13C depleted methane-derived dissolved inorganic carbon into their tests from the pore water in which they were found. Our observations can be explained by the recently articulated physiological limits imposed on deep-sea fauna by low-oxygen and high-pCO2 environments. Understanding the importance of the different processes involved in the observed disequilibrium between the carbon isotopic composition of the benthic forams and the pore waters where they were found has important implications on the reliability of carbon isotopic composition of benthic foraminifera for paleoceanographic reconstructions. In particular, the observation on the inhospitability of these environments for benthic foraminifera at least for reproduction and growth raises the issue on the overprint either in the late adult stages of foraminifera that grew in a different neighboring environment or during early diagenesis in these geochemically active environments.

  11. Acute toxicity of saline produced waters to marine organisms

    SciTech Connect

    Pillard, D.A.; Evans, J.M.; DuFresne, D.L.

    1996-11-01

    Produced waters from oil and gas drilling operations are typically very saline, and may cause acute toxicity to marine organisms due imbalances as well as to an excess or deficiency of to osmotic specific common ions. In order to better understand the relationship between toxicity and ion concentration, laboratory toxicity tests were conducted using mysid shrimp (Mysidopsis bahia), sheepshead minnow, (Cyprinodon variegatus), and inland silvemide (Menidia beryllina). For each species the ionic concentration of standard laboratory water was proportionally increased or decreased to produce test solutions with a range of salinities. Individual ions (sodium, potassium, calcium, magnesium, strontium, chloride, bromide, sulfate, bicarbonate, and borate) were also manipulated to examine individual ion toxicity. Organisms were exposed for 48 hours. The three test species differ in their tolerance of salinity. Mysid shrimp show a marked decrease in survival at salinities less than approximately 5 ppt. Both fish species tolerated low salinity water, however, silversides were less tolerant of saline waters (salinity greater than 40 ppt). There were also significant differences in the responses of the organisms to different ions. The results show that salinity of the test solution may play an important role in the responses of the organisms to produced water effluent. Predictable toxicity/ion relationships developed in this study can be used to estimate whether toxicity in produced water is a result of common ions, salinity, or some other unknown toxicant.

  12. Sulfide variation in the pore and surface waters of artificial salt-marsh ditches and a natural tidal creek

    SciTech Connect

    Rey, J.R.; Shaffer, J.; Kain, T.; Stahl, R.; Crossman, R. )

    1992-09-01

    Pore and surface water sulfide variation near artificial ditches and a natural creek are examined in salt marshes bordering the Indian River Lagoon in east-central Florida. Pore water sulfide concentrations ranged from 0 [mu]g-at l[sup [minus]1] to 1,640 [mu]g-at l[sup [minus]1]. On average, the natural creek had the lowest sulfide concentrations (mean < 1.0 [mu]g-at l[sup [minus]1]) and the perimeter ditch of a managed salt marsh impoundment the highest (436.5 [mu]g-at l[sup [minus]1]). There was a trend of increasing sulfide concentration in the summer, and sharp peaks in late fall-early winter which correspond with peak litter input into the sediments. Significant differences in sulfide concentration between sites are attributed to differences in water flow and in organic matter content. Delaying the seasonal opening of culverts (which connect impounded marshes with the lagoon) until lagoon water levels rise in fall may prevent massive fish kills that have been associated with high sulfide levels in the impoundment perimeter ditches. 35 refs., 7 figs., 5 tabs.

  13. Distribution of arsenic and copper in sediment pore water: an ecological risk assessment case study for offshore drilling waste discharges.

    PubMed

    Sadiq, Rehan; Husain, Tahir; Veitch, Brian; Bose, Neil

    2003-12-01

    Due to the hydrophobic nature of synthetic based fluids (SBFs), drilling cuttings are not very dispersive in the water column and settle down close to the disposal site. Arsenic and copper are two important toxic heavy metals, among others, found in the drilling waste. In this article, the concentrations of heavy metals are determined using a steady state "aquivalence-based" fate model in a probabilistic mode. Monte Carlo simulations are employed to determine pore water concentrations. A hypothetical case study is used to determine the water quality impacts for two discharge options: 4% and 10% attached SBFs, which correspond to the best available technology option and the current discharge practice in the U.S. offshore. The exposure concentration (CE) is a predicted environmental concentration, which is adjusted for exposure probability and bioavailable fraction of heavy metals. The response of the ecosystem (RE) is defined by developing an empirical distribution function of predicted no-effect concentration. The pollutants' pore water concentrations within the radius of 750 m are estimated and cumulative distributions of risk quotient (RQ=CE/RE) are developed to determine the probability of RQ greater than 1.

  14. Distribution of arsenic and copper in sediment pore water: an ecological risk assessment case study for offshore drilling waste discharges.

    PubMed

    Sadiq, Rehan; Husain, Tahir; Veitch, Brian; Bose, Neil

    2003-12-01

    Due to the hydrophobic nature of synthetic based fluids (SBFs), drilling cuttings are not very dispersive in the water column and settle down close to the disposal site. Arsenic and copper are two important toxic heavy metals, among others, found in the drilling waste. In this article, the concentrations of heavy metals are determined using a steady state "aquivalence-based" fate model in a probabilistic mode. Monte Carlo simulations are employed to determine pore water concentrations. A hypothetical case study is used to determine the water quality impacts for two discharge options: 4% and 10% attached SBFs, which correspond to the best available technology option and the current discharge practice in the U.S. offshore. The exposure concentration (CE) is a predicted environmental concentration, which is adjusted for exposure probability and bioavailable fraction of heavy metals. The response of the ecosystem (RE) is defined by developing an empirical distribution function of predicted no-effect concentration. The pollutants' pore water concentrations within the radius of 750 m are estimated and cumulative distributions of risk quotient (RQ=CE/RE) are developed to determine the probability of RQ greater than 1. PMID:14641903

  15. Pushpoint sampling for defining spatial and temporal variations in contaminant concentrations in sediment pore water near the ground-water / surface-water interface

    USGS Publications Warehouse

    Zimmerman, Marc J.; Massey, Andrew J.; Campo, Kimberly W.

    2005-01-01

    During four periods from April 2002 to June 2003, pore-water samples were taken from river sediment within a gaining reach (Mill Pond) of the Sudbury River in Ashland, Massachusetts, with a temporary pushpoint sampler to determine whether this device is an effective tool for measuring small-scale spatial variations in concentrations of volatile organic compounds and selected field parameters (specific conductance and dissolved oxygen concentration). The pore waters sampled were within a subsurface plume of volatile organic compounds extending from the nearby Nyanza Chemical Waste Dump Superfund site to the river. Samples were collected from depths of 10, 30, and 60 centimeters below the sediment surface along two 10-meter-long, parallel transects extending into the river. Twenty-five volatile organic compounds were detected at concentrations ranging from less than 1 microgram per liter to hundreds of micrograms per liter (for example, 1,2-dichlorobenzene, 490 micrograms per liter; cis-1,2-dichloroethene, 290 micrograms per liter). The most frequently detected compounds were either chlorobenzenes or chlorinated ethenes. Many of the compounds were detected only infrequently. Quality-control sampling indicated a low incidence of trace concentrations of contaminants. Additional samples collected with passive-water-diffusion-bag samplers yielded results comparable to those collected with the pushpoint sampler and to samples collected in previous studies at the site. The results demonstrate that the pushpoint sampler can yield distinct samples from sites in close proximity; in this case, sampling sites were 1 meter apart horizontally and 20 or 30 centimeters apart vertically. Moreover, the pushpoint sampler was able to draw pore water when inserted to depths as shallow as 10 centimeters below the sediment surface without entraining surface water. The simplicity of collecting numerous samples in a short time period (routinely, 20 to 30 per day) validates the use of a

  16. Metabolic regulation of amino acid uptake in marine waters

    SciTech Connect

    Kirchman, D.L.; Hodson, R.E.

    1986-03-01

    To determine the relationships among the processes of uptake, intracellular pool formation, and incorporation of amino acids into protein, the authors measured the uptake of dipeptides and free amino acids by bacterial assemblages in estuarine and coastal waters of the southeast US. The dipeptide phenylalanyl-phenylalanine (phe-phe) lowered V/sub max/ of phenylalanine uptake when the turnover rate of phenylalanine was relatively high. When the turnover rate was relatively low, phe-phe either had no effect or increased V/sub max/ of phenylalanine uptake. An analytical model was developed and tested to measure the turnover time of the intracellular pool of phenylalanine. The results suggested that the size of the intracellular pool is regulated, which precludes high assimilation rates of both phenylalanine and phe-phe. In waters with relatively low phenylalanine turnover rates, bacterial assemblages appear to have a greater capacity to assimilate phenylalanine and phe-phe simultaneously. Marine bacterial assemblages do not substantially increase the apparent respiration of amino acids when concentrations increase. The authors conclude that sustained increases in uptake rates and mineralization by marine bacterial assemblages in response to an increase in the concentrations of dissolved organic nitrogen is determined by the rate of protein synthesis.

  17. Pore-water chemistry from the ICDP-USGS core hole in the Chesapeake Bay impact structure-Implications for paleohydrology, microbial habitat, and water resources

    USGS Publications Warehouse

    Sanford, W.E.; Voytek, M.A.; Powars, D.S.; Jones, B.F.; Cozzarelli, I.M.; Cockell, C.S.; Eganhouse, R.P.

    2009-01-01

    We investigated the groundwater system of the Chesapeake Bay impact structure by analyzing the pore-water chemistry in cores taken from a 1766-m-deep drill hole 10 km north of Cape Charles, Virginia. Pore water was extracted using high-speed centrifuges from over 100 cores sampled from a 1300 m section of the drill hole. The pore-water samples were analyzed for major cations and anions, stable isotopes of water and sulfate, dissolved and total carbon, and bioavailable iron. The results reveal a broad transition between freshwater and saline water from 100 to 500 m depth in the postimpact sediment section, and an underlying synimpact section that is almost entirely filled with brine. The presence of brine in the lowermost postimpact section and the trend in dissolved chloride with depth suggest a transport process dominated by molecular diffusion and slow, compaction-driven, upward flow. Major ion results indicate residual effects of diagenesis from heating, and a pre-impact origin for the brine. High levels of dissolved organic carbon (6-95 mg/L) and the distribution of electron acceptors indicate an environment that may be favorable for microbial activity throughout the drilled section. The concentration and extent of the brine is much greater than had previously been observed, suggesting that its occurrence may be common in the inner crater. However, groundwater-flow conditions in the structure may reduce the saltwater-intrusion hazard associated with the brine. ?? 2009 The Geological Society of America.

  18. An electron microscopic study of bacteriophages from marine waters

    NASA Astrophysics Data System (ADS)

    Frank, Hermann; Moebus, Karlheinz

    1987-12-01

    The morphology of 75 bacteriophage strains isolated from water samples collected in the North Sea or in the northern Atlantic was studied by electron microscopy. Only tailed phages were observed (bradley groups A, B, and C). According to structural similarities, the strains are ascribed to 12 groups, 5 of which comprise types of marine phages not reported before. Four of these 5 groups include phage types that have not been detected from any other source. Among the phages isolated from northern Atlantic water a high incidence was observed of strains the particles of which have long appendages. Certain types of the northern Atlantic phages investigated were derived only from samples collected either east or west of the Azores. This finding agrees with former observations pointing to the existence of different populations of closely related bacteria east and west, respectively, of the northern Mid-Atlantic Ridge.

  19. Composition of pore water in lake sediments, research site "B", Osage County, Oklahoma: Implications for lake water quality and benthic organisms

    USGS Publications Warehouse

    Zielinski, R.A.; Herkelrath, W.N.; Otton, J.K.

    2007-01-01

    Shallow ground water at US Geological Survey research site B in northeastern Oklahoma is contaminated with NaCl-rich brine from past and present oil production operations. Contaminated ground water provides a potential source of salts, metals, and hydrocarbons to sediment and water of adjacent Skiatook Lake. A former brine storage pit 10 m in diameter that is now submerged just offshore from site B provides an additional source of contamination. Cores of the upper 16-40 cm of lake sediment were taken at the submerged brine pit, near an offshore saline seep, and at a location containing relatively uncontaminated lake sediment. Pore waters from each 2-cm interval were separated by centrifugation and analyzed for dissolved anions, cations, and trace elements. High concentrations of dissolved Cl- in pore waters (200-5000 mg/L) provide the most direct evidence of contamination, and contrast sharply with an average value of only about 37 mg/L in Skiatook Lake. Chloride/Br- mass ratios of 220-240 in contaminated pore waters are comparable to values in contaminated well waters collected onshore. Dissolved concentrations of Se, Pb, Cu and Ni in Cl--rich pore waters exceed current US Environmental Protection Agency criteria for probable toxicity to aquatic life. At the submerged brine storage pit, the increase of Cl- concentration with depth is consistent with diffusion-dominant transport from deeper contaminated sediments. Near the offshore saline seep, pore water Cl- concentrations are consistently high and vary irregularly with depth, indicating probable Cl- transport by layer-directed advective flow. Estimated annual contributions of Cl- to the lake from the brine storage pit (???20 kg) and the offshore seep (???9 kg) can be applied to any number of similar sources. Generous estimates of the number of such sources at site B indicate minimal impact on water quality in the local inlet of Skiatook Lake. Similar methodologies can be applied at other sites of Na

  20. Gas hydrates (clathrates) causing pore-water freshening and oxygen isotope fractionation in deep-water sedimentary sections of terrigenous continental margins

    USGS Publications Warehouse

    Hesse, R.; Harrison, W.E.

    1981-01-01

    The occurrence of gas hydrates in deep-water sections of the continental margins predicted from anomalous acoustic reflectors on seismic profiles has been confirmed by recent deep-sea drilling results. On the Pacific continental slope off Guatemala gas hydrates were brought up for the first time from two holes (497, 498A) drilled during Leg 67 of the DSDP in water depths of 2360 and 5500 m, respectively. The hydrates occur in organic matter-rich Pleistocene to Miocene terrigenous sediments. In the hydrate-bearing zone a marked decrease in interstitial water chlorinities was observed starting at about 10-20 m subbottom depth. Pore waters at the bottom of the holes (near 400 m subbottom) have as little as half the chlorinity of seawater (i.e. 9???). Similar, but less pronounced, trends were observed during previous legs of the DSDP in other hydrate-prone segments of the continental margins where recharge of fresh water from the continent can be excluded (e.g. Leg 11). The crystallization of hydrates, like ice, excludes salt ions from the crystal structure. During burial the dissolved salts are separated from the solids. Subsidence results in a downward motion of the solids (including hydrates) relative to the pore fluids. Thawing of hydrates during recovery releases fresh water which is remixed with the pore fluid not involved in hydrate formation. The volume of the latter decreases downhole thus causing downward decreasing salinity (chlorinity). Hydrate formation is responsible for oxygen isotope fractionation with 18O-enrichment in the hydrate explaining increasingly more positive ??18O values in the pore fluids recovered (after hydrate dissociation) with depth. ?? 1981.

  1. Polar organic compounds in pore waters of the Chesapeake Bay impact structure, Eyreville core hole: Character of the dissolved organic carbon and comparison with drilling fluids

    USGS Publications Warehouse

    Rostad, C.E.; Sanford, W.E.

    2009-01-01

    Pore waters from the Chesapeake Bay impact structure cores recovered at Eyreville Farm, Northampton County, Virginia, were analyzed to characterize the dissolved organic carbon. After squeezing or centrifuging, a small volume of pore water, 100 ??L, was taken for analysis by electrospray ionization-mass spectrometry. Porewater samples were analyzed directly without filtration or fractionation, in positive and negative mode, for polar organic compounds. Spectra in both modes were dominated by low-molecular-weight ions. Negative mode had clusters of ions differing by -60 daltons, possibly due to increasing concentrations of inorganic salts. The numberaverage molecular weight and weight-average molecular weight values for the pore waters from the Chesapeake Bay impact structure are higher than those reported for other aquatic sources of natural dissolved organic carbon as determined by electrospray ionization-mass spectrometry. In order to address the question of whether drilling mud fluids may have contaminated the pore waters during sample collection, spectra from the pore waters were compared to spectra from drilling mud fluids. Ions indicative of drilling mud fluids were not found in spectra from the pore waters, indicating there was no detectable contamination, and highlighting the usefulness of this analytical technique for detecting potential contamination during sample collection. ?? 2009 The Geological Society of America.

  2. Preliminary risk assessment of the wet landscape option for reclamation of oil sands mine tailings: bioassays with mature fine tailings pore water.

    PubMed

    Madill, R E; Orzechowski, M T; Chen, G; Brownlee, B G; Bunce, N J

    2001-06-01

    Chemical and biological assays have been carried out on the "pore water" that results from the settling of the tailings that accompany bitumen recovery from the Athabasca oil sands. Examination of the nonacidic extracts of pore water by gas chromatography-mass spectroscopy allowed the identification of numerous two- to three-ring polycyclic aromatic compounds (PACs), to a total concentration of 2.6 micrograms/L of pore water. The PACs were biodegraded by microflora naturally present in the pore water. Acute toxicity was associated principally with the acidic fraction (naphthenic acids) of pore water extracts according to the Microtox assay; other work has shown that acute toxicity dissipates fairly rapidly. Both individual PACs and concentrated pore water extracts showed minimal levels of binding to the rat Ah receptor and induced minimal ethoxyresorufin-O-deethylase activity in primary rat hepatocytes, showing an insignificant risk of inducing monooxygenase activity. Taken together with previous work showing negligible mutagenic activity of these extracts, we conclude that it should be possible to develop tailing slurries into biologically productive artificial lakes.

  3. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane

    NASA Astrophysics Data System (ADS)

    Rajapaksha, Suneth P.; Pal, Nibedita; Zheng, Desheng; Lu, H. Peter

    2015-11-01

    We have applied a combined fluorescence microscopy and single-ion-channel electric current recording approach, correlating with molecular dynamics (MD) simulations, to study the mechanism of voltage-sensor domain translocation across a lipid bilayer. We use the colicin Ia ion channel as a model system, and our experimental and simulation results show the following: (1) The open-close activity of an activated colicin Ia is not necessarily sensitive to the amplitude of the applied cross-membrane voltage when the cross-membrane voltage is around the resting potential of excitable membranes; and (2) there is a significant probability that the activation of colicin Ia occurs by forming a transient and fluctuating water pore of ˜15 Å diameter in the lipid bilayer membrane. The location of the water-pore formation is nonrandom and highly specific, right at the insertion site of colicin Ia charged residues in the lipid bilayer membrane, and the formation is intrinsically associated with the polypeptide conformational fluctuations and solvation dynamics. Our results suggest an interesting mechanistic pathway for voltage-sensitive ion channel activation, and specifically for translocation of charged polypeptide chains across the lipid membrane under a transmembrane electric field: the charged polypeptide domain facilitates the formation of hydrophilic water pore in the membrane and diffuses through the hydrophilic pathway across the membrane; i.e., the charged polypeptide chain can cross a lipid membrane without entering into the hydrophobic core of the lipid membrane but entirely through the aqueous and hydrophilic environment to achieve a cross-membrane translocation. This mechanism sheds light on the intensive and fundamental debate on how a hydrophilic and charged peptide domain diffuses across the biologically inaccessible high-energy barrier of the hydrophobic core of a lipid bilayer: The peptide domain does not need to cross the hydrophobic core to move across a

  4. Experimental Study on the pH of Pore water in Compacted Bentonite under Reducing Conditions with Electromigration

    SciTech Connect

    Nessa, S.A.; Idemitsu, K.; Yamazaki, S.; Ikeuchi, H.; Inagaki, Y.; Arima, T.

    2008-07-01

    Compacted bentonite and carbon steel are considered a good buffer and over-pack materials in the repositories of high-level radioactive waste disposal. Sodium bentonite, Kunipia-F contains approximately 95 wt% of montmorillonite. Bentonites prominent properties of high swelling, sealing ability and cation exchange capacity provide retardation against the transport of radionuclides from the waste into the surrounding rocks in the repository and its properties determine the behavior of bentonite. In this regards, the pH of pore water in compacted bentonite is measured with pH test paper wrapped with semi-permeable membrane of collodion sheet under reducing conditions. On 30 days, the pH test paper in the experimental apparatus indicated that the pH of pore water in compacted bentonite is around 8.0 at saturated state. The carbon steel coupon is connected as the working electrode to the potentiostat and is held at a constant supplied potential between +300 and -300 mV vs. Ag/AgCl electrode for up to 7 days. During applying electromigration the pH of pore water in bentonite decreased and it reached 6.0{approx}6.0 on 7 days. The concentration of iron and sodium showed nearly complementary distribution in the bentonite specimen after electromigration. It is expected that iron could migrate as ferrous ion through the interlayer of montmorillonite replacing exchangeable sodium ions in the interlayer. Semi-permeable membrane of collodion sheet does not affect the color change of pH test paper during the experiment. (authors)

  5. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.

    PubMed

    Rajapaksha, Suneth P; Pal, Nibedita; Zheng, Desheng; Lu, H Peter

    2015-01-01

    We have applied a combined fluorescence microscopy and single-ion-channel electric current recording approach, correlating with molecular dynamics (MD) simulations, to study the mechanism of voltage-sensor domain translocation across a lipid bilayer. We use the colicin Ia ion channel as a model system, and our experimental and simulation results show the following: (1) The open-close activity of an activated colicin Ia is not necessarily sensitive to the amplitude of the applied cross-membrane voltage when the cross-membrane voltage is around the resting potential of excitable membranes; and (2) there is a significant probability that the activation of colicin Ia occurs by forming a transient and fluctuating water pore of ∼15 Å diameter in the lipid bilayer membrane. The location of the water-pore formation is nonrandom and highly specific, right at the insertion site of colicin Ia charged residues in the lipid bilayer membrane, and the formation is intrinsically associated with the polypeptide conformational fluctuations and solvation dynamics. Our results suggest an interesting mechanistic pathway for voltage-sensitive ion channel activation, and specifically for translocation of charged polypeptide chains across the lipid membrane under a transmembrane electric field: the charged polypeptide domain facilitates the formation of hydrophilic water pore in the membrane and diffuses through the hydrophilic pathway across the membrane; i.e., the charged polypeptide chain can cross a lipid membrane without entering into the hydrophobic core of the lipid membrane but entirely through the aqueous and hydrophilic environment to achieve a cross-membrane translocation. This mechanism sheds light on the intensive and fundamental debate on how a hydrophilic and charged peptide domain diffuses across the biologically inaccessible high-energy barrier of the hydrophobic core of a lipid bilayer: The peptide domain does not need to cross the hydrophobic core to move across a

  6. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.

    PubMed

    Rajapaksha, Suneth P; Pal, Nibedita; Zheng, Desheng; Lu, H Peter

    2015-01-01

    We have applied a combined fluorescence microscopy and single-ion-channel electric current recording approach, correlating with molecular dynamics (MD) simulations, to study the mechanism of voltage-sensor domain translocation across a lipid bilayer. We use the colicin Ia ion channel as a model system, and our experimental and simulation results show the following: (1) The open-close activity of an activated colicin Ia is not necessarily sensitive to the amplitude of the applied cross-membrane voltage when the cross-membrane voltage is around the resting potential of excitable membranes; and (2) there is a significant probability that the activation of colicin Ia occurs by forming a transient and fluctuating water pore of ∼15 Å diameter in the lipid bilayer membrane. The location of the water-pore formation is nonrandom and highly specific, right at the insertion site of colicin Ia charged residues in the lipid bilayer membrane, and the formation is intrinsically associated with the polypeptide conformational fluctuations and solvation dynamics. Our results suggest an interesting mechanistic pathway for voltage-sensitive ion channel activation, and specifically for translocation of charged polypeptide chains across the lipid membrane under a transmembrane electric field: the charged polypeptide domain facilitates the formation of hydrophilic water pore in the membrane and diffuses through the hydrophilic pathway across the membrane; i.e., the charged polypeptide chain can cross a lipid membrane without entering into the hydrophobic core of the lipid membrane but entirely through the aqueous and hydrophilic environment to achieve a cross-membrane translocation. This mechanism sheds light on the intensive and fundamental debate on how a hydrophilic and charged peptide domain diffuses across the biologically inaccessible high-energy barrier of the hydrophobic core of a lipid bilayer: The peptide domain does not need to cross the hydrophobic core to move across a

  7. Wet Worlds: Explore the World of Water. Marine and Fresh Water Activities for the Elementary Classroom.

    ERIC Educational Resources Information Center

    Solomon, Gerard; And Others

    Complete with student worksheets, field trip ideas, illustrations, vocabulary lists, suggested materials, and step-by-step procedures, the document presents a compilation of ideas for teaching elementary school (K-6) students about marine and fresh water. In the first unit students build miniature monuments and observe the deterioration of…

  8. Composition of pore and spring waters from Baby Bare: global implications of geochemical fluxes from a ridge flank hydrothermal system

    NASA Astrophysics Data System (ADS)

    Wheat, C. Geoffrey; Mottl, Michael J.

    2000-02-01

    Warm hydrothermal springs were discovered on Baby Bare, which is an isolated basement outcrop on 3.5 Ma-old crust on the eastern flank of the Juan de Fuca Ridge. We have sampled these spring waters from a manned submersible, along with associated sediment pore waters from 48 gravity and piston cores. Systematic variations in the chemical composition of these waters indicate that hydrothermal reactions in basement at moderate temperatures (63°C in uppermost basement at this site) remove Na, K, Li, Rb, Mg, TCO 2, alkalinity, and phosphate from the circulating seawater and leach Ca, Sr, Si, B, and Mn from the oceanic crust; and that reactions with the turbidite sediment surrounding Baby Bare remove Na, Li, Mg, Ca, Sr, and sulfate from the pore water while producing ammonium and Si and both producing and consuming phosphate, nitrate, alkalinity, Mn, and Fe. K, Rb, and B are relatively unreactive in the sediment column. These data confirm the earlier inference that sediment pore waters from areas of upwelling can be used to estimate the composition of altered seawater in the underlying basement, even for those elements that are reactive in the sediment column or are affected by sampling artifacts. The composition of altered seawater in basement at Baby Bare is similar to the inferred composition of 58°C formation water from crust nearly twice as old (5.9 Ma) on the southern flank of the Costa Rica Rift. The Baby Bare fluids also exhibit the same directions of net elemental transfer between basalt and seawater as solutions produced in laboratory experiments at a similar temperature, and complement compositional changes from seawater observed in seafloor basalts altered at cool to moderate temperatures. The common parameter among the two ridge flanks and experiments is temperature, suggesting that the residence time of seawater in basement at the two ridge-flank sites is sufficiently long for the solutions to equilibrate with altered basalt. This conclusion is supported

  9. Radiocarbon Evidence for Active Turnover of Pore-Water Dissolved Organic Carbon in the Methanogenic and Sulfate-Methane-Transition Zones of Santa Barbara Basin Sediments

    NASA Astrophysics Data System (ADS)

    Komada, T.; Li, H. L.; Cada, A. K.; Burdige, D.; Magen, C.; Chanton, J.; Grose, A. M.

    2014-12-01

    Diverse metabolic activities have been documented in the deep biosphere. However, how these activities affect carbon cycling in the subsurface, and how they in turn affect the marine and global cycles of carbon are still unclear. Here we present natural-abundance 14C and 13C data from the uppermost 4.5 m of the sediments of the Santa Barbara Basin, California Borderland, showing active turnover of dissolved organic carbon (DOC) within, and immediately below, the sulfate-methane transition zone (SMTZ; ~1.25 m). DOC concentrations increased with depth throughout the core, indicating net production within the sediment column. Enhanced DOC production was observed near the sediment-water interface, and also at ~30 cm below the SMTZ (~1.55 m). ∆14C values of DOC increased across the sediment-water interface, then decreased with depth, consistent with net production of modern DOC near the sediment-water interface, and input of 14C-depleted DOC from deeper horizons. An isotope mixing plot constructed with these data shows that the DOC diffusing upward at the base of the core is devoid of 14C, yet the DOC diffusing into and out of the SMTZ is relatively enriched (-460‰ and -300‰, respectively). This difference in 14C content of the DOC flux can only be reconciled if the following two are occurring within, and immediately below, the SMTZ: (1) >90% of the 14C-dead basal DOC flux is removed from the pore water (by, e.g., oxidation, fermentation, methanogenesis, precipitation), and (2) this DOC is replaced by material produced in this region at a rate that exceeds the upward basal flux. The 14C and 13C signatures suggest sedimentary organic matter to be the dominant source of DOC in process (2). Our data provide a unique insight into the active transformation of DOC and sedimentary organic matter in the subsurface.

  10. Bi-Component T2* Analysis of Bound and Pore Bone Water Fractions Fails at High Field Strengths

    PubMed Central

    Seifert, Alan C.; Wehrli, Suzanne L.; Wehrli, Felix W.

    2015-01-01

    Osteoporosis involves degradation of bone’s trabecular architecture, cortical thinning, and enlargement of cortical pores. Increased cortical porosity is a major cause of the decreased strength of osteoporotic bone. The majority of cortical pores, however, are below the resolution limit of MRI. Recent work has shown that porosity can be evaluated by MRI-based quantification of bone water. Bi-exponential T2* fitting and adiabatic inversion preparation are the two most common methods purported to distinguish bound and pore water in order to quantify matrix density and porosity. To assess the viability of T2* bi-component analysis as a method for quantifying bound and pore water fractions, we have applied this method to human cortical bone at 1.5T, 3T, 7T, and 9.4T, and validated the resulting pool fractions against μCT-derived porosity and gravimetrically-determined bone densities. We also investigated alternative methods: 2D T1–T2* bi-component fitting by incorporating saturation-recovery, 1D and 2D fitting of CPMG echo amplitudes, and deuterium inversion recovery. Short-T2* pool fraction was moderately correlated with porosity (R2 = 0.70) and matrix density (R2 = 0.63) at 1.5T, but the strengths of these associations were found to diminish rapidly as field strength increases, falling below R2 = 0.5 at 3T. Addition of the T1 dimension to bi-component analysis only slightly improved the strengths of these correlations. T2*-based bi-component analysis should therefore be used with caution. Performance of deuterium inversion-recovery at 9.4T was also poor (R2 = 0.50 versus porosity and R2 = 0.46 versus matrix density). CPMG-derived short-T2 fraction at 9.4T, however, is highly correlated with porosity (R2 = 0.87) and matrix density (R2 = 0.88), confirming the utility of this method for independent validation of bone water pools. PMID:25981785

  11. Temporal and vertical distribution of total ammonia nitrogen and un-ionized ammonia nitrogen in sediment pore water from the upper Mississippi River

    USGS Publications Warehouse

    Frazier, Bradley E.; Naimo, Teresa J.; Sandheinrich, Mark B.

    1996-01-01

    We examined the temporal and vertical distribution of total ammonia nitrogen (TAN) and un-ionized ammonia nitrogen (NH3-N) in sediment pore water and compared the temporal patterns of TAN and NH3-N concentrations in overlying surface water with those in pore water. Pore water was obtained by core extraction and subsequent centrifugation. We measured TAN concentrations and calculated NH3-N concentrations from February through October 1993 at four sites in Pool 8, upper Mississippi River, at depths of 0 to 4, 4 to 8, and 8 to 12 cm below the sediment-water interface. Total ammonia nitrogen and NH3-N concentrations were significantly different among sampling dates (p = 0.0001) and sediment depths (p = 0.0001). Concentrations of TAN and NH3-N in surface water were significantly less than those in pore water from all sediment depths (p < 0.05). Concentrations in pore water ranged from 0.07 to 4.0 mg TAN/L and less than 1 to 20 I?g NH3-N/L in winter, and from 0.07 to 10.0 mg TAN/L and 1 to 175 I?g NH3-N/L in summer; greatest concentrations were usually found in sediments 8 to 12 cm deep. Annual mean TAN concentrations were positively correlated with silt and volatile solids content and were negatively correlated with sand content. Because of the high variability of TAN and NH3-N concentrations in pore water, sediment toxicity studies should take into account the season and the depth at which sediments are obtained. The annual mean NH3-N concentration in pore water at one site (55 I?g/L) exceeded the concentration (30 I?g/L) demonstrated to inhibit growth of fingernail clams in laboratory studies. However, these concentrations apparently were not lethal, as evidenced by the presence of fingernail clams at this site.

  12. Pore water chemistry of the Mounds Hydrothermal Field, Galapagos Spreading Center: Results from Glomar Challenger Piston Coring

    NASA Astrophysics Data System (ADS)

    Bender, Michael L.

    1983-01-01

    On DSDP Leg 70, Glomar Challenger piston cored hydrothermal MnO2-encrusted nontronite mounds and adjacent pelagic sediments through to basement. Pore waters were collected by centrifuging, squeezing, and in situ sampling; analyses are presented here for Ca, Mg, Si, NH3, Mn, and Fe. Our results confirm Maris and Bender's (1982) conclusions that hydrothermal solutions enriched in Ca by 1-2 mM and depleted in Mg by ˜2 mM are upwelling through the mounds and the surrounding pelagic sediments. Si, NH3, and Mn2+ concentrations generally increase upcore, reflecting addition of products of metabolic reactions to upwelling hydrothermal solutions. Pore water iron concentrations decrease upcore, probably as a result of oxidation and precipitation of upwelling hydrothermal iron. The formation of nontronite (Fe(III)4Si8O20(OH)4) involves oxidation of dissolved Fe2+. Several models, constrained by the electron balance, are proposed to explain the process of nontronite formation. The stratigraphy of the mounds (thick nontronite covered by a thin MnO2 crust) may be explained by postulating Fe2+ oxidation by MnO2 and replacement of MnO2 by nontronite at the base of the MnO2 crust, followed by upward migration of Mn2+ and precipitation of MnO2 at the sediment water interface.

  13. Validation of pore network simulations of ex-situ water distributions in a gas diffusion layer of proton exchange membrane fuel cells with X-ray tomographic images

    NASA Astrophysics Data System (ADS)

    Agaesse, Tristan; Lamibrac, Adrien; Büchi, Felix N.; Pauchet, Joel; Prat, Marc

    2016-11-01

    Understanding and modeling two-phase flows in the gas diffusion layer (GDL) of proton exchange membrane fuel cells are important in order to improve fuel cells performance. They are scientifically challenging because of the peculiarities of GDLs microstructures. In the present work, simulations on a pore network model are compared to X-ray tomographic images of water distributions during an ex-situ water invasion experiment. A method based on watershed segmentation was developed to extract a pore network from the 3D segmented image of the dry GDL. Pore network modeling and a full morphology model were then used to perform two-phase simulations and compared to the experimental data. The results show good agreement between experimental and simulated microscopic water distributions. Pore network extraction parameters were also benchmarked using the experimental data and results from full morphology simulations.

  14. Chemical data for bottom sediment, lake water, bottom-sediment pore water, and fish in Mountain Creek Lake, Dallas, Texas, 1994-96

    USGS Publications Warehouse

    Jones, S.A.; Van Metre, P.C.; Moring, J.B.; Braun, C.L.; Wilson, J.T.; Mahler, B.J.

    1997-01-01

    Mountain Creek Lake is a reservoir adjacent to two U.S. Department of the Navy facilities, the Naval Weapons Industrial Reserve Plant and the Naval Air Station in Dallas, Texas. A Resource Conservation and Recovery Act Facility Investigation found ground-water plumes containing chlorinated solvents on both facilities. These findings led to a U.S. Geological Survey study of Mountain Creek Lake adjacent to both facilities between June 1994 and August 1996. Bottom sediments, lake water, bottom-sediment pore water, and fish were collected for chemical analysis.

  15. Colloid Mobilization in a Fractured Soil: Effect of Pore-Water Exchange between Preferential Flow Paths and Soil Matrix.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2016-03-01

    Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils. PMID:26829659

  16. In situ Determination of Pore-water pH in Reducing Sediments near Methane Seeps and Vents by Laser Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Walz, P. M.; Luna, M.; Zhang, X.; Brewer, P. G.

    2015-12-01

    Sediments near methane vents and seeps are often anoxic in nature due to the microbial oxidation of organic matter. When the pore-water oxygen is consumed, the microbial population resorts to using sulfate as the terminal electron receptor. For the anaerobic oxidation of methane, the net reaction is: CH4 + SO42- = HCO3- + HS- + H2O. Hydrogen sulfide produced by this reaction dissociates into bisulfide in proportion to the pore-water pH. Since the first pK of H2S is about 7 and close to the in situ pore-water pH, it satisfies the criteria for a useful pH indicating dye. Although the two forms of hydrogen sulfide are not visually discernable by the human eye, these two forms have distinct Raman spectra and thus can be easily quantified using an in situ spectrometer. The relative Raman cross-sections of the hydrogen sulfide species were determined in the laboratory across a range of relevant pH values and at the approximate salinity (ionic strength) and temperature of deep-sea pore waters. With this calibration, it is simple to compute the pore-water pH from the relative abundance of the two sulfide species: pH = pK1 + log10([HS-]/[H2S]). Pore-water profiles were investigated at several sites in the Santa Monica basin around methane mounds, gas vents and cold seeps. A titanium pore-water probe with a stainless steel frit was used to filter and collect pore-water samples at 5-10 cm intervals in the top 50-60 cm of sediment. Filtration and collection of the pore-water samples was usually accomplished in 5-10 minutes, with acquisition of the laser Raman spectra requiring only 2-4 minutes additional time. Vertical profiles of sulfate, total sulfide (H2S + HS-), methane and pH were collected simultaneously using the laser Raman spectrometer and pore-water profile sampler. Sulfate was observed to decrease from seawater concentrations to below detection limits while both methane and total sulfide increased proportionally to the sulfate loss. Once total sulfide concentrations

  17. Trace Metal Distribution and Speciation in Pore Water of Hydrothermal Sediments From the Guaymas Basin, Gulf of California

    NASA Astrophysics Data System (ADS)

    Morales-Villafuerte, M.; Ortega-Osorio, A.; Wheat, G.; Seewald, J.

    2004-12-01

    Thirteen sediment cores were collected through out direct sampling with the MBARI/ ROV "Tiburon" in the southern trough of the Guaymas Basin in March 2003. Pore water samples from regular 2.5 cm intervals of sediment cores were extracted onboard by centrifugation. The supernatants were collected in clean polystyrene vials and stored at 4° C until analytical work on shore. Dissolved Fe, Mn, Cu, Pb, Zn and Ni concentrations in extracted fluid samples were analyzed by direct injection of atomic absorption spectrometry. Four zones in the hydrothermal field were classified according to their physical characteristics. A core located away from the influence of active vents was recovered as a background site. The second zone is characterized by low temperatures (4.2-80° C) and sediments saturated in hydrocarbons. Sulfides formation and higher temperatures (4-166° C) were observed in the third zone. Precipitation of carbonates on top of the sediment characterizes the fourth zone. Concentration of trace metals at the water-sediment interface appears to be the highest, probably due to metal precipitation from the hydrothermal plume, followed by diffusion into the pore water. A decrease in concentration is observed between 5-12 cm depth, suggesting that biological activity is consuming essential metals (zone of bioturbation). Metal concentrations in zones where sulfide phases are rich, exhibit smaller values in pore water (Fe=2.4-3.8 μ mol/kg, Cu=0.6-0.8 μ mol/kg, Pb=1.2-1.5 μ mol/kg, Zn=0.4-0.5 μ mol/kg and Ni= 3.4-4.4 μ mol/kg) relative to samples located at hydrocarbon sites (Fe= 2.7-11.4, Cu= 0.7-1.0 μ mol/kg, Pb= 1.2-2.2 μ mol/kg, Zn= 0.4-0.7 μ mol/kg and Ni= 3.4-5.2 μ mol/kg). At sulfide zones, pH and Eh conditions help to precipitate their stable sulfides as opposed to the hydrocarbon areas, where conditions are not favorable for sulfide formation due to the absence of H2S. In general, Fe concentrations in pore water are lower than that of Mn, very likely

  18. Importance of Boreal Rivers in Providing Iron to Marine Waters

    PubMed Central

    Kritzberg, Emma S.; Bedmar Villanueva, Ana; Jung, Marco; Reader, Heather E.

    2014-01-01

    This study reports increasing iron concentrations in rivers draining into the Baltic Sea. Given the decisive role of iron to the structure and biogeochemical function of aquatic ecosystems, this trend is likely one with far reaching consequences to the receiving system. What those consequences may be depends on the fate of the iron in estuarine mixing. We here assess the stability of riverine iron by mixing water from seven boreal rivers with artificial sea salts. The results show a gradual loss of iron from suspension with increasing salinity. However, the capacity of the different river waters to maintain iron in suspension varied greatly, i.e. between 1 and 54% of iron was in suspension at a salinity of 30. The variability was best explained by iron:organic carbon ratios in the riverine waters – the lower the ratio the more iron remained in suspension. Water with an initially low iron:organic carbon ratio could keep even higher than ambient concentrations of Fe in suspension across the salinity gradient, as shown in experiments with iron amendments. Moreover, there was a positive relationship between the molecular size of the riverine organic matter and the amount of iron in suspension. In all, the results point towards a remarkably high transport capacity of iron from boreal rivers, suggesting that increasing concentrations of iron in river mouths may result in higher concentrations of potentially bioavailable iron in the marine system. PMID:25233197

  19. Survival of Candida albicans in tropical marine and fresh waters.

    PubMed Central

    Valdes-Collazo, L; Schultz, A J; Hazen, T C

    1987-01-01

    A survey of Candida albicans indicated that the organism was present at all sites sampled in a rain forest stream and in near-shore coastal waters of Puerto Rico. In the rain forest watershed no relationship existed between densities of fecal coliforms and densities of C. albicans. At two pristine sites in the rain forest watershed both C. albicans and Escherichia coli survived in diffusion chambers for extended periods of time. In near-shore coastal waters C. albicans and E. coli survival times in diffusion chambers were enhanced by effluent from a rum distillery. The rum distillery effluent had a greater effect on E. coli than on C. albicans survival in the diffusion chambers. These studies show that neither E. coli nor C. albicans organisms are good indicators of recent fecal contamination in tropical waters. It further demonstrates that pristine freshwater environments and marine waters receiving organic loading in the tropics can support densities of C. albicans which may be a health hazard. Images PMID:3310885

  20. Importance of small pores in microcrystalline cellulose for controlling water distribution during extrusion-spheronization.

    PubMed

    Soh, Josephine L P; Yang, Lei; Liew, Celine V; Cui, Fu D; Heng, Paul W S

    2008-01-01

    The purpose of this research was to investigate the effects of particle size on the wet massing behavior of microcrystalline cellulose (MCC). In this study, a series of six fractionated MCC grades were customized and specially classified to yield different particle size varieties of the standard grade, Comprecel M101. All seven MCC grades were extensively characterized for the physical properties and wet massing behavior using mixer torque rheometry. Effects of MCC physical properties on the maximum torque (Torque(max)) were determined using partial least squares (PLS) analysis. Most physical properties varied systematically with particle size and morphological changes. Marked differences were observed in the small pore volumes (V (highP)) and BET surface areas of the MCC grades. Variables that exerted dominant influences on Torque(max) were identified. In particular, the significance of V (highP) in governing wet mass consistency was established. The role of V (highP) has not been reported in any study because this small but significant variation is likely to be obliterated or compensated by variation in other physical properties from MCC grades from different suppliers. The findings demonstrated the role of small pores in governing the wet mass consistency of MCC and provide a better understanding of MCC's superior performance as a spheronization aid by the ability to fulfill the function as a molecular sponge to facilitate pellet formation during wet granulation processes. PMID:18720015

  1. In situ measurement of soil moisture and pore-water pressures in an 'incipient' landslide: Lake Tutira, New Zealand.

    PubMed

    Hawke, Richard; McConchie, Jack

    2011-02-01

    The immediate cost of shallow regolith landslides in New Zealand has been estimated to exceed US$33M annually. Since the majority of these landslides occur during prolonged wet conditions, or intense rainstorms, moisture conditions are a critical control. The nature, dynamics, and character of soil moisture conditions, and the piezometric response to rainfall, have been recorded within an 'incipient' landslide for more than 5 years. The study site, on pastoral hill country within the Lake Tutira catchment in northern Hawkes Bay, is typical of large areas of New Zealand episodically affected by extensive landsliding. Detailed continuous measurements show that both the soil moisture and piezometric response within the regolith are highly storm- and site-specific. The development of positive pore pressures is infrequent; they form only during intense rainstorms, and persist for a short time. The hydraulic response of the soil is primarily a function of storm characteristics, but this response can be modified by antecedent moisture conditions, topographic position, and heterogeneity of soil properties. Stability analysis shows that most slopes in the study area are significantly steeper than can be explained by the frictional strength of the regolith. Measured hydraulic conditions also show that positive pore-water pressures alone do not trigger slope instability. A recent slope failure followed a period of extremely high antecedent moisture conditions, and occurred when maximum soil moisture conditions, though not pore-water pressures, were recorded. Increased moisture content of the regolith reduces matric tension, and therefore effective cohesion of the soil. This cohesion is critical to maintaining stability of the regolith on these slopes.

  2. Comparison between monitored and modeled pore water pressure and safety factor in a slope susceptible to shallow landslides

    NASA Astrophysics Data System (ADS)

    Bordoni, Massimiliano; Meisina, Claudia; Zizioli, Davide; Valentino, Roberto; Bittelli, Marco; Chersich, Silvia

    2014-05-01

    Shallow landslides can be defined as slope movements affecting superficial deposits of small thicknesses which are usually triggered due to extreme rainfall events, also very concentrated in time. Shallow landslides are hazardous phenomena: in particular, if they happen close to urbanized areas they could cause significant damages to cultivations, structures, infrastructures and, sometimes, human losses. The triggering mechanism of rainfall-induced shallow landslides is strictly linked with the hydrological and mechanical responses of usually unsaturated soils to rainfall events. For this reason, it is fundamental knowing the intrinsic hydro-mechanical properties of the soils in order to assess both susceptibility and hazard of shallow landslide and to develop early-warning systems at large scale. The hydrological data collected by a 20 months monitoring on a slope susceptible to shallow landslides in an area of the North -Eastern Oltrepo Pavese (Northern Apennines, Italy) were used to identify the hydrological behaviors of the investigated soils towards rainfall events. Field conditions under different rainfall trends have also been modeled by using both hydrological and physically-based stability models for the evaluation of the slope safety factor . The main objectives of this research are: (a) to compare the field measured pore water pressures at different depths with results of hydrological models, in order to evaluate the efficiency of the tested models and to determine how precipitations affect pore pressure development; (b) to compare the time trends of the safety factor that have been obtained by applying different stability models; (c) to evaluate, through a sensitivity analysis, the effects of soil hydrological properties on modeling pore water pressure and safety factor. The test site slope where field measurements were acquired is representative of other sites in Northern Apennines affected by shallow landslides and is characterized by medium

  3. Zinc isotope investigation of surface and pore waters in a mountain watershed impacted by acid rock drainage.

    PubMed

    Aranda, Suzan; Borrok, David M; Wanty, Richard B; Balistrieri, Laurie S

    2012-03-15

    The pollution of natural waters with metals derived from the oxidation of sulfide minerals like pyrite is a global environmental problem. However, the metal loading pathways and transport mechanisms associated with acid rock drainage reactions are often difficult to characterize using bulk chemical data alone. In this study, we evaluated the use of zinc (Zn) isotopes to complement traditional geochemical tools in the investigation of contaminated waters at the former Waldorf mining site in the Rocky Mountains, Colorado, U.S.A. Geochemical signatures and statistical analysis helped in identifying two primary metal loading pathways at the Waldorf site. The first was characterized by a circumneutral pH, high alkalinity, and high Zn/Cd ratios. The second was characterized by acidic pHs and low Zn/Cd ratios. Zinc isotope signatures in surface water samples collected across the site were remarkably similar (the δ(66)Zn, relative to JMC 3-0749-L, for most samples ranged from 0.20 to 0.30‰±0.09‰ 2σ). This probably suggests that the ultimate source of Zn is consistent across the Waldorf site, regardless of the metal loading pathway. The δ(66)Zn of pore water samples collected within a nearby metal-impacted wetland area, however, were more variable, ranging from 0.20 to 0.80‰±0.09‰ 2σ. Here the Zn isotopes seemed to reflect differences in groundwater flow pathways. However, a host of secondary processes might also have impacted Zn isotopes, including adsorption of Zn onto soil components, complexation of Zn with dissolved organic matter, uptake of Zn into plants, and the precipitation of Zn during the formation of reduced sulfur species. Zinc isotope analysis proved useful in this study; however, the utility of this isotopic tool would improve considerably with the addition of a comprehensive experimental foundation for interpreting the complex isotopic relationships found in soil pore waters. PMID:22326318

  4. Zinc isotope investigation of surface and pore waters in a mountain watershed impacted by acid rock drainage.

    PubMed

    Aranda, Suzan; Borrok, David M; Wanty, Richard B; Balistrieri, Laurie S

    2012-03-15

    The pollution of natural waters with metals derived from the oxidation of sulfide minerals like pyrite is a global environmental problem. However, the metal loading pathways and transport mechanisms associated with acid rock drainage reactions are often difficult to characterize using bulk chemical data alone. In this study, we evaluated the use of zinc (Zn) isotopes to complement traditional geochemical tools in the investigation of contaminated waters at the former Waldorf mining site in the Rocky Mountains, Colorado, U.S.A. Geochemical signatures and statistical analysis helped in identifying two primary metal loading pathways at the Waldorf site. The first was characterized by a circumneutral pH, high alkalinity, and high Zn/Cd ratios. The second was characterized by acidic pHs and low Zn/Cd ratios. Zinc isotope signatures in surface water samples collected across the site were remarkably similar (the δ(66)Zn, relative to JMC 3-0749-L, for most samples ranged from 0.20 to 0.30‰±0.09‰ 2σ). This probably suggests that the ultimate source of Zn is consistent across the Waldorf site, regardless of the metal loading pathway. The δ(66)Zn of pore water samples collected within a nearby metal-impacted wetland area, however, were more variable, ranging from 0.20 to 0.80‰±0.09‰ 2σ. Here the Zn isotopes seemed to reflect differences in groundwater flow pathways. However, a host of secondary processes might also have impacted Zn isotopes, including adsorption of Zn onto soil components, complexation of Zn with dissolved organic matter, uptake of Zn into plants, and the precipitation of Zn during the formation of reduced sulfur species. Zinc isotope analysis proved useful in this study; however, the utility of this isotopic tool would improve considerably with the addition of a comprehensive experimental foundation for interpreting the complex isotopic relationships found in soil pore waters.

  5. Structural characterization of water and ice in mesoporous SBA-15 silicas IV: partially filled cases for 86 Å pore diameter

    NASA Astrophysics Data System (ADS)

    Seyed-Yazdi, J.; Dore, John C.; Webber, J. Beau W.; Farman, H.

    2013-11-01

    Previous papers in this series have involved the study of water/ice in a sample of a mesoporous SBA-15 silica with a pore size of 86 Å, filling-factors f of 1.15 and 0.95. The present paper extends the study to partially filled samples with f = 0.6 and 0.4. It is found that the ice formed in the pores has characteristics that differ markedly from those seen in the previous measurements. For f = 0.6, there is a significant amount of hexagonal ice, as seen by the presence of the normal ice triplet. For f = 0.4, the triplet peaks are not seen, indicating the predominant formation of cubic ice superimposed on a broad diffuse scattering peak that is attributed to a defective form of low-density amorphous ice. A parameter-fitting routine has been used (as previously) to extract the variation of the peak intensities and shapes with temperature. A separate component analysis procedure confirms these conclusions and emphasizes the role of plastic ice in the phase conversion process for the 260-200 K temperature region. A comparison of the liquid phase data for filling-factors of 0.4 and 0.95 indicates that the structural characteristics of the water vary according to the thickness of the layer, as suggested by computer predictions.

  6. Using in situ pore water concentrations to estimate the phytotoxicity of nicosulfuron in soils to corn (Zea mays L.).

    PubMed

    Liu, Kailin; Cao, Zhengya; Pan, Xiong; Yu, Yunlong

    2012-08-01

    The phytotoxicity of an herbicide in soil is typically dependent on the soil characteristics. To obtain a comparable value of the concentration that inhibits growth by 50% (IC50), 0.01 M CaCl(2) , excess pore water (EPW) and in situ pore water (IPW) were used to extract the bioavailable fraction of nicosulfuron from five different soils to estimate the nicosulfuron phytotoxicity to corn (Zea mays L.). The results indicated that the phytotoxicity of nicosulfuron in soils to corn depended on the soil type, and the IC50 values calculated based on the amended concentration of nicosulfuron ranged from 0.77 to 9.77 mg/kg among the five tested soils. The range of variation in IC50 values for nicosulfuron was smaller when the concentrations of nicosulfuron extracted with 0.01 M CaCl(2) and EPW were used instead of the amended concentration. No significant difference was observed among the IC50 values calculated from the IPW concentrations of nicosulfuron in the five tested soils, suggesting that the concentration of nicosulfuron in IPW could be used to estimate the phytotoxicity of residual nicosulfuron in soils.

  7. Assessment of sediment quality and pore water ecotoxicity in Kebir Rhumel basin (NE-Algeria): a combined approach.

    PubMed

    Sahli, Leila; Afri-Mehennaoui, Fatima-Zohra; El Hadef El Okki, Mohamed; Férard, Jean François; Mehennaoui, Smail

    2012-01-01

    The objectives of this study are to use different approaches to assess the current pollution status in the wadis of the Kebir Rhumel basin. First, sediment trace metal contents were measured by flame atomic absorption spectroscopy. Then, sediment quality was assessed on the basis of contamination assessment indexes such as: Geoaccumulation Index (Igeo), Contamination factor (C(f)), Contamination degree (C(d)), Sediment Pollution Index (SPI) and SEQ guidelines (Consensus Sediment Quality Guidelines). In addition, several toxicity tests (Daphnia magna mobility inhibition acute test-48 h, Aliivibrio fischeri luminescence inhibition acute test - 15/30 mn and Pseudokirchneriella subcapitata growth inhibition chronic test - 72 h) were conducted to assess sediment pore water ecotoxicity. Trace metal concentrations followed the order: Mn > Zn > Pb > Cr > Cu > Ni > Co > Cd. Indexes used indicate varying degrees of sediment quality. Igeo, C(f), C(d) and SPI reveal a polymetallic contamination dominated by two or more elements in which Cd, Cu and Pb are of greatest concern. SEQ guidelines showed that biological effects on fauna would likely be observed occasionally and/or frequently for Cd, Cr, Cu, Pb and Zn contents. Test organisms exposed to sediment pore water showed that the algal P. subcapitata test was more sensitive than the D. magna and A. fischeri tests. Hence, algal growth inhibition proved to be the most sensitive response to contaminants present in sediment extracts but a significant relationship with trace metal contents was not demonstrated. PMID:22233919

  8. Partitioning behavior of per- and polyfluoroalkyl compounds between pore water and sediment in two sediment cores from Tokyo Bay, Japan.

    PubMed

    Ahrens, Lutz; Yamashita, Nobuyoshi; Yeung, Leo W Y; Taniyasu, Sachi; Horii, Yuichi; Lam, Paul K S; Ebinghaus, Ralf

    2009-09-15

    The partitioning behavior of per- and polyfluoroalkyl compounds (PFCs) between pore water and sediment in two sediment cores collected from Tokyo Bay, Japan, was investigated. In addition, the fluxes and temporal trends in one dated sediment core were studied. Short-chain perfluoroalkyl carboxylic acids (PFCAs) (C < or = 7) were found exclusively in pore water, while long-chain PFCAs (C > or = 11) were found only in sediment The perfluoroalkyl sulfonates (PFSAs), n-ethylperfluoro-1-octanesulfonamidoacetic acid (N-EtFOSAA), and perfluorooctane sulfonamide (PFOSA) seemed to bind more strongly to sediment than PFCAs. The enrichment of PFCs on sediment increased with increasing organic matter and decreasing pH. The perfluorocarbon chain length and functional group were identified as the dominating parameters that had an influence on the partitioning behavior of the PFCs in sediment The maximum SigmaPFC contamination in sediment was observed in 2001-2002 to be a flux of 197 pg cm(-2) yr(-1). Statistically significant increased concentrations in Tokyo Bay were found for perfluorooctanesulfonate (PFOS) (1956-2008), perfluorononanoic acid (PFNA) (1990-2008), and perfluoroundecanoic acid (PFUnDA) (1990-2008). Concentrations of PFOSA and N-EtFOSAA increased between 1985 and 2001, but after 2001, the concentration decreased significantly, which corresponded with the phase out of perfluorooctyl sulfonyl fluoride-based compounds by the 3M Company in 2000.

  9. An evaluation of materials and methods for vapour measurement of the isotopic composition of pore water in deep, unsaturated zones.

    PubMed

    Pratt, Dyan L; Lu, Mengna; Lee Barbour, S; Jim Hendry, M

    2016-01-01

    The development of in situ vapour sampling methods to measure δ(2)H and δ(18)O in pore water of deep, unsaturated soil profiles, including mine tailings and waste rock, is required to improve our ability to track water migration through these deposits. To develop appropriate field sampling methods, a laboratory study was first undertaken to evaluate potential materials and sampling methods to collect and analyse vapour samples from unsaturated mine waste. Field methods were developed based on these findings and tested at two mine sites using either on-site analyses with a portable isotope laser spectrometer or sample collection and storage prior to laboratory analyses. The field sites included a series of deep (>50 m) multiport profiles within a coal waste rock dump and open wells installed in a sand tailings dyke at an oil sands mine. Laboratory results show that memory effects in sample bags and tubing require 3-5 pore volumes of vapour flushing prior to sample collection and sample storage times are limited to 24 h. Field sampling highlighted a number of challenges including the need to correct for sample humidity and in situ temperature. Best results were obtained when a portable laser spectrometer was used to measure vapour samples in situ. PMID:27002493

  10. Non-equilibrium passive sampling of hydrophobic organic contaminants in sediment pore-water: PCB exchange kinetics.

    PubMed

    Choi, Yongju; Wu, Yanwen; Luthy, Richard G; Kang, Seju

    2016-11-15

    This study investigates the isotropic exchange kinetics of PCBs for polyethylene (PE) passive samplers in quiescent sediment and develops a novel non-equilibrium passive sampling method using PE with multiple thicknesses. The release and uptake kinetics of PCBs in quiescent sediment are reproduced by a 1-D diffusion model using sediment diffusion parameters fitted with the data from actual measurements. From the sediment diffusion parameters observed for uptake and release kinetics, it is seen that the uptake kinetics are distinctly slower than the release kinetics, most likely because of the sorption-desorption hysteresis of PCBs in the study sediment. Despite the presence of the anisotropic PCB exchange kinetics, a performance reference compound (PRC)-based method, which is grounded on the assumption of isotropic exchange kinetics, estimated the freely dissolved aqueous concentrations (Cfree) of PCBs in sediment pore-water with less than a factor of two error for the study sediment. The novel method developed in this study using PE with multiple thicknesses also gives reasonable estimates of Cfree, demonstrating its potential as another option for non-equilibrium passive sampling for hydrophobic organic contaminants in sediment pore-water.

  11. The electrical conductivity of CO2-bearing pore waters at elevated pressure and temperature: a laboratory study and its implications in CO2 storage monitoring and leakage detection

    NASA Astrophysics Data System (ADS)

    Börner, Jana H.; Herdegen, Volker; Repke, Jens-Uwe; Spitzer, Klaus

    2015-11-01

    The electrical rock conductivity is a sensitive indicator for carbon dioxide (CO2) injection and migration processes. For a reliable balancing of the free CO2 in pore space with petrophysical models such as Archie's law or for the detection of migrating CO2, detailed knowledge of the pore water conductivity during interaction with CO2 is essential but not available yet. Contrary to common assumptions, pore water conductivity cannot be assumed constant since CO2 is a reactive gas that dissolves into the pore water in large amounts and provides additional charge carriers due to the dissociation of carbonic acid. We consequently carried out systematic laboratory experiments to quantify and analyse the changes in saline pore water conductivity caused by CO2 at thermodynamic equilibrium. Electrical conductivity is measured on pore water samples for pressures up to 30 MPa and temperatures up to 80 °C. The parameter range covers the gaseous, liquid and supercritical state of the CO2 involved. Pore water salinities from 0.006 up to 57.27 g L-1 sodium chloride were investigated as well as selective other ion species. At the same time, the CO2 concentration in the salt solution was determined by a wet-chemical procedure. A two-regime behaviour appears: for small salinities, we observe an increase of up to more than factor 3 in the electrical pore water conductivity, which strongly depends on the solution salinity (low-salinity regime). This is an expected behaviour, since the additional ions originating from the dissociation of carbonic acid positively contribute to the solution conductivity. However, when increasing salinities are considered this effect is completely diminished. For highly saline solutions, the increased mutual impeding causes the mobility of all ions to decrease, which may result in a significant reduction of conductivity by up to 15 per cent despite the added CO2 (high-salinity regime). We present the data set covering the pressure, temperature, salinity

  12. In situ Measurement of Pore-Water pH in Anoxic Sediments Using Laser Raman Spectrometry

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Luna, M.; Walz, P. M.; Zhang, X.; Brewer, P. G.

    2010-12-01

    Accurate measurement of the geochemical properties of sediment pore waters is of fundamental importance in ocean geochemistry and microbiology. Recent work has shown that the properties of pore waters can be measured rapidly in situ with a novel Raman based insertion probe (Zhang et al., 2010), and that data obtained from anoxic sediments on in situ dissolved methane concentrations are very different (~30x) than from recovered cores due the large scale degassing that occurs during core recovery (Zhang et al., submitted). Degassing of methane must carry with it via Henry’s Law partioning significant quantities of H2S, which is clearly detectable by smell during sample processing, and thus in situ measurement of H2S is also highly desirable. In practice, dissolved H2S is partitioned between the HS- and H2S species as a function of pH with pKa ~7 for the acid dissociation reaction. Since both species are Raman active full determination of the sulfide system is possible if the relative Raman cross sections are known. The diagenetic equations for these reactions are commonly summarized as: 2CH2O + SO4= ↔ 2HCO3- + H2S CH4 + SO4= ↔ HCO3- + HS- + H2O Three of the major components of these equations, CH4, SO4=, and H2S/HS-, are all observable directly by Raman spectroscopy; but the detection of HCO3- presents a challenge due to its low Raman cross section and thus poor sensitivity. We show that pore water pH, which is a good estimator of HCO3- if total CO2 or alkalinity are known, can be measured by observing the H2S / HS- ratio via the equation: pH = pKa + log([HS-]/[H2S]) thereby fully constraining these equations within a single measurement protocol. The Raman peak for HS- is at 2573 cm-1 and for H2S is at 2592 cm-1; thus the peaks are well separated and may easily be deconvoluted from the observed spectrum. We have determined the relative Raman cross sections by a series of laboratory measurements over a range of pH and by using the definition that when pH = p

  13. Competency-Based Curriculum for Prevocational Exploration. Marine/Fresh Water.

    ERIC Educational Resources Information Center

    Reese, Clara C.

    This competency-based curriculum is intended to help teachers of prevocational career exploration courses in West Virginia to present information about marine/fresh water occupations. The document is organized into five units: fisheries, life sciences, marine life cultivation, research, and water vehicle operation. Each unit consists of five to 15…

  14. 2014 Water Power Program Peer Review: Marine and Hydrokinetic Technologies, Compiled Presentations (Presentation)

    SciTech Connect

    Not Available

    2014-02-01

    This document represents a collection of all presentations given during the EERE Wind and Water Power Program's 2014 Marine and Hydrokinetic Peer Review. The purpose of the meeting was to evaluate DOE-funded hydropower and marine and hydrokinetic R&D projects for their contribution to the mission and goals of the Water Power Program and to assess progress made against stated objectives.

  15. Geochemical controls on the composition of soil pore waters beneath a mixed waste disposal site in the unsaturated zone. [SNAKE RIVER PLAIN AQUIFER

    SciTech Connect

    Rawson, S.A.; Hubbell, J.M.

    1989-01-01

    Soil pore waters are collected routinely to monitor a thick unsaturated zone that separates a mixed waste disposal site containing transuranic and low-level radioactive wastes from the Snake River Plain aquifer. The chemistry of the soil pore waters has been studied to evaluate the possible control on the water composition by mineral equilibria and determine the extent, if any, of migration of radionuclides from the disposal site. Geochemical codes were used to perform speciation calculations for the waters. The results of speciation calculations suggest that the installation of the lysimeters affects the observed silica contents of the soil pore waters. The results also establish those chemical parameters that are controlled by secondary mineral precipitation. 15 refs., 6 figs., 1 tab.

  16. Environmental Quality of Italian Marine Water by Means of Marine Strategy Framework Directive (MSFD) Descriptor 9

    PubMed Central

    Maggi, Chiara; Lomiri, Serena; Di Lorenzo, Bianca; d’Antona, Marco; Berducci, Maria Teresa

    2014-01-01

    ISPRA, on behalf of the Italian Ministry of Environment, carried out the initial assessment of environmental quality status of the 3 Italian subregions (Mediterranean Sea Region) on Descriptor 9. The approach adopted to define the GES started to verify that contaminants in fish and other seafood for human consumption did not exceed levels established by Community legislation (Reg. 1881/2006 and further updates). As the Marine Strategy Framework Directive (MSFD) requires to use health tools to assess the environment, Italy decided to adopt a statistical range of acceptance of thresholds identified by national (D.Lgs. 152/2006 concerning water quality required for mussel farms) and international legislation (Reg. 1881/2006 and further updates), which allowed to use the health results and to employ them for the assessment of environmental quality. Italy proposed that Good Environmental Status (GES) is achieved when concentrations are lower than statistical range of acceptance, estimated on samples of fish and fishery products coming from only national waters. GIS-based approach a to perform different integration levels for station, cell’s grid and years, was used; the elaborations allowed to judge the environmental quality good. PMID:25251745

  17. The Determination of Metals in Sediment Pore Waters and in 1N HCl-Extracted Sediments by ICP-MS

    USGS Publications Warehouse

    May, T.W.; Wiedmeyer, Ray H.; Brumbaugh, W.G.; Schmitt, C.J.

    1997-01-01

    Concentrations of metals in sediment interstitial water (pore water) and those extractable from sediment with weak acids can provide important information about the bioavailability and toxicological effects of such contaminants. The highly variable nature of metal concentrations in these matrices requires instrumentation with the detection limit capability of graphite furnace atomic absorption and the wide dynamic linear range capability of ICP-OES. These criteria are satisfied with ICP-MS instrumentation. We investigated the performance of ICP-MS in the determination of certain metals from these matrices. The results for three metals were compared to those determined by graphite furnace atomic absorption spectroscopy. It was concluded that ICP-MS was an excellent instrumental approach for the determination of metals in these matrices.

  18. Prevention of the water flooding by micronizing the pore structure of gas diffusion layer for polymer electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Hiramitsu, Yusuke; Sato, Hitoshi; Hori, Michio

    In polymer electrolyte fuel cells, high humidity must be established to maintain high proton conductivity in the polymer electrolyte. However, the water that is produced electrochemically at the cathode catalyst layer can condense in the cell and cause an obstruction to the diffusion of reaction gas in the gas diffusion layer and the gas channel. This leads to a sudden decrease of the cell voltage. To combat this, strict water management techniques are required, which usually focus on the gas diffusion layer. In this study, the use of specially treated carbon paper as a flood-proof gas diffusion layer under extremely high humidity conditions was investigated experimentally. The results indicated that flooding originates at the interface between the gas diffusion layer and the catalyst layer, and that such flooding could be eliminated by control of the pore size in the gas diffusion layer at this interface.

  19. Pore-water extraction from unsaturated tuff by triaxial and one-dimensional compression methods, Nevada Test Site, Nevada

    SciTech Connect

    Mower, T.E.; Higgins, J.D.; Yang, In C.; Peters, C.A.

    1994-07-01

    The hydrologic system in the unsaturated tuff at Yucca Mountain, Nevada, is being evaluated for the US Department of Energy by the Yucca Mountain Project Branch of the US Geological Survey as a potential site for a high-level radioactive-waste repository. Part of this investigation includes a hydrochemical study that is being made to assess characteristics of the hydrologic system such as: traveltime, direction of flow, recharge and source relations, and types and magnitudes of chemical reactions in the unsaturated tuff. In addition, this hydrochemical information will be used in the study of the dispersive and corrosive effects of unsaturated-zone water on the radioactive-waste storage canisters. This report describes the design and validation of laboratory experimental procedures for extracting representative samples of uncontaminated pore water from welded and nonwelded, unsaturated tuffs from the Nevada Test Site.

  20. IMPORTANCE OF INTERSTITIAL, OVERLYING WATER AND WHOLE SEDIMENT EXPOSURES TO BIOACCUMUALTION BY MARINE BIVALVES

    EPA Science Inventory

    During the performance of contaminated sediment studies using nonpolar pollutants, like polyclorinated biphenyls (PCBs), with marine organisms, the routes of exposure can include whole sediment, overlying waters and interstitial waters (assuming no feeding). These routes can be f...

  1. Batch experiments versus soil pore water extraction--what makes the difference in isoproturon (bio-)availability?

    PubMed

    Folberth, Christian; Suhadolc, Metka; Scherb, Hagen; Munch, Jean Charles; Schroll, Reiner

    2009-10-01

    Two approaches to determine pesticide (bio-)availability in soils (i) batch experiments with "extraction with an excess of water" (EEW) and (ii) the recently introduced "soil pore water (PW) extraction" of pesticide incubated soil samples have been compared with regard to the sorption behavior of the model compound isoproturon in soils. A significant correlation between TOC and adsorbed pesticide amount was found when using the EEW approach. In contrast, there was no correlation between TOC and adsorbed isoproturon when using the in situ PW extraction method. Furthermore, sorption was higher at all concentrations in the EEW method when comparing the distribution coefficients (K(d)) for both methods. Over all, sorption in incubated soil samples at an identical water tension (-15 kPa) and soil density (1.3 g cm(-3)) appears to be controlled by a complex combination of sorption driving soil parameters. Isoproturon bioavailability was found to be governed in different soils by binding strength and availability of sorption sites as well as water content, whereas the dominance of either one of these factors seems to depend on the individual composition and characteristics of the respective soil sample. Using multiple linear regression analysis we obtained furthermore indications that the soil pore structure is affected by the EEW method due to disaggregation, resulting in a higher availability of pesticide sorption sites than in undisturbed soil samples. Therefore, it can be concluded that isoproturon sorption is overestimated when using the EEW method, which should be taken into account when using data from this approach or similar batch techniques for risk assessment analysis.

  2. A unique alkaline pH-regulated and fatty acid-activated tandem pore domain potassium channel (K2P) from a marine sponge

    PubMed Central

    Wells, Gregory D.; Tang, Qiong-Yao; Heler, Robert; Tompkins-MacDonald, Gabrielle J.; Pritchard, Erica N.; Leys, Sally P.; Logothetis, Diomedes E.; Boland, Linda M.

    2012-01-01

    SUMMARY A cDNA encoding a potassium channel of the two-pore domain family (K2P, KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK2P cannot be placed into any of the established functional groups of mammalian K2P channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK2P. In whole cells, non-inactivating, voltage-independent, outwardly rectifying K+ currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC50 ∼30 μmol l–1), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK2P but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K2P channels, the sponge K2P channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pKa 8.18) activated the AquK2P channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K2P channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K2P channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA. PMID:22723483

  3. Regression study of environmental quality objectives for soil, fresh water, and marine water, derived independently.

    PubMed

    Vega, M M; Urzelai, A; Angulo, E

    1997-12-01

    A regression study among environmental quality objectives on soil, marine and fresh water is studied, considering toxicity data on ecological representative species of invertebrates. The study was carried out by comparing VIE-C values, as defined by E. Angulo and A. Urzelai (1994, in Plan Director para la Protección del Suelo. Calidad del Suelo. Valores Indicativos de Evaluacion, pp. 121-184. IHOBE, Bilbao). To derive these VIE-C values, no-observed-effect concentrations from chronic single-species assays that consider relevant parameters in population dynamics are used. The calculations follow the method of N. M. van Straalen and C.A.J. Denneman (1989, Ecotoxicol. Environ. Saf. 18, 241-251). Equations relating long-term toxicity data of fresh/marine waters, soil/marine water, and soil/fresh water for five metals (Cd, Cu, Hg, Pb, and Zn) are calculated, indicating good correlation between environments: 0.85, 0.78, and 0.89, respectively. On the basis of these results this approach may be useful to obtain soil quality criteria values from other environmental compartments, when soil data are not available.

  4. Pore characteristics and their emergent effect on water adsorption and transport in clays using small-angle neutron scattering with contrast variation

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.

    2013-12-01

    In nuclear waste management, clays are canonical materials in the construction of engineered barriers. They are also naturally occurring reactive minerals which play an important role in retention and colloidal facilitated reactive transport in subsurface systems. Knowledge of total and accessible porosity in clays is crucial in determining fluids transport behavior in clays. It will provide fundamental insight on the performance efficiency of specific clays as a barrier material and their role in regulating radionuclide transport in subsurface environments. The aim of the present work is to experimentally investigate the change in pore characteristics of clays as function of moisture content, and to determine their pore character in relation to their water retention capacity. Recent developments in small-angle neutron scattering (SANS) techniques allow quantitative measurement of pore morphology and size distribution of various materials in their pristine state under various sample environments (exposure to solution, high temperature, and so on). Furthermore, due to dramatic different neutron scattering properties of hydrogen and deuterium, one can readily use contrast variation, which is the isotopic labeling with various ratios of H and D (e.g. mixture of H2O/D2O) to highlight or suppress features of the sample. This is particularly useful in the study of complex pore system such as clays. In this study, we have characterized the pore structures for a number of clays including clay minerals and field samples which are relevant to high-level waste systems under various sample environments (e.g., humidity, temperature and pressure) using SANS. Our results suggest that different clays show unique pore features under various sample environments. To distinguish between accessible/non-accessible pores and the nature of pore filling (e.g. the quantity of H2O adsorbed by clays, and the distribution of H2O in relation to pore character) to water, clays were exposed for

  5. Suspended marine particulate proteins in coastal and oligotrophic waters

    NASA Astrophysics Data System (ADS)

    Bridoux, Maxime C.; Neibauer, Jaqui; Ingalls, Anitra E.; Nunn, Brook L.; Keil, Richard G.

    2015-03-01

    Metaproteomic analyses were performed on suspended sediments collected in one coastal environment (Washington margin, Pacific Ocean, n = 5) and two oligotrophic environments (Atlantic Ocean near BATS, n = 5, and Pacific Ocean near HOTS, n = 5). Using a database of 2.3 million marine proteins developed using the NCBI database, 443 unique peptides were detected from which 363 unique proteins were identified. Samples from the euphotic zone contained on average 2-3x more identifiable proteins than deeper waters (150-1500 m) and these proteins were predominately from photosynthetic organisms. Diatom peptides dominate the spectra of the Washington margin while peptides from cyanobacteria, such as Synechococcus sp. dominated the spectra of both oligotrophic sites. Despite differences in the exact proteins identified at each location, there is good agreement for protein function and cellular location. Proteins in surface waters code for a variety of cellular functions including photosynthesis (24% of detected proteins), energy production (10%), membrane production (9%) and genetic coding and reading (9%), and are split 60-40 between membrane proteins and intracellular cytoplasmic proteins. Sargasso Sea surface waters contain a suite of peptides consistent with proteins involved in circadian rhythms that promote both C and N fixation at night. At depth in the Sargasso Sea, both muscle-derived myosin protein and the muscle-hydrolyzing proteases deseasin MCP-01 and metalloprotease Mcp02 from γ-proteobacteria were observed. Deeper waters contain peptides predominately sourced from γ-proteobacteria (37% of detected proteins) and α-proteobacteria (26%), although peptides from membrane and photosynthetic proteins attributable to phytoplankton were still observed (13%). Relative to surface values, detection frequencies for bacterial membrane proteins and extracellular enzymes rose from 9 to 16 and 2 to 4% respectively below the thermocline and the overall balance between

  6. Microbiological monitoring of marine recreational waters in southern California.

    PubMed

    Schiff, K C; Weisberg, S B; Dorsey, J H

    2001-01-01

    An inventory was conducted to assess the number, type, spatial distribution, and costs of microbiological monitoring programs in southern California marine waters from Point Conception to the US/Mexico International Border. The location of each sampling site was determined using global positioning system (GPS), and estimates of geographic coverage were determined using geographic information system (GIS) techniques. Twenty-one programs conducted 87,007 tests annually at 576 sites in the study area. The largest number of sites was sampled in Orange County, whereas the largest number of analyses was performed in Los Angeles County because monitoring programs in this area focused on daily monitoring. Fifteen of the 21 programs were managed by National Pollutant Discharge Elimination System (NPDES) permitted sewage effluent dischargers who sampled both offshore and shoreline waters and typically tested for three indicator bacteria (total coliform, fecal coliform, and enterococcus). Their combined efforts comprised 82% of all of the microbiological indicator analyses conducted on an annual basis. Five of the remaining monitoring organizations were public health agencies, which typically focus their efforts on testing only total coliforms. Laboratory methodology also varied considerably, with NPDES permittees predominantly utilizing membrane filtration while public health agencies generally used multiple tube fermentation or premanufactured test kits. Nearly three quarters of all the effort expended in southern California occurred along the shoreline as opposed to offshore locations. Two thirds of this shoreline effort was focused on high-use sandy beaches and in proximity to perennial fresh-water outlets (storm drains and creeks). Most sampling occurred at a set of fixed sites that were revisited frequently, but only represented about 7% of the total shoreline. We estimated that roughly $3 million is spent annually on monitoring bathing water quality in southern

  7. High Resolution Marine Magnetic Survey of Shallow Water Littoral Area

    PubMed Central

    Ginzburg, Boris; Cohen, Tsuriel Ram; Zafrir, Hovav; Alimi, Roger; Salomonski, Nizan; Sharvit, Jacob

    2007-01-01

    The purpose of this paper is to present a system developed for detection and accurate mapping of ferro-metallic objects buried below the seabed in shallow waters. The system comprises a precise magnetic gradiometer and navigation subsystem, both installed on a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition we present the results of a marine survey of a near-shore area in the vicinity of Atlit, a town situated on the Mediterranean coast of Israel, about 15 km south of Haifa. The primary purpose of the survey was to search for a Harvard airplane that crashed into the sea in 1960. A magnetic map of the survey area (3.5 km2 on a 0.5 m grid) was created revealing the anomalies at sub-meter accuracy. For each investigated target location a corresponding ferro-metallic item was dug out, one of which turned to be very similar to a part of the crashed airplane. The accuracy of location was confirmed by matching the position of the actual dug artifacts with the magnetic map within a range of ± 1 m, in a water depth of 9 m.

  8. An ectobiont-bearing foraminiferan, Bolivina pacifica, that inhabits microxic pore waters: cell-biological and paleoceanographic insights.

    PubMed

    Bernhard, Joan M; Goldstein, Susan T; Bowser, Samuel S

    2010-08-01

    The presence of tests (shells) in foraminifera could be taken as an indicator that this protist taxon is unlikely to possess ectosymbionts. Here, however, we describe an association between Bolivina pacifica, a foraminiferan with a calcareous test, and a rod-shaped microbe (bacterium or archaeon) that is directly associated with the pores of the foraminiferan's test. In addition to these putative ectosymbionts, B. pacifica has previously undescribed cytoplasmic plasma membrane invaginations (PMIs). These adaptations (i.e. PMIs, ectobionts), along with the clustering of mitochondria under the pores and at the cell periphery, suggest active exchange between the host and ectobiont. The B. pacifica specimens examined were collected from sediments overlain by oxygen-depleted bottom waters (0.7 μM) of the Santa Barbara Basin (California, USA). An ultrastructural comparison between B. pacifica from the Santa Barbara Basin and a congener (Bolivina cf. B. lanceolata) collected from well-oxygenated sediments (Florida Keys) suggests that PMIs, ectobionts and peripherally distributed mitochondria are all factors that promote inhabitation of microxic environments by B. pacifica. The calcitic δ(13)C signatures of B. pacifica and of a co-occurring congener (B. argentea) that lacks ectobionts differ by > 1.5‰, raising the possibility that the presence of ectobionts can affect incorporation of paleoceanographic proxies.

  9. Influence of flooding and vegetation on carbon, nitrogen, and phosphorus dynamics in the pore water of a Spartina alterniflora salt marsh.

    PubMed

    Negrin, Vanesa L; Spetter, Carla V; Asteasuain, Raúl O; Perillo, Gerardo M E; Marcovecchio, Jorge E

    2011-01-01

    Four sites were selected in a salt marsh in the Bahia Blanca Estuary (Argentina): (1) low marsh (flooded by the tide twice daily) vegetated by S. alterniflora; (2) non-vegetated low marsh; (3) high marsh (flooded only in spring tides) vegetated by S. alterniflora; (4) non-vegetated high marsh. The pH and Eh were measured in sediments, while dissolved nutrients (ammonium, nitrate, nitrite and phosphate) and particulate organic matter (POM) were determined in pore water. pH (6.2-8.7) was only affected by vegetation in low areas. Eh (from -300 to 250 mV) was lower at low sites than at high ones; in the latter, the values were higher in the non-vegetated sediments. The POM concentration was greater in the high marsh than in the low marsh, with no effect of vegetation. Ammonium was the most abundant nitrogen nutrient species in pore water, except in the non-vegetated high marsh where nitrate concentration was higher. All nitrogen nutrients were affected by both flooding and vegetation. Phosphate was always present in pore water at all sites throughout the year and its concentration varied within narrow limits, with no effect of flooding and greater values always at non-vegetated sites. Our results showed that the variability of the pore water composition within the marsh is greater than the temporal variation, meaning that both tidal flooding and vegetation are important in the dynamics of nutrients and organic matter in the sediment pore water.

  10. Linking local riverbed flow patterns and pore-water chemistry to hydrogeologic and geomorphic features across scales

    NASA Astrophysics Data System (ADS)

    Ibrahim, T. G.; Thornton, S.; Surridge, B.; Wainwright, J.

    2009-12-01

    The groundwater-surface water interface (GSI) is a critical environmental hotspot, a key area influencing the fate of carbon, nutrients and contaminants of surface and subsurface origin, and a zone of ecological importance. Policy seeking to mitigate issues relating to dissolved contaminants and to improve stream health, increasingly recognizes its significance, particularly in the context of integrated management of streams and aquifers. Techniques assessing riverbed flow and solute patterns are often limited to the local scale. When related to the multi-scale pattern of hydrogeologic and geomorphic features controlling stream, hyporheic and groundwater fluxes, they can improve larger scale predictions of flow and solute behaviour at the GSI. This study develops a conceptual model of riverbed flow and solute patterns, and tests it in a 4th order stream in the UK. It assesses the interaction between large scale subsurface flowpaths, driven by the distribution of bedrock outcrops, and the expansion and closure of alluvial deposits, and small-scale hyporheic flowpaths, driven by riffle-pool sequences. It uses two networks of riverbed mini-piezometers and multi-level samplers: network 1, across fifteen sites in a 7.2 km length of river in unconstrained (open alluvial valley), asymmetric (bedrock outcropping on one bank) and constrained (bedrock on both banks) contexts; and network 2, across six riffle-pool sequences in a 350-m reach, at the transition between asymmetric/unconstrained and constrained contexts. Subsurface flowpaths and stream-water infiltration were deduced by relating vertical exchange fluxes to stream and pore-water patterns of conservative natural tracers. Biogeochemical processes were highlighted using reactive natural tracers. At network 2, measurements of surface water profiles and riverbed coring were also undertaken, and dissolved metal concentrations in the first 15 cm of sediments assessed using gel probes. Network 1 was sampled twice. Monthly

  11. Composition of pore and spring waters from Baby Bare: Global implications of geochemical fluxes from a ridge flank hydrothermal system

    SciTech Connect

    Wheat, C.G.; Mottl, M.J.

    2000-02-01

    Warm hydrothermal springs were discovered on Baby Bare, which is an isolated basement outcrop on 3.5 Ma-old crust on the eastern flank of the Juan de Fuca Ridge. The authors have sampled these spring waters from a manned submersible, along with associated sediment pore waters from 48 gravity and piston cores. Systematic variations in the chemical composition of these waters indicate that hydrothermal reactions in basement at moderate temperatures remove Na, K, Li, Rb, Mg, TCO{sub 2}, alkalinity, and phosphate from the circulating seawater and leach Ca, Sr, Si, B, and Mn from the oceanic crust; and that reactions with the turbidite sediment surrounding Baby Bare remove Na, Li, Mg, Ca, Sr, and sulfate from the pore water while producing ammonium and Si and both producing and consuming phosphate, nitrate, alkalinity, Mn, and Fe. K, Rb, and B are relatively unreactive in the sediment column. The composition of altered seawater in basement at Baby Bare is similar to the inferred composition of 58 C formation water from crust nearly twice as old (5.9 Ma) on the southern flank of the Costa Rica Rift. The Baby Bare fluids also exhibit the same directions of net elemental transfer between basalt and seawater as solutions produced in laboratory experiments at a similar temperature, and complement compositional changes form seawater observed in seafloor basalts altered at cool to moderate temperatures. The common parameter among the two ridge flanks and experiments is temperature, suggesting that the residence time of seawater in the two ridge-flank sites is sufficiently long for the solutions to equilibrate with altered basalt. The authors use the Baby Bare spring water to estimate upper limits on the global fluxes of 14 elements at warm ridge-flank sites such as Baby Bare. Maximum calculated fluxes of Mg, Ca, sulfate, B, and K may equal or exceed 25% of the riverine flux, and such sites may represent the missing, high K/Rb sink required for the K budget.

  12. Observation of residual disorder in the centre of amorphous solid water films after pore collapse at 125 K.

    PubMed

    Townrow, S; Coleman, P G

    2015-12-01

    The rapid structural re-organisation of porous amorphous solid water, grown to thicknesses in the range 2.5-70 μm by vapour deposition on a copper substrate at 75 K, after heating to 125 K has been found to leave a μm-wide band of residual disorder-for example, nm-sized closed pores-in the centre of the film. This layer was revealed by thinning the film by sublimation and continuously measuring the fraction of 1.5 keV positrons implanted into the film which forms ortho-positronium in the top 150 nm and decays into three gamma photons. PMID:26517206

  13. Measurement and modeling of energetic material mass transfer to soil pore water : Project CP-1227 : FY04 annual technical report.

    SciTech Connect

    Stein, Joshua S.; Webb, Stephen Walter

    2005-01-01

    Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of a mass transfer model evaluating mass transfer processes from solid phase energetics to soil pore water based on experimental work obtained earlier in this project. This mass transfer numerical model has been incorporated into the porous media simulation code T2TNT. Next year, the energetic material mass transfer model will be developed further using additional experimental data.

  14. Measurement and modeling of energetic-material mass transfer to soil-pore water - Project CP-1227 final technical report.

    SciTech Connect

    Stein, Joshua S.; Sallaberry, Cedric M.; Webb, Stephen Walter; Phelan, James M.; Hadgu, Teklu

    2006-05-01

    Military test and training ranges operate with live-fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low-order detonations also disperse solid-phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution. This final report documents the results of experimental and simulation model development for evaluating mass transfer processes from solid-phase energetics to soil-pore water.

  15. Scattering of hydrogen, nitrogen and water ions from micro pore optic plates for application in spaceborne plasma instrumentation

    NASA Astrophysics Data System (ADS)

    Stude, Joan; Wieser, Martin; Barabash, Stas

    2016-10-01

    Time-of-flight mass spectrometers for upcoming space missions into enhanced radiation environments need to be small, light weight and energy efficient. Time-of-flight systems using surface interactions as start-event generation can be smaller than foil-type instruments. Start surfaces for such applications need to provide narrow angular scattering, high ionization yields and high secondary electron emissions to be effective. We measured the angular scattering, energy distribution and positive ionization yield of micro pore optics for incident hydrogen, nitrogen and water ions at 2 keV. Positive ionization yields of 2% for H+ , 0.5% for N+ and 0.2% for H2O+ were detected.

  16. Pore water pressure assessment in a forest watershed: Simulations and distributed field measurements related to forest practices

    NASA Astrophysics Data System (ADS)

    Dhakal, Amod S.; Sidle, Roy C.

    2004-02-01

    A distributed shallow groundwater model related to slope stability is described to assess the spatial distribution of pore water pressure in steep forested terrain in British Columbia. Additionally, effects of timber harvesting and roads on measured changes in pressure head during rainstorms were evaluated for the first time to assess the need for incorporating different hydrological components in the event-driven distributed model. Although explicit spatial quantification of pore water pressure requires many measurements for accurate prediction, model performance using average parameter values was reasonable when compared with pressure heads measured at nine spatially distributed sites. Increases in maximum pressure head (varying from 9 to 28 cm) between preharvesting (after road construction) and postharvesting rainstorm events were observed in seven of nine sites. The remaining two sites showed either a small decrease (≈5 cm) or similar peak pressure heads following harvesting. Peak pressure head evaluated at one piezometer located 46 m downslope of the road decreased substantially (≈50 cm) after road construction during moderate rainstorms and then recovered following harvesting. Piezometric responses in sites upslope of the road were not affected by road construction but did increase after harvesting. Moderate storms caused the largest relative increases in pressure head between preharvesting (after roads) and postharvesting conditions; such increases were small during large storms, lending support to the idea that timber harvesting in temperate forests enhances hydrologic response only during small and moderate storms. Since landslides in coastal Pacific Northwest are typically caused by large winter rainstorms, it appears more justified to include better spatial representation of soil physical and engineering parameters in the distributed shallow groundwater model compared to specifying evapotranspiration; road hydrology may, however, need to be included.

  17. Determination of atrazine and its major degradation products in soil pore water by solid-phase extraction, chemical derivatization, and gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Carter, D.S.

    1996-01-01

    This report describes a method for the determination of atrazine, desethylatrazine, deisopropylatrazine, didealkylatrazine, and hydroxyatrazine from soil pore waters by use of solid-phase extractionfollowed by chemical derivatization and gas chromatography/mass spectrometry. The analytes are isolated from the pore-water matrix byextraction onto a graphitized carbon-black cartridge. The cartridge is dried under vacuum, and adsorbed analytes are removed by elution with ethyl acetate followed by dichloromethane/methanol (7:3, volume/volume). Water is removed from the ethyl acetate fraction on an anhydrous sodium sulfate column. The combined fractions are solvent exchanged into acetonitrile, evaporated by use of a nitrogen stream, and derivatized by use of N- methyl-N-(tert-butyldimethylsilyl)- trifluoroacetamide. The derivatized extracts are analyzed by capillary-column gaschromatography/electron-impact mass spectrometry in the scan mode. Estimated method detection limits range from 0.03 to 0.07 micrograms per liter. The mean recoveries of all analytes and surrogates determined at 0.74 to 0.82 micrograms per liter in reagent water in soil pore water were 94 percent and 98 percent, respectively. The mean recoveries of all analytes and surrogates determined at 7.4 to 8.2 micrograms per liter in reagent water and in soil pore water were 96 percent and 97 percent,respectively. Recoveries were 90 percent or higher, regardless of analyte concentration or matrix composition, for all compounds excepthydroxyatrazine, whose recoveries were slightly lower (77 percent) at the low concentration.

  18. Details and Consequences of Water Vapor Diffusion In The Pore Space of Snow

    NASA Astrophysics Data System (ADS)

    Sokratov, S. A.; Bartelt, P.; Schneebeli, M.; Lehning, M.

    Despite a long history of extensive experimental and theoretical studies on the process of water vapor diffusion in snow, no quantitative explanation for the observed diffu- sion characteristics such as mass-transfer rates and snow density change is available at present. Results of a detailed investigatation of the process are presented. The pro- posed description of water vapor flux in snow now includes thermal diffusion, grav- itation, convective air flow, and volumetric mass-production. The relative importance of the components in the overall mass-transfer is analyzed. Although experimental data of sufficient detail concerning the individual components are not available, the results of our analysis provide an improved understanding of the sources of discrepan- cies in published experimental results. The consequences of the water vapor transport description for heat transfer and metamorphism are also discussed.

  19. Derivation of a water quality guideline for aluminium in marine waters.

    PubMed

    Golding, Lisa A; Angel, Brad M; Batley, Graeme E; Apte, Simon C; Krassoi, Rick; Doyle, Chris J

    2015-01-01

    Metal risk assessment of industrialized harbors and coastal marine waters requires the application of robust water quality guidelines to determine the likelihood of biological impacts. Currently there is no such guideline available for aluminium in marine waters. A water quality guideline of 24 µg total Al/L has been developed for aluminium in marine waters based on chronic 10% inhibition or effect concentrations (IC10 or EC10) and no-observed-effect concentrations (NOECs) from 11 species (2 literature values and 9 species tested including temperate and tropical species) representing 6 taxonomic groups. The 3 most sensitive species tested were a diatom Ceratoneis closterium (formerly Nitzschia closterium; IC10 = 18 µg Al/L, 72-h growth rate inhibition) < mussel Mytilus edulis plannulatus (EC10 = 250 µg Al/L, 72-h embryo development) < oyster Saccostrea echinata (EC10 = 410 µg Al/L, 48-h embryo development). Toxicity to these species was the result of the dissolved aluminium forms of aluminate (Al(OH4 (-) ) and aluminium hydroxide (Al(OH)3 (0) ) although both dissolved, and particulate aluminium contributed to toxicity in the diatom Minutocellus polymorphus and green alga Dunaliella tertiolecta. In contrast, aluminium toxicity to the green flagellate alga Tetraselmis sp. was the result of particulate aluminium only. Four species, a brown macroalga (Hormosira banksii), sea urchin embryo (Heliocidaris tuberculata), and 2 juvenile fish species (Lates calcarifer and Acanthochromis polyacanthus), were not adversely affected at the highest test concentration used.

  20. Biogeochemical environments of streambed-sediment pore waters with and without arsenic enrichment in a sedimentary rock terrain, New Jersey Piedmont, USA.

    PubMed

    Mumford, A C; Barringer, J L; Reilly, P A; Eberl, D D; Blum, A E; Young, L Y

    2015-02-01

    Release of arsenic (As) from sedimentary rocks has resulted in contamination of groundwater in aquifers of the New Jersey Piedmont Physiographic Province, USA; the contamination also may affect the quality of the region's streamwater to which groundwater discharges. Biogeochemical mechanisms involved in the release process were investigated in the streambeds of Six Mile Run and Pike Run, tributaries to the Millstone River in the Piedmont. At Six Mile Run, streambed pore water and shallow groundwater were low or depleted in oxygen, and contained As at concentrations greater than 20 μg/L. At Pike Run, oxidizing conditions were present in the streambed, and the As concentration in pore water was 2.1 μg/L. The 16S rRNA gene and the As(V) respiratory reductase gene, arrA, were amplified from DNA extracted from streambed pore water at both sites and analyzed, revealing that distinct bacterial communities that corresponded to the redox conditions were present at each site. Anaerobic enrichment cultures were inoculated with pore water from gaining reaches of the streams with acetate and As(V). As(V) was reduced by microbes to As(III) in enrichments with Six Mile Run pore water and groundwater, whereas no reduction occurred in enrichments with Pike Run pore water. Cloning and sequencing of the arrA gene indicated 8 unique operational taxonomic units (OTUs) at Six Mile Run and 11 unique OTUs at Pike Run, which may be representative of the arsenite oxidase gene arxA. Low-oxygen conditions at Six Mile Run have favored microbial As reduction and release, whereas release was inhibited by oxidizing conditions at Pike Run.

  1. Biogeochemical environments of streambed-sediment pore waters withand without arsenic enrichment in a sedimentary rock terrain, New Jersey Piedmont, USA

    USGS Publications Warehouse

    Mumford, Adam C.; Barringer, Julia L.; Reilly, Pamela A.; Eberl, Dennis D.; Blum, Alex E.; Young, Lily Y.

    2015-01-01

    Release of arsenic (As) from sedimentary rocks has resulted in contamination of groundwater in aquifers of the New Jersey Piedmont Physiographic Province, USA; the contamination also may affect the quality of the region's streamwater to which groundwater discharges. Biogeochemical mechanisms involved in the release process were investigated in the streambeds of Six Mile Run and Pike Run, tributaries to the Millstone River in the Piedmont. At Six Mile Run, streambed pore water and shallow groundwater were low or depleted in oxygen, and contained As at concentrations greater than 20μg/L. At Pike Run, oxidizing conditions were present in the streambed, and the As concentration in pore water was 2.1μg/L. The 16S rRNA gene and the As(V) respiratory reductase gene, arrA, were amplified from DNA extracted from streambed pore water at both sites and analyzed, revealing that distinct bacterial communities that corresponded to the redox conditions were present at each site. Anaerobic enrichment cultures were inoculated with pore water from gaining reaches of the streams with acetate and As(V). As(V) was reduced by microbes to As(III) in enrichments with Six Mile Run pore water and groundwater, whereas no reduction occurred in enrichments with Pike Run pore water. Cloning and sequencing of the arrA gene indicated 8 unique operational taxonomic units (OTUs) at Six Mile Run and 11 unique OTUs at Pike Run, which may be representative of the arsenite oxidase gene arxA. Low-oxygen conditions at Six Mile Run have favored microbial As reduction and release, whereas release was inhibited by oxidizing conditions at Pike Run.

  2. Biogeochemical environments of streambed-sediment pore waters with and without arsenic enrichment in a sedimentary rock terrain, New Jersey Piedmont, USA.

    PubMed

    Mumford, A C; Barringer, J L; Reilly, P A; Eberl, D D; Blum, A E; Young, L Y

    2015-02-01

    Release of arsenic (As) from sedimentary rocks has resulted in contamination of groundwater in aquifers of the New Jersey Piedmont Physiographic Province, USA; the contamination also may affect the quality of the region's streamwater to which groundwater discharges. Biogeochemical mechanisms involved in the release process were investigated in the streambeds of Six Mile Run and Pike Run, tributaries to the Millstone River in the Piedmont. At Six Mile Run, streambed pore water and shallow groundwater were low or depleted in oxygen, and contained As at concentrations greater than 20 μg/L. At Pike Run, oxidizing conditions were present in the streambed, and the As concentration in pore water was 2.1 μg/L. The 16S rRNA gene and the As(V) respiratory reductase gene, arrA, were amplified from DNA extracted from streambed pore water at both sites and analyzed, revealing that distinct bacterial communities that corresponded to the redox conditions were present at each site. Anaerobic enrichment cultures were inoculated with pore water from gaining reaches of the streams with acetate and As(V). As(V) was reduced by microbes to As(III) in enrichments with Six Mile Run pore water and groundwater, whereas no reduction occurred in enrichments with Pike Run pore water. Cloning and sequencing of the arrA gene indicated 8 unique operational taxonomic units (OTUs) at Six Mile Run and 11 unique OTUs at Pike Run, which may be representative of the arsenite oxidase gene arxA. Low-oxygen conditions at Six Mile Run have favored microbial As reduction and release, whereas release was inhibited by oxidizing conditions at Pike Run. PMID:25130624

  3. Methane production correlates positively with methanogens, sulfate-reducing bacteria and pore water acetate at an estuarine brackish-marsh landscape scale

    NASA Astrophysics Data System (ADS)

    Tong, C.; She, C. X.; Jin, Y. F.; Yang, P.; Huang, J. F.

    2013-11-01

    Methane production is influenced by the abundance of methanogens and the availability of terminal substrates. Sulfate-reducing bacteria (SRB) also play an important role in the anaerobic decomposition of organic matter. However, the relationships between methane production and methanogen populations, pore water terminal substrates in estuarine brackish marshes are poorly characterized, and even to our knowledge, no published research has explored the relationship between methane production rate and abundance of SRB and pore water dimethyl sulfide (DMS) concentration. We investigated methane production rate, abundances of methanogens and SRB, concentrations of pore water terminal substrates and electron acceptors at a brackish marsh landscape dominated by Phragmites australis, Cyperus malaccensis and Spatina alterniflora marshes zones in the Min River estuary. The average rates of methane production at a soil depth of 30 cm in the three marsh zones were 0.142, 0.058 and 0.067 μg g-1 d-1, respectively. The abundance of both methanogens and SRB in the soil of the P. australis marsh with highest soil organic carbon content was higher than in the C. malaccensis and S. alterniflora marshes. The abundance of methanogens and SRB in the three soil layers was statistically indistinguishable. Mean pore water DMS concentrations at a soil depth of 30 cm under the S. alterniflora marsh were higher than those in the C. malaccensis and P. australis marshes. Methane production rate increased with the abundance of both methanogens and SRB across three marsh zones together at the landscape scale, and also increased with the concentration of pore water acetate, but did not correlate with concentrations of pore water DMS and dissolved CO2. Our results suggest that, provided that substrates are available in ample supply, methanogens can continue to produce methane regardless of whether SRB are prevalent in estuarine brackish marshes.

  4. Sequentially sampled gas hydrate water, coupled with pore water and bottom water isotopic and ionic signatures at the Kukuy mud volcano, Lake Baikal: ambiguous deep-rooted source of hydrate-forming water

    NASA Astrophysics Data System (ADS)

    Minami, Hirotsugu; Hachikubo, Akihiro; Sakagami, Hirotoshi; Yamashita, Satoshi; Soramoto, Yusuke; Kotake, Tsuyoshi; Takahashi, Nobuo; Shoji, Hitoshi; Pogodaeva, Tatyana; Khlystov, Oleg; Khabuev, Andrey; Naudts, Lieven; De Batist, Marc

    2014-06-01

    The isotopic and ionic composition of pure gas hydrate (GH) water was examined for GHs recovered in three gravity cores (165-193 cm length) from the Kukuy K-9 mud volcano (MV) in Lake Baikal. A massive GH sample from core St6GC4 (143-165 cm core depth interval) was dissociated progressively over 6 h in a closed glass chamber, and 11 sequentially collected fractions of dissociated GH water analyzed. Their hydrogen and oxygen isotopic compositions, and the concentrations of Cl- and HCO3 - remained essentially constant over time, except that the fraction collected during the first 50 minutes deviated partly from this pattern. Fraction #1 had a substantially higher Cl- concentration, similar to that of pore water sampled immediately above (135-142 cm core depth) the main GH-bearing interval in that core. Like the subsequent fractions, however, the HCO3 - concentration was markedly lower than that of pore water. For the GH water fractions #2 to #11, an essentially constant HCO3 -/Cl- ratio of 305 differed markedly from downcore pore water HCO3 -/Cl- ratios of 63-99. Evidently, contamination of the extracted GH water by ambient pore water probably adhered to the massive GH sample was satisfactorily restricted to the initial phase of GH dissociation. The hydrogen and oxygen isotopic composition of hydrate-forming water was estimated using the measured isotopic composition of extracted GH water combined with known isotopic fractionation factors between GH and GH-forming water. Estimated δD of -126 to -133‰ and δ18O of -15.7 to -16.7‰ differed partly from the corresponding signatures of ambient pore water (δD of -123‰, δ18O of -15.6‰) and of lake bottom water (δD of -121‰, δ18O of -15.8‰) at the St6GC4 coring site, suggesting that the GH was not formed from those waters. Observations of breccias in that core point to a possible deep-rooted water source, consistent with published thermal measurements for the neighboring Kukuy K-2 MV. By contrast, the pore

  5. Stability of feline caliciviruses in marine water maintained at different temperatures.

    PubMed

    Kadoi, K; Kadoi, B K

    2001-01-01

    Since human caliciviruses are responsible for viral gastroenteritis transmitted by contaminated foods and the viruses barely propagate in cell culture, feline caliciviruses were employed as a model for the measurement of their stability in marine water. Survival of four strains of feline calicivirus in marine water was measured when the seed viruses were diluted 1/10 with marine water and maintained at 4 degrees C, 10 degrees C, and 20 degrees C respectively. Among the virus strains studied, a considerable amount of infective viruses remained at 10 degrees C or lower temperature conditions even for a period of 30 days. PMID:11209839

  6. Marine electromagnetic experiment across the Nicaragua Trench: Imaging water-rich faults and melt-rich asthenosphere

    NASA Astrophysics Data System (ADS)

    Naif, Samer Nasri

    Archie's law to infer porosity and find that the crust subducts significantly more pore water than previously thought. The CSEM data also image the complete subduction of the incoming sediments along the megathrust plate interface, providing the first large-scale estimates of porosity at the megathrust. At 20 km into the forearc, a conductive anomaly extends from the plate interface into the overlying crust beneath a high concentration of active seafloor seeps, possibly imaging both the origin and migratory pathway of fluids escaping along the margin seafloor. The location of the anomaly correlates with a section of the seafloor that exhibits steepened bathymetric slope, suggesting a sediment underplating mechanism as its cause.

  7. Erythritol predicted to inhibit permeation of water and solutes through the conducting pore of P. falciparum aquaporin.

    PubMed

    Chen, Liao Y

    2015-03-01

    Plasmodium falciparum aquaporin (PfAQP) is a multifunctional channel protein in the plasma membrane of the malarial parasite that causes the most severe form of malaria infecting more than a million people a year. This channel protein facilitates transport of water and several solutes across the cell membrane. In order to better elucidate the fundamental interactions between PfAQP and its permeants and among the permeants, I conducted over three microseconds in silico experiments of atomistic models of the PfAQP-membrane system to obtain the free-energy profiles of five permeants (erythritol, water, glycerol, urea, and ammonia) throughout the amphipathic conducting pore of PfAQP. The profiles are analyzed in light of and shown to be consistent with the existent in vitro data. The binding affinities are computed using the free-energy profiles and the permeant fluctuations inside the channel. On this basis, it is predicted that erythritol, a permeant of PfAQP itself having a deep ditch in its permeation passageway, inhibits PfAQP's functions of transporting water and other solutes with an IC50 in the range of high nanomolars. This leads to the possibility that erythritol, a sweetener generally considered safe, may inhibit or kill the malarial parasite in vivo without causing undesired side effects. Experimental studies are hereby called for to directly test this theoretical prediction of erythritol strongly inhibiting PfAQP in vitro and possibly inhibiting P. falciparum in vivo.

  8. Modeling the diffusion of Na+ in compacted water-saturated Na-bentonite as a function of pore water ionic strength

    SciTech Connect

    Bourg, I.C.; Sposito, G.; Bourg, A.C.M.

    2008-08-15

    Assessments of bentonite barrier performance in waste management scenarios require an accurate description of the diffusion of water and solutes through the barrier. A two-compartment macropore/nanopore model (on which smectite interlayer nanopores are treated as a distinct compartment of the overall pore space) was applied to describe the diffusion of {sup 22}Na{sup +} in compacted, water-saturated Na-bentonites and then compared with the well-known surface diffusion model. The two-compartment model successfully predicted the observed weak ionic strength dependence of the apparent diffusion coefficient (D{sub a}) of Na{sup +}, whereas the surface diffusion model did not, thus confirming previous research indicating the strong influence of interlayer nanopores on the properties of smectite clay barriers. Since bentonite mechanical properties and pore water chemistry have been described successfully with two-compartment models, the results in the present study represent an important contribution toward the construction of a comprehensive two-compartment model of compacted bentonite barriers.

  9. 75 FR 65278 - Pamlico Sound and Adjacent Waters, NC; Danger Zones for Marine Corps Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... of Engineers, Department of the Army 33 CFR Part 334 Pamlico Sound and Adjacent Waters, NC; Danger... its regulations to establish one new danger zone in Pamlico Sound near Marine Corps Air Station Cherry Point, North Carolina. Establishment of this danger zone will enable the Marine Corps to control...

  10. 75 FR 17382 - Small Takes of Marine Mammals Incidental to Specified Activities; Russian River Estuary Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... Federal Register (74 FR 58248) for the take of marine mammals incidental to Estuary water level management... notice (74 FR 58248). In summary, harbor seals are the most abundant marine mammal found at the mouth of... published on November 12, 2009 (74 FR 58248). During the 30-day public comment period, six members of...

  11. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems.

    PubMed

    Roebeling, P C; Cunha, M C; Arroja, L; van Grieken, M E

    2015-01-01

    Marine ecosystems are affected by water pollution originating from coastal catchments. The delivery of water pollutants can be reduced through water pollution abatement as well as water pollution treatment. Hence, sustainable economic development of coastal regions requires balancing of the marginal costs from water pollution abatement and/or treatment and the associated marginal benefits from marine resource appreciation. Water pollution delivery reduction costs are, however, not equal across abatement and treatment options. In this paper, an optimal control approach is developed and applied to explore welfare maximizing rates of water pollution abatement and/or treatment for efficient diffuse source water pollution management in terrestrial-marine systems. For the case of diffuse source dissolved inorganic nitrogen water pollution in the Tully-Murray region, Queensland, Australia, (agricultural) water pollution abatement cost, (wetland) water pollution treatment cost and marine benefit functions are determined to explore welfare maximizing rates of water pollution abatement and/or treatment. Considering partial (wetland) treatment costs and positive water quality improvement benefits, results show that welfare gains can be obtained, primarily, through diffuse source water pollution abatement (improved agricultural management practices) and, to a minor extent, through diffuse source water pollution treatment (wetland restoration). PMID:26287831

  12. Deriving the suction stress of unsaturated soils from water retention curve, based on wetted surface area in pores

    NASA Astrophysics Data System (ADS)

    Greco, Roberto; Gargano, Rudy

    2016-04-01

    The evaluation of suction stress in unsaturated soils has important implications in several practical applications. Suction stress affects soil aggregate stability and soil erosion. Furthermore, the equilibrium of shallow unsaturated soil deposits along steep slopes is often possible only thanks to the contribution of suction to soil effective stress. Experimental evidence, as well as theoretical arguments, shows that suction stress is a nonlinear function of matric suction. The relationship expressing the dependence of suction stress on soil matric suction is usually indicated as Soil Stress Characteristic Curve (SSCC). In this study, a novel equation for the evaluation of the suction stress of an unsaturated soil is proposed, assuming that the exchange of stress between soil water and solid particles occurs only through the part of the surface of the solid particles which is in direct contact with water. The proposed equation, based only upon geometric considerations related to soil pore-size distribution, allows to easily derive the SSCC from the water retention curve (SWRC), with the assignment of two additional parameters. The first parameter, representing the projection of the external surface area of the soil over a generic plane surface, can be reasonably estimated from the residual water content of the soil. The second parameter, indicated as H0, is the water potential, below which adsorption significantly contributes to water retention. For the experimental verification of the proposed approach such a parameter is considered as a fitting parameter. The proposed equation is applied to the interpretation of suction stress experimental data, taken from the literature, spanning over a wide range of soil textures. The obtained results show that in all cases the proposed relationships closely reproduces the experimental data, performing better than other currently used expressions. The obtained results also show that the adopted values of the parameter H0

  13. Thermohaline pore water trends of southeastern Louisiana: Geologic applications and controls on fluid movement

    SciTech Connect

    Marlin, D.; Schramm, B.

    1995-10-01

    Previous research has suggested that dissolution of salt diapirs and the formation of dense, saline brines at shallow depths are concurrent with large scale fluid migration. A critical foundation of these studies is the determination of salinity from the spontaneous potential (SP) log and the ability to drive fluid vertically through the sediment. Derivation of salinity using the perfect shale model and contouring iso-salinity values over intervals of Lower Miocene and Upper Oligocene sediments that contain thick, impermeable carbonate deposits cloud these findings. The calculation of salinity is based on water resistivity (Rw) variations and the geological constraints on derivation of this variable. Application of the imperfect shale membrane model to determine Rw from the SP log provided a closer approximation to Rw from produced water samples over St. Gabriel Field in Ascension and Iberville parishes, La than past SP models. Further analyses of temperature, pressure, salinity, and freshwater hydraulic head trends of Lower Miocene and Upper Oligocene deposits over the field and surrounding area suggest that dissolution of salt occurred prior to hydrocarbon generation and large scale fluid migration is not dynamic at present. An important control that should be used in future studies of thermohaline fluid movement is the identification of local structure, stratigraphic variation, shale membrane efficiency, and time of salt diapirism.

  14. Experimental study of crossover from capillary to viscous fingering for supercritical CO2-water displacement in a homogeneous pore network.

    PubMed

    Wang, Ying; Zhang, Changyong; Wei, Ning; Oostrom, Mart; Wietsma, Thomas W; Li, Xiaochun; Bonneville, Alain

    2013-01-01

    Carbon sequestration in saline aquifers involves displacing brine from the pore space by supercritical CO(2) (scCO(2)). The displacement process is considered unstable due to the unfavorable viscosity ratio between the invading scCO(2) and the resident brine. The mechanisms that affect scCO(2)-water displacement under reservoir conditions (41 °C, 9 MPa) were investigated in a homogeneous micromodel. A large range of injection rates, expressed as the dimensionless capillary number (Ca), was studied in two sets of experiments: discontinuous-rate injection, where the micromodel was saturated with water before each injection rate was imposed, and continuous-rate injection, where the rate was increased after quasi-steady conditions were reached for a certain rate. For the discontinuous-rate experiments, capillary fingering and viscous fingering are the dominant mechanisms for low (logCa ≤ -6.61) and high injection rates (logCa ≥ -5.21), respectively. Crossover from capillary to viscous fingering was observed for logCa = -5.91 to -5.21, resulting in a large decrease in scCO(2) saturation. The discontinuous-rate experimental results confirmed the decrease in nonwetting fluid saturation during crossover from capillary to viscous fingering predicted by numerical simulations by Lenormand et al. (J. Fluid Mech.1988, 189, 165-187). Capillary fingering was the dominant mechanism for all injection rates in the continuous-rate experiment, resulting in monotonic increase in scCO(2) saturation.

  15. Selective surface adsorption and pore trapping for ethanol-water mixtures near single-layer polyporous graphynes

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Yang, Jie; Xu, Zhijun; Yang, Xiaoning

    2016-11-01

    The interfacial behavior of ethanol-water mixtures with various concentrations near single-layer polyporous γ-graphyne (Graphyne-n, n = 3,4,5) surfaces were investigated using molecular dynamics simulation. Comprehensive energetic analysis and structure properties, including density profiles, radial distribution functions, orientation distributions, and surface two-dimensional densities, have been simulated to quantify the surface-induced effect. Our simulation results illustrate micro-phase demixing phenomenon with ethanol molecules preferential adsorbing on the graphyne surfaces. This surface-induced demixing behavior is enhanced as the pore area decreases for the γ-graphynes, that is, G-3 surface induces the strongest demixing of ethanol-water mixture. Meanwhile, when in contacting with the graphyne-4 and graphyne-5 surfaces, ethanol molecules from the mixture are able to predominately occupy the nanopores of graphynes, and display selective ethanol penetration through single-layer graphynes. This unique interface behavior could be attributed to the enhanced hydrophobic interaction between amphiphilic ethanol molecules and graphyne carbon surfaces.

  16. Analysis of atrazine and four degradation products in the pore water of the vadose zone, central Indiana

    USGS Publications Warehouse

    Panshin, S.Y.; Carter, D.S.; Bayless, E.R.

    2000-01-01

    A new method is described for the analysis of atrazine and four of its degradation products (desethylatrazine, deisopropylatrazine, didealkylatrazine, and hydroxyatrazine) in water. This method uses solid- phase extraction on a graphitized carbon black cartridge, derivatization of the eluate with N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), and analysis by gas chromatography/mass spectrometry (GC/MS). This method was used to analyze lysimeter samples collected from a field in central Indiana in 1994 and 1995. Atrazine and its degradation products were transported rapidly through the vadose zone. Maximum values of atrazine ranged from 2.61 to 8.44 ??g/L and occurred from 15 to 57 days after application. Maximum concentrations of the degradation products occurred from 11 to 140 days after atrazine application. The degradation products were more persistent than atrazine in pore water. Desethylatrazine was the dominant degradation product detected in the first year, and didealkylatrazine was the dominant degradation product detected in the second year. Concentrations of atrazine and the degradation products sorbed onto soil were estimated; maximum concentrations ranged from 7.3 to 24 ??g/kg for atrazine and were less than 5 ??g/kg for all degradation products. Degradation of atrazine and transport of all five compounds were simulated by the vadose zone flow model LEACHM. LEACHM was run as a Darcian-flow model and as a non-Darcian-flow model.

  17. Measurement and Modeling of Energetic Material Mass Transfer to Soil Pore Water - Project CP-1227 Annual Technical Report

    SciTech Connect

    PHELAN, JAMES M.; WEBB, STEPHEN W.; ROMERO, JOSEPH V.; BARNETT, JAMES L.; GRIFFIN, FAWN A.

    2003-01-01

    Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g. weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. Experimental work to date with Composition B explosive has shown that column tests typically produce effluents near the temperature dependent solubility limits for RDX and TNT. The influence of water flow rate, temperature, porous media saturation and mass loading is documented. The mass transfer model formulation uses a mass transfer coefficient and surface area function and shows good agreement with the experimental data. Continued experimental work is necessary to evaluate solid phase particle size and 2-dimensional effects, and actual low order detonation debris. Simulation model improvements will continue leading to a capability to complete screening assessments of the impacts of military range operations on groundwater quality.

  18. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    DOE PAGESBeta

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-20

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this Paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is usedmore » to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. Lastly, the simulated spectra indicate that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.« less

  19. Microbial metabolism alters pore water chemistry and increases consolidation of oil sands tailings.

    PubMed

    Arkell, Nicholas; Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-01-01

    Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment. Entrapped biogenic CO decreased tailings pH, thereby increasing calcium (Ca) and magnesium (Mg) cations and bicarbonate (HCO) concentrations in the porewater through dissolution of carbonate minerals. Soluble ions increased the porewater ionic strength, which, with higher exchangeable Ca and Mg, decreased the diffuse double layer of clays and increased consolidation of tailings compared with unamended tailings in which little microbial activity was observed. These results are relevant to effective tailings pond management strategies. PMID:25602329

  20. Produced water toxicity tests accurately measure the produced water toxicity in marine environments?

    SciTech Connect

    Douglas, W.S.; Veil, J.A.

    1996-10-01

    U.S. Environmental Protection Agency (EPA) Region VI has issued a general permit for offshore oil and gas discharges to the Gulf of Mexico that places numerical limits on whole effluent toxicity (WEI) for produced water. Recently proposed EPA general permits for other produced water discharges in Regions VI and X also include enforceable numerical limits on WET. Clearly, the industry will be conducting extensive produced water WET testing. Unfortunately, the WET test may not accurately measure the toxicity of the chemical constituents of produced water. Rather the mortality of test organisms may be attributable to (1) the high salinity of produced water, which causes salinity shock to the organisms, or (2) an ionic imbalance caused by excesses or deficiencies of one or more of seawater`s essential ions in the test chambers. Both of these effects are likely to be mitigated in actual offshore discharge settings, where the receiving water will be seawater and substantial dilution will be probable. Thus, the additional salinity of produced water will be rapidly assimilated, and the proper marine ionic balance will be quickly restored. Regulatory authorities should be aware of these factors when interpreting WET test results.

  1. Equilibrium passive sampling as a tool to study polycyclic aromatic hydrocarbons in Baltic Sea sediment pore-water systems.

    PubMed

    Lang, Susann-Cathrin; Hursthouse, Andrew; Mayer, Philipp; Kötke, Danjiela; Hand, Ines; Schulz-Bull, Detlef; Witt, Gesine

    2015-12-15

    Solid Phase Microextraction (SPME) was applied to provide the first large scale dataset of freely dissolved concentrations for 9 polycyclic aromatic hydrocarbons (PAHs) in Baltic Sea sediment cores. Polydimethylsiloxane (PDMS) coated glass fibers were used for ex-situ equilibrium sampling followed by automated thermal desorption and GC-MS analysis. From the PAH concentrations in the fiber coating we examined (i) spatially resolved freely dissolved PAH concentrations (Cfree); (ii) baseline toxicity potential on the basis of chemical activities (a); (iii) site specific mixture compositions; (iv) diffusion gradients at the sediment water interface and within the sediment cores and (v) site specific distribution ratios. Contamination levels were low in the northern Baltic Sea, moderate to elevated in the Baltic Proper and highest in the Gulf of Finland. Chemical activities were well below levels expected to cause narcosis to benthos organisms. The SPME method is a very sensitive tool that opens new possibilities for studying the PAHs at trace levels in marine environments.

  2. A MARINE RECREATIONAL WATER QUALITY CRITERION CONSISTENT WITH INDICATOR CONCEPTS AND RISK ANALYSIS

    EPA Science Inventory

    An overivew is provided of water quality criteria developed for marine recreational waters by EPA in 1979. The crierion used is the strength of the association with the rates of the important symptoms, such as those that correlate best with swimming in wastewater-polluted waters....

  3. Fabrication of nano-macroporous glass-ceramic bioscaffold with a water soluble pore former.

    PubMed

    Moawad, H M; Jain, H

    2012-02-01

    Recently, several methods have been reported for fabricating tailored amorphous multi porosity bioscaffolds for bone regeneration and tissue engineering. In particular, the melt-quench-heat-etch method appears attractive for making large and/or complex shape structures or fibers for flexible products. However, often the macropore size has been limited to <100 μm. In this paper we report an improved method for fabricating nano-macroporous soda lime phosphosilicate glass using sucrose as a macropore former. The composite compact consisting of soda lime phosphosilicate glass and sucrose powders is pressed in a die at room temperature. 3D interconnected macroporous structure is formed first by dissolving the sucrose part in water at room temperature, and then sintering the compact at temperatures above the glass transition temperature. Thus, interconnected macropores with controlled size (≥100 microns) are formed readily. The sintering heat-treatment also induces nanoscale phase separation, which is then exploited for introducing nanoscale porosity. For the latter goal, the sample is leached in HCl under optimized conditions to yield desired nano-macroporous glass for bone scaffold or other applications.

  4. Deriving NMR surface relaxivities, pore size distributions and water retention curves by NMR relaxation experiments on partially de-saturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Nordlund, C. L.; Klitzsch, N.

    2013-12-01

    Nuclear magnetic resonance (NMR) is a method used over a wide field of geophysical applications to non-destructively determine transport and storage properties of rocks and soils. In NMR relaxometry signal amplitudes correspond directly to the rock's fluid (water, oil) content. On the other hand the NMR relaxation behavior, i.e. the longitudinal (T1) and transverse (T2) NMR relaxation times, can be used to derive pore sizes and permeability as it is linearly linked to the pore's surface-to-volume-ratio and physiochemical properties of the rock-fluid interface by the surface relaxivity ρ_s This parameter, however, is dependent on the type and mineral constituents of the investigated rock sample and thus has to be determined and calibrated prior to estimating pore sizes from NMR relaxometry measurements. Frequently used methods to derive surface relaxivity to calibrate NMR pore sizes comprise mercury injection, pulsed field gradients (PFG-NMR) or grain size analysis. This study introduces an alternative approach to jointly estimate NMR surface relaxivity and pore radii distributions using NMR relaxation data obtained from partially de-saturated rocks. In this, inverse modeling is carried on a linked Young Laplace equation for capillary bundles and the Brownstein and Tarr equations. Subsequently, this approach is used to predict water retention curves of the investigated rocks. The method was tested and validated on simulated and laboratory transverse NMR data. Calculated inverse models are generally in a good agreement with results obtained from mercury injection and drainage measurements. Left: Measured and predicted water retention (pF) curves. Center: NMR relaxometry data, fit and error. Right: Mercury injection data (HgPor, dashed line) and jointly derived pore radii distributions and surface relaxivity by joint inverse modelling

  5. Comment on ‘Water footprint of marine protein consumption—aquaculture’s link to agriculture’

    NASA Astrophysics Data System (ADS)

    Troell, Max; Metian, Marc; Beveridge, Malcolm; Verdegem, Marc; Deutsch, Lisa

    2014-10-01

    In their article ‘Freshwater savings from marine protein consumption’ (2014 Environ. Res. Lett. 9 014005), Gephart and her colleagues analyzed how consumption of marine animal protein rather than terrestrial animal protein leads to reduced freshwater allocation. They concluded that future water savings from increased marine fish consumption would be possible. We find the approach interesting and, if they only considered marine capture fisheries, their analysis would be quite straightforward and show savings of freshwater. However, both capture fisheries and aquaculture are considered in the analysis, and the fact that marine aquaculture is assumed to have a zero freshwater usage, makes the analysis incomplete. Feed resources used in marine aquaculture contain agriculture compounds, which results in a freshwater footprint. To correct this shortcoming we complement the approach taken by Gephart and her colleagues by estimating the freshwater footprint (WF) for crops used for feeding marine aquaculture. We show that this is critically important when estimating the true freshwater footprint for marine aquaculture, and that it will be increasingly so in the future. We also further expand on aquaculture’s dependency on fish resources, as this was only briefly touched upon in the paper. We do so because changes in availability of fish resources will play an important role for feed development and thereby for the future freshwater footprint of marine aquaculture.

  6. Prevalence of partnerships between bacteria and ciliates in oxygen-depleted marine water columns.

    PubMed

    Orsi, William; Charvet, Sophie; Vd'ačný, Peter; Bernhard, Joan M; Edgcomb, Virginia P

    2012-01-01

    Symbioses between Bacteria, Archaea, and Eukarya in deep-sea marine environments represent a means for eukaryotes to exploit otherwise inhospitable habitats. Such symbioses are abundant in many low-oxygen benthic marine environments, where the majority of microbial eukaryotes contain prokaryotic symbionts. Here, we present evidence suggesting that in certain oxygen-depleted marine water-column habitats, the majority of microbial eukaryotes are also associated with prokaryotic cells. Ciliates (protists) associated with bacteria were found to be the dominant eukaryotic morphotype in the haloclines of two different deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea. These findings are compared to associations between ciliates and bacteria documented from the permanently anoxic waters of the Cariaco Basin (Caribbean Sea). The dominance of ciliates exhibiting epibiotic bacteria across three different oxygen-depleted marine water column habitats suggests that such partnerships confer a fitness advantage for ciliates in these environments.

  7. 77 FR 11401 - Marine Sanitation Devices (MSDs): No Discharge Zone (NDZ) for California State Marine Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... Federal Register (75 FR 53914). A 60-day comment period followed that ended on November 1, 2010, during... Petition and Other Request to Revise the Performance Standards for Marine Sanitation Devices,'' 75 FR 39683... commenter asked EPA to consider regulating landside wastewater sources as well, including...

  8. IMPORTANCE OF BLACK CARBON IN DISTRIBUTION AND BIOACCUMULATION MODELS OF POLYCYCLIC AROMATIC HYDROCARBONS IN CONTAMINATED MARINE SEDIMENTS

    EPA Science Inventory

    The roles and relative importance of nonpyrogenic organic carbon (NPOC) and black carbon (BC) as binding phases of polycyclic aromatic hydrocarbons (PAHs) were assessed by their ability to estimate pore water concentrations and biological uptake in various marine sediments. Sedim...

  9. Measurement and modeling of energetic material mass transfer to soil pore water :project CP-1227 FY03 annual technical report.

    SciTech Connect

    Phelan, James M.; Barnett, James L.; Kerr, Dayle R.

    2004-01-01

    Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. This report documents the results of the Phase III experimental effort, which evaluated the impacts of surface deposits versus buried deposits, energetic material particle size, and low order detonation debris. Next year, the energetic material mass transfer model will be refined and a 2-d screening model will be developed for initial site-specific applications. A technology development roadmap was created to show how specific R&D efforts are linked to technology and products for key customers.

  10. Studying the Hydrology of Landslides: Pore Water Pressure, Preferential Flow and Feedbacks Between Slope Displacement and Hillslope Hydrology

    NASA Astrophysics Data System (ADS)

    Bogaard, T.; Greco, R.

    2014-12-01

    Hydrology is one of the most important triggering factors for slope destabilization. When a slope becomes unstable, cracks and fissures develop during slope deformation. These discontinuities affect both geotechnical and hydrological conditions of the slope. The crucial role of water flow, and especially the important role of preferential flow in unstable slopes, is generally recognized. However, in hydrological modelling, the unstable slope is characterized using static subsurface properties. The dynamic feedback between slope deformation and slope hydrology, being positive or negative depending on other geotechnical conditions, is not taken into account although it influences the pore pressure distribution and as such the overall stability. This research aims to highlight and quantify the dynamic nature of the subsurface hydrological conditions in unstable slopes. We focus on the role preferential flow has on slope destabilization and more specifically on the feedbacks between differential displacement and hydrological behaviour of the subsurface in natural slopes. We will present examples of field experimental work where we measured the hydrological influence of fissures, theoretical analysis and case study modelling of combined hydrology and slope stability, including feedbacks. The results show the subtle trade-off of increased infiltration and storage capacity in a slope and the increased drainage capacity of well connected preferential flow paths. We will furthermore highlight the current status of our knowledge as well as identify the knowledge gaps we face and the importance of cross- and multidisciplinary approach to better understand the internal dynamics of slope deformation and hillslope hydrology.

  11. [Determination of tracer gas contents in sediment pore water of gas hydrate area by two-dimensional gas chromatography].

    PubMed

    Wang, Hu; Yang, Qunhui; Ji, Fuwu; Zhou, Huaiyang; Xue, Xiang

    2011-01-01

    A two-dimensional gas chromatographic instrument was established by the capillary flow technology (Deans Switch) and two columns (PoraPLOT Q and Molsieve 5A) and three detectors (pulsed discharge helium ionization detector, flame photometric detector and thermal conductivity detector). The instrument can be used to measure tracer gases simultaneously including hydrogen, methane, carbon dioxide and hydrogen sulfide. The detection limits of the hydrogen, methane, carbon dioxide and hydrogen sulfide were 0.51, 0.17, 82 and 0.08 micromol/mol, and the calibration curves presented good linear relationships in the range of 2-1030, 0.6-501, 120-10500 and 0.2- 49.1 micromol/mol, respectively. The relative standard deviations were less than 10% for the measurements of ten standard gases. By this method, the tracer gases in the sediment pore water of gas hydrate area in South China Sea had been detected. This method is simple, sensitive, and suitable for on-board detection. Compared with the usual methods for measuring tracer gases, the amount of a sample necessary is reduced greatly. It is useful for the survey of gas hydrate and hydrothermal resources below sea floor and for the research of dissolved gases in the ocean.

  12. Water, Water, Everywhere...A Guide to Marine Education in Oregon. Second Revised Edition.

    ERIC Educational Resources Information Center

    Osis, Vicki J.

    Designed to familiarize Oregon teachers with a variety of marine education materials, this guide offers suggestions and information for accessing marine education resources. Contents include: (1) project description; (2) marine education and goal-based instruction (explaining how to infuse marine education into existing courses); (3) marine…

  13. Profiles of chloride and stable isotopes in pore-water obtained from a 2000 m-deep borehole through the Mesozoic sedimentary series in the eastern Paris Basin

    NASA Astrophysics Data System (ADS)

    Bensenouci, F.; Michelot, J. L.; Matray, J. M.; Savoye, S.; Tremosa, J.; Gaboreau, S.

    Water stable isotopes and chloride profiles in pore-water through more than 800 m of sediments were obtained from a 2000 m-deep borehole (EST 433) drilled by Andra in the eastern Paris Basin. Vapour exchange method and aqueous leaching were used to obtain the stable isotope and chloride concentrations of pore-water from 24 rock samples. Petrophysical measurements included water contents, grain densities and porosities of the studied formations. Pore-water and some groundwater samples collected during the drilling are mainly of meteoric origin: they plot near the Global Meteoric Water Line, distributed between heavy-isotope depleted Oxfordian groundwater and enriched Triassic groundwater, in good agreement with previous data. The δ2H and δ18O values describe curved profiles in the Callovo-Oxfordian formation, and show an increase with depth below this formation (Dogger and Liassic). Similar trends were observed for the chloride concentrations, except in the Liassic formation where they are more or less constant. The low chloride concentrations in the basal Jurassic layers indicate that the source of salinity to the Dogger aquifer is likely the middle Liassic formation and not the Triassic salt as previously suggested. A preliminary modelling exercise showed that currently available diffusion parameters (diffusion coefficients and accessible porosities) might be used to properly simulate these exchanges for deuterium. This is not the case for chloride, perhaps because the used values for anion accessible porosity were not relevant and/or the applied modelling conditions were unsuitable.

  14. Role of dense shelf water cascading in the transfer of organochlorine compounds to open marine waters.

    PubMed

    Salvadó, Joan A; Grimalt, Joan O; López, Jordi F; Palanques, Albert; Heussner, Serge; Pasqual, Catalina; Sanchez-Vidal, Anna; Canals, Miquel

    2012-03-01

    Settling particles were collected by an array of sediment trap moorings deployed along the Cap de Creus (CCC) and Lacaze-Duthiers (LDC) submarine canyons and on the adjacent southern open slope (SOS) between October 2005 and October 2006. This array collected particles during common settling processes and particles transferred to deep waters by dense shelf water cascading (DSWC). Polychlorobiphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), chlorobenzenes (CBzs)--pentachlorobenzene and hexachlorobenzene--and hexachlorocyclohexanes were analyzed in all samples. The results show much higher settling fluxes of these compounds during DSWC than during common sedimentation processes. The area of highest deposition was located between 1000 and 1500 m depth and extended along the canyons and outside them showing their channelling effects but also overflows of dense shelf water from these canyons. Higher fluxes were observed near the bottom (30 m above bottom; mab) than at intermediate waters (500 mab) which is consistent with the formation and sinking of dense water close to the continental shelf and main displacement through the slope by the bottom. DSWC involved the highest settling fluxes of these compounds ever described in marine continental slopes and pelagic areas, e.g., peak values of PCBs (960 ng · m(-2) · d(-1)), DDTs (2900 ng · m(-2) · d(-1)), CBzs (340 ng · m(-2) · d(-1)) and lindane (180 ng · m(-2) · d(-1)). PMID:22296346

  15. Role of dense shelf water cascading in the transfer of organochlorine compounds to open marine waters.

    PubMed

    Salvadó, Joan A; Grimalt, Joan O; López, Jordi F; Palanques, Albert; Heussner, Serge; Pasqual, Catalina; Sanchez-Vidal, Anna; Canals, Miquel

    2012-03-01

    Settling particles were collected by an array of sediment trap moorings deployed along the Cap de Creus (CCC) and Lacaze-Duthiers (LDC) submarine canyons and on the adjacent southern open slope (SOS) between October 2005 and October 2006. This array collected particles during common settling processes and particles transferred to deep waters by dense shelf water cascading (DSWC). Polychlorobiphenyls (PCBs), dichlorodiphenyltrichloroethane and its metabolites (DDTs), chlorobenzenes (CBzs)--pentachlorobenzene and hexachlorobenzene--and hexachlorocyclohexanes were analyzed in all samples. The results show much higher settling fluxes of these compounds during DSWC than during common sedimentation processes. The area of highest deposition was located between 1000 and 1500 m depth and extended along the canyons and outside them showing their channelling effects but also overflows of dense shelf water from these canyons. Higher fluxes were observed near the bottom (30 m above bottom; mab) than at intermediate waters (500 mab) which is consistent with the formation and sinking of dense water close to the continental shelf and main displacement through the slope by the bottom. DSWC involved the highest settling fluxes of these compounds ever described in marine continental slopes and pelagic areas, e.g., peak values of PCBs (960 ng · m(-2) · d(-1)), DDTs (2900 ng · m(-2) · d(-1)), CBzs (340 ng · m(-2) · d(-1)) and lindane (180 ng · m(-2) · d(-1)).

  16. Modeling transport and dilution of produced water and the resulting uptake and biomagnification in marine biota

    SciTech Connect

    Rye, H.; Reed, M.; Slagstad, D.

    1996-12-31

    The paper explains the numerical modelling efforts undertaken in order to study possible marine biological impacts caused by releases of produced water from the Haltenbanken area outside the western coast of Norway. Acute effects on marine life from releases of produced water appear to be relatively small and confined to areas rather lose to the release site. Biomagnification may however be experienced for relatively low concentrations at larger distances from the release point. Such effects can he modeled by performing a step-wise approach which includes: The use of 3-D hydrodynamic models to determine the ocean current fields; The use of 3-D multi-source numerical models to determine the concentration fields from the produced water releases, given the current field; and The use of biologic models to simulate the behavior of and larvae (passive marine biota) and fish (active marine biota) and their interaction with the concentration field. The paper explains the experiences gained by using this approach for the calculation of possible influences on marine life below the EC{sub 50} or LC{sub 50} concentration levels. The models are used for simulating concentration fields from 5 simultaneous sources at the Haltenbank area and simulation of magnification in some marine species from 2 simultaneous sources in the same area. Naphthalenes and phenols, which are both present in the produced water, were used as the chemical substances in the simulations.

  17. Interaction between hydrocarbon seepage, chemosynthetic communities and bottom water redox at cold seeps of the Makran accretionary prism: insights from habitat-specific pore water sampling and modeling

    NASA Astrophysics Data System (ADS)

    Fischer, D.; Sahling, H.; Nöthen, K.; Bohrmann, G.; Zabel, M.; Kasten, S.

    2011-09-01

    The interaction between fluid seepage, bottom water redox, and chemosynthetic communities was studied at cold seeps across one of the world's largest oxygen minimum zones (OMZ) located at the Makran convergent continental margin. Push cores were obtained from seeps within and at the lower boundary of the core-OMZ with a remotely operated vehicle. Extracted pore water was analyzed for sulfide and sulfate contents. Depending on oxygen availability, seeps were either colonized by microbial mats or by mats and macrofauna. The latter, including ampharetid polychaetes and vesicomyid clams, occurred in distinct benthic habitats which were arranged in a concentric fashion around gas orifices. At most sites colonized by microbial mats, hydrogen sulfide was exported into the bottom water. Where macrofauna was widely abundant, hydrogen sulfide was consumed within the sediment. Numerical modeling of pore water profiles was performed in order to assess rates of fluid advection and bioirrigation. While the magnitude of upward fluid flow decreased from 11 cm yr-1 to <1 cm yr-1 and the sulfate/methane transition zone (SMTZ) deepened with increasing distance from the central gas orifice, the fluxes of sulfate into the SMTZ did not significantly differ (6.6-9.3 mol m-2 yr-1). Depth-integrated rates of bioirrigation increased from 162 cm yr-1 in central habitats characterized by microbial mats and sparse macrofauna to 348 cm yr-1 in habitats of large and small vesicomyid clams. These results reveal that chemosynthetic macrofauna inhabiting the outer seep habitats at the lower boundary of the OMZ efficiently bioirrigate and thus transport sulfate into the upper 10 to 15 cm of the sediment. In this way bioirrigation compensates for the lower upward flux of methane in outer habitats and stimulates rates of anaerobic oxidation of methane (AOM) with sulfate high enough to provide sulfide for chemosynthesis. Through bioirrigation macrofauna engineer their geochemical environment and fuel

  18. Lanthanide concentrations in freshwater plants and molluscs, related to those in surface water, pore water and sediment. A case study in The Netherlands.

    PubMed

    Weltje, Lennart; Heidenreich, Heike; Zhu, Wangzhao; Wolterbeek, Hubert Th; Korhammer, Siegfried; de Goeij, Jeroen J M; Markert, Bernd

    2002-03-01

    Industrial emissions of lanthanides to aquatic ecosystems increase, but knowledge of the environmental fate of these metals is limited. Here we focus attention upon the distribution of lanthanides in freshwater ecosystems, describing lanthanide partitioning between sediment, water and biota. Since lanthanides are often used as oxidation-state analogues for actinides, their distribution can reflect long-term behaviour of the radioactive transuranics. Concentrations of all 14 naturally occurring lanthanides were measured by ICP-MS in Sago pondweed (Potamogeton pectinatus), common duckweed (Lemna minor), seven different mollusc species (tissue and shell), two sediment fractions (< 2 mm and < 63 microm), surface water and sediment pore water from five locations in The Netherlands. In all samples, the typical 'saw-tooth' lanthanide pattern was observed, which implies that lanthanides are transported as a coherent group through aquatic ecosystems. Typical deviations from this pattern were found for Ce and Eu and could be explained by their redox chemistry. The variation in concentrations in abiotic fractions was limited, i.e. within one order of magnitude. However, variations of up to three orders of magnitude were observed in biotic samples, suggesting different affinities among organisms for lanthanides as a group, with significant differences only among molluscs and pondweed samples in relation to sampling location. For P. pectinatus it was shown that pore water was the most important lanthanide source, and for snails, food (plants) seems to be the dominant lanthanide source. Lanthanides were not equally distributed between mollusc shell and tissue and the ratio of lanthanide concentrations in shell and tissue were dependent on the sampling location. Shells contained much lower concentrations and were relatively enriched in Eu, and to a lesser extent in Ce. Bioconcentration factors for lanthanides in plants and snails relative to surface water were typically between

  19. Total Mercury, Methylmercury, Methylmercury Production Potential, and Ancillary Streambed-Sediment and Pore-Water Data for Selected Streams in Oregon, Wisconsin, and Florida, 2003-04

    USGS Publications Warehouse

    Marvin-DiPasquale, Mark C.; Lutz, Michelle A.; Krabbenhoft, David P.; Aiken, George R.; Orem, William H.; Hall, Britt D.; DeWild, John F.; Brigham, Mark E.

    2008-01-01

    Mercury contamination of aquatic ecosystems is an issue of national concern, affecting both wildlife and human health. Detailed information on mercury cycling and food-web bioaccumulation in stream settings and the factors that control these processes is currently limited. In response, the U.S. Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) conducted detailed studies from 2002 to 2006 on various media to enhance process-level understanding of mercury contamination, biogeochemical cycling, and trophic transfer. Eight streams were sampled for this study: two streams in Oregon, and three streams each in Wisconsin and Florida. Streambed-sediment and pore-water samples were collected between February 2003 and September 2004. This report summarizes the suite of geochemical and microbial constituents measured, the analytical methods used, and provides the raw data in electronic form for both bed-sediment and pore-water media associated with this study.

  20. Extreme hydrogen, oxygen and carbon isotope anomalies in the pore waters and carbonates of the sediments and basalts from the Norwegian Sea: Methane and hydrogen from the mantle?

    NASA Astrophysics Data System (ADS)

    Lawrence, J. R.; Taviani, M.

    1988-08-01

    D/H ratios in the pore waters of the sediments from the Norwegian Sea decrease as a function of depth to values as low as -14%. Oxygen isotope ratios in the pore waters and carbon and oxygen isotope ratios in carbonates both in the sediments and basalts are low. Extensive alteration of basalt has been given as the explanation for the low oxygen isotope ratios. Material balance calculations suggest that alteration of volcanic material and oxidation of organic matter cannot explain the hydrogen and carbon isotope anomalies. Arguments are presented suggesting that methane and hydrogen from the mantle are oxidized to carbon dioxide and water by sulfate and ferric iron in the basaltic crust to yield the low hydrogen and carbon isotope ratios.

  1. Effects of pore-water ammonia on in situ survival and growth of juvenile mussels (Lampsilis cardium) in the St. Croix Riverway, Wisconsin, USA

    USGS Publications Warehouse

    Bartsch, M.R.; Newton, T.J.; Allran, J.W.; O'Donnell, J. A.; Richardson, W.B.

    2003-01-01

    We conducted a series of in situ tests to evaluate the effects of pore-water ammonia on juvenile Lampsilis cardium in the St. Croix River (WI, USA). Threats to this river and its associated unionid fauna have accelerated in recent years because of its proximity to Minneapolis-St. Paul, Minnesota, USA. In 2000, caged juveniles were exposed to sediments and overlying water at 12 sites for 10 d. Survival and growth of juveniles was significantly different between sediment (mean, 47%) and water column (mean, 86%) exposures; however, these effects were unrelated to pore-water ammonia. During 2001, juveniles were exposed to sediments for 4, 10, and 28 d. Pore-water ammonia concentrations ranged from 0.3 to 62.0 ??g NH3-NIL in sediments and from 0.5 to 140.8 ??g NH3-N/L within exposure chambers. Survival (mean, 45, 28, and 41% at 4, 10, and 28 d, respectively) and growth (range, 3-45 ??,m/d) of juveniles were highly variable and generally unrelated to ammonia concentrations. Although laboratory studies have shown unionids to be quite sensitive to ammonia, further research is needed to identify the route(s) of ammonia exposure in unionids and to understand the factors that contribute to the spatial variability of ammonia in rivers.

  2. Effects of pore-water ammonia on in situ survival and growth of juvenile mussels (Lampsilis cardium) in the St. Croix Riverway, Wisconsin, USA

    USGS Publications Warehouse

    Bartsch, Michelle; Newton, Teresa J.; Allran, John W.; O'Donnell, Jonathan A.; Richardson, William B.

    2003-01-01

    We conducted a series of in situ tests to evaluate the effects of pore-water ammonia on juvenile Lampsilis cardium in the St. Croix River (WI, USA). Threats to this river and its associated unionid fauna have accelerated in recent years because of its proximity to Minneapolis-St. Paul, Minnesota, USA. In 2000, caged juveniles were exposed to sediments and overlying water at 12 sites for 10 d. Survival and growth of juveniles was significantly different between sediment (mean, 47%) and water column (mean, 86%) exposures; however, these effects were unrelated to pore-water ammonia. During 2001, juveniles were exposed to sediments for 4, 10, and 28 d. Pore-water ammonia concentrations ranged from 0.3 to 62.0 μg NH3-N/L in sediments and from 0.5 to 140.8 μg NH3-N/L within exposure chambers. Survival (mean, 45, 28, and 41% at 4, 10, and 28 d, respectively) and growth (range, 3-45 μm/d) of juveniles were highly variable and generally unrelated to ammonia concentrations. Although laboratory studies have shown unionids to be quite sensitive to ammonia, further research is needed to identify the route(s) of ammonia exposure in unionids and to understand the factors that contribute to the spatial variability of ammonia in rivers.

  3. Marine mammals and debris in coastal waters of British Columbia, Canada.

    PubMed

    Williams, Rob; Ashe, Erin; O'Hara, Patrick D

    2011-06-01

    Entanglement in and ingestion of synthetic marine debris is increasingly recognized worldwide as an important stressor for marine wildlife, including marine mammals. Studying its impact on wildlife populations is complicated by the inherently cryptic nature of the problem. The coastal waters of British Columbia (BC), Canada provide important habitat for marine mammal species, many of which have unfavorable conservation status in the US and Canada. As a priority-setting exercise, we used data from systematic line-transect surveys and spatial modeling methods to map at-sea distribution of debris and 11 marine mammal species in BC waters, and to identify areas of overlap. We estimated abundance of 36,000 (CIs: 23,000-56,600) pieces of marine debris in the region. Areas of overlap were often far removed from urban centers, suggesting that the extent of marine mammal-debris interactions would be underestimated from opportunistic sightings and stranding records, and that high-overlap areas should be prioritized by stranding response networks. PMID:21665015

  4. Distribution Analysis of Hydrogenases in Surface Waters of Marine and Freshwater Environments

    PubMed Central

    Barz, Martin; Beimgraben, Christian; Staller, Torsten; Germer, Frauke; Opitz, Friederike; Marquardt, Claudia; Schwarz, Christoph; Gutekunst, Kirstin; Vanselow, Klaus Heinrich; Schmitz, Ruth; LaRoche, Julie; Schulz, Rüdiger; Appel, Jens

    2010-01-01

    Background Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation. Principal Findings We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean. Significance This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving

  5. Atrazine concentrations in stream water and streambed sediment pore water in the St. Joseph and Galien River basins, Michigan and Indiana, May 2001-September 2003

    USGS Publications Warehouse

    Duris, Joseph W.; Reeves, Howard W.; Kiesler, James L.

    2005-01-01

    The U.S. Geological Survey (USGS) sampled multiple stream sites across the St. Joseph and Galien River Basins to detect and quantify the herbicide atrazine using a field enzyme-linked immunosorbent assay (ELISA) triazine test. In May 2001, July 2001, April 2002, August 2002, August 2003 and September 2003, composite samples were collected across streams at USGS streamflow-gaging stations. Concentrations and instantaneous loading for atrazine sampled in stream water throughout the St. Joseph River and Galien River Basins in Michigan and Indiana ranged from nondetection (< 0.05 part per billion (ppb)) with an associated load less than 0.001 kilogram per day (kg/d) to 6 ppb and a maximum load of 10 kg/d. Atrazine concentrations were highest in May 2001 just after the planting season. The lowest concentration was found in April 2002 just before planting. Atrazine concentrations in streambed-sediment pore water were not spatially connected with atrazine concentrations in stream-water samples. This study showed that atrazine concentrations were elevated from May to July in the St. Joseph and Galien River Basins. At many sites, concentrations exceeded the level that has been shown to feminize frog populations (0.2 ppb). There were 8 sites where concentrations exceeded 0.2 ppb atrazine in May 2001 and July 2001.

  6. Estimating the toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) using in situ pore water concentrations in different soils.

    PubMed

    Liu, Kailin; Pan, Xiong; Han, Yuling; Tang, Feifan; Yu, Yunlong

    2012-11-01

    Both sorption by soil and uptake by organisms of ionizable organic pollutants depend on their speciation (i.e., neutral and ionized forms); thus, the bioavailability of ionizable organic pollutants is more complicated than that of neutral organic pollutants in soil. The toxicity of the weak base carbendazim to earthworms (Eisenia fetida) was estimated using Soxhlet extracted concentrations (C(SE)), an excess of water extracted concentrations (C(EEW)), ex situ pore water concentrations (C(EPW)) and in situ pore water concentrations (C(IPW)) in different soils. The results indicated that the median lethal concentrations (LC50) calculated from C(SE) ranged from 2.32 to 34.0 mg kg(-1) in the five tested soils and the coefficient of variation (CV) of LC50s was 69.8%. When the LC50 was calculated from the C(EEW), C(EPW) and C(IPW), the variability of the LC50 gradually became smaller in these soils, with the CVs of LC50s being 58.1%, 50.6% and 38.6% (for C(EEW), C(EPW) and C(IPW), respectively). However, the LC50 based on C(IPW) in strongly acidic soil (where carbendazim partially exists as ionized form) was significantly lower than in other soils, and the values of the LC50 calculated from the in situ pore water concentrations were approximately equal. The results indicated that the in situ pore water concentration could be used to estimate the toxicity of carbendazim in different soils especially in those soils where carbendazim exists in the neutral form.

  7. Nitrous oxide and methane dynamics in a coral reef lagoon driven by pore water exchange: Insights from automated high-frequency observations

    NASA Astrophysics Data System (ADS)

    O'Reilly, Chiara; Santos, Isaac R.; Cyronak, Tyler; McMahon, Ashly; Maher, Damien T.

    2015-04-01

    Automated cavity ring down spectroscopy was used to make continuous measurements of dissolved methane, nitrous oxide, and carbon dioxide in a coral reef lagoon for 2 weeks (Heron Island, Great Barrier Reef). Radon (222Rn) was used to trace the influence of tidally driven pore water exchange on greenhouse gas dynamics. Clear tidal variation was observed for CH4, which correlated to 222Rn in lagoon waters. N2O correlated to 222Rn during the day only, which appears to be a response to coupled nitrification-denitrification in oxic sediments, fueled by nitrate derived from bird guano. The lagoon was a net source of CH4 and N2O to the atmosphere and a sink for atmospheric CO2. The estimated pore water-derived CH4 and N2O fluxes were 3.2-fold and 24.0-fold greater than the fluxes to the atmosphere. Overall, pore water and/or groundwater exchange were the only important sources of CH4 and major controls of N2O in the coral reef lagoon.

  8. Effects of phytoextraction on heavy metal concentrations and pH of pore-water of biosolids determined using an in situ sampling technique.

    PubMed

    Huynh, T T; Laidlaw, W S; Singh, B; Gregory, D; Baker, A J M

    2008-12-01

    Heavy metal concentrations and pH of pore-water in contaminated substrates are important factors in controlling metal uptake by plants. We investigated the effects of phytoextraction on these properties in the solution phase of biosolids and diluted biosolids in a 12-month phytoextraction column experiment. Phytoextraction using Salix and Populus spp. temporarily decreased pore-water pH of the substrates over the experimental period followed by a return to initial pH conditions. Salixxreichardtii and Populus balsamifera effectively extracted Ni, Zn and Cd and actively mobilized these metals from the solid to the solution phase. S.xreichardtii had the stronger effect on mobilization of metals due to its larger root system. Phytoextraction did not affect Cu in the solution phase of the biosolids. Heavy metals were leached down to lower depths of the columns during the phytoextraction process.

  9. Major Cation, Carbon System and Trace Element Chemistry in Pore Waters from a Depth Transect of Cores on the Iberian Margin: Implications for Paleoproxies.

    NASA Astrophysics Data System (ADS)

    Greaves, M.; Elderfield, H.; Hodell, D. A.; Skinner, L. C.; Sevilgen, D.; Grauel, A. L.; de la Fuente, M.; Misra, S.

    2014-12-01

    A significant body of work exists on the chemistry of pore waters from DSDP and ODP drilling cores (e.g. Gieskes 1975; Sayles 1981) showing large gradients in sea salt cations and anions interpreted in terms of diagenetic reactions such as the formation of Mg-rich clays and dolomite formation (Higgins and Schrag, 2010). Another class of diagenetic reactions involves the breakdown of organic matter and trace element behaviour (Froelich et al., 1979). The translation of chemical gradients into fluxes requires estimates of pore water chemistry across the sea water - sediment surface boundary. Additionally, the use of the chemistry of benthic foraminiferal calcite for seawater paleochemistry requires estimation of the chemistry of pore waters which may differ from that of bottom seawater because of diagenetic reactions. In this work we have collected multi core samples from 10 core sites on cruise RRS James Cook JC089 on the southwest Iberian continental margin. Pore waters were extracted from the core surface and at 1 cm depth intervals down core (typically to ~40 cm depth) using Rhizon samplers and analysed for Alkalinity, DIC, ∂13C and Na, K, Mg, Ca, Li, Mn, Fe, Ba, B, Sr by atomic emission spectrophotometry as well as O2 penetration and pH by microelectrodes. This has allowed us to inspect chemical behavior at the bottom water - sediment interface. Some examples of results are a large gradient in ∂13C of DIC, the similarity of zero O2 penetration followed by an increase in Mn concentration and then decrease to zero, the similarity of Li to Mn and, in contrast to much DSDP/ODP work, Ca2+ and Mg2+both decrease with depth in pore waters near the sediment surface. References: Gieskes J.M. Annu. Rev. Earth Planet. Sci. 3, 433 (1975). Sayles F. L. Geochim. Cosmochim. Acta45, 1061 (1981). Higgins J.A. and D.P. Schrag. Geochim. Cosmochim. Acta.74, 5039 (2010). Froelich, P.N., et al., Geochim. Cosmochim. Acta. 43, 1075 (1979).

  10. Transport of viruses in water saturated columns packed with sand: Effect of pore water velocity, sand grain size, and suspended colloids

    NASA Astrophysics Data System (ADS)

    Syngouna, V.; Chrysikopoulos, C.

    2012-04-01

    In this study, the attachment behavior of model viruses (bacteriophages MS2 and ΦX174) onto quartz sand of three different grain sizes for various pore water velocities with and without the presence of suspended model clay colloids (kaolinite: KGa-1b and montmorillonite: STx-1b) were evaluated. No obvious relationships between virus mass recoveries and water velocity or grain size could be established from the experimental results. The observed mean dispersivity values for each sand grain size were higher for MS2 than ΦX174. The interaction of viruses with KGa-1b and STx-1b was investigated with batch as well as virus-clay cotransport experiments. The batch experimental data suggested that virus attachment onto KGa-1b and STx-1b is adequately described by the Freundlich isotherm equation. The presence of suspended colloids was shown to significantly influence virus deposition. In both batch and co-transport experiments, MS2 and ΦX174 were attached in greater amounts onto KGa-1b than STx-1b with MS2 having greater affinity than ΦX174 for both clays. Furthermore, extended-DLVO interaction energy calculations explained that the attachment of viruses onto model clay colloids was primarily caused by hydrophobic interaction. The theoretical and experimental results of this study were found to be in good agreement with previous findings.

  11. Pore-Water Quality in the Clay-Silt Confining Units of the Lower Miocene Kirkwood Formation and Hypothetical Effects on Water Quality in the Atlantic City 800-Foot Sand, Northeastern Cape May County, New Jersey, 2001

    USGS Publications Warehouse

    Szabo, Zoltan; Keller, Elizabeth A.; Defawe, Rose M.

    2006-01-01

    Pore water was extracted from clay-silt core samples collected from a borehole at Ocean View, west of Sea Isle City, in northeastern Cape May County, New Jersey. The borehole intersects the lower Miocene Kirkwood Formation, which includes a thick sand and gravel unit between two clay-silt units. The sand and gravel unit forms a major confined aquifer in the region, known as the Atlantic City 800-foot sand, the major source of potable water along the Atlantic Coast of southern New Jersey. The pore water from the core is of interest because the borehole intersects the aquifer in an area where the ground water is sodium-rich and sulfidic. Locally in the aquifer in central and southern Cape May County, sodium concentrations are near the New Jersey secondary drinking-water standard of 50 mg/L (milligrams per liter), and typically are greater than 30 mg/L, but chloride and sulfate do not approach their respective secondary drinking-water standards except in southernmost Cape May County. Pore waters from the confining units are suspected to be a source of sodium, sulfur, and chloride to the aquifer. Constituent concentrations in filtered pore-water samples were determined using the inductively coupled plasma-mass spectrometry analytical technique to facilitate the determination of low-level concentrations of many trace constituents. Calcium-sodium-sulfate-bicarbonate, calcium-chloride-sulfate, calcium-sulfate, and sodium-sulfate-chloride-bicarbonate type waters characterize samples from the deepest part of the confining unit directly overlying the aquifer (termed the 'lower' confining unit). A sodium-chloride-sulfate type water is dominant in the composite confining unit below the aquifer. Sodium, chloride, and sulfate became increasingly dominant with depth. Pore water from the deepest sample recovered (1,390 ft (feet) below land surface) was brackish, with concentrations of sodium, chloride, and sulfate of 5,930, 8,400, and 5,070 mg/L, respectively. Pore-water samples

  12. Methylated mercury species in marine waters of the Canadian high and sub Arctic.

    PubMed

    Kirk, Jane L; St Louis, Vincent L; Hintelmann, Holger; Lehnherr, Igor; Else, Brent; Poissant, Laurier

    2008-11-15

    Distribution of total mercury (THg), gaseous elemental Hg(0) (GEM), monomethyl Hg (MMHg), and dimethyl Hg (DMHg) was examined in marine waters of the Canadian Arctic Archipelago (CAA), Hudson Strait, and Hudson Bay. Concentrations of THg were low throughout the water column in all regions sampled (mean +/- standard deviation; 0.40 +/- 0.47 ng L(-1)). Concentrations of MMHg were also generally low atthe surface (23.8 +/- 9.9 pg L(-1)); however at mid- and bottom depths, MMHg was present at concentrations sufficient to initiate bioaccumulation of MMHg through Arctic marine foodwebs (maximum 178 pg L(-1); 70.3 +/- 37.3 pg L(-1)). In addition, at mid- and bottom depths, the % of THg that was MMHg was high (maximum 66%; 28 +/- 16%), suggesting that active methylation of inorganic Hg(II) occurs in deep Arctic marine waters. Interestingly, there was a constant, near 1:1, ratio between concentrations of MMHg and DMHg at all sites and depths, suggesting that methylated Hg species are in equilibrium with each other and/or are produced by similar processes throughout the water column. Our results also demonstrate that oceanographic processes, such as water regeneration and vertical mixing, affect Hg distribution in marine waters. Vertical mixing, for example, likely transported MMHg and DMHg upward from production zones at some sites, resulting in elevated concentrations of these species in surface waters (up to 68.0 pg L(-1)) where primary production and thus uptake of MMHg by biota is potentially highest. Finally, calculated instantaneous ocean-atmosphere fluxes of gaseous Hg species demonstrated that Arctic marine waters are a substantial source of DMHg and GEM to the atmosphere (27.3 +/- 47.8 and 130 +/- 138 ng m(-2) day(-1), respectively) during the ice-free season. PMID:19068819

  13. Distribution and ecology of marine turtles in waters off the southeastern United States

    USGS Publications Warehouse

    Fritts, T.H.; Hoffman, W.; McGehee, M.A.

    1983-01-01

    Aerial surveys of marine waters up to 222 km from shore in the Gulf of Mexico and nearby Atlantic Ocean suggest that marine turtles are largely distributed in waters less than 100 m in depth. The loggerhead turtle (Caretta caretta) was observed nearly 50 times as often in waters off eastern and western Florida as in the western Gulf of Mexico. Loggerheads were present year round but the frequency of sightings in the winter months was lower than at other seasons. Green turtles (Chelonia rnydas) were infrequently observed but were most conspicuous in waters off eastern Florida. Kemp's ridleys (Lepidochelys kempi) were most frequently sighted off southwestern Florida and rarely observed in the western Gulf of Mexico. Leatherback turtles (Dermochelys coriacea) were more conspicuous on the continental shelf than in adjacent deeper waters. A concentration of leatherback and loggerhead turtles occurred west of the Gulf Stream Current in August 1980, near Brevard County, Florida.

  14. Remote sensing of chlorophyll and temperature in marine and fresh waters.

    NASA Technical Reports Server (NTRS)

    Arvesen, J. C.; Millard, J. P.; Weaver, E. C.

    1973-01-01

    An airborne differential radiometer was demonstrated to be a sensitive, real-time detector of surface chlorophyll content in water bodies. The instrument continuously measures the difference in radiance between two wavelength bands, one centered near the maximum of the blue chlorophyll a absorption region and the other at a reference wavelength outside this region. Flights were made over fresh water lakes, marine waters, and an estuary, and the results were compared with 'ground truth' measurements of chlorophyll concentration. A correlation between output signal of the differential radiometer and the chlorophyll concentration was obtained. Examples of flight data are illustrated. Simultaneous airborne measurements of chlorophyll content and water temperature revealed that variations in chlorophyll are often associated with changes in temperature. Thus, simultaneous sensing of chlorophyll and temperature provides useful information for studies of marine food production, water pollution, and physical processes such as upwelling.

  15. Post-Remediation Biomonitoring of Pesticides in Marine Waters Near the United Heckathorn Site, Richmond, California

    SciTech Connect

    Antrim, Liam D.; Kohn, Nancy P.

    2000-09-05

    Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in January 1998 from four stations near Lauritzen Canal in Richmond, California, for the first post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and DDT were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared to pre-remediation data available from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Biomonitoring results indicated that pesticides were still bioavailable in the water column, and have not been reduced from pre-remediation levels. Annual biomonitoring will continue to assess the effectiveness of remedial actions at the United Heckathorn Site.

  16. Water absorption kinetics in different wettability conditions studied at pore and sample scales in porous media by NMR with portable single-sided and laboratory imaging devices

    NASA Astrophysics Data System (ADS)

    Bortolotti, V.; Camaiti, M.; Casieri, C.; De Luca, F.; Fantazzini, P.; Terenzi, C.

    2006-08-01

    NMR relaxation time distributions of water 1H obtained by a portable single-sided surface device have been compared with MRI internal images obtained with a laboratory imaging apparatus on the same biocalcarenite (Lecce Stone) samples during capillary water uptake. The aim of this work was to check the ability of NMR methods to quantitatively follow the absorption phenomenon under different wettability conditions of the internal pore surfaces. Stone wettability changes were obtained by capillary absorption of a chloroform solution of Paraloid PB72, a hydrophobic acrylic resin frequently used to protect monuments and buildings, through one face of each sample. Both relaxation and imaging data have been found in good quantitative agreement each other and with masses of water determined by weighing the samples. In particular the Washburn model of water capillary rise applied to the imaging data allowed us to quantify the sorptivity in both treated and untreated samples. Combining relaxation and imaging data, a synergetic improvement of our understanding of the water absorption kinetics at both pore and sample scales is obtained. Since relaxation data have been taken over the course of time without interrupting the absorption process, simply by keeping the portable device on the surface opposite to the absorption, the results show that the single-sided NMR technique is a powerful tool for in situ evaluation of water-repellent treatments frequently used for consolidation and/or protection of stone artifacts.

  17. Water absorption kinetics in different wettability conditions studied at pore and sample scales in porous media by NMR with portable single-sided and laboratory imaging devices.

    PubMed

    Bortolotti, V; Camaiti, M; Casieri, C; De Luca, F; Fantazzini, P; Terenzi, C

    2006-08-01

    NMR relaxation time distributions of water (1)H obtained by a portable single-sided surface device have been compared with MRI internal images obtained with a laboratory imaging apparatus on the same biocalcarenite (Lecce Stone) samples during capillary water uptake. The aim of this work was to check the ability of NMR methods to quantitatively follow the absorption phenomenon under different wettability conditions of the internal pore surfaces. Stone wettability changes were obtained by capillary absorption of a chloroform solution of Paraloid PB72, a hydrophobic acrylic resin frequently used to protect monuments and buildings, through one face of each sample. Both relaxation and imaging data have been found in good quantitative agreement each other and with masses of water determined by weighing the samples. In particular the Washburn model of water capillary rise applied to the imaging data allowed us to quantify the sorptivity in both treated and untreated samples. Combining relaxation and imaging data, a synergetic improvement of our understanding of the water absorption kinetics at both pore and sample scales is obtained. Since relaxation data have been taken over the course of time without interrupting the absorption process, simply by keeping the portable device on the surface opposite to the absorption, the results show that the single-sided NMR technique is a powerful tool for in situ evaluation of water-repellent treatments frequently used for consolidation and/or protection of stone artifacts.

  18. Pore pressure propagation in a permeable thin-layer coal seam based on a dual porosity model: A case of risk prediction of water inrush in coalmines

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Gao, F.; Yang, J. W.; Zhou, G. Q.

    2016-08-01

    Thin-layer coal seams, a type of filling coal rock body, are considered aquifer systems made up of dual porosity medium with immediate floor. A numerical simulation for the pore pressure propagation along a thin-layer coal seam was carried out for the case of the Zhaogezhuang coalmine in China. By valuing the permeability (Kf ) of the thin-layer coal seam, pore pressure variation with time was simulated and compared to the analytical solutions of a dual porosity model (DPM). The main conclusions were drawn as follow: (1) Seepage in the thin-layer coal seam was predominant in the whole process, and the distance of seepage was lengthened and the pore pressure decreased with increased Kf , (2) A series of simulated hydraulic graphs demonstrated that the pore pressure characteristics of peak-occurring and time-lag effects agreed with the analytical solutions of DPM; (3) By adjusting the parameters of DPM, two results of analytical solutions and numerical solutions fit well, particularly in the thin-layer coal seam, (4) The power law relationship between the peak-values and lag time of pore pressure were derived statistically under consideration of the Kf parameter in the range of 10-8 to 10-10 m2/pa-s orders, and it was reasonable that the Kf of the thin-layer coal seam was in the range of 10-8 m2/pa-s orders. The results were significantly helpful in decision-making for mining water prevention and prediction in practice.

  19. Interactions of aquaculture, marine coastal ecosystems, and near-shore waters: A bibliography. Bibliographies and literature of agriculture (Final)

    SciTech Connect

    Hanfman, D.T.; Coleman, D.E.; Tibbitt, S.J.

    1991-01-01

    The bibliography contains selected literature citations on the interactions of aquaculture and marine coastal ecosystems. The focus is on aquaculture effluents and their impact on marine coastal ecosystems and waterways as well as the impact of pollutants on aquaculture development. Factors affecting these issues include domestic and industrial wastes, thermal discharges, acid rain, heavy metals, oil spills, and microbial contamination of marine waters and aquatic species. Coastal zone management, environmenal impact of aquaculture, and water quality issues are also included in the bibliography.

  20. Use of Pore water Rn and Ra Profiles to Evaluate the Nature of Flow through Permeable Coastal Sands in Huntington Beach, Southern California

    NASA Astrophysics Data System (ADS)

    Hammond, D. E.; Colbert, S. L.; Talsky, H.; Schwartz, R. J.

    2008-12-01

    Submarine Groundwater Discharge (SGD), as commonly defined, can represent (1) water recharged above sea level, or (2) water that is circulated locally through permeable sediments by pressure gradients generated by flow over rough topography, by wave activity, and by physical pumping of irrigating macrofauna. Under some circumstances, rapid increases in water column density over time could also drive episodes of pore fluid circulation. Budgets for radium isotopes in the water column have been used to evaluate SGD in a number of recent studies, and used to calculate fluxes of nutrients due to SGD. However, because the scale distances for nutrients may differ from those of the Ra isotopes, it is important to constrain whether SGD calculated from near-shore water column Ra budgets represents local circulation of overlying water through sediments, or regional flow driven by recharge above sea level. This also can define whether nutrient fluxes are driven by re-mineralization of biogenic material formed in the overlying water, or by transport from adjacent land areas. We have measured profiles of Rn-222 and Ra isotopes (223,224, 228) in pore waters of permeable sediments offshore from Huntington Beach on multiple occasions, working at the shoreline and at water depths of 5 to 15 m. By also determining the rate at which these isotopes emanate from solid phases and the adsorption constant for Ra on solid phases, we can evaluate the nature of SGD circulation in this system. Results indicate that nearly all of the SGD is due to local recirculation of overlying water, with macrofaunal irrigation probably driving most of the flow. Ra-228 profiles, coupled with water column budgets, can be used to put constraints on regional vertical flow.

  1. The effects of freshwater flushing on marine heterotrophic protists--implications for ballast water management.

    PubMed

    Hülsmann, N; Galil, B S

    2001-11-01

    Survivorship of ballast-entrained marine heterotrophic protists was examined following freshwater flushing. The recovered taxa, including typical marine rhizopods such as Platyamoeba murchelanoi, Labyrinthula spp, Pontifex maximus, Thecamoeba orbis, and the ciliate Condylostoma arenarium, were reared in waters of various salinities. After 2 months, the original salinity subsample retained five protist taxa, the freshwater six, including the amoeba Cochliopodium bilimbosum, the brackish water 22 taxa, and the seawater 19 taxa. Since protists form a major component of marine microbial food webs, their survival may be instrumental in supporting complex ballast-entrained food webs. Our study raises questions as to the reliability of open-ocean exchange (OOE) or freshwater flushing as effective control measures.

  2. Metabarcoding approach for nonindigenous species surveillance in marine coastal waters.

    PubMed

    Zaiko, Anastasija; Samuiloviene, Aurelija; Ardura, Alba; Garcia-Vazquez, Eva

    2015-11-15

    In this study, high-throughput sequencing (HTS) metabarcoding was applied for the surveillance of plankton communities within the southeastern (SE) Baltic Sea coastal zone. These results were compared with those from routine monitoring survey and morphological analyses. Four of five nonindigenous species found in the samples were identified exclusively by metabarcoding. All of them are considered as invasive in the Baltic Sea with reported impact on the ecosystem and biodiversity. This study indicates that, despite some current limitations, HTS metabarcoding can provide information on the presence of exotic species and advantageously complement conventional approaches, only requiring the same monitoring effort as before. Even in the currently immature status of HTS, this combination of HTS metabarcoding and observational records is recommended in the early detection of marine pests and delivery of the environmental status metrics of nonindigenous species. PMID:26422121

  3. 36 CFR 13.1130 - Is commercial fishing authorized in the marine waters of Glacier Bay National Park?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... authorized in the marine waters of Glacier Bay National Park? 13.1130 Section 13.1130 Parks, Forests, and... Special Regulations-Glacier Bay National Park and Preserve Commercial Fishing § 13.1130 Is commercial fishing authorized in the marine waters of Glacier Bay National Park? Yes—Commercial fishing is...

  4. 36 CFR 13.1130 - Is commercial fishing authorized in the marine waters of Glacier Bay National Park?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... authorized in the marine waters of Glacier Bay National Park? 13.1130 Section 13.1130 Parks, Forests, and... Special Regulations-Glacier Bay National Park and Preserve Commercial Fishing § 13.1130 Is commercial fishing authorized in the marine waters of Glacier Bay National Park? Yes—Commercial fishing is...

  5. 36 CFR 13.1130 - Is commercial fishing authorized in the marine waters of Glacier Bay National Park?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... authorized in the marine waters of Glacier Bay National Park? 13.1130 Section 13.1130 Parks, Forests, and... Special Regulations-Glacier Bay National Park and Preserve Commercial Fishing § 13.1130 Is commercial fishing authorized in the marine waters of Glacier Bay National Park? Yes—Commercial fishing is...

  6. 36 CFR 13.1130 - Is commercial fishing authorized in the marine waters of Glacier Bay National Park?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... authorized in the marine waters of Glacier Bay National Park? 13.1130 Section 13.1130 Parks, Forests, and... Special Regulations-Glacier Bay National Park and Preserve Commercial Fishing § 13.1130 Is commercial fishing authorized in the marine waters of Glacier Bay National Park? Yes—Commercial fishing is...

  7. 36 CFR 13.1130 - Is commercial fishing authorized in the marine waters of Glacier Bay National Park?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... authorized in the marine waters of Glacier Bay National Park? 13.1130 Section 13.1130 Parks, Forests, and... Special Regulations-Glacier Bay National Park and Preserve Commercial Fishing § 13.1130 Is commercial fishing authorized in the marine waters of Glacier Bay National Park? Yes—Commercial fishing is...