Science.gov

Sample records for marine snow formation

  1. Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria.

    PubMed

    van Eenennaam, Justine S; Wei, Yuzhu; Grolle, Katja C F; Foekema, Edwin M; Murk, AlberTinka J

    2016-03-15

    Unusually large amounts of marine snow, including Extracellular Polymeric Substances (EPS), were formed during the 2010 Deepwater Horizon oil spill. The marine snow settled with oil and clay minerals as an oily sludge layer on the deep sea floor. This study tested the hypothesis that the unprecedented amount of chemical dispersants applied during high phytoplankton densities in the Gulf of Mexico induced high EPS formation. Two marine phytoplankton species (Dunaliella tertiolecta and Phaeodactylum tricornutum) produced EPS within days when exposed to the dispersant Corexit 9500. Phytoplankton-associated bacteria were shown to be responsible for the formation. The EPS consisted of proteins and to lesser extent polysaccharides. This study reveals an unexpected consequence of the presence of phytoplankton. This emphasizes the need to test the action of dispersants under realistic field conditions, which may seriously alter the fate of oil in the environment via increased marine snow formation.

  2. Formation of marine snow and enhanced enzymatic activities in oil-contaminated seawater

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; McKay, L.; Yang, T.; Rhodes, B.; Nigro, L.; Gutierrez, T.; Teske, A.; Arnosti, C.

    2010-12-01

    The fate of oil spilled into the ocean depends on its composition, as well as on biological, chemical, and physical characteristics of the spill site. We investigated the effects of oil addition from the Deepwater Horizon (DH) spill on otherwise uncontaminated water collected close to the spill site. Incubation on a roller table mimicked the physical dynamics of natural seawater, leading to the formation of marine snow-oil aggregates. We measured the enzymatic activities of heterotrophic microbes associated with the aggregates and in the surrounding water, and assessed microbial population and community composition as oil-marine snow aggregates formed and aged in the water. Surface seawater taken near the spill site in May 2010 that had no visible crude oil was incubated in 1-l glass bottles with (oil-bottles) and without (no-oil bottles) a seawater-oil mixture collected from the same site. In the oil-bottles formation of brownish, densely packed marine snow (2-3 cm diameter) was observed within the first hour of the roller table incubation. In contrast no-oil bottles showed aggregate formation only after 3 days, and aggregates were almost transparent, less abundant, and smaller in size (< 1cm diameter). Subsamples of the water surrounding the aggregates were taken throughout 21 days of the roller table incubation, and analyzed for bacterial abundance and community structure as well as the activities of hydrolytic enzymes that are used by heterotrophic bacteria to degrade organic matter. We monitored oil-degrading activities with MUF-stearate and -butyrate, and also measured b-glucosidase, alkaline phosphatase, aminopeptidase, and six different polysaccharide hydrolase activities. Enzymatic activities were up to one order of magnitude higher in the oil-bottles compared with the no-oil bottles throughout the entire incubation time. Butyrate hydrolysis was elevated throughout the time course of the incubation, and stearate hydrolysis was particularly high over the

  3. Possible Quorum Sensing in Marine Snow Bacteria: Production of Acylated Homoserine Lactones by Roseobacter Strains Isolated from Marine Snow

    PubMed Central

    Gram, Lone; Grossart, Hans-Peter; Schlingloff, Andrea; Kiørboe, Thomas

    2002-01-01

    We report here, for the first time, that bacteria associated with marine snow produce communication signals involved in quorum sensing in gram-negative bacteria. Four of 43 marine microorganisms isolated from marine snow were found to produce acylated homoserine lactones (AHLs) in well diffusion and thin-layer chromatographic assays based on the Agrobacterium tumefaciens reporter system. Three of the AHL-producing strains were identified by 16S ribosomal DNA gene sequence analysis as Roseobacter spp., and this is the first report of AHL production by these α-Proteobacteria. It is likely that AHLs in Roseobacter species and other marine snow bacteria govern phenotypic traits (biofilm formation, exoenzyme production, and antibiotic production) which are required mainly when the population reaches high densities, e.g., in the marine snow community. PMID:12147515

  4. Viral Lysis of Cells Influences The Concentration and Compostion of Dissolved Organic Matter and The Formation of Organic Aggregates (marine Snow)

    NASA Astrophysics Data System (ADS)

    Weinbauer, M. G.; Peduzzi, P.

    The effect of moderately (ca. 2.5 fold) increasing the concentration of the virus-size fraction (VSF) of seawater on the chemical composition of the dissolved organic mat- ter (DOM) pool during the formation of organic aggregates (marine snow) was tested experimentally with seawater samples collected in the Northern Adriatic Sea. The VSF enrichment did not significantly change the concentration of selected DOM com- pounds, whereas viral abundance was ca. 2-fold higher. During long-term experiments (40 - 200 hrs), bacterial abundance was on average 25% lower in the VSF amended than in the control incubations, and the frequency of visibly infected cells was stimu- lated by ca. 50%. VSF delayed the development of phytoplankton blooms (diatoms), but in the end of the experiments, Chl a concentrations in the VSF amended incuba- tions exceeded those in the control incubations. The VSF enrichment caused an enrich- ment of Serine and Threonine in the dissolved hydrolysable amino acid (AA) fraction indicative of viral lysis of diatoms. Bulk dissolved free AA acid and monomeric car- bohydrate (CHO) concentrations were repressed, whereas bulk dissolved hydrolysable AA and CHO concentrations were stimulated in the VSF enriched incubations. Viral lysis was likely the major reason for the stimulation of hydrolysable DOM. The for- mation of organic aggregates was repressed by the VSF enrichment, but the aggregates were larger and more persistent in the VSF amended than in the control incubations. Stimulation of hydrolysable DOM and sticky viral lysis products might be the reason for the larger and more persistent aggregates. This demonstrates that bioactive mate- rial in the VSF of seawater can have major implications for primary production and the cycling of organic carbon in the ocean.

  5. Quorum sensing in marine snow and its possible influence on production of extracellular hydrolytic enzymes in marine snow bacterium Pantoea ananatis B9.

    PubMed

    Jatt, Abdul Nabi; Tang, Kaihao; Liu, Jiwen; Zhang, Zenghu; Zhang, Xiao-Hua

    2015-02-01

    Marine snow is a continuous shower of organic and inorganic detritus, and plays a crucial role in transporting materials from the sea surface to the deep ocean. The aims of the current study were to identify N-acyl homoserine lactone (AHL)-based quorum sensing (QS) signaling molecules directly from marine snow particles and to investigate the possible regulatory link between QS signals and extracellular hydrolytic enzymes produced by marine snow bacteria. The marine snow samples were collected from the surface water of China marginal seas. Two AHLs, i.e. 3OC6-HSL and C8-HSL, were identified directly from marine snow particles, while six different AHL signals, i.e. C4-HSL, 3OC6-HSL, C6-HSL, C10-HSL, C12-HSL and C14-HSL were produced by Pantoea ananatis B9 inhabiting natural marine snow particles. Of the extracellular hydrolytic enzymes produced by P. ananatis B9, alkaline phosphatase activity was highly enhanced in growth medium supplemented with exogenous AHL (C10-HSL), while quorum quenching enzyme (AiiA) drastically reduced the enzyme activity. To our knowledge, this is the first report revealing six different AHL signals produced by P. ananatis B9 and AHL-based QS system enhanced the extracellular hydrolytic enzyme in P. ananatis B9. Furthermore, this study first time revealing 3OC6-HSL production by Paracoccus carotinifaciens affiliated with Alphaproteobacteria.

  6. Wind slab formation in snow: experimental setup and first results

    NASA Astrophysics Data System (ADS)

    Sommer, Christian; Lehning, Michael; Fierz, Charles

    2016-04-01

    The formation of wind-hardened surface layers, also known as wind slabs or wind crusts, is studied. Better knowledge about which processes and parameters are important will lead to an improved understanding of the mass balances in polar and alpine areas. It will also improve snow-cover models (i.e. SNOWPACK) as well as the forecast of avalanche danger. A ring-shaped wind tunnel has been built and instrumented. The facility is ring-shaped to simulate an infinitely long snow surface (infinite fetch). A SnowMicroPen (SMP) is used to measure the snow hardness. Other sensors measure environmental conditions such as wind velocity, air temperature, air humidity, the temperature of the snow and of the snow surface. A camera is used to detect drifting particles and to measure the Specific Surface Area (SSA) at the snow surface via near-infrared photography. First experiments indicate that mechanical fragmentation followed by sintering is the most efficient process to harden the surface. The hardness increased rapidly during drifting snow events, but only slowly or not at all when the wind speed was kept below the threshold for drifting snow. With drifting, the penetration resistance increased from the original 0.07 N to around 0.3 N in about an hour. Without drifting, a slow, further increase in resistance was observed. In about six hours, the hardness of the top 1-2 cm increased to 0.5 N. During this eight-hour experiment consisting of about two hours with intermittent drifting and six hours without drifting, the density at the surface increased from 66 kg/m3 to around 170 kg/m3. In the unaffected region close to the ground, the density increased from 100 kg/m3 to 110 kg/m3.

  7. Formation of Singlet Molecular Oxygen on Illuminated Ice and Snow

    NASA Astrophysics Data System (ADS)

    McKellar, S. R.; Anastasio, C.

    2005-12-01

    Pollutants and other trace compounds on snow and ice are transformed both by direct photolysis as well as indirect photoreactions mediated by oxidants such as hydroxyl radical (OH). These reactions likely play a major role in the fate of environmental contaminants in regions with permanent or seasonal snow cover, but we know relatively little about which reactions are important and at what rates they transform trace pollutants. The indirect photodegradation of organics is most likely caused by oxidants such as OH and singlet molecular oxygen (1O2* ), which can be formed in the snowpack by illumination from the sun. While some recent work has characterized the formation of OH in snow, the presence of 1O2* on illuminated snow or ice has not been studied previously. In this study, our goal is to determine the steady state concentrations of singlet molecular oxygen in illuminated snow samples collected from Summit, Greenland during the summer of 2005. We add furfuryl alcohol (FFA), which acts as a chemical probe of singlet molecular oxygen, to ice pellets made from Greenland snow samples and monitor the rate of loss of FFA during illumination. Our initial results indicate that 1O2* is formed in illuminated Summit samples and that the steady-state concentration of 1O2* is much larger on ice (-10 °C) than in liquid solution (°C) using the same prepared sample. We will present our measured steady-state concentrations of 1O2* as well as the impacts of this oxidant on the lifetimes of trace organics such as PAHs and biogenic phenols in Greenland snow.

  8. Hydroxyl radical in/on illuminated polar snow: formation rates, lifetimes, and steady-state concentrations

    NASA Astrophysics Data System (ADS)

    Chen, Zeyuan; Chu, Liang; Galbavy, Edward S.; Ram, Keren; Anastasio, Cort

    2016-08-01

    While the hydroxyl radical (OH) in the snowpack is likely a dominant oxidant for organic species and bromide, little is known about the kinetics or steady-state concentrations of OH on/in snow and ice. Here we measure the formation rate, lifetime, and concentration of OH for illuminated polar snow samples studied in the laboratory and in the field. Laboratory studies show that OH kinetics and steady-state concentrations are essentially the same for a given sample studied as ice and liquid; this is in contrast to other photooxidants, which show a concentration enhancement in ice relative to solution as a result of kinetic differences in the two phases. The average production rate of OH in samples studied at Summit, Greenland, is 5 times lower than the average measured in the laboratory, while the average OH lifetime determined in the field is 5 times higher than in the laboratory. These differences indicate that the polar snows we studied in the laboratory are affected by contamination, despite significant efforts to prevent this; our results suggest similar contamination may be a widespread problem in laboratory studies of ice chemistry. Steady-state concentrations of OH in clean snow studied in the field at Summit, Greenland, range from (0.8 to 3) × 10-15 M, comparable to values reported for midlatitude cloud and fog drops, rain, and deliquesced marine particles, even though impurity concentrations in the snow samples are much lower. Partitioning of firn air OH to the snow grains will approximately double the steady-state concentration of snow-grain hydroxyl radical, leading to an average [OH] in near-surface, summer Summit snow of approximately 4 × 10-15 M. At this concentration, the OH-mediated lifetimes of organics and bromide in Summit snow grains are approximately 3 days and 7 h, respectively, suggesting that hydroxyl radical is a major

  9. The formation of snow streamers in the turbulent atmosphere boundary layer

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Wang, Zheng-Shi

    2016-12-01

    The drifting snow in the turbulent atmosphere boundary layer is an important type of aeolian multi-phase flow. Current theoretical and numerical studies of drifting snow mostly consider the flow field as steady wind velocity. Whereas, little is known about the effects of turbulent wind structures on saltating snow particles. In this paper, a 3-D drifting snow model based on Large Eddy Simulation is established, in which the trajectory of every snow grain is calculated and the coupling effect between wind field and snow particles is considered. The results indicate that the saltating snow particles are re-organized by the suction effect of high-speed rotating vortexes, which results in the local convergence of particle concentration, known as snow streamers. The turbulent wind leads to the spatial non-uniform of snow particles lifted by aerodynamic entrainment, but this does not affect the formation of snow streamers. Whereas the stochastic grain-bed interactions make a great contribution to the final shapes of snow streamers. Generally, snow streamers display a characteristic length about 0.5 m and a characteristic width of approximately 0.16 m, and their characteristic sizes are not sensitive to the wind speed. Compared to the typical sand streamer, snow streamer is slightly narrower and the occurrence of other complex streamer patterns is later than that of sand streamers due to the better follow performance of snow grains with air flow.

  10. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean's biological pump

    NASA Astrophysics Data System (ADS)

    Turner, Jefferson T.

    2015-01-01

    The 'biological pump' is the process by which photosynthetically-produced organic matter in the ocean descends from the surface layer to depth by a combination of sinking particles, advection or vertical mixing of dissolved organic matter, and transport by animals. Particulate organic matter that is exported downward from the euphotic zone is composed of combinations of fecal pellets from zooplankton and fish, organic aggregates known as 'marine snow' and phytodetritus from sinking phytoplankton. Previous reviews by Turner and Ferrante (1979) and Turner (2002) focused on publications that appeared through late 2001. Since that time, studies of the biological pump have continued, and there have been >300 papers on vertical export flux using sediment traps, large-volume filtration systems and other techniques from throughout the global ocean. This review will focus primarily on recent studies that have appeared since 2001. Major topics covered in this review are (1) an overview of the biological pump, and its efficiency and variability, and the role of dissolved organic carbon in the biological pump; (2) zooplankton fecal pellets, including the contribution of zooplankton fecal pellets to export flux, epipelagic retention of zooplankton fecal pellets due to zooplankton activities, zooplankton vertical migration and fecal pellet repackaging, microbial ecology of fecal pellets, sinking velocities of fecal pellets and aggregates, ballasting of sinking particles by mineral contents, phytoplankton cysts, intact cells and harmful algae toxins in fecal pellets, importance of fecal pellets from various types of zooplankton, and the role of zooplankton fecal pellets in picoplankton export; (3) marine snow, including the origins, abundance, and distributions of marine snow, particles and organisms associated with marine snow, consumption and fragmentation of marine snow by animals, pathogens associated with marine snow; (4) phytodetritus, including pulsed export of

  11. Snow bedforms: A review, new data, and a formation model

    NASA Astrophysics Data System (ADS)

    Filhol, Simon; Sturm, Matthew

    2015-09-01

    Snow bedforms, like sand bedforms, consist of various shapes that form under the action of wind on mobile particles. Throughout a year, they can cover up to 11% of the Earth surface, concentrated toward the poles. These forms impact the local surface energy balance and the distribution of precipitation. Only a few studies have concentrated on their genesis. Their size ranges from 2 cm (ripple marks) to 2.5 m tall (whaleback dunes). We counted a total of seven forms that are widely recognized. Among them sastrugi, an erosional shape, is the most widespread. From laser scans, we compared scaling of snow versus sand barchan morphology. We found that both have proportionally the same footprint, but snow barchans are flatter. The key difference is that snow can sinter, immobilizing the bedform and creating an erodible material. Using a model, we investigated the effect of sintering on snow dune dynamics. We found that sintering limits their size because it progressively hardens the snow and requires an ever-increasing wind speed to maintain snow transport. From the literature and results from this model, we have reclassified snow bedforms based on two parameters: wind speed and snow surface conditions. The new data show that snow dune behavior mirrors that of sand dunes, with merging, calving, and collision. However, isolated snow barchans are rare, with most of the snow surfaces encountered in the field consisting of several superimposed bedforms formed sequentially during multiple weather events. Spatially variable snow properties and geometry can explain qualitatively these widespread compound snow surfaces.

  12. Soluble chromophores in marine snow, seawater, sea ice and frost flowers near Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Beine, Harry; Anastasio, Cort; Domine, Florent; Douglas, Thomas; Barret, Manuel; France, James; King, Martin; Hall, Sam; Ullmann, Kirk

    2012-07-01

    We measured light absorption in 42 marine snow, sea ice, seawater, brine, and frost flower samples collected during the OASIS field campaign between February 27 and April 15, 2009. Samples represented multiple sites between landfast ice and open pack ice in coastal areas approximately 5 km west of Barrow, Alaska. The chromophores that are most commonly measured in snow, H2O2, NO3-, and NO2-, on average account for less than 1% of sunlight absorption in our samples. Instead, light absorption is dominated by unidentified "residual" species, likely organic compounds. Light absorption coefficients for the frost flowers on first-year sea ice are, on average, 40 times larger than values for terrestrial snow samples at Barrow, suggesting very large rates of photochemical reactions in frost flowers. For our marine samples the calculated rates of sunlight absorption and OH production from known chromophores are (0.1-1.4) × 1014 (photons cm-3 s-1) and (5-70) × 10-12 (mol L-1 s-1), respectively. Our residual spectra are similar to spectra of marine chromophoric dissolved organic matter (CDOM), suggesting that CDOM is the dominant chromophore in our samples. Based on our light absorption measurements we estimate dissolved organic carbon (DOC) concentrations in Barrow seawater and frost flowers as approximately 130 and 360 μM C, respectively. We expect that CDOM is a major source of OH in our marine samples, and it is likely to have other significant photochemistry as well.

  13. Winter Ice and Snow as Models of Igneous Rock Formation.

    ERIC Educational Resources Information Center

    Romey, William D.

    1983-01-01

    Examines some features of ice and snow that offer teachers and researchers help in understanding many aspects of igneous processes and configurations. Careful observation of such processes as melting, decay, evolution, and snow accumulation provide important clues to understanding processes by which many kinds of rocks form. (Author/JN)

  14. Role of nitrite in the photochemical formation of radicals in the snow.

    PubMed

    Jacobi, Hans-Werner; Kleffmann, Jörg; Villena, Guillermo; Wiesen, Peter; King, Martin; France, James; Anastasio, Cort; Staebler, Ralf

    2014-01-01

    Photochemical reactions in snow can have an important impact on the composition of the atmosphere over snow-covered areas as well as on the composition of the snow itself. One of the major photochemical processes is the photolysis of nitrate leading to the formation of volatile nitrogen compounds. We report nitrite concentrations determined together with nitrate and hydrogen peroxide in surface snow collected at the coastal site of Barrow, Alaska. The results demonstrate that nitrite likely plays a significant role as a precursor for reactive hydroxyl radicals as well as volatile nitrogen oxides in the snow. Pollution events leading to high concentrations of nitrous acid in the atmosphere contributed to an observed increase in nitrite in the surface snow layer during nighttime. Observed daytime nitrite concentrations are much higher than values predicted from steady-state concentrations based on photolysis of nitrate and nitrite indicating that we do not fully understand the production of nitrite and nitrous acid in snow. The discrepancy between observed and expected nitrite concentrations is probably due to a combination of factors, including an incomplete understanding of the reactive environment and chemical processes in snow, and a lack of consideration of the vertical structure of snow.

  15. Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow.

    PubMed

    Thiele, Stefan; Fuchs, Bernhard M; Amann, Rudolf; Iversen, Morten H

    2015-02-01

    Due to sampling difficulties, little is known about microbial communities associated with sinking marine snow in the twilight zone. A drifting sediment trap was equipped with a viscous cryogel and deployed to collect intact marine snow from depths of 100 and 400 m off Cape Blanc (Mauritania). Marine snow aggregates were fixed and washed in situ to prevent changes in microbial community composition and to enable subsequent analysis using catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The attached microbial communities collected at 100 m were similar to the free-living community at the depth of the fluorescence maximum (20 m) but different from those at other depths (150, 400, 550, and 700 m). Therefore, the attached microbial community seemed to be “inherited” from that at the fluorescence maximum. The attached microbial community structure at 400 m differed from that of the attached community at 100 m and from that of any free-living community at the tested depths, except that collected near the sediment at 700 m. The differences between the particle-associated communities at 400 m and 100 m appeared to be due to internal changes in the attached microbial community rather than de novo colonization, detachment, or grazing during the sinking of marine snow. The new sampling method presented here will facilitate future investigations into the mechanisms that shape the bacterial community within sinking marine snow, leading to better understanding of the mechanisms which regulate biogeochemical cycling of settling organic matter.

  16. Northern-Hemisphere snow cover patterns and formation conditions in winter 2007 and 2012

    NASA Astrophysics Data System (ADS)

    Cui, Hongyan; Qiao, Fangli; Shu, Qi; Yu, Long

    2016-06-01

    The Arctic sea ice minimum records appeared in the Septembers of 2007 and 2012, followed by high snow cover areas in the Northern Hemisphere winters. The snow cover distributions show different spatial patterns in these two years: increased snow cover in Central Asia and Central North America in 2007, while increased snow cover in East Asia and northwestern Europe in 2012. The high snow cover anomaly shifted to higher latitudes in winter of 2012 compared to 2007. It is noticed that the snow cover had positive anomaly in 2007 and 2012 with the following conditions: the negative geopotential height and the related cyclonic wind anomaly were favorable for upwelling, and, with the above conditions, the low troposphere and surface air temperature anomaly and water vapor anomaly were favorable for the formation and maintenance of snowfalls. The negative geopotential height, cyclonic wind and low air temperature conditions were satisfied in different locations in 2007 and 2012, resulting in different spatial snow cover patterns. The cross section of lower air temperature move to higher latitudes in winter of 2012 compared to 2007.

  17. Pyroclast/snow interactions and thermally driven slurry formation. Part 1: Theory for monodisperse grain beds

    USGS Publications Warehouse

    Walder, J.S.

    2000-01-01

    Lahars are often produced as pyroclastic flows move over snow. This phenomenon involves a complicated interplay of mechanical and thermal processes that need to be separated to get at the fundamental physics. The thermal physics of pyroclast/snow interactions form the focus of this paper. A theoretical model is developed of heat- and mass transfer at the interface between a layer of uniformly sized pyroclasts and an underlying bed of snow, for the case in which there is no relative shear motion between pyroclasts and snow. A microscale view of the interface is required to properly specify boundary conditions. The physical model leads to the prediction that the upward flux of water vapor - which depends upon emplacement temperature, pyroclast grain size, pyroclast-layer thickness, and snow permeability - is sometimes sufficient to fluidize the pyroclasts. Uniform fluidization is usually unstable to bubble formation, which leads to vigorous convection of the pyroclasts themselves. Thus, predicted threshold conditions for fluidization are tantamount to predicted thresholds for particle convection. Such predictions are quantitatively in good agreement with results of experiments described in part 2 of this paper. Because particle convection commonly causes scour of the snow bed and transformation of the pyroclast layer to a slurry, there exists a 'thermal scour' process for generating lahars from pyroclastic flows moving over snow regardless of the possible role of mechanical scour.

  18. The effect of vegetation cover on the formation of glide-snow avalanches

    NASA Astrophysics Data System (ADS)

    Feistl, Thomas; Bebi, Peter; Bartelt, Perry

    2014-05-01

    Glide snow avalanches release on steep, smooth slopes and can be prevented either by protection forests or by artificial defense structures. To minimize the risk for people and infrastructure, guidelines have been formulated concerning structure, height and distance between avalanche prevention bridges. These guidelines assure the major functions of the defense structures: first to prevent the release of avalanches and second to withstand the static and dynamic forces of the moving snow cover. The major functions of protection forests are generally similar and therefore guidelines on the maximum tolerable size of forest gaps exist in Switzerland. These guidelines are based on a static relationship between the pressure of the snow cover and the resistance of the defense structure and on empirical observations (forest). Whereas ground friction is only qualitatively taken into account, we assume it to play a crucial role in glide snow avalanche formation. To prove this assumption we collected data on the predominant vegetation cover of 67 release areas in the region of Davos, Switzerland. Our observations reveal a strong relationship between vegetation cover type, slope angle and slab length. We were able to quantify the Coulomb friction parameter μ by applying a physical model that accounts for the dynamic forces of the moving snow on the stauchwall, the fixed snow cover below the release area. The stauchwall resists the dynamic forces of the snow cover, until a critical strain rate is reached and then fails in brittle compression. This failure strongly depends on the friction between snow cover and soil. A typical value of μ for grassy slopes is 0.2. Snow characteristics like density are implemented in the model as constants. We compared the model results with the guidelines for defense structures and forest gap sizes and found accordance for certain friction parameter values. Forest gaps of 40 meter length and a 35° slope angle require friction values of 0

  19. Laser-filamentation-induced condensation and snow formation in a cloud chamber.

    PubMed

    Ju, Jingjing; Liu, Jiansheng; Wang, Cheng; Sun, Haiyi; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2012-04-01

    Using 1 kHz, 9 mJ femtosecond laser pulses, we demonstrate laser-filamentation-induced spectacular snow formation in a cloud chamber. An intense updraft of warm moist air is generated owing to the continuous heating by the high-repetition filamentation. As it encounters the cold air above, water condensation and large-sized particles spread unevenly across the whole cloud chamber via convection and cyclone like action on a macroscopic scale. This indicates that high-repetition filamentation plays a significant role in macroscopic laser-induced water condensation and snow formation.

  20. Algal blooms and "Marine snow": Mechanisms that enhance preservation of organic carbon in ancient fine-grained sediments

    USGS Publications Warehouse

    Macquaker, J.H.S.; Keller, M.A.; Davies, S.J.

    2010-01-01

    Combined petographic and geochemical methods are used to investigate the microfabrics present in thin sections prepared from representative organic carbon-rich mudstones collected from three successions (the Kimmeridge Clay Formation, the Jet Rock Member of the Whitby Mudstone Formation, and the pebble shale and Hue Shale). This study was initiated to determine how organic carbon-rich materials were being delivered to the sediment-water interface, and what happened to them after deposition, prior to deep burial. Analyses of the fabrics present shows that they exhibit many common attributes. In particular they are all: (1) highly heterogeneous on the scale of a thin section, (2) organized into thin beds (< 10 mm thick) composed mainly of mineral mixtures of fine-grained siliciclastic detritus and carbonate materials, and (3) contain significant concentrations of organic carbon, much of which is organized into laminasets that contain abundant organomineralic aggregates and pellets. In addition, framboidal pyrite (range of sizes from < 20 urn to < 1 ??m) and abundant agglutinated foraminifers are present in some units. The individual beds are commonly sharp-based and overlain by thin, silt lags. The tops of many of the beds have been homogenized and some regions of the pelleted laminasets contain small horizontal burrows. The organomineralic aggregates present in these mudstones are interpreted to be ancient examples of marine snow. This marine snow likely formed in the water column, particularly during phytoplankton blooms, and was then transported rapidly to the seafloor. The existence of the thin beds with homogenized tops and an in-situ infauna indicates that between blooms there was sufficient oxygen and time for a mixed layer to develop as a result of sediment colonization by diminutive organisms using either aerobic or dysaerobic metabolic pathways. These textures suggest that the constituents of these mudstones were delivered neither as a continuous rain of

  1. Safety on the Hills in Winter: Avalanche Risk--Snow Formation.

    ERIC Educational Resources Information Center

    Grant, Frank

    2003-01-01

    This compact training session on avalanche risk reviews snow crystal formations and common generalities about avalanches. Two types of avalanches--loose and slab--are described, and the characteristics of each are given along with danger signs that accompany each one. Three books are highly recommended for further information. (TD)

  2. Carbonaceous particles reduce marine microgel formation

    NASA Astrophysics Data System (ADS)

    Shiu, Ruei-Feng; Chin, Wei-Chun; Lee, Chon-Lin

    2014-07-01

    An increase in ambient carbonaceous particle (CNP) levels has been found, potentially leading to significant environmental/health hazards. These particles will ultimately enter the oceanic environment and interact with dissolved organic carbon. However, a detailed mechanistic understanding of their behavior, transport, and fate in marine systems is still much needed. This study, using carbon black (CB, 14 nm) nanoparticles as a model, aimed to investigate the impact of CNPs on marine microgel formation, a critical shunt between DOC and particulate organic carbon that potentially represents a ~70-Gt organic carbon flux. We found that CB can enhance the stability of DOC polymers and reduce microgel equilibrium sizes in concentration as low as 1 μgL-1 CB, possibly due to negative surface charges on CB that decrease cross-linking bridges through Ca2+ bonds. The reduction of marine microgel formation induced by CB could lead to a decrease in the downward transportation of microbial substrates and nutrients, and therefore, could have a significant impact on the carbon cycle and the marine ecosystem.

  3. Carbonaceous particles reduce marine microgel formation

    PubMed Central

    Shiu, Ruei-Feng; Chin, Wei-Chun; Lee, Chon-Lin

    2014-01-01

    An increase in ambient carbonaceous particle (CNP) levels has been found, potentially leading to significant environmental/health hazards. These particles will ultimately enter the oceanic environment and interact with dissolved organic carbon. However, a detailed mechanistic understanding of their behavior, transport, and fate in marine systems is still much needed. This study, using carbon black (CB, 14 nm) nanoparticles as a model, aimed to investigate the impact of CNPs on marine microgel formation, a critical shunt between DOC and particulate organic carbon that potentially represents a ~70-Gt organic carbon flux. We found that CB can enhance the stability of DOC polymers and reduce microgel equilibrium sizes in concentration as low as 1 μgL−1 CB, possibly due to negative surface charges on CB that decrease cross-linking bridges through Ca2+ bonds. The reduction of marine microgel formation induced by CB could lead to a decrease in the downward transportation of microbial substrates and nutrients, and therefore, could have a significant impact on the carbon cycle and the marine ecosystem. PMID:25068549

  4. Interactions Between Snow-Adapted Organisms, Minerals and Snow in a Mars-Analog Environment, and Implications for the Possible Formation of Mineral Biosignatures

    NASA Astrophysics Data System (ADS)

    Hausrath, E.; Bartlett, C. L.; Garcia, A. H.; Tschauner, O. D.; Murray, A. E.; Raymond, J. A.

    2015-12-01

    Increasing evidence suggests that icy environments on bodies such as Mars, Europa, and Enceladus may be important potential habitats in our solar system. Life in icy environments faces many challenges, including water limitation, temperature extremes, and nutrient limitation. Understanding how life has adapted to withstand these challenges on Earth may help understand potential life on other icy worlds, and understanding the interactions of such life with minerals may help shed light on the detection of possible mineral biosignatures. Snow environments, being particularly nutrient limited, may require specific adaptations by the microbiota living there. Previous observations have suggested that associated minerals and microorganisms play an important role in snow algae micronutrient acquisition. Here, in order to interpret micronutrient uptake by snow algae, and potential formation of mineral biosignatures, we present observations of interactions between snow algae and associated microorganisms and minerals in both natural, Mars-analog environments, and laboratory experiments. Samples of snow, dust, snow algae, and microorganisms were collected from Mount Anderson Ridge, CA. Some samples were DAPI-stained and analyzed by epifluorescent microscopy, and others were freeze-dried and examined by scanning electron microscopy, synchrotron X-ray diffraction (XRD) and synchrotron X-ray fluorescence (XRF). Xenic cultures of the snow alga Chloromonas brevispina were also grown under Fe-limiting conditions with and without the Fe-containing mineral nontronite to determine impacts of the mineral on algal growth. Observations from epifluorescent microscopy show bacteria closely associated with the snow algae, consistent with a potential role in micronutrient acquisition. Particles are also present on the algal cell walls, and synchrotron-XRD and XRF observations indicate that they are Fe-rich, and may therefore be a micronutrient source. Laboratory experiments indicated

  5. Perfluorinated acids in Arctic snow: new evidence for atmospheric formation.

    PubMed

    Young, Cora J; Furdui, Vasile I; Franklin, James; Koerner, Roy M; Muir, Derek C G; Mabury, Scott A

    2007-05-15

    Perfluorinated acids (PFAs) are ubiquitously found in water and biota, including remote regions such as the High Arctic. Under environmental conditions, PFAs exist mainly as anions and are not expected to be subject to long-range atmospheric transport in the gas phase. Fluorinated telomer alcohols (FTOHs) are volatile and can be atmospherically oxidized to form perfluorocarboxylic acids. Analogously, fluorosulfamido alcohols can be oxidized to form perfluorooctane sulfonate (PFOS). High Arctic ice caps experience contamination solely from atmospheric sources. By examining concentrations of PFAs in ice cap samples, it is possible to determine atmospheric fluxes to the Arctic. Ice samples were collected from high Arctic ice caps in the spring of 2005 and 2006. Samples were concentrated using solid-phase extraction and analyzed by LC-MS-MS. PFAs were observed in all samples, dating from 1996 to 2005. Concentrations were in the low-mid pg L(-1) range and exhibited seasonality, with maximum concentrations in the spring-summer. The presence of perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUnA) on the ice cap was indicative of atmospheric oxidation as a source. Ratios of PFAs to sodium concentrations were highly variable, signifying PFA concentrations on the ice cap were unrelated to marine chemistry. Fluxes of the PFAs were estimated to the area north of 65 degrees N for the 2005 season, which ranged from 114 to 587 kg year(-1) for perfluorooctanoic acid (PFOA), 73 to 860 kg year(-1) for perfluorononanoic acid (PFNA), 16 to 84 kg year(-1) for PFDA, 26 to 62 kg year(-1) for PFUnA, and 18 to 48 kg year(-1) for PFOS. The PFOA and PFNA fluxes agreed with FTOH modeling estimations. A decrease in PFOS concentrations through time was observed, suggesting a fast response to changes in production. These data suggest that atmospheric oxidation of volatile precursors is a primary source of PFAs to the Arctic.

  6. A low trophic position of Japanese eel larvae indicates feeding on marine snow.

    PubMed

    Miller, Michael J; Chikaraishi, Yoshito; Ogawa, Nanako O; Yamada, Yoshiaki; Tsukamoto, Katsumi; Ohkouchi, Naohiko

    2013-02-23

    What eel larvae feed on in the surface layer of the ocean has remained mysterious. Gut contents and bulk nitrogen stable isotope studies suggested that these unusual larvae, called leptocephali, feed at a low level in the oceanic food web, whereas other types of evidence have suggested that small zooplankton are eaten. In this study, we determined the nitrogen isotopic composition of amino acids of both natural larvae and laboratory-reared larvae of the Japanese eel to estimate the trophic position (TP) of leptocephali. We observed a mean TP of 2.4 for natural leptocephali, which is consistent with feeding on particulate organic matter (POM) such as marine snow and discarded appendicularian houses containing bacteria, protozoans and other biological materials. The nitrogen isotope enrichment values of the reared larvae confirm that the primary food source of natural larvae is consistent only with POM. This shows that leptocephali feed on readily available particulate material originating from various sources closely linked to ocean primary production and that leptocephali are a previously unrecognized part of oceanic POM cycling.

  7. History effects in the sedimentation of light aerosols in turbulence: The case of marine snow

    NASA Astrophysics Data System (ADS)

    Guseva, Ksenia; Daitche, Anton; Feudel, Ulrike; Tél, Tamás

    2016-11-01

    We analyze the effect of the Basset history force on the sedimentation of nearly neutrally buoyant particles, exemplified by marine snow, in a three-dimensional turbulent flow. Particles are characterized by Stokes numbers much smaller than unity, and still water settling velocities, measured in units of the Kolmogorov velocity, of order one. The presence of the history force in the Maxey-Riley equation leads to individual trajectories which differ strongly from the dynamics of both inertial particles without this force and ideal settling tracers. The main effect of the history force is an extraordinary slow, power-law type convergence to an asymptotic settling velocity of the center of mass, which is found numerically to be the settling velocity in still fluid. The spatial extension of the ensemble grows diffusively after an initial ballistic growth lasting up to circa one large eddy turnover time. We demonstrate that the settling of the center of mass for such light aggregates is best approximated by the settling dynamics in still fluid found with the history force, on top of which fluctuations appear which follow very closely those of the turbulent velocity field.

  8. Rain-on-snow and ice layer formation detection using passive microwave radiometry: An arctic perspective

    NASA Astrophysics Data System (ADS)

    Langlois, A.; Royer, A.; Montpetit, B.; Johnson, C. A.; Brucker, L.; Dolant, C.; Richards, A.; Roy, A.

    2015-12-01

    With the current changes observed in the Arctic, an increase in occurrence of rain-on-snow (ROS) events has been reported in the Arctic (land) over the past few decades. Several studies have established that strong linkages between surface temperatures and passive microwaves do exist, but the contribution of snow properties under winter extreme events such as rain-on-snow events (ROS) and associated ice layer formation need to be better understood that both have a significant impact on ecosystem processes. In particular, ice layer formation is known to affect the survival of ungulates by blocking their access to food. Given the current pronounced warming in northern regions, more frequent ROS can be expected. However, one of the main challenges in the study of ROS in northern regions is the lack of meteorological information and in-situ measurements. The retrieval of ROS occurrence in the Arctic using satellite remote sensing tools thus represents the most viable approach. Here, we present here results from 1) ROS occurrence formation in the Peary caribou habitat using an empirically developed ROS algorithm by our group based on the gradient ratio, 2) ice layer formation across the same area using a semi-empirical detection approach based on the polarization ratio spanning between 1978 and 2013. A detection threshold was adjusted given the platform used (SMMR, SSM/I and AMSR-E), and initial results suggest high-occurrence years as: 1981-1982, 1992-1993; 1994-1995; 1999-2000; 2001-2002; 2002-2003; 2003-2004; 2006-2007; 2007-2008. A trend in occurrence for Banks Island and NW Victoria Island and linkages to caribou population is presented.

  9. Formation of dust-rich planetesimals from sublimated pebbles inside of the snow line

    NASA Astrophysics Data System (ADS)

    Ida, S.; Guillot, T.

    2016-11-01

    Context. For up to a few millions of years, pebbles must provide a quasi-steady inflow of solids from the outer parts of protoplanetary disks to their inner regions. Aims: We wish to understand how a significant fraction of the pebbles grows into planetesimals instead of being lost to the host star. Methods: We examined analytically how the inward flow of pebbles is affected by the snow line and under which conditions dust-rich (rocky) planetesimals form. When calculating the inward drift of solids that is due to gas drag, we included the back-reaction of the gas to the motion of the solids. Results: We show that in low-viscosity protoplanetary disks (with a monotonous surface density similar to that of the minimum-mass solar nebula), the flow of pebbles does not usually reach the required surface density to form planetesimals by streaming instability. We show, however, that if the pebble-to-gas-mass flux exceeds a critical value, no steady solution can be found for the solid-to-gas ratio. This is particularly important for low-viscosity disks (α< 10-3) where we show that inside of the snow line, silicate-dust grains ejected from sublimating pebbles can accumulate, eventually leading to the formation of dust-rich planetesimals directly by gravitational instability. Conclusions: This formation of dust-rich planetesimals may occur for extended periods of time, while the snow line sweeps from several au to inside of 1 au. The rock-to-ice ratio may thus be globally significantly higher in planetesimals and planets than in the central star.

  10. Yeah!!! A Snow Day!

    ERIC Educational Resources Information Center

    Cone, Theresa Purcell; Cone, Stephen L.

    2006-01-01

    As children see the first snowflake fall from the sky, they are filled with anticipation of playing in the snow. The snowy environment presents a wonderful opportunity for presenting interdisciplinary activities that connect snow play, snow formation, and snow stories with manipulative activities, gymnastic balances, and dance sequences. In this…

  11. Development of a Compact Snow Crystal Formation Apparatus Based on a Diffusion Method Using a Peltier Device

    NASA Astrophysics Data System (ADS)

    Kojima, Shinsuke; Endo, Hiroshi; Seki, Mitsuo

    We developed a compact snow crystal formation apparatus based on a diffusion method using a Peltier device. This apparatus does not need an assemblage and is small enough to be operated on a desk. Anyone can easily observe snow crystal formation in a normal temperature room. We adopted a diffusion method because the shape enable that several people can simultaneously observe the snow crystal formation from above. To estimate a performance of the apparatus, we investigated temperature profiles in the apparatus by measurement and simulations with (Case 1) and without (Case 2) natural convection. As results of the simulations, Case 1 and Case 2 reached a steady state. In each case, temperature stratification condition was formed in lower part of the apparatus. From the comparison of the results of measurement and simulations, finally, it is concluded that there is a natural convection, but the air current is not so strong as disturbing the temperature stratification condition in the apparatus.

  12. Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases.

    PubMed

    Liu, Yonghong; Sun, Haiyi; Liu, Jiansheng; Liang, Hong; Ju, Jingjing; Wang, Tiejun; Tian, Ye; Wang, Cheng; Liu, Yi; Chin, See Leang; Li, Ruxin

    2016-04-04

    We investigated femtosecond laser-filamentation-induced airflow, water condensation and snow formation in a cloud chamber filled respectively with air, argon and helium. The mass of snow induced by laser filaments was found being the maximum when the chamber was filled with argon, followed by air and being the minimum with helium. We also discussed the mechanisms of water condensation in different gases. The results show that filaments with higher laser absorption efficiency, which result in higher plasma density, are beneficial for triggering intense airflow and thus more water condensation and precipitation.

  13. Accumulation of silver from the diet in two marine benthic predators: The snow crab (Chionoecetes opilio) and american plaice (Hippoglossoides platessoides)

    SciTech Connect

    Rouleau, C.; Gobeil, C.; Tjaelve, H.

    2000-03-01

    The kinetics and fine-scale tissue distribution of a single dose of {sup 110m}Ag ingested with food were determined in snow crab and American plaice through the techniques of in vivo gamma counting and whole-body autoradiography. Metal that was retained after the first 3 d was distributed in all the soft tissues of snow crab, whereas it concentrated in gut, liver, and gallbladder of the American plaice. In snow crab, the biological half-life of retained Ag, which represented 67--100{degree} of the ingested dose, was greater than 1,000 d. In contrast, in American plaice the retained fraction represented only 4--16% of the ingested dose and the biological half-life ranged from 13 to 102 d. Modeling the trophic accumulation of Ag for snow crab and American plaice living in the St. Lawrence Estuary, assuming realistic values for food ingestion rates and Ag concentration in benthic organisms of lower trophic levels, reveals that continuous feeding on Ag-contaminated prey would result in much higher metal levels in the snow crab than in the American plaice. Measurement of Ag concentrations in snow crab and American plaice from the St. Lawrence Estuary, an environment receiving significant inputs of anthropogenic Ag, confirmed this prediction. The similarity between laboratory-based predictions and field data strongly suggests that predation is the major transfer route of Ag towards these marine benthic predators.

  14. Formation, distribution and variability in snow cover on the Asian territory of the USSR

    NASA Technical Reports Server (NTRS)

    Pupkov, V. N.

    1985-01-01

    A description is given of maps compiled for annual and average multiple-year water reserves. The annual and average multiple-year maximum snow cover height for winter, extreme values of maximum snow reserves, and the average height and snow reserves at the end of each decade are shown. These maps were made for the entire Asian territory of the USSR, excluding Central Asia, Kamchatka Peninsula, and the Sakhalin Islands.

  15. DIRECT IMAGING OF THE WATER SNOW LINE AT THE TIME OF PLANET FORMATION USING TWO ALMA CONTINUUM BANDS

    SciTech Connect

    Banzatti, A.; Pontoppidan, K. M.; Pinilla, P.; Ricci, L.; Birnstiel, T.; Ciesla, F.

    2015-12-10

    Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 between dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index α{sub mm} due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (α{sub visc} < 10{sup −3}), the snow line produces a ringlike structure with a minimum at α{sub mm} ∼ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.

  16. Bromide and chloride distribution across the snow-sea ice-ocean interface: A comparative study between an Arctic coastal marine site and an experimental sea ice mesocosm

    NASA Astrophysics Data System (ADS)

    Xu, Wen; Tenuta, Mario; Wang, Feiyue

    2016-08-01

    During springtime in the Arctic, bromine explosion events occur when high concentrations of reactive bromine species are observed in the boundary layer with the concurrence of ozone depletion events and mercury depletion events. While a variety of substrates including snow, sea ice, frost flowers, and aerosols have been proposed to be the substrate and/or source of bromine activation in the Arctic, recent studies have highlighted the role of snow. Here we report concentration profiles of halides (Br- and Cl-), Na+, and mercury across the snow-sea ice-seawater interface at a coastal marine site in the Canadian Arctic Archipelago in March and June 2014, as well as in an experimental sea ice mesocosm in Winnipeg in January and February 2014. The occurrence of bromine activation at the Arctic site in March was indicated by the high mercury concentrations in snowpack. At both the Arctic and mesocosm sites, the molar ratios of Br-/Na+ were nearly constant throughout the sea ice depth, but highly variable in the upper layer of the overlying snowpack, revealing that bromine activation takes place in the sunlit snow instead of sea ice. This is supported by calculations showing that the loss of Br- from the upper layer of the snowpack is large enough to produce the observed concentrations of reactive bromine in the atmospheric boundary layer. However, the upper layer of the Arctic snowpack tends to be generally enriched in Br- due to the net addition of Br--containing gases and nonsea-salt aerosols.

  17. Rapid Coagulation of Porous Dust Aggregates outside the Snow Line: A Pathway to Successful Icy Planetesimal Formation

    NASA Astrophysics Data System (ADS)

    Okuzumi, Satoshi; Tanaka, Hidekazu; Kobayashi, Hiroshi; Wada, Koji

    2012-06-01

    Rapid orbital drift of macroscopic dust particles is one of the major obstacles to planetesimal formation in protoplanetary disks. We re-examine this problem by considering the porosity evolution of dust aggregates. We apply a porosity model based on recent N-body simulations of aggregate collisions, which allows us to study the porosity change upon collision for a wide range of impact energies. As a first step, we neglect collisional fragmentation and instead focus on dust evolution outside the snow line, where the fragmentation has been suggested to be less significant than inside the snow line because of the high sticking efficiency of icy particles. We show that dust particles can evolve into highly porous aggregates (with internal densities of much less than 0.1 g cm-3) even if collisional compression is taken into account. We also show that the high porosity triggers significant acceleration in collisional growth. This acceleration is a natural consequence of the particles' aerodynamical properties at low Knudsen numbers, i.e., at particle radii larger than the mean free path of the gas molecules. Thanks to this rapid growth, the highly porous aggregates are found to overcome the radial drift barrier at orbital radii less than 10 AU (assuming the minimum-mass solar nebula model). This suggests that, if collisional fragmentation is truly insignificant, formation of icy planetesimals is possible via direct collisional growth of submicron-sized icy particles.

  18. RAPID COAGULATION OF POROUS DUST AGGREGATES OUTSIDE THE SNOW LINE: A PATHWAY TO SUCCESSFUL ICY PLANETESIMAL FORMATION

    SciTech Connect

    Okuzumi, Satoshi; Kobayashi, Hiroshi; Tanaka, Hidekazu; Wada, Koji

    2012-06-20

    Rapid orbital drift of macroscopic dust particles is one of the major obstacles to planetesimal formation in protoplanetary disks. We re-examine this problem by considering the porosity evolution of dust aggregates. We apply a porosity model based on recent N-body simulations of aggregate collisions, which allows us to study the porosity change upon collision for a wide range of impact energies. As a first step, we neglect collisional fragmentation and instead focus on dust evolution outside the snow line, where the fragmentation has been suggested to be less significant than inside the snow line because of the high sticking efficiency of icy particles. We show that dust particles can evolve into highly porous aggregates (with internal densities of much less than 0.1 g cm{sup -3}) even if collisional compression is taken into account. We also show that the high porosity triggers significant acceleration in collisional growth. This acceleration is a natural consequence of the particles' aerodynamical properties at low Knudsen numbers, i.e., at particle radii larger than the mean free path of the gas molecules. Thanks to this rapid growth, the highly porous aggregates are found to overcome the radial drift barrier at orbital radii less than 10 AU (assuming the minimum-mass solar nebula model). This suggests that, if collisional fragmentation is truly insignificant, formation of icy planetesimals is possible via direct collisional growth of submicron-sized icy particles.

  19. Snow and Ice.

    ERIC Educational Resources Information Center

    Minneapolis Independent School District 275, Minn.

    This experimental edition provides a number of activities useful for investigating snow and ice with elementary school children. Commencing with games with ice cubes, the activities lead through studies of snowflakes, snowdrifts, effects of wind and obstacles on the shape and formation of drifts, to a study of animals living under snow. The…

  20. Chemosensitizers of the multixenobiotic resistance in amorphous aggregates (marine snow): etiology of mass killing on the benthos in the Northern Adriatic?

    PubMed

    Müller, W E; Riemer, S; Kurelec, B; Smodlaka, N; Puskaric, S; Jagic, B; Müller-Niklas, G; Queric, N V

    1998-12-01

    Periodically appearing amorphous aggregates, `marine snow', are formed in the sea and if settled as mats on the sea bottom cause death of benthic metazoans. Especially those animals are killed which are sessile filter feeders, e.g. sponges, mussels, or Anthozoa. The etiology of the toxic principle(s) is not yet well understood. Gel-like marine snow aggregates occurred in the Northern Adriatic during summer 1997. Samples of these aggregates were collected during the period July to September and the outer as well as the inner zones were analyzed for (i) cell toxicity, and (ii) chemosensitizing activity of the multixenobiotic resistance (MXR) mechanism. Organic extracts were prepared and cell toxicity was determined using mouse lymphoma cells. The experiments revealed that the major activity is seen in the center of the mats of the gel-like aggregates; a growth inhibitory activity of up to 54% (correlated to 5 ml of snow sample) was determined. The same extracts were used to determine the inhibition of the P-glycoprotein (Pgp) extrusion pump which confers the multixenobiotic resistance. The analyses were performed with cells from the sponge Suberites domuncula and with gills from the clam Corbicula fluminea in situ. Both systems have been shown to express the Pgp extrusion pump. The data show that extracts from the outer zone of the gel-like aggregate samples display pronounced inhibitory activity on the MXR extrusion pump and hence act as chemosensitizers by reversing the MXP property. These findings indicate that gel-like aggregates contain compounds in the outer zone, chemosensitizer of the Pgp extrusion pump, which lower the level of protection of metazoan animals towards dissolved compounds in their surrounding milieu, and in the center toxic compounds which are-very likely-even in the absence of chemosensitizers hazardous for the invertebrates.

  1. Performance Characteristics of the Electronic Snow Water Equivalent (SWE) Sensor in Arctic, Marine, and Humid Continental Climates

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Gelvin, A. B.; Duvoy, P.; Schaefer, G. L.; Poole, G.; Horton, G. D.

    2011-12-01

    The USA ERDC CRREL and the USDA NRCS developed a 3-m square electronic SWE sensor (e-SWE sensor) consisting of nine perforated panels (a center panel to measure SWE and eight outer panels to buffer edge stress concentrations). Seven e-SWE sensors were installed in five different climate zones including north central and north coastal Alaska, Oregon, Newfoundland, and New York State. With the exception of New York State, the e-SWE sensors accurately measured SWE. The e-SWE sensor at Hogg Pass, OR, accurately measured SWE during five years of observations even when edge stress concentrations occurred. In windy conditions of northern Alaska, the sensor measured losses and gains in SWE with more reliability and higher accuracy than other standard methods. The sensor also detected snowdrift migration (comparing video and sensor measurements). In the thin, icy snow of New York the electronic SWE sensors over-measured SWE during midwinter. Over-measurement errors were caused by edge stress concentrations associated with strong icy layers, a shallow snow cover and possibly using a backfill material with different thermal properties and a large freeboard compared to the surrounding soil . Measurement accuracy improved in spring due to increased snow creep, associated with warming snow temperatures, which reduced edge stress concentrations.

  2. Ice Formation Potential of Field-Collected Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Carrion-Matta, A.; Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    Marine biogenic particles composed mainly of sea salt and organic material aerosolized from a mesocosm in laboratory experiments have recently been found to act as ice nuclei. How these particles relate to those collected from sea spray under ambient conditions in the field is unknown. This study reports on the heterogeneous ice nucleation potential of particles collected during the marine aerosol characterization experiment (MACE) on the south shore of Long Island, New York. Ambient aerosol size distributions were measured and particles were collected on hydrophobically coated substrates and subsequently used for ice nucleation experiments using an ice nucleation cell coupled to an optical microscope. This technique allows detection of ice formation for temperatures between 200 and 273 K and for relative humidity with respect to ice (RHice) from 100% up to water saturation. Individual ice nucleating particles were identified for subsequent chemical and physical characterization using both X-ray and electron micro-spectroscopic techniques. Concentrations of bacteria, viruses, and transparent exopolymer particles (TEP) in the bulk seawater, sea-surface microlayer (SML), and in sea spray were determined using established methods and related to airborne sea spray particles and their ice nucleation potential. Onshore aerosol size distribution measurements taken at 5 m height and 10 m away from the breaking waves, revealed a peak maximum at 100 nm and Ntot = 6.8 x 10^2 cm^-3. Bacterial, viral, and TEP were found to be enriched in the SML. Ambient particles collected during MACE were found to nucleate ice efficiently, e. g. at 215 K, ice nucleation occurred on average at 125% RHice. Results of aerosol size distributions and ice nucleation efficiencies are compared to laboratory bubble bursting experiments in which natural seawater was used. The goal of this study is to understand the connection between sea spray aerosolization and atmospheric ice cloud formation and to

  3. Was the extreme and wide-spread marine oil-snow sedimentation and flocculent accumulation (MOSSFA) event during the Deepwater Horizon blow-out unique?

    PubMed

    Vonk, Sophie M; Hollander, David J; Murk, AlberTinka J

    2015-11-15

    During the Deepwater Horizon blowout, thick layers of oiled material were deposited on the deep seafloor. This large scale benthic concentration of oil is suggested to have occurred via the process of Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA). This meta-analysis investigates whether MOSSFA occurred in other large oil spills and identifies the main drivers of oil sedimentation. MOSSFA was found to have occurred during the IXTOC I blowout and possibly during the Santa Barbara blowout. Unfortunately, benthic effects were not sufficiently studied for the 52 spills we reviewed. However, based on the current understanding of drivers involved, we conclude that MOSSFA and related benthic contamination may be widespread. We suggest to collect and analyze sediment cores at specific spill locations, as improved understanding of the MOSSFA process will allow better informed spill responses in the future, taking into account possible massive oil sedimentation and smothering of (deep) benthic ecosystems.

  4. Dining Dovekies Demand, "When, Where and What's for Dinner?" The Impact of Seasonal Changes in Snow Melt and the Development of the Arctic Marine Food Web on Seabirds.

    NASA Astrophysics Data System (ADS)

    Karnovsky, N. J.; Harding, A.; Welcker, J.; Brown, Z. W.; Kitaysky, A.; Kwasniewski, S.; Walkusz, W.; Gremillet, D.

    2011-12-01

    The Atlantic sector of the Arctic is undergoing widespread climate change with increases in air and sea temperatures which impact the timing of ice retreat, snow melt and the development of the marine food web. Dovekies (Alle alle) are small seabirds that migrate to the Atlantic Sector of the Arctic to feed in ice free waters that have abundant lipid-rich zooplankton. In the Greenland Sea, the dovekies are largely dependent on the advection of Calanus copepods into the area. We hypothesized that dovekies breeding adjacent to water masses which bring smaller, less energy-rich prey into the region (Calanus finmarchicus), work harder to find food and have higher stress levels. We tested this hypothesis by attaching time-depth recorders to provisioning dovekies at three colonies adjacent to different water masses (the West Spistbergen Current, the East Greenland Current, and the Sorkapp Current). We determined the length of time dovekies at different colonies spent at-sea collecting food for themselves and their chicks. We measured circulating corticosteroid hormone levels in their blood to assess stress levels. We collected chick meals to determine the energetic content of prey fed chicks at the different colonies. We found that dovekies are sensitive to the quality of prey available to them. Dovekies exposed to less profitable prey made longer foraging trips and worked harder while at-sea to collect prey for themselves and their chicks. Furthermore, over the past 50 years, dovekies breeding along the western shores of Spitsbergen have initiated breeding earlier in spring as their nest sites have become snow-free at earlier dates. We evaluate the impact of earlier breeding and the timing of the development of the marine food web within different currents which advect and/or support Calanus copepods into the Greenland Sea. Future possible declines in dovekies may impact terrestrial food webs which are highly influenced by the annual input of nitrogen rich guano on the

  5. NOAA's National Snow Analyses

    NASA Astrophysics Data System (ADS)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.

    2005-12-01

    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products

  6. Pyroclast/snow interactions and thermally driven slurry formation. Part 2: Experiments and theoretical extension to polydisperse tephra

    USGS Publications Warehouse

    Walder, J.S.

    2000-01-01

    Erosion of snow by pyroclastic flows and surges presumably involves mechanical scour, but there may be thermally driven phenomena involved as well. To investigate this possibility, layers of hot (up to 400??C), uniformly sized, fine- to medium-grained sand were emplaced vertically onto finely shaved ice ('snow'); thus there was no relative shear motion between sand and snow and no purely mechanical scour. In some cases large vapor bubbles, commonly more than 10 mm across, rose through the sand layer, burst at the surface, and caused complete convective overturn of the sand, which then scoured and mixed with snow and transformed into a slurry. In other cases no bubbling occurred and the sand passively melted its way downward into the snow as a wetting front moved upward into the sand. A continuum of behaviors between these two cases was observed. Vigorous bubbling and convection were generally favored by high temperature, small grain size, and small layer thickness. A physically based theory of heat- and mass transfer at the pyroclast/snow interface, developed in Part 1 of this paper, does a good job of explaining the observations as a manifestation of unstable vapor-driven fluidization. The theory, when extrapolated to the behavior of actual, poorly sorted pyroclastic flow sediments, leads to the prediction that the observed 'thermal-scour' phenomenon should also occur for many real pyroclastic flows passing over snow. 'Thermal scour' is therefore likely to be involved in the generation of lahars.

  7. Snow on Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Massom, Robert A.; Eicken, Hajo; Hass, Christian; Jeffries, Martin O.; Drinkwater, Mark R.; Sturm, Matthew; Worby, Anthony P.; Wu, Xingren; Lytle, Victoria I.; Ushio, Shuki; Morris, Kim; Reid, Phillip A.; Warren, Stephen G.; Allison, Ian

    2001-08-01

    Snow on Antarctic sea ice plays a complex and highly variable role in air-sea-ice interaction processes and the Earth's climate system. Using data collected mostly during the past 10 years, this paper reviews the following topics: snow thickness and snow type and their geographical and seasonal variations; snow grain size, density, and salinity; frequency of occurrence of slush; thermal conductivity, snow surface temperature, and temperature gradients within snow; and the effect of snow thickness on albedo. Major findings include large regional and seasonal differences in snow properties and thicknesses; the consequences of thicker snow and thinner ice in the Antarctic relative to the Arctic (e.g., the importance of flooding and snow-ice formation); the potential impact of increasing snowfall resulting from global climate change; lower observed values of snow thermal conductivity than those typically used in models; periodic large-scale melt in winter; and the contrast in summer melt processes between the Arctic and the Antarctic. Both climate modeling and remote sensing would benefit by taking account of the differences between the two polar regions.

  8. Snow Art

    ERIC Educational Resources Information Center

    Kraus, Nicole

    2012-01-01

    It was nearing the end of a very long, rough winter with a lot of snow and too little time to play outside. The snow had formed small hills and valleys over the bushes and this was at the perfect height for the students to paint. In this article, the author describes how her transitional first-grade students created snow art paintings. (Contains 1…

  9. Appalachia Snow

    Atmospheric Science Data Center

    2014-05-15

    ... by the Blue Ridge mountain belt along the east and the Appalachian Plateau along the west. Valleys and ridges between the higher ... Snow location:  United States region:  Eastern United States Order:  4 ...

  10. Supraglacial Lakes in the Percolation Zone of the Western Greenland Ice Sheet: Formation and Development using Operation IceBridge Snow Radar and ATM (2009-2014)

    NASA Astrophysics Data System (ADS)

    Chen, C.; Howat, I. M.; de la Peña, S.

    2015-12-01

    Surface meltwater lakes on the Greenland Ice Sheet have appeared at higher elevations, extending well into the percolation zone, under recent warming, with the largest expansion occurring in the western Greenland Ice Sheet. The conditions that allow lakes to form atop firn are poorly constrained, but the formation of new lakes imply changes in the permeability of the firn at high elevations, promoting meltwater runoff. We explore the formation and evolution of new surface lakes in this region above 1500 meters, using a combination of satellite imagery and repeat Snow (2-6.5 GHz) radar echograms and LIDAR measurements from NASA's Operation IceBridge of 2009-2014. We identify conditions for surface lake formation at their farthest inland extent and suggest behaviors of persistence and lake drainage are due to differences in regional ice dynamics.

  11. Snow cover in the Siberian forest-steppe

    NASA Technical Reports Server (NTRS)

    Zykov, I. V.

    1985-01-01

    A study is made of the snow cover on an experimental agricultural station in Mariinsk in the winter of 1945 to 1946. Conditions of snow cover formation, and types and indicators of snow cover are discussed. Snow cover structure and conditions and nature of thawing are described.

  12. Marine diagenesis of Lower Ordovician carbonate sediments (Dumugol Formation), Korea: cementation in a calcite sea

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Chan; Lee, Yong Il

    1996-09-01

    The Lower Ordovician Dumugol Formation exhibits many features that indicate early lithification, such as calcite nodules, hardgrounds, mud-mounds and intraclasts. Detailed observations of these early-lithified features reveal that rapid marine cementation was instrumental in their formation. Marine lithification took place in a low-energy subtidal environmental that was influenced by intermittent storms. Marine cements include syntaxial overgrowth, bladed calcite, fibrous calcite and fine-crystalline equant calcite cements. Syntaxial overgrowths precipitated on echinoderm grains and contributed to rapid marine lithification of echinoderm-bearing sediments. Bladed, fibrous, and fine-crystalline equant calcite cements precipitated in locally suitable sites but their occurrence is limited, and thus played a minor role in marine lithification. Microcrystalline calcites also precipitated in lime mud-rich, fine-grained sediments and participated in rapid marine lithification of the Dumugol sediments. The absence of aragonite allochems and cement, and the predominance of calcite cement, suggest that the Dumugol sea was undersaturated with respect to aragonite, but supersaturated with respect to calcite, which is indicative of a 'calcite sea'.

  13. Anoxic marine lakes - an analogue environment for insular phosphorite formation

    SciTech Connect

    Burnett, W.C. )

    1990-06-01

    Hundreds of islands in the tropical Pacific Ocean contain phosphate deposits ranging from inconsequential to economically significant in size. Although many of these deposits clearly have formed by the interaction of avian guano with underlying limestone, some display evidence of having developed within an aqueous environment. Several of the emergent carbonate islands in the southern part of Palau contain phosphate deposits that the authors speculate formed in anoxic marine lakes, similar to those which still occur on a few of these islands. Lake water, sediments, and sediment pore waters from Jellyfish Lake, on the island of Eil Malk in Palau, were analyzed during an expedition in 1987. The results of this investigation supported, but did not provide, conclusive evidence of our hypothesis. Pore water profiles of phosphate and fluoride confirmed precipitation of carbonate fluorapatite. However, the extremely high bulk sediment accumulation rate, driven by the high biological productivity of the surface waters of the lake, dilutes authigenic phosphate to low levels. They have refined their original proposal to suggest that phosphate deposits may form either by: (1) subaerial weathering and concentration of phosphatic sediments after these lakes disappear; or (2) interaction of phosphate-enriched sediment pore solutions with limestone at the underlying contact. Another expedition to test these concepts is being planned.

  14. Laser-filament-induced snow formation in a subsaturated zone in a cloud chamber: experimental and theoretical study.

    PubMed

    Ju, Jingjing; Sun, Haiyi; Sridharan, Aravindan; Wang, Tie-Jun; Wang, Cheng; Liu, Jiansheng; Li, Ruxin; Xu, Zhizhan; Chin, See Leang

    2013-12-01

    1 kHz, 2 mJ, 45 fs, 800 nm laser pulses were fired into a laboratory diffusion cloud chamber through a subsaturated zone (relative humidity ∼73%, T ∼ 4.3 °C). After 60 min of laser irradiation, an oval-shaped snow pile was observed right below the filament center and weighed ∼12.0 mg. The air current velocity at the edge of the vortices was estimated to be ∼16.5 cm/s. Scattering scenes recorded from the side show that filament-induced turbulence were formed inside the cloud chamber with two vortices below the filament. Two-dimensional simulations of the air flow motion in two cross sections of the cloud chamber confirm that the turbulent vortices exist below the filament. Based upon this simulation, we deduce that the vortices indeed have a three-dimensional elliptical shape. Hence, we propose that inside vortices where the humidity was supersaturated or saturated the condensation nuclei, namely, HNO(3), N(2)(+), O(2)(+) and other aerosols and impurities, were activated and grew in size. Large-sized particles would eventually be spun out along the fast moving direction towards the cold plate and formed an oval-shaped snow pile at the end.

  15. Snow on the Seafloor? Methods to Detect Carbohydrates in Deep-sea Sediments Impacted by the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Lincoln, S. A.; Freeman, K. H.

    2015-12-01

    A significant portion of the oil released from the Macondo well after the 2010 Deepwater Horizon (DwH) explosion reached the seafloor (1,2). The transfer of buoyant hydrocarbons from the sea surface and subsurface plumes to depths >1500 m, however, is not well understood. A prominent role for sinking marine snow--small, composite particles composed largely of extracellular polymeric substances exuded by algae and bacteria--has been proposed. Snow particles, rich in carbohydrates, may have sorbed and physically entrained oil from the water column as they sank. Several lines of evidence support this scenario: abundant snow was observed 3-4 weeks after the oil spill (3); oil and dispersants can induce marine snow formation (4); and flocculent material covering deep-sea corals near the DwH site contained biomarkers consistent with Macondo oil (5). To investigate whether the chemically complex marine oil snow leaves a direct sedimentary record, we analyzed carbohydrates at high resolution (2 mm intervals) in sediment cores collected at 4 sites in the northern Gulf of Mexico in 2013 using a modified phenol-sulfuric acid spectrophotometric method. We detected a sharp subsurface peak in carbohydrate concentrations near the Macondo well; we interpret this peak as post-DwH marine snow. Coeval carbohydrate, polycyclic aromatic hydrocarbon, and hopane profiles suggest a clear link between marine snow and Macondo oil components, as documented in a 3-year time-series at one site, and enable preliminary conclusions about the delivery and fate of marine snow components in sediments. We also characterized carbohydrates near the wellhead using fluorescent lectin-binding analyses developed for applications in cell biology. Particle morphologies include collapse structures suggestive of a water column origin. Finally, we explore the extent to which polysaccharide residues detected with selective lectins can be used to determine the provenance of marine snow (e.g., bacterial v. algal

  16. Brine-Wetted Snow on the Surface of Sea Ice: A Potentially Vast and Overlooked Microbial Habitat

    NASA Astrophysics Data System (ADS)

    Deming, J. W.; Ewert, M.; Bowman, J. S.; Colangelo-Lillis, J.; Carpenter, S. D.

    2010-12-01

    On the hemispheric scale, snow on the surface of sea ice significantly impacts the exchange of mass and energy across the ocean-ice-atmosphere interface. The snow cover over Arctic sea ice plays a central role in Arctic photochemistry, including atmospheric depletion events at the onset of spring, and in ecosystem support, by determining the availability of photosynthetically active radiation for algal primary production at the bottom of the ice. Among the non-uniformities of snow relevant to its larger-scale roles is salt content. When snow is deposited on the surface of new sea ice, brine expelled onto the ice surface during ice formation wicks into the snow by capillary action, forming a brine-wetted or saline snow layer at the ice-snow interface. A typical salinity for this basal snow layer in the Arctic (measured on a 3-cm depth interval of melted snow) is about 20 (ppt by optical salinometer), with maxima approaching 30 ppt, thus higher than the salinity of melted surface sea ice (< 12 ppt). Although the physical-chemical properties of this brine-wetted layer have been examined in recent years, and the (assumed) air-derived microbial content of overlying low-salinity snow is known to be low in winter, basal saline snow is essentially unexplored as a microbial habitat. As part of an NSF-supported project on frost flowers, we investigated snow overlying coastal sea ice off Barrow, Alaska, in February 2010 (since snow buries frost flowers). Sterile (ethanol-rinsed) tools were used to open snow pits 60 cm wide, record temperature by thermoprobe at 3-cm depth intervals, and collect samples from newly exposed snow walls for salinity (3-cm intervals) and biological measurements (6-cm intervals). The latter included counts of bacterial abundance by epifluorescence microscopy and assays of extracellular polysaccharide substances (EPS). We also sampled snow on a larger scale to extract sufficient DNA to analyze microbial community composition (ongoing work), as well as

  17. City snow's physicochemical property affects snow disposal

    NASA Astrophysics Data System (ADS)

    Dovbysh, V. O.; Sharukha, A. V.; Evtin, P. V.; Vershinina, S. V.

    2015-10-01

    At the present day the industrial cities run into severe problem: fallen snow in a city it's a concentrator of pollutants and their quantity is constantly increasing by technology development. Pollution of snow increases because of emission of gases to the atmosphere by cars and factories. Large accumulation of polluted snow engenders many vexed ecological problems. That's why we need a new, non-polluting, scientifically based method of snow disposal. This paper investigates polluted snow's physicochemical property effects on snow melting. A distinctive feature of the ion accelerators with self-magnetically insulated diode is that there.

  18. Snow economics and the NOHRSC Snow Information System (SNOW-INFO) for the United States

    NASA Astrophysics Data System (ADS)

    Carroll, T.; Cline, D.; Berkowitz, E.; Savage, D.

    2003-04-01

    .7 trillion (16%) of the Nation's GDP related to the water contained in seasonal snowpacks, reliable snow information is critical to the management of the U.S. economy. In addition to helping improve river and flood forecasts and water supply forecasts, NOHRSC snow information has the potential also to support better decision making and improved efficiency in manufacturing, mining, agriculture, and thermo- and hydroelectric power generation. A 0.1% improvement in revenue resulting from reliable snow information results in an economic benefit to the Nation of 1.7 billion each year (in 2002 dollars). In an effort to provide snow information to support hydrologic forecasting operations in the NWS as well as to enhance the national economy, the NOHRSC has developed and implemented a Snow Information System (SNOW-INFO) that generates and distributes a variety of snow cover products in a variety of formats for the coterminous U.S. SNOW-INFO provides several new products that include: modeled snowpack characteristics such as snow ripeness, melt rates, mean snowpack temperature, and sublimation losses in a variety of alphanumeric, gridded, map, and time-series representations. SNOW-INFO products and data sets are available in near real-time to end-users from the NOHRSC web site (www.nohrsc.nws.gov) and FTP. A variety of SNOW-INFO products and maps from the 2003 snow season depicting simulated and assimilated snow model state variables for the coterminous U.S. are presented.

  19. Marine Sponge-Derived Streptomyces sp. SBT343 Extract Inhibits Staphylococcal Biofilm Formation

    PubMed Central

    Balasubramanian, Srikkanth; Othman, Eman M.; Kampik, Daniel; Stopper, Helga; Hentschel, Ute; Ziebuhr, Wilma; Oelschlaeger, Tobias A.; Abdelmohsen, Usama R.

    2017-01-01

    Staphylococcus epidermidis and Staphylococcus aureus are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of S. epidermidis, S. aureus, and Pseudomonas aeruginosa. Results from in vitro biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium Streptomyces sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other S. epidermidis and S. aureus strains tested but had no inhibitory effects towards Pseudomonas biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the Streptomyces sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the Streptomyces sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to

  20. Marine Sponge-Derived Streptomyces sp. SBT343 Extract Inhibits Staphylococcal Biofilm Formation.

    PubMed

    Balasubramanian, Srikkanth; Othman, Eman M; Kampik, Daniel; Stopper, Helga; Hentschel, Ute; Ziebuhr, Wilma; Oelschlaeger, Tobias A; Abdelmohsen, Usama R

    2017-01-01

    Staphylococcus epidermidis and Staphylococcus aureus are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of S. epidermidis, S. aureus, and Pseudomonas aeruginosa. Results from in vitro biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium Streptomyces sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other S. epidermidis and S. aureus strains tested but had no inhibitory effects towards Pseudomonas biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the Streptomyces sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the Streptomyces sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to

  1. Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective.

    PubMed

    Filippelli, Gabriel M

    2011-08-01

    The role that phosphorite formation, the ultimate source rock for fertilizer phosphate reserves, plays in the marine phosphorus (P) cycle has long been debated. A shift has occurred from early models that evoked strikingly different oceanic P cycling during times of widespread phosphorite deposition to current thinking that phosphorite deposits may be lucky survivors of a series of inter-related tectonic, geochemical, sedimentological, and oceanic conditions. This paradigm shift has been facilitated by an awareness of the widespread nature of phosphogenesis-the formation of authigenic P-bearing minerals in marine sediments that contributes to phosphorite formation. This process occurs not just in continental margin sediments, but in deep sea oozes as well, and helps to clarify the driving forces behind phosphorite formation and links to marine P geochemistry. Two processes come into play to make phosphorite deposits: chemical dynamism and physical dynamism. Chemical dynamism involves the diagenetic release and subsequent concentration of P-bearing minerals particularly in horizons, controlled by a number of sedimentological and biogeochemical factors. Physical dynamism involves the reworking and sedimentary capping of P-rich sediments, which can either concentrate the relatively heavy and insoluble disseminated P-bearing minerals or provide an episodic change in sedimentology to concentrate chemically mobilized P. Both processes can result from along-margin current dynamics and/or sea level variations. Interestingly, net P accumulation rates are highest (i.e., the P removal pump is most efficient) when phosphorites are not forming. Both physical and chemical pathways involve processes not dominant in deep sea environments and in fact not often coincide in space and time even on continental margins, contributing to the rarity of high-quality phosphorite deposits and the limitation of phosphate rock reserves. This limitation is becoming critical, as the human demand

  2. [Histamine formation in Japanese marine fish species and the effect of frozen storage].

    PubMed

    Hayakawa, Ryota; Kobayashi, Naoki; Kato, Noboru; Hara-Kudo, Yukiko; Araki, Emiko

    2013-01-01

    To investigate histamine formation in Japanese marine fish, model samples were made from fish meat mixed with intestines of commercial 73 fish species. After the samples were stored at 25℃ for 12 hr, histamine was detected in 35 fish species at 50 mg/kg or more. These fish species might potentially be related to histamine poisoning. In addition, the effect of frozen storage at -45℃ on histamine formation was examined. Although histamine was formed in some fish species, and Photobacterium damselae and Photobacterium iliopiscarium were isolated from the frozen samples, the amount of histamine formed in the model samples was reduced in all tested fish species after frozen storage. Therefore frozen storage of fish may be effective to control histamine formation, even though histamine forming bacteria survived under these conditions.

  3. Effects of organic matter addition on methylmercury formation in capped and uncapped marine sediments.

    PubMed

    Ndungu, Kuria; Schaanning, Morten; Braaten, Hans Fredrik Veiteberg

    2016-10-15

    In situ subaqueous capping (ISC) of contaminated marine sediments is frequently proposed as a feasible and effective mitigation option. However, though effective in isolating mercury species migration into overlying water, capping can also alter the location and extent of biogeochemical zones and potentially enhance methylmercury (MeHg) formation in Hg-contaminated marine sediments. We carried out a boxcosm study to investigate whether the addition of organic carbon (OC) to Hg-contaminated marine sediments beneath an in situ cap would initiate and/or enhance MeHg formation of the inorganic Hg present. The study was motivated by ongoing efforts to remediate ca. 30,000 m(2) of Hg-contaminated seabed sediments from a Hg spill from the U864 WWII submarine wreck. By the time of sinking, the submarine is assumed to have been holding a cargo of ca. 65 tons of liquid Hg. Natural organic matter and petroleum hydrocarbons from fuels and lubricants in the wreck are potential sources of organic carbon that could potentially fuel MeHg formation beneath a future cap. The results of our study clearly demonstrated that introduction of algae OC to Hg-contaminated sediments, triggered high rates of MeHg production as long a there was sufficient OC. Thus, MeHg production was limited by the amount of organic carbon available. The study results also confirmed that, within the six-month duration of the study and in the absence of bioturbating fauna, a 3-cm sediment clay cap could effectively reduce fluxes of Hg species to the overlying water and isolate the Hg-contaminated sediments from direct surficial deposition of organic matter that could potentially fuel methylation.

  4. Ichnofabric analysis of the Tithonian shallow marine sediments (Bhadasar Formation) Jaisalmer Basin, India

    NASA Astrophysics Data System (ADS)

    Desai, Bhawanisingh G.; Saklani, Rajendra Dutt

    2014-08-01

    The shallow marine sedimentary sequence of the Jaisalmer Basin exhibits one of the important and well-developed Tithonian sedimentary outcrops for western India. The ichnology and ichnofabric of the lower part of Bhadasar Formation (i.e., Kolar Dongar Member) belonging to Tithonian age are presented and discussed. The Kolar Dongar Member represents a shallow marine succession that contains 16 ichnotaxa: Ancorichnus ancorichnus, Conichnus conicus, Gyrochorte comosa, cf. Jamesonichnites heinbergi, Imponoglyphus kevadiensis, Laevicyclus mongraensis, Monocraterion tentaculatum, Ophiomorpha nodosa, Palaeophycus tubularis, P. bolbiterminus, Phycodes palmatus, Planolites beverleyensis, Rhizocorallium isp., Rosselia rotatus, R. socialis, and Teichichnus rectus. The ichnofabric analysis divulges five distinct ichnofabrics, each typifying distinct depositional environment within shallow marine conditions. The ichnofabric Ophiomorpha 1 with syn-sedimentary faulting exemplifies high energy conditions typical of lower shoreface environment, whereas the Ophiomorpha 2 ichnofabric typifies upper shoreface environment. The Ancorichnus ichnofabric reflects lower offshore condition of deposition. The high ichnodiversity Ancorichnus- Rosselia ichnofabric is indicative of inner shelf conditions, while low ichno-diversity Teichichnus ichnofabric indicates prevalence of low energy brackish bay environment. Thus, Tithonian Kolar Dongar Member indicates depositional environment ranging from shoreface to offshore to inner shelf and finally to brackish bay environment.

  5. Marine Bioluminescence: Mechanisms and Evaluation

    DTIC Science & Technology

    1998-09-30

    study of bioluminescence in the S. California Bight using moored detectors, (3) continue study of luminescence in gelatinous zooplankton and marine snow...preparation were the principal efforts in the work on gelatinous zooplankton and marine snow. (4) Cytoskeletal investigations of Pyrocystis...potential adaptive significance of the wavelengths of light produced by gelatinous zooplankton . Bioluminescence spectra were measured from 100

  6. The Importance of Snow Distribution on Sea Ice

    NASA Astrophysics Data System (ADS)

    Butler, B.; Polashenski, C.; Divine, D.; King, J.; Liston, G. E.; Nicolaus, M.; Rösel, A.

    2015-12-01

    Snow's insulating and reflective properties substantially influence Arctic sea ice growth and decay. A particularly important, but under-appreciated, aspect of snow on sea ice is its fine-scale spatial distribution. Snow redistribution into dunes and drifts controls the effective thermal conductivity of a snowpack and dictates the locations of melt pond formation, exerting considerable control over ice mass balance. The effective thermal conductivity of snow distributions created on sea ice, for example, is often considerably greater than a uniform snowpack of equivalent mean thickness. During the N-ICE 2015 campaign north of Svalbard, we studied snow distributions across multiple ice types and the impacts these have on thermal fluxes and ice mass balance. We used terrestrial LiDAR to observe the snow surface topography over km2 areas, conducted many thousands of manual snow depth measurements, and collected hundreds of observations of the snow physical properties in snow pits. We find that the wind driven redistribution of snow can alter the net effect of a constant snow cover volume on ice mass balance as strongly as inter-annual variability in the amount and timing of snowfall. Further comparison with snow depth distributions from field campaigns in other parts of the Arctic highlights regional and inter-annual differences in snow distribution. We quantify the impact of this variability on ice mass balance and demonstrate the need for considering snow distributions and redistribution processes in sea ice models.

  7. Remotely Measuring Snow Depth in Inaccessible Terrain

    NASA Astrophysics Data System (ADS)

    Dixon, D.; Boon, S.

    2010-12-01

    In watershed-scale studies of snow accumulation, high alpine areas are typically important accumulation areas. While snow depth measurements may not be collected in these regions due to avalanche danger, failing to include them in basin-wide estimates of snow accumulation may lead to large underestimates of basin-scale water yield. We present a new method to measure spatially distributed point snow depths remotely. Previously described methods using terrestrial laser scanning (TLS) systems, airborne light detection and ranging (LiDAR) systems, and hand-held laser distance meters have several limitations related to cost, data processing, and accuracy, thus reducing their applicability. The use of a modern robotic total station attempts to resolve these limitations. Total stations have much greater measurement accuracy than laser distance meters, and are significantly less expensive then TLS and LiDAR systems. Data can be output in common data formats, simplifying data processing and management. Measurement points can also be resampled repeatedly throughout the season with high accuracy and precision. Simple trigonometry is used to convert total station measurements into estimates of snow depth perpendicular to the slope. We present results of remote snow depth measurements using a Leica Geosystems TCRP 1201+ robotic total station. Snow depth estimates from the station are validated against measured depths in a field trial. The method is then applied in a basin-scale study to collect and calculate high elevation snow depth, in combination with traditional snow surveys at lower elevations.

  8. Comparative Taphonomy, Taphofacies, and Bonebeds of the Mio-Pliocene Purisima Formation, Central California: Strong Physical Control on Marine Vertebrate Preservation in Shallow Marine Settings

    PubMed Central

    Boessenecker, Robert W.; Perry, Frank A.; Schmitt, James G.

    2014-01-01

    Background Taphonomic study of marine vertebrate remains has traditionally focused on single skeletons, lagerstätten, or bonebed genesis with few attempts to document environmental gradients in preservation. As such, establishment of a concrete taphonomic model for shallow marine vertebrate assemblages is lacking. The Neogene Purisima Formation of Northern California, a richly fossiliferous unit recording nearshore to offshore depositional settings, offers a unique opportunity to examine preservational trends across these settings. Methodology/Principal Findings Lithofacies analysis was conducted to place vertebrate fossils within a hydrodynamic and depositional environmental context. Taphonomic data including abrasion, fragmentation, phosphatization, articulation, polish, and biogenic bone modification were recorded for over 1000 vertebrate fossils of sharks, bony fish, birds, pinnipeds, odontocetes, mysticetes, sirenians, and land mammals. These data were used to compare both preservation of multiple taxa within a single lithofacies and preservation of individual taxa across lithofacies to document environmental gradients in preservation. Differential preservation between taxa indicates strong preservational bias within the Purisima Formation. Varying levels of abrasion, fragmentation, phosphatization, and articulation are strongly correlative with physical processes of sediment transport and sedimentation rate. Preservational characteristics were used to delineate four taphofacies corresponding to inner, middle, and outer shelf settings, and bonebeds. Application of sequence stratigraphic methods shows that bonebeds mark major stratigraphic discontinuities, while packages of rock between discontinuities consistently exhibit onshore-offshore changes in taphofacies. Conclusions/Significance Changes in vertebrate preservation and bonebed character between lithofacies closely correspond to onshore-offshore changes in depositional setting, indicating that the

  9. Carbon and oxygen isotopes of Maastrichtian Danian shallow marine carbonates: Yacoraite Formation, northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Marquillas, Rosa; Sabino, Ignacio; Nobrega Sial, Alcides; Papa, Cecilia del; Ferreira, Valderez; Matthews, Stephen

    2007-04-01

    The Maastrichtian-Danian limestones of the Yacoraite Formation (northwestern Argentina) show carbon and oxygen isotopic values consistent with shallow marine conditions. The members of the formation respond to different sedimentary environments and are characterised by distinctive stable isotopes and geochemistry. The basal Amblayo Member is composed of high-energy dolomitic limestones and limestones with positive isotopic values (+2‰ δ 13C, +2‰ δ 18O). The top of the member reveals an isotopic shift of δ 13C (-5‰) and δ 18O (-10‰), probably related to a descent in the sea level. The sandy Güemes Member has isotopically negative (-2‰ δ 13C, -1‰ δ 18O) limestones, principally controlled by water mixing, decreased organic productivity, and compositional changes in the carbonates. The isotopically lighter limestones are calcitic, with a greater terrigenous contribution and different geochemical composition (high Si-Mn-Fe-Na, low Ca-Mg-Sr). These isotopic and lithological changes relate to the Cretaceous-Palaeogene transition. The Alemanía Member, composed of dolomitic limestones and pelites, represents a return to marine conditions and shows a gradual increase in isotopic values, reaching values similar to those of the Amblayo Member. The Juramento Member, composed of stromatolite limestones, shows isotopic variations that can be correlated with the two well-defined, shallowing-upward sequences of the member.

  10. Snow Conditions Near Barrow in Spring 2012

    NASA Astrophysics Data System (ADS)

    Webster, M.; Rigor, I.; Nghiem, S. V.; Sturm, M.; Kurtz, N. T.; Farrell, S. L.; Gleason, E.; Lieb-Lappen, R.; Saiet, E.

    2012-12-01

    Snow has a dual role in the growth and decay of Arctic sea ice. It provides insulation from colder air temperatures during the winter, which hinders sea ice formation. Snow is highly reflective and, as a result, it delays the surface ice melt during the spring. Summer snow melt influences the formation and location of melt ponds on sea ice, which further modifies heat transport into sea ice and the underlying ocean. Identifying snow thickness and extent is of key importance in understanding the surface heat budget, particularly during the early spring when the maximum snowfall has surpassed, and surface melt has not yet occurred. Regarding Arctic atmospheric chemical processes, snow may sustain or terminate halogen chemical recycling and distribution, depending on the state of the snow cover. Therefore, an accurate assessment of the snow cover state in the changing Arctic is important to identify subsequent impacts of snow change on both physical and chemical processes in the Arctic environment. In this study, we assess the springtime snow conditions near Barrow, Alaska using coordinated airborne and in situ measurements taken during the NASA Operation IceBridge and BRomine, Ozone, and Mercury EXperiment (BROMEX) field campaigns in March 2012, and compare these to climatological records. Operation IceBridge was conceived to bridge the gap between satellite retrievals ice thickness by ICESat which ceased operating in 2009 and ICESat-2 which is planned for launch in 2016. As part of the IceBridge mission, snow depth may be estimated by taking the difference between the snow/air surface and the snow/ice interface measured by University of Kansas's snow radar installed on a P-3 Orion and the measurements have an approximate spatial resolution of 40 m along-track and 16 m across-track. The in situ snow depth measurements were measured by an Automatic Snow Depth Probe (Magnaprobe), which has an accuracy of 0.5 cm. Samples were taken every one-to-two meters at two sites

  11. Scattering optics of snow.

    PubMed

    Kokhanovsky, Alexander A; Zege, Eleonora P

    2004-03-01

    Permanent snow and ice cover great portions of the Arctic and the Antarctic. It appears in winter months in northern parts of America, Asia, and Europe. Therefore snow is an important component of the hydrological cycle. Also, it is a main regulator of the seasonal variation of the planetary albedo. This seasonal change in albedo is determined largely by the snow cover. However, the presence of pollutants and the microstructure of snow (e.g., the size and shape of grains, which depend also on temperature and on the age of the snow) are also of importance in the variation of the snow's spectral albedo. The snow's spectral albedo and its bidirectional reflectance are studied theoretically. The albedo also determines the spectral absorptance of snow, which is of importance, e.g., in studies of the heating regime in snow. We investigate the influence of the nonspherical shape of grains and of close-packed effects on snow's reflectance in the visible and the near-infrared regions of the electromagnetic spectrum. The rate of the spectral transition from highly reflective snow in the visible to almost totally absorbing black snow in the infrared is governed largely by the snow's grain sizes and by the load of pollutants. Therefore both the characteristics of snow and its concentration of impurities can be monitored on a global scale by use of spectrometers and radiometers placed on orbiting satellites.

  12. Shelf to shallow marine deposition of Ivishak Formation, Arctic National Wildlife Refuge, Northeastern Alaska

    SciTech Connect

    Harun, N.T.; Crowder, R.K.

    1988-01-01

    The Lower Triassic Ivishak Formation in Alaska's Arctic National Wildlife Refuge is composed of a progradational-aggradational-retrogradational depositional sequence. The Permian Echooka Formation underlies the Ivishak Formation. The Ivishak is overlain by the Middle and Upper Triassic Shublik Formation, except in the northern Sadlerochit Mountains where the Lower Cretaceous unconformity cuts down section into the Ledge Sandstone Member of the Ivishak Formation. In ascending order, the Ivishak Formation consists of the Kavik, the Ledge Sandstone, and the Fire Creek Siltstone Members. The Kavik Member is composed of thin-bedded, nodular siltstone and silty shale up to 70 m thick. Beds in the Kavik gradually thicken and coarsen into the overlying Ledge Sandstone Member. The Ledge is the chief hydrocarbon reservoir at Prudhoe Bay. In the Arctic National Wildlife Refuge, the Ledge forms a thick (40-90 m) succession of regularly bedded very fine to middle-grained sandstone with conglomeratic intervals. It becomes progressively thinner bedded and finer grained toward the east from the Sadlerochit Mountains to Leffingwell Ridge. The Ledge is gradationally overlain by interbedded sandstone, siltsone, and shale of the Fire Creek Siltstone Member. The Fire Creek consists predominantly of highly bioturbated sandstone, slump structures, and graded beds. The Kavik Member was deposited in open-marine waters beneath storm wave base. The transition into the overlying Ledge Sandstone Member represents a progradational sequence. The nearshore deposits of the Ledge Sandstone Member are aggradational. The Fire Creek Siltstone Member records deposition in an inner to middle shelf environment and represents a general retrogradational shift in depositional environments.

  13. Camping in the Snow.

    ERIC Educational Resources Information Center

    Brown, Constance

    1979-01-01

    Describes the experience of winter snow camping. Provides suggestions for shelter, snow kitchens, fires and stoves, cooking, latrines, sleeping warm, dehydration prevention, and clothing. Illustrated with full color photographs. (MA)

  14. Multiwell Experiment: I, The marine interval of the Mesaverde Formation: Final report

    SciTech Connect

    Not Available

    1987-04-01

    The Department of Energy's Multiwell Experiment is a field laboratory in the Piceance Basin of Colorado which has two overall objectives: to characterize the low permeability gas reservoirs in the Mesaverde Formation and to develop technology for their production. Different depositional environments have created distinctly different reservoirs in the Mesaverde, and MWX has addressed each of these in turn. This report presents a comprehensive summary of results from the lowermost interval: the marine interval which lies between 7450 and 8250 ft at the MWX site. Separate sections of this report are background and summary; site description and operations; geology; log analysis; core analysis; in situ stress; well testing, analysis and reservoir evaluation; and a bibliography. Additional detailed data, results, and data file references are given on microfiche in several appendices.

  15. Borehole failure resulting from formation integrity (leak-off) testing in upper marine sediments offshore

    SciTech Connect

    Wojtanowicz, A.K.; Zhou, D.

    1998-12-31

    This paper presents results of potential loss of external integrity around casing shoe resulting from leak-off testing (LOT) in upper marine sediments (UMS). Three types of possible failures from LOTs are considered. It is proved that vertical fracture is the most unlikely failure for most UMS. Horizontal fracture can be formed in the plastic zone at a wellbore pressure less than overburden pressure, but it cannot extend beyond the plastic zone until the wellbore pressure exceeds the overburden pressure. An annular channel between cemented casing and rock is the other fracture way in UMS even though the cementing job is perfect. Fracture can be distinguished from LOT curve. Increasing the contact force between cemented casing and rock, such as using expanding cement, will prevent the formation of a harmful channel.

  16. Palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin, northern South China Sea.

    PubMed

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter.

  17. Palaeoenvironment and Its Control on the Formation of Miocene Marine Source Rocks in the Qiongdongnan Basin, Northern South China Sea

    PubMed Central

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  18. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    were enhanced with time compared with larger sizes. In contrast, all particle sizes were equally enhanced when frits were used. Aerosolized particles were hygroscopic, a finding with significance for warm cloud formation and potential liquid-to-ice phase transformations. Aqueous and dry aerosolized particles from biologically active mesocosm water were found to efficiently nucleate ice exposed to supersaturated water vapor. The majority of particles, including those nucleating ice, consisted of a sea salt core coated with organic material dominated by the carboxyl functional group, and corresponded to a particle type commonly found in marine air. Our results provide improved estimates of marine aerosol production, chemical composition, and hygroscopicity, as well as an accurate physical and chemical representation of ice nucleation by marine biogenic aerosol particles for use in cloud and climate models.

  19. An electrostatic charge measurement of blowing snow particles focusing on collision frequency to the snow surface

    NASA Astrophysics Data System (ADS)

    Omiya, S.; Sato, A.

    2010-12-01

    Blowing snow particles are known to have an electrostatic charge. This charge may be a contributing factor in the formation of snow drifts and snow cornices and changing of the trajectory of blowing snow particles. These formations and phenomena can cause natural disaster such as an avalanche and a visibility deterioration, and obstruct transportation during winter season. Therefore, charging phenomenon of the blowing snow particles is an important issue in terms of not only precise understanding of the particle motion but disaster prevention. The primary factor of charge accumulation to the blowing snow particles is thought to be due to “saltation” of them. The “saltation” is one of movement forms of blowing snow: when the snow particles are transported by the wind, they repeat frictional collisions with the snow surface. In previous studies, charge-to-mass ratios measured in the field were approximately -50 to -10 μC/kg, and in the wind tunnel were approximately -0.8 to -0.1 μC/kg. While there were qualitatively consistent in sign, negative, there were huge gaps quantitatively between them. One reason of those gaps is speculated to be due to differences in fetch. In other words, the difference of the collision frequency of snow particles to the snow surface has caused the gaps. But it is merely a suggestion and that has not been confirmed. The purpose of this experiment is to measure the charge of blowing snow particles focusing on the collision frequency and clarify the relationship between them. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center (NIED, JAPAN). A Faraday cage and an electrometer were used to measure the charge of snow particles. These experiments were conducted over the hard snow surface condition to prevent the erosion of the snow surface and the generation of new snow particles from the surface. The collision frequency of particle was controlled by changing the wind velocity (4.5 to 7 m/s) under

  20. Snow instability patterns at the scale of a small basin

    NASA Astrophysics Data System (ADS)

    Reuter, Benjamin; Richter, Bettina; Schweizer, Jürg

    2016-02-01

    Spatial and temporal variations are inherent characteristics of the alpine snow cover. Spatial heterogeneity is supposed to control the avalanche release probability by either hindering extensive crack propagation or facilitating localized failure initiation. Though a link between spatial snow instability variations and meteorological forcing is anticipated, it has not been quantitatively shown yet. We recorded snow penetration resistance profiles with the snow micropenetrometer at an alpine field site during five field campaigns in Eastern Switzerland. For each of about 150 vertical profiles sampled per day a failure initiation criterion and the critical crack length were calculated. For both criteria we analyzed their spatial structure and predicted snow instability in the basin by external drift kriging. The regression models were based on terrain and snow depth data. Slope aspect was the most prominent driver, but significant covariates varied depending on the situation. Residual autocorrelation ranges were shorter than the ones of the terrain suggesting external influences possibly due to meteorological forcing. To explore the causes of the instability patterns we repeated the geostatistical analysis with snow cover model output as covariate data for one case. The observed variations of snow instability were related to variations in slab layer properties which were caused by preferential deposition of precipitation and differences in energy input at the snow surface during the formation period of the slab layers. Our results suggest that 3-D snow cover modeling allows reproducing some of the snow property variations related to snow instability, but in future work all relevant micrometeorological spatial interactions should be considered.

  1. Formation of stable bdelloplasts as a starvation-survival strategy of marine bdellovibrios

    SciTech Connect

    Sanchez-Amat, A.; Torrella, F. )

    1990-09-01

    Bacteria belonging to the genus Bdellovibrio have been isolated from a variety of habitats, including soil (15), rivers (1), estuarine water, seawater, and solar salt concentration ponds. Several wild-type isolates of marine bdellovibrios formed stable bdelloplasts when they infected gram-negative bacterial prey under certain culture conditions. Synchronous predator-prey cultures and low nutrient concentrations increased the yield of stable bdelloplasts. The bdellovibrio cells retained in the stable bdelloplasts showed a high survival capacity in nutrient-depleted saline solution (10% viable Bdellovibrio cells after 3 months at 25{degrees}C), whereas Bdellovibrio attack-phase cells kept under the same starvation conditions lost viability more quickly (1% viable cells after 48 h). The addition of yeast extract to a stable bdelloplast suspension induced lysis of the bdelloplasts and release of motile infecting attack-phase Bdellovibrio cells. Other substances, such as free amino acids, protein hydrolysates, NH{sub 4}{sup +}, carbohydrates, and organic amines, did not induce such a release. Stable bdelloplasts were highly hydrophobic and had a lower endogenous respiration rate than attack-phase cells. In general, stable bdelloplasts were almost as sensitive to temperature changes, desiccation, sonication, tannic acid, and Triton X-100 treatment as attack-phase cells. Electron microscopy of stable bdelloplasts did not reveal any extra cell wall layer, either in the bdelloplast envelope or in the retained Bdellovibrio cells, unlike the bdellocysts of the soil bacterium Bdellovibrio sp. strain W. The authors propose that formation of stable bdelloplasts is a survival strategy of marine bdellovibrios which occurs in response to nutrient- and prey-poor seawater habitats.

  2. A novel type of colony formation in marine planktonic diatoms revealed by atomic force microscopy.

    PubMed

    Bosak, Sunčica; Pletikapić, Galja; Hozić, Amela; Svetličić, Vesna; Sarno, Diana; Viličić, Damir

    2012-01-01

    Diatoms have evolved a variety of colonial life forms in which cells are connected by organic threads, mucilage pads or silicate structures. In this study, we provide the first description of a novel strategy of colony formation among marine planktonic diatoms. Bacteriastrum jadranum forms loose but regular chains with distinct heterovalvate terminal cells. The colonial cells and their siliceous projections, the setae, are not in direct contact; instead, they are enclosed within the optically transparent organic matrix. This cell jacket structure was detected by staining procedure with Alcian Blue, which showed that the polysaccharides are predominant matrix constituents and revealed that the jacket reaches the span of the setae. The scanning electron microscopy (SEM) observations showed distinguishable fibrillar network firmly associated with cells. Using atomic force microscopy (AFM), we were able to visualise and characterise the cell jacket structure at molecular resolution. At nanoscale resolution, the cell jacket appears as a cross-linked fibrillar network organised into a recognisable structure. The circular patches of self-repeating pattern (hexagonal pores with openings of 8-100 nm) are connected through thicker surrounding fibrils and reinforced by branching fibrils. The pore-forming fibrils within the patches are only 0.6-1.6 nm high, the surrounding fibrils connecting patches are 2.0-2.8 nm high, and the branching fibrils are considerably wider but not higher than 4.0 nm. The discovered polysaccharide fibrillar network is highly organised and delicately structured with a monomolecular fibril height of 0.6 nm. We conclude that the Bacteriastrum polysaccharide jacket represents an essential part of the cell, as the conjunction of the polymer network with the frustule appears to be extremely tight and such specific and unique patterns have never been found in self-assembled polysaccharide gel networks, which are usually encountered in the marine

  3. Marine chemistry of the permian phosphoria formation and basin, Southeast Idaho

    USGS Publications Warehouse

    Piper, D.Z.

    2001-01-01

    Major components in the Meade Peak Member of the Phosphoria Formation are apatite, dolomite, calcite, organic matter, and biogenic silica-a marine fraction; and aluminosilicate quartz debris-a terrigenous fraction. Samples from Enoch Valley, in southeast Idaho, have major element oxide abundances of Al2O3, Fe2O3, K2O, and TiO2 that closely approach the composition of the world shale average. Factor analysis further identifies the partitioning of several trace elements-Ba, Ga, Li, Sc, and Th and, at other sites in southeast Idaho and western Wyoming, B, Co, Cs, Hf, Rb, and Ta-totally into this fraction. Trace elements that fail to show such correlations or factor loadings include Ag, As, Cd, Cr, Cu, Mo, Ni, Se, the rare earth elements (REE), U, V, and Zn. Their terrigenous contribution is determined from minimum values of trace elements versus the terrigenous fraction. These minima too define trace element concentrations in the terrigenous fraction that approximately equal their concentrations in the world shale average. The marine fraction of trace elements represents the difference between the bulk trace element content of a sample and the terrigenous contribution. Of the trace elements enriched above a terrigenous contribution, Ag, Cr, Cu, Mo, and Se show strong loadings on the factor with an organic matter loading and U and the REE on the factor with a strong apatite loading. Cd, Ni, V, and Zn do not show a strong correlation with any of the marine components but are, nonetheless, strongly enriched above a terrigenous contribution. Interelement relationships between the trace elements identify two seawater sources-planktonic debris and basinal bottom water. Relationships between Cd, Cu, Mo, Zn, and possibly Ni and Se suggest a solely biogenic source. Their accumulation rates, and that of PO3-4, further identify the level of primary productivity as having been moderate and the residence time of water in the basin at 4.5 yr. Enrichments of Cr, U, V, and the REE

  4. Distributed calibrating snow models using remotely sensed snow cover information

    NASA Astrophysics Data System (ADS)

    Li, H.

    2015-12-01

    Distributed calibrating snow models using remotely sensed snow cover information Hongyi Li1, Tao Che1, Xin Li1, Jian Wang11. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China For improving the simulation accuracy of snow model, remotely sensed snow cover data are used to calibrate spatial parameters of snow model. A physically based snow model is developed and snow parameters including snow surface roughness, new snow density and critical threshold temperature distinguishing snowfall from precipitation, are spatially calibrated in this study. The study region, Babaohe basin, located in northwestern China, have seasonal snow cover and with complex terrain. The results indicates that the spatially calibration of snow model parameters make the simulation results more reasonable, and the simulated snow accumulation days, plot-scale snow depth are more better than lumped calibration.

  5. Modelling high-resolution snow cover precipitation supply for German river catchments with SNOW 4

    NASA Astrophysics Data System (ADS)

    Böhm, Uwe; Reich, Thomas; Schneider, Gerold; Fiedler, Anett

    2013-04-01

    Formation of snow cover causes a delayed response of surface to precipitation. Both melting of snow and release of liquid water retained within the snow cover form precipitation supply which contributes to runoff and infiltration. The model SNOW 4 is developed to simulate snow cover accumulation and depletion and the resulting precipitation supply on a regular grid. The core of the model is formed by a set of equations which describe the snow cover energy and mass balance. The snow surface energy balance is calculated as a result of the radiation balance and the heat fluxes between atmosphere, soil and snow cover. The available melting heat enters the mass balance computation part of the model and melting of snow or freezing of liquid water within the snow layer takes place depending on its sign. Retention, aging and snow cover regeneration are taken into consideration. The model runs operationally 4 times a day and provides both a snow cover and precipitation supply analysis for the last 30 hours and a forecast for up to 72 hours. For the 30-hour analysis, regionalised observations are used both to define the initial state and force the model. Hourly measurements of air temperature, water vapour pressure, wind speed, global radiation or sunshine duration and precipitation are interpolated to the model grid. For the forecast period, SNOW 4 obtains the required input data from the operational products of the COSMO-EU weather forecast model. The size of a grid box is 1km2. The model area covers a region of 1100x1000km2 and includes the catchments of the German rivers completely. The internal time step is set to 1 hour. Once a day, the compliance between model and regionalized snow cover data is assessed. If discrepancies exceed certain thresholds, the model must be adjusted by a weighted approach towards the observations. The model simulations are updated every six hours based on the most recent observations and weather forecasts. The model works operationally since

  6. Control of marine biofouling and medical biofilm formation with engineered topography

    NASA Astrophysics Data System (ADS)

    Schumacher, James Frederick

    Biofouling is the unwanted accumulation and growth of cells and organisms on clean surfaces. This process occurs readily on unprotected surfaces in both the marine and physiological environments. Surface protection in both systems has typically relied upon toxic materials and biocides. Metallic paints, based on tin and copper, have been extremely successful as antifouling coatings for the hulls of ships by killing the majority of fouling species. Similarly, antibacterial medical coatings incorporate metal-containing compounds such as silver or antibiotics that kill the bacteria. The environmental concerns over the use of toxic paints and biocides in the ocean, the developed antibiotic resistance of bacterial biofilms, and the toxicity concerns with silver suggest the need for non-toxic and non-kill solutions for these systems. The manipulation of surface topography on non-toxic materials at the size scale of the fouling species or bacteria is one approach for the development of alternative coatings. These surfaces would function simply as a physical deterrent of settlement of fouling organisms or a physical obstacle for the adequate formation of a bacterial biofilm without the need to kill the targeted microorganisms. Species-specific topographical designs called engineered topographies have been designed, fabricated and evaluated for potential applications as antifouling marine coatings and material surfaces capable of reducing biofilm formation. Engineered topographies fabricated on the surface of a non-toxic, polydimethylsiloxane elastomer, or silicone, were shown to significantly reduce the attachment of zoospores of a common ship fouling green algae (Ulva) in standard bioassays versus a smooth substrate. Other engineered topographies were effective at significantly deterring the settlement of the cyprids of barnacles (Balanus amphitrite). These results indicate the potential use of engineered topography applied to non-toxic materials as an environmentally

  7. Endocrine regulation of carbonate precipitate formation in marine fish intestine by stanniocalcin and PTHrP.

    PubMed

    Gregório, Sílvia F; Carvalho, Edison S M; Campinho, Marco A; Power, Deborah M; Canário, Adelino V M; Fuentes, Juan

    2014-05-01

    In marine fish, high epithelial bicarbonate secretion by the intestine generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. In vitro studies highlight the involvement of the calciotropic hormones PTHrP (parathyroid hormone-related protein) and stanniocalcin (STC) in the regulation of epithelial bicarbonate transport. The present study tested the hypothesis that calciotropic hormones have a regulatory role in carbonate precipitate formation in vivo. Sea bream (Sparus aurata) juveniles received single intraperitoneal injections of piscine PTHrP(1-34), the PTH/PTHrP receptor antagonist PTHrP(7-34) or purified sea bream STC, or were passively immunized with polyclonal rabbit antisera raised against sea bream STC (STC-Ab). Endocrine effects on the expression of the basolateral sodium bicarbonate co-transporter (Slc4a4.A), the apical anion exchangers Slc26a6.A and Slc26a3.B, and the V-type proton pump β-subunit (Atp6v1b) in the anterior intestine were evaluated. In keeping with their calciotropic nature, the hypocalcaemic factors PTHrP(7-34) and STC up-regulated gene expression of all transporters. In contrast, the hypercalcaemic factor PTHrP(1-34) and STC antibodies down-regulated transporters involved in the bicarbonate secretion cascade. Changes in intestine luminal precipitate contents provoked by calcaemic endocrine factors validated these results: 24 h post-injection either PTHrP(1-34) or immunization with STC-Ab reduced the carbonate precipitate content in the sea bream intestine. In contrast, the PTH/PTHrP receptor antagonist PTHrP(7-34) increased not only the precipitated fraction but also the concentration of HCO3(-) equivalents in the intestinal fluid. These results confirm the hypothesis that calciotropic hormones have a regulatory role in carbonate precipitate formation in vivo in the intestine of marine fish. Furthermore, they illustrate for the first time in fish the counteracting effect of PTHr

  8. Spatial-temporal dynamics of chemical composition of surface snow in East Antarctic along the transect Station Progress-Station Vostok

    NASA Astrophysics Data System (ADS)

    Khodzher, T. V.; Golobokova, L. P.; Shibaev, Y. A.; Lipenkov, V. Y.; Petit, J. R.

    2013-05-01

    This paper presents data on chemical composition of the Antarctic snow sampled during the 53rd Russian Antarctic Expedition (RAE, 2008) along the first tractor traverse (TT) from Station Progress to Station Vostok (East Antarctica). Snow samples were obtained from the cores drilled at 55.3, 253, 337, 369, 403, 441, 480, 519, 560, 618, 819, and 1276 km from Station Progress. Data on horizontal and deep distribution of chemical components in the snow provide evidence of spatial and temporal variations of conditions for the snow cover formation along the transect under study. Sea salt was the main source for chemical composition of snow cover near the ice edge. Concentrations of marine-derived components decreased further inland. A hypothesis was put forward that some ions in the snow cover of the central part of East Antarctica were likely to be of continental origin. Elevated concentrations of sulphate ions of continental origin were recorded in some profiles of the transect at a depth of 130-150 cm which was attributed to buried signals of the Pinatubo volcano eruption (1991).

  9. Stable silicon isotope signatures of marine pore waters - Biogenic opal dissolution versus authigenic clay mineral formation

    NASA Astrophysics Data System (ADS)

    Ehlert, Claudia; Doering, Kristin; Wallmann, Klaus; Scholz, Florian; Sommer, Stefan; Grasse, Patricia; Geilert, Sonja; Frank, Martin

    2016-10-01

    Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment-water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm-2 yr-1. The fractionation factor between the precipitates and the pore waters is estimated at -2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.

  10. Microwave emissions from snow

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.

    1984-01-01

    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow properties

  11. Dry Snow Metamorphism

    DTIC Science & Technology

    2012-09-19

    REPORT Dry Snow Metamorphism Final Report Grant: 51065-EV 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The goal of this project was to characterize the...structural evolution of dry snow as it underwent metamorphism under either quasi-isothermal conditions or a temperature gradient, and to determine...Z39.18 - 5-Aug-2011 Dry Snow Metamorphism Final Report Grant: 51065-EV Report Title ABSTRACT The goal of this project was to characterize the structural

  12. Dynamics of glide avalanches and snow gliding

    NASA Astrophysics Data System (ADS)

    Ancey, Christophe; Bain, Vincent

    2015-09-01

    In recent years, due to warmer snow cover, there has been a significant increase in the number of cases of damage caused by gliding snowpacks and glide avalanches. On most occasions, these have been full-depth, wet-snow avalanches, and this led some people to express their surprise: how could low-speed masses of wet snow exert sufficiently high levels of pressure to severely damage engineered structures designed to carry heavy loads? This paper reviews the current state of knowledge about the formation of glide avalanches and the forces exerted on simple structures by a gliding mass of snow. One particular difficulty in reviewing the existing literature on gliding snow and on force calculations is that much of the theoretical and phenomenological analyses were presented in technical reports that date back to the earliest developments of avalanche science in the 1930s. Returning to these primary sources and attempting to put them into a contemporary perspective are vital. A detailed, modern analysis of them shows that the order of magnitude of the forces exerted by gliding snow can indeed be estimated correctly. The precise physical mechanisms remain elusive, however. We comment on the existing approaches in light of the most recent findings about related topics, including the physics of granular and plastic flows, and from field surveys of snow and avalanches (as well as glaciers and debris flows). Methods of calculating the forces exerted by glide avalanches are compared quantitatively on the basis of two case studies. This paper shows that if snow depth and density are known, then certain approaches can indeed predict the forces exerted on simple obstacles in the event of glide avalanches or gliding snow cover.

  13. Comparison of New Prticle Formation in Marine and Coastal Atmosphere under Outflow of City Clusters in North China

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Li, K.; Guo, T.; Yu, P.; Hu, Q.; Gao, H.; Yao, X.

    2015-12-01

    Simultaneous measurements of new particle formation (NPF) events were conducted during two cruises over China Seas and at a coastal site. NPF events occurred in thirteen days out of 38 sampling days over China Seas, and the NPF events in eleven days were confirmed to be regional occurred with the spatial scale at least 47 km-475 km. The formation rates of new particles were 5.3±5.0 particles cm-3s-1 in marine NPF events while 2.4±1.2 particles cm-3s-1 in coastal NPF events. The reason for the lower formation rates in coastal atmosphere might be the higher number concentration of pre-existing particles and larger condensation sinks. However, the growth rates of new particles in marine NPF events (3.3±2.2 nm h-1) were lower than in coastal NPF events (4.3±2.2 nm h-1), which might be caused by more precursors for new particles growth in the coastal city. In the marine atmosphere, new particles can grow from nucleation mode (<30 nm) to Aitken mode (30-100 nm) in seven days. However, the largest geometric median diameter of new particles (Dpg) was 50 nm in two days with the low number concentration, indicating the negligible contribution of marine new particles to CCN production. In the coastal atmosphere, new particles can grow to about 100 nm in two days, but the second-stage growth of new particles seemed to be generated from mixing process with pre-existing particles rather than gas-particle condensation. The measurement of particular chemical composition during the marine NPF days showed the important role of organic acids in new particles.

  14. Carbon dioxide storage in marine sediments - dissolution, transport and hydrate formation kinetics from high-pressure experiments

    NASA Astrophysics Data System (ADS)

    Bigalke, N. K.; Savy, J. P.; Pansegrau, M.; Aloisi, G.; Kossel, E.; Haeckel, M.

    2009-12-01

    By satisfying thermodynamic framework conditions for CO2 hydrate formation, pressures and temperatures of the deep marine environment are unique assets for sequestering CO2 in clathrates below the seabed. However, feasibility and safety of this storage option require an accurate knowledge of the rate constants governing the speed of physicochemical reactions following the injection of the liquefied gas into the sediments. High-pressure experiments designed to simulate the deep marine environment open the possibility to obtain the required parameters for a wide range of oceanic conditions. In an effort to constrain mass transfer coefficients and transport rates of CO2 in(to) the pore water of marine sediments first experiments were targeted at quantifying the rate of CO2 uptake by de-ionized water and seawater across a two-phase interface. The nature of the interface was controlled by selecting p and T to conditions within and outside the hydrate stability field (HSF) while considering both liquid and gaseous CO2. Concentration increase and hydrate growth were monitored by Raman spectroscopy. The experiments revealed anomalously fast transport rates of dissolved CO2 at conditions both inside and outside the HSF. While future experiments will further elucidate kinetics of CO2 transport and hydrate formation, these first results could have major significance to safety-related issues in the discussion of carbon storage in the marine environment.

  15. "Let It Snow, Let It Snow, Let It Snow!"

    ERIC Educational Resources Information Center

    Pangbourne, Laura

    2010-01-01

    Winter in the UK has, in recent years, brought a significant amount of snow and cold weather. This was the case while the author was a trainee teacher on placement at a rural primary school in Dartmoor early in 2010. The day started promisingly with the class looking at the weather forecast on the interactive whiteboard and having a short…

  16. Snow Bank Detectives

    ERIC Educational Resources Information Center

    Olson, Eric A.; Rule, Audrey C.; Dehm, Janet

    2005-01-01

    In the city where the authors live, located on the shore of Lake Ontario, children have ample opportunity to interact with snow. Water vapor rising from the relatively warm lake surface produces tremendous "lake effect" snowfalls when frigid winter winds blow. Snow piles along roadways after each passing storm, creating impressive snow…

  17. Loropetalum chinense 'Snow Panda'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new Loropetalum chinense, ‘Snow Panda’, developed at the U.S. National Arboretum is described. ‘Snow Panda’ (NA75507, PI660659) originated from seeds collected near Yan Chi He, Hubei, China in 1994 by the North America-China Plant Exploration Consortium (NACPEC). Several seedlings from this trip w...

  18. GulfSnow Peach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GulfSnow peach is jointly released for grower trial by the U.S. Department of Agriculture, Agricultural Research Service (Byron, GA), Georgia Agricultural Experiment Station and Florida Agricultural Experiment Station. GulfSnow was previously tested as AP06-09W and originated from a cross of AP98-3...

  19. Improved Snow Mapping Accuracy with Revised MODIS Snow Algorithm

    NASA Technical Reports Server (NTRS)

    Riggs, George; Hall, Dorothy K.

    2012-01-01

    The MODIS snow cover products have been used in over 225 published studies. From those reports, and our ongoing analysis, we have learned about the accuracy and errors in the snow products. Revisions have been made in the algorithms to improve the accuracy of snow cover detection in Collection 6 (C6), the next processing/reprocessing of the MODIS data archive planned to start in September 2012. Our objective in the C6 revision of the MODIS snow-cover algorithms and products is to maximize the capability to detect snow cover while minimizing snow detection errors of commission and omission. While the basic snow detection algorithm will not change, new screens will be applied to alleviate snow detection commission and omission errors, and only the fractional snow cover (FSC) will be output (the binary snow cover area (SCA) map will no longer be included).

  20. Make Your Own Snow Day!

    ERIC Educational Resources Information Center

    Robeck, Edward

    2011-01-01

    Children love snow days, even when they come during the warmest weather. In this lesson the snow isn't falling outside, it's in the classroom--thanks to "Snowflake Bentley" (Briggs Martin 1998) and several models of snowflakes. A lesson on snow demonstrates several principles of practice for using models in elementary science. Focusing on snow was…

  1. Associated terrestrial and marine fossils in the late-glacial Presumpscot Formation, southern Maine, USA, and the marine reservoir effect on radiocarbon ages

    USGS Publications Warehouse

    Thompson, W.B.; Griggs, C.B.; Miller, N.G.; Nelson, R.E.; Weddle, T.K.; Kilian, T.M.

    2011-01-01

    Excavations in the late-glacial Presumpscot Formation at Portland, Maine, uncovered tree remains and other terrestrial organics associated with marine invertebrate shells in a landslide deposit. Buds of Populus balsamifera (balsam poplar) occurred with twigs of Picea glauca (white spruce) in the Presumpscot clay. Tree rings in Picea logs indicate that the trees all died during winter dormancy in the same year. Ring widths show patterns of variation indicating responses to environmental changes. Fossil mosses and insects represent a variety of species and wet to dry microsites. The late-glacial environment at the site was similar to that of today's Maine coast. Radiocarbon ages of 14 tree samples are 11,907??31 to 11,650??5014C yr BP. Wiggle matching of dated tree-ring segments to radiocarbon calibration data sets dates the landslide occurrence at ca. 13,520+95/??20calyr BP. Ages of shells juxtaposed with the logs are 12,850??6514C yr BP (Mytilus edulis) and 12,800??5514C yr BP (Balanus sp.), indicating a marine reservoir age of about 1000yr. Using this value to correct previously published radiocarbon ages reduces the discrepancy between the Maine deglaciation chronology and the varve-based chronology elsewhere in New England. ?? 2011 University of Washington.

  2. Hydrate Formation in Gas-Rich Marine Sediments: A Grain-Scale Model

    NASA Astrophysics Data System (ADS)

    Holtzman, R.; Juanes, R.

    2009-12-01

    We present a grain-scale model of marine sediment, which couples solid- and multiphase fluid-mechanics together with hydrate kinetics. The model is applied to investigate the spatial distribution of the different methane phases - gas and hydrate - within the hydrate stability zone. Sediment samples are generated from three-dimensional packs of spherical grains, mapping the void space into a pore network by tessellation. Gas invasion into the water-saturated sample is simulated by invasion-percolation, coupled with a discrete element method that resolves the grain mechanics. The coupled model accounts for forces exerted by the fluids, including cohesion associated with gas-brine surface tension. Hydrate growth is represented by a hydrate film along the gas-brine interface, which increases sediment cohesion by cementing the grain contacts. Our model of hydrate growth includes the possible rupture of the hydrate layer, which leads to the creation of new gas-water interface. In previous work, we have shown that fine-grained sediments (FGS) exhibit greater tendency to fracture, whereas capillary invasion is the preferred mode of methane gas transport in coarse-grained sediments (CGS). The gas invasion pattern has profound consequences on the hydrate distribution: a larger area-to-volume ratio of the gas cluster leads to a larger drop in gas pressure inside the growing hydrate shell, causing it to rupture. Repeated cycles of imbibition and hydrate growth accompanied by trapping of gas allow us to determine the distribution of hydrate and gas within the sediment as a function of time. Our pore-scale model suggests that, even when film rupture takes place, the conversion of gas to hydrate is slow. This explains two common field observations: the coexistence of gas and hydrate within the hydrate stability zone in CGS, and the high methane fluxes through fracture conduits in FGS. These results demonstrate the importance of accounting for the strong coupling among multiphase

  3. Sedimentology of the fluvial and fluvio-marine facies of the Bahariya Formation (Early Cenomanian), Bahariya Oasis, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalifa, M. A.; Catuneanu, O.

    2008-05-01

    The Lower Cenomanian Bahariya Formation in the Bahariya Oasis, Western Desert, Egypt, was deposited under two coeval environmental conditions. A fully fluvial system occurs in the southern portion of the Bahariya Oasis, including depositional products of meandering and braided streams, and a coeval fluvio-marine setting is dominant to the north. These deposits are organized into four unconformity-bounded depositional sequences, whose architecture is shaped by a complex system of incised valleys. The fluvial portion of the lower two depositional sequences is dominated by low-energy, meandering systems with a tabular geometry, dominated by overbank facies. The fluvial deposits of the upper two sequences represent the product of sedimentation within braided streams, and consist mainly of amalgamated channel-fills. The braided fluvial systems form the fill of incised valleys whose orientation follows a southeast-northwest trending direction, and which truncate the underlying sequences. Four sedimentary facies have been identified within the braided-channel systems, namely thin-laminated sandstones (Sh), cross-bedded sandstones (Sp, St), massive ferruginous sandstones (Sm) and variegated mudstones (Fm). The exposed off-channel overbank facies of the meandering systems include floodplain (Fm) and crevasse splay (Sl) facies. The fluvio-marine depositional systems consist of interbedded floodplain, coastal and shallow-marine deposits. The floodplain facies include fine-grained sandstones (Sf), laminated siltstones (Stf) and mudstones (Mf) that show fining-upward cycles. The coastal to shallow-marine facies consist primarily of mudstones (Mc) and glauconitic sandstones (Gc) organized vertically in coarsening-upward prograding cyclothems topped by thin crusts of ferricrete (Fc). The four depositional sequences are present across the Bahariya Oasis, albeit with varying degrees of preservation related to post-depositional erosion associated with the formation of sequence

  4. Organic geochemical characterisation of shallow marine Cretaceous formations from Yola Sub-basin, Northern Benue Trough, NE Nigeria

    NASA Astrophysics Data System (ADS)

    Sarki Yandoka, Babangida M.; Abdullah, Wan Hasiah; Abubakar, M. B.; Hakimi, Mohammed Hail; Jauro, Aliyu; Adegoke, Adebanji Kayode

    2016-05-01

    The shallow marine shales of the Cretaceous formations namely Yolde, Dukul, Jessu, Sekuliye and Numanha ranging in age from Cenomanian to Coniacian within the Yola Sub-basin in the Northern Benue Trough, northeastern Nigeria were analysed to provide an overview on their hydrocarbon generation potential. This study is based on pyrolysis analysis, total organic carbon content (TOC), extractable organic matter (EOM), biomarker distributions and measured vitrinite reflectance. The present-day TOC contents range between 0.24 and 0.71 wt. % and Hydrogen Index (HI) values between 8.7 and 113 mg HC/g TOC with Type III/IV kerogens. Based on the present-day kerogen typing, the shale sediments are expected to generate mainly gas. Biomarker compositions indicates deposition in a marine environment under suboxic conditions with prevalent contribution of aquatic organic matter and a significant amount of terrigenous organic matter input. Organic matter that is dominated by marine components contains kerogens of Type II and Type II-III. This study shows that the organic matter has been affected by volcanic intrusion and consequently, have reached post-mature stage of oil generation. These higher thermal maturities levels are consistent with the vitrinite reflectance ranging from 0.85 to 2.35 Ro % and high Tmax (440-508 °C) values as supported by biomarker maturity ratios. Based on this study, a high prospect for major gas and minor oil generation potential is anticipated from the shallow marine Cretaceous formations from Yola Sub-basin.

  5. A minute ostracod (Crustacea: Cytheromatidae) from the Miocene Solimões Formation (western Amazonia, Brazil): evidence for marine incursions?

    PubMed Central

    Gross, Martin; Ramos, Maria Ines F.; Piller, Werner E.

    2016-01-01

    A huge wetland (the ‘Pebas system’) covered western Amazonia during the Miocene, hosting a highly diverse and endemic aquatic fauna. One of the most contentious issues concerns the existence, potential pathways and effects of marine incursions on this ecosystem. Palaeontological evidences (body fossils) are rare. The finding of a new, presumably marine ostracod species (Pellucistoma curupira sp. nov.) in the upper middle Miocene Solimões Formation initiated a taxonomic, ecological and biogeographical review of the genus Pellucistoma. We demonstrate that this marine (sublittoral, euhaline), subtropical–tropical taxon is biogeographically confined to the Americas. The biogeographical distribution of Pellucistoma largely depends on geographical, thermal and osmotic barriers (e.g. land bridges, deep and/or cold waters, sea currents, salinity). We assume an Oligocene/early Miocene, Caribbean origin for Pellucistoma and outline the dispersal of hitherto known species up to the Holocene. Pellucistoma curupira sp. nov. is dwarfed in comparison to all other species of this genus and extremely thin-shelled. This is probably related to poorly oxygenated waters and, in particular, to strongly reduced salinity. The associated ostracod fauna (dominated by the eurypotent Cyprideis and a few, also stunted ostracods of possibly marine ancestry) supports this claim. Geochemical analyses (δ18O, δ13C) on co-occurring ostracod valves (Cyprideis spp.) yielded very light values, indicative of a freshwater setting. These observations point to a successful adaptation of P. curupira sp. nov. to freshwater conditions and therefore do not signify the presence of marine water. Pellucistoma curupira sp. nov. shows closest affinities to Caribbean species. We hypothesize that Pellucistoma reached northern South America (Llanos Basin) during marine incursions in the early Miocene. While larger animals of marine origin (e.g. fishes, dolphins, manatees) migrated actively into the Pebas

  6. A minute ostracod (Crustacea: Cytheromatidae) from the Miocene Solimões Formation (western Amazonia, Brazil): evidence for marine incursions?

    PubMed

    Gross, Martin; Ramos, Maria Ines F; Piller, Werner E

    2016-07-02

    A huge wetland (the 'Pebas system') covered western Amazonia during the Miocene, hosting a highly diverse and endemic aquatic fauna. One of the most contentious issues concerns the existence, potential pathways and effects of marine incursions on this ecosystem. Palaeontological evidences (body fossils) are rare. The finding of a new, presumably marine ostracod species (Pellucistoma curupira sp. nov.) in the upper middle Miocene Solimões Formation initiated a taxonomic, ecological and biogeographical review of the genus Pellucistoma. We demonstrate that this marine (sublittoral, euhaline), subtropical-tropical taxon is biogeographically confined to the Americas. The biogeographical distribution of Pellucistoma largely depends on geographical, thermal and osmotic barriers (e.g. land bridges, deep and/or cold waters, sea currents, salinity). We assume an Oligocene/early Miocene, Caribbean origin for Pellucistoma and outline the dispersal of hitherto known species up to the Holocene. Pellucistoma curupira sp. nov. is dwarfed in comparison to all other species of this genus and extremely thin-shelled. This is probably related to poorly oxygenated waters and, in particular, to strongly reduced salinity. The associated ostracod fauna (dominated by the eurypotent Cyprideis and a few, also stunted ostracods of possibly marine ancestry) supports this claim. Geochemical analyses (δ(18)O, δ(13)C) on co-occurring ostracod valves (Cyprideis spp.) yielded very light values, indicative of a freshwater setting. These observations point to a successful adaptation of P. curupira sp. nov. to freshwater conditions and therefore do not signify the presence of marine water. Pellucistoma curupira sp. nov. shows closest affinities to Caribbean species. We hypothesize that Pellucistoma reached northern South America (Llanos Basin) during marine incursions in the early Miocene. While larger animals of marine origin (e.g. fishes, dolphins, manatees) migrated actively into the Pebas

  7. [Effects of snow cover on water soluble and organic solvent soluble components during foliar litter decomposition in an alpine forest].

    PubMed

    Xu, Li-Ya; Yang, Wan-Qin; Li, Han; Ni, Xiang-Yin; He, Jie; Wu, Fu-Zhong

    2014-11-01

    Seasonal snow cover may change the characteristics of freezing, leaching and freeze-thaw cycles in the scenario of climate change, and then play important roles in the dynamics of water soluble and organic solvent soluble components during foliar litter decomposition in the alpine forest. Therefore, a field litterbag experiment was conducted in an alpine forest in western Sichuan, China. The foliar litterbags of typical tree species (birch, cypress, larch and fir) and shrub species (willow and azalea) were placed on the forest floor under different snow cover thickness (deep snow, medium snow, thin snow and no snow). The litterbags were sampled at snow formation stage, snow cover stage and snow melting stage in winter. The results showed that the content of water soluble components from six foliar litters decreased at snow formation stage and snow melting stage, but increased at snow cover stage as litter decomposition proceeded in the winter. Besides the content of organic solvent soluble components from azalea foliar litter increased at snow cover stage, the content of organic solvent soluble components from the other five foliar litters kept a continue decreasing tendency in the winter. Compared with the content of organic solvent soluble components, the content of water soluble components was affected more strongly by snow cover thickness, especially at snow formation stage and snow cover stage. Compared with the thicker snow covers, the thin snow cover promoted the decrease of water soluble component contents from willow and azalea foliar litter and restrain the decrease of water soluble component content from cypress foliar litter. Few changes in the content of water soluble components from birch, fir and larch foliar litter were observed under the different thicknesses of snow cover. The results suggested that the effects of snow cover on the contents of water soluble and organic solvent soluble components during litter decomposition would be controlled by

  8. Mg(2+)/Ca(2+) promotes the adhesion of marine bacteria and algae and enhances following biofilm formation in artificial seawater.

    PubMed

    He, Xiaoyan; Wang, Jinpeng; Abdoli, Leila; Li, Hua

    2016-10-01

    Adhesion of microorganisms in the marine environment is essential for initiation and following development of biofouling. A variety of factors play roles in regulating the adhesion. Here we report the influence of Ca(2+) and Mg(2+) in artificial seawater on attachment and colonization of Bacillus sp., Chlorella and Phaeodactylum tricornutum on silicon wafer. Extra addition of the typical divalent cations in culturing solution gives rise to significantly enhanced adhesion of the microorganisms. Mg(2+) and Ca(2+) affect the adhesion of Bacillus sp. presumably by regulating aggregation and formation of extracellular polymeric substances (EPS). The ions alter quantity and types of the proteins in EPS, in turn affecting subsequent adhesion. However, it is noted that Mg(2+) promotes adhesion of Chlorella likely by regulating EPS formation and polysaccharide synthesis. Ca(2+) plays an important role in protein expression to enhance the adhesion of Chlorella. For Phaeodactylum tricornutum, Ca(2+) expedites protein synthesis for enhanced adhesion. The results shed some light on effective ways of utilizing divalent cations to mediate formation of biofilms on the marine structures for desired performances.

  9. Early Miocene chondrichthyans from the Culebra Formation, Panama: A window into marine vertebrate faunas before closure the Central American Seaway

    NASA Astrophysics Data System (ADS)

    Pimiento, Catalina; Gonzalez-Barba, Gerardo; Hendy, Austin J. W.; Jaramillo, Carlos; MacFadden, Bruce J.; Montes, Camilo; Suarez, Sandra C.; Shippritt, Monica

    2013-03-01

    The newly described chondrichthyan fauna of the early Miocene Culebra Formation of Panama provides insight into the marine vertebrates occupying shallow seas adjacent to the Central American Seaway, prior to the rise of the Isthmus of Panama. This study takes advantage of a time-limited and unique opportunity to recover fossil from renewed excavations of the Panama Canal. The chondrichthyan fauna of the Culebra Formation is composed of teeth and vertebral centra representing 12 taxa. The species found possessed a cosmopolitan tropical and warm-temperate distribution during the early Neogene and are similar to other assemblages of the tropical eastern Pacific and southern Caribbean. The taxa described suggest a neritic environment, and is in contrast with other interpretations that proposed bathyal water depths for the upper member of the Culebra Formation. The wide depth range of the most common species, Carcharocles chubutensis, and the habitat preference of Pristis sp., suggests varied marine environments, from deep, to shallow waters, close to emerged areas of the evolving isthmus.

  10. Formation mechanism of authigenic gypsum in marine methane hydrate settings: Evidence from the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, Qi; Wang, Jiasheng; Algeo, Thomas J.; Su, Pibo; Hu, Gaowei

    2016-09-01

    During the last decade, gypsum has been discovered widely in marine methane hydrate-bearing sediments. However, whether this gypsum is an in-situ authigenic precipitate remains controversial. The GMGS2 expedition carried out in 2013 by the Guangzhou Marine Geological Survey (GMGS) in the northern South China Sea provided an excellent opportunity for investigating the formation of authigenic minerals and, in particular, the relationship between gypsum and methane hydrate. In this contribution, we analyzed the morphology and sulfur isotope composition of gypsum and authigenic pyrite as well as the carbon and oxygen isotopic compositions of authigenic carbonate in a drillcore from Site GMGS2-08. These methane-derived carbonates have characteristic carbon and oxygen isotopic compositions (δ13C: -57.9‰ to -27.3‰ VPDB; δ18O: +1.0‰ to +3.8‰ VPDB) related to upward seepage of methane following dissociation of underlying methane hydrates since the Late Pleistocene. Our data suggest that gypsum in the sulfate-methane transition zone (SMTZ) of this core precipitated as in-situ authigenic mineral. Based on its sulfur isotopic composition, the gypsum sulfur is a mixture of sulfate derived from seawater and from partial oxidation of authigenic pyrite. Porewater Ca2+ ions for authigenic gypsum were likely generated from carbonate dissolution through acidification produced by oxidation of authigenic pyrite and ion exclusion during methane hydrate formation. This study thus links the formation mechanism of authigenic gypsum with the oxidation of authigenic pyrite and evolution of underlying methane hydrates. These findings suggest that authigenic gypsum may be a useful proxy for recognition of SMTZs and methane hydrate zones in modern and ancient marine methane hydrate geo-systems.

  11. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest.

    PubMed

    Martz, Françoise; Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity.

  12. The Snow Must Go On: Ground Ice Encasement, Snow Compaction and Absence of Snow Differently Cause Soil Hypoxia, CO2 Accumulation and Tree Seedling Damage in Boreal Forest

    PubMed Central

    Vuosku, Jaana; Ovaskainen, Anu; Stark, Sari; Rautio, Pasi

    2016-01-01

    At high latitudes, the climate has warmed at twice the rate of the global average with most changes observed in autumn, winter and spring. Increasing winter temperatures and wide temperature fluctuations are leading to more frequent rain-on-snow events and freeze-thaw cycles causing snow compaction and formation of ice layers in the snowpack, thus creating ice encasement (IE). By decreasing the snowpack insulation capacity and restricting soil-atmosphere gas exchange, modification of the snow properties may lead to colder soil but also to hypoxia and accumulation of trace gases in the subnivean environment. To test the effects of these overwintering conditions changes on plant winter survival and growth, we established a snow manipulation experiment in a coniferous forest in Northern Finland with Norway spruce and Scots pine seedlings. In addition to ambient conditions and prevention of IE, we applied three snow manipulation levels: IE created by artificial rain-on-snow events, snow compaction and complete snow removal. Snow removal led to deeper soil frost during winter, but no clear effect of IE or snow compaction done in early winter was observed on soil temperature. Hypoxia and accumulation of CO2 were highest in the IE plots but, more importantly, the duration of CO2 concentration above 5% was 17 days in IE plots compared to 0 days in ambient plots. IE was the most damaging winter condition for both species, decreasing the proportion of healthy seedlings by 47% for spruce and 76% for pine compared to ambient conditions. Seedlings in all three treatments tended to grow less than seedlings in ambient conditions but only IE had a significant effect on spruce growth. Our results demonstrate a negative impact of winter climate change on boreal forest regeneration and productivity. Changing snow conditions may thus partially mitigate the positive effect of increasing growing season temperatures on boreal forest productivity. PMID:27254100

  13. In Situ Settling Behavior of Marine Snow

    DTIC Science & Technology

    1988-01-01

    used the Corey shape Methods factor (CSF) (Albertson 1953; see McNown Theoretical considerations-When a par- and Malaika 1950): ticle settles at a...Pr)g = I/CDAP( U2 (1) the closer to 0 CSF becomes. McNown and where Vis the volume of the particle in cm 3 , Malaika (1950) found that the ratio of...particle shape on it can be found U = (2gApV/pICIA)’I (2) elsewhere (McNown and Malaika 1950; Davis 1979; Hutchinson 1967). For ellip- where Ap = (p, - p

  14. Marine Engine Mechanic. Apprenticeship Training Standards = Mecanicien de bateaux a moteur. Normes de formation en apprentissage.

    ERIC Educational Resources Information Center

    Ontario Ministry of Skills Development, Toronto.

    These training standards for marine engine mechanics are intended to be used by apprentice/trainees, instructors, and companies in Ontario, Canada, as a blueprint for training or as a prerequisite for accreditation/certification. The training standards identify skills required for this occupation and its related training program. They are designed…

  15. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice

    PubMed Central

    Assmy, Philipp; Fernández-Méndez, Mar; Duarte, Pedro; Meyer, Amelie; Randelhoff, Achim; Mundy, Christopher J.; Olsen, Lasse M.; Kauko, Hanna M.; Bailey, Allison; Chierici, Melissa; Cohen, Lana; Doulgeris, Anthony P.; Ehn, Jens K.; Fransson, Agneta; Gerland, Sebastian; Hop, Haakon; Hudson, Stephen R.; Hughes, Nick; Itkin, Polona; Johnsen, Geir; King, Jennifer A.; Koch, Boris P.; Koenig, Zoe; Kwasniewski, Slawomir; Laney, Samuel R.; Nicolaus, Marcel; Pavlov, Alexey K.; Polashenski, Christopher M.; Provost, Christine; Rösel, Anja; Sandbu, Marthe; Spreen, Gunnar; Smedsrud, Lars H.; Sundfjord, Arild; Taskjelle, Torbjørn; Tatarek, Agnieszka; Wiktor, Jozef; Wagner, Penelope M.; Wold, Anette; Steen, Harald; Granskog, Mats A.

    2017-01-01

    The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m−2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean. PMID:28102329

  16. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice

    NASA Astrophysics Data System (ADS)

    Assmy, Philipp; Fernández-Méndez, Mar; Duarte, Pedro; Meyer, Amelie; Randelhoff, Achim; Mundy, Christopher J.; Olsen, Lasse M.; Kauko, Hanna M.; Bailey, Allison; Chierici, Melissa; Cohen, Lana; Doulgeris, Anthony P.; Ehn, Jens K.; Fransson, Agneta; Gerland, Sebastian; Hop, Haakon; Hudson, Stephen R.; Hughes, Nick; Itkin, Polona; Johnsen, Geir; King, Jennifer A.; Koch, Boris P.; Koenig, Zoe; Kwasniewski, Slawomir; Laney, Samuel R.; Nicolaus, Marcel; Pavlov, Alexey K.; Polashenski, Christopher M.; Provost, Christine; Rösel, Anja; Sandbu, Marthe; Spreen, Gunnar; Smedsrud, Lars H.; Sundfjord, Arild; Taskjelle, Torbjørn; Tatarek, Agnieszka; Wiktor, Jozef; Wagner, Penelope M.; Wold, Anette; Steen, Harald; Granskog, Mats A.

    2017-01-01

    The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m‑2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.

  17. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice.

    PubMed

    Assmy, Philipp; Fernández-Méndez, Mar; Duarte, Pedro; Meyer, Amelie; Randelhoff, Achim; Mundy, Christopher J; Olsen, Lasse M; Kauko, Hanna M; Bailey, Allison; Chierici, Melissa; Cohen, Lana; Doulgeris, Anthony P; Ehn, Jens K; Fransson, Agneta; Gerland, Sebastian; Hop, Haakon; Hudson, Stephen R; Hughes, Nick; Itkin, Polona; Johnsen, Geir; King, Jennifer A; Koch, Boris P; Koenig, Zoe; Kwasniewski, Slawomir; Laney, Samuel R; Nicolaus, Marcel; Pavlov, Alexey K; Polashenski, Christopher M; Provost, Christine; Rösel, Anja; Sandbu, Marthe; Spreen, Gunnar; Smedsrud, Lars H; Sundfjord, Arild; Taskjelle, Torbjørn; Tatarek, Agnieszka; Wiktor, Jozef; Wagner, Penelope M; Wold, Anette; Steen, Harald; Granskog, Mats A

    2017-01-19

    The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m(-2). Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.

  18. BOREAS HYD-3 Snow Measurements

    NASA Technical Reports Server (NTRS)

    Hardy, Janet P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Davis, Robert E.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-3 team collected several data sets related to the hydrology of forested areas. This data set contains measurements of snow depth, snow density in three cm intervals, an integrated snow pack density and snow water equivalent (SWE), and snow pack physical properties from snow pit evaluation taken in 1994 and 1996. The data were collected from several sites in both the southern study area (SSA) and the northern study area (NSA). A variety of standard tools were used to measure the snow pack properties, including a meter stick (snow depth), a 100 cc snow density cutter, a dial stem thermometer, and the Canadian snow sampler as used by HYD-4 to obtain a snow pack-integrated measure of SWE. This study was undertaken to predict spatial distributions of snow properties important to the hydrology, remote sensing signatures, and the transmissivity of gases through the snow. The data are available in tabular ASCII files. The snow measurement data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  19. Soluble, light-absorbing species in snow at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Beine, Harry; Anastasio, Cort; Esposito, Giulio; Patten, Kelley; Wilkening, Elizabeth; Domine, Florent; Voisin, Didier; Barret, Manuel; Houdier, Stephan; Hall, Sam

    2011-07-01

    As part of the international multidisciplinary Ocean - Atmosphere - Sea Ice - Snowpack (OASIS) program we analyzed more than 500 terrestrial (melted) snow samples near Barrow, AK between February and April 2009 for light absorption, as well as H2O2 and inorganic anion concentrations. For light absorption in the photochemically active region (300-450 nm) of surface snows, H2O2 and NO3- make minor contributions (combined < 9% typically), while HUmic LIke Substances (HULIS) and unknown chromophores each account for approximately half of the total absorption. We have identified four main sources for our residual chromophores (i.e., species other than H2O2 or NO3-): (1) vegetation and organic debris impact mostly the lowest 20 cm of the snowpack, (2) marine inputs, which are identified by high Cl- and SO42- contents, (3) deposition of diamond dust to surface snow, and (4) gas-phase exchange between the atmosphere and surface snow layers. The snow surfaces, and accompanying chromophore concentrations, are strongly modulated by winds and snowfall at Barrow. However, even with these physical controls on light absorption, we see an overall decline of light absorption in near-surface snow during the 7 weeks of our campaign, likely due to photo-bleaching of chromophores. While HULIS and unknown chromophores dominate light absorption by soluble species in Barrow snow, we know little about the photochemistry of these species, and thus we as a community are probably overlooking many snowpack photochemical reactions.

  20. Origin of ferricretes in fluvial-marine deposits of the Lower Cenomanian Bahariya Formation, Bahariya Oasis, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Tanner, Lawrence H.; Khalifa, Mohamed A.

    2010-03-01

    The type section of the Lower Cenomanian Bahariya Formation at Gebel El-Dist (Bahariya Oasis, Western Desert), Egypt, comprises claystones, mudstones, siltstones and sandstones deposited in fluvial-deltaic coastal plain, lagoonal, estuarine and shallow marine environments. The formation is characterized by an abundance of ferruginous sandstones that locally weather to form prominent iron crusts. These centimeter to decimeter-scale ferruginous horizons display a continuum of features ranging from unaltered sandstone with a pervasive ferruginous matrix to distinct ironstone beds with massive, nodular, vesicular and pisolitic textures. Ferruginous sandstone typically occurs at the tops of sandstone beds, or bracketing the base and top of beds, in the fining-upward cycles of deltaic plain deposits in the lower part of the formation and on a low-energy fluvial floodplain in the middle of the formation. Indurated ironstone beds occur mainly as the caps of coarsening-upward cycles of prograding shoreface sediments through much of the formation. We interpret the ironstone crusts as ferricretes, formed by iron accumulation that resulted from the oxidation and precipitation of soluble iron or colloids transported in the sediment load or by groundwater. This accumulation possibly took place at the water table or possibly below the water table at the fresh water/saline water interface. However, base-level fall and subsequent subaerial exposure of the sediments resulted in reworking and pedogenic modification of some of the iron-impregnated horizons.

  1. Mollusks of the Upper Jurassic (upper Oxfordian-lower Kimmeridgian) shallow marine Minas Viejas Formation, northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Zell, Patrick; Beckmann, Seija; Stinnesbeck, Wolfgang; Götte, Martin

    2015-10-01

    We present the first systematic description of Late Jurassic (late Oxfordian-early Kimmeridgian) invertebrates from the shallow marine Minas Viejas Formation of northeastern Mexico. The unit was generally considered to be extremely poor in fossils, due to an overall evaporitic character. The collection described here includes three taxa of ammonites, 10 taxa of bivalves and five taxa of gastropods. The fossils were discovered near Galeana and other localities in southern Nuevo León and northeastern San Luis Potosí, in thin-bedded marly limestones intercalated between gypsum units. Due to complex internal deformation of the sediments, fossils used for this study cannot be assigned to precise layers of origin. However, the taxa identified suggest a Late Jurassic (late Oxfordian-early Kimmeridgian) age for these fossil-bearing layers and allow us, for the first time, to assign a biostratigraphic age to Upper Jurassic strata in the region underlying the La Caja and La Casita formations.

  2. Physiology, Fe(II) oxidation, and Fe mineral formation by a marine planktonic cyanobacterium grown under ferruginous conditions

    NASA Astrophysics Data System (ADS)

    Swanner, Elizabeth; Wu, Wenfang; Hao, Likai; Wuestner, Marina; Obst, Martin; Moran, Dawn; McIlvin, Matthew; Saito, Mak; Kappler, Andreas

    2015-10-01

    Evidence for Fe(II) oxidation and deposition of Fe(III)-bearing minerals from anoxic or redox-stratified Precambrian oceans has received support from decades of sedimentological and geochemical investigation of Banded Iron Formations (BIF). While the exact mechanisms of Fe(II) oxidation remains equivocal, reaction with O2 in the marine water column, produced by cyanobacteria or early oxygenic phototrophs, was likely. In order to understand the role of cyanobacteria in the deposition of Fe(III) minerals to BIF, we must first know how planktonic marine cyanobacteria respond to ferruginous (anoxic and Fe(II)-rich) waters in terms of growth, Fe uptake and homeostasis, and Fe mineral formation. We therefore grew the common marine cyanobacterium Synechococcus PCC 7002 in closed bottles that began anoxic, and contained Fe(II) concentrations that span the range of possible concentrations in Precambrian seawater. These results, along with cell suspension experiments, indicate that Fe(II) is likely oxidized by this strain via chemical oxidation with oxygen produced during photosynthesis, and not via any direct enzymatic or photosynthetic pathway. Imaging of the cell-mineral aggregates with scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) are consistent with extracellular precipitation of Fe(III) (oxyhydr)oxide minerals, but that >10% of Fe(III) sorbs to cell surfaces rather than precipitating. Proteomic experiments support the role of reactive oxygen species (ROS) in Fe(II) toxicity to Synechococcus PCC 7002. The proteome expressed under low Fe conditions included multiple siderophore biosynthesis and siderophore and Fe transporter proteins, but most siderophores are not expressed during growth with Fe(II). These results provide a mechanistic and quantitative framework for evaluating the geochemical consequences of perhaps life’s greatest metabolic innovation, i.e. the evolution and activity of oxygenic photosynthesis, in ferruginous

  3. Nordic Snow Radar Experiment

    NASA Astrophysics Data System (ADS)

    Lemmetyinen, Juha; Kontu, Anna; Pulliainen, Jouni; Vehviläinen, Juho; Rautiainen, Kimmo; Wiesmann, Andreas; Mätzler, Christian; Werner, Charles; Rott, Helmut; Nagler, Thomas; Schneebeli, Martin; Proksch, Martin; Schüttemeyer, Dirk; Kern, Michael; Davidson, Malcolm W. J.

    2016-09-01

    The objective of the Nordic Snow Radar Experiment (NoSREx) campaign was to provide a continuous time series of active and passive microwave observations of snow cover at a representative location of the Arctic boreal forest area, covering a whole winter season. The activity was a part of Phase A studies for the ESA Earth Explorer 7 candidate mission CoReH2O (Cold Regions Hydrology High-resolution Observatory). The NoSREx campaign, conducted at the Finnish Meteorological Institute Arctic Research Centre (FMI-ARC) in Sodankylä, Finland, hosted a frequency scanning scatterometer operating at frequencies from X- to Ku-band. The radar observations were complemented by a microwave dual-polarization radiometer system operating from X- to W-bands. In situ measurements consisted of manual snow pit measurements at the main test site as well as extensive automated measurements on snow, ground and meteorological parameters. This study provides a summary of the obtained data, detailing measurement protocols for each microwave instrument and in situ reference data. A first analysis of the microwave signatures against snow parameters is given, also comparing observed radar backscattering and microwave emission to predictions of an active/passive forward model. All data, including the raw data observations, are available for research purposes through the European Space Agency and the Finnish Meteorological Institute. A consolidated dataset of observations, comprising the key microwave and in situ observations, is provided through the ESA campaign data portal to enable easy access to the data.

  4. Secrets of Snow Liveshot Recap

    NASA Video Gallery

    Research Physical Scientist and Deputy Project Scientist for GPM Gail Skofronick-Jackson answers questions about the importance of studying snow from space, the impact of not enough snow, and the f...

  5. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters

    PubMed Central

    Westrich, Jason R.; Ebling, Alina M.; Landing, William M.; Joyner, Jessica L.; Kemp, Keri M.; Griffin, Dale W.

    2016-01-01

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrio after natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust–Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health. PMID:27162369

  6. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters

    USGS Publications Warehouse

    Westrich, Jason R.; Ebling, Alina M.; Landing, William M.; Joyner, Jessica L.; Kemp, Keri M.; Griffin, Dale W.; Lipp, Erin K.

    2016-01-01

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrioafter natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust–Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.

  7. Methymercury Formation in Marine and Freshwater Systems: Sediment Characteristics, Microbial Activity and SRB Phylogeny Control Formation Rates and Food-Chain Exposure

    NASA Astrophysics Data System (ADS)

    King, J. K.; Saunders, F. M.

    2004-05-01

    Mercury research in freshwater and marine systems suggests that sediment characteristics such as organic substrate, mercury speciation, and sulfate/sulfide concentrations influence availability of inorganic mercury for methylation. Similarly, sediment characteristics also influence sulfate-reducing bacterial (SRB) respiration as well as the presence/distribution of phylogenetic groups responsible for mercury methylation. Our work illustrates that the process of methylmercury formation in freshwater and marine systems are not dissimilar. Rather, the same geochemical parameters and SRB phylogenetic groups determine the propensity for methylmercury formation and are applicable in both fresh- and marine-water systems. The presentation will include our integration of sediment geochemical and microbial parameters affecting mercury methylation in specific freshwater and marine systems. Constructed wetlands planted with Schoenoplectus californicus and amended with gypsum (CaSO4) have demonstrated a capacity to remove inorganic mercury from industrial outfalls. However, bioaccumulation studies of periphyton, eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta) were conducted in order to ascertain the availability of wetland-generated methylmercury to biota. Total mercury concentrations in mosquitofish from non-sulfate treated controls and the reference location were significantly lower than those from the low and high sulfate treatments while mean total mercury concentrations in lake chubsuckers were also significantly elevated in the high sulfate treatment compared to the low sulfate, control and reference populations. Methylmercury concentrations in periphyton also corresponded with mercury levels found in the tissue of the lake chubsuckers, and these findings fit well given the trophic levels identified for both species of fish. Overall, data from this study suggest that the initial use of gypsum to accelerate the maturity of a constructed

  8. Nutrition and Metabolism of Marine Bacteria XVI. Formation of Protoplasts, Spheroplasts, and Related Forms from a Gram-negative Marine Bacterium1

    PubMed Central

    Costerton, J. W.; Forsberg, Cecil; Matula, Tibor I.; Buckmire, F. L. A.; MacLeod, Robert A.

    1967-01-01

    When cells of a marine pseudomonad were washed and suspended in 0.5 m sucrose, they retained their rod shape, but thin sections, when examined in an electron microscope, revealed that the outer layer of the cell wall had separated a considerable distance from the cytoplasmic membrane. Treatment of such cells with lysozyme alone produced no obvious change, but treatment with ethylenediaminetetraacetic acid (EDTA) alone caused the outer wall to disappear. A combination of EDTA and lysozyme resulted in the rapid formation of spheres essentially free from hexosamine and indistinguishable from protoplasts of gram-positive bacteria. When cells were washed with 0.5 m NaCl and then suspended in 0.5 m sucrose, they also retained their rod shape, but in this case the outer layer separated from the cells completely and could be recovered from the suspending medium. Such cells were converted to protoplasts by the action of lysozyme alone. Cells washed and finally suspended in 0.5 m NaCl, when treated with EDTA and lysozyme, slowly became spherical. Thin sections revealed typical spheroplasts of gram-negative bacteria in which the outer wall remained intact. Protoplasts took up α-aminoisobutyric acid by a Na+-dependent process. Images PMID:4965199

  9. Bacterial characterization of the snow cover at Spitzberg, Svalbard.

    PubMed

    Amato, Pierre; Hennebelle, Raphaëlle; Magand, Olivier; Sancelme, Martine; Delort, Anne-Marie; Barbante, Carlo; Boutron, Claude; Ferrari, Christophe

    2007-02-01

    A sampling campaign was organized during spring 2004 in Spitzberg, Svalbard, in the area around the scientific base of Ny-Alesund, to characterize the snow pack bacterial population. Total bacteria counts were established by 4',6-diamino-2-phenylindole (DAPI) in the seasonal snow pack bordering the sea. On the sea shore, bacterial concentration was about 6 x 10(4) cells mL(-1), without any significant variation according to depth. In the accumulation snow layer of the glacier, concentrations were about 2 x 10(4 )cells mL(-1), except in the 2003 summer layer, where it reached 2 x 10(5) cells mL(-1), as the result of cell multiplication allowed by higher temperature and snow melting. Strains isolated from the seasonal snow pack were identified from their 16S rRNA gene sequences, and lodged in GenBank. They belong to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria, Firmicutes and Actinobacteria. They are closely related to cold environment bacteria, as revealed by phylogenetic tree constructions, and two appear to be of unknown affiliation. Using 1H nuclear magnetic resonance, it was shown that these isolates have the capacity to degrade organic compounds found in Arctic snow (propionate, acetate and formate), and this can allow them to develop when snow melts, and thus to be actively involved in snow chemistry.

  10. Lead contamination of urban snow.

    PubMed

    Grandstaff, D E; Myer, G H

    1979-01-01

    Lead content of newly fallen snow in an urban area ranges from 34 to 56 ppb. After falling, snow may incorporate major additional amounts of lead by dry deposition of lead aerosols from local sources. The highest concentration found was 2,700 ppb. Ingestion of lead-contaminated snow might pose a health hazard to inner city children.

  11. Monitoring and modelling snow avalanches in Svalbard

    NASA Astrophysics Data System (ADS)

    Humlum, O.; Christiansen, H.; Neumann, U.; Eckerstorfer, M.; Sjöblom, A.; Stalsberg, K.; Rubensdotter, L.

    2009-04-01

    Monitoring and modelling snow avalanches in Svalbard Ole Humlum 1,3, Hanne H. Christiansen 1, Ulrich Neumann 1, Markus Eckerstorfer 1, Anna Sjöblom 1, Knut Stalsberg 2 and Lena Rubensdotter 2. 1: The University Centre in Svalbard (UNIS). 2: Geological Survey of Norway (NGU) 3: University of Oslo Ground based transportation in Svalbard landscape all takes place across mountainous terrain affected by different geomorphological slope processes. Traffic in and around the Svalbard settlements is increasing, and at the same time global climate models project substantial increases in temperature and precipitation in northern high latitudes for coming century. Therefore improved knowledge on the effect of climatic changes on slope processes in such high arctic landscapes is becoming increasingly important. Motivated by this, the CRYOSLOPE Svalbard research project since 2007 has carried out field observations on snow avalanche frequency and associated meteorological conditions. Snow avalanches are important geomorphic agents of erosion and deposition, and have long been a source of natural disasters in many mid-latitude mountain areas. Avalanches as a natural hazard has thereby been familiar to inhabitants of the Alps and Scandinavia for centuries, while it is a more recent experience in high arctic Svalbard. In addition, overall climate, topography and especially high winter wind speeds makes it difficult to apply snow avalanche models (numerical or empirical) developed for use at lower latitudes, e.g. in central Europe. In the presentation we examplify results from the ongoing (since winter 2006-07) monitoring of snow avalanches in Svalbard along a 70 km long observational route in the mountains. In addition, we present observations on the geomorphological impact of avalanches, with special reference to the formation of rock glaciers. Finally, we also present some initial results from numerical attempts of snow avalanche risk modelling within the study area.

  12. Studies on Physical Properties of Snow Based on Multi Channel Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Tsuchiya, K.; Takeda, K.

    1985-01-01

    The analysis of the data observed over a snow field with a breadboard model of MSR (microwave scanning radiometer) to be installed in MOS-1 (Marine Observation Satellite-1) indicates that: (1) the influence of incident angle on brightness temperature is larger in horizontal polarization component than in vertical polarization component. The effect of incident angle depends upon the property of snow with larger value for dry snow; (2) the difference of snow surface configuration consisting of artifically made parallel ditches of 5 cm depth and 5 cm width with spacing of 10 and 30 cm respectively which are oriented normal to electrical axis do not affect brightness temperature significantly; and (3) there is high negative correlation between brightness temperature and snow depth up to the depth of 70 cm which suggests that the snow depth can be measured with a two channel microwave radiometer up to this depth.

  13. Snow White 5 Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Robotic Arm Camera on the 35th Martian day of the mission, or Sol 34 (June 29, 2008), after the May 25, 2008, landing. This image shows the trench informally called 'Snow White 5.' The trench is 4-to-5 centimeters (about 1.5-to-1.9 inches) deep, 24 centimeters (about 9 inches) wide and 33 centimeters (13 inches) long.

    Snow White 5 is Phoenix's current active digging area after additional trenching, grooming, and scraping by Phoenix's Robotic Arm in the last few sols to trenches informally called Snow White 1, 2, 3, and 4. Near the top center of the image is the Robotic Arm's Thermal and Electrical Conductivity Probe.

    Snow White 5 is located in a patch of Martian soil near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The digging site has been named 'Wonderland.'

    This image has been enhanced to brighten shaded areas.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. 'Snow Queen' Animation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This animation consists of two close-up images of 'Snow Queen,' taken several days apart, by the Robotic Arm Camera (RAC) aboard NASA's Phoenix Mars Lander.

    Snow Queen is the informal name for a patch of bright-toned material underneath the lander.

    Thruster exhaust blew away surface soil covering Snow Queen when Phoenix landed on May 25, 2008, exposing this hard layer comprising several smooth rounded cavities beneath the lander. The RAC images show how Snow Queen visibly changed between June 15, 2008, the 21st Martian day, or sol, of the mission and July 9, 2008, the 44th sol.

    Cracks as long as 10 centimeters (about four inches) appeared. One such crack is visible at the left third and the upper third of the Sol 44 image. A seven millimeter (one-third inch) pebble or clod appears just above and slightly to the right of the crack in the Sol 44 image. Cracks also appear in the lower part of the left third of the image. Other pieces noticeably shift, and some smooth texture has subtly roughened.

    The Phoenix team carefully positioned and focused RAC the same way in both images. Each image is about 60 centimeters, or about two feet, wide. The object protruding in from the top on the right half of the images is Phoenix's thermal and electrical conductivity probe.

    Snow Queen and other ice exposed by Phoenix landing and trenching operations on northern polar Mars is the first time scientists have been able to monitor Martian ice at a place where temperatures are cold enough that the ice doesn't immediately sublimate, or vaporize, away.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. PERSPECTIVE: Snow matters in the polar regions

    NASA Astrophysics Data System (ADS)

    Sodeau, John

    2010-03-01

    Antarctica is not quite as chemically pristine as might sometimes be thought (Jones et al 2008). For example, as elsewhere, reduced sulfur species such as dimethylsulfide (DMS) are emitted from biogenic marine sources at the poles (Read et al 2008). Somewhat less well known is that inland (as opposed to coastal) field campaigns have also detected, within the Antarctic boundary layer (ABL), emissions containing unexpectedly high levels of diverse, oxidizing chemicals such as NOx, nitrate ions, formaldehyde, ozone and hydrogen peroxide (Honrath et al 1999, Hutterli et al 2004, Sumner and Shepson 1999). And then there are the halogen-containing compounds (Simpson et al 2007). The transformation of DMS to sulfate aerosols capable of acting as cloud condensation nuclei often proceeds via one main oxidized product of DMS, namely methanesulfonic acid (MSA). Two specific reactions have been well studied to date in this regard, namely DMS plus either OH or NO3 radicals. Corresponding reactions with halogen radicals, which also contribute to the oxidizing capacity of our atmosphere, have generally been considered to be of less importance. The reason for this view is that even though the reactivity of bromine- and iodine-containing radicals is much greater than that of OH, the halogens were thought to be relatively scarce in the polar atmosphere. However both BrO (and IO) have been detected in the Antarctic CHABLIS campaign, as discussed in depth in the Atmospheric Chemistry and Physics special issue of 2008, see Jones et al (2008). It was subsequently shown that calculated MSA production from the DMS/BrO reaction may be about an order of magnitude greater than when the OH radical was the oxidizing reactant. The recent analytical measurements by Antony et al (2010) of MSA, Br and NO3 found in snow along the Ingrid Christensen Coast of East Antarctica are important in the above field context. Hence it would appear that the concentrations of these ions in ice-cap sites are up

  16. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-02-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle and dependent on the DOM composition. For our understanding of the kinetics of organic matter cycling in the ocean, it is therefore crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids, and transparent exopolymer particles (TEP) for two years. Ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) allowed the molecular characterization of extracted DOM after 70 days and after ∼2 years of incubation. Although glucose was quickly degraded, a DOC background was generated in glucose incubations. Only 20% of the organic carbon from algal exudate was degraded within the 2 years of incubation. TEP, which are released by micro-organisms, were produced during glucose degradation but decreased within less than three weeks back to half of the maximum concentration and were below detection in all treatments after 2 years. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM produced during the degradation of the algal exudates. Our results led to several conclusions: (i) Higher substrate levels result in a higher level of non-labile DOC which is an important prerequisite for carbon sequestration in the ocean; (ii) TEP are generated by bacteria but are also degraded rapidly, thus limiting their potential contribution to carbon sequestration; (iii) The molecular signatures of DOM derived from algal exudates or glucose after 70 days of incubation differed strongly from refractory DOM. After 2 years

  17. Photoformation of hydroxyl radical on snow grains at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Anastasio, Cort; Galbavy, Edward S.; Hutterli, Manuel A.; Burkhart, John F.; Friel, Donna K.

    We measured the photoformation of hydroxyl radical ( ṡOH) on snow grains at Summit, Greenland during the spring and summer. Midday rates of ṡOH formation in the snow phase in the summer range from 130 to 610nmolL-1h-1, expressed relative to the liquid equivalent volume of snow. Calculated formation rates of snow-grain ṡOH based on the photolysis of hydrogen peroxide and nitrate agree well with our measured rates during summer, indicating that there are probably not other major sources of ṡOH under these conditions. Throughout both the spring and summer, HOOH is by far the dominant source of snow-grain ṡOH; on average, HOOH produces approximately 100 times more ṡOH than does NO3-. Rates of ṡOH photoformation have a strong seasonal dependence and increase by approximately a factor of 10 between early spring and summer at midday. The rate of ṡOH photoformation on snow grains decreases rapidly with depth in the snowpack, with approximately 90% of photoformation occurring within the top 10 cm, although ṡOH formation occurs to depths below 20 cm. The formation of ṡOH on snow grains likely initiates a suite of reactions in the snowpack, including the transformation of organic carbon (OC) and oxidation of halides. The reaction of ṡOH with OC probably forms a number of volatile organic compounds (VOCs) that are potentially emitted into the atmospheric boundary layer. Indeed, our measured rates of ṡOH photoformation on snow grains are large enough that they could account for previously reported fluxes of VOCs from the snowpack at Summit, although the relative importance of thermal desorption and photochemical production for most of these VOCs still needs to be determined.

  18. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile?

    NASA Astrophysics Data System (ADS)

    Koch, B. P.; Kattner, G.; Witt, M.; Passow, U.

    2014-08-01

    The degradation of marine dissolved organic matter (DOM) is an important control variable in the global carbon cycle. For our understanding of the kinetics of organic matter cycling in the ocean, it is crucial to achieve a mechanistic and molecular understanding of its transformation processes. A long-term microbial experiment was performed to follow the production of non-labile DOM by marine bacteria. Two different glucose concentrations and dissolved algal exudates were used as substrates. We monitored the bacterial abundance, concentrations of dissolved and particulate organic carbon (DOC, POC), nutrients, amino acids and transparent exopolymer particles (TEP) for 2 years. The molecular characterization of extracted DOM was performed by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) after 70 days and after ∼2 years of incubation. Although glucose quickly degraded, a non-labile DOC background (5-9% of the initial DOC) was generated in the glucose incubations. Only 20% of the organic carbon from the algal exudate degraded within the 2 years of incubation. The degradation rates for the non-labile DOC background in the different treatments varied between 1 and 11 μmol DOC L-1 year-1. Transparent exopolymer particles, which are released by microorganisms, were produced during glucose degradation but decreased back to half of the maximum concentration within less than 3 weeks (degradation rate: 25 μg xanthan gum equivalents L-1 d-1) and were below detection in all treatments after 2 years. Additional glucose was added after 2 years to test whether labile substrate can promote the degradation of background DOC (co-metabolism; priming effect). A priming effect was not observed but the glucose addition led to a slight increase of background DOC. The molecular analysis demonstrated that DOM generated during glucose degradation differed appreciably from DOM transformed during the degradation of the algal exudates. Our

  19. NASA Airborne Snow Observatory: Measuring Spatial Distribution of Snow Water Equivalent and Snow Albedo

    NASA Astrophysics Data System (ADS)

    Joyce, M.; Painter, T. H.; Mattmann, C. A.; Ramirez, P.; Laidlaw, R.; Bormann, K. J.; Skiles, M.; Richardson, M.; Berisford, D. F.

    2015-12-01

    The two most critical properties for understanding snowmelt runoff and timing are the spatial and temporal distributions of snow water equivalent (SWE) and snow albedo. Despite their importance in controlling volume and timing of runoff, snowpack albedo and SWE are still largely unquantified in the US and not at all in most of the globe, leaving runoff models poorly constrained. NASA Jet Propulsion Laboratory, in partnership with the California Department of Water Resources, has developed the Airborne Snow Observatory (ASO), an imaging spectrometer and scanning LiDAR system, to quantify SWE and snow albedo, generate unprecedented knowledge of snow properties for cutting edge cryospheric science, and provide complete, robust inputs to water management models and systems of the future. This poster will describe the NASA Airborne Snow Observatory, its outputs and their uses and applications, along with recent advancements to the system and plans for the project's future. Specifically, we will look at how ASO uses its imaging spectrometer to quantify spectral albedo, broadband albedo, and radiative forcing by dust and black carbon in snow. Additionally, we'll see how the scanning LiDAR is used to determine snow depth against snow-free acquisitions and to quantify snow water equivalent when combined with in-situ constrained modeling of snow density.

  20. 'Snow White' Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 43, the 43rd Martian day after landing (July 8, 2008). This image shows the trench informally called 'Snow White.'

    Two samples were delivered to the Wet Chemistry Laboratory, which is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer (MECA). The first sample was taken from the surface area just left of the trench and informally named 'Rosy Red.' It was delivered to the Wet Chemistry Laboratory on Sol 30 (June 25, 2008). The second sample, informally named 'Sorceress,' was taken from the center of the 'Snow White' trench and delivered to the Wet Chemistry Laboratory on Sol 41 (July 6, 2008).

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. MODIS Snow-Cover Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vinvent V.; DiGirolamo, Nicolo; Bayr, Klaus J.; Houser, Paul (Technical Monitor)

    2001-01-01

    On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. These products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to the currently available operation products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set is generated for long-term climates studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the product. The snow product suite starts with a 500-m resolution swath snow-cover map which is gridded to the Integerized Sinusoidal Grid to produce daily and eight-day composite tile products. The sequence then proceeds to a climate-modeling grid product at 5-km spatial resolution, with both daily and eight-day composite products. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented. Near-term enhancements include daily snow albedo and fractional snow cover.

  2. A multi-mineral natural product from red marine algae reduces colon polyp formation in C57BL/6 mice

    PubMed Central

    Aslam, Muhammad N.; Bergin, Ingrid; Naik, Madhav; Paruchuri, Tejaswi; Hampton, Anna; Rehman, Muneeb; Dame, Michael K; Rush, Howard; Varani, James

    2013-01-01

    The goal of this study was to determine if a multi-mineral natural product derived from red marine algae, could reduce colon polyp formation in mice on a high fat diet. C57BL/6 mice were maintained for up to 18 months either on a high-fat “Western-style” diet or on a low-fat diet (AIN 76A), with or without the multi-mineral-supplement. To summarize, colon polyps were detected in 22 of 70 mice (31%) on the high-fat diet, but in only 2 of 70 mice (3%) receiving the mineral-supplemented high-fat diet (p<0.0001). Colon polyps were detected in 16 of 70 mice (23%) in the low-fat group; not significantly different from high-fat group but significantly higher than the high-fat-supplemented group (p=0.0006). This was in spite of the fact that the calcium level in the low-fat diet was comparable to the level of calcium in the high-fat diet containing the multi-mineral-product. Supplementation of the low-fat diet reduced the incidence to 8 of 70 mice (11% incidence). Taken together, these findings demonstrate that a multi-mineral natural product can protect mice on a high-fat diet against adenomatous polyp formation in the colon. These data suggest that increased calcium alone is insufficient to explain the lower incidence of colon polyps. PMID:23035966

  3. Snow Roads and Runways

    DTIC Science & Technology

    1990-11-01

    soil compression test frame) UPPER HEADN N N N - "J 2 CM SNOW SAMPLE:;: CONFINING COREi , CYLINDER 10 3 dio. X 3" longi Io LOWER HEAD & To StripLOAD...Russian). 152. Department of the Army (1962) Arctic Construction. Fuchs , A. (1942) Experiments on consolidation of loose Technical Manual TM 5-349...removal and compaction procedures for airfields. GG- German). ES 200/I. Fuchs , A. (1960) Structure of age hardening disaggre- Directorate of Engineering

  4. Mercury distribution, partitioning and speciation in coastal vs. inland High Arctic snow

    NASA Astrophysics Data System (ADS)

    Poulain, Alexandre J.; Garcia, Edenise; Amyot, Marc; Campbell, Peter G. C.; Ariya, Parisa A.

    2007-07-01

    Atmospheric mercury deposition on snow at springtime has been reported in polar regions, potentially posing a threat to coastal and inland ecosystems receiving meltwaters. However, the post-depositional fate of Hg in snow is not well known, and no data are available on Hg partitioning in polar snow. During snowmelt, we conducted a survey of Hg concentrations, partitioning and speciation in surface snow and at depth, over sea ice and over land along a 100 km transect across Cornwallis Island, NU, Canada. Total Hg concentrations [THg] in surface snow were low (less than 20 pmol L -1) and were significantly higher in marine vs. inland environments. Particulate Hg in surface snow represented up to 90% of total Hg over sea ice and up to 59% over land. At depth, [THg] at the snow/sea ice interface (up to 300 pmol L -1) were two orders of magnitude higher than at the snow/lake ice interface (ca. 2.5 pmol L -1). Integrated snow columns, sampled over sea-ice and over land, showed that particulate Hg was mostly bound to particles ranging from 0.45 to 2.7 μm. Moreover, melting snowpacks over sea ice and over lake ice contribute to increase [THg] at the water/ice interfaces. This study indicates that, at the onset of snowmelt, most of the Hg in snow is in particulate form, particularly over sea ice. Low Hg levels in surface snow suggest that Hg deposited through early spring deposition events is partly lost to the atmosphere from the snowpack before snowmelt. The sea ice/snow interface may constitute a site for Hg accumulation, however. Further understanding of the cycling of mercury at the sea ice/snow and sea ice/seawater interfaces is thus warranted to fully understand how mercury enters the arctic food webs.

  5. Snow White Trenches

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on the 25th Martian day of the mission, or Sol 24 (June 19, 2008), after the May 25, 2008, landing. This image shows the trenches informally called 'Snow White 1' (left) and 'Snow White 2' (right). The trench is about 5 centimeters (2 inches) deep and 30 centimeters (12 inches) long.

    'Snow White' is located in a patch of Martian soil near the center of a polygonal surface feature, nicknamed 'Cheshire Cat.' The 'dump pile' is located at the top of the trench, the side farthest away from the lander, and has been dubbed 'Croquet Ground.' The digging site has been named 'Wonderland.'

    This image has been enhanced to brighten shaded areas.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. On the extraordinary snow on the sea ice off East Antarctica in late winter, 2012

    NASA Astrophysics Data System (ADS)

    Toyota, Takenobu; Massom, Robert; Lecomte, Olivier; Nomura, Daiki; Heil, Petra; Tamura, Takeshi; Fraser, Alexander D.

    2016-09-01

    In late winter-early spring 2012, the second Sea Ice Physics and Ecosystems Experiment (SIPEX II) was conducted off Wilkes Land, East Antarctica, onboard R/V Aurora Australis. The sea-ice conditions were characterized by significantly thick first-year ice and snow, trapping the ship for about 10 days in the near coastal region. The deep snow cover was particularly remarkable, in that its average value of 0.45 m was almost three times that observed between 1992 and 2007 in the region. To reveal factors responsible, we used in situ observations and ERA-Interim reanalysis (1990-2012) to examine the relative contribution of the different components of the local-regional snow mass balance equation i.e., snow accumulation on sea ice, precipitation minus evaporation (P-E), and loss by (i) snow-ice formation and (ii) entering into leads due to drifting snow. Results show no evidence for significantly high P-E in the winter of 2012. Ice core analysis has shown that although the snow-ice layer was relatively thin, indicating less transformation from snow to snow-ice in 2012 as compared to measurements from 2007, the difference was not enough to explain the extraordinarily deep snow. Based on these results, we deduce that lower loss of snow into leads was probably responsible for the extraordinary snow in 2012. Statistical analysis and satellite images suggest that the reduction in loss of snow into leads is attributed to rough ice surface associated with active deformation processes and larger floe size due to sea-ice expansion. This highlights the importance of snow-sea ice interaction in determining the mean snow depth on Antarctic sea ice.

  7. Microbioirrigation of marine sediments in dysoxic environments: Implications for early sediment fabric formation and diagenetic processes

    NASA Astrophysics Data System (ADS)

    Pike, Jennifer; Bernhard, Joan M.; Moreton, Steven G.; Butler, Ian B.

    2001-10-01

    It is manifest in the study of dysoxic sediments from the geological record that infaunal burrowing is considered so severely limited by the lack of dissolved oxygen as to be nonexistent. Although the effects of megafauna and macrofauna on sedimentary and geochemical processes are well known, the effects of meiofauna are largely ignored. Here we document abundant meiofauna in the recent severely dysoxic, laminated sediments from the Santa Barbara basin, California margin, and also microcavities and microtunnels in laminated deglacial sediments from Palmer Deep, west Antarctic Peninsula, that we interpret to be open, relict nematode burrows. Santa Barbara basin box-core subcores were sieved to quantify metazoan abundance, and others were embedded with resin for examination of meiofaunal life positions using confocal microscopy. Metazoan densities in the surface centimeters of sediment range from 80.7 to 117.9 cm-3, and nematode populations, together with their abundant burrows, remain quite high to at least 3 cm. Scanning electron microscope analysis of fractured surfaces in Palmer Deep sediments revealed that the rigid diatom ooze framework aids the preservation of ˜50 μm diameter open nematode burrows. These structures were observed to at least 40 m below the seafloor surface. This is the first description of a nematode-produced open burrow network preserved in the geological record. Optical microscopy of resin-embedded thin sections revealed widespread sediment redistribution without significant lamina disruption. The implications of abundant nematode burrows in surface sediments, and their preservation in the geological record, are wide ranging for both modern and ancient dysoxic marine environments, including for determining early sediment fabric production, geochemical processes, and diagenetic reactions in the oxic and suboxic zones.

  8. High-resolution sequence-stratigraphic correlation between shallow-marine and terrestrial strata: Examples from the Sunnyside Member of the Cretaceous Blackhawk Formation Book Cliffs eastern Utah

    SciTech Connect

    Davies, R.; Howell, J.; Boyd, R.; Flint, S.; Diessel, C.

    2006-07-15

    The Sunnyside Member of the Upper Cretaceous Blackhawk Formation in the Book Cliffs of eastern Utah provides an ideal opportunity to investigate high-resolution sequence-stratigraphic correlation between shallow-marine and terrestrial strata in an area of outstanding outcrop exposure. The thick, laterally extensive coal seam that caps the Sunnyside Member is critical for correlating between its shallow-marine and terrestrial components. Petrographic analysis of 281 samples obtained from 7 vertical sections spanning more than 30 km (18 mi) of depositional dip enabled us to recognize a series of transgressive-regressive coal facies trends in the seam. On this basis, we were able to identify a high-resolution record of accommodation change throughout the deposition of the coal, as well as a series of key sequence-stratigraphic surfaces. The stratigraphic relationships between the coal and the siliciclastic components of the Sunnyside Member enable us to correlate this record with that identified in the time-equivalent shallow-marine strata and to demonstrate that the coal spans the formation of two marine parasequences and two high-frequency, fourth-order sequence boundaries. This study has important implications for improving the understanding of sequence-stratigraphic expression in terrestrial strata and for correlating between marine and terrestrial records of base-level change. It may also have implications for improving the predictability of vertical and lateral variations in coal composition for mining and coalbed methane projects.

  9. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

    USGS Publications Warehouse

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.

    1999-01-01

    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable

  10. Late albian kiowa-skull creek marine transgression, lower dakota formation, eastern margin of western interior seaway, U.S.A

    USGS Publications Warehouse

    Brenner, Richard L.; Ludvigson, Greg A.; Witzke, B.J.; Zawistoski, A.N.; Kvale, E.P.; Ravn, R.L.; Joeckel, R.M.

    2000-01-01

    An integrated geochemical-sedimentological project is studying the paleoclimatic and paleogeographic characteristics of the mid-Cretaceous greenhouse world of western North America. A critical part of this project, required to establish a temporal framework, is a stratigraphie study of depositional relationships between the AlbianCenomanian Dakota and the Upper Albian Kiowa formations of the eastern margin of the Western Interior Seaway (WIS). Palynostratigraphic and sedimentologic analyses provide criteria for the Dakota Formation to be divided into three sedimentary sequences bounded by unconformities (D0, D1, and D2) that are recognized from western Iowa to westernmost Kansas. The lowest of these sequences, defined by unconformities D0 and D1, is entirely Upper Albian, and includes the largely nonmarine basal Dakota (lower part of the Nishnabotna Member) strata in western Iowa and eastern Nebraska and the marine Kiowa Formation to the southwest in Kansas. The gravel-rich fluvial deposits of the basal part of the Nishnabotna Member of the Dakota Formation correlate with transgressive marine shales of the Kiowa Formation. This is a critical relationship to establish because of the need to correlate between marine and nonmarine strata that contain both geochronologic and paleoclimatic proxy data. The basal gravel facies (up to 40 m thick in western Iowa) aggraded in incised valleys during the Late Albian Kiowa-Skull Creek marine transgression. In southeastern Nebraska, basal gravels intertongue with carbonaceous mudrocks that contain diverse assemblages of Late Albian palynomorphs, including marine dinoflagellates and acritarchs. This palynomorph assemblage is characterized by occurrences of palynomorph taxa not known to range above the Albian Kiowa-Skull Creek depositional cycle elsewhere in the Western Interior, and correlates to the lowest of four generalized palynostratographic units that are comparable to other palynological sequences elsewhere in North

  11. Insights into North Atlantic deep water formation during the peak interglacial interval of Marine Isotope Stage 9 (MIS 9)

    NASA Astrophysics Data System (ADS)

    Mokeddem, Zohra; McManus, Jerry F.

    2017-01-01

    Foraminifera abundance and stable isotope records from ODP Site 984 (61.25°N, 24.04°W, 1648 m) in the North Atlantic are used to reconstruct surface circulation variations and the relative strength of the North Atlantic Deep Water (NADW) formation over the period spanning the peak warmth of Marine Interglacial Stage (MIS) 9e ( 324-336 ka). This interval includes the preceding deglaciation, Termination 4 (T4), and the subsequent glacial inception of MIS 9d. The records indicate a greatly reduced contribution of NADW during T4, as observed in more recent deglaciations. In contrast with the most recent deglaciation, the lack of a significant NADW signal extended from T4 well into the peak interglacial MIS 9e and persisted nearly until the transition to the subsequent glacial stage MIS 9d. Although NADW formation resumed during MIS 9e, only depths greater than 2000 m appear to have been ventilated. The poorly ventilated intermediate depth of Site 984 (<2000 m) may have resulted on one hand from a general reduction of deep water ventilation by NADW during the study interval or, on the other hand, from different pathways of the spread of newly formed NADW that bypassed the study location. The intermediate depths may have also been invaded by southern-sourced waters as the formation of intermediate depth NADW weakened. The absence of any significant NADW signal at the water depth of Site 984 during the climatic optimum contrasts sharply with subsequent interglacial peaks (MIS 5e and the Holocene). Despite the perturbed intermediate depth circulation, oceanic heat transport northeastward was not interrupted and may have contributed to the relatively mild interglacial conditions of MIS 9e.

  12. OBSERVATIONS ON THE RELATIONSHIP OF THE GOLGI APPARATUS TO WALL FORMATION IN THE MARINE CHRYSOPHYCEAN ALGA, PLEUROCHRYSIS SCHERFFELII PRINGSHEIM

    PubMed Central

    Brown, R. M.

    1969-01-01

    The role of the Golgi apparatus in wall formation of vegetative cells of a marine chrysophyte, Pleurochrysis scherffelii, is described. Wall fragments are synthesized within the cisternae of the Golgi apparatus. A single Golgi apparatus is always located at the cell periphery, and the distended cisternae are oriented toward the cell surface. A highly-ordered body found near the inflated cisternae is associated with spherical, membrane-bounded bodies which may be involved in the progressive degeneration of cisternal membranes which release wall fragments. Protoplast movement has been detected by time-lapse cinephotomicrography and is correlated at the ultrastructural level with change in positions of the Golgi cisternae. Wall-synthesizing capacity is greatest during transverse wall formation. Senescent cells lack a Golgi apparatus with inflated cisternae. In addition, wall fragments are not present in the Golgi cisternae at this stage. Zoosporogenesis results in a temporary loss of the wall-forming capacity of the Golgi apparatus; this activity then resumes with the formation of a different morphological entity, the scale. Preliminary quantitative measurements of the turnover capacity of the Golgi apparatus have been made. From these data it has been determined that between 41 and 82 Golgi generations are required to synthesize the cell wall of an actively growing cell; this estimate indicates that approximately one cisterna is produced every 2 min, provided the cell generation time is 3 days. The time-lapse cinephotomicrographic data confirm that the rate of production of Golgi cisternae is at least one cisterna every 2 min. PMID:5775782

  13. Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS) Global Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; Scharfen, Greg R.

    2000-01-01

    Following the 1999 launch of the Earth Observing System (EOS) Moderate Resolution Imaging Spectroradiometer (MODIS), the capability exists to produce global snow-cover maps on a daily basis at 500-m resolution. Eight-day composite snow-cover maps will also be available. MODIS snow-cover products are produced at Goddard Space Flight Center and archived and distributed by the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. The products are available in both orbital and gridded formats. An online search and order tool and user-services staff will be available at NSIDC to assist users with the snow products. The snow maps are available at a spatial resolution of 500 m, and 1/4 degree x 1/4 degree spatial resolution, and provide information on sub-pixel (fractional) snow cover. Pre-launch validation work has shown that the MODIS snow-mapping algorithms perform best under conditions of continuous snow cover in low vegetation areas, but can also map snow cover in dense forests. Post-launch validation activities will be performed using field and aircraft measurements from a February 2000 validation mission, as well as from existing satellite-derived snow-cover maps from NOAA and Landsat-7 Enhanced Thematic Mapper Plus (ETM+).

  14. MODIS Snow and Ice Production

    NASA Technical Reports Server (NTRS)

    Hall, Dorthoy K.; Hoser, Paul (Technical Monitor)

    2002-01-01

    Daily, global snow cover maps, and sea ice cover and sea ice surface temperature (IST) maps are derived from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS), are available at no cost through the National Snow and Ice Data Center (NSIDC). Included on this CD-ROM are samples of the MODIS snow and ice products. In addition, an animation, done by the Scientific Visualization studio at Goddard Space Flight Center, is also included.

  15. MODIS Snow-Cover Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.; DiGirolamo, Nicole E.; Bayr, Klaus J.; Houser, Paul R. (Technical Monitor)

    2002-01-01

    On December 18, 1999, the Terra satellite was launched with a complement of five instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS). Many geophysical products are derived from MODIS data including global snow-cover products. MODIS snow and ice products have been available through the National Snow and Ice Data Center (NSIDC) Distributed Active Archive Center (DAAC) since September 13, 2000. MODIS snow-cover products represent potential improvement to or enhancement of the currently-available operational products mainly because the MODIS products are global and 500-m resolution, and have the capability to separate most snow and clouds. Also the snow-mapping algorithms are automated which means that a consistent data set may be generated for long-term climate studies that require snow-cover information. Extensive quality assurance (QA) information is stored with the products. The MODIS snow product suite begins with a 500-m resolution, 2330-km swath snow-cover map which is then gridded to an integerized sinusoidal grid to produce daily and 8-day composite tile products. The sequence proceeds to a climate-modeling grid (CMG) product at about 5.6-km spatial resolution, with both daily and 8-day composite products. Each pixel of the CMG contains fraction of snow cover from 40 - 100%. Measured errors of commission in the CMG are low, for example, on the continent of Australia in the spring, they vary from 0.02 - 0.10%. Near-term enhancements include daily snow albedo and fractional snow cover. A case study from March 6, 2000, involving MODIS data and field and aircraft measurements, is presented to show some early validation work.

  16. Multidecadal climate and seasonal snow conditions in Svalbard

    NASA Astrophysics Data System (ADS)

    Pelt, W. J. J.; Kohler, J.; Liston, G. E.; Hagen, J. O.; Luks, B.; Reijmer, C. H.; Pohjola, V. A.

    2016-11-01

    Svalbard climate is undergoing amplified change with respect to the global mean. Changing climate conditions directly affect the evolution of the seasonal snowpack, through its impact on accumulation, melt, and moisture exchange. We analyze long-term trends and spatial patterns of seasonal snow conditions in Svalbard between 1961 and 2012. Downscaled regional climate model output is used to drive a snow modeling system (SnowModel), with coupled modules simulating the surface energy balance and snowpack evolution. The precipitation forcing is calibrated and validated against snow depth data on a set of glaciers around Svalbard. Climate trends reveal seasonally inhomogeneous warming and a weakly positive precipitation trend, with strongest changes in the north. In response to autumn warming the date of snow onset increased (2 days decade-1), whereas in spring/summer opposing effects cause a nonsignificant trend in the snow disappearance date. Maximum snow water equivalent (SWE) in winter/spring shows a modest increase (+0.01 meters water equivalent (mwe) decade-1), while the end-of-summer minimum snow area fraction declined strongly (from 48% to 36%). The equilibrium line altitude is highest in relatively dry inland regions, and time series show a clear positive trend (25 m decade-1) as a result of summer warming. Finally, rain-on-snow in the core winter season, affecting ground ice formation and limiting access of grazing animals to food supplies, peaks during specific years (1994, 1996, 2000, and 2012) and is found to be concentrated in the lower lying coastal regions in southwestern Svalbard.

  17. Remote Sensing of Snow Cover. Section; Snow Extent

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Frei, Allan; Drey, Stephen J.

    2012-01-01

    Snow was easily identified in the first image obtained from the Television Infrared Operational Satellite-1 (TIROS-1) weather satellite in 1960 because the high albedo of snow presents a good contrast with most other natural surfaces. Subsequently, the National Oceanic and Atmospheric Administration (NOAA) began to map snow using satellite-borne instruments in 1966. Snow plays an important role in the Earth s energy balance, causing more solar radiation to be reflected back into space as compared to most snow-free surfaces. Seasonal snow cover also provides a critical water resource through meltwater emanating from rivers that originate from high-mountain areas such as the Tibetan Plateau. Meltwater from mountain snow packs flows to some of the world s most densely-populated areas such as Southeast Asia, benefiting over 1 billion people (Immerzeel et al., 2010). In this section, we provide a brief overview of the remote sensing of snow cover using visible and near-infrared (VNIR) and passive-microwave (PM) data. Snow can be mapped using the microwave part of the electromagnetic spectrum, even in darkness and through cloud cover, but at a coarser spatial resolution than when using VNIR data. Fusing VNIR and PM algorithms to produce a blended product offers synergistic benefits. Snow-water equivalent (SWE), snow extent, and melt onset are important parameters for climate models and for the initialization of atmospheric forecasts at daily and seasonal time scales. Snowmelt data are also needed as input to hydrological models to improve flood control and irrigation management.

  18. The effect of surface colour on the formation of marine micro and macrofouling communities.

    PubMed

    Dobretsov, Sergey; Abed, Raeid M M; Voolstra, Christian R

    2013-01-01

    The effect of substratum colour on the formation of micro- and macro fouling communities was investigated. Acrylic tiles, painted either black or white were covered with transparent sheets in order to ensure similar surface properties. All substrata were exposed to biofouling at 1 m depth for 40 d in the Marina Bandar al Rowdha (Muscat, Sea of Oman). Studies were conducted in 2010 over a time course of 5, 10 and 20 d, and in 2012 samples were collected at 7, 14 and 21 d. The densities of bacteria on the black and white substrata were similar with the exception of day 10, when the black substrata had a higher abundance than white ones. Pyrosequencing via 454 of 16S rRNA genes of bacteria from white and black substrata revealed that Alphaproteobacteria and Firmicutes were the dominant groups. SIMPER analysis demonstrated that bacterial phylotypes (uncultured Gammaproteobacteria, Actibacter, Gaetbulicola, Thalassobius and Silicibacter) and the diatoms (Navicula directa, Navicula sp. and Nitzschia sp.) contributed to the dissimilarities between communities developed on white and black substrata. At day 20, the highest amount of chlorophyll a was recorded in biofilms developed on black substrata. SIMPER analysis showed that Folliculina sp., Ulva sp. and Balanus amphitrite were the major macro fouling species that contributed to the dissimilarities between the communities formed on white and black substrata. Higher densities of these species were observed on black tiles. The results emphasise the effect of substratum colour on the formation of micro and macro fouling communities; substratum colour should to be taken into account in future studies.

  19. Application of snow models to snow removal operations on the Going-to-the-Sun Road, Glacier National Park

    USGS Publications Warehouse

    Fagre, Daniel B.; Klasner, Frederick L.

    2000-01-01

    Snow removal, and the attendant avalanche risk for road crews, is a major issue on mountain highways worldwide. The Going-to-the-Sun Road is the only road that crosses Glacier National Park, Montana. This 80-km highway ascends over 1200m along the wall of a glaciated basin and crosses the continental divide. The annual opening of the road is critical to the regional economy and there is public pressure to open the road as early as possible. Despite the 67-year history of snow removal activities, few stat on snow conditions at upper elevations were available to guide annual planning for the raod opening. We examined statistical relationships between the opening date and nearby SNOTEL data on snow water equivalence (WE) for 30 years. Early spring SWE (first Monday in April) accounted for only 33% of the variance in road opening dates. Because avalanche spotters, used to warn heavy equipment operators of danger, are ineffective during spring storms or low-visibility conditions, we incorporated the percentage of days with precipitation during plowing as a proxy for visibility. This improved the model's predictive power to 69%/ A mountain snow simulator (MTSNOW) was used to calculate the depth and density of snow at various points along the road and field data were collected for comparison. MTSNOW underestimated the observed snow conditions, in part because it does not yet account for wind redistribution of snow. The severe topography of the upper reaches of the road are subjected to extensive wind redistribution of snow as evidence by the formation of "The Big Drift" on the lee side of Logan Pass.

  20. Snow White Trench (Animation)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This animation shows the evolution of the trench called 'Snow White' that NASA's Phoenix Mars Lander began digging on the 22nd Martian day of the mission after the May 25, 2008, landing.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  1. Phoenix's Snow White Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A soil sample taken from the informally named 'Snow White' trench at NASA's Phoenix Mars Lander work site produced minerals that indicate evidence of past interaction between the minerals and liquid water.

    This image was taken by the Surface Stereo Imager on Sol 103, the 103rd day since landing (Sept. 8, 2008).

    The trench is approximately 23 centimeters (9 inches) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by JPL, Pasadena, Calif. Spacecraft development was by Lockheed Martin Space Systems, Denver.

  2. Optical Properties of Snow

    DTIC Science & Technology

    1982-01-01

    basalt, and the most common volcanic ash is andesite (R. Cadle, personal communication, 1980). Both of these rocks have very similar optical proper...giving no color to the snow; but in order to mimic a given ties for short waves: mi., - I x 10-1, constant across the concentration of soot, the andesite ...refractive v.o8 0. r~soo, 02.o5 % •%•, "index is taken as that of andesite (mt = 1.47) from Pollack et 0o..o al. [1973]. The imaginary index mim (k) was

  3. Modeling the snow surface temperature with a one-layer energy balance snowmelt model

    NASA Astrophysics Data System (ADS)

    You, J.; Tarboton, D. G.; Luce, C. H.

    2013-12-01

    ⪉bel{sec:abstract} Snow surface temperature is a key control on energy exchanges at the snow surface, particularly net longwave radiation and turbulent energy fluxes. The snow surface temperature is in turn controlled by the balance between various external fluxes and the conductive heat flux, internal to the snowpack. Because of the strong insulating properties of snow, thermal gradients in snow packs are large and nonlinear, a fact that has led many to advocate multiple layer snowmelt models over single layer models. In an effort to keep snowmelt modeling simple and parsimonious, the Utah Energy Balance (UEB) snowmelt model used only one layer but allowed the snow surface temperature to be different from the snow average temperature by using an equilibrium gradient parameterization based on the surface energy balance. Although this procedure was considered an improvement over the ordinary single layer snowmelt models, it still resulted in discrepancies between modeled and measured snowpack energy contents. In this paper we examine the parameterization of snow surface temperature in single layer snowmelt models from the perspective of heat conduction into a semi-infinite medium. We evaluate the equilibrium gradient approach, the force-restore approach, and a modified force-restore approach. In addition, we evaluate a scheme for representing the penetration of a refreezing front in cold periods following melt. We also introduce a method to adjust effective conductivity to account for the presence of ground near to a shallow snow surface. These parameterizations were tested against data from the Central Sierra Snow Laboratory, CA, Utah State University experimental farm, UT, and Subnivean snow laboratory at Niwot Ridge, CO. These tests compare modeled and measured snow surface temperature, snow energy content, snow water equivalent, and snowmelt outflow. We found that with these refinements the model is able to better represent the snowpack energy balance and

  4. Diversity and potential sources of microbiota associated with snow on western portions of the Greenland Ice Sheet.

    PubMed

    Cameron, Karen A; Hagedorn, Birgit; Dieser, Markus; Christner, Brent C; Choquette, Kyla; Sletten, Ronald; Crump, Byron; Kellogg, Colleen; Junge, Karen

    2015-03-01

    Snow overlays the majority of the Greenland Ice Sheet (GrIS). However, there is very little information available on the microbiological assemblages that are associated with this vast and climate-sensitive landscape. In this study, the structure and diversity of snow microbial assemblages from two regions of the western GrIS ice margin were investigated through the sequencing of small subunit ribosomal RNA genes. The origins of the microbiota were investigated by examining correlations to molecular data obtained from marine, soil, freshwater and atmospheric environments and geochemical analytes measured in the snow. Snow was found to contain a diverse assemblage of bacteria (Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria) and eukarya (Alveolata, Fungi, Stramenopiles and Chloroplastida). Phylotypes related to archaeal Thaumarchaeota and Euryarchaeota phyla were also identified. The snow microbial assemblages were more similar to communities characterized in soil than to those documented in marine ecosystems. Despite this, the chemical composition of snow samples was consistent with a marine contribution, and strong correlations existed between bacterial beta diversity and the concentration of Na(+) and Cl(-) . These results suggest that surface snow from western regions of Greenland contains exogenous microbiota that were likely aerosolized from more distant soil sources, transported in the atmosphere and co-precipitated with the snow.

  5. Tyzzer's disease in snow leopards.

    PubMed

    Schmidt, R E; Eisenbrandt, D L; Hubbard, G B

    1984-01-01

    Tyzzer's disease was diagnosed histologically in 2 litters of newborn snow leopard kittens. The gross and histological lesions were similar to those reported in domestic cats and other animals. No signs of illness was noted in either of the snow leopard dams.

  6. The value of snow cover

    NASA Astrophysics Data System (ADS)

    Sokratov, S. A.

    2009-04-01

    Snow is the natural resource, like soil and water. It has specific properties which allow its use not just for skiing but also for houses cooling in summer (Swedish experience), for air fields construction (Arctic and Antarctic), for dams (north of Russia), for buildings (not only snow-houses of some Polar peoples but artistic hotel attracting tourists in Sweden), and as art material (Sapporo snow festival, Finnish events), etc. "Adjustment" of snow distribution and amount is not only rather common practice (avalanche-protection constructions keeping snow on slopes) but also the practice with long history. So-called "snow irrigation" was used in Russia since XIX century to protect winter crop. What is now named "artificial snow production", is part of much larger pattern. What makes it special—it is unavoidable in present climate and economy situation. 5% of national income in Austria is winter tourism. 50% of the economy in Savoy relay on winter tourism. In terms of money this can be less, but in terms of jobs and income involved this would be even more considerable in Switzerland. As an example—the population of Davos is 14000 in Summer and 50000 in Winter. Skiing is growing business. In present time you can find ski slopes in Turkey and Lebanon. To keep a cite suitable for attracting tourists you need certain amount of sunny days and certain amount of snow. The snow cannons are often the only way to keep a place running. On the other hand, more artificial snow does not necessary attract more tourists, while heavy natural snowfall does attract them. Artificial snow making is costly and requires infrastructure (ponds and electric lines) with very narrow range of weather conditions. Related companies are searching for alternatives and one of them can be "weather regulation" by distribution of some chemical components in clouds. It did not happen yet, but can happen soon. The consequences of such interference in Nature is hardly known. The ski tourism is not the

  7. Imaging the water snow-line during a protostellar outburst.

    PubMed

    Cieza, Lucas A; Casassus, Simon; Tobin, John; Bos, Steven P; Williams, Jonathan P; Perez, Sebastian; Zhu, Zhaohuan; Caceres, Claudio; Canovas, Hector; Dunham, Michael M; Hales, Antonio; Prieto, Jose L; Principe, David A; Schreiber, Matthias R; Ruiz-Rodriguez, Dary; Zurlo, Alice

    2016-07-14

    A snow-line is the region of a protoplanetary disk at which a major volatile, such as water or carbon monoxide, reaches its condensation temperature. Snow-lines play a crucial role in disk evolution by promoting the rapid growth of ice-covered grains. Signatures of the carbon monoxide snow-line (at temperatures of around 20 kelvin) have recently been imaged in the disks surrounding the pre-main-sequence stars TW Hydra and HD163296 (refs 3, 10), at distances of about 30 astronomical units (au) from the star. But the water snow-line of a protoplanetary disk (at temperatures of more than 100 kelvin) has not hitherto been seen, as it generally lies very close to the star (less than 5 au away for solar-type stars). Water-ice is important because it regulates the efficiency of dust and planetesimal coagulation, and the formation of comets, ice giants and the cores of gas giants. Here we report images at 0.03-arcsec resolution (12 au) of the protoplanetary disk around V883 Ori, a protostar of 1.3 solar masses that is undergoing an outburst in luminosity arising from a temporary increase in the accretion rate. We find an intensity break corresponding to an abrupt change in the optical depth at about 42 au, where the elevated disk temperature approaches the condensation point of water, from which we conclude that the outburst has moved the water snow-line. The spectral behaviour across the snow-line confirms recent model predictions: dust fragmentation and the inhibition of grain growth at higher temperatures results in soaring grain number densities and optical depths. As most planetary systems are expected to experience outbursts caused by accretion during their formation, our results imply that highly dynamical water snow-lines must be considered when developing models of disk evolution and planet formation.

  8. Imaging the water snow-line during a protostellar outburst

    NASA Astrophysics Data System (ADS)

    Cieza, Lucas A.; Casassus, Simon; Tobin, John; Bos, Steven P.; Williams, Jonathan P.; Perez, Sebastian; Zhu, Zhaohuan; Caceres, Claudio; Canovas, Hector; Dunham, Michael M.; Hales, Antonio; Prieto, Jose L.; Principe, David A.; Schreiber, Matthias R.; Ruiz-Rodriguez, Dary; Zurlo, Alice

    2016-07-01

    A snow-line is the region of a protoplanetary disk at which a major volatile, such as water or carbon monoxide, reaches its condensation temperature. Snow-lines play a crucial role in disk evolution by promoting the rapid growth of ice-covered grains. Signatures of the carbon monoxide snow-line (at temperatures of around 20 kelvin) have recently been imaged in the disks surrounding the pre-main-sequence stars TW Hydra and HD163296 (refs 3, 10), at distances of about 30 astronomical units (AU) from the star. But the water snow-line of a protoplanetary disk (at temperatures of more than 100 kelvin) has not hitherto been seen, as it generally lies very close to the star (less than 5 AU away for solar-type stars). Water-ice is important because it regulates the efficiency of dust and planetesimal coagulation, and the formation of comets, ice giants and the cores of gas giants. Here we report images at 0.03-arcsec resolution (12 AU) of the protoplanetary disk around V883 Ori, a protostar of 1.3 solar masses that is undergoing an outburst in luminosity arising from a temporary increase in the accretion rate. We find an intensity break corresponding to an abrupt change in the optical depth at about 42 AU, where the elevated disk temperature approaches the condensation point of water, from which we conclude that the outburst has moved the water snow-line. The spectral behaviour across the snow-line confirms recent model predictions: dust fragmentation and the inhibition of grain growth at higher temperatures results in soaring grain number densities and optical depths. As most planetary systems are expected to experience outbursts caused by accretion during their formation, our results imply that highly dynamical water snow-lines must be considered when developing models of disk evolution and planet formation.

  9. Snow reflectance from thematic mapper

    NASA Technical Reports Server (NTRS)

    Dozier, J.

    1983-01-01

    Calculations of snow reflectance in all 6 TM reflective bands (i.e., 1,2,3,4,5, and 7) using a delta Eddington model show that snow reflectance in bands 4,5, and 7 is sensitive to grain size. Efforts to interpret the surface optical grain size for the spectral extension of albedo are described. Results show the TM data include spectral channels suitable for snow/cloud discrimination and for snow albedo measurements that can be extended throughout the solar spectrum. Except for band 1, the dynamic range is large enough that saturation occurs only occasionally. The finer resolution gives much better detail on the snowcovered area and might make it possible to use textural information instead of the snowline as an index to the amount of snow melt runoff.

  10. ESA SnowLab project

    NASA Astrophysics Data System (ADS)

    Wiesmann, Andreas; Caduff, Rafael; Frey, Othmar; Werner, Charles

    2016-04-01

    Retrieval of the snow water equivalaent (SWE) from passive microwave observations dates back over three decades to initial studies made using the first operational radiometers in space. However, coarse spatial resolution (25 km) is an acknowledged limitation for the application of passive microwave measurements. The natural variability of snow cover itself is also notable; properties such as stratigraphy and snow microstructure change both spatially and over time, affecting the microwave signature. To overcome this deficit, the satellite mission COld REgions Hydrology High-resolution Observatory (CoReH2O) was proposed to the European Space Agency (ESA) in 2005 in response to the call for Earth Explorer 7 candidate missions. CoReH2O was a dual frequency (X- and Ku-band) SAR mission aimed to provide maps of SWE over land and snow accumulation on glaciers at a spatial resolution of 200 to 500 meters with an unprecedented accuracy. Within the frame of preparatory studies for CoReH2O Phase A, ESA undertook several research initiatives from 2009 to 2013 to study the mission concept and capabilities of the proposed sensor. These studies provided a wealth of information on emission and backscattering signatures of natural snow cover, which can be exploited to study new potential mission concepts for retrieval of snow cover properties and other elements of the cryosphere. Currently data related to multi-frequency, multi-polarisation, multitemporal of active and passive microwave measurements are still not available. In addition, new methods related to e.g. tomography are currently under development and need to be tested with real data. Also, the potential of interferometric and polarimetric measurements of the snow cover and its possible impact for novel mission/retrieval concepts must be assessed. . The objective of the SnowLab activity is to fill this gap and complement these datasets from earlier campaigns by acquiring a comprehensive multi-frequency, multi

  11. A probabilistic model for snow avalanche occurrence

    NASA Astrophysics Data System (ADS)

    Perona, P.; Miescher, A.; Porporato, A.

    2009-04-01

    Avalanche hazard forecasting is an important issue in relation to the protection of urbanized environments, ski resorts and of ski-touring alpinists. A critical point is to predict the conditions that trigger the snow mass instability determining the onset and the size of avalanches. On steep terrains the risk of avalanches is known to be related to preceding consistent snowfall events and to subsequent changes in the local climatic conditions. Regression analysis has shown that avalanche occurrence indeed correlates to the amount of snow fallen in consecutive three snowing days and to the state of the settled snow at the ground. Moreover, since different type of avalanches may occur as a result of the interactions of different factors, the process of snow avalanche formation is inherently complex and with some degree of unpredictability. For this reason, although several models assess the risk of avalanche by accounting for all the involved processes with a great detail, a high margin of uncertainty invariably remains. In this work, we explicitly describe such an unpredictable behaviour with an intrinsic noise affecting the processes leading snow instability. Eventually, this sets the basis for a minimalist stochastic model, which allows us to investigate the avalanche dynamics and its statistical properties. We employ a continuous time process with stochastic jumps (snowfalls), deterministic decay (snowmelt and compaction) and state dependent avalanche occurrence (renewals) as a minimalist model for the determination of avalanche size and related intertime occurrence. The physics leading to avalanches is simplified to the extent where only meteorological data and terrain data are necessary to estimate avalanche danger. We explore the analytical formulation of the process and the properties of the probability density function of the avalanche process variables. We also discuss what is the probabilistic link between avalanche size and preceding snowfall event and

  12. Bulk Parameterization of the Snow Field in a Cloud Model.

    NASA Astrophysics Data System (ADS)

    Lin, Yuh-Lang; Farley, Richard D.; Orville, Harold D.

    1983-06-01

    A two-dimensional, time-dependent cloud model has been used to simulate a moderate intensity thunderstorm for the High Plains region. Six forms of water substance (water vapor, cloud water, cloud ice, rain, snow and hail, i.e., graupel) are simulated. The model utilizes the `bulk water' microphysical parameterization technique to represent the precipitation fields which are all assumed to follow exponential size distribution functions. Autoconversion concepts are used to parameterize the collision-coalescence and collision-aggregation processes. Accretion processes involving the various forms of liquid and solid hydrometeors are simulated in this model. The transformation of cloud ice to snow through autoconversion (aggregation) and Bergeron process and subsequent accretional growth or aggregation to form hail are simulated. Hail is also produced by various contact mechanisms and via probabilistic freezing of raindrops. Evaporation (sublimation) is considered for all precipitation particles outside the cloud. The melting of hail and snow are included in the model. Wet and dry growth of hail and shedding of rain from hail are simulated.The simulations show that the inclusion of snow has improved the realism of the results compared to a model without snow. The formation of virga from cloud anvils is now modeled. Addition of the snow field has resulted in the inclusion of more diverse and physically sound mechanisms for initiating the hail field, yielding greater potential for distinguishing dominant embryo types characteristically different from warm- and cold-based clouds.

  13. GALE improves snow forecasting

    NASA Astrophysics Data System (ADS)

    Scientific results from an intensive study of winter storms on the U.S. East Coast last year contributed to improved weather forecasts of two successive snowstorms that virtually closed down Washington, D.C., for several days in January 1987.In the Genesis of Atlantic Lows Experiment (GALE) field project, scientists took detailed measurements simultaneously from the atmosphere and the ocean to study how these features interact at various stages of an East Coast winter storm, according to project director Richard Dirks, who is with the National Center for Atmospheric Research (NCAR) in Boulder, Colo. “It's interesting that we actually had four storms [in the GALE study] that were of similar intensity to the two East Coast storms” in January 1987, Dirks said. “However, last year the temperatures were warmer, and the storm tracks were located somewhat further offshore and therefore did not significantly affect the northeast corridor with heavy snows.”

  14. Microbial community structure, pigment composition, and nitrogen source of red snow in Antarctica.

    PubMed

    Fujii, Masanori; Takano, Yoshinori; Kojima, Hisaya; Hoshino, Tamotsu; Tanaka, Ryouichi; Fukui, Manabu

    2010-04-01

    "Red snow" refers to red-colored snow, caused by bloom of cold-adapted phototrophs, so-called snow algae. The red snow found in Langhovde, Antarctica, was investigated from several viewpoints. Various sizes of rounded red cells were observed in the red snow samples under microscopy. Pigment analysis demonstrated accumulation of astaxanthin in the red snow. Community structure of microorganisms was analyzed by culture-independent methods. In the analyses of small subunit rRNA genes, several species of green algae, fungus, and various phylotypes of bacteria were detected. The detected bacteria were closely related to psychrophilic or psychrotolerant heterotrophic strains, or sequences detected from low-temperature environments. As predominant lineage of bacteria, members of the genus Hymenobacter were consistently detected from samples obtained in two different years. Nitrogen isotopic compositions analysis indicated that the red snow was significantly 15N-enriched. Based on an estimation of trophic level, it was suggested that primary nitrogen sources of the red snow were supplied from fecal pellet of seabirds including a marine top predator of Antarctica.

  15. Snow metamorphism: A fractal approach.

    PubMed

    Carbone, Anna; Chiaia, Bernardino M; Frigo, Barbara; Türk, Christian

    2010-09-01

    Snow is a porous disordered medium consisting of air and three water phases: ice, vapor, and liquid. The ice phase consists of an assemblage of grains, ice matrix, initially arranged over a random load bearing skeleton. The quantitative relationship between density and morphological characteristics of different snow microstructures is still an open issue. In this work, a three-dimensional fractal description of density corresponding to different snow microstructure is put forward. First, snow density is simulated in terms of a generalized Menger sponge model. Then, a fully three-dimensional compact stochastic fractal model is adopted. The latter approach yields a quantitative map of the randomness of the snow texture, which is described as a three-dimensional fractional Brownian field with the Hurst exponent H varying as continuous parameters. The Hurst exponent is found to be strongly dependent on snow morphology and density. The approach might be applied to all those cases where the morphological evolution of snow cover or ice sheets should be conveniently described at a quantitative level.

  16. Field observations of the electrostatic charges of blowing snow in Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Omiya, S.; Sato, A.

    2011-12-01

    An electrostatic charge of blowing snow may be a contributing factor in the formation of a snow drift and a snow cornice, and changing of the trajectory of own motion. However, detailed electrification characteristics of blowing snow are not known as there are few reports of charge measurements. We carried out field observations of the electrostatic charges of blowing snow in Tobetsu, Hokkaido, Japan in the mid winter of 2011. An anemovane and a thermohygrometer were used for the meteorological observation. Charge-to-mass ratios of blowing snow were obtained by a Faraday-cage, an electrometer and an electric balance. In this observation period, the air temperature during the blowing snow event was -6.5 to -0.5 degree Celsius. The measured charges in this observation were consistent with the previous studies in sign, which is negative, but they were smaller than the previous one. In most cases, the measured values increased with the temperature decrease, which corresponds with previous studies. However, some results contradicted the tendency, and the maximum value was obtained on the day of the highest air temperature of -0.5 degree Celsius. This discrepancy may be explained from the difference of the snow surface condition on observation day. The day when the maximum value was obtained, the snow surface was covered with old snow, and hard. On the other hand, in many other cases, the snow surface was covered with the fresh snow, and soft. Blowing snow particles on the hard surface can travel longer distance than on the soft one. Therefore, it can be surmised that the hard surface makes the blowing snow particles accumulate a lot of negative charges due to a large number of collisions to the surface. This can be supported by the results of the wind tunnel experiments by Omiya and Sato (2011). By this field observation, it was newly suggested that the electrostatic charge of blowing snow are influenced greatly by the difference of the snow surface condition. REFERENCE

  17. The ringed seal's last refuge and the importance of snow cover

    NASA Astrophysics Data System (ADS)

    Kelly, B. P.; Bitz, C. M.

    2010-12-01

    Ringed seals are strongly adapted to inhabiting seasonal ice cover throughout the Arctic Ocean, marginal seas, and some freshwater lakes. Their distribution has expanded and contracted with northern hemisphere ice cover and is expected to mirror declining ice cover in coming decades. Ringed seals require snow cover to provide shelter from extreme cold and from predators, and the southern extent of their range corresponds to the latitudes to which snow cover—sufficient to form and maintain subnivean lairs—extends. The lairs are especially critical to the survival of pups born and nursed under the snow in late March through May. Snow drifts 50 cm or deeper are necessary for lair occupation, and field measurements indicate that such drifting occurs only where average snow depths (on flat ice) exceed 20 cm. When snow depths are less, ringed seal pups freeze in their lairs and are vulnerable to predation by carnivores and birds. As the climate warms, winter precipitation is expected to increase in the Arctic Ocean, potentially favoring formation and occupation of lairs. At the same time, increasingly late ice formation is expected to decrease the overall accumulation of snow, an effect exacerbated by the high fraction of annual snow fall that occurs in autumn. Early snow melts also contribute to pup mortality and are likely to increase as the climate warms. We forecast April snow depths on Arctic sea ice through the year 2100 in seven runs of CCSM3. Despite predicted increases in winter precipitation in the Arctic, the model forecasted that the accumulation of snow on sea ice will decrease by almost 50% in this century. The timing of the onset of snow melt changes little in the projections, but the shallower snow pack will melt more quickly in the warmer climate. In almost all portions of the range, average snow depths are expected to be less than 20 cm and inadequate for successful rearing of ringed seal young by the end of the century and—in many locations

  18. The effect of marine isoprene emissions on secondary organic aerosol and ozone formation in the coastal United States

    NASA Astrophysics Data System (ADS)

    Gantt, Brett; Meskhidze, Nicholas; Zhang, Yang; Xu, Jun

    2010-01-01

    The impact of marine isoprene emissions on summertime surface concentrations of isoprene, secondary organic aerosols (SOA), and ozone (O 3) in the coastal areas of the continental United States is studied using the U.S. Environmental Protection Agency regional-scale Community Multiscale Air Quality (CMAQ) modeling system. Marine isoprene emission rates are based on the following five parameters: laboratory measurements of isoprene production from phytoplankton under a range of light conditions, remotely-sensed chlorophyll- a concentration ([Chl- a]), incoming solar radiation, surface wind speed, and sea-water optical properties. Model simulations show that marine isoprene emissions are sensitive to meteorology and ocean ecosystem productivity, with the highest rates simulated over the Gulf of Mexico. Simulated offshore surface layer marine isoprene concentration is less than 10 ppt and significantly dwarfed by terrestrial emissions over the continental United States. With the isoprene reactions included in this study, the average contribution of marine isoprene to SOA and O 3 concentrations is predicted to be small, up to 0.004 μg m -3 for SOA and 0.2 ppb for O 3 in coastal urban areas. The light-sensitivity of isoprene production from phytoplankton results in a midday maximum for marine isoprene emissions and a corresponding daytime increase in isoprene and O 3 concentrations in coastal locations. The potential impact of the daily variability in [Chl- a] on O 3 and SOA concentrations is simulated in a sensitivity study with [Chl- a] increased and decreased by a factor of five. Our results indicate that marine emissions of isoprene cause minor changes to coastal SOA and O 3 concentrations. Comparison of model simulations with few available measurements shows that the model underestimates marine boundary layer isoprene concentration. This underestimation is likely due to the limitations in current treatment of marine isoprene emission and a coarse spatial

  19. NASA’s Sense of Snow: the Airborne Snow Observatory

    NASA Video Gallery

    Water is a critical resource in the western U.S. NASA’s Airborne Snow Observatory is giving California water agencies the first complete measurements of the water available in the Sierra snowpack ...

  20. Contaminants in arctic snow collected over northwest Alaskan sea ice

    USGS Publications Warehouse

    Garbarino, J.R.; Snyder-Conn, E.; Leiker, T.J.; Hoffman, G.L.

    2002-01-01

    Snow cores were collected over sea ice from four northwest Alaskan Arctic estuaries that represented the annual snowfall from the 1995-1996 season. Dissolved trace metals, major cations and anions, total mercury, and organochlorine compounds were determined and compared to concentrations in previous arctic studies. Traces (<4 nanograms per liter, ng L-1) of cis- and trans-chlordane, dimethyl 2,3,5,6-tetrachloroterephthalate, dieldrin, endosulfan II, and PCBs were detected in some samples, with endosulfan I consistently present. High chlorpyrifos concentrations (70-80 ng L-1) also were estimated at three sites. The snow was highly enriched in sulfates (69- 394 mg L-1), with high proportions of nonsea salt sulfates at three of five sites (9 of 15 samples), thus indicating possible contamination through long-distance transport and deposition of sulfate-rich atmospheric aerosols. Mercury, cadmium, chromium, molybdenum, and uranium were typically higher in the marine snow (n = 15) in relation to snow from arctic terrestrial studies, whereas cations associated with terrigenous sources, such as aluminum, frequently were lower over the sea ice. One Kasegaluk Lagoon site (Chukchi Sea) had especially high concentrations of total mercury (mean = 214 ng L-1, standard deviation = 5 ng L-1), but no methyl mercury was detected above the method detection limit (0.036 ng L-1) at any of the sites. Elevated concentrations of sulfate, mercury, and certain heavy metals might indicate mechanisms of contaminant loss from the arctic atmosphere over marine water not previously reported over land areas. Scavenging by snow, fog, or riming processes and the high content of deposited halides might facilitate the loss of such contaminants from the atmosphere. Both the mercury and chlorpyrifos concentrations merit further investigation in view of their toxicity to aquatic organisms at low concentrations.

  1. An improved snow hydrology for GCMS. Part 1: Snow cover fraction, albedo, grain size, and age

    SciTech Connect

    Marshall, S.; Oglesby, R.J.

    1994-07-01

    A new, physically-based snow hydrology has been implemented into the NCAR CCM1. The snow albedo is based on snow depth, solar zenith angle, snow cover pollutants, cloudiness, and a new parameter, the snow grain size. Snow grain size in turn depends on temperature and snow age. An improved expression is used for fractional snow cover which relates it to surface roughness and to snow depth. Each component of the new snow hydrology was implemented separately and then combined to make a new control run integrated for ten seasonal cycles. With the new snow hydrology, springtime snow melt occurs more rapidly, leading to a more reasonable late spring and summer distribution of snow cover. Little impact is seen on winter snow cover, since the new hydrology affects snow melt directly, but snowfall only indirectly, if at all. The influence of the variable grain size appears more important when snow packs are relatively deep while variable fractional snow cover becomes increasingly important as the snow pack thins. Variable surface roughness affects the snow cover fraction directly, but shows little effect on the seasonal cycle of the snow line. As an application of the new snow hydrology, we have rerun simulations involving Antarctic and Northern Hemisphere glaciation. Relatively little difference is seen for Antarctica, but a profound difference occurs for the Northern Hemisphere. In particular, ice sheets computed using new snow accumulations from the GCM are more numerous and larger in extent with the new snow hydrology. The new snow hydrology leads to a better simulation of the seasonal cycle of snow cover, however, our primary goal in implementing it into the GCM is to improve the predictive capabilities of the model. Since the snow hydrology is based on fundamental physical processes, and has well-defined parameters. it should enable model simulations of climatic change in which we have increased confidence. 37 refs., 15 figs., 2 tabs.

  2. Remotely Sensed Snow Data Assimilation within Distributed Snow 17 Model

    NASA Astrophysics Data System (ADS)

    Dechant, C. M.; Leisenring, M.; Moradkhani, H.

    2009-12-01

    Accurate estimation of the quantity of water stored in seasonal snow cover, particularly in the mountainous Western United States, is an important tool for water resources management. Challenges in the estimation of Snow Water Equivalent (SWE) arise from uncertain model forcing data, model structure/parameter error, poor spatial resolution of in-situ measurements and uncertainties in remotely sensed observations. Currently, the best method for quantifying SWE is to integrate both modeled and remotely sensed estimates of snow by accounting for the relative uncertainties associated with each estimate. Data assimilation techniques account for observed and modeled errors by treating them as a stochastic variable and sequentially updating/resampling the state values. This study examines the effectiveness of three snow data assimilation techniques for creating a more accurate estimate of SWE. In this study, SWE, modeled with a distributed version of the National Weather Service’s SNOW-17 model, and model parameters in the Snow-17 model are updated with remotely sensed snow cover area (SCA). The SNOW-17 model takes precipitation and temperature as an input and estimates both SWE and SCA. Model forcing data was gathered from the North-American Land Data Assimilation (NLDAS) dataset. The SCA information used in this study is produced by the MODIS instrument flown on the NASA Terra satellite. The model runs at 1/8th degree and MODIS data is aggregated to this resolution from a 500m resolution. Remotely sensed SCA is used as the observation in three different data assimilation schemes: Ensemble Kalman Filter (EnKF), Ensemble Kalman Smoother (EnKS) and the Particle Filter. The EnKF and EnKS both use the same update equation, which assumes normally distributed errors. The Particle Filter takes a different approach that does not require an assumption about the error distribution. The accuracy and uncertainties associated with each of these assimilation techniques are compared

  3. Comprehensive Study of Carbonaceous Species in Arctic Snow: from Snow Type to Carbon Sources and Sinks in the Snowpack

    NASA Astrophysics Data System (ADS)

    Voisin, D.; Cozic, J.; Houdier, S.; Barret, M.; Jaffrezo, J. L.; King, M. D.; Beine, H. J.; Domine, F.

    2012-04-01

    . Total Carbon Content is highest in is highest in soil influenced indurated depth hoar layers and in diamond dust precipitation. It is found to decrease as snow ages, due to cleaving photochemistry and physical equilibration of the most volatile fraction of DOC. A precise evaluation of this recycled fraction would need a more precise evaluation of the annual importance of diamond dust as a source of carbon to the snowpack. Organic Carbon in surface snows appears to have a very significant (~40%) insoluble fraction. HULIS, short chain diacids and aldehydes are quantified, and showed to represent altogether a modest (<20%) proportion of DOC, and less than 10% of DOC+WinOC. HULIS optical properties are measured and could be consistent with aged biomass burning or an unknown source; a marine source is suggested.

  4. Snow density climatology across the former USSR

    NASA Astrophysics Data System (ADS)

    Zhong, X.; Zhang, T.; Wang, K.

    2014-04-01

    Snow density is one of the basic properties used to describe snow cover characteristics, and it is a key factor for linking snow depth and snow water equivalent, which are critical for water resources assessment and modeling inputs. In this study, we used long-term data from ground-based measurements to investigate snow density (bulk density) climatology and its spatiotemporal variations across the former Soviet Union (USSR) from 1966 to 2008. The results showed that the long-term monthly mean snow density was approximately 0.22 ± 0.05 g cm-3 over the study area. The maximum and minimum monthly mean snow density was about 0.33 g cm-3 in June, and 0.14 g cm-3 in October, respectively. Maritime and ephemeral snow had the highest monthly mean snow density, while taiga snow had the lowest. The higher values of monthly snow density were mainly located in the European regions of the former USSR, on the coast of Arctic Russia, and the Kamchatka Peninsula, while the lower snow density occurred in central Siberia. Significant increasing trends of snow density from September through June of the next year were observed, however, the rate of the increase varied with different snow classes. The long-term (1966-2008) monthly and annual mean snow densities had significant decreasing trends, especially during the autumn months. Spatially, significant positive trends in monthly mean snow density lay in the southwestern areas of the former USSR in November and December and gradually expanded in Russia from February through April. Significant negative trends mainly lay in the European Russia and the southern Russia. There was a high correlation of snow density with elevation for tundra snow and snow density was highly correlated with latitude for prairie snow.

  5. Using Snow to Teach Geology.

    ERIC Educational Resources Information Center

    Roth, Charles

    1991-01-01

    A lesson plan, directed at middle school students and older, describes using snow to study the geological processes of solidification of molten material, sedimentation, and metamorphosis. Provides background information on these geological processes. (MCO)

  6. Fracture mechanics of snow avalanches

    NASA Astrophysics Data System (ADS)

    Åström, J. A.; Timonen, J.

    2001-07-01

    Dense snow avalanches are analyzed by modeling the snow slab as an elastic and brittle plate, attached by static friction to the underlying ground. The grade of heterogeneity in the local fracture (slip) thresholds, and the ratio of the average substrate slip threshold to the average slab fracture threshold, are the decisive parameters for avalanche dynamics. For a strong pack of snow there appears a stable precursor of local slips when the frictional contacts are weakened (equivalent to rising temperature), which eventually trigger a catastrophic crack growth that suddenly releases the entire slab. In the opposite limit of very high slip thresholds, the slab simply melts when the temperature is increased. In the intermediate regime, and for a homogeneous slab, the model display features typical of real snow avalanches. The model also suggests an explanation to why avalanches are impossible to forecast reliably based on precursor observations. This explanation may as well be applicable to other catastrophic rupture phenomena such as earthquakes.

  7. Deceleration of Projectiles in Snow,

    DTIC Science & Technology

    1982-08-01

    contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an official endorsement or...projectile are directly wired els were used in these tests. The snow targets were to recording equipment, and the target is not accel- prepared by sifting...the snow target are identified in The target box was placed in a rigid stand located the figure. The travel times between these impacts on a tangent to

  8. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  9. The Fallacy of Drifting Snow

    NASA Astrophysics Data System (ADS)

    Andreas, Edgar L.

    2011-12-01

    A common parametrization over snow-covered surfaces that are undergoing saltation is that the aerodynamic roughness length for wind speed ( z 0) scales as {α u_ast^2/g}, where u * is the friction velocity, g is the acceleration of gravity, and α is an empirical constant. Data analyses seem to support this scaling: many published plots of z 0 measured over snow demonstrate proportionality to {u_ast^2 }. In fact, I show similar plots here that are based on two large eddy-covariance datasets: one collected over snow-covered Arctic sea ice; another collected over snow-covered Antarctic sea ice. But in these and in most such plots from the literature, the independent variable, u *, was used to compute z 0 in the first place; the plots thus suffer from fictitious correlation that causes z 0 to unavoidably increase with u * without any intervening physics. For these two datasets, when I plot z 0 against u * derived from a bulk flux algorithm—and thus minimize the fictitious correlation— z 0 is independent of u * in the drifting snow region, u * ≥ 0.30 ms-1. I conclude that the relation {z_0 = α u_ast^2/g} when snow is drifting is a fallacy fostered by analyses that suffer from fictitious correlation.

  10. A survey of culturable aerobic and anaerobic marine bacteria in de novo biofilm formation on natural substrates in St. Andrews Bay, Scotland.

    PubMed

    Finnegan, Lucy; Garcia-Melgares, Manuel; Gmerek, Tomasz; Huddleston, W Ryan; Palmer, Alexander; Robertson, Andrew; Shapiro, Sarah; Unkles, Shiela E

    2011-10-01

    This study reports a novel study of marine biofilm formation comprising aerobic and anaerobic bacteria. Samples of quartz and feldspar, minerals commonly found on the earth, were suspended 5 m deep in the North Sea off the east coast of St. Andrews, Scotland for 5 weeks. The assemblage of organisms attached to these stones was cultivated under aerobic and anaerobic conditions in the laboratory. Bacteria isolated on Marine Agar 2216 were all Gram-negative and identified to genus level by sequencing the gene encoding 16S rRNA. Colwellia, Maribacter, Pseudoaltermonas and Shewanella were observed in aerobically-grown cultures while Vibrio was found to be present in both aerobic and anaerobic cultures. The obligate anaerobic bacterium Psychrilyobacter atlanticus, a recently defined genus, was identified as a close relative of isolates grown anaerobically. The results provide valuable information as to the main players that attach and form de novo biofilms on common minerals in sea water.

  11. Snow chemistry of high altitude glaciers in the French Alps

    NASA Astrophysics Data System (ADS)

    Maupetit, François; Delmas, Robert J.

    1994-09-01

    Snow samples were collected as snowcores in the accumulation zone of four high altitude glaciers (2980 3540m.a.s.l.) from each of the 4 highest mountain areas of the French Alps, during 3 consecutive years: 1989, 1990 and 1991. Sampling was performed in spring (˜ May), before the onset of late spring summer percolation. The accumulated snow therefore reflects winter and spring conditions. A complementary sampling of fresh-snow was performed on an event basis, on one of the studied glaciers, in 1990 and 1991. All samples were analysed for major ions (but also for total formate and acetate in fresh-snow samples) using ion chromatography. The acidity-alkalinity was accurately determined with a titration technique. The ion balance of alpine snow has been achieved from those analyses. High alpine snow is slightly acid (H+~ 3 20 μeq 1-1), but is episodically affected by alkaline saharan dust events. The different sources (pollution, seasalt and soil dust) affecting the impurity content of snow were identified using principal component analysis. The measured free acidity, mainly from anthropogenic origin, originates from nitric acid scavenging while sulfuric acidity is partially neutralized by atmospheric ammonia and by alkaline soil dust derived species, the contribution of hydrochloric acid being negligible. All ions exhibit higher concentrations in spring than in winter snow, indicating most likely the influence of increased vertical transport from the lower troposphere at this time. The transport of saharan dust is described through three major events reaching the Alps during March 1990 and 1991. Very high concentrations of Ca2+ and HCO3- were measured in corresponding samples, indicating that

  12. Snow density climatology across the former USSR

    NASA Astrophysics Data System (ADS)

    Zhong, X.; Zhang, T.; Wang, K.

    2013-07-01

    Snow density is one of the basic properties used to describe snow cover characteristics, and it is a key factor for retrieving snow depth and snow water equivalent, which are critical for water resources assessment and modeling inputs. In this study, we used long-term data from ground-based measurements to investigate snow density climatology and its spatiotemporal variations across the former Soviet Union (USSR) from 1966 to 2008. The results showed that the long-term monthly mean snow density was approximately 0.194 ± 0.046 g cm-3 over the study area. The maximum and minimum monthly mean snow density was ˜ 0.295 g cm-3 in June, and 0.135 g cm-3 in October, respectively. Maritime snow had the highest monthly mean snow density, while taiga snow had the lowest. The higher values of monthly snow density were mainly located in the European regions of the former USSR, in Arctic Russia, and in some regions of the Russian Far East, and the lower snow density occurred in central Siberia. Significant increasing trends of snow density from September through June of the next year were observed, however, the rate of the increase varied with different snow classes. The long-term (1966-2008) monthly and annual mean snow densities had significant decreasing trends, especially during the autumn months. Spatially, significant positive trends in monthly mean snow density lay in the southwestern areas of the former USSR in November and December and gradually expanded in Russia from February through April. Significant negative trends mainly lay in the European Russia and the southern Russia. Snow density decreased with elevation, at about 0.004 g cm-3 per 100 m increase in elevation. This same relationship existed for all snow classes except for maritime and ephemeral snow.

  13. Airborne radar surveys of snow depth over Antarctic sea ice during Operation IceBridge

    NASA Astrophysics Data System (ADS)

    Panzer, B.; Gomez-Garcia, D.; Leuschen, C.; Paden, J. D.; Gogineni, P. S.

    2012-12-01

    comparison of snow depths with two weeks elapsed between passes. [1] Farrell, S.L., et al., "A First Assessment of IceBridge Snow and Ice Thickness Data Over Arctic Sea Ice," IEEE Tran. Geoscience and Remote Sensing, Vol. 50, No. 6, pp. 2098-2111, June 2012. [2] Kwok, R., and G. F. Cunningham, "ICESat over Arctic sea ice: Estimation of snow depth and ice thickness," J. Geophys. Res., 113, C08010, 2008. [3] Kwok, R., et al., "Airborne surveys of snow depth over Arctic sea ice," J. Geophys. Res., 116, C11018, 2011. [4] Panzer, B., et al., "An ultra-wideband, microwave radar for measuring snow thickness on sea ice and mapping near-surface internal layers in polar firn," Submitted to J. Glaciology, July 23, 2012. [5] Wingham, D.J., et al., "CryoSat: A Mission to Determine the Fluctuations in Earth's Land and Marine Ice Fields," Advances in Space Research, Vol. 37, No. 4, pp. 841-871, 2006. [6] Zwally, H. J., et al., "ICESat's laser measurements of polar ice, atmosphere, ocean, and land," J. Geodynamics, Vol. 34, No. 3-4, pp. 405-445, Oct-Nov 2002. [7] Zwally, H. J., et al., "ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea," J. Geophys. Res., 113, C02S15, 2008.

  14. Aldehydes in Artic Snow at Barrow (AK) during the Barrow 2009 Field Campaign

    NASA Astrophysics Data System (ADS)

    Barret, Manuel; Houdier, Stephan; Gallet, Jean-Charles; Domine, Florent; Beine, Harry; Jacobi, Hans-Werner; Weibring, Petter; Walega, James; Fried, Alan; Richter, Dirk

    2010-05-01

    Aldehydes (RCHO) are key reactive intermediates in hydrocarbon oxidation and in OH cycling. They are also emitted and taken up by the snowpack and a combination of both physical and photochemical processes are likely involved. Since the photolysis of aldehydes is a source of HOx radicals, these exchanges can modify the oxidative capacity of the overlying air. Formaldehyde (HCHO), acetaldehyde (MeCHO), glyoxal (CHOCHO) and methylglyoxal (MeCOCHO) concentrations were measured in over 250 snow samples collected during the Barrow 2009 campaign between late February and mid April 2009. Both continental and marine snowpacks were studied as well as frost flowers on sea ice. We found that HCHO was the most abundant aldehyde (1 to 9 µg/L), but significant concentrations of dicarbonyls glyoxal and methylglyoxal were also measured for the first time in Arctic snow. Similar concentrations were measured for the continental and marine snowpacks but some frost flowers exhibited HCHO concentrations as high as 150 µg/L. Daily cycles in the surface snow were observed for HCHO and CH3CHO but also for the dicarbonyls and we concluded to a photochemical production of these species from organic precursors. Additional data such as gas phase concentrations for the measured aldehydes and snow physical properties (specific surface area, density …) will be used to discuss on the location of aldehydes in the snow. This is essential to identify and quantify the physical processes that occur during the exchange of trace gases between the snow and the atmosphere.

  15. The density of a homogeneous population of cells controls resetting of the program for swarmer formation in the unicellular marine microorganism Noctiluca scintillans.

    PubMed

    Sato, M S; Suzuki, M; Hayashi, H

    1998-12-15

    Noctiluca scintillans is a luminescent marine dinoflagellate. The life cycle of Noctiluca consists of a vegetative stage and a swarmer stage. The swarmer stage of Noctiluca is initiated by formation of a swarmer-mother cell instead of binary fission of vegetative cells. We studied the formation of swarmers under various conditions and became convinced that the cells have a strict program for the formation of swarmers which starts to operate in every cell after a defined number of cell cleavages. The probability that the program will be executed appeared to be affected by the presence of other cells. In other words, a high density of cells suppressed the expression of the program. Suppression was achieved by resetting the mechanism and was related to the number of cell divisions. Our findings provide one of the simplest examples of a mechanism by which a large population produces individuality in a group of genetically homogeneous organisms.

  16. Marine carbonate embayment system in an Eolian dune terrain, Permian Upper Minnelusa Formation, Rozet Area, Powder River Basin, Wyoming

    SciTech Connect

    Achauer, C.W.

    1987-05-01

    The eolian origin for Minnelusa sandstones has been stressed in numerous published articles. However, the dolomites that are interbedded with the eolian sandstones have received little attention. Isopach mapping of one of the dolomite units (Dolomite I) reflects a marine embayment system whose individual embayments range from 1/2 to 1 mi in width and trend primarily in a northwest direction. Consistently the embayment dolomites pinch out against the flanks of reworked, low relief, broad, eolian dune ridges. So far, 108 mi/sup 2/ of the Dolomite I marine embayment system have been mapped, but the overall extent of the system is undoubtedly much greater. Dolomite I is rarely cored, but cores from stratigraphically higher embayment dolomites in the upper Minnelusa show that these dolomites display the following, shoaling-upward sequence: (1) subtidal, sparingly fossiliferous dolomite; (2) intertidal, algal-laminated or brecciated or mud-cracked dolomite; and (3) very thin, supratidal, nodular anhydrite. The embayments, therefore, became the sites of marine sabkhas located between eolian dunes. Two main conclusions emerge from this study: (1) the juxtaposition of eolian sandstones and marine dolomites in a tectonically stable area suggests that eustatic sea level changes and a very arid climate were responsible for the marked environmental and lithologic changes observed in the upper Minnelusa, and (2) arid, coastal, evaporitic sabkhas bordered by eolian dunes are known from a number of modern and ancient cases, but marine carbonate embayments and associated evaporitic sabkhas that penetrate deeply into eolian sandstone terrains are rare.

  17. Shallow marine event sedimentation in a volcanic arc-related setting: The Ordovician Suri Formation, Famatina range, northwest Argentina

    USGS Publications Warehouse

    Mangano, M.G.; Buatois, L.A.

    1996-01-01

    level fall. Pyroclastic detritus, andesites, and a non-volcanic terrain were eroded and their detritus was transported basinward and redeposited by sediment gravity flows during the low stand. The local coexistence of juvenile pyroclastic detritus and fossils suggests reworking of rare ash-falls. The upper part of the Loma del Kilo??metre Member records a transgression with no evidence of contemporaneous volcanism. Biostratinomic, paleoecologic, and ichnologic analyses support this paleoenvironmental interpretations and provide independent evidence for the dominance of episodic sedimentation in an arc-related shallow marine setting. Fossil concentrations were mainly formed by event processes, such as storms and volcaniclastic mass flows. High depositional rates inhibited formation of sediment-starved biogenic concentrations. Collectively, trace fossils belong to the Cruziana ichnofacies. Low diversity, scarcity, and presence of relatively simple forms indicate benthic activity under stressful conditions, most probably linked to high sedimentation rates. Contrasting sedimentary dynamics between 'normal shelves' and their volcaniclastic counterparts produce distinct and particular signatures in the stratigraphic record. Arc-related shelves are typified by event deposition with significant participation of sediment gravity flows, relatively high sedimentation rates, textural and mineralogical immaturity of sediments, scarcity and low diversity of trace fossils, and dominance of transported and reworked faunal assemblages genetically related to episodic processes.

  18. SnopViz, an interactive snow profile visualization tool

    NASA Astrophysics Data System (ADS)

    Fierz, Charles; Egger, Thomas; gerber, Matthias; Bavay, Mathias; Techel, Frank

    2016-04-01

    SnopViz is a visualization tool for both simulation outputs of the snow-cover model SNOWPACK and observed snow profiles. It has been designed to fulfil the needs of operational services (Swiss Avalanche Warning Service, Avalanche Canada) as well as offer the flexibility required to satisfy the specific needs of researchers. This JavaScript application runs on any modern browser and does not require an active Internet connection. The open source code is available for download from models.slf.ch where examples can also be run. Both the SnopViz library and the SnopViz User Interface will become a full replacement of the current research visualization tool SN_GUI for SNOWPACK. The SnopViz library is a stand-alone application that parses the provided input files, for example, a single snow profile (CAAML file format) or multiple snow profiles as output by SNOWPACK (PRO file format). A plugin architecture allows for handling JSON objects (JavaScript Object Notation) as well and plugins for other file formats may be added easily. The outputs are provided either as vector graphics (SVG) or JSON objects. The SnopViz User Interface (UI) is a browser based stand-alone interface. It runs in every modern browser, including IE, and allows user interaction with the graphs. SVG, the XML based standard for vector graphics, was chosen because of its easy interaction with JS and a good software support (Adobe Illustrator, Inkscape) to manipulate graphs outside SnopViz for publication purposes. SnopViz provides new visualization for SNOWPACK timeline output as well as time series input and output. The actual output format for SNOWPACK timelines was retained while time series are read from SMET files, a file format used in conjunction with the open source data handling code MeteoIO. Finally, SnopViz is able to render single snow profiles, either observed or modelled, that are provided as CAAML-file. This file format (caaml.org/Schemas/V5.0/Profiles/SnowProfileIACS) is an international

  19. Black carbon aerosol size in snow.

    PubMed

    Schwarz, J P; Gao, R S; Perring, A E; Spackman, J R; Fahey, D W

    2013-01-01

    The effect of anthropogenic black carbon (BC) aerosol on snow is of enduring interest due to its consequences for climate forcing. Until now, too little attention has been focused on BC's size in snow, an important parameter affecting BC light absorption in snow. Here we present first observations of this parameter, revealing that BC can be shifted to larger sizes in snow than are typically seen in the atmosphere, in part due to the processes associated with BC removal from the atmosphere. Mie theory analysis indicates a corresponding reduction in BC absorption in snow of 40%, making BC size in snow the dominant source of uncertainty in BC's absorption properties for calculations of BC's snow albedo climate forcing. The shift reduces estimated BC global mean snow forcing by 30%, and has scientific implications for our understanding of snow albedo and the processing of atmospheric BC aerosol in snowfall.

  20. Snow Line Localization in Classical Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Blevins, S.

    2014-04-01

    Protoplanetary disks are volatile-rich environments capable of producing the essential conditions that make planet formation viable. Establishing a molecular inventory of dominant volatile species, such as water, in the planet-forming zones surrounding young, solar-type stars elevates our understanding of the chemistry involved with planet formation, composition and disk evolution. For this study we measure the water vapor content and determine the location of the condensation front, or snow line, for four classical disks selected for the strong water emission present in their mid-infrared spectra. To accomplish this we combine deep Herschel PACS observations with high resolution Spitzer IRS spectra to create molecular maps comprised of water lines with excitation temperatures that trace the disks' surfaces from 1-100 AU. We use two-dimensional, axisymmetric radiative transfer modeling to retrieve the disks' dust structures and the RADLite raytracer to render model spectra for each disk. A simple step function is used to define the abundance structure and the model spectra are fit to the observed water lines. Preliminary results will be discussed, including the inner disk chemical content, snow line radius and fractional water vapor abundances for the classical disk RNO 90.

  1. Wind tunnel observations of drifting snow

    NASA Astrophysics Data System (ADS)

    Paterna, Enrico; Crivelli, Philip; Lehning, Michael

    2016-04-01

    Drifting snow has a significant impact on snow redistribution in mountains, prairies as well as on glaciers, ice shelves, and sea ice. In all these environments, the local mass balance is highly influenced by drifting snow. Understanding the dynamic of snow saltation is crucial to the accurate description of the process. We applied digital shadowgraphy in a cold wind tunnel to measure drifting snow over natural snow covers. The acquisition and evaluation of time-resolved shadowgraphy images allowed us to resolve a large part of the saltation layer. The technique has been successfully compared to the measurements obtained from a Snow Particle Counter, considered the most robust technique for snow mass-flux measurements so far. The streamwise snow transport is dominated by large-scale events. The vertical snow transport has a more equal distribution of energy across the scales, similarly to what is observed for the flow turbulence velocities. It is hypothesized that the vertical snow transport is a quantity that reflects the local entrainment of the snow crystals into the saltation layer while the streamwise snow transport results from the streamwise development of the trajectories of the snow particles once entrained, and therefore is rather a non-local quantity.

  2. Sodankylä manual snow survey program

    NASA Astrophysics Data System (ADS)

    Leppänen, L.; Kontu, A.; Hannula, H.-R.; Sjöblom, H.; Pulliainen, J.

    2015-12-01

    The manual snow survey program of the Arctic Research Centre of Finnish Meteorological Institute (FMI-ARC) consists of numerous observations of natural seasonal taiga snowpack in Sodankylä, northern Finland. The easily accessible measurement areas represent the typical forest and soil types in the boreal forest zone. Systematic snow measurements began in 1909 with snow depth (SD) and snow water equivalent (SWE); however some older records of the snow and ice cover exists. In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from regular snow pits at several sites using both traditional and novel measurement techniques. Present-day measurements include observations of SD, SWE, temperature, density, horizontal layers of snow, grain size, specific surface area (SSA), and liquid water content (LWC). Regular snow pit measurements are performed weekly during the snow season. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack. This snow survey program is an excellent base for the future research of snow properties.

  3. BOREAS RSS-8 Snow Maps Derived from Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy; Chang, Alfred T. C.; Foster, James L.; Chien, Janeet Y. L.; Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-8 team utilized Landsat Thematic Mapper (TM) images to perform mapping of snow extent over the Southern Study Area (SSA). This data set consists of two Landsat TM images that were used to determine the snow-covered pixels over the BOREAS SSA on 18 Jan 1993 and on 06 Feb 1994. The data are stored in binary image format files. The RSS-08 snow map data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  4. New Insights into an Old Cycle: The Marine Phosphorus Cycle and the Formation of Critical Phosphate Rock Resources (Invited)

    NASA Astrophysics Data System (ADS)

    Filippelli, G. M.

    2010-12-01

    The cycling and geochemistry of phosphorus (P) in the marine environment is a critical component of biological productivity and of resource availability: P control the long-term carbon cycle via its role as a limiting nutrient, and the burial and concentration of P within marine sediments dictates the quality and availability of P as a fertilizer component from a resources standpoint. Given the projections of severe P fertilizer limitation over the next several centuries, understanding the controls on P geochemistry and concentration into a minable resource is critical in sustaining global populations. Several critical aspects of the marine P cycle have been uncovered over the past few decades which have clarified our understanding of P burial and concentration. First, the initial authigenic process of P mineralization within marine sediments, termed phosphogenesis, seems to occur regardless of marine setting. Phosphogenesis results from the release of P into sedimentary pore waters from organic and oxide-bound fractions, and the subsequent supersaturation with respect to carbonate fluorapatite. In sediment-starved basins with significant upwelling-driven productivity, the supply of P into sedimentary pore waters can be so high that visibly apparent layers of carbonate fluorapatite can be formed. Even in such environments, however, the mineral P content is too low to be of economic value unless it has undergone concentration via sediment reworking, a common occurrence in some dynamic continental margin environments. Thus, a combination of phosphogenesis in a high productivity setting plus sediment starvation plus condensation via reworking are necessary to produce phosphorites, sedimentary rocks with high P contents which are ideal as fertilizer-grade P resources. Given these special marine conditions, phosphorites are largely distributed along ancient marine environments (with the exception of the nearly-depleted atoll guano reserves). The largest currently

  5. Detecting Falling Snow from Space

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Johnson, Ben; Munchak, Joe

    2012-01-01

    There is an increased interest in detecting and estimating the amount of falling snow reaching the Earth's surface in order to fully capture the atmospheric water cycle. An initial step toward global spaceborne falling snow algorithms includes determining the thresholds of detection for various active and passive sensor channel configurations, snow event cloud structures and microphysics, snowflake particle electromagnetic properties, and surface types. In this work, cloud resolving model simulations of a lake effect and synoptic snow event were used to determine the minimum amount of snow (threshold) that could be detected by the following instruments: the W -band radar of CloudSat, Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR) Ku and Ka band, and the GPM Microwave Imager (GMI) channels from 10 to 183 plus or minus 7 GHz. Eleven different snowflake shapes were used to compute radar reflectivities and passive brightness temperatures. Notable results include: (1) the W-Band radar has detection thresholds more than an order of magnitude lower than the future GPM sensors, (2) the cloud structure macrophysics influences the thresholds of detection for passive channels, (3) the snowflake microphysics plays a large role in the detection threshold for active and passive instruments, (4) with reasonable assumptions, "the passive 166 GHz channel has detection threshold values comparable to the GPM DPR Ku and Ka band radars with approximately 0.05 g per cubic meter detected at the surface, or an approximately 0.5-1 millimeter per hr. melted snow rate (equivalent to 0.5-2 centimeters per hr. solid fluffy snowflake rate). With detection levels of falling snow known, we can focus current and future retrieval efforts on detectable storms and concentrate advances on achievable results. We will also have an understanding of the light snowfall events missed by the sensors and not captured in the global estimates.

  6. Geochemistry of recent aragonite-rich sediments in Mediterranean karstic marine lakes: Trace elements as pollution and palaeoredox proxies and indicators of authigenic mineral formation.

    PubMed

    Sondi, Ivan; Mikac, Nevenka; Vdović, Neda; Ivanić, Maja; Furdek, Martina; Škapin, Srečo D

    2017-02-01

    This study investigates the geochemical characteristics of recent shallow-water aragonite-rich sediments from the karstic marine lakes located in the pristine environment on the island of Mljet (Adriatic Sea). Different trace elements were used as authigenic mineral formation, palaeoredox and pollution indicators. The distribution and the historical record of trace elements deposition mostly depended on the sedimentological processes associated with the formation of aragonite, early diagenetic processes governed by the prevailing physico-chemical conditions and on the recent anthropogenic activity. This study demonstrated that Sr could be used as a proxy indicating authigenic formation of aragonite in a marine carbonate sedimentological environment. Distribution of the redox sensitive elements Mo, Tl, U and Cd was used to identify changes in redox conditions in the investigated lake system and to determine the geochemical cycle of these elements through environmental changes over the last 100 years. The significant enrichment of these elements and the presence of early formed nanostructured authigenic framboidal pyrite in laminated deeper parts of sediment in Malo Jezero, indicate sporadic events of oxygen-depleted euxinic conditions in the recent past. Concentrations of trace elements were in the range characteristic for non-contaminated marine carbonates. However, the increase in the concentrations of Zn, Cu, Pb, Sn, Bi in the upper-most sediment strata of Veliko Jezero indicates a low level of trace element pollution, resulting from anthropogenic inputs over the last 40 years. The presence of butyltin compounds (BuTs) in the surface sediment of Veliko Jezero additionally indicates the anthropogenic influence in the recent past.

  7. Politics of Snow

    NASA Astrophysics Data System (ADS)

    Burko, D.

    2012-12-01

    In a 2010 catalog introduction for my exhibition titled: POLITICS OF SNOW, Eileen Claussen, President of the Pew Center on Global Climate Change wrote the following: "Climate change has been taken over by politics…We are awash in talking points, briefing papers, scientific studies, and communiqués from national governments… Diane Burko's paintings remind us that all these words can often obscure or even obstruct our view of what is truly happening …..There is only so much you can do with words. People need to see that the world is changing before our eyes. When we look at Diane's images of the effects of climate change, we connect to something much deeper and more profound (and more moving) than the latest political pitch from one side or another in this debate…These paintings also connect us to something else. Even as Diane documents how things are changing, she also reminds us of the stunning beauty of nature - and, in turn, the urgency of doing everything in our power to protect it." The creation of this body of work was made possible because of the collaboration of many glacial geologists and scientists who continually share their visual data with me. Since 2006 I've been gathering repeats from people like Bruce Molnia (USGS) and Tad Pfeffer of Alaskan glaciers, from Daniel Fagre (USGS) of Glacier National Park and Lonnie Thompson and Jason Box (Ohio University's Byrd Polar Center) about Kilimanjaro, Qori Kalis and Petermann glaciers as well as from photographer David Breashears on the disappearing Himalayan glaciers. In my practice, I acknowledge the photographers, or archive agencies, such as USGS, NASA or Snow and Ice Center, in the title and all printed material. As a landscape painter and photographer my intent is to not reproduce those images but rather use them as inspiration. At first I used the documentary evidence in sets of diptychs or triptychs. Since 2010 I have incorporated geological charts of recessional lines, graphs, symbols and

  8. Measurements of snow grain hydroxyl radical at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Anastasio, C.; Galbavy, E.; Hutterli, M.; Friel, D.; Bales, R.

    2004-12-01

    Sunlit snowpacks release a number of volatile organic compounds (VOCs) such as formaldehyde and other carbonyls, carboxylic acids, alkenes, and alkyl halides. It has been hypothesized that this flux of VOCs to the overlying atmosphere is in part due to reactions of hydroxyl radical (OH) with snowgrain organic matter. Recent laboratory measurements by Grannas et al. support this idea by showing that the photolysis of polar snow releases formaldehyde, and that this release is enhanced by the addition of nitrate, a photochemical source of OH. In addition to its effects on organic chemistry, OH is probably also important in other snowpack reactions such as the oxidation of halides to form volatile, reactive gaseous halogens. However, the possible role of OH in these reactions has not been quantified. To begin to address the importance of OH in snowpack chemistry, we have measured the photochemical formation of hydroxyl radicals on snow grains at Summit, Greenland during the spring and summer. Measurements were made using a chemical probe technique where benzoate is added to the snow sample in order to scavenge OH and convert it into p-hydroxybenzoate, which is measured by HPLC. We found that OH is formed on snow grains during both seasons and that the rate of formation in the summer was more than an order of magnitude greater than the typical springtime value. Expressed on a bulk (melted) snow volume basis, the average summer value was approximately 200 nM/hr. Assuming that this reactivity occurs within a snowgrain "quasi-liquid layer" (QLL) that represents approximately 0.001% of the bulk liquid volume, rates of OH photoformation in the QLL are on the order of 10 mM/hr. The possible implications of this enormous rate of OH formation for snowpack chemistry (e.g., for VOC release) will be discussed. We have also examined the relative importance of nitrate and hydrogen peroxide as sources of photoformed OH on snow grains at Summit. Based on quantum yields determined in

  9. Snow and Ice Crust Changes over Northern Eurasia since 1966

    NASA Astrophysics Data System (ADS)

    Bulygina, O.; Groisman, P. Y.; Razuvaev, V.; Radionov, V.

    2009-12-01

    observations has substantially changed at that year. Therefore, this analysis includes only data of 585 Russian stations from 1966 to 2008 that have all years of data with a minimal number of missing observations. Surveys run separately along all types of environment typical for the site for 1 to 2 km, describing the current snow cover properties including characteristics of snow and ice crust. Joint analysis of these characteristics of crust together with a suite of synoptic information at the stations allows us to empirically assess the process of snow and ice crust formation and development throughout the cold season and outline major factors responsible for their dynamics. Finally, regional averaging and time series analysis of both, these factors and the crust characteristics themselves, answer the question about the regional climatic changes of snow and ice crusts over Northern Eurasia, including those crust characteristics that are of practical importance for reindeer husbandry. These results for the Russian Federation will be presented at the Meeting.

  10. Highway Snow Control Research in Japan

    DTIC Science & Technology

    1990-09-01

    to 0.50 g/ ci11" . Packed snow-A network texture of crains 0.05 to0.3 mll in diameter: p = 0.45 to 0.75 g/cm’. hardness H = 20 to 170 kg/cm-. Ice... textures . Base on the results, it was proposed that snow and ice on roads should be divided into seven types: new snow, powdery snow, grainy snow, packed...compression due to the natural weight of the snow cover. The main features of these results, such as the appearance of the saw-toothed curve of resistance

  11. Late Paleocene to Early Eocene marine vertebrates from the Uppermost Aruma Formation (northern Saudi Arabia): implications for the K-T transition

    NASA Astrophysics Data System (ADS)

    Thomas, Herbert; Roger, Jack; Halawani, Mohammed; Memesh, Abdallah; Lebret, Patrick; Bourdillon, Chantal; Buffetaut, Eric; Cappetta, Henri; Cavelier, Claude; Dutheil, Didier; Tonge, Haiyan; Vaslet, Denis

    1999-12-01

    A new assemblage of marine vertebrates from northern Saudi Arabia, east of the Nafud, leads us to reconsider the age of the top unit of the Aruma Formation, the Lina Member, hitherto referred to the Maastrichtian. This assemblage contains the remains of a dozen selachian and actinopterygian fishes, as well as those of a giant sea turtle representing a new dermochelyid taxon. It suggests a Late Paleocene to Early Eocene age for this unit. This new dating and a revision of the stratigraphic position of the Lina Member demonstrate the existence, on a regional scale, of an important hiatus at the K-T boundary.

  12. Source attribution of black carbon in Arctic snow.

    PubMed

    Hegg, Dean A; Warren, Stephen G; Grenfell, Thomas C; Doherty, Sarah J; Larson, Timothy V; Clarke, Antony D

    2009-06-01

    Snow samples obtained at 36 sites in Alaska, Canada, Greenland, Russia, and the Arctic Ocean in early 2007 were analyzed for light-absorbing aerosol concentration together with a suite of associated chemical species. The light absorption data, interpreted as black carbon concentrations, and other chemical data were input into the EPA PMF 1.1 receptor model to explore the sources for black carbon in the snow. The analysis found four factors or sources: two distinct biomass burning sources, a pollution source, and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources (encompassing both open and closed combustion) together accounting for >90% of the black carbon.

  13. Snow Micro-Structure Model

    SciTech Connect

    Micah Johnson, Andrew Slaughter

    2014-06-25

    PIKA is a MOOSE-based application for modeling micro-structure evolution of seasonal snow. The model will be useful for environmental, atmospheric, and climate scientists. Possible applications include application to energy balance models, ice sheet modeling, and avalanche forecasting. The model implements physics from published, peer-reviewed articles. The main purpose is to foster university and laboratory collaboration to build a larger multi-scale snow model using MOOSE. The main feature of the code is that it is implemented using the MOOSE framework, thus making features such as multiphysics coupling, adaptive mesh refinement, and parallel scalability native to the application. PIKA implements three equations: the phase-field equation for tracking the evolution of the ice-air interface within seasonal snow at the grain-scale; the heat equation for computing the temperature of both the ice and air within the snow; and the mass transport equation for monitoring the diffusion of water vapor in the pore space of the snow.

  14. Sodankylä manual snow survey program

    NASA Astrophysics Data System (ADS)

    Leppänen, Leena; Kontu, Anna; Hannula, Henna-Reetta; Sjöblom, Heidi; Pulliainen, Jouni

    2016-05-01

    The manual snow survey program of the Arctic Research Centre of the Finnish Meteorological Institute (FMI-ARC) consists of numerous observations of natural seasonal taiga snowpack in Sodankylä, northern Finland. The easily accessible measurement areas represent the typical forest and soil types in the boreal forest zone. Systematic snow measurements began in 1909 with snow depth (HS) and snow water equivalent (SWE). In 2006 the manual snow survey program expanded to cover snow macro- and microstructure from regular snow pits at several sites using both traditional and novel measurement techniques. Present-day snow pit measurements include observations of HS, SWE, temperature, density, stratigraphy, grain size, specific surface area (SSA) and liquid water content (LWC). Regular snow pit measurements are performed weekly during the snow season. Extensive time series of manual snow measurements are important for the monitoring of temporal and spatial changes in seasonal snowpack. This snow survey program is an excellent base for the future research of snow properties.

  15. Lake Effect Snow Covers Buffalo

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An average of one foot of snow per day has fallen on Buffalo, New York, since Christmas Eve, resulting in a total of up to 5 feet from December 24-28. The snow fell very heavily, with accumulations of up to 3 inches per hour. Cold winds blowing along the surface of Lake Erie pick up warmth and moisture, which falls as snow as the warm air rises. This image was acquired by the Geostationary Operational Environmental Satellite (GOES), operated by NOAA, on December 27, 2001, at 12:32 p.m. EST. The scene shows thick bands of clouds extending from the eastern tip of Lake Erie and over Buffalo. The arrows show the wind direction, which is blowing down the length of the lake. Image and animation by Robert Simmon, based on data from the NASA GOES Project Science Office.

  16. Radar spectral observations of snow

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.; Fung, A. K.; Aslam, A.

    1981-01-01

    Radar remote sensing experiments have been conducted at test sites in Kansas, Colorado, and South Dakota over the last six years to examine backscatter coefficient response to snowcovered terrain. Truck-mounted 1-35 GHz scatterometers were employed in conjunction with detailed ground-truth measurements. From these experiments and associated modeling efforts, most of the fundamental questions concerning backscatter behavior in response to important snow parameters have been, at least qualitatively, answered. The optimum angular range seems to be between 20 and 50 deg and, for these angles, the results indicate that the radar backscatter generally: (1) increases with increasing water equivalent, (2) decreases with increasing liquid water, (3) increases with increasing crystal size, (4) is insensitive to surface roughness for dry snow conditions, and (5) can be sensitive to soil state if the snowcover is dry. This paper gives a summary of these results, along with empirical and theoretical models for describing the backscatter from snow.

  17. Evolution of the Specific Surface Area of Snow in a High Temperature Gradient Metamorphism

    NASA Astrophysics Data System (ADS)

    Wang, X.; Baker, I.

    2014-12-01

    The structural evolution of low-density snow under a high temperature gradient over a short period usually takes place in the surface layers during diurnal recrystallization or on a clear, cold night. To relate snow microstructures with their thermal properties, we combined X-ray computed microtomography (micro-CT) observations with numerical simulations. Different types of snow were tested over a large range of TGs (100 K m-1- 500 K m-1). The Specific Surface Area (SSA) was used to characterize the temperature gradient metamorphism (TGM). The magnitude of the temperature gradient and the initial snow type both influence the evolution of SSA. The SSA evolution under TGM was dominated by grain growth and the formation of complex surfaces. Fresh snow experienced a logarithmic decrease of SSA with time, a feature been observed previously by others [Calonne et al., 2014; Schneebeli and Sokratov, 2004; Taillandier et al., 2007]. However, for initial rounded and connected snow structures, the SSA will increase during TGM. Understanding the SSA increase is important in order to predict the enhanced uptake of chemical species by snow or increase in snow albedo. Calonne, N., F. Flin, C. Geindreau, B. Lesaffre, and S. Rolland du Roscoat (2014), Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere Discussions, 8, 1407-1451, doi:10.5194/tcd-8-1407-2014. Schneebeli, M., and S. A. Sokratov (2004), Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity, Hydrological Processes, 18(18), 3655-3665, doi:10.1002/hyp.5800. Taillandier, A. S., F. Domine, W. R. Simpson, M. Sturm, and T. A. Douglas (2007), Rate of decrease of the specific surface area of dry snow: Isothermal and temperature gradient conditions, Journal of Geophysical Research: Earth Surface (2003-2012), 112(F3), doi: 10.1029/2006JF000514.

  18. Snow wetness measurements for melt forecasting

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.; Clapp, F. D.; Meier, M. F.; Smith, J. L.

    1975-01-01

    A microwave technique for directly measuring snow pack wetness in remote installations is described. The technique, which uses satellite telemetry for data gathering, is based on the attenuation of a microwave beam in transmission through snow.

  19. Periodontal status in snow leopards.

    PubMed

    Cook, R A; Stoller, N H

    1986-11-01

    Periodontal examinations were performed on ten 1- to 22-year-old snow leopards (6 males and 4 females), using dentistry methods for determining the plaque and gingival indices. All tooth surfaces were probed, and alveolar bone attachment loss was determined. After subgingival plaque removal, plaque specimens were examined for differential bacterial morphotypes. The small number of leopards evaluated precluded definitive statistical analysis. However, the progression from gingival health to gingivitis to periodontitis was similar to that seen in man. Therefore, the use of plaque index, gingival index, alveolar bone attachment loss, and differential bacterial morphotypes can be used to determine the dental health of snow leopards.

  20. The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles.

    PubMed

    Mounier, Julie; Camus, Arantxa; Mitteau, Isabelle; Vaysse, Pierre-Joseph; Goulas, Philippe; Grimaud, Régis; Sivadon, Pierre

    2014-12-01

    Hydrophobic organic compounds (mainly lipids and hydrocarbons) represent a significant part of the organic matter in marine waters, and their degradation has an important impact in the carbon fluxes within oceans. However, because they are nearly insoluble in the water phase, their degradation by microorganisms occurs at the interface with water and thus requires specific adaptations such as biofilm formation. We show that Marinobacter hydrocarbonoclasticus SP17 develops biofilms, referred to as oleolytic biofilms, on a large variety of hydrophobic substrates, including hydrocarbons, fatty alcohols, fatty acids, triglycerides, and wax esters. Microarray analysis revealed that biofilm growth on n-hexadecane or triolein involved distinct genetic responses, together with a core of common genes that might concern general mechanisms of biofilm formation. Biofilm growth on triolein modulated the expression of hundreds of genes in comparison with n-hexadecane. The processes related to primary metabolism and genetic information processing were downregulated. Most of the genes that were overexpressed on triolein had unknown functions. Surprisingly, their genome localization was restricted to a few regions identified as putative genomic islands or mobile elements. These results are discussed with regard to the adaptive responses triggered by M. hydrocarbonoclasticus SP17 to occupy a specific niche in marine ecosystems.

  1. [Snow cover pollution monitoring in Ufa].

    PubMed

    Daukaev, R A; Suleĭmanov, R A

    2008-01-01

    The paper presents the results of examining the snow cover polluted with heavy metals in the large industrial town of Ufa. The level of man-caused burden on the snow cover of the conventional parts of the town was estimated and compared upon exposure to a wide range of snow cover pollutants. The priority snow cover pollutants were identified among the test heavy metals.

  2. Observations of Precipitation Size and Fall Speed Characteristics within Coexisting Rain and Wet Snow

    NASA Technical Reports Server (NTRS)

    Yuter, Sandra E.; Kingsmill, David E.; Nance, Louisa B.; Loeffler-Mang, Martin

    2006-01-01

    Ground-based measurements of particle size and fall speed distributions using a Particle Size and Velocity (PARSIVEL) disdrometer are compa red among samples obtained in mixed precipitation (rain and wet snow) and rain in the Oregon Cascade Mountains and in dry snow in the Rock y Mountains of Colorado. Coexisting rain and snow particles are distinguished using a classification method based on their size and fall sp eed properties. The bimodal distribution of the particles' joint fall speed-size characteristics at air temperatures from 0.5 to 0 C suggests that wet-snow particles quickly make a transition to rain once mel ting has progressed sufficiently. As air temperatures increase to 1.5 C, the reduction in the number of very large aggregates with a diame ter > 10 mm coincides with the appearance of rain particles larger than 6 mm. In this setting. very large raindrops appear to be the result of aggregates melting with minimal breakup rather than formation by c oalescence. In contrast to dry snow and rain, the fall speed for wet snow has a much weaker correlation between increasing size and increasing fall speed. Wet snow has a larger standard deviation of fall spee d (120%-230% relative to dry snow) for a given particle size. The ave rage fall speed for observed wet-snow particles with a diameter great er than or equal to 2.4 mm is 2 m/s with a standard deviation of 0.8 m/s. The large standard deviation is likely related to the coexistence of particles of similar physical size with different percentages of melting. These results suggest that different particle sizes are not required for aggregation since wet-snow particles of the same size can have different fall speeds. Given the large standard deviation of fa ll speeds in wet snow, the collision efficiency for wet snow is likely larger than that of dry snow. For particle sizes between 1 and 10 mm in diameter within mixed precipitation, rain constituted I % of the particles by volume within the isothermal layer

  3. Utilizing Multiple Datasets for Snow Cover Mapping

    NASA Technical Reports Server (NTRS)

    Tait, Andrew B.; Hall, Dorothy K.; Foster, James L.; Armstrong, Richard L.

    1999-01-01

    Snow-cover maps generated from surface data are based on direct measurements, however they are prone to interpolation errors where climate stations are sparsely distributed. Snow cover is clearly discernable using satellite-attained optical data because of the high albedo of snow, yet the surface is often obscured by cloud cover. Passive microwave (PM) data is unaffected by clouds, however, the snow-cover signature is significantly affected by melting snow and the microwaves may be transparent to thin snow (less than 3cm). Both optical and microwave sensors have problems discerning snow beneath forest canopies. This paper describes a method that combines ground and satellite data to produce a Multiple-Dataset Snow-Cover Product (MDSCP). Comparisons with current snow-cover products show that the MDSCP draws together the advantages of each of its component products while minimizing their potential errors. Improved estimates of the snow-covered area are derived through the addition of two snow-cover classes ("thin or patchy" and "high elevation" snow cover) and from the analysis of the climate station data within each class. The compatibility of this method for use with Moderate Resolution Imaging Spectroradiometer (MODIS) data, which will be available in 2000, is also discussed. With the assimilation of these data, the resolution of the MDSCP would be improved both spatially and temporally and the analysis would become completely automated.

  4. Shallow Snow Model for Predicting Vehicle Performance

    DTIC Science & Technology

    1981-10-01

    promotional purposes. Cita - tion of brand names does not constitute an official endorsement or approval of the use of such commercial products. Ac eeson...vehicles. 18 ’A I I Table 7. Mechanical properties of shallow snow. Snow A ir p Snow temp temp p ca c W co (critical) type (SC) ( 0C) (g/cm 3) ( APa

  5. 44 CFR 206.227 - Snow assistance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Snow assistance. 206.227 Section 206.227 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF... Snow assistance. Emergency or major disaster declarations based on snow or blizzard conditions will...

  6. 44 CFR 206.227 - Snow assistance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Snow assistance. 206.227 Section 206.227 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF... Snow assistance. Emergency or major disaster declarations based on snow or blizzard conditions will...

  7. 44 CFR 206.227 - Snow assistance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Snow assistance. 206.227 Section 206.227 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF... Snow assistance. Emergency or major disaster declarations based on snow or blizzard conditions will...

  8. 44 CFR 206.227 - Snow assistance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Snow assistance. 206.227 Section 206.227 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF... Snow assistance. Emergency or major disaster declarations based on snow or blizzard conditions will...

  9. Snow cover and snow goose Anser caerulescens caerulescens distribution during spring migration

    USGS Publications Warehouse

    Hupp, Jerry W.; Zacheis, Amy B.; Anthony, R. Michael; Robertson, Donna G.; Erickson, Wallace P.; Palacios, Kelly C.

    2001-01-01

    Arctic geese often use spring migration stopover areas when feeding habitats are partially snow covered. Melting of snow during the stopover period causes spatial and temporal variability in distribution and abundance of feeding habitat. We recorded changes in snow cover and lesser snow goose Anser caerulescens caerulescens distribution on a spring migration stopover area in south-central Alaska during aerial surveys in 1993-1994. Our objectives were to determine whether geese selected among areas with different amounts of snow cover and to assess how temporal changes in snow cover affected goose distribution. We also measured temporal changes in chemical composition of forage species after snow melt. We divided an Arc/Info coverage of the approximately 210 km2 coastal stopover area into 2-km2 cells, and measured snow cover and snow goose use of cells. Cells that had 10-49.9% snow cover were selected by snow geese, whereas cells that lacked snow cover were avoided. In both years, snow cover diminished along the coast between mid-April and early May. Flock distribution changed as snow geese abandoned snow-free areas in favour of cells where snow patches were interspersed with bare ground. Snow-free areas may have been less attractive to geese because available forage had been quickly exploited as bare ground was exposed, and because soils became drier making extraction of underground forage more difficult. Fiber content of two forage species increased whereas non-structural carbohydrate concentrations of forage plants appeared to diminish after snow melt, but changes in nutrient concentrations likely occurred too slowly to account for abandonment of snow-free areas by snow geese.

  10. Photopolarimetric Retrievals of Snow Properties

    NASA Technical Reports Server (NTRS)

    Ottaviani, M.; van Diedenhoven, B.; Cairns, B.

    2015-01-01

    Polarimetric observations of snow surfaces, obtained in the 410-2264 nm range with the Research Scanning Polarimeter onboard the NASA ER-2 high-altitude aircraft, are analyzed and presented. These novel measurements are of interest to the remote sensing community because the overwhelming brightness of snow plagues aerosol and cloud retrievals based on airborne and spaceborne total reflection measurements. The spectral signatures of the polarized reflectance of snow are therefore worthwhile investigating in order to provide guidance for the adaptation of algorithms currently employed for the retrieval of aerosol properties over soil and vegetated surfaces. At the same time, the increased information content of polarimetric measurements allows for a meaningful characterization of the snow medium. In our case, the grains are modeled as hexagonal prisms of variable aspect ratios and microscale roughness, yielding retrievals of the grains' scattering asymmetry parameter, shape and size. The results agree with our previous findings based on a more limited data set, with the majority of retrievals leading to moderately rough crystals of extreme aspect ratios, for each scene corresponding to a single value of the asymmetry parameter.

  11. Snow hydrology in a general circulation model

    NASA Technical Reports Server (NTRS)

    Marshall, Susan; Roads, John O.; Glatzmaier, Gary

    1994-01-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.

  12. Snow complexity representation and GCM climate

    NASA Astrophysics Data System (ADS)

    Dutra, Emanuel; Viterbo, Pedro; Miranda, Pedro M. A.; Balsamo, Gianpaolo

    2010-05-01

    Accurate simulations of the snow cover strongly impact on the quality of weather and climate predictions as the solar radiation absorption at land-atmosphere interface is modified by a factor up to 4 in response to snow presence (albedo effect). In Northern latitudes and Mountainous regions snow acts also as an important energy and water reservoir and a correct representation of snow mass and snow density is crucial for temperature predictions at all time-scales, with direct consequences for soil hydrology (thermal insulation effect). Three different complexity snow schemes implemented in the ECMWF land surface scheme HTESSEL are tested within the EC-EARTH framework. The snow schemes are: 1) OLD, the original HTESSEL single bulk layer snow scheme (same as in the ERA-40 and ERA-Interim reanalysis); 2) OPER, a new snow scheme in operations since September 2009, with a liquid water reservoir and revised formulations of snow density, fractional cover and snow albedo; and 3) ML3, a multi-layer version of OPER. All three snow schemes in HTESSEL are energy- and mass- balance models. The multi-layer snow scheme, ML3, was validated in offline mode covering several spatial and temporal scales: (i) site simulations for several observation locations from the Snow Models intercomparison project-2 (SnowMip2) and (ii) global simulations driven by the meteorological forcing from the Global Soil Wetness Project-2 (GSWP2) and the ECMWF ERA-Interim re-analysis. On point locations ML3 improve snow mass simulations, while on a global scale the impacts are residual pointing to the need of coupled atmosphere simulations. The 3 schemes are compared in the framework of the atmospheric model of EC-EARTH, based on the current seasonal forecast system of ECMWF. The standard configuration runs at T159 horizontal spectral resolution with 62 vertical levels. Three member ensembles of 30 years (1979-2008) simulations, with prescribed SSTs and sea ice, were performed for each of the snow schemes

  13. Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment

    NASA Astrophysics Data System (ADS)

    Winstral, Adam; Marks, Danny

    2002-12-01

    In mountainous regions, wind plays a prominent role in determining snow accumulation patterns and turbulent heat exchanges, strongly affecting the timing and magnitude of snowmelt runoff. In this study, digital terrain analysis was employed to quantify aspects of the upwind topography related to wind shelter and exposure, to efficiently develop a distributed time-series of snow accumulation rates and wind speeds to force a distributed snow model. Parameters are presented that determined each grid cell's topographic exposure and potential for drift development relative to observed winds. Using meteorological data taken from both an exposed and a sheltered site in the Reynolds Mountain East watershed (0·38 km2) in southwestern Idaho, the terrain parameters were used to distribute rates of snow accumulation and wind speeds at an hourly time step for input to ISNOBAL, an energy and mass balance snow model. Model runs were initiated prior to the development of the seasonal snow cover and continued through complete meltout for the 1986 (precipitation 128% of average), 1987 (66%), and 1989 (108%) water years. A comprehensive dataset consisting of a time series of aerial photographs taken during meltout, measured runoff, and snow data from the sheltered meteorological site were used to validate the simulations. ISNOBAL forced with accumulation rates and wind fields generated from the applied terrain parameterizations accurately modelled the observed snow distribution (including the formation of drifts and scoured wind-exposed ridges) and snowmelt runoff for all three years of study. By contrast, ISNOBAL forced with spatially constant accumulation rates and wind speeds taken from the sheltered meteorological site, a typical snow-monitoring site, overestimated peak snowmelt inputs and tended to underestimate snowmelt inputs prior to the runoff peak. Published in 2002 by John Wiley & Sons, Ltd.

  14. Comparison of the Snow Simulations in Community Land Model Using Two Snow Cover Fraction Parameterizations

    NASA Astrophysics Data System (ADS)

    Xie, Zhipeng; Hu, Zeyong

    2016-04-01

    Snow cover is an important component of local- and regional-scale energy and water budgets, especially in mountainous areas. This paper evaluates the snow simulations by using two snow cover fraction schemes in CLM4.5 (NY07 is the original snow-covered area parameterization used in CLM4, and SL12 is the default scheme in CLM4.5). Off-line simulations are carried out forced by the China Meteorological forcing dataset from January 1, 2001 to December 31, 2010 over the Tibetan Plateau. Simulated snow cover fraction (SCF), snow depth, and snow water equivalent (SWE) were compared against a set of observations including the Interactive Multisensor Snow and Ice Mapping System (IMS) snow cover product, the daily snow depth dataset of China, and China Meteorological Administration (CMA) in-situ snow depth and SWE observations. The comparison results indicate significant differences existing between those two SCF parameterizations simulations. Overall, the SL12 formulation shows a certain improvement compared to the NY07 scheme used in CLM4, with the percentage of correctly modeled snow/no snow being 75.8% and 81.8% when compared with the IMS snow product, respectively. Yet, this improvement varies both temporally and spatially. Both these two snow cover schemes overestimated the snow depth, in comparison with the daily snow depth dataset of China, the average biases of simulated snow depth are 7.38cm (8.77cm), 6.97cm (8.2cm) and 5.49cm (5.76cm) NY07 (and SL12) in the snow accumulation period (September through next February), snowmelt period (March through May) and snow-free period (June through August), respectively. When compared with the CMA in-situ snow depth observations, averaged biases are 3.18cm (4.38cm), 2.85cm (4.34cm) and 0.34cm (0.34cm) for NY07 (SL12), respectively. Though SL12 does worse snow depth simulation than NY07, the simulated SWE by SL12 is better than that by NY07, with average biases being 2.64mm, 6.22mm, 1.33mm for NY07, and 1.47mm, 2.63mm, 0.31mm

  15. Imaging of the CO snow line in a solar nebula analog.

    PubMed

    Qi, Chunhua; Öberg, Karin I; Wilner, David J; D'Alessio, Paola; Bergin, Edwin; Andrews, Sean M; Blake, Geoffrey A; Hogerheijde, Michiel R; van Dishoeck, Ewine F

    2013-08-09

    Planets form in the disks around young stars. Their formation efficiency and composition are intimately linked to the protoplanetary disk locations of "snow lines" of abundant volatiles. We present chemical imaging of the carbon monoxide (CO) snow line in the disk around TW Hya, an analog of the solar nebula, using high spatial and spectral resolution Atacama Large Millimeter/Submillimeter Array observations of diazenylium (N2H(+)), a reactive ion present in large abundance only where CO is frozen out. The N2H(+) emission is distributed in a large ring, with an inner radius that matches CO snow line model predictions. The extracted CO snow line radius of ~30 astronomical units helps to assess models of the formation dynamics of the solar system, when combined with measurements of the bulk composition of planets and comets.

  16. Snow-ice-tephra-lava interactions during the 2010 Fimmvorduhals eruption

    NASA Astrophysics Data System (ADS)

    Haklar, J.; Edwards, B. R.; Gudmundsson, M. T.

    2010-12-01

    On March 20th a small basaltic fissure opened at the northern edge of Fimmvorduhals, a popular hiking pass between Eyjafjallajökull, to the west, and Myrdalsjökull, to the east. Immediately prior to the eruption, the vent area was covered with typically 1-3 meters of snow and locally snow-covered, isolated remnants of glacial ice. Fieldwork conducted during June and July documented evidence for a variety of different types of interactions between volcanism (tephra and lava) and snow/ice, including direct contact (e.g. ash-covered snow, lava blocks on snow/ice, lava flows on ash-covered snow), indirect melting (e.g. arcuate snow/ice melting patterns at lava flow fronts, partly collapsed sheet lava flows), and the formation of small bomb-cored mounds via post-depositional snow melting. Many of these features are likely ephemeral, and may leave no trace in the geological record; however under certain circumstances they may leave subtle clues that could aide in identifying the presence of snow during eruptions. The field relationships documented are consistent with varied mechanisms of heat transfer during the eruption to the surrounding environment. The arcuate-shaped snow and ice-banks at the edges of flows appear to closely mimic the shape of the adjacent lava lobes. The geometric relationships are consistent with snow/ice melting several meters in front of the advancing flows by radiant heat from the front of the lava lobes. Also, in at least two areas we observed features that are consistent with snow melting beneath lava, possibly by slower heat conduction. One example is a small cave beneath the lava at the lava-snow contact. The other is a ~1 m thick sheet flow that has partly collapsed, forming a fracture that appears to have been controlled by incipient polygonal jointing; melting of underlying snow may have undermined part of the sheet flow based and facilitated its collapse. However, under at least two separate types of conditions lava seems to have

  17. A stable snow-atmosphere coupled mode

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Zhu, Yuxiang; Liu, Haiwen; Liu, Zhongfang; Liu, Yanju; Li, Xiuping; Chen, Zhou

    2016-10-01

    Snow is both an important lower boundary forcing of the atmosphere and a response to atmospheric forcing in the extratropics. It is still unclear whether a stable snow-atmosphere coupled mode exists in the extratropics, like the ENSO in the tropics. Using Sliding Correlation analysis over Any Window, the present study quantitatively evaluates the stability of coupling relationships between the major modes of winter snow over the Northern Hemisphere and the winter atmospheric Arctic Oscillation (AO), the Antarctic Oscillation (AAO) and the Siberian High over the period 1872-2010, and discusses their possible relationships for different seasons. Results show that the first mode of the winter snow cover fraction and the winter AO together constitute a stable snow-atmosphere coupled mode, the SNAO. The coupled mode is stronger during recent decades than before. The snow anomaly over Europe is one key factor of the SNAO mode due to the high stability there, and the polar vortex anomaly in the atmosphere is its other key factor. The continuity of signals in the SNAO between autumn and winter is weaker than that between winter and spring. The second winter snow mode is generally stably correlated with the winter AAO and was more stable before the 1970s. The AAO signal with boreal snow has a strong continuity in seasonal transition. Generally, through these coupled modes, snow and atmosphere can interact in the same season or between different seasons: autumn snow can influence the winter atmosphere; the winter atmosphere can influence spring snow.

  18. MODIS Snow and Sea Ice Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.; Salomonson, Vincent V.

    2004-01-01

    In this chapter, we describe the suite of Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua snow and sea ice products. Global, daily products, developed at Goddard Space Flight Center, are archived and distributed through the National Snow and Ice Data Center at various resolutions and on different grids useful for different communities Snow products include binary snow cover, snow albedo, and in the near future, fraction of snow in a 5OO-m pixel. Sea ice products include ice extent determined with two different algorithms, and sea ice surface temperature. The algorithms used to develop these products are described. Both the snow and sea ice products, available since February 24,2000, are useful for modelers. Validation of the products is also discussed.

  19. Rabi, Snow, and "The Two Cultures"

    NASA Astrophysics Data System (ADS)

    Day, Michael A.

    2003-04-01

    John Rigden in his biography of I. I. Rabi, "Rabi: Scientist and Citizen" (1987, 2000 with a new preface) includes an intriguing footnote concerning Rabi's influence on C. P. Snow. According to the footnote, when Snow and his son were visiting the Rabis in New York City, Rabi's wife heard Snow tell his son that Rabi was "the man who gave me [Snow] the idea for the two cultures." In this talk, after a brief overview of Rabi's views on science and society, the mutual influence between Rabi and Snow is explored. On the basis of chronology and an interpretation of Rabi's works (published and unpublished) as well as letters between Rabi and Snow, a case is made that Rabi could very well have been the man who gave Snow the idea for "The Two Cultures."

  20. Microbes in High Arctic Snow and Implications for the Cold Biosphere ▿ †

    PubMed Central

    Harding, Tommy; Jungblut, Anne D.; Lovejoy, Connie; Vincent, Warwick F.

    2011-01-01

    We applied molecular, microscopic, and culture techniques to characterize the microbial communities in snow and air at remote sites in the Canadian High Arctic (Ward Hunt Island, Ellesmere Island, and Cornwallis Island, latitudes 74 to 83oN). Members of the Bacteria and Eukarya were prevalent in the snow, and their small subunit (SSU) rRNA gene signatures indicated strong local aerial transport within the region over the preceding 8 months of winter snowpack accumulation. Many of the operational taxonomic units (OTUs) were similar to previously reported SSU rRNA gene sequences from the Arctic Ocean, suggesting the importance of local aerial transport processes for marine microbiota. More than 47% of the cyanobacterial OTUs in the snow have been previously found in microbial mats in the region, indicating that this group was also substantially derived from local sources. Viable cyanobacteria isolated from the snow indicated free exchange between the snow and adjacent mat communities. Other sequences were most similar to those found outside the Canadian Arctic but were from snow, lake and sea ice, glaciers and permafrost, alpine regions, Antarctica, and other regions of the Arctic, supporting the concept of global distribution of microbial ecotypes throughout the cold biosphere. PMID:21460114

  1. Microbes in high arctic snow and implications for the cold biosphere.

    PubMed

    Harding, Tommy; Jungblut, Anne D; Lovejoy, Connie; Vincent, Warwick F

    2011-05-01

    We applied molecular, microscopic, and culture techniques to characterize the microbial communities in snow and air at remote sites in the Canadian High Arctic (Ward Hunt Island, Ellesmere Island, and Cornwallis Island, latitudes 74 to 83(o)N). Members of the Bacteria and Eukarya were prevalent in the snow, and their small subunit (SSU) rRNA gene signatures indicated strong local aerial transport within the region over the preceding 8 months of winter snowpack accumulation. Many of the operational taxonomic units (OTUs) were similar to previously reported SSU rRNA gene sequences from the Arctic Ocean, suggesting the importance of local aerial transport processes for marine microbiota. More than 47% of the cyanobacterial OTUs in the snow have been previously found in microbial mats in the region, indicating that this group was also substantially derived from local sources. Viable cyanobacteria isolated from the snow indicated free exchange between the snow and adjacent mat communities. Other sequences were most similar to those found outside the Canadian Arctic but were from snow, lake and sea ice, glaciers and permafrost, alpine regions, Antarctica, and other regions of the Arctic, supporting the concept of global distribution of microbial ecotypes throughout the cold biosphere.

  2. Volatile chlorinated hydrocarbons in Antarctic superficial snow sampled during Italian ITASE expeditions.

    PubMed

    Zoccolillo, Lelio; Amendola, Luca; Cafaro, Claudia; Insogna, Susanna

    2007-05-01

    In order to detect the presence of some volatile chlorinated hydrocarbons (VCHCs) and to understand their transport and deposition mechanism, superficial snow was sampled during two Italian ITASE (International Trans Antarctic Scientific Expedition) expeditions: the first traverse was carried out in 1998/1999 from Terra Nova Bay to Dome Concordia; the second traverse was carried out in 2001/2002 through Adélie, George V, Oates and Northern Victoria Lands. Some VCHCs (chloroform; 1,1,1-trichloroethane; tetrachloromethane; 1,1,2-trichloroethylene; tetrachloroethylene) were analysed using a highly sensitive and selective hyphenated technique composed of a purge-and-trap injector coupled to a gas chromatograph with a mass spectrometric detector (PTI-GC-MS) operating in SIM mode. Investigated VCHCs were present in all analysed snow samples with concentration levels of several units, tens, or sometimes hundreds of ng kg(-1). VCHC snow concentration levels remained approximately constant with changing distance from the coast and the comparison between fresh and aged snow did not show any substantial differences; on the basis of this evidence marine aerosol and dry deposition may be rejected as principal VCHC transport and deposition mechanism hypotheses. VCHC concentration levels in Antarctic snow samples were comparable to or greater than those found in snow from temperate zones.

  3. Modeling the chemistry of the marine boundary layer: Sulphate formation and the role of sea-salt aerosol particles

    NASA Astrophysics Data System (ADS)

    van den Berg, Ad; Dentener, Frank; Lelieveld, Jos

    2000-05-01

    A one-dimensional model is presented that interactively simulates the dynamics and the gas-aqueous phase chemistry of the cloud-topped marine boundary layer. The model is described and tested using observations from the Atlantic Stratocumulus Transition Experiment/Marine Aerosol and Gas Exchange (ASTEX/MAGE) measurement campaign. The comparison generally indicates satisfactory agreement for dynamical properties and chemical species, except for SO2. We present several explanations for this discrepancy. However, a conclusive account is dependent on quantitative information about free tropospheric SO2 and H2O2 that is not available. Furthermore, a series of sensitivity runs is presented to explain the large quantities of non-sea-salt sulphate associated with sea-salt particles, as observed during ASTEX/MAGE. The main conclusions are that most sulphate associated with sea-salt particles is formed in cloud droplets that subsequently evaporate and that only a small amount is formed in deliquesced aerosol particles. The model results are sensitive to changes in the assumed sea-salt emission rate and the overall aerosol size distribution. The latter indicates that a shift in the sea-salt aerosol distribution toward the smaller particle sizes might explain the observed amount of sulphate associated with sea-salt particles.

  4. Formation of carbonatite-related giant rare-earth-element deposits by the recycling of marine sediments

    PubMed Central

    Hou, Zengqian; Liu, Yan; Tian, Shihong; Yang, Zhiming; Xie, Yuling

    2015-01-01

    Carbonatite-associated rare-earth-element (REE) deposits are the most significant source of the world’s REEs; however, their genesis remains unclear. Here, we present new Sr-Nd-Pb and C-O isotopic data for Cenozoic carbonatite-hosted giant REE deposits in southwest China. These REE deposits are located along the western margin of the Yangtze Craton that experienced Proterozoic lithospheric accretion, and controlled by Cenozoic strike-slip faults related to Indo-Asian continental collision. The Cenozoic carbonatites were emplaced as stocks or dykes with associated syenites, and tend to be extremely enriched in Ba, Sr, and REEs and have high 87Sr/86Sr ratios (>0.7055). These carbonatites were likely formed by melting of the sub-continental lithospheric mantle (SCLM), which had been previously metasomatized by high-flux REE- and CO2-rich fluids derived from subducted marine sediments. The fertility of these carbonatites depends on the release of REEs from recycled marine sediments and on the intensity of metasomatic REE refertilization of the SCLM. We suggest that cratonic edges, particularly along ancient convergent margins, possess the optimal configuration for generating giant REE deposits; therefore, areas of metamorphic basement bounded or cut by translithospheric faults along cratonic edges have a high potential for such deposits. PMID:26035414

  5. Analysis and improvement of estimated snow water equivalent (SWE) using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    E Azar, A.; Ghedira, H.; Khanbilvardi, R.

    2005-12-01

    The goal of this study is to improve the retrieval of SWE/Snow depth in Great lakes area, United States using passive microwave images along with Normalized Difference Vegetation Index NDVI and Artificial Neural Networks (ANNs). Passive microwave images have been successfully used to estimate snow characteristics such as Snow Water Equivalent (SWE) and snow depth. Despite considerable progress, challenges still exist with respect to accuracy and reliability. In this study, Special Sensor Microwave Imager (SSM/I) channels which are available in Equal-Area Scalable Earth Grid (EASE-GRID) format are used. The study area is covered by a 28 by 35 grid of EASE-Grid pixels, 25km by 25km each. To have a comprehensive data set of brightness temperatures (Tb) of SSM/I channels, an assortment of pixels were selected based on latitude and land cover. A time series analysis was conducted for three winter seasons to assess the SSM/I capability to estimates snow depth and SWE for various land covers. Ground truth data' were obtained from the National Climate Data Center (NCDC) and the National Operational Hydrological Remote Sensing Center (NOHRSC). The NCDC provided daily snow depth measurements reported from various stations located in the study area. Measurements were recorded and projected to match EASE-GRID formatting. The NOHRSC produces SNODAS dataset using airborne Gamma radiation and gauge measurements combined with a physical model. The data set consisted of different snow characteristics such as SWE and snow depth. Landcover characteristics are introduced by using Normalized Difference Vegetation Index (NDVI). An Artificial Neural Network (ANN) algorithm has been employed to evaluate the effect of landcover in estimating snow depth and Snow Water Equivalent (SWE). The model is trained using SSM/I channels (19v, 19h, 37v, 37h, 22v, 85v, 85h) and the mean and standard deviation of NDVI for the each pixel. The preliminary time series results showed various degrees of

  6. Snow hydrology in a general circulation model

    SciTech Connect

    Marshall, S. ); Roads, J.O. ); Glatzmaier, G. )

    1994-08-01

    A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included. A 3-year GCM simulation with this more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow, hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere. 52 refs., 13 figs., 5 tabs.

  7. Springtime peaks of trace metals in Antarctic snow.

    PubMed Central

    Ikegawa, M; Kimura, M; Honda, K; Makita, K; Fujii, Y; Itokawa, Y

    1997-01-01

    Drifting snow samples were collected at Asuka Station (71 degrees 32'S, 24 degrees 08'E, 930 m above sea level) over a period from July to December 1991; 36 elements (including Na, Mg, K, Ca, Fe, Al, Li, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Se, Rb, Sr, Cd, Pb, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Th) in snow were analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) by direct sample introduction. Concentrations of Cl-, NO3-, and SO(4)2- in the snow were also determined by ion chromatography. In late September to early October, there was a pronounced peak concentration of most of the elements together with non-sea salt sulfate. Enrichment factor analyses suggest that Na, Mg, Ca, K, and Sr are of marine origin and Al, Fe, Mn, Rb, Cr, Ni, Ga, V, and all the rare earth elements are of crustal origins. Volcanic eruption of Mt. Pinatubo (June 1991) and Mt. Hudson (August 1991) could be the reason for the precipitation of Pb, Cd, Cu, Zn, and Se together with non-sea salt sulfates in the austral spring at Asuka Station. Images Figure 1. Figure 2. Figure 3. PMID:9288501

  8. Photochemical Formation of Hydroxyl Radical in Red-Soil-Polluted Seawater in Okinawa, Japan -Potential Impacts on Marine Organisms

    NASA Astrophysics Data System (ADS)

    Arakaki, T.; Hamdun, A. M.; Okada, K.; Kuroki, Y.; Ikota, H.; Fujimura, H.; Oomori, T.

    2004-12-01

    Development of pineapple farmlands and construction of recreational facilities caused runoff of red soil into coastal ocean (locally termed as red-soil-pollution) in the north of Okinawa Island, Japan. In an attempt to understand the impacts of red soil on oxidizing power of the seawater, we studied formation of hydroxyl radical (OH radical), the most potent oxidant in the environment, in red-soil-polluted seawaters, using 313 nm monochromatic light. Photo-formation rates of OH radical showed a good correlation with dissolved iron concentrations (R = 0.98). The major source of OH radical was found to be the Fenton reaction (a reaction between Fe(II) and HOOH). The un-filtered red-soil-polluted seawater samples exhibited faster OH radical formation rates than the filtered samples, suggesting that iron-bearing red soil particles enhanced formation of OH radical.

  9. Erosional remnants and adjacent unconformities along an eolian-marine boundary of the Page Sandstone and Carmel Formation, Middle Jurassic, south-central Utah

    SciTech Connect

    Jones, L.S.; Blakey, R.C. . Dept. of Geology)

    1993-09-01

    Sandstone ridges along the marine-eolian boundary of the Middle Jurassic Page Sandstone (eolian) with the lower Carmel Formation (restricted marine) in south-central Utah have been identified as erosional remnants consisting of strata of siliciclastic sabkha and eolian origin. The ridges lie within two distinct units of the Thousand Pockets Tongue of the Page. Two equally plausible models explain the genesis of these ridges. One model involves (1) early cementation of eolian and sabkha strata, (2) wind erosion leading to development of yardangs and unconformities, (3) yardang tilting due to evaporite dissolution, and (4) renewed deposition and burial. The alternative model explains ridge development through (1) subsidence, with tilting, of eolian and sabkha strata into evaporites due to loading from linear dunes, (2) evaporite dissolution and unconformity development, and (3) renewed deposition and burial. These models provide important clues about the nature of a missing part of the rock record. Reconstruction of units that were deposited but later eroded improves paleogeographic interpretation and here indicates that the Carmel paleo-shoreline was considerably farther to the northwest than previously believed.

  10. A new species of Ischyodus (Chondrichthyes: Holocephali: Callorhynchidae) from Upper Maastrichtian Shallow marine facies of the Fox Hills and Hell Creek Formations, Williston basin, North Dakota, USA

    USGS Publications Warehouse

    Hoganson, J.W.; Erickson, J.M.

    2005-01-01

    A new species of chimaeroid, Ischyodus rayhaasi sp. nov., is described based primarily upon the number and configuration of tritors on palatine and mandibular tooth plates. This new species is named in honour of Mr Raymond Haas. Fossils of I. rayhaasi have been recovered from the Upper Maastrichtian Fox Hills Formation and the Breien Member and an unnamed member of the Hell Creek Formation at sites in south-central North Dakota and north-central South Dakota, USA. Ischyodus rayhaasi inhabited shallow marine waters in the central part of the Western Interior Seaway during the latest Cretaceous. Apparently it was also present in similar habitats at that time in the Volga region of Russia. Ischyodus rayhaasi is the youngest Cretaceous species Ischyodus known to exist before the Cretaceous/Tertiary extinction, and the species apparently did not survive that event. It was replaced by Ischyodus dolloi, which is found in the Paleocene Cannonball Formation of the Williston Basin region of North Dakota and is widely distributed elsewhere. ?? The Palaeontological Association.

  11. Non-marine carbonate facies, facies models and palaeogeographies of the Purbeck Formation (Late Jurassic to Early Cretaceous) of Dorset (Southern England).

    NASA Astrophysics Data System (ADS)

    Gallois, Arnaud; Bosence, Dan; Burgess, Peter

    2015-04-01

    Non-marine carbonates are relatively poorly understood compared with their more abundant marine counterparts. Sedimentary facies and basin architecture are controlled by a range of environmental parameters such as climate, hydrology and tectonic setting but facies models are few and limited in their predictive value. Following the discovery of extensive Early Cretaceous, non-marine carbonate hydrocarbon reservoirs in the South Atlantic, the interest of understanding such complex deposits has increased during recent years. This study is developing a new depositional model for non-marine carbonates in a semi-arid climate setting in an extensional basin; the Purbeck Formation (Upper Jurassic - Lower Cretaceous) in Dorset (Southern England). Outcrop study coupled with subsurface data analysis and petrographic study (sedimentology and early diagenesis) aims to constrain and improve published models of depositional settings. Facies models for brackish water and hypersaline water conditions of these lacustrine to palustrine carbonates deposited in the syn-rift phase of the Wessex Basin will be presented. Particular attention focusses on the factors that control the accumulation of in-situ microbialite mounds that occur within bedded inter-mound packstones-grainstones in the lower Purbeck. The microbialite mounds are located in three units (locally known as the Skull Cap, the Hard Cap and the Soft Cap) separated by three fossil soils (locally known as the Basal, the Lower and the Great Dirt Beds) respectively within three shallowing upward lacustrine sequences. These complex microbialite mounds (up to 4m high), are composed of tabular small-scale mounds (flat and long, up to 50cm high) divided into four subfacies. Many of these small-scale mounds developed around trees and branches which are preserved as moulds (or silicified wood) which are surrounded by a burrowed mudstone-wackestone collar. Subsequently a thrombolite framework developed on the upper part only within

  12. A new genus and species of marine catfishes (Siluriformes; Ariidae) from the upper Eocene Birket Qarun Formation, Wadi El-Hitan, Egypt

    PubMed Central

    2017-01-01

    Wadi El-Hitan, the UNESCO World Heritage Site, of the Fayum Depression in the northeast part of the Western Desert of Egypt, has produced a remarkable collection of Eocene vertebrates, in particular the fossil whales from which it derives its name. Here we describe a new genus and species of marine catfishes (Siluriformes; Ariidae), Qarmoutus hitanensis, from the base of the upper Eocene Birket Qarun Formation, based on a partial neurocranium including the complete left side, partial right dentary, left suspensorium, two opercles, left pectoral girdle and spine, nuchal plates, first and second dorsal spines, Weberian apparatus and a disassociated series of abdominal vertebrae. All of the elements belong to the same individual and some of them were found articulated. Qarmoutus gen. nov. is the oldest and the most complete of the Paleogene marine catfishes unearthed from the Birket Qarun Formation. The new genus exhibits distinctive features not seen in other African Paleogene taxa, such as different sculpturing on the opercle and pectoral girdle with respect to that on the neurocranium and nuchal plates, denticulate ornamentation on the skull bones arranged in longitudinal rows and forming a radiating pattern on the sphenotic, pterotic, extrascapular and the parieto-supraoccipital, indentations or pitted ornamentation on the nuchal plates as well as the parieto-supraoccipital process, strut-like radiating pattern of ornamentation on the opercle from the proximal articulation to margins, longitudinal, curved, reticulate ridges and tubercular ornamentations on the cleithrum, sinuous articulation between the parieto-supraoccipital process and the anterior nuchal plate, long, narrow, and arrowhead shaped nuchal shield, very small otic capsules restricted to the prootic. Multiple parsimony and Bayesian morphological phylogenetic analyses of Ariidae, run with and without “molecular scaffolds”, yield contradictory results for the placement of Qarmoutus; the genus is

  13. A conceptual, distributed snow redistribution model

    NASA Astrophysics Data System (ADS)

    Frey, S.; Holzmann, H.

    2015-01-01

    When applying conceptual hydrological models using a temperature index approach for snowmelt to high alpine areas often accumulation of snow during several years can be observed. Some of the reasons why these "snow towers" do not exist in nature are vertical and lateral transport processes. While snow transport models have been developed using grid cell sizes of tens to hundreds of square meters and have been applied in several catchments, no model exists using coarser cell sizes of one km2. In this paper we present an approach that uses only gravity and snow density as a proxy for the age of the snow cover and land-use information to redistribute snow in the catchment of Ötztaler Ache, Austria. This transport model is implemented in the distributed rainfall-runoff model COSERO and a comparison between the standard model without using snow transport and the updated version is done using runoff and MODIS data for model validation. While the signal of snow redistribution can hardly be seen in the binary classification compared with MODIS, snow accumulation over several years can be prevented. In a seven year period the classic model would lead to snow accumulation of approximately 2900 mm SWE in high elevated regions whereas the updated version of the model does not show accumulation and does also predict discharge more precisely leading to a Kling-Gupta-Efficiency of 0.93 instead of 0.9.

  14. On charging of snow particles in blizzard

    NASA Technical Reports Server (NTRS)

    Shio, Hisashi

    1991-01-01

    The causes of the charge polarity on the blizzard, which consisted of fractured snow crystals and ice particles, were investigated. As a result, the charging phenomena showed that the characteristics of the blizzard are as follows: (1) In the case of the blizzard with snowfall, the fractured snow particles drifting near the surface of snow field (lower area: height 0.3 m) had positive charge, while those drifting at higher area (height 2 m) from the surface of snow field had negative charge. However, during the series of blizzards two kinds of particles positively and negatively charged were collected in equal amounts in a Faraday Cage. It may be considered that snow crystals with electrically neutral properties were separated into two kinds of snow flakes (charged positively and negatively) by destruction of the snow crystals. (2) In the case of the blizzard which consisted of irregularly formed ice drops (generated by peeling off the hardened snow field), the charge polarity of these ice drops salting over the snow field was particularly controlled by the crystallographic characteristics of the surface of the snow field hardened by the powerful wind pressure.

  15. Estimating small-scale snow depth and ice thickness from total freeboard for East Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Steer, Adam; Heil, Petra; Watson, Christopher; Massom, Robert A.; Lieser, Jan L.; Ozsoy-Cicek, Burcu

    2016-09-01

    Deriving the snow depth on Antarctic sea ice is a key factor in estimating sea-ice thickness distributions from space or airborne altimeters. Using a linear regression to model snow depth from observed 'total freeboard', or the snow/ice surface elevation relative to sea level is an efficient and promising method for the estimation of snow depth for instruments which only detect the uppermost surface of the sea-ice conglomerate (e.g. laser altimetry). However the Antarctic pack-ice zone is subject to substantial variability due to synoptic-scale weather forcing. Ice formation, motion and melt undergo large spatio-temporal variability throughout the year. In this paper we estimate snow depth from total freeboard for the ARISE (2003), SIPEX (2007) and SIPEX-II (2012) research voyages to the East Antarctic pack-ice zone. Using in situ data we investigate variability in snow depth and show that for East Antarctica, relationships between snow depth and total freeboard vary between each voyage. At a resolution of metres to tens of metres, we show how regression-based snow-depth models track total freeboard and generally over-estimate snow depth, especially on highly deformed sea ice and at sites where ice freeboard makes a substantial contribution to total freeboard. For a set of 3192 records we obtain an in situ mean snow depth of 0.21 m (σ = 0.19 m). Using a regression model derived from all in situ points we obtain the same mean, with a slightly lower variability (σ = 0.16 m). Using voyage-specific subsets of the data to derive regression models and estimate snow depth, mean snow depths ranged from 0.19 m (model derived from SIPEX observations) to 0.25 m (model derived from SIPEX-II observations). While small, these discrepancies impact ice thickness estimation using the assumption of hydrostatic equilibrium. Mean in situ ice thickness for all samples is 1.44 m (σ = 1.19 m). Using empirical models for snow depth, ice thickness varies from 1.0 to 1.8 m with the best

  16. Snow water equivalent mapping in Norway

    NASA Astrophysics Data System (ADS)

    Tveito, O. E.; Udnæs, H.-C.; Engeset, R.; Førland, E. J.; Isaksen, K.; Mengistu, Z.

    2003-04-01

    In high latitude area snow covers the ground large parts of the year. Information about the water volume as snow is of major importance in many respects. Flood forecasters at NVE need it in order to assess possible flood risks. Hydropower producers need it to plan the most efficient production of the water in their reservoirs, traders to estimate the potential energy available for the market. Meteorologists on their side use the information as boundary conditions in weather forecasting models. The Norwegian meteorological institute has provided snow accumulation maps for Norway for more than 50 years. These maps are now produced twice a month in the winter season. They show the accumulated precipitation in the winter season from the day the permanent snow cover is established. They do however not take melting into account, and do therefore not give a good description of the actual snow amounts during and after periods with snowmelt. Due to an increased need for a direct measure of water volumes as snow cover, met.no and NVE initialized a joint project in order to establish maps of the actual snow cover expressed in water equivalents. The project utilizes recent developments in the use of GIS in spatial modeling. Daily precipitation and temperature are distributed in space by using objective spatial interpolation methods. The interpolation considers topographical and other geographical parameters as well as weather type information. A degree-day model is used at each modeling point to calculate snow-accumulation and snowmelt. The maps represent a spatial scale of 1x1 km2. The modeled snow reservoir is validated by snow pillow values as well traditional snow depth observations. Preliminary results show that the new snow modeling approach reproduces the snow water equivalent well. The spatial approach also opens for a wide use in the terms of areal analysis.

  17. Dirty snow after nuclear war

    NASA Technical Reports Server (NTRS)

    Warren, S. G.; Wiscombe, W. J.

    1985-01-01

    It is shown that smoke from fires started by nuclear explosions could continue to cause significant disruption even after it has fallen from the atmosphere, by lowering the reflectivity of snow and sea ice surfaces, with possible effects on climate in northern latitudes caused by enhanced absorption of sunlight. The reduced reflectivity could persist for several years on Arctic sea ice and on the ablation area of the Greenland ice sheet.

  18. Storing snow for the next winter: Two case studies on the application of snow farming.

    NASA Astrophysics Data System (ADS)

    Grünewald, Thomas; Wolfsperger, Fabian

    2016-04-01

    Snow farming is the conservation of snow during the warm half-year. This means that large piles of snow are formed in spring in order to be conserved over the summer season. Well-insulating materials such as chipped wood are added as surface cover to reduce melting. The aim of snow farming is to provide a "snow guaranty" for autumn or early winter - this means that a specific amount of snow will definitively be available, independent of the weather conditions. The conserved snow can then be used as basis for the preparation of winter sports grounds such as cross-country tracks or ski runs. This helps in the organization of early winter season sport events such as World Cup races or to provide appropriate training conditions for athletes. We present a study on two snow farming projects, one in Davos (Switzerland) and one in the Martell valley of South Tyrol. At both places snow farming has been used for several years. For the summer season 2015, we monitored both snow piles in order to assess the amount of snow conserved. High resolution terrestrial laser scanning was performed to measure snow volumes of the piles at the beginning and at the end of the summer period. Results showed that only 20% to 30 % of the snow mass was lost due to ablation. This mass loss was surprisingly low considering the extremely warm and dry summer. In order to identify the most relevant drivers of snow melt we also present simulations with the sophisticated snow cover models SNOWPACK and Alpine3D. The simulations are driven by meteorological input data recorded in the vicinity of the piles and enable a detailed analysis of the relevant processes controlling the energy balance. The models can be applied to optimize settings for snow farming and to examine the suitability of new locations, configurations or cover material for future snow farming projects.

  19. [The research of the relationship between snow properties and the bidirectional polarized reflectance from snow surface].

    PubMed

    Sun, Zhong-Qiu; Wu, Zheng-Fang; Zhao, Yun-Sheng

    2014-10-01

    In the context of remote sensing, the reflectance of snow is a key factor for accurate inversion for snow properties, such as snow grain size, albedo, because of it is influenced by the change of snow properties. The polarized reflectance is a general phenomenon during the reflected progress in natural incident light In this paper, based on the correct measurements for the multiple-angle reflected property of snow field in visible and near infrared wavelength (from 350 to 2,500 nm), the influence of snow grain size and wet snow on the bidirectional polarized property of snow was measured and analyzed. Combining the results measured in the field and previous conclusions confirms that the relation between polarization and snow grain size is obvious in infrared wavelength (at about 1,500 nm), which means the degree of polarization increasing with an increase of snow grain size in the forward scattering direction, it is because the strong absorption of ice near 1,500 nm leads to the single scattering light contributes to the reflection information obtained by the sensor; in other word, the larger grain size, the more absorption accompanying the larger polarization in forward scattering direction; we can illustrate that the change from dry snow to wet snow also influences the polarization property of snow, because of the water on the surface of snow particle adheres the adjacent particles, that means the wet snow grain size is larger than the dry snow grain size. Therefore, combining the multiple-angle polarization with reflectance will provide solid method and theoretical basis for inversion of snow properties.

  20. Comparative Analysis of Hyperspectral and Multispectral Data for Mapping Snow Cover and Snow Grain Size

    NASA Astrophysics Data System (ADS)

    Anul Haq, M.

    2014-11-01

    The present study demonstrates the potential of imaging spectroscopy to produce the snow cover maps and estimation of snow grain size in the Himalayan region. Snow cover maps and snow grain size produce from imaging spectroscopy data were also compared with multispectral imagery (i.e. Landsat 8 and ASTER). Snow grain size was estimated using the snow grain index and compared with the asymptotic radiative transfer (ART) theory method. The overall matching area was 78.29 % among different snow grain size classes using grain index Method and ART method. An attempt has been made to derive the snow grain size using Landsat 8 and ASTER data for the same area. It was found that grain size derived from Landsat 8 and ASTER data show correlation of 81.67 % and 86.34 % respectively. The snow cover maps were produced using Normalized Difference Snow Index (NDSI). Snow cover maps were also produced using ASTER imagery for the same area and compared with Hyperion snow cover maps. The correlation between both snow cover maps were show 91 % correlation.

  1. Mechanism and Performance of CO2 Snow Jet in Co-Axial Type Injection Systems

    NASA Astrophysics Data System (ADS)

    Shen, Yi-Jun; Wang, Muh-Rong

    This paper describes the characteristics of CO2 snow formation with co-axial type injection systems. The injection of CO2 snow flow is controlled by a co-axial type nitrogen auxiliary nozzle. Five cases of co-axial nitrogen nozzle with different diameters and injection types of auxiliary nitrogen are presented. Flow field visualization and spray characteristics are performed by the particle image velocimetry (PIV). Result shows that the CO2 snow particles would collide with each other and generate lager particles in the recirculation zone of the formation chamber. Results also show that the particle size distribution is influenced by the geometry of the injection device. The length of the formation chamber influence the region and strength of recirculation flow. In the region after reattach zone of recirculation flow, the fine particles deposit on the chamber wall and form a deposition layer. The particles in the main stream further impinge onto the deposition layer and result in the snowballs. It turns out that the mean particle size becomes larger as the length of chamber is increased. Results also show that CO2 snow jet has higher velocity and the flow-focusing takes place with nitrogen auxiliary gas. Furthermore, the mist layer of the jet flow caused by lower temperature of CO2 snow is eliminated when co-axial nitrogen flow is injected. The velocity of CO2 snow jet is increased under higher injection pressure of co-axial nitrogen flow. Furthermore, smaller diameter of nitrogen auxiliary nozzle results in higher injection velocity of CO2 snow jet. Hence the injection power of the CO2 snow jet can be controlled by the design of the nitrogen auxiliary nozzle. It will be useful in the medical applications of cryotherapy treatment and the dry cleaning of the semiconductor and solar cell manufacturing processes.

  2. Aryl sulfate formation in sea urchins (Strongylocentrotus droebachiensis) ingesting marine algae (Fucus distichus) containing 2,6-dimethylnapthalene

    SciTech Connect

    Malins, D.C.; Roubal, W.T.

    1982-04-01

    The metabolism of tritiated 2,6-dimethylnapthalene (2,6-DMN) was studied in sea urchins (Strongylocentrotus droebachiensis) feeding on marine algae (Fucus distichus). The Fucus accumulated this hydrocarbon from sea water without converting it to metabolites. Most of the tritium accumulated by the sea urchins (e.g., 70.8% after 3 days) from feeding on 2,6-DMN-exposed Fucus was present in the exoskeleton (shell and spines). Moreover, after 3 days feeding, about 90% of the tritium in the total metabolite fraction of the gonads and digestive tract of the sea urchin was present as sulfate derivatives. These metabolites were identified through hydrolysis with aryl sulfatase, followed by thin-layer chromatography of the products. After 14 days of feeding, the tritium associated with the sulfate derivatives decreased in the gonads and digestive tract to 61 and 65%, respectively, of the total metabolite fraction. Hydroxy compounds from sulfatase hydrolysis were chromatographed using multiple elutions with toluene. The hydroxy isomers were separated and the R/sub f/ values were compared to those of pure reference compounds. The data indicated that 80% of the 2,6-dimethylnaphtyl sulfate contained the sulfate on the 1 and/or 3 position of the aromatic ring. Moreover, 6-methyl-2-naphthalenemethanol was not detected, which implies that sea urchins, unlike fish, metabolize alkyl-substituted aromatic hydrocarbons primarily through aromatic ring oxidations.

  3. Formation of natural gas hydrates in marine sediments. Gas hydrate growth and stability conditioned by host sediment properties

    USGS Publications Warehouse

    Clennell, M.B.; Henry, P.; Hovland, M.; Booth, J.S.; Winters, W.J.; Thomas, M.

    2000-01-01

    The stability conditions of submarine gas hydrates (methane clathrates) are largely dictated by pressure, temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of the host sediments also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our model presumes that gas hydrate behaves in a way analogous to ice in the pores of a freezing soil, where capillary forces influence the energy balance. Hydrate growth is inhibited within fine-grained sediments because of the excess internal phase pressure of small crystals with high surface curvature that coexist with liquid water in small pores. Therefore, the base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature, and so nearer to the seabed than would be calculated from bulk thermodynamic equilibrium. The growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, sheets, and lenses in muds; cements in sand and ash layers) can be explained by a requirement to minimize the excess of mechanical and surface energy in the system.

  4. Isotopic constraints on the role of hypohalous acids in sulfate aerosol formation in the remote marine boundary layer

    NASA Astrophysics Data System (ADS)

    Chen, Qianjie; Geng, Lei; Schmidt, Johan A.; Xie, Zhouqing; Kang, Hui; Dachs, Jordi; Cole-Dai, Jihong; Schauer, Andrew J.; Camp, Madeline G.; Alexander, Becky

    2016-09-01

    Sulfate is an important component of global atmospheric aerosol, and has partially compensated for greenhouse gas-induced warming during the industrial period. The magnitude of direct and indirect radiative forcing of aerosols since preindustrial times is a large uncertainty in climate models, which has been attributed largely to uncertainties in the preindustrial environment. Here, we report observations of the oxygen isotopic composition (Δ17O) of sulfate aerosol collected in the remote marine boundary layer (MBL) in spring and summer in order to evaluate sulfate production mechanisms in pristine-like environments. Model-aided analysis of the observations suggests that 33-50 % of sulfate in the MBL is formed via oxidation by hypohalous acids (HOX = HOBr + HOCl), a production mechanism typically excluded in large-scale models due to uncertainties in the reaction rates, which are due mainly to uncertainties in reactive halogen concentrations. Based on the estimated fraction of sulfate formed via HOX oxidation, we further estimate that daily-averaged HOX mixing ratios on the order of 0.01-0.1 parts per trillion (ppt = pmol/mol) in the remote MBL during spring and summer are sufficient to explain the observations.

  5. Erosion and entrainment of snow and ice by pyroclastic density currents: some outstanding questions (Invited)

    NASA Astrophysics Data System (ADS)

    Walder, J. S.

    2010-12-01

    a hot grain flow over snow, although improperly scaled for investigating erosive processes, does demonstrate that snow hydrology and snowpack stability may be critical in the transformation of pyroclastic density currents to lahars. When such an experiment is run in a sloping flume, with meltwater able to drain freely at the base of the snow layer, the hot grain flow spreads over the snow surface and then comes to rest--no slurry is produced. In contrast, if meltwater drainage is blocked, the wet snow layer fails at its bed, mobilizes as a slush flow, and mixes with the hot grains to form a slurry. Ice layers within a natural snowpack would likewise block meltwater drainage and be conducive to the formation of slush flows. Abrasion and particle impacts—processes that have been studied intensively by engineers concerned with the wear of surfaces in machinery—probably play an important role in the erosion of glacier ice by pyroclastic density currents. A prime example may be the summit ice cap of Nevado del Ruiz, Colombia, which was left grooved by the eruption of 1985 (Thouret, J. Volcanol. Geotherm. Res., v. 41, 1990). Erosion of glacier ice is also strongly controlled by the orientation of crevasses, which can “capture” pyroclastic currents. This phenomenon was well displayed at Mount Redoubt, Alaska during the eruptions of 1989-90 and 2009.

  6. Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism.

    PubMed

    Gärdes, Astrid; Kaeppel, Eva; Shehzad, Aamir; Seebah, Shalin; Teeling, Hanno; Yarza, Pablo; Glöckner, Frank Oliver; Grossart, Hans-Peter; Ullrich, Matthias S

    2010-09-28

    Marinobacter adhaerens HP15 is the type strain of a newly identified marine species, which is phylogenetically related to M. flavimaris, M. algicola, and M. aquaeolei. It is of special interest for research on marine aggregate formation because it showed specific attachment to diatom cells. In vitro it led to exopolymer formation and aggregation of these algal cells to form marine snow particles. M. adhaerens HP15 is a free-living, motile, rod-shaped, Gram-negative gammaproteobacterium, which was originally isolated from marine particles sampled in the German Wadden Sea. M. adhaerens HP15 grows heterotrophically on various media, is easy to access genetically, and serves as a model organism to investigate the cellular and molecular interactions with the diatom Thalassiosira weissflogii. Here we describe the complete and annotated genome sequence of M. adhaerens HP15 as well as some details on flagella-associated genes. M. adhaerens HP15 possesses three replicons; the chromosome comprises 4,422,725 bp and codes for 4,180 protein-coding genes, 51 tRNAs and three rRNA operons, while the two circular plasmids are ~187 kb and ~42 kb in size and contain 178 and 52 protein-coding genes, respectively.

  7. Some Optical Properties of Blowing Snow.

    DTIC Science & Technology

    1981-06-01

    1956, " Etudes de Glaclologle en Terre Adelie," Expeditions Polaires Francaises, Paris 5W. F. Budd, W. R. J. Oingle, and U. Radok, 1966, "The Byrd Snow...Snow Transport," Voprosy ispol’zovaniya snega, Institut Geografii Akademii Nauk SSSR, 106-119. ’H. Lister, 1960, "Glaciology I Solid Precipitation...1960, "Glaciology I Solid Precipitation and Drift Snow," T.A.E. Scientific Report No. 5, Trans-Antarctic Expedition Committee, London 13 9- where B

  8. Evaluating snow models for hydrological applications

    NASA Astrophysics Data System (ADS)

    Jonas, T.; Magnusson, J.; Wever, N.; Essery, R.; Helbig, N.

    2014-12-01

    Much effort has been invested in developing snow models over several decades, resulting in a wide variety of empirical and physically-based snow models. Within the two categories, models are built on the same principles but mainly differ in choices of model simplifications and parameterizations describing individual processes. In this study, we demonstrate an informative method for evaluating a large range of snow model structures for hydrological applications using an existing multi-model energy-balance framework and data from two well-instrumented sites with a seasonal snow cover. We also include two temperature-index snow models and one physically-based multi-layer snow model in our analyses. Our results show that the ability of models to predict snowpack runoff is strongly related to the agreement of observed and modelled snow water equivalent whereas such relationship is not present for snow depth or snow surface temperature measurements. For snow water equivalent and runoff, the models seem transferable between our two study sites, a behaviour which is not observed for snow surface temperature predictions due to site-specificity of turbulent heat transfer formulations. Uncertainties in the input and validation data, rather than model formulation, appear to contribute most to low model performances in some winters. More importantly, we find that model complexity is not a determinant for predicting daily snow water equivalent and runoff reliably, but choosing an appropriate model structure is. Our study shows the usefulness of the multi-model framework for identifying appropriate models under given constraints such as data availability, properties of interest and computational cost.

  9. Improving Snow Roads and Airstrips in Antarctica

    DTIC Science & Technology

    1989-07-01

    in Antarctica Sung M. Lee, Wilbur M. Haas, Robert L. Brown and Albert F. Wuori -LECTE ALIG2 2 1989 Prepared for DIVISION OF POLAR PROGRAMS NATIONAL...Snow Roads and Airstrips in Antarctica 12. PERSONAL AUTHOR(S) Lee, Sung M., Haas, Wilbur M., Brown, Robert L. and Wuori, Albert F. 13a. TYPE OF REPORT...identify by block number) FIELD GROUP SUB-GROUP Aircraft skiway Snow roads Antarctica Snow runways 19. ABSTRACT (Continue on reverse if necessary and

  10. Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides a brief summary of the utility of a wideband active and passive (radar and radiometer, respectively) instrument (8-40 GHz) to support the snow science community. The effort seeks to improve snow measurements through advanced calibration and expanded frequency of active and passive sensors and to demonstrate their science utility through airborne retrievals of snow water equivalent (SWE). In addition the effort seeks to advance the technology readiness of broadband current sheet array (CSA) antenna technology for spaceflight applications.

  11. Brief communication "Snow profile associated measurements (SPAM) - a new instrument for quick snow profile measurements"

    NASA Astrophysics Data System (ADS)

    Lahtinen, P.

    2011-06-01

    A new instrument concept (SPAM) for snow profile associated measurements is presented. The potential of the concept is demonstrated by presenting preliminary results obtained with the prototype instrument. With this concept it is possible to retrieve rapid snow profiles of e.g. light extinction, reflectance, temperature and snow layer structure with high vertical resolution. As a side-product, also snow depth is retrieved.

  12. Rockfall and snow avalanche impacts leave different anatomical signatures in tree rings of juvenile Larix decidua.

    PubMed

    Stoffel, Markus; Hitz, Oliver M

    2008-11-01

    Rockfall and snow avalanche events often cause injury to European larch (Larix decidua Mill.) trees, giving rise to the formation of callus tissue and tangential rows of traumatic resin ducts (TRDs). We analyzed and quantified anatomical reactions of juvenile trees injured before the start of the growing season by snow avalanches (15 trees, 324 cross sections) or rockfalls (18 trees, 270 cross sections). Traumatic resin ducts were observed in the growth ring formed following injury in 94.3% of the rockfall samples and 87.3% of the snow avalanche samples. Traumatic resin ducts were formed at the beginning of the new annual ring around wounds caused by rockfalls. In contrast, in trees injured by snow avalanches, TRDs were not formed until after the formation of several rows of early earlywood (EE) tracheids (mean +/- SD = 4.19 +/- 2.56 rows). The dimensions of the EE tracheids observed in the snow avalanche samples were greatly reduced in the tissues bordering the wound, with radial width reaching an average of only 50% and lumen cross-sectional area an average of only 46% of pre-event values. It is therefore possible to differentiate injuries due to past snow avalanches from injuries due to rockfall based on anatomical growth reactions in the tissues bordering scars.

  13. Approximating snow surface temperature from standard temperature and humidity data: new possibilities for snow model and remote sensing validation (Invited)

    NASA Astrophysics Data System (ADS)

    Raleigh, M. S.; Landry, C.; Hayashi, M.; Quinton, W. L.; Lundquist, J. D.

    2013-12-01

    The snow surface skin temperature (Ts) is important in the snowmelt energy balance, land-atmosphere interactions, weak layer formation (avalanche risk), and winter recreation, but is rarely measured at observational networks. Reliable Ts datasets are needed to validate remote sensing and distributed modeling, in order to represent land-atmosphere feedbacks. Previous research demonstrated that the dew point temperature (Td) close to the snow surface approximates Ts well because air is saturated immediately above snow. However, standard height (2 to 4 m) measurements of the saturation temperatures, Td and wet-bulb temperature (Tw), are much more readily available than measurements of Ts or near-surface Td. There is limited understanding of how these standard height variables approximate Ts, and how the approximations vary with climate, seasonality, time of day, and atmospheric conditions (stability and radiation). We used sub-daily measurements from seven sites in varying snow climates and environments to test Ts approximations with standard height temperature and moisture. Td produced the lowest bias (-2.2 °C to +2.6 °C) and root mean squared error (RMSE) when approximating mean daily Ts, but tended to underestimate daily extremes in Ts. For comparison, air temperature (Ta) was biased +3.2 °C to +6.8 °C. Ts biases increased with increasing frequency in nighttime stability and daytime clear sky conditions. We illustrate that mean daily Td can be used to detect systematic input data bias in physically-based snowmelt modeling, a useful tool when validating spatially distributed snow models in data sparse regions. Thus, improved understanding of Td variations can advance understanding of Ts in space and time, providing a simple yet robust measure of surface feedback to the atmospheric energy budget.

  14. Wideband Instrument for Snow Measurements (WISM)

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Lambert, Kevin M.; Romanofsky, Robert R.; Durham, Tim; Speed, Kerry; Lange, Robert; Olsen, Art; Smith, Brett; Taylor, Robert; Schmidt, Mark; Racette, Paul; Bonds, Quenton; Brucker, Ludovic; Koenig, Lora; Marshall, Hans-Peter; Vanhille, Ken; Borissenko, Anatoly; Tsang, Leung; Tan, Shurun

    2016-01-01

    This presentation discusses current efforts to develop a Wideband Instrument for Snow Measurements (WISM). The objective of the effort are as follows: to advance the utility of a wideband active and passive instrument (8-40 gigahertz) to support the snow science community; improve snow measurements through advanced calibration and expanded frequency of active and passive sensors; demonstrate science utility through airborne retrievals of snow water equivalent (SWE); and advance the technology readiness of broadband current sheet array (CSA) antenna technology for spaceflight applications.

  15. Microwave emission from dry and wet snow

    NASA Technical Reports Server (NTRS)

    Chang, T. C.; Gloersen, P.

    1975-01-01

    A microscopic model was developed to study the microwave emission from snow. In this model, the individual snow particles are considered to be the scattering centers. Mie scattering theory for spherical particles is then used to compute the volume scattering and extinction coefficients of the closely packed scattering spheres, which are assumed not to interact coherently. The results of the computations show significant volume scattering effects in the microwave region which result in low observed emissivities from cold, dry snow. In the case of wet snow, the microwave emissivities are increased considerably, in agreement with earlier experimental observations in which the brightness temperatures have increased significantly at the onset of melting.

  16. Tool and Method for Testing the Resistance of the Snow Road Cover to Destruction

    NASA Astrophysics Data System (ADS)

    Zhelykevich, R.; Lysyannikov, A.; Kaiser, Yu; Serebrenikova, Yu; Lysyannikova, N.; Shram, V.; Kravtsova, Ye; Plakhotnikova, M.

    2016-06-01

    The paper presents the design of the tool for efficient determination of the hardness of the snow road coating. The tool increases vertical positioning of the rod with the tip through replacement of the rod slide friction of the ball element by roll friction of its outer bearing race in order to enhance the accuracy of determining the hardness of the snow-ice road covering. A special feature of the tool consists in possibility of creating different impact energy by the change of the lifting height of the rod with the tip (indenter) and the exchangeable load mass. This allows the study of the influence of the tip shape and the impact energy on the snow strength parameters in a wide range, extends the scope of application of the durometer and makes possible to determine the strength of snow-ice formations by indenters with various geometrical parameters depending on climatic conditions.

  17. Operational snow mapping with simplified data assimilation using the seNorge snow model

    NASA Astrophysics Data System (ADS)

    Saloranta, Tuomo M.

    2016-07-01

    Frequently updated maps of snow conditions are useful for many applications, e.g., for avalanche and flood forecasting services, hydropower energy situation analysis, as well as for the general public. Numerical snow models are often applied in snow map production for operational hydrological services. However, inaccuracies in the simulated snow maps due to model uncertainties and the lack of suitable data assimilation techniques to correct them in near-real time may often reduce the usefulness of the snow maps in operational use. In this paper the revised seNorge snow model (v.1.1.1) for snow mapping is described, and a simplified data assimilation procedure is introduced to correct detected snow model biases in near real-time. The data assimilation procedure is theoretically based on the Bayesian updating paradigm and is meant to be pragmatic with modest computational and input data requirements. Moreover, it is flexible and can utilize both point-based snow depth and satellite-based areal snow-covered area observations, which are generally the most common data-sources of snow observations. The model and analysis codes as well as the "R" statistical software are freely available. All these features should help to lower the challenges and hurdles hampering the application of data-assimilation techniques in operational hydrological modeling. The steps of the data assimilation procedure (evaluation, sensitivity analysis, optimization) and their contribution to significantly increased accuracy of the snow maps are demonstrated with a case from eastern Norway in winter 2013/2014.

  18. The Morphology of Polar Snow Surfaces: A Race Between Time and Snow Grain Properties

    NASA Astrophysics Data System (ADS)

    Filhol, S. V. P.; Sturm, M.

    2014-12-01

    Polar snow surfaces are rough, composed of multiple forms shaped by the interaction of snow grains and the wind. Based on the literature and new three-dimensional laser scanning data acquired in the Alaskan Arctic, we revisited the existing classifications of snow forms, and suggest a new genetic classification. Next we compared the morphology of aeolian snow features to analogous sand features, and then investigated the processes responsible for the differences. Although previous studies have suggested close similitudes between sand and snow features (barchan dunes, transverse dunes, etc.), we find significant differences, including: 1) snow features are smaller by a factor of a 100, 2) snow dunes are flatter, 3) snow dunes move four orders of magnitude faster than sand dunes, and 4) sand dunes last millennia, while snow dunes are by and large ephemeral. Coupling equations for dune age, propagation speed, snow flux, and wind speed, we find that the lower density of snow grains vs. sand (which should produce a higher flux) is balanced by sintering, which serves as a countdown timer, eventually bonding grains together, reducing material fluxes, and thereby limiting the growth and age of snow dunes.

  19. Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin

    USGS Publications Warehouse

    Zheng, Yen; Anderson, Robert F.; VanGeen, A.; Kuwabara, J.

    2000-01-01

    Pore water and sediment Mo concentrations were measured in a suite of multicores collected at four sites along the northeastern flank of the Santa Barbara Basin to examine the connection between authigenic Mo formation and pore water sulfide concentration. Only at the deepest site (580 m), where pore water sulfide concentrations rise to >0.1 ??M right below the sediment water interface, was there active authigenic Mo formation. At shallower sites (550,430, and 340 m), where pore water sulfide concentrations were consistently <0.05 ??M, Mo precipitation was not occuring at the time of sampling. A sulfide concentration of ???0.1 ??M appears to be a threshold for the onset of Mo-Fe-S co-precipitation. A second threshold sulfide concentration of ???100 ??M is required for Mo precipitation without Fe, possibly as Mo-S or as particle-bound Mo. Mass budgets for Mo were constructed by combining pore water and sediment results for Mo with analyses of sediment trap material from Santa Barbara Basin as well as sediment accumulation rates derived from 210Pb. The calculations show that most of the authigenic Mo in the sediment at the deepest site is supplied by diffusion from overlying bottom waters. There is, however, a non-lithogenic particulate Mo associated with sinking particles that contributes ???15% to the total authigenic Mo accumulation. Analysis of sediment trap samples and supernant brine solutions indicates the presence of non-lithogenic particulate Mo, a large fraction of which is easily remobilized and, perhaps, associated with Mn-oxides. Our observations show that even with the very high flux of organic carbon reaching the sediment of Santa Barbara Basin, active formation of sedimentary authigenic Mo requires a bottom water oxygen concentration below 3 ??M. However, small but measurable rates of authigenic Mo accumulation were observed at sites where bottom water oxygen ranged between 5 and 23 ??M, indicating that the formation of authigenic Mo occured in the

  20. Isotopic composition and speciation of sulfur in the Miocene Monterey Formation: Reevaluation of sulfur reactions during early diagenesis in marine environments

    NASA Astrophysics Data System (ADS)

    Zaback, Doreen A.; Pratt, Lisa M.

    1992-02-01

    The timing and pathways of early diagenetic sulfur transfer from dissolved species in pore waters to solid inorganic and organic compounds in sediments have been studied in the Miocene Monterey Formation, Santa Maria Basin (onshore), California. Correlation between concentrations of total organic carbon (TOC) and total sulfur (TS), in addition to concentrations of titanium, aluminum, total iron, and reactive iron, have been used to infer organic matter reactivity, redox conditions, and relative rates of clastic and biogenic input for each lithofacies. Isotopic compositions of six sulfur species (acid-volatile, disulfide, kerogen, bitumen, sulfate and elemental) have provided information regarding relative timing of sulfur incorporation, sulfate diffusivity in the upper centimeters of the sediments, and the sources of sulfur for individual species. Isotopically, the disulfide species expresses the greatest fractionation relative to estimated values of Miocene seawater sulfate (~ +22‰ CDT). On average, disulfide is depleted in 34S by 10.4%. relative to kerogen and by 9.9‰ relative to acid-volatile sulfide. The δ 34S of bitumen shows no systematic change relative to δ 34S keregon, suggesting the presence of migrated bitumen. Isotopic similarity of sulfate and elemental sulfur to sulfides and bitumen indicates that sulfate and elemental sulfur are chemical and/or biological oxidation products derived from sulfides and bitumen. Consistent ordering of isotopic values for sulfur species (disulfide < acid-volatile sulfide ≤ kerogen) indicates that pyrite precipitated nearest to the sediment-water interface under mildly reducing conditions and with little or no decrease in sulfate concentration relative to seawater. Enrichment of 34S in acid-volatile sulfide and kerogen sulfur resulted from formation of these species at greater depths or in restricted micro-environments under more reducing conditions and with low concentrations of porewater sulfate. The formation of

  1. Weekly LiDAR snow depth mapping for operational snow hydrology - the NASA JPL Airborne Snow Observatory (Invited)

    NASA Astrophysics Data System (ADS)

    Deems, J. S.; Painter, T. H.; McGurk, B. J.

    2013-12-01

    Operational hydrologic simulation and forecasting in snowmelt-dominated watersheds currently relies on indices of snow accumulation and melt from measurements at a small number of point locations or geographically-limited manual surveys. These data sources cannot adequately characterize the spatial distribution of snow depth/water equivalent, which is the primary determinant of snowpack volume and runoff rates. The NASA JPL Airborne Snow Observatory's airborne laser scanning system maps snow depth at high spatial and temporal resolutions, providing an unprecedented snowpack monitoring capability and enabling a new operational paradigm. In the Spring of 2013, the ASO mapped snow depth in the Tuolumne River Basin in California's Yosemite National Park on a nominally weekly basis, and provided fast-turnaround spatial snow depth and water equivalent maps to the operators of Hetch Hetchy Reservoir, the water supply for 2.5 million people on the San Francisco peninsula. These products enabled more accurate runoff simulation and optimal reservoir management in a year of very low snow accumulation. We present the initial results from this new application of multi-temporal LiDAR mapping in operational snow hydrology.

  2. Compressibility Characteristics of Compacted Snow

    DTIC Science & Technology

    1976-06-01

    Cornpressibility characteristics 7Jj i C’p of compacted snowifAG2� 004 t Cover: ~ ~ ~ ~ ~ ~ ~ ~ a - Thn***o htgrp fpoyrsaliekAmgife i ote rm...nwcmrse to7 asa 10 Phtgahb nhn Gow1 CRREL Report 76-21 Compressibility characteristics of compacted snow %i" Gunars Abele and Anthony J. Cow I ~ June 1976 A ...c , I fu. A AD,:j ly M3rs CORPS OF ENGINEERS, U.S. ARMY COLD REGIONS RESEARCH AND ENGINEERZ]NG LABORATORY HANOVER, NEW HAMPSHIRE Approved for public

  3. Digging in 'Snow White' Trench

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on the 44th Martian day of the mission, or Sol 43 (July 7, 2008), after the May 25, 2008, landing, showing the current sample scraping area in the trench informally called 'Snow White.'

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Snowpack displacement measured by terrestrial radar interferometry as precursor for wet snow avalanches

    NASA Astrophysics Data System (ADS)

    Caduff, Rafael; Wiesmann, Andreas; Bühler, Yves

    2016-04-01

    Wet snow and full depth gliding avalanches commonly occur on slopes during springtime when air temperatures rise above 0°C for longer time. The increase in the liquid water content changes the mechanical properties of the snow pack. Until now, forecasts of wet snow avalanches are mainly done using weather data such as air and snow temperatures and incoming solar radiation. Even tough some wet snow avalanche events are indicated before the release by the formation of visible signs such as extension cracks or compressional bulges in the snow pack, a large number of wet snow avalanches are released without any previously visible signs. Continuous monitoring of critical slopes by terrestrial radar interferometry improves the scale of reception of differential movement into the range of millimetres per hour. Therefore, from a terrestrial and remote observation location, information on the mechanical state of the snow pack can be gathered on a slope wide scale. Recent campaigns in the Swiss Alps showed the potential of snow deformation measurements with a portable, interferometric real aperture radar operating at 17.2 GHz (1.76 cm wavelength). Common error sources for the radar interferometric measurement of snow pack displacements are decorrelation of the snow pack at different conditions, the influence of atmospheric disturbances on the interferometric phase and transition effects from cold/dry snow to warm/wet snow. Therefore, a critical assessment of those parameters has to be considered in order to reduce phase noise effects and retrieve accurate displacement measurements. The most recent campaign in spring 2015 took place in Davos Dorf/GR, Switzerland and its objective was to observe snow glide activity on the Dorfberg slope. A validation campaign using total station measurements showed good agreement to the radar interferometric line of sight displacement measurements in the range of 0.5 mm/h. The refinement of the method led to the detection of numerous gliding

  5. The effect of quorum-sensing blockers on the formation of marine microbial communities and larval attachment.

    PubMed

    Dobretsov, Sergey; Dahms, Hans-Uwe; Yili, Huang; Wahl, Martin; Qian, Pei-Yuan

    2007-05-01

    We studied the effect of the quorum-sensing (QS) blockers 5-hydroxy-3[(1R)-1-hydroxypropyl]-4-methylfuran-2(5H)-one (FUR1), (5R)-3,4-dihydroxy-5-[(1S)-1,2-dihydroxyethyl]furan-2(5H)-one (FUR2) and triclosan (TRI) on the formation of bacterial biofilms, and the effect of these biofilms on the larval attachment of the polychaete Hydroides elegans and the bryozoan Bugula neritina. 14-day-old subtidal biofilms were harvested from artificial substrata and were allowed to develop in the laboratory with and without QS blockers. QS blockers inhibited the production of violacein by the QS reporter strain Chromobacterium violaceum CV026 and did not affect the metabolic activity of bacteria in multispecies biofilms. At a concentration of 10(-3) M all three tested compounds inhibited the establishment of microbial communities, but at one of 10(-4) M only FUR2 inhibited establishment. The tested QS blockers caused changes in bacterial density and bacterial community structure, as revealed by terminal restriction fragment length polymorphism and FISH. The groups most affected by QS blockers were Alphaproteobacteria, Gammaproteobacteria and the Cytophagales. Larvae of H. elegans and B. neritina avoided settling on biofilms that had developed in the presence of QS blockers. Our results suggest that QS blockers directly control the formation of multi-species biofilms, and indirectly - by means of biofilm properties - affect larval attachment on these modified biofilms.

  6. Formation evaluation of gas hydrate-bearing marine sediments on the Blake Ridge with downhole geochemical log measurements

    USGS Publications Warehouse

    Collett, T.S.; Wendlandt, R.F.

    2000-01-01

    The analyses of downhole log data from Ocean Drilling Program (ODP) boreholes on the Blake Ridge at Sites 994, 995, and 997 indicate that the Schlumberger geochemical logging tool (GLT) may yield useful gas hydrate reservoir data. In neutron spectroscopy downhole logging, each element has a characteristic gamma ray that is emitted from a given neutron-element interaction. Specific elements can be identified by their characteristic gamma-ray signature, with the intensity of emission related to the atomic elemental concentration. By combining elemental yields from neutron spectroscopy logs, reservoir parameters including porosities, lithologies, formation fluid salinities, and hydrocarbon saturations (including gas hydrate) can be calculated. Carbon and oxygen elemental data from the GLT was used to determine gas hydrate saturations at all three sites (Sites 994, 995, and 997) drilled on the Blake Ridge during Leg 164. Detailed analyses of the carbon and oxygen content of various sediments and formation fluids were used to construct specialized carbon/oxygen ratio (COR) fan charts for a series of hypothetical gas hydrate accumulations. For more complex geologic systems, a modified version of the standard three-component COR hydrocarbon saturation equation was developed and used to calculate gas hydrate saturations on the Blake Ridge. The COR-calculated gas hydrate saturations (ranging from about 2% to 14% bulk volume gas hydrate) from the Blake Ridge compare favorably to the gas hydrate saturations derived from electrical resistivity log measurements.

  7. Invertebrate Paleontology of the Wilson Grove Formation (Late Miocene to Late Pliocene), Sonoma and Marin Counties, California, with some Observations on Its Stratigraphy, Thickness, and Structure

    USGS Publications Warehouse

    Powell, Charles L.; Allen, James R.; Holland, Peter J.

    2004-01-01

    The Wilson Grove Formation is exposed from Petaluma north to northern Santa Rosa, and from Bennett Valley west to Bodega Bay. A fauna of at least 107 invertebrate taxa consisting of two brachiopods, 95 mollusks (48 bivalves and 46 gastropods), at least eight arthropods, and at least two echinoids have been collected, ranging in age from late Miocene to late Pliocene. Rocks and fossils from the southwest part of the outcrop area, along the Estero de San Antonio, were deposited in a deep-water marine environment. At Meacham Hill, near the Stony Point Rock Quarry, and along the northern margin of the outcrop area at River Road and Wilson Grove, the Wilson Grove Formation was deposited in shallow marine to continental environments. At Meacham Hill, these shallow water deposits represent a brackish bay to continental environment, whereas at River Road and Wilson Grove, fossils suggest normal, euhaline (normal marine salinity) conditions. A few taxa from the River Road area suggest water temperatures slightly warmer than along the adjacent coast today because their modern ranges do not extend as far north in latitude as River Road. In addition, fossil collections from along River Road contain the bivalve mollusks Macoma addicotti (Nikas) and Nuttallia jamesii Roth and Naidu, both of which are restricted to the late Pliocene. The late Miocene Roblar tuff of Sarna-Wojcicki (1992) also crops out northeast of the River Road area and underlies the late Pliocene section at Wilson Grove by almost 300 m. Outcrops in the central part of the region are older than those to the northeast, and presumably younger than deposits to the southwest. The Roblar tuff of Sarna-Wojcicki (1992) occurs at Steinbeck Ranch in the central portion of the outcrop area. At Spring Hill, also in the central part of the outcrop area, the sanddollar Scutellaster sp., cf. S. oregonensis (Clark) has been recently collected. This species, questionably identified here, is restricted to the late Miocene from

  8. Vegetation and Variable Snow Cover: Spatial Patterns of Shrubland, and Grassland Snow

    NASA Astrophysics Data System (ADS)

    Liston, G. E.; Hiemstra, C. A.; Strack, J. E.

    2003-12-01

    Regions that experience long winters with snowfall and high winds frequently exhibit heterogeneous snow distribution patterns that arise from interactions among snow, wind, topography, and vegetation. Variable snow cover and resultant heterogeneities in albedo and growing season length can affect local weather patterns and energy budgets, and produce spatially co-variable ecosystem properties. While snow influences local atmospheric processes and ecosystems, an important and underappreciated feedback exists between vegetation and snow cover. Plant size, canopy density, and rigidity determine how much snow accumulates on the lee side of individual plants (e.g., shrubland vs. grassland). In addition, the canopy can also influence how much energy reaches the snowpack, thereby hindering or accelerating snowmelt. An overhanging canopy reduces incoming solar radiation while providing a source of turbulent sensible and longwave radiative energy. Historically, most snow vegetation interaction studies have been limited to areas that experience an abundance of snow (e.g., mountainous areas) where trees have a large influence on seasonal snow-cover. In contrast, snow cover patterns associated with shrublands and grasslands have received little attention, despite covering vast expanses (53%) of the seasonally snow-covered globe. In this study, snow depths were measured every two weeks from December through March in a small, 0.25 km2 study area located in North Park, Colorado. The study area possesses little topographic relief and consists of shrub patches, dominated by greasewood (Sarcobatus vermiculatus) and sagebrush (Artemisia tridentata), embedded in a matrix of graminoids (sedges, rushes, and grasses). Snow cover patterns and spatial statistics were dramatically different in graminoid-dominated cover compared with shrub cover. The graminoid snow cover was thinner, less variable, and more ephemeral than the shrub snow pack. Snow was readily eroded by wind from graminoid

  9. Addressing frequency and magnitude of recent snow avalanches in Northern Iceland and Western Norway by using dendrogeomorphology

    NASA Astrophysics Data System (ADS)

    Decaulne, Armelle; Eggertsson, Ólafur; Laute, Katja; Sæmundsson, Şorsteinn; Beylich, Achim A.; Páll Jónsson, Helgi

    2010-05-01

    Snow avalanches are common in mountain areas of various kinds of cold environments. The more or less severity of wintry conditions determines the thickness, durability and stability of snow cover during the cold season. Winter conditions therefore influence the frequency and magnitude of snow avalanches. The aim of this research is (i) to use dendrogeomorphology as a proxy to extract the chronology of snow avalanches on colluvial surfaces (talus and cones) by analysing the tree-ring growth, and (ii) to study the various impacts snow avalanches on trees, i.e. the formation and dating of reaction wood. The study sites are located in Northern Iceland (Dalsmynni, Ljósavatnskarð and Fnjóskadalur valleys), and in Western Norway (Erdalen and Bødalen valleys). All sites are typical U-shaped valleys with important bedrock valley walls that develop downslope in slope accumulations, swept by numerous snow avalanches leaving geomorphological evidence of a significant activity. The currently investigated tree specie is Betula sp., birches being common in both areas. The results provide a temporal catalogue of snow-avalanche events during the last ± 100 years in areas with shortest historical records, and determine the changes in snow-avalanches regime during the same period. This can be correlated with snow-cover changes in the upper catchment areas. Such results are of interest for (i) the understanding of global changes on snow-avalanche activity in cold mountain areas, and (ii) getting a better knowledge of past frequency and magnitude of snow avalanches in areas of poor historical records, in relation with natural hazards.

  10. Soot on snow experiment: bidirectional reflectance factor measurements of contaminated snow

    NASA Astrophysics Data System (ADS)

    Peltoniemi, J. I.; Gritsevich, M.; Hakala, T.; Dagsson-Waldhauserová, P.; Arnalds, Ó.; Anttila, K.; Hannula, H.-R.; Kivekäs, N.; Lihavainen, H.; Meinander, O.; Svensson, J.; Virkkula, A.; de Leeuw, G.

    2015-06-01

    In order to quantify the effects of absorbing contaminants on snow, a series of spectral reflectance measurements were conducted. Chimney soot, volcanic sand, and glaciogenic silt were deposited on a natural snow surface in a controlled way as a part of the Soot on Snow (SoS) campaign. The bidirectional reflectance factors of these soiled surfaces and untouched snow were measured using the Finnish Geodetic Institute's Field Goniospectropolariradiometer, FIGIFIGO. A remarkable feature is the fact that the absorbing contaminants on snow enhanced in our experiments the metamorphosis of snow under strong sunlight. Immediately after deposition, the contaminated snow surface appeared darker than the pure snow in all viewing directions, but the absorbing particles sank deep into the snow in minutes. The nadir measurement remained the darkest, but at larger zenith angles the surface of the contaminated snow changed back to almost as white as clean snow. Thus, for a ground observer the darkening caused by impurities can be completely invisible, overestimating the albedo, but a nadir observing satellite sees the darkest points, now underestimating the albedo. By a reciprocity argument, we predict, that at noon the albedo should be lower than in the morning or afternoon. When sunlight stimulates sinking more than melting, the albedo should be higher in the afternoon than in the morning, and vice versa when melting dominates. However, differences in the hydrophobic properties, porosity, clumping, or size of the impurities may cause different results than observed in these measurements.

  11. Soot on Snow experiment: bidirectional reflectance factor measurements of contaminated snow

    NASA Astrophysics Data System (ADS)

    Peltoniemi, J. I.; Gritsevich, M.; Hakala, T.; Dagsson-Waldhauserová, P.; Arnalds, Ó.; Anttila, K.; Hannula, H.-R.; Kivekäs, N.; Lihavainen, H.; Meinander, O.; Svensson, J.; Virkkula, A.; de Leeuw, G.

    2015-12-01

    In order to quantify the effects of absorbing contaminants on snow, a series of spectral reflectance measurements were conducted. Chimney soot, volcanic sand, and glaciogenic silt were deposited on a natural snow surface in a controlled way as a part of the Soot on Snow (SoS) campaign. The bidirectional reflectance factors of these soiled surfaces and untouched snow were measured using the Finnish Geodetic Institute's Field Goniospectropolariradiometer, FIGIFIGO. A remarkable feature is the fact that the absorbing contaminants on snow enhanced the metamorphism of snow under strong sunlight in our experiments. Immediately after deposition, the contaminated snow surface appeared darker than the natural snow in all viewing directions, but the absorbing particles sank deep into the snow in minutes. The nadir measurement remained the darkest, but at larger zenith angles, the surface of the contaminated snow changed back to almost as white as clean snow. Thus, for a ground observer the darkening caused by impurities can be completely invisible, overestimating the albedo, but a nadir-observing satellite sees the darkest points, underestimating the albedo. Through a reciprocity argument, we predict that at noon, the albedo perturbation should be lower than in the morning or afternoon. When sunlight stimulates sinking more than melting, the albedo should be higher in the afternoon than in the morning, and vice versa when melting dominates. However, differences in the hydrophobic properties, porosity, clumping, or size of the impurities may cause different results than observed in these measurements.

  12. Modeling the spatial variability of snow instability with the snow cover model SNOWPACK

    NASA Astrophysics Data System (ADS)

    Richter, Bettina; Reuter, Benjamin; Gaume, Johan; Fierz, Charles; Bavay, Mathias; van Herwijnen, Alec; Schweizer, Jürg

    2016-04-01

    Snow stratigraphy - key information for avalanche forecasting - can be obtained using numerical snow cover models driven by meteorological data. Simulations are typically performed for the locations of automatic weather station or for virtual slopes of varying aspect. However, it is unclear to which extent these simulations can represent the snowpack properties in the surrounding terrain, in particular snow instability, which is known to vary in space. To address this issue, we implemented two newly developed snow instability criteria in SNOWPACK relating to failure initiation and crack propagation, two fundamental processes for dry-snow slab avalanche release. Snow cover simulations were performed for the Steintälli field site above Davos (Eastern Swiss Alps), where snowpack data from several field campaigns are available. In each campaign, about 150 vertical snow penetration resistance profiles were sampled with the snow micro-penetrometer (SMP). For each profile, SMP and SNOWPACK- based instability criteria were compared. In addition, we carried out SNOWPACK simulations for multiple aspects and slope angles, allowing to obtain statistical distributions of the snow instability at the basin scale. Comparing the modeled to the observed distributions of snow instability suggests that it is feasible to obtain an adequate spatial representation of snow instability without high resolution distributed modeling. Hence, for the purpose of regional avalanche forecasting, simulations for a selection of virtual slopes seems sufficient to assess the influence of basic terrain features such as aspect and elevation.

  13. LANDSAT-D investigations in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, J. (Principal Investigator)

    1984-01-01

    Thematic mapper radiometric characteristics, snow/cloud reflectance, and atmospheric correction are discussed with application to determining the spectral albedo of snow. The geometric characterics of TM and digital elevation data are examined. The geometric transformations and resampling required to coregister these data are discussed.

  14. Brilliant Colours from a White Snow Cover

    ERIC Educational Resources Information Center

    Vollmer, Michael; Shaw, Joseph A

    2013-01-01

    Surprisingly colourful views are possible from sparkling white snow. It is well known that similarly colourful features can exist in the sky whenever appropriate ice crystals are around. However, the transition of light reflection and refraction from ice crystals in the air to reflection and refraction from those in snow on the ground is not…

  15. Comments on Nancy Snow, "Generativity and Flourishing"

    ERIC Educational Resources Information Center

    Kamtekar, Rachana

    2015-01-01

    In her rich and wide-ranging paper, Nancy Snow argues that there is a virtue of generativity--an other-regarding desire to invest one's substance in forms of life and work that will outlive the self (p. 10). By "virtue" Snow means not just a desirable or praiseworthy quality of a person, but more precisely, as Aristotle defined it, a…

  16. A drought index accounting for snow

    NASA Astrophysics Data System (ADS)

    Staudinger, Maria; Stahl, Kerstin; Seibert, Jan

    2015-04-01

    The Standardized Precipitation Index (SPI) is the most widely used index to characterize and monitor droughts that are related to precipitation deficiencies. However, the SPI does not always deliver the relevant information for hydrological drought management when precipitation deficiencies are not the only reason for droughts as it is the case for example in snow influenced catchments. If precipitation is temporarily stored as snow, then there is a significant difference between meteorological and hydrological drought because the delayed release of melt water from the snow accumulation to the stream. In this study we introduce an extension to the SPI, the Standardized Snow Melt and Rain Index (SMRI), that captures both rain and snow melt deficits, which in effect modify streamflow. The SMRI does not require any snow data instead observations of temperature and precipitation are used to model snow. The SMRI is evaluated for seven Swiss catchments with varying degrees of snow influence. In particular for catchments with a larger component of snowmelt in runoff generation, we found the SMRI to be a good complementary index to the SPI to describe streamflow droughts. In a further step, the SPI and the SMRI were compared for the summer drought of 2003 and the spring drought of 2011 for Switzerland, using gridded products of precipitation and temperature including the entire country.

  17. Expanding Snow Treatment in CESM Vegetation

    NASA Astrophysics Data System (ADS)

    Perket, J.; Flanner, M.; Lawrence, D. M.

    2013-12-01

    The CESM land model accounts for precipitation interception, throughfall & drip in the canopy hydrology. Portions of falling snow and rain are intercepted by the canopy and maintained in a water storage term. The remainder falls through to the ground, and intercepted water also drips from the canopy. The Community Land Model uses exposed leaf and stem area indices to determine the throughfall flux and drip flux for liquid and frozen water. The interception by vegetation and the water mass storage term does not differentiate between liquid or frozen precipitation based on the justification that a lower evaporation rate roughly negates the difference. Observations show, however, that leaf capacities for water are about double those of snow. Optical parameters are influenced by the canopy storage and area indices through a wetted fraction of vegetation. Different optical properties are assumed when air temperature is below the freezing temperature of water. This is an efficient method to account for snow in vegetation albedo and radiative flux calculations, but doesn't account for the different morphologies and mechanics of snow. Canopy snow can be blown off by wind, or slide off without wind intervention if the branches provide an unstable or slanting support. We fully separated the liquid and solid terms in CLM's hydrology, creating a canopy snow throughfall and canopy snow storage term. Snow in vegetation can convert to meltwater and vapor. Using these new simulation developments, we are able to quantify radiative and hydrological sensitivity to improved model representation.

  18. Kindergarten Explorations with Snow, Ice, and Water

    ERIC Educational Resources Information Center

    Carroll, Martha A.

    1978-01-01

    Using winter snow, kindergarten students can explore the properties of water. Students demonstrate melting, freezing, expansion, and evaporation through a number of activities involving a paper cup and a scoop of snow. Procedures and student reactions are described in detail by the teacher-author. (MA)

  19. Blast noise propagation above a snow cover.

    PubMed

    Albert, D G; Hole, L R

    2001-06-01

    A porous medium model of a snow cover, rather than a viscoelastic treatment, has been used to simulate measured, horizontally traveling acoustic waveform propagation above a dry snow cover 11-20 cm thick. The waveforms were produced by explosions of 1-kg charges at propagation distances of 100 to 1400 m. These waveforms, with a peak frequency around 30 Hz, show pulse broadening effects similar to those previously seen for higher-frequency waves over shorter propagation distances. A rigid-ice-frame porous medium ("rigid-porous") impedance model, which includes the effect of the pores within the snow but ignores any induced motion of the ice particles, is shown to produce much better agreement with the measured waveforms compared with a viscoelastic solid treatment of the snow cover. From the acoustic waveform modeling, the predicted average snow cover depth of 18 cm and effective flow resistivities of 16-31 kPa s m(-2) agree with snow pit observations and with previous acoustic measurements over snow. For propagation in the upwind direction, the pulse broadening caused by the snow cover interaction is lessened, but the overall amplitude decay is greater because of refraction of the blast waves.

  20. Measuring Wind Ventilation of Dense Surface Snow

    NASA Astrophysics Data System (ADS)

    Drake, S. A.; Huwald, H.; Selker, J. S.; Higgins, C. W.; Lehning, M.; Thomas, C. K.

    2014-12-01

    Wind ventilation enhances exposure of suspended, canopy-captured and corniced snow to subsaturated air and can significantly increase sublimation rate. Although sublimation rate may be high for highly ventilated snow this snow regime represents a small fraction snow that resides in a basin potentially minimizing its influence on snow mass balance. In contrast, the vast majority of a seasonal snowpack typically resides as poorly ventilated surface snow. The sublimation rate of surface snow is often locally so small as to defy direct measurement but regionally pervasive enough that the integrated mass loss of frozen water across a basin may be significant on a seasonal basis. In a warming climate, sublimation rate increases even in subfreezing conditions because the equilibrium water vapor pressure over ice increases exponentially with temperature. To better understand the process of wintertime surface snow sublimation we need to quantify the depth to which turbulent and topographically driven pressure perturbations effect air exchange within the snowpack. Hypothetically, this active layer depth increases the effective ventilated snow surface area, enhancing sublimation above that given by a plane, impermeable snow surface. We designed and performed a novel set of field experiments at two sites in the Oregon Cascades during the 2014 winter season to examine the spectral attenuation of pressure perturbations with depth for dense snow as a function of turbulence intensity and snow permeability. We mounted a Campbell Scientific Irgason Integrated CO2 and H2O Open Path Gas Analyzer and 3-D Sonic Anemometer one meter above the snow to capture mean and turbulent wind forcing and placed outlets of four high precision ParoScientific 216B-102 pressure transducers at different depths to measure the depth-dependent pressure response to wind forcing. A GPS antenna captured data acquisition time with sufficient precision to synchronize a Campbell Scientific CR-3000 acquiring

  1. A conceptual, distributed snow redistribution model

    NASA Astrophysics Data System (ADS)

    Frey, S.; Holzmann, H.

    2015-11-01

    When applying conceptual hydrological models using a temperature index approach for snowmelt to high alpine areas often accumulation of snow during several years can be observed. Some of the reasons why these "snow towers" do not exist in nature are vertical and lateral transport processes. While snow transport models have been developed using grid cell sizes of tens to hundreds of square metres and have been applied in several catchments, no model exists using coarser cell sizes of 1 km2, which is a common resolution for meso- and large-scale hydrologic modelling (hundreds to thousands of square kilometres). In this paper we present an approach that uses only gravity and snow density as a proxy for the age of the snow cover and land-use information to redistribute snow in alpine basins. The results are based on the hydrological modelling of the Austrian Inn Basin in Tyrol, Austria, more specifically the Ötztaler Ache catchment, but the findings hold for other tributaries of the river Inn. This transport model is implemented in the distributed rainfall-runoff model COSERO (Continuous Semi-distributed Runoff). The results of both model concepts with and without consideration of lateral snow redistribution are compared against observed discharge and snow-covered areas derived from MODIS satellite images. By means of the snow redistribution concept, snow accumulation over several years can be prevented and the snow depletion curve compared with MODIS (Moderate Resolution Imaging Spectroradiometer) data could be improved, too. In a 7-year period the standard model would lead to snow accumulation of approximately 2900 mm SWE (snow water equivalent) in high elevated regions whereas the updated version of the model does not show accumulation and does also predict discharge with more accuracy leading to a Kling-Gupta efficiency of 0.93 instead of 0.9. A further improvement can be shown in the comparison of MODIS snow cover data and the calculated depletion curve, where

  2. Observing snow cover using unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Spallek, Waldemar; Witek, Matylda; Niedzielski, Tomasz

    2016-04-01

    Snow cover is a key environmental variable that influences high flow events driven by snow-melt episodes. Estimates of snow extent (SE), snow depth (SD) and snow water equivalent (SWE) allow to approximate runoff caused by snow-melt episodes. These variables are purely spatial characteristics, and hence their pointwise measurements using terrestrial monitoring systems do not offer the comprehensive and fully-spatial information on water storage in snow. Existing satellite observations of snow reveal moderate spatial resolution which, not uncommonly, is not fine enough to estimate the above-mentioned snow-related variables for small catchments. High-resolution aerial photographs and the resulting orthophotomaps and digital surface models (DSMs), obtained using unmanned aerial vehicles (UAVs), may offer spatial resolution of 3 cm/px. The UAV-based observation of snow cover may be done using the near-infrared (NIR) cameras and visible-light cameras. Since the beginning of 2015, in frame of the research project no. LIDER/012/223/L-5/13/NCBR/2014 financed by the National Centre for Research and Development of Poland, we have performed a series of the UAV flights targeted at four sites in the Kwisa catchment in the Izerskie Mts. (part of the Sudetes, SW Poland). Observations are carried out with the ultralight UAV swinglet CAM (produced by senseFly, lightweight 0.5 kg, wingspan 80 cm) which enables on-demand sampling at low costs. The aim of the field work is to acquire aerial photographs taken using the visible-light and NIR cameras for a purpose of producing time series of DSMs and orthophotomaps with snow cover for all sites. The DSMs are used to calculate SD as difference between observational (with snow) and reference (without snow) models. In order to verify such an approach to compute SD we apply several procedures, one of which is the estimation of SE using the corresponding orthophotomaps generated on a basis of visual-light and NIR images. The objective of this

  3. Evidence for a Significant Source of Sea Salt Aerosol from Blowing Snow Above Sea Ice in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Frey, M. M.; Brooks, I. M.; Anderson, P. A.; Nishimura, K.; Yang, X.; Jones, A. E.; Wolff, E. W.

    2014-12-01

    Over most of the Earth, sea salt aerosol (SSA) derives from sea spray and bubble bursting at the open ocean surface. SSA as the major component of marine aerosol contributes directly to the radiative balance and can act as cloud condensation nuclei. SSA can also significantly impact the lifetime of methane, ozone or mercury through the photochemical release of reactive halogens. A recent model study suggested that the sublimation of saline blowing snow above sea ice can generate more SSA than is produced from a similar area of open ocean. A winter cruise through the Weddell Sea during June - August 2013 provided unique access to a potential SSA source region in the Antarctic sea ice zone to test this hypothesis.Reported are first measurements of snow particle as well as aerosol concentrations, size distributions and chemical composition, during blowing snow events above sea ice. Snow particle spectra are found to be similar to those observed on the continent. Even though the salinity of surface and blowing snow was very low (<0.1 psu) a significant increase of aerosol in the SSA size range was observed during and after blowing snow events. This is consistent with model runs including a blowing snow parameterisation which suggest low sensitivity of SSA number densities to snow salinity within the observed range. First estimates of SSA flux from blowing snow using eddy correlation are significant, although falling below published values of the sea spray source function. We discuss the dependance of observed SSA production rates on ambient conditions as well as the significance to the Southern Ocean environment.

  4. Uncertainty in alpine snow mass balance simulations due to snow model parameterisation and windflow representation

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Pomeroy, J. W.; Essery, R.; Leroux, N.

    2013-12-01

    Despite advances in alpine snow modelling there remain two fundamental areas of divergent scientific thought in estimating alpine snow mass balances: i) blowing snow sublimation losses, and ii) wind flow representation. Sublimation calculations have poorly understood humidity feedbacks that vary considerably and mathematical representations of alpine windflow vary in complexity - these differences introduce uncertainty. To better estimate and restrain this uncertainty, a variety of physically based, spatially distributed snowmelt models that consider the physics of wind redistribution and sublimation of blowing snow were evaluated for their ability to simulate seasonal snow distribution and melt patterns in a windy alpine environment in the Canadian Rockies. The primary difference in the snow models was their calculation of blowing snow sublimation losses which ranged from large to small estimates. To examine the uncertainty introduced by windflow calculations on the snow model simulations, each model was forced with output from windflow models of varying computational complexity and physical realism from a terrain-based empirical interpolation of station observations to a simple turbulence model to a computational fluid dynamics model that solves for the Navier-Stokes equations. The high-resolution snow simulations were run over a 1 km2 spatial extent centred on a ridgetop meteorological station within the Marmot Creek Research basin, Alberta, Canada. The three windflow simulations all produced reasonable results compared to wind speeds measured on two opposing slopes (bias better than ×0.3 m s-1; RMSE < 1.1 m s-1), however there was great sensitivity in SWE simulated by the snow models to the driving windflow simulation used. Specifically, there were distinct differences in the magnitude and location of snow drifts from all snow models that depended on the windflow scheme. When compared to measurements from airborne LiDAR, snow surveys, and automated snow depth

  5. Impact of snow on surface brightness

    NASA Astrophysics Data System (ADS)

    Kukla, George J.; Brown, Jeffrey A.

    The snow-covered land surface has different albedo than the snow-free surface, depending primarily on the type and density of the vegetation, the relief, and the continuity and age of the snow blanket. This is clearly demonstrated by the winter mosaic of east central Asia shown on the front cover. It is a section of a larger composite assembled from cloud-free satellite images to portray the land surface under continuous snow cover. The mosaic is a valuable tool for distinguishing (from remote positions) snow from clouds and for charting snow cover where illumination is poor. It also can be used to determine relative sensitivity of surface albedo to the occurrence of snow.Segments with a minimum of clouds along the orbital subtrack were selected from the transparencies of the Defense Meteorological Satellite Program (DMSP). Satellite sensors record in the spectral band 0.4-1.2 µm. The satellite is in polar orbit at a mean altitude of 830 km (450 nm) and crosses the equator at approximately local noon. The spatial resolution along the orbital subtrack is about 0.6 km [Dickinson et al., 1974]. The mosaic is assembled from imagery taken between mid-January and mid-February of 1979. The original hard-copy transparencies (on loan from the DMSP library) were reproduced as contact negatives to preserve detail.The snow cover marks the land surface with a characteristic signature that depends on the distribution, density, and type of vegetation; relief; presence of water bodies; distribution and type of land use, etc. This signature can be readily utilized, among others, to distinguish snow-covered land from clouds and from snow-free land [Barnes et al., 1974; Lillesand et al., 1982]. We have compared the brightness fields in the imagery with the vegetation density and land-use patterns charted in the World Forestry Atlas [Wiebecke, 1971].

  6. Arctic Light Snow Observations: Missing Precipitation

    NASA Astrophysics Data System (ADS)

    Gultepe, Ismail; Rabin, Robert; Pavolonis, Michael; Heymsfield, Andrew; Girard, Eric; Burrows, William

    2015-04-01

    The objective of this work is to describe measurement conditions for light snow that is important for meteorological and hydrometeorological applications. Snow microphysical properties play a crucial role for developing better nowcasting/forecasting techniques, and to validate numerical weather prediction (NWP) simulations and assess climate change. Observations collected during the Fog Remote Sensing and Modeling (FRAM) and Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations (SAAWSO) projects that took place over the cold climatic regions of Canada, including Yellowknife, St. John's, and Goose Bay, respectively, were studied to assess missing snow effect on weather and climate change simulations. The Ground Cloud Imaging Probe (GCIP) together with other microphysical precipitation sensors (e.g. fog device, distrometer) can be used to better understand fog deposition, freezing drizzle, light rain, and light snow spectral characteristics and shape. Light snow particle size range based on GCIP measurements is between 7.5 and 940 µm, and provides particle size spectra over 60 channels at 15 µm intervals, as well as particle shape. The GCIP measurements together with hydrometeor measurements obtained from a distrometer called laser precipitation monitor (LPM) were used in an integrated approach for snow precipitation analysis because of the measurements uncertainties in the particle sizes less than 500 µm. The results suggest that missing light snow depth measurement as less than 1 mm/d can affect the energy budget of Arctic environments over a 6 month time period up to -2 to -5 W/m2 if snow sublimates. These values can be comparable with other feedbacks in climate simulations such as aerosol effects. In this study, GCIP used for light snow measurements and ice fog will be discussed and challenges related to measurement of light snow precipitation microphysics will be emphasized.

  7. A Phase-tracking Snow Micro-structure Model

    NASA Astrophysics Data System (ADS)

    Slaughter, A. E.; Zabaras, N.

    2012-12-01

    Utilizing a methodology derived from models for phase transitions in alloy solidification [1], a 3D finite element (FE) model for snow metamorphism was developed. Avalanches are known to occur due to the existence of a weak-layer of faceted crystals, which form due to temperature gradients within the snow through a process known as kinetic metamorphism [2]. In general, snow models are limited in their ability to model these microstructural changes, especially in three dimensions, and rely on effective properties. To enhance the tools available to avalanche researchers a finite element model was developed capable of tracking vapor deposition within the snow. This is accomplished using a fixed-domain, stabilized finite element solution for the energy, mass, momentum, and transport equations. Using a level-set parameter the domain is separated into either solid or fluid components and along the phase-change boundary a "mushy-zone" is establish [1, 3]. This zone is modeled as porous media that includes the effects of shrinkage and density changes [1]. The basis of the model is the open-source C++ libMesh FE library, as such the model includes adaptive mesh coarsening and refinement and relies on domain decomposition for optimum parallel performance. This work is the initial phase of an ongoing research project that aims to demonstrate the ability to model snow at the micro-structural level and move away from the common coarse, effective property modeling techniques. It will serve as the deterministic basis for a multi-scale, stochastic model of snow that will account for uncertainties such as poorly understood growth properties and measurement variability. Future applications may include the inclusion of liquid melt and include external forces, yielding a comprehensive thermo-mechanical model that could evolve and fracture. [1] D. Samanta, N. Zabaras (2005), Modelling convection in solidification processes using stabilized finite element techniques, J. Numer. Meth. Eng

  8. Analyzing the importance of wind-blown snow accumulations on Mount

    NASA Astrophysics Data System (ADS)

    Nestler, Alexander; Huss, Matthias; Ambartsumian, Rouben; Hambarian, Artak; Mohr, Sandra; Santi, Flavio

    2013-04-01

    Armenia's climate has a predominantly continental character with high amounts of precipitation and low temperatures during wintertime and a lack of precipitation together with high temperatures during summer. On the volcano Mount Aragatz, snow is relocated by strong winds into massive accumulations between 2500 and 4100 m a.s.l. during the winter season. These snow accumulations appear every winter in regular patterns as cornices on the lee side of sharp edges, such as those of ridges and canyons, which are arranged in a radial manner around the central crater. The biggest cornices almost outlast the hot period and provide considerable amounts of melt water until they disappear completely by the end of August. Snow melt water is known to have a high economic importance for agriculture on the slopes of Mount Aragatz and in the surroundings of Armenia's captial Yerewan. The aim of this study is to estimate the quantity of water naturally stored as snow on Mount Aragatz, and to what degree the use of geotextiles can prolong the lives of these snow accumulations. The characteristics and the spatial distribution of snow cornices on Mount Aragatz were determined using classical glaciological methods in June/July 2011 and 2012, involving snow depth soundings, water equivalent measurements and snow melt monitoring using ablation stakes, together with GPS mappings and classifications obtained from satellite images of the snow cornices. The combination of these data with ASTER DEMs and local weather data allows the modelling of the formation of wind-driven snow accumulations. Statistical relationships between the measured extent and volume of the snow cornices and surface parameters such as slope, aspect and curvature are established. In order to analyze the meltdown of the snow accumulations and the consequent impacts on runoff generation and the hydrological regime, a glacio-hydrological model integrating topographic parameters and meteorological data is applied. The

  9. Marine boundary layer cloud regimes and POC formation in an LES coupled to a bulk aerosol scheme

    NASA Astrophysics Data System (ADS)

    Berner, A. H.; Bretherton, C. S.; Wood, R.; Muhlbauer, A.

    2013-07-01

    A large-eddy simulation (LES) coupled to a new bulk aerosol scheme is used to study long-lived regimes of aerosol-boundary layer cloud-precipitation interaction and the development of pockets of open cells (POCs) in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single log-normal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by cloud and rain. The LES with the aerosol scheme is applied to a range of steadily-forced simulations idealized from a well-observed POC case. The long-term system evolution is explored with extended two-dimensional simulations of up to 20 days, mostly with diurnally-averaged insolation. One three-dimensional two-day simulation confirms the initial development of the corresponding two-dimensional case. With weak mean subsidence, an initially aerosol-rich mixed layer deepens, the capping stratocumulus cloud slowly thickens and increasingly depletes aerosol via precipitation accretion, then the boundary layer transitions within a few hours into an open-cell regime with scattered precipitating cumuli, in which entrainment is much weaker. The inversion slowly collapses for several days until the cumulus clouds are too shallow to efficiently precipitate. Inversion cloud then reforms and radiatively drives renewed entrainment, allowing the boundary layer to deepen and become more aerosol-rich, until the stratocumulus layer thickens enough to undergo another cycle of open-cell formation. If mean subsidence is stronger, the stratocumulus never thickens enough to initiate drizzle and settles into a steady state. With lower initial aerosol concentrations, this system quickly transitions into open cells, collapses, and redevelops into a different steady state with a shallow, optically thin cloud layer. In these steady states, interstitial scavenging by cloud droplets is the main sink of aerosol number. The

  10. A Review of Global Satellite-Derived Snow Products

    NASA Technical Reports Server (NTRS)

    Frei, Allan; Tedesco, Marco; Lee, Shihyan; Foster, James; Hall, Dorothy K.; Kelly, Richard; Robinson, David A.

    2011-01-01

    Snow cover over the Northern Hemisphere plays a crucial role in the Earth's hydrology and surface energy balance, and modulates feedbacks that control variations of global climate. While many of these variations are associated with exchanges of energy and mass between the land surface and the atmosphere, other expected changes are likely to propagate downstream and affect oceanic processes in coastal zones. For example, a large component of the freshwater flux into the Arctic Ocean comes from snow melt. The timing and magnitude of this flux affects biological and thermodynamic processes in the Arctic Ocean, and potentially across the globe through their impact on North Atlantic Deep Water formation. Several recent global remotely sensed products provide information at unprecedented temporal, spatial, and spectral resolutions. In this article we review the theoretical underpinnings and characteristics of three key products. We also demonstrate the seasonal and spatial patterns of agreement and disagreement amongst them, and discuss current and future directions in their application and development. Though there is general agreement amongst these products, there can be disagreement over certain geographic regions and under conditions of ephemeral, patchy and melting snow.

  11. Discovery of a transiting planet near the snow-line

    SciTech Connect

    Kipping, D. M.; Torres, G.; Buchhave, L. A.; Kenyon, S. J.; Henze, C.; Bryson, S. T.; Isaacson, H.; Kolbl, R.; Marcy, G. W.; Stassun, K.; Bastien, F.

    2014-11-01

    In most theories of planet formation, the snow-line represents a boundary between the emergence of the interior rocky planets and the exterior ice giants. The wide separation of the snow-line makes the discovery of transiting worlds challenging, yet transits would allow for detailed subsequent characterization. We present the discovery of Kepler-421b, a Uranus-sized exoplanet transiting a G9/K0 dwarf once every 704.2 days in a near-circular orbit. Using public Kepler photometry, we demonstrate that the two observed transits can be uniquely attributed to the 704.2 day period. Detailed light curve analysis with BLENDER validates the planetary nature of Kepler-421b to >4σ confidence. Kepler-421b receives the same insolation as a body at ∼2 AU in the solar system, as well as a Uranian albedo, which would have an effective temperature of ∼180 K. Using a time-dependent model for the protoplanetary disk, we estimate that Kepler-421b's present semi-major axis was beyond the snow-line after ∼3 Myr, indicating that Kepler-421b may have formed at its observed location.

  12. A Review of Global Satellite-derived Snow Products

    NASA Technical Reports Server (NTRS)

    Frei, Allan; Tedesco, Marco; Lee, Shihyan; Foster, James; Hall, Dorothy K.; Kelly, Richard; Robinson, David A.

    2012-01-01

    Snow cover over the Northern Hemisphere plays a crucial role in the Earth's hydrology and surface energy balance, and modulates feedbacks that control variations of global climate. While many of these variations are associated with exchanges of energy and mass between the land surface and the atmosphere, other expected changes are likely to propagate downstream and affect oceanic processes in coastal zones. For example, a large component of the freshwater flux into the Arctic Ocean comes from snow melt. The timing and magnitude of this flux affects biological and thermodynamic processes in the Arctic Ocean, and potentially across the globe through their impact on North Atlantic Deep Water formation. Several recent global remotely sensed products provide information at unprecedented temporal, spatial, and spectral resolutions. In this article we review the theoretical underpinnings and characteristics of three key products. We also demonstrate the seasonal and spatial patterns of agreement and disagreement amongst them, and discuss current and future directions in their application and development. Though there is general agreement amongst these products, there can be disagreement over certain geographic regions and under conditions of ephemeral, patchy and melting snow.

  13. A Review of Global Satellite-Derived Snow Products

    NASA Technical Reports Server (NTRS)

    Frei, Allan; Tedesco, Marco; Lee, Shihyan; Foster, James; Hall, Dorothy K.; Kelly, Richard; Robinson, David A.

    2011-01-01

    Snow cover over the Northern Hemisphere plays a crucial role in the Earth s hydrology and surface energy balance, and modulates feedbacks that control variations of global climate. While many of these variations are associated with exchanges of energy and mass between the land surface and the atmosphere, other expected changes are likely to propagate downstream and affect oceanic processes in coastal zones. For example, a large component of the freshwater flux into the Arctic Ocean comes from snow melt. The timing and magnitude of this flux affects biological and thermodynamic processes in the Arctic Ocean, and potentially across the globe through their impact on North Atlantic Deep Water formation. Several recent global remotely sensed products provide information at unprecedented temporal, spatial, and spectral resolutions. In this article we review the theoretical underpinnings and characteristics of three key products. We also demonstrate the seasonal and spatial patterns of agreement and disagreement amongst them, and discuss current and future directions in their application and development. Though there is general agreement amongst these products, there can be disagreement over certain geographic regions and under conditions of ephemeral, patchy and melting snow

  14. Drifting and blowing snow, measurements and modelling

    NASA Astrophysics Data System (ADS)

    Gordon, Mark

    2007-12-01

    Blowing snow is a frequent and significant winter weather event, and there is currently a need for more observations and measurements of blowing snow, especially in arctic and subarctic environments. A camera system has been developed to measure the size and velocity of blowing snow particles. A second camera system has been developed to measure the relative blowing snow density profile near the snow surface. These systems have been used, along with standard meteorological instruments and optical particle counters, during field campaigns at Franklin Bay, NWT, and at Churchill, MB. An electric field mill was also deployed at Franklin Bay. Results demonstrate that the particle diameters follow a Gamma distribution with 103 < d¯ < 172 mum below a height of 0.15 m and 120 < d¯ < 154 mum between 0.2 m and 1.1 m. Within the saltation layer, the mass density can be approximated by a power-law (rhos ∝ z -gamma) with an exponent of gamma ≈ 1.5 for z < 40 mm. Between 40 < z < 100 mm, in the lower suspension layer, the value of the exponent increases to a range of 1.5 < gamma < 8. At greater heights, z > 100 mm, the exponent approaches gamma ≈ l. The height of saltation shows a very weak dependence on the friction velocity, a strong dependence on temperature and relative humidity, and a weak dependence on snow age. Electric field strengths as high as 2000 V m-1 were measured at a height of 0.5 m. A model to determine electric field strength based on the distribution of blowing snow particles shows a weak agreement with measurements. Results suggest the charge is most likely generated due to either fragmentation or asymmetric rubbing, which are both strongly dependent on wind speed. Modelling studies with the Canadian Land Surface Scheme (CLASS) and previous measurements of snow depth at Goose Bay, Hay River, the Beaufort Sea, Franklin Bay, and Resolute demonstrate that blowing snow sublimation can have a substantial effect on snow depth. Adding a blowing snow

  15. Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters

    NASA Astrophysics Data System (ADS)

    März, C.; Poulton, S. W.; Beckmann, B.; Küster, K.; Wagner, T.; Kasten, S.

    2008-08-01

    A high-resolution geochemical record of a 120 cm black shale interval deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 (ODP Leg 207, Site 1261, Demerara Rise) has been constructed to provide detailed insight into rapid changes in deep ocean and sediment paleo-redox conditions. High contents of organic matter, sulfur and redox-sensitive trace metals (Cd, Mo, V, Zn), as well as continuous lamination, point to deposition under consistently oxygen-free and largely sulfidic bottom water conditions. However, rapid and cyclic changes in deep ocean redox are documented by short-term (˜15-20 ka) intervals with decreased total organic carbon (TOC), S and redox-sensitive trace metal contents, and in particular pronounced phosphorus peaks (up to 2.5 wt% P) associated with elevated Fe oxide contents. Sequential iron and phosphate extractions confirm that P is dominantly bound to iron oxides and incorporated into authigenic apatite. Preservation of this Fe-P coupling in an otherwise sulfidic depositional environment (as indicated by Fe speciation and high amounts of sulfurized organic matter) may be unexpected, and provides evidence for temporarily non-sulfidic bottom waters. However, there is no evidence for deposition under oxic conditions. Instead, sulfidic conditions were punctuated by periods of anoxic, non-sulfidic bottom waters. During these periods, phosphate was effectively scavenged during precipitation of iron (oxyhydr)oxides in the upper water column, and was subsequently deposited and largely preserved at the sea floor. After ˜15-25 ka, sulfidic bottom water conditions were re-established, leading to the initial precipitation of CdS, ZnS and pyrite. Subsequently, increasing concentrations of H 2S in the water column led to extensive formation of sulfurized organic matter, which effectively scavenged particle-reactive Mo complexes (thiomolybdates). At Site 1261, sulfidic bottom waters lasted for ˜90-100 ka, followed by another period of anoxic, non

  16. Redox sensitivity of P cycling during marine black shale formation: Dynamics of sulfidic and anoxic, non-sulfidic bottom waters

    NASA Astrophysics Data System (ADS)

    März, C.; Poulton, S. W.; Beckmann, B.; Küster, K.; Wagner, T.; Kasten, S.

    2009-04-01

    A high-resolution geochemical record of a 120 cm black shale interval deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 (ODP Leg 207, Site 1261, Demerara Rise) has been constructed to provide detailed insight into rapid changes in deep ocean and sediment paleo-redox conditions. High contents of organic matter, sulfur and redox-sensitive trace metals (Cd, Mo, V, Zn), as well as continuous lamination, point to deposition under consistently oxygen-free and largely sulfidic bottom water conditions. However, rapid and cyclic changes in deep ocean redox are documented by short-term (about 15-20 ka) intervals with decreased total organic carbon (TOC), S and redox-sensitive trace metal contents, and in particular pronounced phosphorus peaks (up to 2.5 wt% P) associated with elevated Fe oxide contents. Sequential iron and phosphate extractions confirm that P is dominantly bound to iron oxides and incorporated into authigenic apatite. Preservation of this Fe-P coupling in an otherwise sulfidic depositional environment (as indicated by Fe speciation and high amounts of sulfurized organic matter) may be unexpected, and provides evidence for temporarily non-sulfidic bottom waters. However, there is no evidence for deposition under oxic conditions. Instead, sulfidic conditions were punctuated by periods of anoxic, non-sulfidic bottom waters. During these periods, phosphate was effectively scavenged during precipitation of iron (oxyhydr)oxides in the upper water column, and was subsequently deposited and largely preserved at the sea floor. After around 15-25 ka, sulfidic bottom water conditions were re-established, leading to the initial precipitation of CdS, ZnS and pyrite. Subsequently, increasing concentrations of H2S in the water column led to extensive formation of sulfurized organic matter, which effectively scavenged particle-reactive Mo complexes (thiomolybdates). At Site 1261, sulfidic bottom waters lasted for about 90-100 ka, followed by another period of

  17. Seasonal Snow Extent and Snow Volume in South America Using SSM/I Passive Microwave Data

    NASA Technical Reports Server (NTRS)

    Foster, James L.; Chang, A. T. C.; Hall, D. K.; Kelly, R.; Houser, Paul (Technical Monitor)

    2001-01-01

    Seasonal snow cover in South America was examined in this study using passive microwave satellite data from the Special Sensor Microwave Imagers (SSM/I) on board Defense Meteorological Satellite Program (DMSP) satellites. For the period from 1992-1998, both snow cover extent and snow depth (snow mass) were investigated during the winter months (May-August) in the Patagonia region of Argentina. Since above normal temperatures in this region are typically above freezing, the coldest winter month was found to be not only the month having the most extensive snow cover but also the month having the deepest snows. For the seven-year period of this study, the average snow cover extent (May-August) was about 0.46 million sq km and the average monthly snow mass was about 1.18 x 10(exp 13) kg. July 1992 was the month having the greatest snow extent (nearly 0.8 million sq km) and snow mass (approximately 2.6 x 10(exp 13) kg).

  18. Simulation of Snow Cover Evolution by means of the model SNOW4

    NASA Astrophysics Data System (ADS)

    Böhm, Uwe; Reich, Thomas; Schneider, Gerold

    2014-05-01

    SNOW 4 is a model to simulate accumulation and depletion of snow cover on a regular grid. The physical core of the model consists of modules to compute snow cover energy and mass balance. Available melting heat is calculated as the balance of the energy fluxes between snow cover, atmosphere and soil considering radiation and heat fluxes as well as heat conduction in the snow pack. Depending on the resulting melting heat, melting of snow or freezing of liquid water within the snow layer takes place. Retention, aging and regeneration are taken into account. SNOW 4 is forced by observation in an analysis phase which covers the last 30 hours and by numerical weather prediction model results in the forecast phase for 72 hours ahead. The model computes snow cover water equivalent and precipitation supply formed by melting water and precipitation not retained in the snow pack. The internal time step and the output interval is one hour. Grid resolution is on square kilometer. Model simulations are updated every six hours. Model evaluation demonstrates the ability of the model to provide high-quality results for use in flood warning and water management in most of the German federal states and surrounding countries.

  19. Snow and Ice Products from the Aqua, Terra, and ICESat Satellites at the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Meier, W. N.; Marquis, M.; Kaminski, M.; Armstrong, R.; Brodzik, M.

    2004-05-01

    The National Snow and Ice Data Center (NSIDC) at the University of Colorado, Boulder - one of eight NASA Distributed Active Archive Centers (DAACs) - archives and distributes several products from sensors on the suite of NASA Earth Observing System (EOS) satellites. These include the sun-synchronous polar-orbiting Aqua (launched 4 May 2002) and Terra (launched 18 December 1999) platforms and the Ice, Cloud, and land Elevation Satellite (ICESat) (launched 12 January 2003). The Advanced Microwave Scanning Radiometer-EOS (AMSR-E) is a multi-channel passive microwave radiometer on Aqua (http://nsidc.org/daac/amsr/). AMSR-E Level 3 snow products are produced in EASE-Grid format for both the Northern and Southern Hemisphere and are available as daily, 5-day, and monthly fields. Daily AMSR-E Level 3 sea ice products are produced on a polar stereographic projection at gridded spatial resolutions of 6.25 km, 12.5 km and 25 km. Since April 2004, these products have been available for public distribution from NSIDC. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua is a 36-channel visible/infrared sensor that produces a consistent long-term time series of fully-automated, quality-controlled data. Level 2 swath products are available for both snow cover and sea ice. Daily and 8-day Level 3 gridded snow cover products are available with estimates of snow extent and albedo at 500m resolution, along with daily Level 3 gridded sea ice products with estimates for sea ice extent and ice surface temperature at 1 km resolution. These products are currently available from NSIDC (http://nsidc.org/daac/modis/). The Geoscience Laser Altimeter System (GLAS) is the sole instrument on ICESat. The standard GLAS Level 2 ice sheet altimetry product contains the ice sheet elevation and elevation distribution calculated from algorithms fine-tuned for ice sheet returns. The standard GLAS Level 2 sea ice altimetry product contains the sea ice freeboard and sea ice

  20. Marine Careers.

    ERIC Educational Resources Information Center

    Gordon, Bernard L.

    The five papers in this publication on marine careers were selected so that science teachers, guidance councilors, and students could benefit from the experience and knowledge of individuals active in marine science. The areas considered are indicated by the titles: Professional Careers in Marine Science with the Federal Government, Marine Science…

  1. Snow cover and snow mass intercomparisons of general circulation models and remotely sensed datasets

    SciTech Connect

    Foster, J.; Liston, G.; Koster, R.

    1996-02-01

    Confirmation of the ability of general circulation models (GCMs) to accurately represent snow cover and snow mass distributions is vital for climate studies. There must be a high degree of confidence that what is being predicted by the models is reliable. In this study, snow output from seven GCMs and passive-microwave snow data derived from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) are intercompared. National Oceanic and Atmospheric Administration satellite data are used as the standard of reference for snow extent observations and the U.S. Air Force snow depth climatology is used as the standard for snow mass. The reliability of the SMMR snow data needs to be verified, as well. Data for both North America and Eurasia are examined in an effort to assess the magnitude of spatial and temporal variations that exist between the standards of reference, the models, and the passive microwave data. Results indicate that both the models and SMMR represent seasonal and year-to-year snow distributions fairly well. The passive microwave data and several of the models, however, consistently underestimate snow mass, but other models overestimate the mass of snow on the ground. The models do a better job simulating winter and summer snow conditions than in the transition months. In general, the underestimation by SMR is caused by absorption of microwave energy by vegetation. For the GCMs, differences between observed snow conditions can be ascribed to inaccuracies in simulating surface air temperatures and precipitation fields, especially during the spring and fall. 34 refs., 18 figs.

  2. Snow depth on Arctic and Antarctic sea ice derived from autonomous (Snow Buoy) measurements

    NASA Astrophysics Data System (ADS)

    Nicolaus, Marcel; Arndt, Stefanie; Hendricks, Stefan; Heygster, Georg; Huntemann, Marcus; Katlein, Christian; Langevin, Danielle; Rossmann, Leonard; Schwegmann, Sandra

    2016-04-01

    The snow cover on sea ice received more and more attention in recent sea ice studies and model simulations, because its physical properties dominate many sea ice and upper ocean processes. In particular; the temporal and spatial distribution of snow depth is of crucial importance for the energy and mass budgets of sea ice, as well as for the interaction with the atmosphere and the oceanic freshwater budget. Snow depth is also a crucial parameter for sea ice thickness retrieval algorithms from satellite altimetry data. Recent time series of Arctic sea ice volume only use monthly snow depth climatology, which cannot take into account annual changes of the snow depth and its properties. For Antarctic sea ice, no such climatology is available. With a few exceptions, snow depth on sea ice is determined from manual in-situ measurements with very limited coverage of space and time. Hence the need for more consistent observational data sets of snow depth on sea ice is frequently highlighted. Here, we present time series measurements of snow depths on Antarctic and Arctic sea ice, recorded by an innovative and affordable platform. This Snow Buoy is optimized to autonomously monitor the evolution of snow depth on sea ice and will allow new insights into its seasonality. In addition, the instruments report air temperature and atmospheric pressure directly into different international networks, e.g. the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). We introduce the Snow Buoy concept together with technical specifications and results on data quality, reliability, and performance of the units. We highlight the findings from four buoys, which simultaneously drifted through the Weddell Sea for more than 1.5 years, revealing unique information on characteristic regional and seasonal differences. Finally, results from seven snow buoys co-deployed on Arctic sea ice throughout the winter season 2015/16 suggest the great importance of local

  3. Estimating Snow Water Storage in North America Using CLM4, DART, and Snow Radiance Data Assimilation

    NASA Technical Reports Server (NTRS)

    Kwon, Yonghwan; Yang, Zong-Liang; Zhao, Long; Hoar, Timothy J.; Toure, Ally M.; Rodell, Matthew

    2016-01-01

    This paper addresses continental-scale snow estimates in North America using a recently developed snow radiance assimilation (RA) system. A series of RA experiments with the ensemble adjustment Kalman filter are conducted by assimilating the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature T(sub B) at 18.7- and 36.5-GHz vertical polarization channels. The overall RA performance in estimating snow depth for North America is improved by simultaneously updating the Community Land Model, version 4 (CLM4), snow/soil states and radiative transfer model (RTM) parameters involved in predicting T(sub B) based on their correlations with the prior T(sub B) (i.e., rule-based RA), although degradations are also observed. The RA system exhibits a more mixed performance for snow cover fraction estimates. Compared to the open-loop run (0.171m RMSE), the overall snow depth estimates are improved by 1.6% (0.168m RMSE) in the rule-based RA whereas the default RA (without a rule) results in a degradation of 3.6% (0.177mRMSE). Significant improvement of the snow depth estimates in the rule-based RA as observed for tundra snow class (11.5%, p < 0.05) and bare soil land-cover type (13.5%, p < 0.05). However, the overall improvement is not significant (p = 0.135) because snow estimates are degraded or marginally improved for other snow classes and land covers, especially the taiga snow class and forest land cover (7.1% and 7.3% degradations, respectively). The current RA system needs to be further refined to enhance snow estimates for various snow types and forested regions.

  4. 'Snow White' Trench After Scraping

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This view from the Surface Stereo Imager on NASA's Phoenix Mars Lander shows the trench informally named 'Snow White.' This image was taken after a series of scrapings by the lander's Robotic Arm on the 58th Martian day, or sol, of the mission (July 23, 2008). The scrapings were done in preparation for collecting a sample for analysis from a hard subsurface layer where soil may contain frozen water.

    The trench is 4 to 5 centimeters (about 2 inches) deep, about 23 centimeters (9 inches) wide and about 60 centimeters (24 inches) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  5. Measurement of evaporation from snow

    NASA Astrophysics Data System (ADS)

    Kaser, G.

    1982-04-01

    As part of a combined study of the ice, water and energy balance of Hintereisferner (Ötztal Alps) evaporation from snow and ice is measured since 1978 at an altitudes of 3030 m. These measurements are performed with plexiglass lysimeters of 400 em2 surface area. Evaluation of meteorological records yield a good correlation of evaporation with the difference of vapor pressure of the air and of the surface, respectively, for various classes of wind speed. The daily variation displays maximum evaporation before noon, and condensation during the afternoon with a maximum two hours after sunset. There is a sharp reversal from condensation to evaporation around midnight. The mean evaporation of a 12-day period in July/August 1980 was 0.25 mm per day, with a peak of 2.0 mm per day.

  6. Fractionation of Fe isotopes during Fe(II) oxidation by a marine photoferrotroph is controlled by the formation of organic Fe-complexes and colloidal Fe fractions

    NASA Astrophysics Data System (ADS)

    Swanner, Elizabeth D.; Wu, Wenfang; Schoenberg, Ronny; Byrne, James; Michel, F. Marc; Pan, Yongxin; Kappler, Andreas

    2015-09-01

    Much interest exists in finding mineralogical, organic, morphological, or isotopic biosignatures for Fe(II)-oxidizing bacteria (FeOB) that are retained in Fe-rich sediments, which could indicate the activity of these organisms in Fe-rich seawater, more common in the Precambrian Era. To date, the effort to establish a clear Fe isotopic signature in Fe minerals produced by Fe(II)-oxidizing metabolisms has been thwarted by the large kinetic fractionation incurred as freshly oxidized aqueous Fe(III) rapidly precipitates as Fe(III) (oxyhydr)oxide minerals at near neutral pH. The Fe(III) (oxyhydr)oxide minerals resulting from abiotic Fe(II) oxidation are isotopically heavy compared to the Fe(II) precursor and are not clearly distinguishable from minerals formed by FeOB isotopically. However, in marine hydrothermal systems and Fe(II)-rich springs the minerals formed are often isotopically lighter than expected considering the fraction of Fe(II) that has been oxidized and experimentally-determined fractionation factors. We measured the Fe isotopic composition of aqueous Fe (Feaq) and the final Fe mineral (Feppt) produced in batch experiment using the marine Fe(II)-oxidizing phototroph Rhodovulum iodosum. The δ56Feaq data are best described by a kinetic fractionation model, while the evolution of δ56Feppt appears to be controlled by a separate fractionation process. We propose that soluble Fe(III), and Fe(II) and Fe(III) extracted from the Feppt may act as intermediates between Fe(II) oxidation and Fe(III) precipitation. Based on 57Fe Mössbauer spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and X-ray total scattering, we suggests these Fe phases, collectively Fe(II/III)interm, may consist of organic-ligand bound, sorbed, and/or colloidal Fe(II) and Fe(III) mineral phases that are isotopically lighter than the final Fe(III) mineral product. Similar intermediate phases, formed in response to organic carbon produced by FeOB and inorganic

  7. Light-absorbing impurities in Arctic snow

    NASA Astrophysics Data System (ADS)

    Doherty, S. J.; Warren, S. G.; Grenfell, T. C.; Clarke, A. D.; Brandt, R. E.

    2010-12-01

    Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content of light-absorbing impurities, expanding and updating the 1983-1984 survey of Clarke and Noone. Samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean during 1998 and 2005-2009, on tundra, glaciers, ice caps, sea ice, frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack is accessible for sampling. Sampling was carried out in summer on the Greenland Ice Sheet and on the Arctic Ocean, of melting glacier snow and sea ice as well as cold snow. About 1200 snow samples have been analyzed for this study. The snow is melted and filtered; the filters are analyzed in a specially designed spectrophotometer system to infer the concentration of black carbon (BC), the fraction of absorption due to non-BC light-absorbing constituents and the absorption Ångstrom exponent of all particles. This is done using BC calibration standards having a mass absorption efficiency of 6.0 m2 g-1 at 550 nm and by making an assumption that the absorption Angstrom exponent for BC is 1.0 and for non-BC light-absorbing aerosol is 5.0. The reduction of snow albedo is primarily due to BC, but other impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. The meltwater from selected snow samples was saved for chemical analysis to identify sources of the impurities. Median BC amounts in surface snow are as follows (nanograms of carbon per gram of snow): Greenland 3, Arctic Ocean snow 7, melting sea ice 8, Arctic Canada 8, subarctic Canada 14

  8. Enhanced Solar Energy Absorption by Internally-mixed Black Carbon in Snow Grains

    SciTech Connect

    Flanner, M. G.; Liu, Xiaohong; Zhou, Cheng; Penner, Joyce E.; Jiao, C.

    2012-05-30

    Here we explore light absorption by snowpack containing black carbon (BC) particles residing within ice grains. Basic considerations of particle volumes and BC/snow mass concentrations show that there are generally 0:05-109 BC particles for each ice grain. This suggests that internal BC is likely distributed as multiple inclusions within ice grains, and thus the dynamic effective medium approximation (DEMA) (Chylek and Srivastava, 1983) is a more appropriate optical representation for BC/ice composites than coated-sphere or standard mixing approximations. DEMA calculations show that the 460 nm absorption cross-section of BC/ice composites, normalized to the mass of BC, is typically enhanced by factors of 1.8-2.1 relative to interstitial BC. BC effective radius is the dominant cause of variation in this enhancement, compared with ice grain size and BC volume fraction. We apply two atmospheric aerosol models that simulate interstitial and within-hydrometeor BC lifecycles. Although only {approx}2% of the atmospheric BC burden is cloud-borne, 71-83% of the BC deposited to global snow and sea-ice surfaces occurs within hydrometeors. Key processes responsible for within-snow BC deposition are development of hydrophilic coatings on BC, activation of liquid droplets, and subsequent snow formation through riming or ice nucleation by other species and aggregation/accretion of ice particles. Applying deposition fields from these aerosol models in offline snow and sea-ice simulations, we calculate that 32-73% of BC in global surface snow resides within ice grains. This fraction is smaller than the within-hydrometeor deposition fraction because meltwater flux preferentially removes internal BC, while sublimation and freezing within snowpack expose internal BC. Incorporating the DEMA into a global climate model, we simulate increases in BC/snow radiative forcing of 43-86%, relative to scenarios that apply external optical properties to all BC. We show that snow metamorphism

  9. Elemental and fatty acid composition of snow algae in Arctic habitats

    PubMed Central

    Spijkerman, Elly; Wacker, Alexander; Weithoff, Guntram; Leya, Thomas

    2012-01-01

    Red, orange or green snow is the macroscopic phenomenon comprising different eukaryotic algae. Little is known about the ecology and nutrient regimes in these algal communities. Therefore, eight snow algal communities from five intensively tinted snow fields in western Spitsbergen were analysed for nutrient concentrations and fatty acid (FA) composition. To evaluate the importance of a shift from green to red forms on the FA-variability of the field samples, four snow algal strains were grown under nitrogen replete and moderate light (+N+ML) or N-limited and high light (−N+HL) conditions. All eight field algal communities were dominated by red and orange cysts. Dissolved nutrient concentration of the snow revealed a broad range of NH+4 (<0.005–1.2 mg N l−1) and only low PO3−4 (<18 μg P l−1) levels. The external nutrient concentration did not reflect cellular nutrient ratios as C:N and C:P ratios of the communities were highest at locations containing relatively high concentrations of NH+4 and PO3−4. Molar N:P ratios ranged from 11 to 21 and did not suggest clear limitation of a single nutrient. On a per carbon basis, we found a 6-fold difference in total FA content between the eight snow algal communities, ranging from 50 to 300 mg FA g C−1. In multivariate analyses total FA content opposed the cellular N:C quota and a large part of the FA variability among field locations originated from the abundant FAs C18:1n-9, C18:2n-6, and C18:3n-3. Both field samples and snow algal strains grown under −N+HL conditions had high concentrations of C18:1n-9. FAs possibly accumulated due to the cessation of growth. Differences in color and nutritional composition between patches of snow algal communities within one snow field were not directly related to nutrient conditions. We propose that the highly patchy distribution of snow algae within and between snow fields may also result from differences in topographical and geological parameters such as slope, melting

  10. Elemental and fatty acid composition of snow algae in Arctic habitats.

    PubMed

    Spijkerman, Elly; Wacker, Alexander; Weithoff, Guntram; Leya, Thomas

    2012-01-01

    Red, orange or green snow is the macroscopic phenomenon comprising different eukaryotic algae. Little is known about the ecology and nutrient regimes in these algal communities. Therefore, eight snow algal communities from five intensively tinted snow fields in western Spitsbergen were analysed for nutrient concentrations and fatty acid (FA) composition. To evaluate the importance of a shift from green to red forms on the FA-variability of the field samples, four snow algal strains were grown under nitrogen replete and moderate light (+N+ML) or N-limited and high light (-N+HL) conditions. All eight field algal communities were dominated by red and orange cysts. Dissolved nutrient concentration of the snow revealed a broad range of NH(+) (4) (<0.005-1.2 mg N l(-1)) and only low PO(3-) (4) (<18 μg P l(-1)) levels. The external nutrient concentration did not reflect cellular nutrient ratios as C:N and C:P ratios of the communities were highest at locations containing relatively high concentrations of NH(+) (4) and PO(3-) (4). Molar N:P ratios ranged from 11 to 21 and did not suggest clear limitation of a single nutrient. On a per carbon basis, we found a 6-fold difference in total FA content between the eight snow algal communities, ranging from 50 to 300 mg FA g C(-1). In multivariate analyses total FA content opposed the cellular N:C quota and a large part of the FA variability among field locations originated from the abundant FAs C18:1n-9, C18:2n-6, and C18:3n-3. Both field samples and snow algal strains grown under -N+HL conditions had high concentrations of C18:1n-9. FAs possibly accumulated due to the cessation of growth. Differences in color and nutritional composition between patches of snow algal communities within one snow field were not directly related to nutrient conditions. We propose that the highly patchy distribution of snow algae within and between snow fields may also result from differences in topographical and geological parameters such as slope

  11. Snow Depths on Antarctic sea ice in the Bellingshausen - Amundsen Seas from NASA IceBridge and In-Situ measurements

    NASA Astrophysics Data System (ADS)

    Prado, D. W.; Ackley, S. F.; Weissling, B.; Xie, H.

    2012-12-01

    Snow on sea ice is typically thought to control ice growth by modulating the conduction of heat through the ice and into the atmosphere as ice forms on the bottom and thickens the existing layer. An additional mechanism for Antarctic sea ice is that the accumulation of snow on the sea ice surface depresses it and causes flooding which can refreeze to snow ice, and thicken the sea ice from the top instead. In Situ measurements from two vessel expeditions in the Bellingshausen- and Amundsen Seas, J.C. Ross (Nov. 2010) and Oden (Dec. 2010 - Jan. 2011), showed that the majority of the sea ice surfaces were flooded during the period through ice stations and underway ASPeCt observations, and therefore identified the flooding-snow ice formation behavior as a principle source of ice thickening in these regions. A further consequence of widespread flooding is that the snow surface elevation is 90 to 100% of the snow depth on most of the sea ice cover. From in situ measurements, therefore, snow surface elevation has been determined to be an effective proxy for snow depth on Antarctic sea ice. In the same regions, airborne lidar was conducted from NASA's IceBridge aircraft in flights during Oct-Nov in 2009, 2010 and 2011. The same track lines were flown each year. Snow surface elevations are determined from airborne lidar with correction to local sea level made by returned signal intensity to locate leads which can then be used as a local sea level reference for elevation. Ship based measurements, near the same regions as portions of the flight lines are compared to snow depths determined from airborne snow elevation as validation data (2010 flight line). Interannual changes in snow depth are then determined over selected portions of the flights and used to examine regional variations in ice formation from 2009-2011 in the Bellingshausen and Amundsen Seas.

  12. The Snow Data System at NASA JPL

    NASA Astrophysics Data System (ADS)

    Laidlaw, R.; Painter, T. H.; Mattmann, C. A.; Ramirez, P.; Brodzik, M. J.; Rittger, K.; Bormann, K. J.; Burgess, A. B.; Zimdars, P.; McGibbney, L. J.; Goodale, C. E.; Joyce, M.

    2015-12-01

    The Snow Data System at NASA JPL includes a data processing pipeline built with open source software, Apache 'Object Oriented Data Technology' (OODT). It produces a variety of data products using inputs from satellites such as MODIS, VIIRS and Landsat. Processing is carried out in parallel across a high-powered computing cluster. Algorithms such as 'Snow Covered Area and Grain-size' (SCAG) and 'Dust Radiative Forcing in Snow' (DRFS) are applied to satellite inputs to produce output images that are used by many scientists and institutions around the world. This poster will describe the Snow Data System, its outputs and their uses and applications, along with recent advancements to the system and plans for the future. Advancements for 2015 include automated daily processing of historic MODIS data for SCAG (MODSCAG) and DRFS (MODDRFS), automation of SCAG processing for VIIRS satellite inputs (VIIRSCAG) and an updated version of SCAG for Landsat Thematic Mapper inputs (TMSCAG) that takes advantage of Graphics Processing Units (GPUs) for faster processing speeds. The pipeline has been upgraded to use the latest version of OODT and its workflows have been streamlined to enable computer operators to process data on demand. Additional products have been added, such as rolling 8-day composites of MODSCAG data, a new version of the MODSCAG 'annual minimum ice and snow extent' (MODICE) product, and recoded MODSCAG data for the 'Satellite Snow Product Intercomparison and Evaluation Experiment' (SnowPEx) project.

  13. Adsorption of phenanthrene on natural snow.

    PubMed

    Domine, Florent; Cincinelli, Alessandra; Bonnaud, Elodie; Martellini, Tania; Picaud, Sylvain

    2007-09-01

    The snowpack is a reservoir for semivolatile organic compounds (SVOCs) and, in particular, for persistent organic pollutants (POPs), which are sequestered in winter and released to the atmosphere or hydrosphere in the spring. Modeling these processes usually assumes that SVOCs are incorporated into the snowpack by adsorption to snow surfaces, but this has never been proven because the specific surface area (SSA) of snow has never been measured together with snow composition. Here we expose natural snow to phenanthrene vapors (one of the more volatile POPs) and measure for the first time both the SSA and the chemical composition of the snow. The results are consistent with an adsorption equilibrium. The measured Henry's law constant is H(Phen)(T) = 2.88 x 10(22) exp(-10660/7) Pa m2 mol(-1), with Tin Kelvin. The adsorption enthalpy is delta H(ads) = -89 +/- 18 kJ mol(-1). We also perform molecular dynamics calculations of phenanthrene adsorption to ice and obtain AHads = -85 +/- 8 kJ mol(-1), close to the experimental value. Results are applied to the adsorption of phenanthrene to the Arctic and subarctic snowpacks. The subarctic snowpack, with a low snow area index (SAI = 1000), is a negligible reservoir of phenanthrene, butthe colder Arctic snowpack, with SAI = 2500, sequesters most of the phenanthrene present in the (snow + boundary layer) system.

  14. Blowing Snow Over the Antarctic Plateau

    NASA Technical Reports Server (NTRS)

    Mahesh, Ashwin; Eager, Rebecca; Campbell, James R.; Spinhirne, James D.

    2002-01-01

    Studies of blowing snow over Antarctica have been limited greatly by the remoteness and harsh conditions of the region. Space-based observations are also of lesser value than elsewhere, given the similarities between ice clouds and snow-covered surfaces, both at infrared and visible wavelengths. It is only in recent years that routine ground-based observation programs have acquired sufficient data to overcome the gap in our understanding of surface blowing snow. In this paper, observations of blowing snow from visual observers' records as well as ground-based spectral and lidar programs at South Pole station are analyzed to obtain the first climatology of blowing snow over the Antarctic plateau. Occurrence frequencies, correlation with wind direction and speed, typical layer heights, as well as optical depths are determined. Blowing snow is seen in roughly one third of the visual observations and occurs under a narrow range of wind directions. The near-surface layers typically a few hundred meters thick emit radiances similar to those from thin clouds. Because blowing snow remains close to the surface and is frequently present, it will produce small biases in space-borne altimetry; these must be properly estimated and corrected.

  15. Snow Storm Blankets Southeastern U.S.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new year's storm brought heavy snow to portions of the southeastern United States, with some regions receiving more than a foot in less than two days. By Friday, January 4, 2002, the skies had cleared, and MODIS captured this false-color image showing the extent of the snowfall. Snow cover is red, and extends all the way from Alabama (lower left), up through Georgia, South Carolina, North Carolina, Virginia, and Maryland, including the southern reaches of the Delmarva Peninsula (upper right). Beneath some clouds in West Virginia (top center), snow is also visible on the Allegheny Mountains and the Appalachian Plateau, although it did come from the same storm. Though red isn't the color we associate with snow, scientists often find 'false-color' images more useful than 'true-color' images in certain situations. True-color images are images in which the satellite data are made to look like what our eyes would see, using a combination of red, green, and blue. In a true-color image of this scene, cloud and snow would appear almost identical-both would be very bright white-and would be hard to distinguish from each other. However, at near-infrared wavelengths of light, snow cover absorbs sunlight and therefore appears much darker than clouds. So a false-color image in which one visible wavelength of the data is colored red, and different near-infrared wavelengths are colored green and blue helps show the snow cover most clearly.

  16. Potential genesis and implications of calcium nitrate in Antarctic snow

    NASA Astrophysics Data System (ADS)

    Mahalinganathan, K.; Thamban, M.

    2015-11-01

    Among the large variety of particulates in the atmosphere, calcic mineral dust particles have highly reactive surfaces that undergo heterogeneous reactions with nitrogen oxides contiguously. The association between Ca2+, an important proxy indicator of mineral dust and NO3-, a dominant anion in the Antarctic snow pack was analysed. A total of 41 snow cores (~ 1 m each) that represent snow deposited during 2008-2009 were studied along coastal-inland transects from two different regions - the Princess Elizabeth Land (PEL) and central Dronning Maud Land (cDML) in East Antarctica. Correlation statistics showed a strong association (at 99 % significance level) between NO3- and Ca2+ at the near-coastal sections of both PEL (r = 0.72) and cDML (r = 0.76) transects. Similarly, a strong association between these ions was also observed in snow deposits at the inland sections of PEL (r = 0.8) and cDML (r = 0.85). Such systematic associations between Ca2+ and NO3- is attributed to the interaction between calcic mineral dust and nitrogen oxides in the atmosphere, leading to the possible formation of calcium nitrate (Ca(NO3)2). Forward and back trajectory analyses using HYSPLIT model v. 4 revealed that Southern South America (SSA) was an important dust emitting source to the study region, aided by the westerlies. Particle size distribution showed that over 90 % of the dust was in the range < 4 μm, indicating that these dust particles reached the Antarctic region via long range transport from the SSA region. We propose that the association between Ca2+ and NO3- occurs during the long range transport due to the formation of Ca(NO3)2. The Ca(NO3)2 thus formed in the atmosphere undergo deposition over Antarctica under the influence of anticyclonic polar easterlies. However, influence of local dust sources from the nunataks in cDML evidently mask such association in the mountainous region. The study indicates that the input of dust-bound NO3- may contribute a significant fraction of

  17. Potential for Monitoring Snow Cover in Boreal Forests by Combining MODIS Snow Cover and AMSR-E SWE Maps

    NASA Technical Reports Server (NTRS)

    Riggs, George A.; Hall, Dorothy K.; Foster, James L.

    2009-01-01

    Monitoring of snow cover extent and snow water equivalent (SWE) in boreal forests is important for determining the amount of potential runoff and beginning date of snowmelt. The great expanse of the boreal forest necessitates the use of satellite measurements to monitor snow cover. Snow cover in the boreal forest can be mapped with either the Moderate Resolution Imaging Spectroradiometer (MODIS) or the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) microwave instrument. The extent of snow cover is estimated from the MODIS data and SWE is estimated from the AMSR-E. Environmental limitations affect both sensors in different ways to limit their ability to detect snow in some situations. Forest density, snow wetness, and snow depth are factors that limit the effectiveness of both sensors for snow detection. Cloud cover is a significant hindrance to monitoring snow cover extent Using MODIS but is not a hindrance to the use of the AMSR-E. These limitations could be mitigated by combining MODIS and AMSR-E data to allow for improved interpretation of snow cover extent and SWE on a daily basis and provide temporal continuity of snow mapping across the boreal forest regions in Canada. The purpose of this study is to investigate if temporal monitoring of snow cover using a combination of MODIS and AMSR-E data could yield a better interpretation of changing snow cover conditions. The MODIS snow mapping algorithm is based on snow detection using the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to enhance snow detection in dense vegetation. (Other spectral threshold tests are also used to map snow using MODIS.) Snow cover under a forest canopy may have an effect on the NDVI thus we use the NDVI in snow detection. A MODIS snow fraction product is also generated but not used in this study. In this study the NDSI and NDVI components of the snow mapping algorithm were calculated and analyzed to determine how they changed

  18. Viruses and marine pollution.

    PubMed

    Danovaro, R; Armeni, M; Corinaldesi, C; Mei, M L

    2003-03-01

    This short review summarises the present knowledge on pollutant impacts on marine viruses, virus-host systems and their potential ecological implications. Excess nutrients from sewage and river effluents are a primary cause of marine eutrophication and mucilage formation, often related to the development of large viral assemblages. At the same time, hydrocarbons, polychlorinated biphenyl and pesticides alter ecosystem functioning and can determinate changes in the virus-host interactions, thus increasing the potential of viral infection. All these pollutants might have synergistic effects on the virus-host system and are able to induce prophage, thus increasing the impact of viruses on marine ecosystems.

  19. BOREAS HYD-4 Standard Snow Course Data

    NASA Technical Reports Server (NTRS)

    Metcalfe, John R.; Goodison, Barry E.; Walker, Anne; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-4 work was focused on collecting data during the winter focused field campaign (FFC-W) to improve the understanding of winter processes within the boreal forest. Knowledge of snow cover and its variability in the boreal forest is fundamental if BOREAS is to achieve its goals of understanding the processes and states involved in the exchange of energy and water. The development and validation of remote sensing algorithms will provide the means to extend the knowledge of these processes and states from the local to the regional scale. A specific thrust of the research is the development and validation of snow cover algorithms from airborne passive microwave measurements. Snow surveys were conducted at special snow courses throughout the 1993/94, 1994/95, 1995/96, and 1996/97 winter seasons. These snow courses were located in different boreal forest land cover types (i.e., old aspen, old black spruce, young jack pine, forest clearing, etc.) to document snow cover variations throughout the season as a function of different land cover. Measurements of snow depth, density, and water equivalent were acquired on or near the first and fifteenth of each month during the snow cover season. The data are provided in tabular ASCII files. The HYD-4 standard snow course data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  20. Using snowboards and lysimeters to constrain snow model choices in a rain-snow transitional environment

    NASA Astrophysics Data System (ADS)

    Wayand, N. E.; Massmann, A.; Clark, M. P.; Lundquist, J. D.

    2015-12-01

    Physically based models of the hydrological cycle are critical for testing our understanding of the natural world and enabling forecasting of extreme events. Previous intercomparison studies (i.e. SNOWMIP I & II, PILPS) of existing snow models that vary in complexity have been hampered by multiple differences in model structure. Recent efforts to encompass multiple model hypothesizes into a single framework (i.e. the Structure for Understanding Multiple Modeling Alternatives [SUMMA] model), have provided the tools necessary for a more rigorous validation of process representation. However, there exist few snow observatories that measure sufficient physical states and fluxes to fully constrain the possible combinations within these multiple model frameworks. In practice, observations of bulk snow states, such as the snow water equivalent (SWE) or snow depth, are most commonly available. The downfall of calibrating a snow model using such single bulk variables can lead to parameter equanimity and compensatory errors, which ultimately impacts the skill of a model as a predictive tool. This study provides two examples of diagnosing modeled snow processes through novel error source identification. Simulations were performed at a recently upgraded (Oct. 2012) snow study site located at Snoqualmie Pass (917 m), in the Washington Cascades, USA. We focused on two physical processes, new snow accumulation and snowpack outflow during mid-winter rain-on-snow events, for their importance towards controlling runoff and flooding in this rain-snow transitional basin. Main results were: 1) modifying the snow model structure to match what was actually observed (i.e. a snow board), allowed the attribution of daily errors in model new snow accumulation to either partitioning, new snow density, or compaction. 2) Observed snow pit temperature profiles from infrared cameras and manual thermometers found that cold biases in the model snowpack temperature prior to rain-on-snow events could

  1. Charred Forests Increase Snow Albedo Decay: Watershed-Scale Implications of the Postfire Snow Albedo Effect

    NASA Astrophysics Data System (ADS)

    Gleason, K. E.; Nolin, A. W.

    2014-12-01

    Recent work shows that after a high severity forest fire, approximately 60% more solar radiation reaches the snow surface due to the reduction in canopy density. Also, significant amounts of black carbon (BC) particles and larger burned woody debris (BWD) are shed from standing charred trees, which concentrate on the snowpack, darken its surface, and reduce snow albedo by 50% during ablation. The postfire forest environment drives a substantial increase in net shortwave radiation at the snowpack surface, driving earlier and more rapid melt, however hydrologic models do not explicitly incorporate forest fire disturbance effects to snowpack dynamics. In this study we characterized, parameterized, and validated the postfire snow albedo effect: how the deposition and concentration of charred forest debris decreases snow albedo, increases snow albedo decay rates, and drives an earlier date of snow disappearance. For three study sites in the Oregon High Cascade Mountains, a 2-yr old burned forest, a 10-yr burned forest, and a nearby unburned forest, we used a suite of empirical data to characterize the magnitude and duration of the postfire effect to snow albedo decay. For WY 2012, WY2013, and WY2014 we conducted spectral albedo measurements, snow surface sampling, in-situ snow and meteorological monitoring, and snow energy balance modeling. From these data we developed a new parameterization which represents the postfire effect to snow albedo decay as a function of days-since-snowfall. We validated our parameterization using a physically-based, spatially-distributed snow accumulation and melt model, in-situ snow monitoring, net snowpack radiation, and remote sensing data. We modeled snow dynamics across the extent of all burned area in the headwaters of the McKenzie River Basin and validated the watershed-scale implications of the postfire snow albedo effect using in-situ micrometeorological and remote sensing data. This research quantified the watershed scale postfire

  2. Snow Water Equivalent Pressure Sensor Performance in a Deep Snow Cover

    NASA Astrophysics Data System (ADS)

    Johnson, J. B.; Gelvin, A. B.; Schaefer, G. L.

    2006-12-01

    Accurate measurements of snow water equivalent are important for a variety of water resource management operations. In the western US, real-time SWE measurements are made using snow pillows that can experience errors from snow-bridging, poor installation configuration, and enhanced solar radiation absorption. Snow pillow installations that place the pillow abnormally above or below the surrounding terrain can affect snow catchment. Snow pillows made from dark materials can preferentially absorb solar radiation penetrating the snow causing accelerated melt. To reduce these problems, the NRCS and CRREL developed an electronic SWE sensor to replace the snow pillow. During the winter of 2005-2006 the NRCS/CRREL electronic sensor was deployed at Hogg Pass, Oregon, with a total SWE accumulation of about 1000 mm. The NRCS/CRREL sensor consists of a center panel surrounded by eight outer panels whose purpose is to buffer snow bridging loads. By separately monitoring load cell outputs from the sensor, snow-bridging events are directly measured. A snow-bridging event associated with a 180 mm SWE accumulation in a 24-hour period exhibited a SWE over-measurement of 60% at the sensor edge while the center panel showed less than a 10% effect. Individual load cell outputs were used to determine the most representative SWE value, which was within 5% of the adjacent snow pillow value. During the spring melt the NRCS/CRREL sensor melt recession lagged that of the snow pillow by about a week. Physical examination of the Hogg Pass site indicated that the CRREL sensor results were consistent with snow-on-the-ground observations. The snow pillow experienced accelerated melt because it was installed on a mound above the surrounding terrain and absorbed solar radiation through the snow. SWE pressure sensor accuracy is significantly improved by using an active center panel surrounded by buffer panels, monitoring several individual load cell to detect and correct snow-bridging errors, and

  3. Recent progress in snow and ice research

    SciTech Connect

    Richter-menge, J.A.; Colbeck, S.C.; Jezek, K.C. )

    1991-01-01

    A review of snow and ice research in 1987-1990 is presented, focusing on the effects of layers in seasonal snow covers, ice mechanics on fresh water and sea ice, and remote sensig of polar ice sheets. These topics provide useful examples of general needs in snow and ice research applicable to most areas, such as better representation in models of detailed processes, controlled laboratory experiments to quantify processes, and field studies to provide the appropriate context for interpretation of processes from remote sensing.

  4. Analysis of NIMBUS-7 SMMR Data. [Hokkaido, Japan snow cover

    NASA Technical Reports Server (NTRS)

    Tsuchiya, K.; Takeda, K.; Kozai, K.

    1985-01-01

    Measurements obtained with the SMMR OF NIMBUS-7 over Hokkaido snow field show that the relationship between snow depth and brightness temperature changes when snow depth becomes deeper than 50 cm. Average brightness temperature of the daytime indicates negative correlations with snow depth except for 6.6 GHz channel data which indicates weak positive correlation.

  5. Estimation of Snow Thickness on Sea Ice and Lake Ice Using Airborne SnowSAR Data

    NASA Astrophysics Data System (ADS)

    Veijola, Katriina; Makynen, Marko; Lemmetyinen, Juha; Praks, Jaan

    2016-08-01

    Currently, snow thickness on sea ice is operationally estimated using microwave radiometer data. However, the estimates are hampered by the inherent coarse spatial resolution of passive microwave sensors. Successful application of SAR imagery for snow thickness estimation has the potential of providing estimates of snow thickness with much finer spatial resolution.In this study, we concentrate on assessing the capability of X- and Ku-band SAR backscattering to estimate snow thickness on sea and lake ice. Co- and cross -polarized X- and Ku-band SAR backscattering data, acquired with the ESA airborne SnowSAR sensor, are applied. The SAR data acquisition and co-incident in-situ measurements were conducted in Finland in the winter of 2012 over sea ice and lake ice test sites.Our analysis shows which frequency and polarization combinations have best sensitivity to snow thickness on sea and lake ice and in deep discussion provides plausible ways to improve the results.

  6. Distribution of Snow and Maximum Snow Water Equivalent Obtained by LANDSAT Data and Degree Day Method

    NASA Technical Reports Server (NTRS)

    Takeda, K.; Ochiai, H.; Takeuchi, S.

    1985-01-01

    Maximum snow water equivalence and snowcover distribution are estimated using several LANDSAT data taken in snowmelting season over a four year period. The test site is Okutadami-gawa Basin located in the central position of Tohoku-Kanto-Chubu District. The year to year normalization for snowmelt volume computation on the snow line is conducted by year to year correction of degree days using the snowcover percentage within the test basin obtained from LANDSAT data. The maximum snow water equivalent map in the test basin is generated based on the normalized snowmelt volume on the snow line extracted from four LANDSAT data taken in a different year. The snowcover distribution on an arbitrary day in snowmelting of 1982 is estimated from the maximum snow water equivalent map. The estimated snowcover is compared with the snowcover area extracted from NOAA-AVHRR data taken on the same day. The applicability of the snow estimation using LANDSAT data is discussed.

  7. Volatile organic compounds in Arctic snow: concentrations and implications for atmospheric processes.

    PubMed

    Kos, Gregor; Kanthasami, Visahini; Adechina, Nafissa; Ariya, Parisa A

    2014-11-01

    The role of volatile organic compounds (VOC) in the snowpack for atmospheric oxidation, gas-particle transfer and aerosol formation remains poorly understood, partly due to a lack of methodology and unavailable data. We deployed solid phase micro-extraction (SPME) gas chromatography with flame ionization detection for measurement of halogenated, aromatic and oxygenated VOC in the snow pack in Alert, NU, Canada, a High Arctic site. Maximum concentrations in snow were 39 ± 6 μg L(-1) (styrene), indicating a potential VOC contribution to atmospheric oxidation and aerosol formation. Concurrently sampled air had concentrations of up to 1.0 ± 0.3 ng L(-1) (trichloroethene). Back trajectory data showed a change of air mass source region during a depletion event of several VOC in snow (e.g., trichloroethene and benzene). Snow profiles showed an enrichment of most compounds close to the surface. During a second study in Barrow, AK, USA VOC were quantified in snow and frost flowers in the Montreal lab. In Barrow work was carried out as part of the extensive OASIS (Ocean-Atmosphere-Sea Ice-Snowpack) field campaign. Maximum VOC concentrations were up to 1.3 ± 0.1 μg L(-1) (acetophenone). Bromoform in frost flowers averaged 0.19 ± 0.04 μg L(-1), indicating the potential to contribute to bromine generation through photolysis.

  8. Research on the seasonal snow of the Arctic Slope

    SciTech Connect

    Benson, C.S.

    1991-01-01

    This project deals with the seasonal snow on Alaska's Arctic Slope. Although it is concentrated on snow of the R{sub 4}D project area, it is important to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  9. Research on the seasonal snow of the Arctic Slope

    SciTech Connect

    Benson, C.S.

    1989-01-01

    This project deals with the seasonal snow on Alaska's Arctic Slope. Although it is concentrated on snow of the R40 project area, it is important to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination Of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  10. Research on the seasonal snow of the Arctic Slope

    SciTech Connect

    Benson, C.S.

    1986-01-01

    This project deals with the seasonal snow on Alaska's Arctic Slope. It is concentrated on snow of the R{sub 4}D project area. However, an important aspect of this study is to relate the snow cover of this area with the rest of the Arctic Slope. The goals include determination of the amount of precipitation which comes as snow, the wind transport of this snow and its depositional pattern as influenced by drifting, the physical properties of the snow, the physical processes which operate in it, the proportions of it which go into evaporation, infiltration and runoff, and the biological role of the snow cover.

  11. A passive microwave snow depth algorithm with a proxy for snow metamorphism

    USGS Publications Warehouse

    Josberger, E.G.; Mognard, N.M.

    2002-01-01

    Passive microwave brightness temperatures of snowpacks depend not only on the snow depth, but also on the internal snowpack properties, particularly the grain size, which changes through the winter. Algorithms that assume a constant grain size can yield erroneous estimates of snow depth or water equivalent. For snowpacks that are subject to temperatures well below freezing, the bulk temperature gradient through the snowpack controls the metamorphosis of the snow grains. This study used National Weather Service (NWS) station measurements of snow depth and air temperature from the Northern US Great Plains to determine temporal and spatial variability of the snow depth and bulk snowpack temperature gradient. This region is well suited for this study because it consists primarily of open farmland or prairie, has little relief, is subject to very cold temperatures, and has more than 280 reporting stations. A geostatistical technique called Kriging was used to grid the randomly spaced snow depth measurements. The resulting snow depth maps were then compared with the passive microwave observations from the Special Sensor Microwave Imager (SSM/I). Two snow seasons were examined: 1988-89, a typical snow year, and 1996-97, a record year for snow that was responsible for extensive flooding in the Red River Basin. Inspection of the time series of snow depth and microwave spectral gradient (the difference between the 19 and 37 GHz bands) showed that while the snowpack was constant, the spectral gradient continued to increase. However, there was a strong correlation (0.6 < R2 < 0.9) between the spectral gradient and the cumulative bulk temperature gradient through the snowpack (TGI). Hence, TGI is an index of grain size metamorphism that has occurred within the snowpack. TGI time series from 21 representative sites across the region and the corresponding SSM/I observations were used to develop an algorithm for snow depth that requires daily air temperatures. Copyright ?? 2002

  12. Assimilation of AMSR-E snow water equivalent data in a spatially-lumped snow model

    NASA Astrophysics Data System (ADS)

    Dziubanski, David J.; Franz, Kristie J.

    2016-09-01

    Accurately initializing snow model states in hydrologic prediction models is important for estimating future snowmelt, water supplies, and flooding potential. While ground-based snow observations give the most reliable information about snowpack conditions, they are spatially limited. In the north-central USA, there are no continual observations of hydrologically critical snow variables. Satellites offer the most likely source of spatial snow data, such as the snow water equivalent (SWE), for this region. In this study, we test the impact of assimilating SWE data from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) instrument into the US National Weather Service (NWS) SNOW17 model for seven watersheds in the Upper Mississippi River basin. The SNOW17 is coupled with the NWS Sacramento Soil Moisture Accounting (SACSMA) model, and both simulated SWE and discharge are evaluated. The ensemble Kalman filter (EnKF) assimilation framework is applied and updating occurs on a daily cycle for water years 2006-2011. Prior to assimilation, AMSR-E data is bias corrected using data from the National Operational Hydrologic Remote Sensing Center (NOHRSC) airborne snow survey program. An average AMSR-E SWE bias of -17.91 mm was found for the study basins. SNOW17 and SAC-SMA model parameters from the North Central River Forecast Center (NCRFC) are used. Compared to a baseline run without assimilation, the SWE assimilation improved discharge for five of the seven study sites, in particular for high discharge magnitudes associated with snow melt runoff. SWE and discharge simulations suggest that the SNOW17 is underestimating SWE and snowmelt rates in the study basins. Deep snow conditions and periods of snowmelt may have introduced error into the assimilation due to difficulty obtaining accurate brightness temperatures under these conditions. Overall results indicate that the AMSR-E data and EnKF are viable and effective solutions for improving simulations

  13. Progress in radar snow research. [Brookings, South Dakota

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.; Fung, A. K.; Aslam, A.

    1981-01-01

    Multifrequency measurements of the radar backscatter from snow-covered terrain were made at several sites in Brookings, South Dakota, during the month of March of 1979. The data are used to examine the response of the scattering coefficient to the following parameters: (1) snow surface roughness, (2) snow liquid water content, and (3) snow water equivalent. The results indicate that the scattering coefficient is insensitive to snow surface roughness if the snow is drv. For wet snow, however, surface roughness can have a strong influence on the magnitude of the scattering coefficient. These observations confirm the results predicted by a theoretical model that describes the snow as a volume of Rayleig scatterers, bounded by a Gaussian random surface. In addition, empirical models were developed to relate the scattering coefficient to snow liquid water content and the dependence of the scattering coefficient on water equivalent was evaluated for both wet and dry snow conditions.

  14. Manganese mineral formation by bacterial spores of the marine Bacillus , strain SG-1: Evidence for the direct oxidation of Mn(II) to Mn(IV)

    NASA Astrophysics Data System (ADS)

    Mandernack, Kevin W.; Post, Jeffrey; Tebo, Bradley M.

    1995-11-01

    The spores of a marine Bacillus bacterium, strain SG-1, are able to oxidize Mn (H) over a wide range of temperatures (0-80°C) and Mn (II) concentrations (25 mM), in both low ionic strength N- (2-hydroxyethyl) piperazine- N'-ethanesulfonic acid (HEPES) buffer (HB) and in HEPES-buffered seawater (SW). Using SG-1 spores as a catalyst for manganese mineral formation, and by varying the temperature and Mn (II) concentration at pH 7.4-8.0, a variety of manganese oxide and manganate minerals were formed under environmentally relevant conditions in HB and SW. In general, mixed phases of lower valence state minerals (hausmannite, Mn 30 4; feitknechtite, βMnOOH; and manganite, γMnOOH) formed in HB and SW at high Mn (II) concentrations (10 mM initial), or at high temperatures (70°C), by two weeks. βMnOOH was favored at low temperatures (3°C) and Mn 3O 4 at higher temperatures (55-70°C). After 1 year of aging, yMnOOH became the dominant or only mineral present at 25 and 55°C. At lower Mn (II) concentrations (initial concentrations ≤100 μM in HB and ≤1 MM in SW), Mn(IV) minerals precipitated. In HB the Mn(IV) minerals most often resembled sodium buserite, evidenced by collapse of a 10 to 7 Å phase with air drying at room temperature. In SW both buserite and Mg-rich noncollapsible 10 Å manganates were formed. The Mg-rich 10 Å manganates did not collapse to 7 Å even with baking at 100°C. The oxidation state of the minerals were generally higher in SW (as high as 3.7) than in HB (3.2). Mn (IV) minerals also formed at higher Mn (II) concentrations in SW than in HB. These observed differences between SW and HB may have resulted from differences in the chemical milieu, or because of the marine adapted physiology of the bacterial spores. Under a variety of conditions (HB and SW, 3-55δC) Mn (IV) mineral formation often occurred at pH and Mn (II) concentrations too high to be favorable for the disproportionation of Mn 30 4, or βMnOOH to Mn (IV). The results

  15. Spectral reflectance characteristics of different snow and snow-covered land surface objects and mixed spectrum fitting

    USGS Publications Warehouse

    Zhang, J.-H.; Zhou, Z.-M.; Wang, P.-J.; Yao, F.-M.; Yang, L.

    2011-01-01

    The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area. The result showed that for a pure snow spectrum, the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1030 nm wavelength. Compared with fresh snow, the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300~1300, 1700~1800 and 2200~2300 nm, the lowest was from the compacted snow and frozen ice. For the vegetation and snow mixed spectral characteristics, it was indicated that the spectral reflectance increased for the snow-covered land types(including pine leaf with snow and pine leaf on snow background), due to the influence of snow background in the range of 350~1300 nm. However, the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic. In the end, based on the spectrum analysis of snow, vegetation, and mixed snow/vegetation pixels, the mixed spectral fitting equations were established, and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones(correlation coefficient R2=0.9509).

  16. Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

    SciTech Connect

    Hadley, O.L.; Corrigan, C.E.; Kirchstetter, T.W.; Cliff, S.S.; Ramanathan, V.

    2010-01-12

    Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and calcium in the mountain aerosol indicates that one-quarter to one-third of the BC may have been transported from Asia.

  17. Organic contaminant release from melting snow. 2. Influence of snow pack and melt characteristics.

    PubMed

    Meyer, Torsten; Lei, Ying Duan; Muradi, Ibrahim; Wania, Frank

    2009-02-01

    Large reservoirs of organic contaminants in seasonal snowpack can be released in short pulses during spring snowmelt, potentially impacting the receiving ecosystems. Laboratory experiments using artificial snow spiked with organic target substances were conducted to investigate the behavior of six organic contaminants with widely variable distribution properties in melting snow. Whereas the influence of a chemical's equilibrium phase partitioning on the elution behavior is explored in a companion paper, we discuss here the impact of snow properties and melt features, including the snowpack depth, the temperature at the interface between soil and snow, the meltwater content the internal ice surface area, and the existence of distinct snow layers. Water-soluble organic substances are released in high concentrations at the beginning of a melt period when a deep and aged snowpack undergoes intense melting. Warm ground can cause notable melting at the snow bottom leading to a delayed and dampened concentration peak. Hydraulic barriers in layered snow packs cause preferential meltwater flow which also mitigates the early contaminant flush. Hydrophobic organic pollutants that are associated with particles accumulate near the snow surface and are released at the end of melting. Dirt cones at the surface of a dense snowpack enhance this enrichment. The findings of this laboratory study will aid in the understanding of the behavior of organic pollutants during the melting of more complex, natural snow covers.

  18. Photoreducible Mercury Loss from Arctic Snow Is Influenced by Temperature and Snow Age.

    PubMed

    Mann, Erin A; Mallory, Mark L; Ziegler, Susan E; Avery, Trevor S; Tordon, Rob; O'Driscoll, Nelson J

    2015-10-20

    Mercury (Hg) is an important environmental contaminant, due to its neurotoxicity and ability to bioaccumulate. The Arctic is a mercury-sensitive region, where organisms can accumulate high Hg concentrations. Snowpack mercury photoredox reactions may control how much Hg is transported with melting Arctic snow. This work aimed to (1) determine the significance of temperature combined with UV irradiation intensity and snow age on Hg(0) flux from Arctic snow and (2) elucidate the effect of temperature on snowpack Hg photoreduction kinetics. Using a Teflon flux chamber, snow temperature, UV irradiation, and snow age were found to significantly influence Hg(0) flux from Arctic snow. Cross-correlation analysis results suggest that UV radiation has a direct effect on Hg(0)flux, while temperature may indirectly influence flux. Laboratory experiments determined that temperature influenced Hg photoreduction kinetics when snow approached the melting point (>-2 °C), where the pseudo-first-order reduction rate constant, k, decreased twofold, and the photoreduced Hg amount, Hg(II)red, increased 10-fold. This suggests that temperature influences Hg photoreduction kinetics indirectly, likely by altering the solid:liquid water ratio. These results imply that large mass transfers of Hg from snow to air may take place during the Arctic snowmelt period, altering photoreducible Hg retention and transport with snow meltwater.

  19. Loss of Arctic Snow Cover and Sea Ice Extent Across the Land-Ocean Boundary During the Melt Season

    NASA Astrophysics Data System (ADS)

    Bliss, A.; Anderson, M. R.

    2010-12-01

    Concern over the rapid changes in the Arctic cryosphere in recent years has spurred much research into the response of sea ice and snow cover to warming temperatures and the resulting climate feedbacks. However, the vast majority of Arctic climate studies do not assess the response of both continental snow cover and sea ice in concert through the data record. This study is designed to compare the monthly Northern Hemispheric continental snow cover extent data available from Rutgers University Global Snow Lab and the passive microwave derived monthly Bootstrap algorithm sea ice extent data available from the National Snow and Ice Data Center (NSIDC) in the Arctic during the melt season (March-August) over the 29-year study period 1979-2007. Since these data are stored in incompatible formats, little research has gone into studying the concurrent variations in the annual loss of continental snow cover and sea ice extent across the land-ocean boundary. However, with a creation of a snow and ice extent climate data record (CDR) incorporating different data formats, one would allow analysis of these data to investigate conditions during the melt season. As a CDR example three autonomous study regions located in Siberia, North America, and Western Russia were determined to reveal any differences in the response of snow and sea ice extents during melt. Each study domain extends from over land, northward, into an Arctic marginal sea, containing a land-ocean boundary that is roughly parallel to latitude and is subject to considerable inter-annual variability in the extent and retreat of both snow and sea ice during the warm season. Each domain area was also selected to include a minimal extent of mountainous areas where persistent snow cover throughout the year could misrepresent the seasonal northward progression of snow cover lost, relative to other land domains in the study. The results show on average, sea ice extent is lost earlier in the year, in May, than snow cover

  20. Beware Heart Attack Risk from Shoveling Snow

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_163566.html Beware Heart Attack Risk From Shoveling Snow Canadian study finds cases ... why men are more likely to suffer a heart attack after a heavy snowfall, researchers report. In a ...

  1. Light-absorbing impurities in Arctic snow

    NASA Astrophysics Data System (ADS)

    Doherty, S. J.; Warren, S. G.; Grenfell, T. C.; Clarke, A. D.; Brandt, R. E.

    2010-08-01

    Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content of light-absorbing impurities, expanding and updating the 1983-1984 survey of Clarke and Noone. Samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean during 2005-2009, on tundra, glaciers, ice caps, sea ice, frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack is accessible for sampling. Sampling was carried out in summer on the Greenland ice sheet and on the Arctic Ocean, of melting glacier snow and sea ice as well as cold snow. About 1200 snow samples have been analyzed for this study. The snow is melted and filtered; the filters are analyzed in a specially designed spectrophotometer system to infer the concentration of black carbon (BC), the fraction of absorption due to non-BC light-absorbing constituents and the absorption Ångstrom exponent of all particles. The reduction of snow albedo is primarily due to BC, but other impurities, principally brown (organic) carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. The meltwater from selected snow samples was saved for chemical analysis to identify sources of the impurities. Median BC amounts in surface snow are as follows (nanograms of carbon per gram of snow): Greenland 3, Arctic Ocean snow 7, melting sea ice 8, Arctic Canada 8, Subarctic Canada 14, Svalbard 13, Northern Norway 21, Western Arctic Russia 26, Northeastern Siberia 17. Concentrations are more variable in the European Arctic than in Arctic Canada or the Arctic Ocean, probably because of the proximity to BC sources. Individual

  2. Sierra Nevada snow melt from SMS-2

    NASA Technical Reports Server (NTRS)

    Breaker, L. C.; Mcmillan, M. C.

    1975-01-01

    A film loop from SMS-2 imagery shows snow melt over the Sierra Nevadas from May 10 to July 8, 1975. The sequence indicates a successful application of geostationary satellite data for monitoring dynamic hydrologic conditions.

  3. A snow wetness retrieval algorithm for SAR

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Dozier, Jeff

    1992-01-01

    The objectives of this study are: (1) to evaluate the backscattering signals response to snow wetness; and (2) to develop an algorithm for snow wetness measurement using C-band polarimetric synthetic aperture radar (SAR). In hydrological investigations, modeling and forecasting of snowmelt runoff requires information about snowpack properties and their spatial variability. In particular, timely measurement of snow parameters is needed for operational hydrology. The liquid water content of snowpack is one of the important parameters. Active microwave sensors are highly sensitive to liquid water in the snowpack because of the large dielectric contrast between ice and water in the microwave spectrum. They are not affected by weather and have a spatial resolution compatible with the topographic variation in alpine regions. However, a quantitative algorithm for retrieval snow wetness has not yet been developed.

  4. Normalized-Difference Snow Index (NDSI)

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Riggs, George A.

    2010-01-01

    The Normalized-Difference Snow Index (NDSI) has a long history. 'The use of ratioing visible (VIS) and near-infrared (NIR) or short-wave infrared (SWIR) channels to separate snow and clouds was documented in the literature beginning in the mid-1970s. A considerable amount of work on this subject was conducted at, and published by, the Air Force Geophysics Laboratory (AFGL). The objective of the AFGL work was to discriminate snow cover from cloud cover using an automated algorithm to improve global cloud analyses. Later, automated methods that relied on the VIS/NIR ratio were refined substantially using satellite data In this section we provide a brief history of the use of the NDSI for mapping snow cover.

  5. The Impact of Detailed Snow Physics on the Simulation of Snow Cover and Subsurface Thermodynamics at Continental Scales

    NASA Technical Reports Server (NTRS)

    Stieglitz, Marc; Ducharne, Agnes; Koster, Randy; Suarez, Max; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    The three-layer snow model is coupled to the global catchment-based Land Surface Model (LSM) of the NASA Seasonal to Interannual Prediction Project (NSIPP) project, and the combined models are used to simulate the growth and ablation of snow cover over the North American continent for the period 1987-1988. The various snow processes included in the three-layer model, such as snow melting and re-freezing, dynamic changes in snow density, and snow insulating properties, are shown (through a comparison with the corresponding simulation using a much simpler snow model) to lead to an improved simulation of ground thermodynamics on the continental scale.

  6. Snow-Cover Variability in North America in the 2000-2001 Winter as Determined from MODIS Snow Products

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Salomonson, Vincent V.; Riggs, George A.; Chien, Janet Y. L.; Houser, Paul R. (Technical Monitor)

    2001-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) snow-cover maps have been available since September 13, 2000. These products, at 500 m spatial resolution, are available through the National Snow and Ice Data Center Distributed Active Archive Center in Boulder, Colorado. By the 2001-02 winter, 5 km climate-modeling grid (CMG) products will be available for presentation of global views of snow cover and for use in climate models. All MODIS snow-cover products are produced from automated algorithms that map snow in an objective manner. In this paper, we describe the MODIS snow products, and show snow maps from the fall of 2000 in North America.

  7. Snow darkening caused by black carbon emitted from fires

    NASA Astrophysics Data System (ADS)

    Engels, Jessica; Kloster, Silvia; Bourgeois, Quentin

    2014-05-01

    We implemented the effect of snow darkening caused by black carbon (BC) emitted from forest fires into the Max Planck Institute for Meteorology Earth System Model (MPI-M ESM) to estimate its potential climate impact of present day fire occurrence. Considerable amounts of black carbon emitted from fires are transported into snow covered regions. Already very small quantities of black carbon reduce the snow reflectance, with consequences for snow melting and snow spatial coverage. Therefore, the SNICAR (SNow And Ice Radiation) model (Flanner and Zender (2005)) is implemented in the land surface component (JSBACH) of the atmospheric general circulation model ECHAM6, developed at the MPI-M. The SNICAR model includes amongst other processes a complex calculation of the snow albedo depending on black carbon in snow and snow grain growth depending on water vapor fluxes for a five layer snow scheme. For the implementation of the SNICAR model into the one layer scheme of ECHAM6-JSBACH, we used the SNICAR-online version (http://snow.engin.umich.edu). This single-layer simulator provides the albedo of snow for selectable combinations of impurity content (e.g. black carbon), snow grain size, and incident solar flux characteristics. From this scheme we derived snow albedo values for black carbon in snow concentrations ranging between 0 and 1500 ng(BC)/g(snow) and for different snow grain sizes for the visible (0.3 - 0.7 µm) and near infrared range (0.7 - 1.5 µm). As snow grains grow over time, we assign different snow ages to different snow grain sizes (50, 150, 500, and 1000 µm). Here, a radius of 50 µm corresponds to new snow, whereas a radius of 1000 µm corresponds to old snow. The required snow age is taken from the BATS (Biosphere Atmosphere Transfer Scheme, Dickinson et al. (1986)) snow albedo implementation in ECHAM6-JSBACH. Here, we will present an extended evaluation of the model including a comparison of modeled black carbon in snow concentrations to observed

  8. 50 years of snow stratigraphy observations

    NASA Astrophysics Data System (ADS)

    Johansson, C.; Pohjola, V.; Jonasson, C.; Challagan, T. V.

    2012-04-01

    With start in autumn 1961 the Abisko Scientific Research Station (ASRS) located in the Swedish sub Arctic has performed snow stratigraphy observations, resulting in a unique 50 year long time series of data. The data set contains grain size, snow layer hardness, grain compactness and snow layer dryness, observed every second week during the winter season. In general snow and snow cover are important factors for the global radiation budget, and the earth's climate. On a more local scale the layered snowpack creates a relatively mild microclimate for Arctic plants and animals, and it also determines the water content of the snowpack (snow water equivalent) important for e.g. hydrological applications. Analysis of the snow stratigraphy data, divided into three consecutive time periods, show that there has been a change in the last time period. The variable most affected is the snow layer hardness, which shows an increase in hardness of the snowpack. The number of observations with a very hard snow layer/ice at ground level increased three-fold between the first two time periods and the last time period. The thickness of the bottom layer in the snowpack is also highly affected. There has been a 60% increase in layers thinner than 10 cm in the last time period, resulting in a mean reduction in the thickness of the bottom layer from 14 cm to 11 cm. Hence the living conditions for plants and animals at the ground surface have been highly changed. The changes in the snowpack are correlated to an increased mean winter air temperature. Thus, continued increasing, or temperatures within the same ranges as in the last time period, is likely to create harder snow condition in the future. These changes are likely to affect animals that live under the snow such as lemmings and voles or animals that graze sub-Arctic vegetation in winter (e.g. reindeer that would potentially require increased supplementary feeding that incurs financial costs to Sami reindeer herders). Any decrease

  9. Snow management practices in French ski resorts

    NASA Astrophysics Data System (ADS)

    Spandre, Pierre; Francois, Hugues; George-Marcelpoil, Emmanuelle; Morin, Samuel

    2016-04-01

    Winter tourism plays a fundamental role in the economy of French mountain regions but also in other countries such as Austria, USA or Canada. Ski operators originally developed grooming methods to provide comfortable and safe skiing conditions. The interannual variability of snow conditions and the competition with international destinations and alternative tourism activities encouraged ski resorts to mitigate their dependency to weather conditions through snowmaking facilities. However some regions may not be able to produce machine made snow due to inadequate conditions and low altitude resorts are still negatively impacted by low snow seasons. In the meantime, even though the operations of high altitude resorts do not show any dependency to the snow conditions they invest in snowmaking facilities. Such developments of snowmaking facilities may be related to a confused and contradictory perception of climate change resulting in individualistic evolutions of snowmaking facilities, also depending on ski resorts main features such as their altitude and size. Concurrently with the expansion of snowmaking facilities, a large range of indicators have been used to discuss the vulnerability of ski resorts such as the so-called "100 days rule" which was widely used with specific thresholds (i.e. minimum snow depth, dates) and constraints (i.e. snowmaking capacity). The present study aims to provide a detailed description of snow management practices and major priorities in French ski resorts with respect to their characteristics. We set up a survey in autumn 2014, collecting data from 56 French ski operators. We identify the priorities of ski operators and describe their snowmaking and grooming practices and facilities. The operators also provided their perception of the ski resort vulnerability to snow and economic challenges which we could compare with the actual snow conditions and ski lift tickets sales during the period from 2001 to 2012.

  10. Snow as a habitat for microorganisms

    NASA Technical Reports Server (NTRS)

    Hoham, Ronald W.

    1989-01-01

    There are three major habitats involving ice and snow, and the microorganisms studied from these habitats are most eukaryotic. Sea ice is inhabited by algae called diatoms, glacial ice has sparse populations of green algai cal desmids, and the temporary and permanent snows in mountainous regions and high latitudes are inhabited mostly by green algal flagellates. The life cycle of green algal flagellates is summarized by discussing the effects of light, temperature, nutrients, and snow melts. Specific examples of optimal conditions and environmental effects for various snow algae are given. It is not likely that the eukaryotic snow algae presented are candidated for life on the planet Mars. Evolutionally, eukaryotic cells as know on Earth may not have had the opportunity to develop on Mars (if life evolved at all on Mars) since eukaryotes did not appear on Earth until almost two billion years after the first prokaryotic organisms. However, the snow/ice ecosystems on Earth present themselves as extreme habitats were there is evidence of prokaryotic life (eubacteria and cyanbacteria) of which literally nothing is known. Any future surveillances of extant and/or extinct life on Mars should include probes (if not landing sites) to investigate sites of concentrations of ice water. The possibility of signs of life in Martian polar regions should not be overlooked.

  11. Volcanic deposits in Antarctic snow and ice

    NASA Astrophysics Data System (ADS)

    Delmas, Robert J.; Legrand, Michel; Aristarain, Alberto J.; Zanolini, FrançOise

    1985-12-01

    Major volcanic eruptions are able to spread large amounts of sulfuric acid all over the world. Acid layers of volcanic origin were detected for the first time a few years ago by Hammer in Greenland ice. The present paper deals with volcanic deposits in the Antarctic. The different methods that can be used to find volcanic acid deposits in snow and ice cores are compared: electrical conductivity, sulfate, and acidity measurements. Numerous snow and ice samples collected at several Antarctic locations were analyzed. The results reveal that the two major volcanic events recorded by H2SO4, fallout in Antarctic ice over the last century are the eruptions of Krakatoa (1883) and Agung (1963), both located at equatorial latitudes in the southern hemisphere. The volcanic signals are found to be particularly well defined at central Antarctic locations apparently in relation to the low snow accumulation rates in these areas. It is demonstrated that volcanic sulfuric acid in snow is not even partially neutralized by ammonia. The possible influence of Antarctic volcanic activity on snow chemistry is also discussed, using the three recent eruptions of the Deception Island volcano as examples. Only one of them seems to have had a significant effect on the chemistry of snow at a location 200 km from this volcano. It is concluded that Antarctic volcanic ice records are less complicated than Greenland records because of the limited number of volcanos in the southern hemisphere and the apparently higher signal to background ratio for acidity in Antarctica than in Greenland.

  12. The structure of powder snow avalanches

    NASA Astrophysics Data System (ADS)

    Sovilla, Betty; McElwaine, Jim N.; Louge, Michel Y.

    2015-01-01

    Powder snow avalanches (PSAs) can be hundreds of metres high and descend at astonishing speeds. This review paints a composite picture of PSAs from data acquired at the Vallée de la Sionne test site in Switzerland, including time-histories of snow cover thickness from buried RADAR and, at several elevations on a pylon, impact pressures from load cells, air pressure, particle velocity from optical sensors, and cloud density and particle cluster size from capacitance probes. PSAs feature distinct flow regions with stratification in mean density. At the head, highly fluctuating impact pressures weaken with elevation, while vertical velocity profiles evolve rapidly along the flow, suggesting that surface snow layers of light, cold, cohesionless snow erupt into a turbulent, inhomogeneous, recirculating frontal cloud region. For hundreds of metres behind the head, cloud stratification sharpens with the deposition of suspended cloud particles, while a denser basal flow of increasing thickness forms as deeper, warmer and heavier parts of the weakened snow cover are entrained. Toward the tail, vertical velocity profiles are more uniform, impact pressures become lower and steadier as the flow becomes thinner, and snow pack entrainment is negligible.

  13. Declining Spring Snow Cover Extent over Northern Hemisphere Lands

    NASA Astrophysics Data System (ADS)

    Robinson, David

    2015-04-01

    Annual snow cover extent (SCE) over Northern Hemisphere (NH) lands averages close to 26 million square kilometers. It ranges from an average of 47 million sq. km. in January to 3 million sq. km. (mostly atop the Greenland Ice Sheet) in August. SCE is calculated at the Rutgers Global Snow Lab from daily SCE maps produced by meteorologists at the National Ice Center, who rely primarily on visible satellite imagery to construct the maps. The Rutgers SCE climate data record (CDR) shows that since the late 1980s annual SCE over NH lands has averaged lower than earlier in the satellite era, which for SCE monitoring began in 1967. This is most evident from late winter through spring, being exceedingly pronounced this past decade at high latitudes in May and June. The most recent five Mays have been amongst the lowest seven in terms of NH SCE on record, with Eurasian (EUR) SCE at a record low in 2013. North American (NA) SCE achieved a record minimum in May 2010, but of late has not been as consistently low as over EUR. The past seven Junes have seen record minimum SCE over the NH, and six of the seven lowest over EUR and NA. The recent early timing of arctic snowmelt appears to be occurring at a pace equivalent to if not exceeding the loss of summer Arctic sea ice extent. In situ station observations suggest that spring snow is presently the least extensive in the past century. Possible reasons behind the early melt appear to be associated with atmospheric circulation patterns and overall warming. This presentation, while focusing on SCE variability utilizing the Rutgers SCE CDR, will also include discussion of a new merged snow extent and melt state CDR that includes data from NH continents, Greenland, and Arctic sea ice. Visible and microwave satellite data are employed in these efforts. The merged product is available in netCDF format from the National Snow and Ice Data Center. This includes 25 km (1999-2010) and 100 km (1967-2010) resolution versions using the Equal

  14. Singlet molecular oxygen on natural snow and ice

    NASA Astrophysics Data System (ADS)

    Bower, J. P.; Anastasio, C.

    2010-12-01

    Singlet molecular oxygen (1O2*) is a reactive intermediate formed when a chromophore absorbs light and subsequently transfers energy to dissolved oxygen. As an oxidant, 1O2* reacts rapidly with a number of electron-rich environmental pollutants. In our work, we show enhanced kinetics for 1O2* in frozen solutions, where its rate of formation (Rf) and steady state concentration ([1O2*]) can be many orders of magnitude higher than found in the same unfrozen solution. Our goal here is to identify the contribution of 1O2* to the decay of pollutants on snow and ice. We conducted experiments in laboratory solutions made to simulate the concentrations and characteristics of natural snow, as well as in natural snow collected in the Sierra Nevada mountains of California and at Summit, Greenland. Natural snow contains a mixture of inorganic salts and organic species that can function as sources and/or sinks for oxidants, as well as contribute colligative control on the volume of quasi-liquid layers that occur at the surface and grain boundaries of ice. In our experiments, solutions typically contained up to five components: (1) Furfuryl alcohol (FFA), a commonly used probe for 1O2*, (2) Rose Bengal (RB), a 1O2* sensitizer, (3) HOOH, a photochemical precursor for hydroxyl radical (●OH), (4) glycerol to simulate unknown, naturally occurring sinks for ●OH, and (5) sodium sulfate to control the total concentration of solutes. We illuminated samples in a temperature-controlled solar simulator and subsequently measured the loss of FFA using high performance liquid chromatography. To differentiate reactions of 1O2* from other sinks (e.g. ●OH), selective sink species were added to determine the fraction of FFA loss due to direct photolysis, reaction with 1O2*, and reaction with ●OH. We verified reactions of 1O2* with FFA by two methods. First, we utilized the kinetic solvent isotope effect, where an enhancement of FFA loss in a mixture of D2O/water is indicative 1O2* since [1

  15. Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA

    USGS Publications Warehouse

    Clow, David W.; Nanus, Leora; Verdin, Kristine L.; Schmidt, Jeffrey

    2012-01-01

    The National Weather Service's Snow Data Assimilation (SNODAS) program provides daily, gridded estimates of snow depth, snow water equivalent (SWE), and related snow parameters at a 1-km2 resolution for the conterminous USA. In this study, SNODAS snow depth and SWE estimates were compared with independent, ground-based snow survey data in the Colorado Rocky Mountains to assess SNODAS accuracy at the 1-km2 scale. Accuracy also was evaluated at the basin scale by comparing SNODAS model output to snowmelt runoff in 31 headwater basins with US Geological Survey stream gauges. Results from the snow surveys indicated that SNODAS performed well in forested areas, explaining 72% of the variance in snow depths and 77% of the variance in SWE. However, SNODAS showed poor agreement with measurements in alpine areas, explaining 16% of the variance in snow depth and 30% of the variance in SWE. At the basin scale, snowmelt runoff was moderately correlated (R2 = 0.52) with SNODAS model estimates. A simple method for adjusting SNODAS SWE estimates in alpine areas was developed that uses relations between prevailing wind direction, terrain, and vegetation to account for wind redistribution of snow in alpine terrain. The adjustments substantially improved agreement between measurements and SNODAS estimates, with the R2 of measured SWE values against SNODAS SWE estimates increasing from 0.42 to 0.63 and the root mean square error decreasing from 12 to 6 cm. Results from this study indicate that SNODAS can provide reliable data for input to moderate-scale to large-scale hydrologic models, which are essential for creating accurate runoff forecasts. Refinement of SNODAS SWE estimates for alpine areas to account for wind redistribution of snow could further improve model performance. Published 2011. This article is a US Government work and is in the public domain in the USA.

  16. Remote Sensing of Snow-covered Sea Ice with Ultra-wideband Airborne Radars

    NASA Astrophysics Data System (ADS)

    Yan, S.; Gogineni, P. S.; Gomez-Garcia, D.; Leuschen, C.; Hale, R.; Rodriguez-Morales, F.; Paden, J. D.; Li, J.

    2015-12-01

    The extent and thickness of sea ice and snow play a critical role in the Earth's climate system. Both sea ice and snow have high albedo and control the heat exchange between the atmosphere and ocean and atmosphere and land. In terms of hydrology, the presence of sea ice and snow modulates the flow and the salinity of ocean water. This in turn can modify the weather patterns around the globe. Understanding the formation, coverage and the properties of sea ice and snow are important for both short-term and long-term climate modeling. The advancements in high-frequency electronics and digital signal processing enabled the development of ultra-wideband radars by the Center for Remote Sensing of Ice Sheets (CReSIS) for airborne measurements of snow and ice properties over large areas. CReSIS recently developed and deployed two ultra-wideband airborne radars, namely the Multichannel Coherent Radar Depth Sounder/Imager (MCoRDS/I) and the Snow Radar. The MCoRDS/I is designed to operate over the frequency range of 180-450 MHz for sounding land ice and imaging its ice-bed interface. We also took advantage of the deployment to explore the potential of UWB MCoRDS/I in sounding sea ice and collected data on flight lines flown as part of NASA Operation IceBridge mission during Spring 2015. Preliminary results show we sounded sea ice under favorable conditions. We will perform detailed processing and analysis of data over the next few months and we will compare results obtained are compared with existing altimetry-derived data products. The new snow radar, on the other hand, operating from 2 to 18 GHz, was deployed on the NRL Twin Otter aircraft in Barrow, AK. It was shown to have a vertical resolution of down to 1.5 cm which opens up the potential for thin snow measurement on both sea ice and land. Both of these new radars will be further optimized for future airborne missions to demonstrate their capabilities for sea ice and snow measurements. We will also show new technical

  17. Snow Peak, OR: Miocene and Pliocene Tholeiitic Volcanism in the Cascadia Forearc

    NASA Astrophysics Data System (ADS)

    Hatfield, A. K.; Kent, A. J.; Nielsen, R. L.; Rowe, M. C.; Duncan, R. A.

    2007-12-01

    Snow Peak is a voluminous (>150 km3), glacially dissected shield volcano located approximately 50 km southeast of Salem, OR, with a summit height of 1,310 m above sea level. Snow Peak lies approximately 60 km west of the current High Cascade arc axis. Lavas from the southeast face of Snow Peak have been previously dated using K-Ar at ~3 Ma. New Ar-Ar dating indicates that lavas from the northwest face are ~5.4 Ma, and the summit plug is ~6 Ma. Snow Peak volcanics unconformably overlie western Cascade volcanics aged from middle to late Miocene (~10- 17 Ma). The age of Snow Peak is broadly contemporaneous with the initiation of modern High Cascade volcanism. Snow Peak's location provides a rare opportunity to study magmas produced within the modern High Cascades forearc region. The goal of this investigation is to characterize the composition and timing of volcanism at Snow Peak and the role of volatiles in magma genesis. Hypotheses for the formation of Snow Peak include flux melting associated with the Cascadia subduction zone and/or decompression melting associated with extensional faulting. Preliminary geochemical data on the basalts from Snow Peak indicate that they are low-to-medium-K tholeiites (SiO2 47.9-51.7 wt.%, MgO 5.5- 8.3 wt.%, K2O, 0.36-0.55 wt.%) and that they range from primitive to moderately evolved (Mg# 0.51-0.61). Common phenocryst phases are plagioclase, olivine, and clinopyroxene. Textures are typically hypocrystalline, and fine-grained to porphyritic. Mantle-normalized multi-element plots indicate Snow Peak lavas are generally HFSE depleted and LILE enriched. These data are consistent with a preliminary interpretation of a subduction zone signature, yet the major element composition most closely resembles high alumina olivine tholeiite (HAOT), more indicative of extensional environments. The degree of LILE enrichment is significantly lower than in calc alkaline lavas from the High Cascades and western Cascades. Determining the petrogenesis of

  18. An Ultra-Wideband, Microwave Radar for Measuring Snow Thickness on Sea Ice and Mapping Near-Surface Internal Layers in Polar Firn

    NASA Technical Reports Server (NTRS)

    Panzer, Ben; Gomez-Garcia, Daniel; Leuschen, Carl; Paden, John; Rodriguez-Morales, Fernando; Patel, Azsa; Markus, Thorsten; Holt, Benjamin; Gogineni, Prasad

    2013-01-01

    Sea ice is generally covered with snow, which can vary in thickness from a few centimeters to >1 m. Snow cover acts as a thermal insulator modulating the heat exchange between the ocean and the atmosphere, and it impacts sea-ice growth rates and overall thickness, a key indicator of climate change in polar regions. Snow depth is required to estimate sea-ice thickness using freeboard measurements made with satellite altimeters. The snow cover also acts as a mechanical load that depresses ice freeboard (snow and ice above sea level). Freeboard depression can result in flooding of the snow/ice interface and the formation of a thick slush layer, particularly in the Antarctic sea-ice cover. The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an ultra-wideband, microwave radar capable of operation on long-endurance aircraft to characterize the thickness of snow over sea ice. The low-power, 100mW signal is swept from 2 to 8GHz allowing the air/snow and snow/ ice interfaces to be mapped with 5 c range resolution in snow; this is an improvement over the original system that worked from 2 to 6.5 GHz. From 2009 to 2012, CReSIS successfully operated the radar on the NASA P-3B and DC-8 aircraft to collect data on snow-covered sea ice in the Arctic and Antarctic for NASA Operation IceBridge. The radar was found capable of snow depth retrievals ranging from 10cm to >1 m. We also demonstrated that this radar can be used to map near-surface internal layers in polar firn with fine range resolution. Here we describe the instrument design, characteristics and performance of the radar.

  19. Iodine-129 in snow and seawater in the Antarctic: level and source.

    PubMed

    Xing, Shan; Hou, Xiaolin; Aldahan, Ala; Possnert, Göran; Shi, Keliang; Yi, Peng; Zhou, Weijian

    2015-06-02

    Anthropogenic (129)I has been released to the environment in different ways and chemical species by human nuclear activities since the 1940s. These sources provide ideal tools to trace the dispersion of volatile pollutants in the atmosphere. Snow and seawater samples collected in Bellingshausen, Amundsen, and Ross Seas in Antarctica in 2011 were analyzed for (129)I and (127)I, including organic forms; it was observed that (129)I/(127)I atomic ratios in the Antarctic surface seawater ((6.1-13) × 10(-12)) are about 2 orders of magnitude lower than those in the Antarctic snow ((6.8-9.5) × 10(-10)), but 4-6 times higher than the prenuclear level (1.5 × 10(-12)), indicating a predominantly anthropogenic source of (129)I in the Antarctic environment. The (129)I level in snow in Antarctica is 2-4 orders of magnitude lower than that in the Northern Hemisphere, but is not significantly higher than that observed in other sites in the Southern Hemisphere. This feature indicates that (129)I in Antarctic snow mainly originates from atmospheric nuclear weapons testing from 1945 to 1980; resuspension and re-emission of the fallout (129)I in the Southern Hemisphere maintains the (129)I level in the Antarctic atmosphere. (129)I directly released to the atmosphere and re-emitted marine discharged (129)I from reprocessing plants in Europe might not significantly disperse to Antarctica.

  20. Low Temperature SEM of Precipitated and Metamorphosed Snow Crystals Collected and Transported from Remote Sites

    NASA Astrophysics Data System (ADS)

    Wergin, William P.; Rango, Albert; Erbe, Eric F.; Murphy, Charles A.

    1996-06-01

    Procedures were developed to sample, store, ship, and process precipitated and metamorphosed snow crystals, collectively known as “snowflakes,” from remote sites to a laboratory where they could be observed and photographed using low temperature scanning electron microscopy (LTSEM). Snow samples were collected during 1994 96 from West Virginia, Colorado, and Alaska and sent to Beltsville, Maryland for observation. The samples consisted of freshly precipitated snowflakes as well as snow that was collected from pits that were excavated in winter snowfields measuring up to 1.5m in depth. The snow crystals were mounted onto copper plates, plunged into lN2 and then transferred to a storage dewar that was shipped to the laboratory. Observations, which could be easily recorded in stereo format (three-dimension), revealed detailed surface features on the precipitated crystals consisting of rime, graupel, and skeletal features. Samples from snowpacks preserved the metamorphosed crystals, which had unique structural features and bonding patterns resulting from temperature and vapor pressure gradients. In late spring, the surface of a snowpack in an alpine region exhibited a reddish hue. Undisturbed surfaces from these snowpacks could be sampled to observe the snow crystals as well as the organisms responsible for the coloration. Etching the surface of samples from these sites exposed the presence of numerous cells believed to be algae. The results of this study indicate that LTSEM can be used to provide detailed information about the surface features of precipitated and metamorphosed snow crystals sampled at remote locations. The technique can also be used to increase our understanding about the ecology of snow. The results have application to research activities that attempt to forecast the quantity of water in the winter snowpack and the amount that will ultimately reach reservoirs and be available for agriculture and hydroelectric power.

  1. Influence of ice and snow covers on the UV exposure of terrestrial microbial communities: dosimetric studies.

    PubMed

    Cockell, Charles S; Rettberg, Petra; Horneck, Gerda; Wynn-Williams, David D; Scherer, Kerstin; Gugg-Helminger, Anton

    2002-08-01

    Bacillus subtilis spore biological dosimeters and electronic dosimeters were used to investigate the exposure of terrestrial microbial communities in micro-habitats covered by snow and ice in Antarctica. The melting of snow covers of between 5- and 15-cm thickness, depending on age and heterogeneity, could increase B. subtilis spore inactivation by up to an order of magnitude, a relative increase twice that caused by a 50% ozone depletion. Within the snow-pack at depths of less than approximately 3 cm snow algae could receive two to three times the DNA-weighted irradiance they would receive on bare ground. At the edge of the snow-pack, warming of low albedo soils resulted in the formation of overhangs that provided transient UV protection to thawed and growing microbial communities on the soils underneath. In shallow aquatic habitats, thin layers of heterogeneous ice of a few millimetres thickness were found to reduce DNA-weighted irradiances by up to 55% compared to full-sky values with equivalent DNA-weighted diffuse attenuation coefficients (K(DNA)) of >200 m(-1). A 2-mm snow-encrusted ice cover on a pond was equivalent to 10 cm of ice on a perennially ice covered lake. Ice covers also had the effect of stabilizing the UV exposure, which was often subject to rapid variations of up to 33% of the mean value caused by wind-rippling of the water surface. These data show that changing ice and snow covers cause relative changes in microbial UV exposure at least as great as those caused by changing ozone column abundance.

  2. Novel aerosol analysis approach for characterization of nanoparticulate matter in snow.

    PubMed

    Nazarenko, Yevgen; Rangel-Alvarado, Rodrigo B; Kos, Gregor; Kurien, Uday; Ariya, Parisa A

    2016-12-10

    Tropospheric aerosols are involved in several key atmospheric processes: from ice nucleation, cloud formation, and precipitation to weather and climate. The impact of aerosols on these atmospheric processes depends on the chemical and physical characteristics of aerosol particles, and these characteristics are still largely uncertain. In this study, we developed a system for processing and aerosolization of melted snow in particle-free air, coupled with a real-time measurement of aerosol size distributions. The newly developed technique involves bringing snow-borne particles into an airborne state, which enables application of high-resolution aerosol analysis and sampling techniques. This novel analytical approach was compared to a variety of complementary existing analytical methods as applied for characterization of snow samples from remote sites in Alert (Canada) and Barrow (USA), as well as urban Montreal (Canada). The dry aerosol measurements indicated a higher abundance of particles of all sizes, and the 30 nm size dominated in aerosol size distributions for the Montreal samples, closely followed by Barrow, with about 30% fewer 30 nm particles, and about four times lower 30 nm particle abundance in Alert samples, where 15 nm particles were most abundant instead. The aerosolization technique, used together with nanoparticle tracking analysis and electron microscopy, allowed measurement of a wide size range of snow-borne particles in various environmental snow samples. Here, we discuss the application of the new technique to achieve better physicochemical understanding of atmospheric and snow processes. The results showed high sensitivity and reduction of particle aggregation, as well as the ability to measure a high-resolution snow-borne particle size distribution, including nanoparticulate matter in the range of 10 to 100 nm.

  3. Quantification of uncertainties in snow accumulation, snowmelt, and snow disappearance dates

    NASA Astrophysics Data System (ADS)

    Raleigh, Mark S.

    Seasonal mountain snowpack holds hydrologic and ecologic significance worldwide. However, observation networks in complex terrain are typically sparse and provide minimal information about prevailing conditions. Snow patterns and processes in this data sparse environment can be characterized with numerical models and satellite-based remote sensing, and thus it is essential to understand their reliability. This research quantifies model and remote sensing uncertainties in snow accumulation, snowmelt, and snow disappearance as revealed through comparisons with unique ground-based measurements. The relationship between snow accumulation uncertainty and model configuration is assessed through a controlled experiment at 154 snow pillow sites in the western United States. To simulate snow water equivalent (SWE), the National Weather Service SNOW-17 model is tested as (1) a traditional "forward" model based primarily on precipitation, (2) a reconstruction model based on total snowmelt before the snow disappearance date, and (3) a combination of (1) and (2). For peak SWE estimation, the reliability of the parent models was indistinguishable, while the combined model was most reliable. A sensitivity analysis demonstrated that the parent models had opposite sensitivities to temperature that tended to cancel in the combined model. Uncertainty in model forcing and parameters significantly controlled model accuracy. Uncertainty in remotely sensed snow cover and snow disappearance in forested areas is enhanced by canopy obstruction but has been ill-quantified due to the lack of sub-canopy observations. To better quantify this uncertainty, dense networks of near-surface temperature sensors were installed at four study areas (≤ 1 km2) with varying forest cover in the Sierra Nevada, California. Snow presence at each sensor was detected during periods when temperature was damped, which resulted from snow cover insulation. This methodology was verified using time-lapse analysis and

  4. Marine pollution

    SciTech Connect

    Albaiges, J. )

    1989-01-01

    This book covers the following topics: Transport of marine pollutants; Transformation of pollutants in the marine environment; Biological effects of marine pollutants; Sources and transport of oil pollutants in the Persian Gulf; Trace metals and hydrocarbons in Syrian coastal waters; and Techniques for analysis of trace pollutants.

  5. A blending snow cover data base on MODIS and AMSR-E snow cover in Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Xiaohua, H.; Wang, J.; Che, T.; Dai, L. Y.

    2012-04-01

    The algorithms of MODIS Terra and MODIS Aqua versions of the snow products have been developed by the NASA National Snow and Ice Data Center (NSIDC). The MODIS global snow-cover products have been available through the NSIDC Distributed Active Archive Center (DAAC) since February 24, 2000 to Terra and July 4, 2002 to Aqua. The MODIS snow-cover maps represent a potential improvement relative to hemispheric-scale snow maps that are available today mainly because of the improved spatial resolution and snow/cloud discrimination capabilities of MODIS, and the frequent global coverage. In China, the snow distribution is different to other regions. Their accuracy on Qinghai-Tibet Plateau (QTP), however, has not yet been established. There are some drawbacks about NSIDC global snow cover products on QTP: 1. The characteristics of snow depth distribution on QTP: Thin, discontinuous. Our research indicated the MODIS snow-cover products underestimated the snow cover area in QTP. 2. The daily snow cover product from MODIS-Terra and Aqua can include the data gaps. 3. The snow products can separate snow from most obscuring clouds. However, there are still many cloud pixels in daily snow cover products. The study developed a new blending daily snow cover algorithm through improving the NSIDC snow algorithms and combining MODIS and AMSR-E data in QTP. The new snow cover products will provide daily snow cover at 500-m resolution in QTP. The new snow cover algorithm employs a grouped-criteria technique using the Normalized Difference Snow Index (NDSI) and other spectral threshold tests and image fusion technology to identify and classify snow on a pixel-by-pixel basis. The usefulness of the NDSI is based on the fact that snow and ice are considerably more reflective in the visible than in the shortwave IR part of the spectrum, and the reflectance of most clouds remains high in the short-wave IR, while the reflectance of snow is low. We propose a set of three steps, based on a

  6. Evolution of the surface area of a snow layer

    SciTech Connect

    Hanot, L.; Domine, F.

    1999-12-01

    Atmospheric trace gases can partition between the atmosphere and the snow surface. Because snow has a large surface-to-volume ratio, an important interaction potential between ice and atmospheric trace gases exists. Quantifying this partitioning requires the knowledge of the surface area (SA) of snow. Eleven samples were taken from a 50 cm thick snow fall at Col de Porte, near Grenoble (French Alps) between January 20 and February 4, 1998. Fresh snow and 3, 8, and 15-day-old snow were sampled at three different depths. Surface hoar, formed after the fall, was also sampled. Air and surface snow temperature, snow density, and snow fall rate were measured. Snow temperature always remained below freezing. Snow SA was measured using methane adsorption at 77.15 K. Values ranged from 2.25 m{sup 2}/g for fresh snow to 0.25 m{sup 2}/g for surface hoar and surface snow after 15 days. These values are much too high to be explained by the macroscopic aspect of snow crystals, and microstructures such as small rime droplets must have been present. Large decrease in SA with time were observed. The first meter of snowpack had a total surface area of about 50,000 m{sup 2} per m{sup 2} of ground. Reduction in SA will lead to the emission of adsorbed species by the snowpack, with possible considerable increase in atmospheric concentrations.

  7. Snow Cover and Snow Mass Intercomparisons of General Circulation Models and Remotely Sensed Datasets.

    NASA Astrophysics Data System (ADS)

    Foster, James; Liston, Glen; Koster, Randy; Essery, Richard; Behr, Helga; Dumenil, Lydia; Verseghy, Diana; Thompson, Starly; Pollard, David; Cohen, Judah

    1996-02-01

    Confirmation of the ability of general circulation models (GCMs) to accurately represent snow cover and snow mass distributions is vital for climate studies. There must be a high degree of confidence that what is being predicted by the models is reliable, since realistic results cannot be assured unless they are tested against results from observed data or other available datasets. In this study, snow output from seven GCMs and passive-microwave snow data derived from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) are intercompared. National Oceanic and Atmospheric Administration satellite data are used as the standard of reference for snow extent observations and the U.S. Air Force snow depth climatology is used as the standard for snow mass. The reliability of the SMMR snow data needs to be verified, as well, because currently this is the only available dataset that allows for yearly and monthly variations in snow depth. [The GCMs employed in this investigation are the United Kingdom Meteorological Office, Hadley Centre GCM, the Max Planck Institute for Meteorology/University of Hamburg (ECHAM) GCM, the Canadian Climate Centre GCM, the National Center for Atmospheric Research (GENESIS) GCM, the Goddard Institute for Space Studies GCM, the Goddard Laboratory for Atmospheres GCM and the Goddard Coupled Climate Dynamics Group (AIRES) GCM.] Data for both North America and Eurasia are examined in an effort to assess the magnitude of spatial and temporal variations that exist between the standards of reference, the models, and the passive microwave data. Results indicate that both the models and SMMR represent seasonal and year-to-year snow distributions fairly well. The passive microwave data and several of the models, however, consistently underestimate snow mass, but other models overestimate the mass of snow on the ground. The models do a better job simulating winter and summer snow conditions than in the transition months. In general, the

  8. Snow Model for the F-Layer

    NASA Astrophysics Data System (ADS)

    Lasbleis, M.; Hernlund, J. W.; Labrosse, S.

    2015-12-01

    Seismic observations of the Earth's core reveal a complex structure: radial and lateral heterogeneities in seismic anisotropy and attenuation in the solid inner core, but also discrepancies between observed P-wave velocity and homogeneous PREM model in the deep liquid outer core. In this work, we focus on the 200km anomalous layer at the bottom of the outer core that exhibits seismic velocities lower than the PREM model. It has been interpreted as a layer depleted in light elements, whereas the usual model considers that light elements are expelled at the surface of the inner core by freezing of the outer core alloy. Recent models of core formation argued for an early stratified liquid core, and the stratified layers at the top and bottom of the outer core would be a vestige of this primordial stratification. However, freezing of the inner core at the inner core boundary releases light elements that provide buoyancy fluxes that would mix the stratified liquid above with small scale buoyant plumes. To model the F-layer, we consider that the freezing of the iron alloy and the release of light elements have to occur in the bulk of the layer. Iron snow forms and settles in the layer, buffering the thermal and chemical profile to the liquidus. We show that this dynamics can both sustain and stabilize the stratified layer in the liquid outer core while simultaneously matching the seismic observations. However, the expected layer is stable only for a given set of parameters, in particular when a high thermal diffusivity (>100 W/m/K) is employed. If freezing of the iron alloy of the outer core occurs in the bulk of the layer, several assumptions for both the outer and inner core has to be discussed: the F-layer acts as a boundary layer for both composition and temperature, and modifies the quantity of light elements expelled into the outer core as well as the composition that freezes to form the inner core.

  9. Data sets for snow cover monitoring and modelling from the National Snow and Ice Data Center

    NASA Astrophysics Data System (ADS)

    Holm, M.; Daniels, K.; Scott, D.; McLean, B.; Weaver, R.

    2003-04-01

    A wide range of snow cover monitoring and modelling data sets are pending or are currently available from the National Snow and Ice Data Center (NSIDC). In-situ observations support validation experiments that enhance the accuracy of remote sensing data. In addition, remote sensing data are available in near-real time, providing coarse-resolution snow monitoring capability. Time series data beginning in 1966 are valuable for modelling efforts. NSIDC holdings include SMMR and SSM/I snow cover data, MODIS snow cover extent products, in-situ and satellite data collected for NASA's recent Cold Land Processes Experiment, and soon-to-be-released ASMR-E passive microwave products. The AMSR-E and MODIS sensors are part of NASA's Earth Observing System flying on the Terra and Aqua satellites Characteristics of these NSIDC-held data sets, appropriateness of products for specific applications, and data set access and availability will be presented.

  10. Genetic differentiation between sympatric and allopatric wintering populations of Snow Geese

    USGS Publications Warehouse

    Humphries, E.M.; Peters, J.L.; Jonsson, J.E.; Stone, R.; Afton, A.D.; Omland, K.E.

    2009-01-01

    Blackwater National Wildlife Refuge on the Delmarva Peninsula, Maryland, USA has been the wintering area of a small population of Lesser Snow Geese (Chen caerulescens caerulescens; LSGO) since the 1930s. Snow Geese primarily pair in wintering areas and gene flow could be restricted between this and other LSGO wintering populations. Winter pair formation also could facilitate interbreeding with sympatric but morphologically differentiated Greater Snow Geese (C. c. atlantica; GSGO).We sequenced 658 bp of the mitochondrial DNA control region for 68 Snow Geese from East Coast and Louisiana wintering populations to examine the level of genetic differentiation among populations and subspecies. We found no evidence for genetic differentiation between LSGO populations but, consistent with morphological differences, LSGO and GSGO were significantly differentiated. We also found a lack of genetic differentiation between different LSGO morphotypes from Louisiana. We examined available banding data and found the breeding range of Delmarva LSGO overlaps extensively with LSGO that winter in Louisiana, and documented movements between wintering populations. Our results suggest the Delmarva population of LSGO is not a unique population unit apart from Mid-Continent Snow Geese. ?? 2009 by the Wilson Ornithological Society.

  11. Simulation of Snow Dynamics in Response to Climate Variability

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wang, S.; Trishchenko, A.

    2004-05-01

    Snow dynamics not only affects the energy dissipation in northern ecosystems during non-growing season, but also affects plant growth through its impact on the soil water conditions of early growing season. To better simulate the snow and soil dynamics, a multiple-layer snow and soil interaction module has been recently developed within the Ecological Assimilation of Land and Climate Observations (EALCO) model. Up to 6 snow layers and 6 soil layers with flexible depth are currently represented in the module. Soil or snow skin temperature is obtained by numerically solving the surface energy balance equation. Energy dissipation to latent, sensible and soil/snow surface heat fluxes are thus calculated. Snow density is simulated in consideration of both compaction and destructive metamorphism, which depends on snow age, temperature and the residing weight above. The snow surface albedo, thermal and water properties and change of snow depth are updated in each time step and snow layers are re-calculated accordingly. The temperatures of snow and soil layers are implicitly solved in a tridiagonal linear system for thermal conduction equations. Freezing and thawing are computed according to the solved layer temperature and the existing water phase in the layer. Water movement between snow layers is computed according to the liquid water content and water holding capacity. Soil Water movement is simulated using Richard's equation and Darcy's law. The soil water content of each layer is thus implicitly solved as for temperatures. The model runs in half-hourly time step and main outputs include snow depth, snow water equivalent, and the temperature and water profiles for both snow and soil. In this study, the model was tested using data collected from several Canadian sites in the prairie and boreal forest region. The observed snow depth and temperature were compared with the corresponding model outputs. Sensitivities of snow cover change and soil thermal and moisture regime

  12. Enhancing the retrieval methodology for GlobSnow long-term snow water equivalent record

    NASA Astrophysics Data System (ADS)

    Luojus, K.; Pulliainen, J.; Lemmetyinen, J.; Takala, M.; Smolander, T.; Derksen, C.

    2012-04-01

    The efforts of the European Space Agency (ESA) GlobSnow project has resulted in a daily hemisphere-scale satellite-based snow water equivalent (SWE) data record spanning more than 30-years. The previous existing daily SWE records have spanned a shorter time period or described the snow conditions on a monthly basis for a similar period. The GlobSnow SWE record, based on methodology by Pulliainen [1] utilizes a data-assimilation based approach for the estimation of SWE which was shown to be superior to the approaches depending solely on satellite-based data [2]. The GlobSnow SWE data record is based on the time-series of measurements by two different space-borne passive radiometers (SMMR and SSM/I) measuring in the microwave region, spanning from 1979 to present day. The utilized sensors provide data at K- and Ka-bands (19 GHz and 37 GHz respectively) at a spatial resolution of approximately 25 km. The GlobSnow SWE data record has been released and is available through the GlobSnow web-pages (www.globsnow.info). We briefly presents the validation carried out for GlobSnow SWE data with ground-based reference data and the lessons learned from processing a 30-years daily hemispheric record on SWE. Additionally, we present the efforts taking place for the continuous development of the methodology to enhance the satellite-based SWE retrieval and the way this transfers to the reliability of the long-term SWE climate record. The development of SWE retrieval are focused on application of a new HUT multi-layer snow emission model for the retrieval procedure, application of novel techniques to account for lake contamination and mixed pixel effects and efforts carried out to create a homogenized long-term record of weather station-based snow depth observations that are applied within the SWE retrieval scheme.

  13. Spring Snow Depth on Arctic Sea Ice using the IceBridge Snow Depth Product (Invited)

    NASA Astrophysics Data System (ADS)

    Webster, M.; Rigor, I. G.; Nghiem, S. V.; Kurtz, N. T.; Farrell, S. L.

    2013-12-01

    Snow has dual roles in the growth and decay of Arctic sea ice. In winter, it insulates sea ice from colder air temperatures, slowing its growth. From spring into summer, the albedo of snow determines how much insolation is transmitted through the sea ice and into the underlying ocean, ultimately impacting the progression of the summer ice melt. Knowing the snow thickness and distribution are essential for understanding and modeling sea ice thermodynamics and the surface heat budget. Therefore, an accurate assessment of the snow cover is necessary for identifying its impacts in the changing Arctic. This study assesses springtime snow conditions on Arctic sea ice using airborne snow thickness measurements from Operation IceBridge (2009-2012). The 2012 data were validated with coordinated in situ measurements taken in March 2012 during the BRomine, Ozone, and Mercury EXperiment field campaign. We find a statistically significant correlation coefficient of 0.59 and RMS error of 5.8 cm. The comparison between the IceBridge snow thickness product and the 1937, 1954-1991 Soviet drifting ice station data suggests that the snow cover has thinned by 33% in the western Arctic and 44% in the Beaufort and Chukchi Seas. A rudimentary estimation shows that a thinner snow cover in the Beaufort and Chukchi Seas translates to a mid-December surface heat flux as high as 81 W/m2 compared to 32 W/m2. The relationship between the 2009-2012 thinner snow depth distribution and later sea ice freeze-up is statistically significant, with a correlation coefficient of 0.59. These results may help us better understand the surface energy budget in the changing Arctic, and may improve our ability to predict the future state of the sea ice cover.

  14. Chemistry of small organic molecules on snow grains: the applicability of artificial snow for environmental studies.

    PubMed

    Kurková, Romana; Ray, Debajyoti; Nachtigallová, Dana; Klán, Petr

    2011-04-15

    The utilization of artificial snow for environmentally relevant (photo)chemical studies was systematically investigated. Contaminated snow samples were prepared by various methods: by shock freezing of the aqueous solutions sprayed into liquid nitrogen or inside a large walk-in cold chamber at -35 °C, or by adsorption of gaseous contaminants on the surface of artificially prepared pure or natural urban snow. The specific surface area of artificial snow grains produced in liquid nitrogen was determined using valerophenone photochemistry (400-440 cm(2) g(-1)) to estimate the surface coverage by small hydrophobic organic contaminants. The dynamics of recombination/dissociation (cage effect) of benzyl radical pairs, photochemically produced from 4-methyldibenzyl ketone on the snow surface, was investigated. The initial ketone loading, c = 10(-6)-10(-8) mol kg(-1), only about 1-2 orders of magnitude higher than the contaminant concentrations commonly found in nature, was already well below monolayer coverage. We found that the efficiency of out-of-cage reactions decreased at much higher temperatures than those previously determined for frozen solutions; however, the cage effect was essentially the same no matter what technique of snow production or ketone deposition/uptake was used, including the experiments with collected natural snow. The experimental observation that the contaminant molecules are initially self-associated even at the lowest concentrations was supported by DFT calculations. We conclude that, contrary to frozen aqueous solutions, in which the impurities reside in a 3D cage (micropocket), contaminant molecules located on the artificial snow grain surface at low concentrations can be visualized in terms of a 2D cage. Artificial snow thus represents a readily available study matrix that can be used to emulate the natural chemical processes of trace contaminants occurring in natural snow.

  15. Potential genesis and implications of calcium nitrate in Antarctic snow

    NASA Astrophysics Data System (ADS)

    Mahalinganathan, Kanthanathan; Thamban, Meloth

    2016-04-01

    Among the large variety of particulates in the atmosphere, calcic mineral dust particles have highly reactive surfaces that undergo heterogeneous reactions with atmospheric acids contiguously. The association between nssCa2+, an important proxy indicator of mineral dust, and NO3-, a dominant anion in the Antarctic snowpack, was analysed. A total of 41 snow cores ( ˜ 1 m each) that represent snow deposited during 2008-2009 were studied along coastal-inland transects from two different regions in East Antarctica - the Princess Elizabeth Land (PEL) and central Dronning Maud Land (cDML). Correlation statistics showed a strong association (at 99 % significance level) between NO3- and nssCa2+ at the near-coastal sections of both PEL (r = 0.74) and cDML (r = 0.82) transects. Similarly, a strong association between these ions was also observed in snow deposits at the inland sections of PEL (r = 0.73) and cDML (r = 0.84). Such systematic associations between nssCa2+ and NO3- are attributed to the interaction between calcic mineral dust and nitric acid in the atmosphere, leading to the formation of calcium nitrate (Ca(NO3)2) aerosol. Principal component analysis revealed common transport and depositional processes for nssCa2+ and NO3- both in PEL and cDML. Forward- and back-trajectory analyses using HYSPLIT model v. 4 revealed that southern South America (SSA) was an important dust-emitting source to the study region, aided by the westerlies. Particle size distribution showed that over 90 % of the dust was in the range < 4 µm, indicating that these dust particles reached the Antarctic region via long-range transport from the SSA region. We propose that the association between nssCa2+ and NO3- occurs during the long-range transport due to the formation of Ca(NO3)2 rather than to local neutralisation processes. However, the influence of local dust sources from the nunataks in cDML and the contribution of high sea salt in coastal PEL evidently mask such association in the

  16. First Moderate Resolution Imaging Spectroradiometer (MODIS) Snow and Ice Workshop

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K. (Editor)

    1995-01-01

    This document is a compilation of summaries of talks presented at a 2-day workshop on Moderate Resolution maging Spectroradiometer (MODIS) snow and ice products. The objectives of the workshop were to: inform the snow and ce community of potential MODIS products, seek advice from the participants regarding the utility of the products, and letermine the needs for future post-launch MODIS snow and ice products. Four working groups were formed to discuss at-launch snow products, at-launch ice products, post-launch snow and ice products and utility of MODIS snow and ice products, respectively. Each working group presented recommendations at the conclusion of the workshop.

  17. A Comparison of Satellite-Derived Snow Maps with a Focus on Ephemeral Snow in North Carolina

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Fuhrmann, Christopher M.; Perry, L. Baker; Riggs, George A.; Robinson, David A.; Foster, James L.

    2010-01-01

    In this paper, we focus on the attributes and limitations of four commonly-used daily snowcover products with respect to their ability to map ephemeral snow in central and eastern North Carolina. We show that the Moderate-Resolution Imaging Spectroradiometer (MODIS) fractional snow-cover maps can delineate the snow-covered area very well through the use of a fully-automated algorithm, but suffer from the limitation that cloud cover precludes mapping some ephemeral snow. The semi-automated Interactive Multi-sensor Snow and ice mapping system (IMS) and Rutgers Global Snow Lab (GSL) snow maps are often able to capture ephemeral snow cover because ground-station data are employed to develop the snow maps, The Rutgers GSL maps are based on the IMS maps. Finally, the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) provides some good detail of snow-water equivalent especially in deeper snow, but may miss ephemeral snow cover because it is often very thin or wet; the AMSR-E maps also suffer from coarse spatial resolution. We conclude that the southeastern United States represents a good test region for validating the ability of satellite snow-cover maps to capture ephemeral snow cover,

  18. Black Carbon Measurements in Arctic Snow

    NASA Astrophysics Data System (ADS)

    Warren, S. G.; Grenfell, T. C.; Doherty, S. J.; Hegg, D. A.; Clarke, A. D.; Brandt, R. E.; Adames, A. F.

    2008-12-01

    A survey of the black carbon (BC) content of Arctic snow is underway, updating and expanding the 1983/84 survey of Clarke and Noone. Samples of snow are collected in mid to late spring when the entire winter snowpack is accessible. The samples are melted and filtered, and the filters are analyzed for absorptive impurities. Snow has been sampled on tundra, glaciers, ice caps, and sea ice, and in forests. To date about one thousand snow samples have been melted and filtered. The sampling effort has been assisted by IPY collaborations with S. Gerland (Svalbard), K. Steffen and C. Boeggild (Greenland), M. Sturm (Canada), V. Radionov (Russia), and J. Morison (North Pole), as well as several other volunteers. Two expeditions to arctic Russia were carried out, across longitudes 50-170 E, to cover a region that had not been sampled in the 1983/84 survey. The filters are examined with a spectrophotometer, scanning wavelengths 450-900 nm. The relative contributions of BC and soil dust to the absorption can be estimated from the spectral dependence of transmission. Calibration is achieved with use of several standard filters containing measured amounts of a commercial soot with a mass absorption cross-section of about 6 square meters per gram. Preliminary results indicate that the snow cover in Alaska, Canada, and the Arctic Ocean has lower BC concentrations now than 20 years ago (5-10 ppb instead of 15-30 ppb), consistent with the declining trend of BC found in air samples at Alert. Background levels of BC in arctic Russia, distant from sources of local pollution, have median values 20-30 ppb, but with higher concentrations at the surface at some locations, and lower concentrations in newly fallen snow. In some regions, particularly the Canadian Arctic islands and the Arctic coast of northeast Siberia, the snow cover, even at its maximum depth in April before melting began, was thin and patchy; in these regions the albedo is determined more by snow thickness than by

  19. Converting Snow Depth to SWE: The Fusion of Simulated Data with Remote Sensing Retrievals and the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Bormann, K.; Marks, D. G.; Painter, T. H.; Hedrick, A. R.; Deems, J. S.

    2015-12-01

    Snow cover monitoring has greatly benefited from remote sensing technology but, despite their critical importance, spatially distributed measurements of snow water equivalent (SWE) in mountain terrain remain elusive. Current methods of monitoring SWE rely on point measurements and are insufficient for distributed snow science and effective management of water resources. Many studies have shown that the spatial variability in SWE is largely controlled by the spatial variability in snow depth. JPL's Airborne Snow Observatory mission (ASO) combines LiDAR and spectrometer instruments to retrieve accurate and very high-resolution snow depth measurements at the watershed scale, along with other products such as snow albedo. To make best use of these high-resolution snow depths, spatially distributed snow density data are required to leverage SWE from the measured snow depths. Snow density is a spatially and temporally variable property that cannot yet be reliably extracted from remote sensing techniques, and is difficult to extrapolate to basin scales. However, some physically based snow models have shown skill in simulating bulk snow densities and therefore provide a pathway for snow depth to SWE conversion. Leveraging model ability where remote sensing options are non-existent, ASO employs a physically based snow model (iSnobal) to resolve distributed snow density dynamics across the basin. After an adjustment scheme guided by in-situ data, these density estimates are used to derive the elusive spatial distribution of SWE from the observed snow depth distributions from ASO. In this study, we describe how the process of fusing model data with remote sensing retrievals is undertaken in the context of ASO along with estimates of uncertainty in the final SWE volume products. This work will likely be of interest to those working in snow hydrology, water resource management and the broader remote sensing community.

  20. Satellite discrimination of snow/cloud surfaces

    NASA Technical Reports Server (NTRS)

    Crane, R. G.; Anderson, M. R.

    1984-01-01

    Differentiation between cloud cover and snow surfaces using remotely sensed data is complicated by the similarity of their radiative temperatures, and also by their similar reflectances at visible wavelengths. A method of cloud analysis over snow-covered regions is presented, using 1.51-1.63 micron data from an experimental sensor on board a U.S. Air Force Defense Meteorological Satellite Program platform. At these wavelengths, snow appears relatively 'black' while clouds are highly reflective. The spatial structure of the 1.51-1.63 micron reflectivity fields over a continuous snow surface are examined. Plots of mean reflectance against coefficients of variation for 4 x 4 pixel areas reveals a cluster of points have low reflectivity and low variability, corresponding to snow-covered (cloud free) areas, and a similar cluster with high reflectances corresponding to 100 per cent cloud cover. For the case of a single layered cloud, the radiances associated with partially filled fields of view are also inferred.

  1. Snow and ice ecosystems: not so extreme.

    PubMed

    Maccario, Lorrie; Sanguino, Laura; Vogel, Timothy M; Larose, Catherine

    2015-12-01

    Snow and ice environments cover up to 21% of the Earth's surface. They have been regarded as extreme environments because of their low temperatures, high UV irradiation, low nutrients and low water availability, and thus, their microbial activity has not been considered relevant from a global microbial ecology viewpoint. In this review, we focus on why snow and ice habitats might not be extreme from a microbiological perspective. Microorganisms interact closely with the abiotic conditions imposed by snow and ice habitats by having diverse adaptations, that include genetic resistance mechanisms, to different types of stresses in addition to inhabiting various niches where these potential stresses might be reduced. The microbial communities inhabiting snow and ice are not only abundant and taxonomically diverse, but complex in terms of their interactions. Altogether, snow and ice seem to be true ecosystems with a role in global biogeochemical cycles that has likely been underestimated. Future work should expand past resistance studies to understanding the function of these ecosystems.

  2. Assessment of Northern Hemisphere Snow Water Equivalent Datasets in ESA SnowPEx project

    NASA Astrophysics Data System (ADS)

    Luojus, Kari; Pulliainen, Jouni; Cohen, Juval; Ikonen, Jaakko; Derksen, Chris; Mudryk, Lawrence; Nagler, Thomas; Bojkov, Bojan

    2016-04-01

    Reliable information on snow cover across the Northern Hemisphere and Arctic and sub-Arctic regions is needed for climate monitoring, for understanding the Arctic climate system, and for the evaluation of the role of snow cover and its feedback in climate models. In addition to being of significant interest for climatological investigations, reliable information on snow cover is of high value for the purpose of hydrological forecasting and numerical weather prediction. Terrestrial snow covers up to 50 million km² of the Northern Hemisphere in winter and is characterized by high spatial and temporal variability. Therefore satellite observations provide the best means for timely and complete observations of the global snow cover. There are a number of independent SWE products available that describe the snow conditions on multi-decadal and global scales. Some products are derived using satellite-based information while others rely on meteorological observations and modelling. What is common to practically all the existing hemispheric SWE products, is that their retrieval performance on hemispherical and multi-decadal scales are not accurately known. The purpose of the ESA funded SnowPEx project is to obtain a quantitative understanding of the uncertainty in satellite- as well as model-based SWE products through an internationally coordinated and consistent evaluation exercise. The currently available Northern Hemisphere wide satellite-based SWE datasets which were assessed include 1) the GlobSnow SWE, 2) the NASA Standard SWE, 3) NASA prototype and 4) NSIDC-SSM/I SWE products. The model-based datasets include: 5) the Global Land Data Assimilation System Version 2 (GLDAS-2) product 6) the European Centre for Medium-Range Forecasts Interim Land Reanalysis (ERA-I-Land) which uses a simple snow scheme 7) the Modern Era Retrospective Analysis for Research and Applications (MERRA) which uses an intermediate complexity snow scheme; and 8) SWE from the Crocus snow scheme, a

  3. Reactive Gaseous Mercury Formation Over The North Pacific Ocean: Influence Of Environmental Parameters On Elemental Mercury Oxidation In The Marine Boundary Layer

    NASA Astrophysics Data System (ADS)

    Laurier, F. J.

    2002-12-01

    Global mercury models have identified wet and dry particle deposition and evasion of dissolved gaseous mercury from the ocean and from land as key controls over global mercury cycling (1,2). Recent ocean studies (3,4) however, have indicated that estimated mercury evasion rates from the ocean substantially exceed estimated deposition. Oxidized reactive gaseous mercury species (RGHg) are now known to play a major role in the global mercury cycle (2,5). RGHg species are water-soluble, exhibit a much shorter atmospheric lifetime than elemental mercury, and contribute to a large extent to atmospheric mercury deposition (2,3,6). Although recent global mercury models have accounted for the dry deposition of RGHg derived from point source emissions (6,7), the formation and deposition of RGHg in remote areas have not been incorporated. We suggest that the oxidation of elemental mercury over the ocean, by gas phase or heterogeneous reactions, is an important part the global mercury cycle. In agreement with previous studies (3,8,9) our recent data from atmospheric collections over the North Pacific Ocean support the notion of enhanced oxidation in the marine boundary layer. Our results show an inverse correlation between RGHg production and ozone, and a diurnal cycle with highest concentrations during periods of highest UV irradiation. In addition, the relationship between RGHg and other parameters measured during the cruise will be discussed. Our results clearly show that RGHg deposition to the ocean must be an important Hg source, and a crucial part of the global Hg cycle. (1) Mason R.P., Fitzgerald W.F., and Morel F.M.M. (1994), The biogeochemical cycling of elemental mercury: Anthropogenic influences, Geochim. Cosmochim. Acta, 58: 3191-3198 (2) Shia R.L., Seigneur C., Pai P., Ko M., and Sze N.-D. (1999), Global simulation of atmospheric mercury concentrations and deposition fluxes, J. Geophy. Res., 104(D19), 23, 747-23, 760 (3) Mason, R.P., Lawson N.M., and Sheu G

  4. Snow Pattern Delineation Using Ground Observations, Remote Sensing, and Modeling

    NASA Astrophysics Data System (ADS)

    Hiemstra, C. A.; Wagner, A. M.; Sturm, M.; Deeb, E. J.

    2013-12-01

    Regardless of the precipitation received, snow depth patterns tend to repeat on landscapes year after year (Sturm and Wagner, 2010). For example, windswept ridges with sparse vegetation have shallow snow while water tracks and swales are deeper. If snow patterns can be consistently identified, understood, and classified using ground observations, remote sensing, models, or some combination thereof, an untapped potential exists to expand and improve snow assessments and predictions. Pattern detection, repeatability, and efficacy have been demonstrated for images and data from a nested study area located on Alaska's North Slope. As a part of the SnowNet project, well over 200,000 snow depths and hundreds of snow densities have been measured during spring measurement campaigns from 2010-2013. Most of the measurements were collected at the core 1km2 Imnavait Creek watershed (where snow measurements have occurred since the early 1980s), with sparser (but still high volume) data collected from the outer 6km2 and 21km2 areas. Imagery collected for the same areas include snow cover from Landsat (30 m) from 1982-present and fine-resolution commercial imagery (0.5-3 m) from 2002-present. While winter imagery is useful for delineating snow-free ridges and windswept areas, of more value were the 12 mid-melt images which allowed us to identify deeper snowpack areas. We also simulated snow distributions from 2010-2013 using SnowModel, which uses topography, land cover, and meteorological data to realistically simulate snow accumulation and ablation over our domains. The time series of over 200,000 individual observations, over 40 images, and four years of model simulations show striking repeatability in snow depth patterns and among years. The spatial agreements among ground observations, satellite-derived snow cover, and SnowModel are remarkable. Our results show a strong fidelity to patterns appearing in three different snow cover and depth estimate approaches, and suggest the

  5. Neutral Poly/Per-Fluoroalkyl Substances in Air from the Atlantic to the Southern Ocean and in Antarctic Snow.

    PubMed

    Wang, Zhen; Xie, Zhiyong; Mi, Wenying; Möller, Axel; Wolschke, Hendrik; Ebinghaus, Ralf

    2015-07-07

    The oceanic scale occurrences of typical neutral poly/per-fluoroalkyl substances (PFASs) in the atmosphere across the Atlantic, as well as their air-snow exchange at the Antarctic Peninsula, were investigated. Total concentrations of the 12 PFASs (∑PFASs) in gas phase ranged from 2.8 to 68.8 pg m(-3) (mean: 23.5 pg m(-3)), and the levels in snow were from 125 to 303 pg L(-1) (mean: 209 pg L(-1)). Fluorotelomer alcohols (FTOHs) were dominant in both air and snow. The differences of specific compounds to ∑PFASs were not significant between air and snow. ∑PFASs were higher above the northern Atlantic compared to the southern Atlantic, and the levels above the southern Atlantic <30°S was the lowest. High atmospheric PFAS levels around the Antarctic Peninsula were the results of a combination of air mass, weak elimination processes and air-snow exchange of PFASs. Higher ratios of 8:2 to 10:2 to 6:2 FTOH were observed in the southern hemisphere, especially around the Antarctic Peninsula, suggesting that PFASs in the region were mainly from the long-range atmospheric transport. No obvious decrease of PFASs was observed in the background marine atmosphere after 2005.

  6. The solar reflectance of a snow field

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Chang, A. T. C.

    1978-01-01

    The radiative transfer equation was solved using a modified Schuster-Schwartzschild approximation to obtain an expression for the solar reflectance of a snow field. The parameters in the reflectance formula are the single scattering albedo and the fraction of energy scattered in the backward direction. The single scattering albedo is calculated from the crystal size using a geometrical optics formula and the fraction of energy scattered in the backward direction is calculated from the Mie scattering theory. Numerical results for reflectance are obtained for visible and near infrared radiation for different snow conditions. Good agreement was found with the whole spectral range. The calculation also shows the observed effect of aging on the snow reflectance.

  7. Snow Clouds Stream off Lake Michigan

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Sea-viewing Wide Field-of-view Sensor (SeaWiFS) true-color image of Lake Michigan shows a lake effect where clear dry air moves eastward from Wisconsin, picking up moisture as it traverses the lake and forming dense clouds by the time it reaches Lake Michigan's eastern shore. The scene was acquired on January 17, 2002. Note the newly-fallen snow that covers Wisconsin, Michigan, and northern Illinois. The southern edge of the snow line extends to just south of the Chicago area. Chicago sits on the southwestern shore of Lake Michigan. Except for cloudy areas in the west and east and around Lake Superior, the entire Canadian portion of the broader image can be seen to be snow covered as well. Lake Winnipeg (upper left) and James Bay (upper right of center) are frozen over. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  8. Electrical charging of skis gliding on snow.

    PubMed

    Colbeck, S C

    1995-01-01

    Ski charging was measured using giant-slalom style skis as gliding capacitors. The voltage measured across the plates was proportional to the charge on the base. While resting on dry snow or suspended in the air, the voltage was slowly reduced by the data logger itself. On wet snow the decay was much faster. While stationary on powder snow the ski developed a slightly negative voltage, showed a small, transient positive peak when motion began, rapidly dropped to negative values, and then assumed a quasi-steady climb to positive voltages. A great deal of noise was superimposed on the general features of the signal when skiing on hard or bumpy surfaces. Thus, the accumulation of charge to high levels was only possible with long runs in deep powder. The rate of charging increased with speed but was not affected by use of one "antistatic" wax, and another such wax actually increased the measured voltage over that of an unwaxed base.

  9. Linking snowfall and snow accumulation to generate spatial maps of SWE and snow depth

    NASA Astrophysics Data System (ADS)

    Broxton, Patrick D.; Dawson, Nicholas; Zeng, Xubin

    2016-06-01

    It is critically important but challenging to estimate the amount of snow on the ground over large areas due to its strong spatial variability. Point snow data are used to generate or improve (i.e., blend with) gridded estimates of snow water equivalent (SWE) by using various forms of interpolation; however, the interpolation methodologies often overlook the physical mechanisms for the snow being there in the first place. Using data from the Snow Telemetry and Cooperative Observer networks in the western United States, we show that four methods for the spatial interpolation of peak of winter snow water equivalent (SWE) and snow depth based on distance and elevation can result in large errors. These errors are reduced substantially by our new method, i.e., the spatial interpolation of these quantities normalized by accumulated snowfall from the current or previous water years. Our method results in significant improvement in SWE estimates over interpolation techniques that do not consider snowfall, regardless of the number of stations used for the interpolation. Furthermore, it can be used along with gridded precipitation and temperature data to produce daily maps of SWE over the western United States that are comparable to existing estimates (which are based on the assimilation of much more data). Our results also show that not honoring the constraint between SWE and snowfall when blending in situ data with gridded data can lead to the development and propagation of unrealistic errors.

  10. Arctic Snow Microstructure Experiment for the development of snow emission modelling

    NASA Astrophysics Data System (ADS)

    Maslanka, William; Leppänen, Leena; Kontu, Anna; Sandells, Mel; Lemmetyinen, Juha; Schneebeli, Martin; Proksch, Martin; Matzl, Margret; Hannula, Henna-Reetta; Gurney, Robert

    2016-04-01

    The Arctic Snow Microstructure Experiment (ASMEx) took place in Sodankylä, Finland in the winters of 2013-2014 and 2014-2015. Radiometric, macro-, and microstructure measurements were made under different experimental conditions of homogenous snow slabs, extracted from the natural seasonal taiga snowpack. Traditional and modern measurement techniques were used for snow macro- and microstructure observations. Radiometric measurements of the microwave emission of snow on reflector and absorber bases were made at frequencies 18.7, 21.0, 36.5, 89.0, and 150.0 GHz, for both horizontal and vertical polarizations. Two measurement configurations were used for radiometric measurements: a reflecting surface and an absorbing base beneath the snow slabs. Simulations of brightness temperatures using two microwave emission models, the Helsinki University of Technology (HUT) snow emission model and Microwave Emission Model of Layered Snowpacks (MEMLS), were compared to observed brightness temperatures. RMSE and bias were calculated; with the RMSE and bias values being smallest upon an absorbing base at vertical polarization. Simulations overestimated the brightness temperatures on absorbing base cases at horizontal polarization. With the other experimental conditions, the biases were small, with the exception of the HUT model 36.5 GHz simulation, which produced an underestimation for the reflector base cases. This experiment provides a solid framework for future research on the extinction of microwave radiation inside snow.

  11. Embedded-sensor network design for snow cover measurements around snow pillow and snow course sites in the Sierra Nevada of California

    NASA Astrophysics Data System (ADS)

    Rice, Robert; Bales, Roger C.

    2010-03-01

    The design of sensor networks for measuring the mean and spatial distribution of snow depth at the scale of 1-16 km2 was evaluated by deploying an embedded-sensor network consisting of ultrasonic snow depth sensors to capture the variable physiographic features around an operational snow course in Yosemite National Park in the Sierra Nevada of California. Manual snow surveys were also carried out during accumulation and ablation periods. Four years of continuous data from the embedded-sensor network showed that snow depths during both accumulation and ablation periods can vary as much as 50% based on variability in topography and vegetation across a 0.4 ha study area. Spatial snow surveys showed that such a sensor network can be deployed so as to capture both the variability and mean for accumulation and ablation periods across a 1 km2 area surrounding the sensor network, with a broader network required to extend this to 4 and 16 km2 areas. In forested areas, higher canopy densities, greater than 60% closure, were associated with the lowest snow depths. Analysis of historical snow course records from 14 sites in Yosemite, including the 10 spatial measurements made during each monthly snow course survey, showed snow depths across the 300 m snow course transects to be relatively uniform, with 68% of all monthly values having standard deviations no more than 10% of the mean. Although existing snow courses do little to help define the spatial patterns of snow distribution at the 1-16 km2 scales, it is feasible to extend the representativeness of current operational networks by deploying low-cost embedded-sensor networks nearby. Such networks should be strategically located to also capture elevational differences in snow accumulation and melt, as well as local-scale variability in canopy cover and aspect.

  12. Nitrate postdeposition processes in Svalbard surface snow

    NASA Astrophysics Data System (ADS)

    Björkman, Mats P.; Vega, Carmen P.; Kühnel, Rafael; Spataro, Francesca; Ianniello, Antonietta; Esposito, Giulio; Kaiser, Jan; Marca, Alina; Hodson, Andy; Isaksson, Elisabeth; Roberts, Tjarda J.

    2014-11-01

    The snowpack acts as a sink for atmospheric reactive nitrogen, but several postdeposition pathways have been reported to alter the concentration and isotopic composition of snow nitrate with implications for atmospheric boundary layer chemistry, ice core records, and terrestrial ecology following snow melt. Careful daily sampling of surface snow during winter (11-15 February 2010) and springtime (9 April to 5 May 2010) near Ny-Ålesund, Svalbard reveals a complex pattern of processes within the snowpack. Dry deposition was found to dominate over postdeposition losses, with a net nitrate deposition rate of (0.6 ± 0.2) µmol m-2 d-1 to homogeneous surface snow. At Ny-Ålesund, such surface dry deposition can either solely result from long-range atmospheric transport of oxidized nitrogen or include the redeposition of photolytic/bacterial emission originating from deeper snow layers. Our data further confirm that polar basin air masses bring 15N-depleted nitrate to Svalbard, while high nitrate δ(18O) values only occur in connection with ozone-depleted air, and show that these signatures are reflected in the deposited nitrate. Such ozone-depleted air is attributed to active halogen chemistry in the air masses advected to the site. However, here the Ny-Ålesund surface snow was shown to have an active role in the halogen dynamics for this region, as indicated by declining bromide concentrations and increasing nitrate δ(18O), during high BrO (low-ozone) events. The data also indicate that the snowpack BrO-NOx cycling continued in postevent periods, when ambient ozone and BrO levels recovered.

  13. Application of LANDSAT imagery for snow mapping in Norway

    NASA Technical Reports Server (NTRS)

    Odegaard, H. (Principal Investigator); Ostrem, G.

    1977-01-01

    The author has identified the following significant results. It was shown that if the snow cover extent was determined from all four LANDSAT bands, there were significant differences in results. The MSS 4 gave the largest snow cover, but only slightly more than MSS 5, whereas MSS 6 and 7 gave the smallest snow area. A study was made to show that there was a relationship between the last date of snow fall and the area covered with snow, as determined from different bands. Imagery obtained shortly after a snow fall showed no significant difference in the snow-covered area when the four bans were compared, whereas, pronounced differences in the snow-covered area were found in images taken after a long period without precipitation.

  14. Microwave remote sensing of snow-covered sea ice

    NASA Technical Reports Server (NTRS)

    Borgeaud, M.; Kong, J. A.; Lin, F. C.

    1986-01-01

    Snow and ice are modeled as random media characterized by different dielectric constants and correlation functions. In order to model the brine inclusions of sea ice, the random medium is assumed to be anisotropic. A three-layer model is used to simulate a snow-covered ice field with the top layer being snow, the middle layer being ice, and the bottom layer being sea water. The theoretical results are illustrated for thick first-year sea ice covered by dry snow, and for artificial, thin first-year sea ice covered by wet snow as measured in controlled model tank experiments. The radar backscattering cross sections are seen to increase with snow cover for snow-covered sea ice owing to large volume scattering effects of snow.

  15. Integration and Visualization of Multiple Sensors in Generating the NOAA Operational Snow and Ice Cover Products

    NASA Astrophysics Data System (ADS)

    Li, M.; Helfrich, S.

    2011-12-01

    Global snow and ice cover is a key component in the climate and hydrologic system as well as daily weather forecasting. The National Oceanic and Atmospheric Administration (NOAA) has produced a daily northern hemisphere snow and ice cover chart since 1997 through the Interactive Multisensor Snow and Ice Mapping System (IMS). The IMS integrates and visualizes a wide variety of satellite data, as well as derived snow/ice products and surface observations, to provide meteorologists with the ability to interactively prepare the daily northern hemisphere snow and ice cover chart. These products are presently used as operational inputs into several weather prediction models and are applied in climate monitoring. The IMS is currently on its second version (released in 2004) and scheduled to be upgraded to the third version (V3) in 2013. The IMS V3 will have nearly 40 external inputs as data sources processed by the IMS, which fall into five data formats: binary image, HDF file, GeoTIFF image, Shapefile image and ASCII file. With the exception of the GeoTIFF and Shapefile files, which are used directly by IMS, all other types of data are pre-processed to ENVI image file format and "sectorized" for different areas around the northern hemisphere. The IMS V3 will generate daily snow and ice cover maps in five formats: ASCII, ENVI, GeoTIFF, GIF and GRIB2 and three resolutions: 24km, 4km and 1km. In this presentation, the methods are discussed for accessing and processing satellite data, model results and surface reports. All input data with varying formats and resolutions are processed to a fixed projection. The visualization methodology for IMS are provided for five different resolutions of 48km, 24km, 8km, 4km, 2km and 1km. This work will facilitate the future enhancement of IMS, provide users with an understanding of the software architecture, provide a prospectus on future data sources, and help to preserve the integrity of the long-standing satellite-derived snow and ice

  16. Can GRACE detect winter snows in Japan?

    NASA Astrophysics Data System (ADS)

    Heki, Kosuke

    2010-05-01

    Current spatial resolution of the GRACE (Gravity Recovery and Climate Experiment) satellites is 300-400 km, and so its hydrological applications have been limited to continents and large islands. The Japanese Islands have width slightly smaller than this spatial resolution, but are known to show large amplitude seasonal changes in surface masses due mainly to winter snow. Such loads are responsible for seasonal crustal deformation observed with GEONET, a dense array of GPS (Global Positioning System) receivers in Japan (Heki, 2001). There is also a dense network of surface meteorological sensors for, e.g. snow depths, atmospheric pressures, etc. Heki (2004) showed that combined effects of surface loads, i.e. snow (predominant), atmosphere, soil moisture, dam impoundment, can explain seasonal crustal deformation observed by GPS to a large extent. The total weight of the winter snow in the Japanese Islands in its peak season may reach ~50 Gt. This is comparable to the annual loss of mountain glaciers in the Asian high mountains (Matsuo & Heki, 2010), and is above the detection level of GRACE. In this study, I use GRACE Level-2 Release-4 data from CSR, Univ. Texas, up to 2009 November, and evaluated seasonal changes in surface loads in and around the Japanese Islands. After applying a 350 km Gaussian filter and a de-striping filter, the peak-to-peak change of the water depth becomes ~4 cm in northern Japan. The maximum value is achieved in February-March. The region of large winter load spans from Hokkaido, Japan, to northeastern Honshu, which roughly coincides with the region of deep snow in Japan. Next I compiled snow depth data from surface meteorological observations, and converted them to loads using time-dependent snow density due to compaction. By applying the same spatial filter as the GRACE data, its spatial pattern becomes similar to the GRACE results. The present study suggests that GRACE is capable of detecting seasonal mass changes in an island arc not

  17. Isothermal densification and metamorphism of new snow

    NASA Astrophysics Data System (ADS)

    Schleef, S.; Loewe, H.; Schneebeli, M.

    2012-12-01

    The interplay between overburden stress and surface energy induced growth and coarsening is relevant for the densification of snow and porous ice at all densities. The densification of new snow is amenable to high precision experiments on short time scales. To this end we investigate the coupling of densification and metamorphism of new snow via time-lapse tomography experiments in the laboratory. We compare the evolution of density, strain, and specific surface area to previous long-time metamorphism experiments of snow and creep of polycrystalline ice. Experimental conditions are tailored to the requirements of time-lapse tomography and the measurements are conducted under nearly isothermal conditions at -20°C with a duration of two days. Images were taken with temporal resolution of a few hours which reveal precise details of the microstructure evolution due to sintering and compaction. We used different crystal shapes of natural new snow and snow samples obtained by sieving crystals grown in a snowmaker in the laboratory. To simulate the effect of overburden stress due to an overlying snowpack additional weights were applied to the sample. As expected we find an influence of the densification rate on initial density and overburden stress. We calculated strain rates and identified a transient creep behavior with a similar power law for all crystal types which substantially differs from the Andrade creep of polycrystalline ice. As a main result we found that the evolution of the specific surface area is independent of the density and follows a unique decay form for all measurements of each crystal type. The accuracy of the measurements allows to obtain a decay exponent for the SSA which is the same as previously obtained from the long-time regime during isothermal metamorphism after several months. Our preliminary results for all available types of new snow suggest a correlation between the initial density and SSA. We also find snow samples which coincide in

  18. Snow in Time for the Solstice

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In mid-December, the weather in eastern North America cooperated with the calendar, and a wintry blast from the Arctic delivered freezing cold air, blustery winds, and snow just in time for the Winter Solstice on December 21' the Northern Hemisphere's longest night of the year and the official start of winter. This image was captured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on December 20, 2004, the day after an Arctic storm dove down into the United States, bringing snow to New England (upper right of top image); the coastal mid-Atlantic, including Washington, D.C.; and the southern Appalachian Mountains in Tennessee and North Carolina. Over the Atlantic Ocean (image right), the fierce Arctic winds were raking the clouds into rows, like a gardener getting ready to plant the seeds of winter. The detailed close-up at the bottom of this image pair shows the cloud and snow patterns around Lake Ontario, illustrating the occurrence of 'lake-effect snow.' Areas in western upstate New York often get as much as fifteen feet or more of snow each year as cold air from Canada and the Arctic sweeps down over the relatively warm waters of Lakes Ontario and Erie. Cold air plus moisture from the lakes equals heavy snow. Since the wind generally blows from west to east, it is the 'downwind' cities like Buffalo and Rochester that receive the heaping helpings of snowfall, while cities on the upwind side of the lake, such as Toronto, receive much less. Unlike storms that begin with specific low-pressure systems in the Pacific Ocean and march eastward across the Pacific Northwest, the Rockies, the Great Plains, and sometimes the East, the lake-effect snows aren't tied to a specific atmospheric disturbance. They are more a function of geography, which means that the lakes can keep fueling snow storms for as long as they remain ice-free in early winter, as well as when they begin to thaw in late winter and early spring. Image courtesy the SeaWiFS Project, NASA

  19. Bacterial Activity in South Pole Snow

    PubMed Central

    Carpenter, Edward J.; Lin, Senjie; Capone, Douglas G.

    2000-01-01

    Large populations (200 to 5,000 cells ml−1 in snowmelt) of bacteria were present in surface snow and firn from the south pole sampled in January 1999 and 2000. DNA isolated from this snow yielded ribosomal DNA sequences similar to those of several psychrophilic bacteria and a bacterium which aligns closely with members of the genus Deinococcus, an ionizing-radiation- and desiccation-resistant genus. We also obtained evidence of low rates of bacterial DNA and protein synthesis which indicates that the organisms were metabolizing at ambient subzero temperatures (−12 to −17°C). PMID:11010907

  20. Antarctic Camps Snow Drift Management Handbook

    DTIC Science & Technology

    2014-09-01

    days with a single operator and piece of equipment, and the Tucker can move on average 20 m3 of snow per hour while the Caterpillar bulldozers (D6...operator and piece of equipment, and the Tucker can move on average 20 m3 of snow per hour while the Caterpillar bulldozers (D6, D7, or D8) can move on...volumes (m3) 78,600 47,500 75,300 53,500 n/a A. Time to construct berms Tucker 110 days 32 days 0 0 40 days Caterpillar 32 days 9 days 0 0 11 days B

  1. On the sublimation of blowing snow and of snow in canopies

    NASA Astrophysics Data System (ADS)

    Taylor, P. A.; Simon, K.; Gordon, M.; Weng, W.

    2003-04-01

    Tests have been made within the Canadian Land Surface Scheme (CLASS) of various parameterizations of sublimation of blowing snow, and tested in the context of data from weather stations (Goose Bay and Resolute) in northern Canada. We will focus on parameterization schemes based on results obtained with the PIEKTUK model of blowing snow. In addition we will present preliminary results concerning the parameterization of sublimation of snow caught in tree canopies, using schemes similar to those for evaporation from wet canopies. This is considered to be a major factor in the water budgets of forested areas in northern Canada.

  2. Wheels and Tracks in Snow. Validation Study of the CRREL Shallow Snow Mobility Model

    DTIC Science & Technology

    1990-11-01

    200 300 400 500 properties of the snow, whereas the tire engaged a p (kg/ M3 ) finite thickness of the snow in the process of shear- ing. Because of...define g. an insignificant effect on T we plotted all of the for a vehicle by traction data for the wheels/ fracks vehicles, and for the CIV, against...by each of these expres- sions are similar from model to model, and are readily accessible. The snow data required to process any of these expressions

  3. Integration of snow management practices into a detailed snow pack model

    NASA Astrophysics Data System (ADS)

    Spandre, Pierre; Morin, Samuel; Lafaysse, Matthieu; Lejeune, Yves; François, Hugues; George-Marcelpoil, Emmanuelle

    2016-04-01

    The management of snow on ski slopes is a key socio-economic and environmental issue in mountain regions. Indeed the winter sports industry has become a very competitive global market although this economy remains particularly sensitive to weather and snow conditions. The understanding and implementation of snow management in detailed snowpack models is a major step towards a more realistic assessment of the evolution of snow conditions in ski resorts concerning past, present and future climate conditions. Here we describe in a detailed manner the integration of snow management processes (grooming, snowmaking) into the snowpack model Crocus (Spandre et al., Cold Reg. Sci. Technol., in press). The effect of the tiller is explicitly taken into account and its effects on snow properties (density, snow microstructure) are simulated in addition to the compaction induced by the weight of the grooming machine. The production of snow in Crocus is carried out with respect to specific rules and current meteorological conditions. Model configurations and results are described in detail through sensitivity tests of the model of all parameters related to snow management processes. In-situ observations were carried out in four resorts in the French Alps during the 2014-2015 winter season considering for each resort natural, groomed only and groomed plus snowmaking conditions. The model provides realistic simulations of the snowpack properties with respect to these observations. The main uncertainty pertains to the efficiency of the snowmaking process. The observed ratio between the mass of machine-made snow on ski slopes and the water mass used for production was found to be lower than was expected from the literature, in every resort. The model now referred to as "Crocus-Resort" has been proven to provide realistic simulations of snow conditions on ski slopes and may be used for further investigations. Spandre, P., S. Morin, M. Lafaysse, Y. Lejeune, H. François and E. George

  4. Accelerated Settling of Marine Particulate Matter by ’Marine Snow’ Aggregates.

    DTIC Science & Technology

    1986-03-01

    this material arrives at both depths within the same sampling interval indicates that these gelatinous zooplankton remains settle at more than 175 m day...and P.P. Hamner (1975) Underwater observations of gelatinous zooplankton : sampling problems, feeding biology, and behavior. Limnol. Oceanogr. vol...lattice patterns resembling the feeding webs used by some gelatinous zooplankton (Gilmer, 1972). These feeding structures have also been observed in

  5. Carboxylic acids in high elevation Alpine glacier snow

    NASA Astrophysics Data System (ADS)

    Maupetit, FrançOis; Delmas, Robert J.

    1994-08-01

    Fresh-snow samples were collected on an event basis on the Glacier de la Girose (3360 m above sea level (asl)) in the southern French Alps, during winters and early springs 1990 and 1991. In addition, a 13-m firn core was recovered in 1991 at the Col du Dôme (4250 m asl), a cold glacier in the northern French Alps, offering the complete seasonal record of alpine precipitation during 3.5 years. All samples were analyzed for total formate and acetate and for major ions using ion chromatography. The acidity-alkalinity was accurately measured using a titration technique. An almost perfect ion balance was achieved for this data set. In absence of Saharan dust transport, the high alpine snow is slightly acid (H+ ˜ 2-20 μEq L-1). HCOOT and CH3COOT are generally present in alpine acid snow at very low concentrations: 0.3-0.6 μEq L-1 in winter (January to February) and 0.6-2 μEq L-1 in early spring (March to April). At Col du Dôme, total acetate concentrations of ˜1 μEq L-1 are observed in summer. It remains unclear from our results what the major sources of carboxylic acids are, and in particular of acetic acid, in the wintertime continental free troposphere, while it appears that formic and acetic acids are presumably mainly derived from natural sources in spring and summer. The total contribution of formic and acetic acids to free acidity is, on average, less than 15-20%. Contrary to major ions which are present in wider concentration ranges and show large variations from one snowfall to the other, HCOOT and CH3COOT are surprisingly stable in acid alpine snow. The only significant deviation of HCOOT and CH3COOT from their mean values (up to 9 and 5 μEq L-1, respectively) are observed in case of Saharan dust transport, when precipitation pH is shifted from acid toward alkaline conditions. These observations suggest a pH partitioning effect between the aqueous and gas phases, formic and acetic acids being dissolved and neutralized as salts in alkaline cloudwater

  6. Marine biology

    SciTech Connect

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  7. Martian Gullies: H2O or CO2 snow?

    NASA Astrophysics Data System (ADS)

    Yolanda, C.; Durand-Manterola, H. J.

    2007-05-01

    The theories proposed to try to explain the origin of the Martian gullies involve either liquid water, liquid carbon dioxide or flows of dry granular material. We propose another processes that can be favorable for the origin of the Martian gullies, with our model by gaseous fluidification of CO2. We propose that on the Martian slopes, CO2 snow and dust transported by winds, are accumulate. During the Martian spring, sublimation of carbonic snow starts because of heat and weigth of the frezze layer, causing that the material mixed its fluidifized and slide downslope by gravity. By experimental work with dry granular material, we simulated the development of the Martian gullies injecting air inside the granular material. We also present the characteristics of some terrestrial gullies forms at cold environment, sited at Nevado de Toluca Volcano near Toluca City, México. We compared them with some Martian gullies, to identify possible processes evolved in its formation. We measured the lengths of those Martian gullies and the range was from 24 meters to 1775 meters. Finally, we present results of our experimental work at laboratory with dry granular material and our field trip to Nevado de Toluca Volcano.

  8. Water soluble organic constituents in Arctic aerosols and snow pack

    SciTech Connect

    Li, Shaomeng ); Winchester, J.W. )

    1993-01-08

    Eight water-soluble organic anions were measured in 70 aerosol samples and 10 snow samples at Barrow, Alaska in March-April, 1989. The ranking of the ions in aerosols according to total (coarse + fine aerosol) median concentrations was acetate (44 ng m[sup [minus]3]), oxalate (27), benzoate (23), formate (22), propionate (6), methanesulfonate (5), lactate (4), and pyruvate (4). When added up, the median organic anion mass was 156 ng m[sup [minus]3]. The organic anions/nssSO[sub 4][sup =] mass ratio had a median of 0.18 and 0.07 in the coarse (>1 [mu]m) and fine (<1 [mu]m) size fractions, respectively, but can be very high on occasions. On average, the organic anions made up more than 10% of the water-soluble aerosol mass. A similar ranking in concentration was also found for the organic ions in the snow pack samples. The organic anion/nssSO[sub 4][sup =] mass ratio in these samples was >0.5, substantially higher than in aerosols. 18 refs., 2 tabs.

  9. Connecting European snow cover variability with large scale atmospheric patterns

    NASA Astrophysics Data System (ADS)

    Bartolini, E.; Claps, P.; D'Odorico, P.

    2010-09-01

    Winter snowfall and its temporal variability are important factors in the development of water management strategies for snow-dominated regions. For example, mountain regions of Europe rely on snow for recreation, and on snowmelt for water supply and hydropower. It is still unclear whether in these regions the snow regime is undergoing any major significant change. Moreover, snow interannual variability depends on different climatic variables, such as precipitation and temperature, and their interplay with atmospheric and pressure conditions. This paper uses the EASE Grid weekly snow cover and Ice Extent database from the National Snow and Ice Data Center to assess the possible existence of trends in snow cover across Europe. This database provides a representation of snow cover fields in Europe for the period 1972-2006 and is used here to construct snow cover indices, both in time and space. These indices allow us to investigate the historical spatial and temporal variability of European snow cover fields, and to relate them to the modes of climate variability that are known to affect the European climate. We find that both the spatial and temporal variability of snow cover are strongly related to the Arctic Oscillation during wintertime. In the other seasons, weaker correlation appears between snow cover and the other patterns of climate variability, such as the East Atlantic, the East Atlantic West Russia, the North Atlantic Oscillation, the Polar Pattern and the Scandinavian Pattern.

  10. Saltating Snow Mechanics: High Frequency Particle Response to Mountain Wind

    NASA Astrophysics Data System (ADS)

    Aksamit, N. O.; Pomeroy, J. W.

    2015-12-01

    Blowing snow transport theory is currently limited by its dependency on the coupling of time-averaged measurements of particle saltation and suspension and wind speed. Details of the stochastic process of particle transport and complex bed interactions in the saltation layer, along with the influence of boundary-layer turbulence are unobservable with classic measurement techniques. In contrast, recent advances in two-phase sand transport understanding have been spurred by development of high-frequency wind and particle velocity measurement techniques. To advance the understanding of blowing snow, laser illuminated high-speed videography and ultrasonic anemometry were deployed in a mountain environment to examine saltation of snow over a natural snowpack in detail. A saltating snow measurement site was established at the Fortress Mountain Snow Laboratory, Alberta, Canada and instrumented with two Campbell CSAT3 ultrasonic anemometers, four Campbell SR50 ultrasonic snow depth sounders and a two dimensional Particle Tracking Velocimetry (PTV) system. Measurements were collected during nighttime blowing snow events, quantifying snow particle response to high frequency wind gusts. This novel approach permits PTV to step beyond mean statistics of snow transport by identifying sub-species of saltation motion in the first 20 mm above the surface, as well as previously overlooked initiation processes, such as tumbling aggregate snow crystals ejecting smaller grains, then eventually disintegrating and bouncing into entrainment. Spectral characteristics of snow particle ejection and saltation dynamics were also investigated. These unique observations are starting to inform novel conceptualizations of saltating snow transport mechanisms.

  11. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each certificate holder whose airport is located where snow and icing conditions occur must prepare, maintain,...

  12. 24 CFR 3285.315 - Special snow load conditions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Special snow load conditions. 3285... Special snow load conditions. (a) General. Foundations for homes designed for and located in areas with roof live loads greater than 40 psf must be designed by the manufacturer for the special snow...

  13. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each certificate holder whose airport is located where snow and icing conditions occur must prepare, maintain,...

  14. 24 CFR 3285.315 - Special snow load conditions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Special snow load conditions. 3285... Special snow load conditions. (a) General. Foundations for homes designed for and located in areas with roof live loads greater than 40 psf must be designed by the manufacturer for the special snow...

  15. 24 CFR 3285.315 - Special snow load conditions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Special snow load conditions. 3285... Special snow load conditions. (a) General. Foundations for homes designed for and located in areas with roof live loads greater than 40 psf must be designed by the manufacturer for the special snow...

  16. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each certificate holder whose airport is located where snow and icing conditions occur must prepare, maintain,...

  17. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each certificate holder whose airport is located where snow and icing conditions occur must prepare, maintain,...

  18. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each certificate holder whose airport is located where snow and icing conditions occur must prepare, maintain,...

  19. Relationship between the Intracellular Integrity and the Morphology of the Capsular Envelope in Attached and Free-Living Marine Bacteria

    PubMed Central

    Heissenberger, A.; Leppard, G. G.; Herndl, G. J.

    1996-01-01

    The integrity of the intracellular structures and the presence and dimension of the capsular envelope were investigated in marine snow-associated and marine free-living bacteria by transmission electron microscopy and special fixation techniques. Three categories depending on the presence of internal structures were differentiated. In marine snow, 51% of the marine snow-associated bacterial community was considered intact, 26% had a partly degraded internal structure, and 23% were empty with only the cell wall remaining. For the free-living bacterial community, 34% were intact cells, 42% exhibited damage, and 24% of the cells were lacking any internal structure. We also investigated the morphology and the extent of the bacterial capsular envelope. More than 95% of all intact marine snow-associated bacteria were surrounded by a capsule while (apprx=)55% of empty marine snow-associated bacteria had no capsule. For free-living bacteria, (apprx=)65% of the intact cells had a capsule while (apprx=)80% of the empty free-living bacteria lacked a capsule. Thus there is a clear trend from intact cells which are commonly surrounded by a capsular envelope to empty bacteria for which only the cell wall is remaining. Since bacterioplankton represent the largest living surface in the ocean, it is concluded that the release of intracellular material from bacteria into the environment as well as the release of extracellular capsular material might fuel the dissolved organic matter pool of the ocean. PMID:16535466

  20. CHEMICAL IMAGING OF THE CO SNOW LINE IN THE HD 163296 DISK

    SciTech Connect

    Qi, Chunhua; Öberg, Karin I.; Andrews, Sean M.; Wilner, David J.; Bergin, Edwin A.; Hughes, A. Meredith; Hogherheijde, Michiel; D’Alessio, Paola

    2015-11-10

    The condensation fronts (snow lines) of H{sub 2}O, CO, and other abundant volatiles in the midplane of a protoplanetary disk affect several aspects of planet formation. Locating the CO snow line, where the CO gas column density is expected to drop substantially, based solely on CO emission profiles, is challenging. This has prompted an exploration of chemical signatures of CO freeze-out. We present ALMA Cycle 1 observations of the N{sub 2}H{sup +} J = 3−2 and DCO{sup +} J = 4−3 emission lines toward the disk around the Herbig Ae star HD 163296 at ∼0.″5 (60 AU) resolution, and evaluate their utility as tracers of the CO snow line location. The N{sub 2}H{sup +} emission is distributed in a ring with an inner radius at 90 AU, corresponding to a midplane temperature of 25 K. This result is consistent with a new analysis of optically thin C{sup 18}O data, which implies a sharp drop in CO abundance at 90 AU. Thus N{sub 2}H{sup +} appears to be a robust tracer of the midplane CO snow line. The DCO{sup +} emission also has a ring morphology, but neither the inner nor the outer radius coincide with the CO snow line location of 90 AU, indicative of a complex relationship between DCO{sup +} emission and CO freeze-out in the disk midplane. Compared to TW Hya, CO freezes out at a higher temperature in the disk around HD 163296 (25 versus 17 K in the TW Hya disk), perhaps due to different ice compositions. This highlights the importance of actually measuring the CO snow line location, rather than assuming a constant CO freeze-out temperature for all disks.

  1. Chemical Imaging of the CO Snow Line in the HD 163296 Disk

    NASA Astrophysics Data System (ADS)

    Qi, Chunhua; Öberg, Karin I.; Andrews, Sean M.; Wilner, David J.; Bergin, Edwin A.; Hughes, A. Meredith; Hogherheijde, Michiel; D'Alessio, Paola

    2015-11-01

    The condensation fronts (snow lines) of H2O, CO, and other abundant volatiles in the midplane of a protoplanetary disk affect several aspects of planet formation. Locating the CO snow line, where the CO gas column density is expected to drop substantially, based solely on CO emission profiles, is challenging. This has prompted an exploration of chemical signatures of CO freeze-out. We present ALMA Cycle 1 observations of the N2H+ J = 3-2 and DCO+ J = 4-3 emission lines toward the disk around the Herbig Ae star HD 163296 at ˜0.″5 (60 AU) resolution, and evaluate their utility as tracers of the CO snow line location. The N2H+ emission is distributed in a ring with an inner radius at 90 AU, corresponding to a midplane temperature of 25 K. This result is consistent with a new analysis of optically thin C18O data, which implies a sharp drop in CO abundance at 90 AU. Thus N2H+ appears to be a robust tracer of the midplane CO snow line. The DCO+ emission also has a ring morphology, but neither the inner nor the outer radius coincide with the CO snow line location of 90 AU, indicative of a complex relationship between DCO+ emission and CO freeze-out in the disk midplane. Compared to TW Hya, CO freezes out at a higher temperature in the disk around HD 163296 (25 versus 17 K in the TW Hya disk), perhaps due to different ice compositions. This highlights the importance of actually measuring the CO snow line location, rather than assuming a constant CO freeze-out temperature for all disks.

  2. Air-snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS - Part 1: In-snow bromine activation and its impact on ozone

    NASA Astrophysics Data System (ADS)

    Toyota, K.; McConnell, J. C.; Staebler, R. M.; Dastoor, A. P.

    2013-08-01

    To provide a theoretical framework towards better understanding of ozone depletion events (ODEs) and atmospheric mercury depletion events (AMDEs) in the polar boundary layer, we have developed a one-dimensional model that simulates multiphase chemistry and transport of trace constituents from porous snowpack and through the atmospheric boundary layer (ABL) as a unified system. In this paper, we describe a general configuration of the model and the results of simulations related to reactive bromine release from the snowpack and ODEs during the Arctic spring. The model employs a chemical mechanism adapted from the one previously used for the simulation of multiphase halogen chemistry involving deliquesced sea-salt aerosols in the marine boundary layer. A common set of aqueous-phase reactions describe chemistry both in the liquid-like (or brine) layer on the grain surface of the snowpack and in "haze" aerosols mainly composed of sulfate in the atmosphere. The process of highly soluble/reactive trace gases, whether entering the snowpack from the atmosphere or formed via gas-phase chemistry in the snowpack interstitial air (SIA), is simulated by the uptake on brine-covered snow grains and subsequent reactions in the aqueous phase while being traveled vertically within the SIA. A "bromine explosion", by which, in a conventional definition, HOBr formed in the ambient air is deposited and then converted heterogeneously to Br2, is a dominant process of reactive bromine formation in the top 1 mm (or less) layer of the snowpack. Deeper in the snowpack, HOBr formed within the SIA leads to an in-snow bromine explosion, but a significant fraction of Br2 is also produced via aqueous radical chemistry in the brine on the surface of the snow grains. These top- and deeper-layer productions of Br2 both contribute to the Br2 release into the atmosphere, but the deeper-layer production is found to be more important for the net outflux of reactive bromine. Although ozone is removed via

  3. Enhancement of the MODIS Daily Snow Albedo Product

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Schaaf, Crystal B.; Wang, Zhuosen; Riggs, George A.

    2009-01-01

    The MODIS daily snow albedo product is a data layer in the MOD10A1 snow-cover product that includes snow-covered area and fractional snow cover as well as quality information and other metadata. It was developed to augment the MODIS BRDF/Albedo algorithm (MCD43) that provides 16-day maps of albedo globally at 500-m resolution. But many modelers require daily snow albedo, especially during the snowmelt season when the snow albedo is changing rapidly. Many models have an unrealistic snow albedo feedback in both estimated albedo and change in albedo over the seasonal cycle context, Rapid changes in snow cover extent or brightness challenge the MCD43 algorithm; over a 16-day period, MCD43 determines whether the majority of clear observations was snow-covered or snow-free then only calculates albedo for the majority condition. Thus changes in snow albedo and snow cover are not portrayed accurately during times of rapid change, therefore the current MCD43 product is not ideal for snow work. The MODIS daily snow albedo from the MOD10 product provides more frequent, though less robust maps for pixels defined as "snow" by the MODIS snow-cover algorithm. Though useful, the daily snow albedo product can be improved using a daily version of the MCD43 product as described in this paper. There are important limitations to the MOD10A1 daily snow albedo product, some of which can be mitigated. Utilizing the appropriate per-pixel Bidirectional Reflectance Distribution Functions (BRDFs) can be problematic, and correction for anisotropic scattering must be included. The BRDF describes how the reflectance varies with view and illumination geometry. Also, narrow-to-broadband conversion specific for snow on different surfaces must be calculated and this can be difficult. In consideration of these limitations of MOD10A1, we are planning to improve the daily snow albedo algorithm by coupling the periodic per-pixel snow albedo from MCD43, with daily surface ref|outanoom, In this paper, we

  4. Black Carbon concentration in snow and its effect on snow albedo: measurements from two snow seasons in Changbai Mountain, North East China

    NASA Astrophysics Data System (ADS)

    Gallet, J.; Pedersen, C.; Zhang, X.; Wang, Z.; Berntsen, T.; Strom, J.

    2012-12-01

    Black Carbon (BC) atmospheric particles originate from incomplete combustion of fossil fuel and biomass. When deposited on the surface, even small amounts of BC can reduce the snow albedo. However, the lack of observations and poor process understanding makes estimates of its climate impact uncertain. We have conducted measurements of semi-continuous BC concentrations in snow surface and snow spectral albedo at CAS Research Station of Changbai Mountain Forest Ecosystem in North East China during two snow seasons 2009/10 and 2010/11. Our measurements show BC concentrations in snow surface ranging from 200 to 1000 ppbw for the first snow season. For the second snow season we see that the amount of BC is constantly increasing from November until end of February with values above 1000 ppbw in February 2011. While the first snow season presents several precipitation events during the winter, the second is much dryer during wintertime. We observe that the snow spectral albedo is strongly affected by the BC content, but that this effect can be enhanced by the meteorological conditions, such as the snow physical properties (fresh or old snow) and the number of precipitations event during the winter. A quantitative study is difficult to assert because the number of processes involved. However, this study shows that the association of dry winter and high BC level affects even more the albedo of snow and should be taken into account in global modeling studies. The study area is particularly interesting because of the high BC levels in snow, its surface area and the global impact on Earth energy budget, in combination with the very low number of existing measurements from this region.

  5. How Much Water is in That Snowpack? Improving Basin-wide Snow Water Equivalent Estimates from the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Bormann, K.; Painter, T. H.; Marks, D. G.; Kirchner, P. B.; Winstral, A. H.; Ramirez, P.; Goodale, C. E.; Richardson, M.; Berisford, D. F.

    2014-12-01

    In the western US, snowmelt from the mountains contribute the vast majority of fresh water supply, in an otherwise dry region. With much of California currently experiencing extreme drought, it is critical for water managers to have accurate basin-wide estimations of snow water content during the spring melt season. At the forefront of basin-scale snow monitoring is the Jet Propulsion Laboratory's Airborne Snow Observatory (ASO). With combined LiDAR /spectrometer instruments and weekly flights over key basins throughout California, the ASO suite is capable of retrieving high-resolution basin-wide snow depth and albedo observations. To make best use of these high-resolution snow depths, spatially distributed snow density data are required to leverage snow water equivalent (SWE) from the measured depths. Snow density is a spatially and temporally variable property and is difficult to estimate at basin scales. Currently, ASO uses a physically based snow model (iSnobal) to resolve distributed snow density dynamics across the basin. However, there are issues with the density algorithms in iSnobal, particularly with snow depths below 0.50 m. This shortcoming limited the use of snow density fields from iSnobal during the poor snowfall year of 2014 in the Sierra Nevada, where snow depths were generally low. A deeper understanding of iSnobal model performance and uncertainty for snow density estimation is required. In this study, the model is compared to an existing climate-based statistical method for basin-wide snow density estimation in the Tuolumne basin in the Sierra Nevada and sparse field density measurements. The objective of this study is to improve the water resource information provided to water managers during ASO operation in the future by reducing the uncertainty introduced during the snow depth to SWE conversion.

  6. Exploring snow information content of interferometric SAR data

    NASA Astrophysics Data System (ADS)

    Esmaeily Gazkohani, Ali

    The objective of this research is to explore the information content of repeat-pass cross-track Interferometric SAR (InSAR) with regard to snow, in particular Snow Water Equivalent (SWE) and snow depth. The study is an outgrowth of earlier snow cover modeling and radar interferometry experiments at Schefferville, Quebec, Canada and elsewhere which has shown that for reasons of loss of coherence repeat-pass InSAR is not useful for the purpose of snow cover mapping, even when used in differential InSAR mode. Repeat-pass cross-track InSAR would overcome this problem. As at radar wavelengths dry snow is transparent, the main reflection is at the snow/ground interface. The high refractive index of ice creates a phase delay which is linearly related to the water equivalent of the snow pack. When wet, the snow surface is the main reflector, and this enables measurement of snow depth. Algorithms are elaborated accordingly. Field experiments were conducted at two sites and employ two different types of digital elevation models (DEM) produced by means of cross track InSAR. One was from the Shuttle Radar Topography Mission digital elevation model (SRTM DEM), flown in February 2000. It was compared to the photogrammetrically produced Canadian Digital Elevation Model (CDEM) to examine snow-related effects at a site near Schefferville, where snow conditions are well known from half a century of snow and permafrost research. The second type of DEM was produced by means of airborne cross track InSAR (TOPSAR). Several missions were flown for this purpose in both summer and winter conditions during NASA's Cold Land Processes Experiment (CLPX) in Colorado, USA. Differences between these DEM's were compared to snow conditions that were well documented during the CLPX field campaigns. The results are not straightforward. As a result of automated correction routines employed in both SRTM and AIRSAR DEM extraction, the snow cover signal is contaminated. Fitting InSAR DEM's to known

  7. Trends of perchlorate in Antarctic snow: Implications for atmospheric production and preservation in snow

    NASA Astrophysics Data System (ADS)

    Jiang, Su; Cox, Thomas S.; Cole-Dai, Jihong; Peterson, Kari M.; Shi, Guitao

    2016-09-01

    Perchlorate concentration ranges from a few to a few hundred ng kg-1 in surface and shallow-depth snow at three Antarctic locations (South Pole, Dome A, and central West Antarctica), with significant spatial variations dependent on snow accumulation rate and/or atmospheric production rate. An obvious trend of increasing perchlorate since the 1970s is seen in South Pole snow. The trend is possibly the result of stratospheric chlorine levels elevated by anthropogenic chlorine emissions; this is supported by the timing of a similar trend at Dome A. Alternatively, the trend may stem from postdepositional loss of snowpack perchlorate or a combination of both. The possible impact of stratospheric chlorine is consistent with evidence of perchlorate production in the stratosphere. Additionally, perchlorate concentration appears to be directly affected by the springtime Antarctic ozone hole. Therefore, perchlorate variations in Antarctic snow are likely linked to stratospheric chemistry and ozone over the Antarctic.

  8. Simulating wind fields and snow redistribution using terrain-based parameters to model snow distribution, energy fluxes, and melt over a semi-arid mountain catchment

    NASA Astrophysics Data System (ADS)

    Winstral, A.; Marks, D.

    2003-04-01

    In mountainous regions, wind plays a prominent role in determining snow accumulation patterns and turbulent heat exchanges strongly affecting the timi