Science.gov

Sample records for marine spark-ignition engine

  1. 78 FR 50412 - California State Nonroad Engine Pollution Control Standards; Amendments to Spark Ignition Marine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Ignition Engine (``Marine SI'') regulations.'' \\1\\ 72 FR 14546 (March 28, 2007). \\2\\ 76 FR 24872 (May 3... California Spark Ignition Marine Engine and Boat Regulations (2008 Marine SI Amendments or 2008 Amendments... request for authorization of the 2008 Marine SI Amendments. DATES: EPA has tentatively scheduled a...

  2. Combustion and operating characteristics of spark-ignition engines

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Keck, J. C.; Beretta, G. P.; Watts, P. A.

    1980-01-01

    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined.

  3. 75 FR 56477 - Technical Amendments for Marine Spark-Ignition Engines and Vessels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ..., and equipment (73 FR 59034, October 8, 2008), EPA established first-ever evaporative emissions..., and equipment (73 FR 59034, October 8, 2008), EPA established first-ever evaporative emissions... operation to prevent a vacuum from forming in the fuel tank as the engine draws the fuel level down. Such...

  4. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    ERIC Educational Resources Information Center

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  5. Particular bi-fuel application of spark ignition engines

    NASA Astrophysics Data System (ADS)

    Raţiu, S.; Alexa, V.; Kiss, I.

    2016-02-01

    This paper presents a comparative test concerning the operation of a spark-ignition engine, make: Dacia 1300, model: 810.99, fuelled alternatively with gasoline and LPG (Liquefied Petroleum Gas). The tests carried out show, on the one hand, the maintenance of power and torque performances in both engine fuelling cases, for all the engine operation regimes, and, on the other hand, a considerable decrease in CO and HC emissions when using poor mixtures related to LPG fuelling.

  6. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOEpatents

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  7. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  8. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Muehlner, E.

    1943-01-01

    Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

  9. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    SciTech Connect

    Fairbanks, J.W.

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  10. Utilization of waste glycerin to fuelling of spark ignition engines

    NASA Astrophysics Data System (ADS)

    Stelmasiak, Z.; Pietras, D.

    2016-09-01

    The paper discusses a possibilities of usage a simple alcohols to fuelling of spark ignition engines. Methanol and blends of methanol with glycerin, being a waste product from production of bio-components to fuels based on rapeseed oil, have been used in course of the investigations. The main objective of the research was to determine possibilities of utilization of glycerin to blending of engine fuels. The investigations have been performed using the Fiat 1100 MPI engine. Parameters obtained with the engine powered by pure methanol and by methanol- glycerin mixtures with 10÷30%vol content of glycerin were compared to parameters of the engine fuelled conventionally with the E95 gasoline. The investigations have shown increase of overall efficiency of the engine run on pure methanol with 2.5÷5.0%, and run on the mixture having 10% addition of glycerin with 2.0÷7.8%. Simultaneously, fuelling of the engine with the investigated alcohols results in reduced concentration of toxic components in exhaust gases like: CO, THC and NOx, as well as the greenhouse gas CO2.

  11. Combustion of CNG in Charged Spark Ignition Engines

    NASA Astrophysics Data System (ADS)

    Mitianiec, Wladyslaw

    2009-12-01

    The paper describes mixing of injected CNG with air and combustion process in spark ignition internal combustion engine. Because of higher ignition temperature of CNG the SI engines have more effective ignition system than conventional engines. The gas motion, turbulence, charge temperature and obviously electrical energy of the ignition coil have a big influence on the ignition and burning process in the combustion chamber. The paper includes theoretical and experimental investigations of ignition process in the high charged SI engines with direct CNG injection by using LES technique in KIVA program. Simulation of CNG combustion in the caloric chamber was carried in the environment of OpenFOAM program with LES model and also the experimental test was carried out for comparison of results in the chamber with the same geometry. The influence of the "tumble" and "swirl" on the sparking is shown by modelling of this process in premixed charge by using LES technique. The charge motion and also considerably turbulence effect influence strongly on the ignition process.

  12. Turbulent flame propagation and combustion in spark ignition engines

    NASA Technical Reports Server (NTRS)

    Beretta, G. P.; Rashidi, M.; Keck, J. C.

    1983-01-01

    Pressure measurements synchronized with high-speed motion-picture records of flame propagation have been made in a transparent-piston engine. The data show that the initial expansion speed of the flame front is close to that of a laminar flame. As the flame expands, its speed rapidly accelerates to a quasi-steady value comparable with that of the turbulent velocity fluctuations in the unburned gas. During the quasi-steady propagation phase, a significant fraction of the gas behind the visible front is unburned. Final burnout of the charge may be approximated by an exponential decay in time. The data have been analyzed in a model-independent way to obtain a set of empirical equations for calculating mass burning rates in spark-ignition engines. The burning equations contain three parameters: the laminar burning speed, a characteristic speed (uT), and a characteristic length (lT). The laminar burning speed is known from laboratory measurements. Tentative correlations relating uT and lT to engine geometry and operating variables have been derived from the engine data.

  13. Illustrations for a Competency Based Curriculum Guide: Ethanol Spark Ignition Engine Conversion.

    ERIC Educational Resources Information Center

    Illinois State Board of Education, Springfield. Dept. of Adult, Vocational and Technical Education.

    This document contains 56 illustrations for use in an Illinois-developed competency-based course in ethanol spark ignition engine conversion. Each illustration is related to a specific competency in the course curriculum guide. Illustrations, which include photographs and line drawings, cover some of the following topics: carburetion, compression,…

  14. Conversion of a diesel engine to a spark ignition natural gas engine

    SciTech Connect

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  15. Method for operating a spark-ignition, direct-injection internal combustion engine

    DOEpatents

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  16. Lightweight, low compression aircraft diesel engine. [converting a spark ignition engine to the diesel cycle

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.; Bottrell, M. S.; Eagle, C. D.; Bachle, C. F.

    1977-01-01

    The feasibility of converting a spark ignition aircraft engine to the diesel cycle was investigated. Procedures necessary for converting a single cylinder GTS10-520 are described as well as a single cylinder diesel engine test program. The modification of the engine for the hot port cooling concept is discussed. A digital computer graphics simulation of a twin engine aircraft incorporating the diesel engine and Hot Fort concept is presented showing some potential gains in aircraft performance. Sample results of the computer program used in the simulation are included.

  17. Over compression influence to the performances of the spark ignition engines

    NASA Astrophysics Data System (ADS)

    Rakosi, E.; Talif, S. G.; Manolache, G.

    2016-08-01

    This paper presents the theoretical and experimental results of some procedures used in improving the performances of the automobile spark ignition engines. The study uses direct injection and high over-compression applied to a standard engine. To this purpose, the paper contains both the constructive solutions and the results obtained from the test bed concerning the engine power indices, fuel consumption and exhaust emissions.

  18. A level set based flamelet model for the prediction of combustion in spark ignition engines

    NASA Astrophysics Data System (ADS)

    Ewald, J.; Peters, N.

    2005-08-01

    A Flamelet Model based on the Level Set approach for turbulent premixed combustion is presented. The original model is enhanced in order to consistently model the evolution of the premixed flame from laminar into a fully developed turbulent flame. This is accomplished by establishing a linear relationship between the thickness of the turbulent flame brush and the turbulent burning velocity. Starting from there a model for the initial flame propagation of a spherical spark kernel immediately after ignition and for the flame propagation in 3D space is derived. In contrast to other models, the same physical modeling assumptions are employed for the phase initially after spark ignition and for the later phases of flame propagation. The model is applied to a test case in an homogeneous charge Spark Ignition (SI) engine.

  19. Combustion process in a spark ignition engine: dynamics and noise level estimation.

    PubMed

    Kaminski, T; Wendeker, M; Urbanowicz, K; Litak, G

    2004-06-01

    We analyze the experimental time series of internal pressure in a four cylinder spark ignition engine. In our experiment, performed for different spark advance angles, apart from the usual cyclic changes of engine pressure we observed additional oscillations. These oscillations are with longer time scales ranging from one to several hundred engine cycles depending on engine working conditions. Based on the pressure time dependence we have calculated the heat released per combustion cycle. Using the time series of heat release to calculate the correlation coarse-grained entropy we estimated the noise level for internal combustion process. Our results show that for a larger spark advance angle the system is more deterministic.

  20. Plant oils as applied to spark ignition engines

    SciTech Connect

    Hoki, M.; Liljedahl, J.B.; Takeda, S.

    1983-12-01

    Eucalyptus and orange oil blended with gasoline were used to find their burning characteristics and the effect upon engine performance. The appropriate ignition timing for the eucalyptus oil blend fuel for optimum engine performance was investigated as well as the antiknock quality of the fuel.

  1. An assessment of combustion products of spark ignition engines supplied by ethanol - gasoline blends

    NASA Astrophysics Data System (ADS)

    Uzuneanu, K.; Golgotiu, E.

    2016-08-01

    The causes of environmental pollution by internal combustion engines arise from the use of fuels containing bounded carbon, from the fact that combustion takes place on a cyclic basis and at high temperature. The first and the last causes are directly related to the fuel and therefore there is in principle a possibility to reduce pollution by acting upon the fuel used. The present paper deals with the comparison of the level of combustion products of a spark ignition engine supplied by gasoline and by a mixture of 10 % ethanol - 90% gasoline.

  2. A Competency Based Curriculum Guide: Ethanol Spark Ignition Engine Conversion.

    ERIC Educational Resources Information Center

    Blair, Brittain A.

    This guide is a competency-based vocational curriculum designed to provide educators with viable ethanol (100 percent alcohol) engine conversion procedures stated in simple terms and set in a flexible educational environment. The curriculum is designed so that educators can form various combinations of instructional activities and resource…

  3. Measurement of Knock Characteristics in Spark-ignition Engines

    NASA Technical Reports Server (NTRS)

    Schutz, R

    1940-01-01

    This paper presents a discussion of three potential sources of error in recording engine knocking which are: the natural oscillation of the membrane, the shock process between test contacts, and the danger of burned contacts. Following this discussion, the paper calls attention to various results which make the bouncing-pin indicator appear fundamentally unsuitable for recording knock phenomena.

  4. Infrared radiation from explosions in a spark-ignition engine

    NASA Technical Reports Server (NTRS)

    Marvin, Charles F , Jr; Caldwell, Frank R; Steele, Sydney

    1935-01-01

    This report presents the results of an investigation to determine the variations in intensity and spectral distribution of the radiant energy emitted by the flames during normal and knocking explosions in an engine. Radiation extending into the infrared was transmitted by a window of fluorite, placed either near the spark plug or over the detonation zone at opposite ends of the combustion chamber. Concave, surface-silvered mirrors focused the beam, first at the slit of a stroboscope which opened for about 2 degrees of crank angle at any desired point in the engine cycle, and then upon the target of a sensitive thermocouple for measuring radiation intensity. Spectral distribution of the radiant energy was determined by placing over the window, one at a time, a series of five filters selected with a view to identifying, as far as possible without the use of a spectrograph, the characteristic emissions of water vapor, carbon dioxide, and incandescent carbon.

  5. Orange oil and its application to spark ignition engine

    SciTech Connect

    Takeda, S.

    1982-12-01

    Orange oil can be extracted from the peel of citrus. In Japan the production of orange oil is about 2000 tons per year. No orange oil has been however used for any specific purpose. The main ingredient of orange oil consists of d-limonen. About 0.6-1.0% oil can be extracted from the peel of ''Unshu orange'', which is a kind of typical Japanese tangerine. Orange oil has 106-140 research octane number which is good for running the CFR engine. The flash point of orange oil measured by Pensky-Martens method was at 56/sup 0/C. For the use of orange oil only as fuel without blending, there was found to be some difficulty in engine startability under cold conditions.

  6. Comparative performance study of spark ignition engines burning alcohols, gasoline, and alcohol-gasoline blends

    SciTech Connect

    Desoky, A.A.; Rabie, L.H.

    1983-12-01

    In recent years it has been clear that the reserves of oil, from which petrol is refined, are becoming limited. In order to conserve these stocks of oil, and to minimize motoring costs as the price of dwindling oil resources escalates, it's obviously desirable to improve the thermal efficiency of the spark ignition engine. There are also obvious benefits to be obtained from making spark ignition engines run efficiently on alternative fuel, (non-crude based fuel). It has been claimed that hydrogen is an ideal fuel for the internal combustion engine it certainly causes little pollution, but is difficult to store, high in price, and difficult to burn efficiently in the engine without it knocking and backfiring. These problems arise because of the very wide flammability limits and the very high flame velocity of hydrogen. Alcohols used an additive or substitute for gasoline could immediately help to solve both energy and pollution problems. An experimental tests were carried out at Mansoura University Laboratories using a small single cylinder SIE, fully instrumented to measure the engine performance. The engine was fueled with pure methonol, pure ethonol, gasoline methanol blends and gasaline ethanol blends. The results showed that in principle, from kechnological aspects it's possible to use alcohols as a gasoline extender or as alcohol's gasoline, blends for automobiles. With regard to energy consumptions alcohols and alcohols gasoline blends lead to interesting results. The fuel economy benefits of using alcohols gasoline blends was found to be interesting in the part throltle operation.

  7. Methanol as a fuel for a lean turbocharged spark ignition engine

    SciTech Connect

    Pannone, G.M.; Johnson, R.T.

    1989-01-01

    Lean turbocharged operation with methanol was characterized using a single-cylinder spark, ignition engine. Efficiency, exhaust emissions, and combustion properties were measured over a range of air/fuel ratios at two naturally-aspirated and three turbocharged conditions. When compared to stoichiometric, naturally-aspirated operation, the lean turbocharged conditions improved efficiency while reducing carbon monoxide and oxides of nitrogen emissions. However, unburned fuel and aldehyde emissions increased. If used in conjunction with an oxidizing catalyst and appropriate feedback controls, lean turbocharged operation has the potential of improving efficiency and exhaust emissions performance over a stoichiometric, three-way catalyst system.

  8. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    SciTech Connect

    Keller, J.; Blarigan, P. Van

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end the authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.

  9. A comparison between direct spark ignition and prechamber ignition in an internal combustion engine

    SciTech Connect

    Cloutman, L.D.

    1993-12-03

    We simulated the flow field and flame propagation near top dead center in a generic large-bore internal combustion engine using the COYOTE computer program, which is based on the full Navier-Stokes equations for a fluid mixture. The combustion chamber is a right circular cylinder, and the main charge is uniformly premixed. The calculations are axisymmetric. The results illustrate the differences in flow patterns, flame propagation, and thermal NO production between ignition with a spark plug and with a small prechamber. In the spark-ignited case, the flame propagates away from the spark plug approximately as a segment of a spherical surface, just as expected. With the prechamber, a high speed jet of hot combustion products shoots into the main chamber, quickly producing a large flame sheet that spreads along the piston face. The prechamber run consumes all of the fuel in half the time required by the spark-ignited case. The two cases produce comparable amounts of thermal NO at the end of fuel combustion.

  10. Effect of torch jet direction on combustion and performance of a prechamber spark-ignition engine

    SciTech Connect

    Ryu, H.; Chtsu, A.; Asanuma, T.

    1987-01-01

    To examine the effect of torch jet direction on the combustion characteristics and engine performances, a spark-ignition engine with each divided chamber having a torch nozzle of different flow direction is used by changing the torch nozzle area, prechamber volume and air-fuel ratio, while keeping the engine speed of 1000 rpm. Typical pressure diagrams for different torch jet directions are analyzed to obtain such combustion characteristics as the crank angles of combustion start and finish, heat release rate and mass burned fraction. The engine performances, e.g. mean effective pressure and specific fuel consumption, are also measured. As a result, it can be made clear not only the effect of torch jet direction on the combustion characteristics, but also the relationship between the combustion characteristics and the engine performances for different torch jet directions.

  11. Onboard Hydrogen Generation for a Spark Ignition Engine via Thermochemical Recuperation

    NASA Astrophysics Data System (ADS)

    Silva, Isaac Alexander

    A method of exhaust heat recovery from a spark-ignition internal combustion engine was explored, utilizing a steam reforming thermochemical reactor to produce a hydrogen-rich effluent, which was then consumed in the engine. The effects of hydrogen in the combustion process have been studied extensively, and it has been shown that an extension of the lean stability limit is possible through hydrogen enrichment. The system efficiency and the extension of the operational range of an internal combustion engine were explored through the use of a methane fueled naturally aspirated single cylinder engine co-fueled with syngas produced with an on board methane steam reformer. It was demonstrated that an extension of the lean stability limit is possible using this system.

  12. Lean-burn hydrogen spark-ignited engines: the mechanical equivalent to the fuel cell

    SciTech Connect

    Aceves, S.M.; Smith, J.R.

    1996-10-01

    Fuel cells are considered as the ideal power source for future vehicles, due to their high efficiency and low emissions. However, extensive use of fuel cells in light-duty vehicles is likely to be years away, due to their high manufacturing cost. Hydrogen-fueled, spark-ignited, homogeneous-charge engines offer a near-term alternative to fuel cells. Hydrogen in a spark-ignited engine can be burned at very low equivalence ratios, so that NO[sub x] emissions can be reduced to less than 10 ppm without catalyst. HC and CO emissions may result from oxidation of engine oil, but by proper design are negligible (a few ppm). Lean operation also results in increased indicated efficiency due to the thermodynamic properties of the gaseous mixture contained in the cylinder. The high effective octane number of hydrogen allows the use of a high compression ratio, further increasing engine efficiency. In this paper, a simplified engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many 1345 experimental points obtained in a recent evaluation of a hydrogen research engine. The experimental data are used to adjust the empirical constants in the heat release rate and heat transfer correlation. The adjusted engine model predicts pressure traces, indicated efficiency and NO,, emissions with good accuracy over the range of speed, equivalence ratio and manifold pressure experimentally covered.

  13. The relationship between cyclic variations in spark-ignition engines and the small structure of turbulence

    SciTech Connect

    Hill, P.G.; Kapil, A. . Dept. of Mechanical Engineering)

    1989-11-01

    The hypothesis that cyclic variations in combustion in spark-ignition engines originate in the small-scale structure of turbulence is further examined in the light of experimental data from a single-cylinder research engine. The data cover a wide range of engine speed and equivalence ratio. The effects of spark electrode geometry, spark gap, chamber geometry, and throttling are examined. The general conclusion is that the standard deviation in burning time, deduced for the smallest size flame kernels, is estimated within experimental uncertainty by a parameter {lambda}4{mu}/sub l/, in which {lambda} is the Taylor microscale and {mu}/sub l/ is the laminar burning velocity of the unburned mixture. The experimental results are thus consistent with the interaction of an effectively point-source ignition with the turbulence structure model of Tennekes, and with the idea that rapid burning takes place in the vortex tube regions of high dissipation.

  14. FUNDAMENTAL STUDIES OF IGNITION PROCESSES IN LARGE NATURAL GAS ENGINES USING LASER SPARK IGNITION

    SciTech Connect

    Azer Yalin; Morgan Defoort; Bryan Willson

    2005-01-01

    The current report details project progress made during the first quarterly reporting period of the DOE sponsored project ''Fundamental studies of ignition processes in large natural gas engines using laser spark ignition''. The goal of the overall research effort is to develop a laser ignition system for natural gas engines, with a particular focus on using fiber optic delivery methods. In this report we present our successful demonstration of spark formation using fiber delivery made possible though the use of novel coated hollow fibers. We present results of (high power) experimental characterizations of light propagation using hollow fibers using both a high power research grade laser as well as a more compact laser. Finally, we present initial designs of the system we are developing for future on-engine testing using the hollow fibers.

  15. An ignition and combustion model based on the level-set method for spark ignition engine multidimensional modeling

    SciTech Connect

    Tan, Zhichao; Reitz, Rolf D.

    2006-04-15

    To improve the prediction accuracy of the spark ignition and combustion processes in spark ignition engines, improved ignition and flame propagation models have been developed and implemented in the CFD code, KIVA-3V. An equation to calculate the spark ignition kernel growth rate is derived that considers the effects of the spark ignition discharge energy and flow turbulence on the ignition kernel growth. In addition, a flamelet combustion model based on the G equation combustion model was developed and implemented. To test the ignition and combustion models, they were applied to a homogeneous charge pancake-shaped-combustion-chamber engine, in which experimental heat flux data from probes in the engine head and cylinder liner were available. By comparing the flame arrival timings with the simulation predictions, the ignition and combustion models were validated. In addition, the models were also applied to a homogeneous charge propane-fueled SI engine. Good agreement with experimental cylinder pressures and NO{sub x} data was obtained as a function of ignition timing, engine speed, and EGR levels. (author)

  16. Preknock Vibrations in a Spark-Ignition Engine Cylinder as Revealed by High-Speed Photography

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D; Logan, Walter O , Jr

    1944-01-01

    The high-speed photographic investigation of the mechanics of spark-ignition engine knock recorded in three previous reports has been extended with use of the NACA high-speed camera and combustion apparatus with a piezoelectric pressure pickup in the combustion chamber. The motion pictures of knocking combustion were taken at the rate of 40,000 frames per second. Existence of the preknock vibrations in the engine cylinder suggested in Technical Report no.727 has been definitely proved and the vibrations have been analyzed both in the high-speed motion pictures and the pressure traces. Data are also included to show that the preknock vibrations do not progressively build up to cause knock. The effect of tetraethyl lead on the preknock vibrations has been studied and results of the tests are presented. Photographs are presented which in some cases clearly show evidence of autoignition in the end zone a considerable length of time before knock occurs.

  17. Dynamic instabilities in spark-ignited combustion engines with high exhaust gas recirculation

    NASA Astrophysics Data System (ADS)

    Daw, C. Stuart; Finney, Charles E. A.

    2011-04-01

    We propose a cycle-resolved dynamic model for combustion instabilities in spark-ignition engines operating with high levels of exhaust gas recirculation (EGR). We account for the complex combustion response to cycle-to-cycle feedback by utilizing a global probability distribution that describes the pre-spark state of in-cylinder fuel mixing. The proposed model does a good job of simulating combustion instabilities observed in both lean-fueling engine experiments and in experiments where nitrogen dilution is used to simulate some of the combustion inhibition of EGR. When used to simulate high internal EGR operation, the model exhibits a range of global bifurcations and chaos that appear to be very robust. We use the model to show that it should be possible to reduce high EGR combustion instabilities by switching from internal to external EGR.

  18. Thermodynamic analysis of turbulent combustion in a spark ignition engine. Experimental evidence

    NASA Technical Reports Server (NTRS)

    Beretta, G. P.; Rashidi, M.; Keck, J. C.

    1980-01-01

    A method independent of physical modeling assumptions is presented to analyze high speed flame photography and cylinder pressure measurements from a transparent piston spark ignition research engine. The method involves defining characteristic quantities of the phenomena of flame propagation and combustion, and estimating their values from the experimental information. Using only the pressure information, the mass fraction curves are examined. An empirical burning law is presented which simulates such curves. Statistical data for the characteristics delay and burning angles which show that cycle to cycle fractional variations are of the same order of magnitude for both angles are discussed. The enflamed and burnt mass fractions are compared as are the rates of entrainment and burning.

  19. Stochastic Modelling and Estimation for Cyclic Pressure Variations in Spark Ignition Engines

    NASA Astrophysics Data System (ADS)

    Roberts, J. B.; Peyton Jones, J. C.; Landsborough, K. J.

    2001-03-01

    A new method of fitting linearised, parametric stochastic models of cycle-by-cycle variations of pressure, during the combustion region of a spark ignition petrol engine, is described. The technique is based on stochastically fitting the combustion models to the covariance function of the measured pressure fluctuations, obtained by averaging over the entire ensemble of measured cycles. Comparisons, for two specific combustion models, with corresponding results obtained by deterministic fitting on a cycle-by-cycle basis, show that the new method gives a similar degree of fit, but with much improved computational efficiency. It is also demonstrated that the degree of fit to the data can be further improved by modelling the residual error between the data and the combustion models in terms of Chebyshev polynomials: the parameters in these polynomials may be determined by stochastic fitting. The technique has wider applications in the condition monitoring of rotating machinery.

  20. Inevitability of Engine-Out Nox Emissions from Spark-Ignition and Diesel Engines

    SciTech Connect

    Flynn, P F; Hunter, G L; Farrell, L A; Durrett, R P; Akinyemi, O C; Westbrook, C K; Pitz, W J

    2000-01-11

    Internal combustion engines, both spark ignition and Diesel, are dominant types of vehicle power sources and also provide power for other important stationary applications. Overall, these engines are a central part of power generation in modern society. However, these engines, burning hydrocarbon fuels from natural gas to gasoline and Diesel fuel, are also responsible for a great deal of pollutant emissions to the environment, especially oxides of nitrogen (NO{sub x}) and unburned hydrocarbons (UHC). In recent years, pollutant species emissions from internal combustion engines have been the object of steadily more stringent limitations from various governmental agencies. Engine designers have responded by developing engines that reduce emissions to accommodate these tighter limitations. However, as these limits become ever more stringent, the ability of engine design modifications to meet those limits must be questioned. Production of NO{sub x} in internal combustion engines is primarily due to the high temperature extended Zeldovich reaction mechanism: (1) O + N{sub 2} = NO + N; (2) N + O{sub 2} = NO + O; and (3) N + OH = NO + H. The rates of these reactions become significant when combustion temperatures reach or exceed about 2000K. This large temperature dependence, characterized by large activation energies for the rates of the reactions listed here, is a direct result of the need to break apart the tightly bonded oxygen and nitrogen molecules. The strongest bond is the triple bond in the N {triple_bond} N molecule, resulting in an activation energy of about 75 kcal/mole for Reaction (1), which is the principal cause for the large temperature dependence of the extended Zeldovich NO{sub x} mechanism. In most engines, NO{sub x} is therefore produced primarily in the high temperature combustion product gases. Using a reliable kinetic model for NO{sub x} production such as the GRI Mechanism [1] or the Miller-Bowman model [2] with hydrocarbon products at

  1. Analysis of an Increase in the Efficiency of a Spark Ignition Engine Through the Application of an Automotive Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Galant, Marta; Siedlecki, Maciej

    2016-08-01

    We have analyzed the increase of the overall efficiency of a spark ignition engine through energy recovery following the application of an automotive thermoelectric generator (ATEG) of our own design. The design of the generator was developed following emission investigations during vehicle driving under city traffic conditions. The measurement points were defined by actual operation conditions (engine speed and load), subsequently reproduced on an engine dynamometer. Both the vehicle used in the on-road tests and the engine dynamometer were fit with the same, downsized spark ignition engine (with high effective power-to-displacement ratio). The thermodynamic parameters of the exhaust gases (temperature and exhaust gas mass flow) were measured on the engine testbed, along with the fuel consumption and electric current generated by the thermoelectric modules. On this basis, the power of the ATEG and its impact on overall engine efficiency were determined.

  2. Flatness-based embedded control in successive loops for spark-ignited engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos

    2015-11-01

    Embedded control units for transportation systems make use of advanced nonlinear control methods. In this research article a new nonlinear control method is applied to spark ignited (SI) engines. The proposed SI engine's control scheme is based on differential flatness theory The considered method succeeds the efficient control of the SI engine parameters such as intake pressure and turn speed. The method makes use of a state-space model of the SI-engine in the so-called triangular form. The controller design proceeds by showing that each row of the state-space model of the SI engine stands for a differentially flat system, where the flat output is chosen to be the associated state variable. Next, for each subsystem which is linked with a row of the state-space model, a virtual control input is computed, that can invert the subsystem's dynamics and can eliminate the subsystem's tracking error. From the last row of the state-space description, the control input that is actually applied to the SI engine is found. This control input contains recursively all virtual control inputs which were computed for the individual subsystems associated with the previous rows of the state-space equation. Thus, by tracing the rows of the state-space model backwards, at each iteration of the control algorithm, one can finally obtain the control input that should be applied to the SI-engine so as to assure that all its state vector elements will converge to the desirable setpoints.

  3. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis.

    PubMed

    Daw, C S; Finney, C E A; Kaul, B C; Edwards, K D; Wagner, R M

    2015-02-13

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel economy. One new advanced engine strategy ustilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities. PMID:25548262

  4. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis

    SciTech Connect

    Daw, C. Stuart; Finney, Charles E. A.; Kaul, Brian C.; Edwards, Kevin Dean; Wagner, Robert M.

    2014-12-29

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel-economy. One new advanced engine strategy utilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.

  5. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis.

    PubMed

    Daw, C S; Finney, C E A; Kaul, B C; Edwards, K D; Wagner, R M

    2015-02-13

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel economy. One new advanced engine strategy ustilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.

  6. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis

    DOE PAGESBeta

    Daw, C. Stuart; Finney, Charles E. A.; Kaul, Brian C.; Edwards, Kevin Dean; Wagner, Robert M.

    2014-12-29

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel-economy. One new advanced engine strategy utilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy inmore » the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.« less

  7. Determination of knock characteristics in spark ignition engines: an approach based on ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Yang, Jianguo; Zhou, Rui; Liang, Caiping

    2016-04-01

    Knock is one of the major constraints to improve the performance and thermal efficiency of spark ignition (SI) engines. It can also result in severe permanent engine damage under certain operating conditions. Based on the ensemble empirical mode decomposition (EEMD), this paper proposes a new approach to determine the knock characteristics in SI engines. By adding a uniformly distributed and finite white Gaussian noise, the EEMD can preserve signal continuity in different scales and therefore alleviates the mode-mixing problem occurring in the classic empirical mode decomposition (EMD). The feasibilities of applying the EEMD to detect the knock signatures of a test SI engine via the pressure signal measured from combustion chamber and the vibration signal measured from cylinder head are investigated. Experimental results show that the EEMD-based method is able to detect the knock signatures from both the pressure signal and vibration signal, even in initial stage of knock. Finally, by comparing the application results with those obtained by short-time Fourier transform (STFT), Wigner-Ville distribution (WVD) and discrete wavelet transform (DWT), the superiority of the EEMD method in determining knock characteristics is demonstrated.

  8. Experimental cross-correlation nitrogen Q-branch CARS thermometry in a spark ignition engine

    NASA Astrophysics Data System (ADS)

    Lockett, R. D.; Ball, D.; Robertson, G. N.

    2013-07-01

    A purely experimental technique was employed to derive temperatures from nitrogen Q-branch Coherent Anti-Stokes Raman Scattering (CARS) spectra, obtained in a high pressure, high temperature environment (spark ignition Otto engine). This was in order to obviate any errors arising from deficiencies in the spectral scaling laws which are commonly used to represent nitrogen Q-branch CARS spectra at high pressure. The spectra obtained in the engine were compared with spectra obtained in a calibrated high pressure, high temperature cell, using direct cross-correlation in place of the minimisation of sums of squares of residuals. The technique is demonstrated through the measurement of air temperature as a function of crankshaft angle inside the cylinder of a motored single-cylinder Ricardo E6 research engine, followed by the measurement of fuel-air mixture temperatures obtained during the compression stroke in a knocking Ricardo E6 engine. A standard CARS programme (SANDIA's CARSFIT) was employed to calibrate the altered non-resonant background contribution to the CARS spectra that was caused by the alteration to the mole fraction of nitrogen in the unburned fuel-air mixture. The compression temperature profiles were extrapolated in order to predict the auto-ignition temperatures.

  9. Quasi-dimensional modelling of combustion in a two-stroke cycle spark ignition engine

    SciTech Connect

    Reid, M.G.; Douglas, R.

    1994-09-01

    This paper details a theoretical and experimental study of combustion phenomena within a two-stroke-cycle, spark ignition engine. The theoretical part of the work involved the development of an improved quasi-dimensional combustion model. This model was incorporated into a computer program which was used to predict the thermodynamic and chemical changes occurring within a two-stroke engine during the closed cycle of the engine. The simulation uses a turbulent kinetic energy model to predict flame front velocity. Combustion chamber geometry is used to estimate entrained mass, and mass fraction burned is calculated from a simple eddy-entrainment approach. The experimental work was undertaken to validate the combustion model. Two separate cylinder heads were designed with different combustion chambers and tested on a standard loop-scavenged engine over a range of operating conditions. This validation showed good correlation between measured and predicted results, but the differences seen highlight some areas requiring further consideration. It is postulated that the main influencing factors are squish effects and cycle-to-cycle variation. 23 refs., 12 figs., 3 tabs.

  10. FUEL EFFECTS ON COMBUSTION WITH EGR DILUTION IN SPARK IGNITED ENGINES

    SciTech Connect

    Szybist, James P

    2016-01-01

    The use of EGR as a diluent allows operation with an overall stoichiometric charge composition, and the addition of cooled EGR results in well-understood thermodynamic benefits for improved fuel consumption. This study investigates the effect of fuel on the combustion and emission response of EGR dilution in spark ignited engines. A 2.0 L GM Ecotec LNF engine equipped with the production side-mounted direct injection (DI) fueling system is used in this study. Ethanol, isooctane and certified gasoline are investigated with EGR from 0% to the EGR dilution tolerance. Constant BMEP at 2000 rpm was operated with varying CA50 from 8 CAD to 16 CAD aTDCf. The results show that ethanol gives the largest EGR tolerance at a given combustion phasing, engine load and speed. The improved EGR dilution tolerance with ethanol is attributed to a faster flame speed, which manifests itself as shorter combustion duration. Data shows that the combustion stability limit occurs at a critical combustion duration that is fuel independent. Due to different flame speeds, this critical combustion duration occurs at different EGR levels for the different fuels.

  11. Dynamic instabilities in spark-ignited combustion engines with high exhaust gas recirculation

    SciTech Connect

    Daw, C Stuart; FINNEY, Charles E A

    2011-01-01

    We propose a cycle-resolved dynamic model for combustion instabilities in spark-ignition engines operating with high levels of exhaust gas recirculation (EGR). High EGR is important for increasing fuel efficiency and implementing advanced low-emission combustion modes such as homogenous charge compression ignition (HCCI). We account for the complex combustion response to cycle-to-cycle feedback by utilizing a global probability distribution that describes the pre-spark state of in-cylinder fuel mixing. The proposed model does a good job of simulating combustion instabilities observed in both lean-fueling engine experiments and in experiments where nitrogen dilution is used to simulate some of the combustion inhibition of EGR. When used to simulate high internal EGR operation, the model exhibits a range of global bifurcations and chaos that appear to be very robust. We use the model to show that it should be possible to reduce high EGR combustion instabilities by switching from internal to external EGR. We also explain why it might be helpful to deliberately stratify the fuel in the pre-spark gas mixture. It might be possible to extend the simple approach used in this model to other chemical reaction systems with spatial inhomogeneity.

  12. Neural network controller development and implementation for spark ignition engines with high EGR levels.

    PubMed

    Vance, Jonathan Blake; Singh, Atmika; Kaul, Brian C; Jagannathan, Sarangapani; Drallmeier, James A

    2007-07-01

    Past research has shown substantial reductions in the oxides of nitrogen (NOx) concentrations by using 10%-25% exhaust gas recirculation (EGR) in spark ignition (SI) engines (see Dudek and Sain, 1989). However, under high EGR levels, the engine exhibits strong cyclic dispersion in heat release which may lead to instability and unsatisfactory performance preventing commercial engines to operate with high EGR levels. A neural network (NN)-based output feedback controller is developed to reduce cyclic variation in the heat release under high levels of EGR even when the engine dynamics are unknown by using fuel as the control input. A separate control loop was designed for controlling EGR levels. The stability analysis of the closed-loop system is given and the boundedness of the control input is demonstrated by relaxing separation principle, persistency of excitation condition, certainty equivalence principle, and linear in the unknown parameter assumptions. Online training is used for the adaptive NN and no offline training phase is needed. This online learning feature and model-free approach is used to demonstrate the applicability of the controller on a different engine with minimal effort. Simulation results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller when implemented on an engine model that has been validated experimentally. For a single cylinder research engine fitted with a modern four-valve head (Ricardo engine), experimental results at 15% EGR indicate that cyclic dispersion was reduced 33% by the controller, an improvement of fuel efficiency by 2%, and a 90% drop in NOx from stoichiometric operation without EGR was observed. Moreover, unburned hydrocarbons (uHC) drop by 6% due to NN control as compared to the uncontrolled scenario due to the drop in cyclic dispersion. Similar performance was observed with the controller on a different engine.

  13. Devices to improve the performance of a conventional two-stroke spark ignition engine

    SciTech Connect

    Poola, R.B.; Nagalingam, B.; Gopalakrishnan, K.V.

    1995-06-01

    This paper presents research efforts made in three different phases with the objective of improving the fuel economy of and reducing exhaust emissions from conventional, carbureted, two-stroke spark ignition (SI) engines, which are widely employed in two-wheel transportation in India. A review concerning the existing two-stroke engine technology for this application is included. In the first phase, a new scavenging system was developed and tested to reduce the loss of fresh charge through the exhaust port. In die second phase, the following measures were carried out to improve the combustion process: (1) using an in-cylinder catalyst, such as copper, chromium, and nickel, in the form of coating; (2) providing moderate thermal insulation in the combustion chamber, either by depositing thin ceramic material or by metal inserts; (3) developing a high-energy ignition system; and (4) employing high-octane fuel, such as methanol, ethanol, eucalyptus oil, and orange oil, as a blending agent with gasoline. Based on the effectiveness of the above measures, an optimized design was developed in the final phase to achieve improved performance. Test results indicate that with an optimized two-stroke SI engine, the maximum percentage improvement in brake thermal efficiency is about 31%, together with a reduction of 3400 ppm in hydrocarbons (HC) and 3% by volume of carbon monoxide (CO) emissions over the normal engine (at 3 kW, 3000 rpm). Higher cylinder peak pressures (3-5 bar), lower ignition delay (2-4{degrees}CA){degrees} and shorter combustion duration (4-10 {degrees}CA) are obtained. The knock-limited power output is also enhanced by 12.7% at a high compression ratio (CR) of 9:1. The proposed modifications in the optimized design are simple, low-cost and easy to adopt for both production and existing engines.

  14. Devices to improve the performance of a conventional two-stroke spark ignition engine

    NASA Astrophysics Data System (ADS)

    Poola, R. B.; Nagalingam, B.; Gopalakrishnan, K. V.

    1995-08-01

    This paper presents research efforts made in three different phases with the objective of improving the fuel economy of and reducing exhaust emissions from conventional, carbureted, two-stroke spark ignition (SI) engines, which are widely employed in two-wheel transportation in India. A review concerning the existing two-stroke engine technology for this application is included. In the first phase, a new scavenging system was developed and tested to reduce the loss of fresh charge through the exhaust port. In the second phase, the following measures were carried out to improve the combustion process: (1) using an in-cylinder catalyst, such as copper, chromium, and nickel, in the form of coating; (2) providing moderate thermal insulation in the combustion chamber, either by depositing thin ceramic material or by metal inserts; (3) developing a high-energy ignition system; and (4) employing high-octane fuel, such as methanol, ethanol, eucalyptus oil, and orange oil, as a blending agent with gasoline. Based on the effectiveness of the above measures, an optimized design was developed in the final phase to achieve improved performance. Test results indicate that with an optimized two-stroke SI engine, the maximum percentage improvement in brake thermal efficiency is about 31%, together with a reduction of 3400 ppm in hydrocarbons (HC) and 3% by volume of carbon monoxide (CO) emissions over the normal engine (at 3 kW, 3000 rpm). Higher cylinder peak pressures (3-5 bar), lower ignition delay (2-4 degrees CA), and shorter combustion duration (4-10 degrees CA) are obtained. The knock-limited power output is also enhanced by 12.7% at a high compression ratio (CR) of 9:1. The proposed modifications in the optimized design are simple, low-cost, and easy to adopt for both production and existing engines.

  15. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.

    PubMed

    Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin

    2016-01-01

    The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. PMID:26164851

  16. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.

    PubMed

    Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin

    2016-01-01

    The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels.

  17. STS-55 pad abort: Engine 2011 oxidizer preburner augmented spark igniter check valve leak

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The STS-55 initial launch attempt of Columbia (OV102) was terminated on KSC launch pad A March 22, 1993 at 9:51 AM E.S.T. due to violation of an ME-3 (Engine 2011) Launch Commit Criteria (LCC) limit exceedance. The event description and timeline are summarized. Propellant loading was initiated on 22 March, 1993 at 1:15 AM EST. All SSME chill parameters and launch commit criteria (LCC) were nominal. At engine start plus 1.44 seconds, a Failure Identification (FID) was posted against Engine 2011 for exceeding the 50 psia Oxidizer Preburner (OPB) purge pressure redline. The engine was shut down at 1.50 seconds followed by Engines 2034 and 2030. All shut down sequences were nominal and the mission was safely aborted. The OPB purge pressure redline violation and the abort profile/overlay for all three engines are depicted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 013-414, OPB purge pressure redline exceeded. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to the oxidizer preburner augmented spark igniter purge check valve not being fully closed due to contamination. The source of the contaminant was traced to a cut segment from a rubber O-ring which was used in a fine clean tool during valve production prior to 1992. The valve was apparently contaminated during its fabrication in 1985. The valve had performed acceptably on four previous flights of the engine, and SSME flight history shows 780 combined check valve flights without failure. The failure of an Engine 3 (SSME No. 2011) check valve to close was sensed by onboard engine instruments even though all other engine operations were normal. This

  18. STS-55 pad abort: Engine 2011 oxidizer preburner augmented spark igniter check valve leak

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-55 initial launch attempt of Columbia (OV102) was terminated on KSC launch pad A March 22, 1993 at 9:51 AM E.S.T. due to violation of an ME-3 (Engine 2011) Launch Commit Criteria (LCC) limit exceedance. The event description and timeline are summarized. Propellant loading was initiated on 22 March, 1993 at 1:15 AM EST. All SSME chill parameters and launch commit criteria (LCC) were nominal. At engine start plus 1.44 seconds, a Failure Identification (FID) was posted against Engine 2011 for exceeding the 50 psia Oxidizer Preburner (OPB) purge pressure redline. The engine was shut down at 1.50 seconds followed by Engines 2034 and 2030. All shut down sequences were nominal and the mission was safely aborted. The OPB purge pressure redline violation and the abort profile/overlay for all three engines are depicted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 013-414, OPB purge pressure redline exceeded. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to the oxidizer preburner augmented spark igniter purge check valve not being fully closed due to contamination. The source of the contaminant was traced to a cut segment from a rubber O-ring which was used in a fine clean tool during valve production prior to 1992. The valve was apparently contaminated during its fabrication in 1985. The valve had performed acceptably on four previous flights of the engine, and SSME flight history shows 780 combined check valve flights without failure. The failure of an Engine 3 (SSME No. 2011) check valve to close was sensed by onboard engine instruments even though all other engine operations were normal. This

  19. Some aspects of the CI engine modification aimed at operation on LPG with the application of spark ignition

    NASA Astrophysics Data System (ADS)

    Kaparuk, J.; Luft, S.; Skrzek, T.; Wojtyniak, M.

    2016-09-01

    A lot of investigation on modification of the compression ignition engine aimed at operation on LPG with the application of spark ignition has been carried out in the Laboratory of Vehicles and Combustion Engines at Kazimierz Pulaski University of Technology and Humanities in Radom. This paper presents results of investigation on establishment of the proper ignition advance angle in the modified engine. Within the framework of this investigation it was assessed the effect of this regulation on basic engine operating parameters, exhaust emission as well as basic combustion parameters.

  20. Cycle Engine Modelling Of Spark Ignition Engine Processes during Wide-Open Throttle (WOT) Engine Operation Running By Gasoline Fuel

    NASA Astrophysics Data System (ADS)

    Rahim, M. F. Abdul; Rahman, M. M.; Bakar, R. A.

    2012-09-01

    One-dimensional engine model is developed to simulate spark ignition engine processes in a 4-stroke, 4 cylinders gasoline engine. Physically, the baseline engine is inline cylinder engine with 3-valves per cylinder. Currently, the engine's mixture is formed by external mixture formation using piston-type carburettor. The model of the engine is based on one-dimensional equation of the gas exchange process, isentropic compression and expansion, progressive engine combustion process, and accounting for the heat transfer and frictional losses as well as the effect of valves overlapping. The model is tested for 2000, 3000 and 4000 rpm of engine speed and validated using experimental engine data. Results showed that the engine is able to simulate engine's combustion process and produce reasonable prediction. However, by comparing with experimental data, major discrepancy is noticeable especially on the 2000 and 4000 rpm prediction. At low and high engine speed, simulated cylinder pressures tend to under predict the measured data. Whereas the cylinder temperatures always tend to over predict the measured data at all engine speed. The most accurate prediction is obtained at medium engine speed of 3000 rpm. Appropriate wall heat transfer setup is vital for more precise calculation of cylinder pressure and temperature. More heat loss to the wall can lower cylinder temperature. On the hand, more heat converted to the useful work mean an increase in cylinder pressure. Thus, instead of wall heat transfer setup, the Wiebe combustion parameters are needed to be carefully evaluated for better results.

  1. A Description and Test Results of a Spark-Ignition and a Compression-Ignition 2-Stroke-Cycle Engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Whitney, E G

    1935-01-01

    This report presents performance results of air cooled and water-cooled engines. The results obtained were sufficiently promising to warrant further investigation with fuel injection and spark ignition, with the same arrangement of inlet ports and exhaust valves at the bottom of the cylinder and the exhaust gases discharged through two poppet valves in the cylinder head. The displacement of the engine was 118 cubic inches. Optimum performance was obtained with the inlet air directed into the cylinder at an angle of 20 degrees to the radial.

  2. Properties, performance and emissions of medium concentration methanol-gasoline blends in a single-cylinder, spark-ignition engine

    SciTech Connect

    Sapre, A.R

    1988-01-01

    Methanol-gasoline blends containing 30 to 70 percent by volume methanol have potential to eliminate, or at least alleviate, major technical problems with the use of neat methanol such as safety, cold start and the reduced vehicle range. However, little information exits on their properties, performance and emissions. Experiments were carried out in a spark-ignited, single-cylinder, variable compression ratio, Waukesha RDH engine with primarily commercial grade unleaded gasoline, commercial grade methanol, M30, M50 and M70 methanol-gasoline blends to compare efficiency, performance and emissions characteristics. The fuels were compared at their knock-limited compression ratios and MBT spark-timing.

  3. Analysis of Spark-Ignition Engine Knock as Seen in Photographs Taken at 200,000 Frames Per Second

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D.; Olsen, H. Lowell; Logan, Walter O., Jr.; Osterstrom, Gordon E

    1946-01-01

    A motion picture of the development of knock in a spark-ignition engine, is presented, which consists of 20 photographs taken at intervals of 5 microseconds, or at a rate of 200,000 photographs a second, with an equivalent wide-open exposure time of 6.4 microseconds for each photograph. A motion picture of a complete combustion process, including the development of knock, taken at the rate of 40,000 photographs a second is also presented to assist the reader in orienting the photographs of the knock development taken at 200,000 frames per second. The photographs taken at 200,000 frames per second are analyzed and the conclusion is made that the type of knock in the spark-ignition engine involving violent gas vibration originates as self-propagating disturbance starting at a point in the.burn1ig or autoigniting gases and spreading out from that point through the incompletely burned gases at a rate as high as 6800 feet per second, or about twice the speed of sound in the burned gases. Apparent formation of free carbon particles in both the burning and the burned gas is observed within 10 microseconds after passage of the knock disturbance through the gases.

  4. Relation Between Spark-Ignition Engine Knock, Detonation Waves, and Autoignition as Shown by High-Speed Photography

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D

    1946-01-01

    A critical review of literature bearing on the autoignition and detonation-wave theories of spark-ignition engine knock and on the nature of gas vibrations associated with combustion and knock results in the conclusion that neither the autoignition theory nor the detonation-wave theory is an adequate explanation of spark-ignition engine knock. A knock theory is proposed, combining the autoignition and detonation-wave theories, which introduces the idea that the detonation wave develops in autoignited or after-burning gases, and ascribes comparatively low-pitched heavy knocks to autoignition but high-pitched pinging knocks to detonation waves with the possibility of combinations of the two types of knocks. Analysis of five shots of knocking combustion, taken with the NACA high-speed motion-picture camera at the rate of 40,000 photographs per second reveals propagation speeds ranging from 3250 to more than 5500 feet per second. The range of propagation speeds from 3250 to more than 5500 feet per second is held to be considered with the proposed combined theory but not with either the simple autoignition theory or the simple detonation-wave theory.

  5. Characteristics of cyclic heat release variability in the transition from spark ignition to HCCI in a gasoline engine

    SciTech Connect

    Sen, Asok K; Litak, Grzegorz; Edwards, Kevin Dean; FINNEY, Charles E A; Daw, C Stuart; Wagner, Robert M

    2011-01-01

    We study selected examples of previously published cyclic heat-release measurements from a single-cylinder gasoline engine as stepwise valve timing adjustments were made to shift from spark ignited (SI) combustion to homogeneous charge compression ignition (HCCI). Wavelet analysis of the time series, combined with conventional statistics and multifractal analysis, revealed previously undocumented features in the combustion variability as the shift occurred. In the spark-ignition combustion mode, the heat-release variations were very small in amplitude and exhibited more persistent low-frequency oscillations with intermittent high-frequency bursts. In the HCCI combustion mode, the amplitude of the heat-release variations again was small and involved mainly low-frequency oscillations. At intermediate states between SI and HCCI, a wide range of very large-amplitude oscillations occurred, including both persistent low-frequency periodicities and intermittent high-frequency bursts. It appears from these results that real-time wavelet decomposition of engine cylinder pressure measurements may be useful for on-board tracking of SI HCCI combustion regime shifts.

  6. Exhaust Emissions Measured Under Real Traffic Conditions from Vehicles Fitted with Spark Ignition and Compression Ignition Engines

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Lijewski, Piotr; Fuć, Paweł

    2011-06-01

    The tests performed under real traffic conditions provide invaluable information on the relations between the engine parameters, vehicle parameters and traffic conditions (traffic congestion) on one side and the exhaust emissions on the other. The paper presents the result of road tests obtained in an urban and extra-urban cycles for vehicles fitted with different engines, spark ignition engine and compression ignition engine. For the tests a portable emission analyzer SEMTECH DS. by SENSORS was used. This analyzer provides online measurement of the concentrations of exhaust emission components on a vehicle in motion under real traffic conditions. The tests were performed in city traffic. A comparative analysis has been presented of the obtained results for vehicles with individual powertrains.

  7. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    SciTech Connect

    Keating, Edward; Gough, Charles

    2015-07-07

    This report summarizes activities conducted in support of the project “The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability” under COOPERATIVE AGREEMENT NUMBER DE-EE0005654, as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated May 2012.

  8. A High-Speed Motion-Picture Study of Normal Combustion, Knock and Preignition in a Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C; Miller, Cearcy D

    1941-01-01

    Combustion in a spark-ignition engine was investigated by means of the NACA high-speed motion-picture cameras. This camera is operated at a speed of 40,000 photographs a second and therefore makes possible the study of changes that take place in the intervals as short as 0.000025 second. When the motion pictures are projected at the normal speed of 16 frames a second, any rate of movement shown is slowed down 2500 times. Photographs are presented of normal combustion, of combustion from preignitions, and of knock both with and without preignition. The photographs of combustion show that knock may be preceded by a period of exothermic reaction in the end zone that persists for a time interval of as much as 0.0006 second. The knock takes place in 0.00005 second or less.

  9. 76 FR 37953 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Performance for Stationary Compression Ignition and Spark Ignition Internal Combustion Engines; Final Rule #0... for Stationary Compression Ignition and Spark Ignition Internal Combustion Engines AGENCY: The... standards of performance for new stationary compression ignition internal combustion engines under...

  10. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency.

    PubMed

    Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M

    2015-09-15

    Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation. PMID:26237538

  11. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency.

    PubMed

    Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M

    2015-09-15

    Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation.

  12. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect

    Matthias, Nicholas; Farron, Carrie; Foster, David E.; Andrie, Michael; Krieger, Roger; Najt, Paul M.; Narayanaswamy, Kushal; Solomon, Arun S.; Zelenyuk, Alla

    2012-01-01

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented in an engine test cell with a spark ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion. SIDI is of particular interest for improved fuel efficiency compared to other SI engines, however, the efficiency benefit comes with greater PM emissions and may therefore be subject to the proposed number based PM regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition.

  13. Nonlinear torque and air-to-fuel ratio control of spark ignition engines using neuro-sliding mode techniques.

    PubMed

    Huang, Ting; Javaherian, Hossein; Liu, Derong

    2011-06-01

    This paper presents a new approach for the calibration and control of spark ignition engines using a combination of neural networks and sliding mode control technique. Two parallel neural networks are utilized to realize a neuro-sliding mode control (NSLMC) for self-learning control of automotive engines. The equivalent control and the corrective control terms are the outputs of the neural networks. Instead of using error backpropagation algorithm, the network weights of equivalent control are updated using the Levenberg-Marquardt algorithm. Moreover, a new approach is utilized to update the gain of corrective control. Both modifications of the NSLMC are aimed at improving the transient performance and speed of convergence. Using the data from a test vehicle with a V8 engine, we built neural network models for the engine torque (TRQ) and the air-to-fuel ratio (AFR) dynamics and developed NSLMC controllers to achieve tracking control. The goal of TRQ control and AFR control is to track the commanded values under various operating conditions. From simulation studies, the feasibility and efficiency of the approach are illustrated. For both control problems, excellent tracking performance has been achieved.

  14. A Study by High-Speed Photography of Combustion and Knock in a Spark-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D

    1942-01-01

    The study of combustion in a spark-ignition engine given in Technical Report no. 704 has been continued. The investigation was made with the NACA high-speed motion-picture camera and the NACA optical engine indicator. The camera operates at the rate of 40,000 photographs a second and makes possible the study of phenomena occurring in time intervals as short as 0.000025 second. Photographs are presented of combustion without knock and with both light and heavy knocks, the end zone of combustion being within the field of view. Time-pressure records covering the same conditions as the photographs are presented and their relations to the photographs are studied. Photographs with ignition at various advance angles are compared with a view to observing any possible relationship between pressure and flame depth. A tentative explanation of knock is suggested, which is designed to agree with the indications of the high-speed photographs and the time-pressure records.

  15. Direct observation of oil consumption mechanisms in a production spark ignition engine using fluorescence techniques. Master's thesis

    SciTech Connect

    Lusted, R.M.

    1994-05-01

    The oil consumption characteristics of a four cylinder, normally aspirated spark-ignition engine were investigated for different piston ring end-gap configurations. A radiotracer was used to perform direct measurement of the oil consumption while Laser-induced Fluorescence (LIF) was used to perform the oil film thickness measurements for consumption predictions using the 'Puddle Theory of Oil Consumption,' which relates oil consumption to second land film thickness and reverse flow through top ring gap. The consumption data was evaluated to determine the impact of top ring end-gap azimuthal location on oil consumption. The film thickness data was used to evaluate the extent to which the oil Puddle Theory predicts variations seen in the actual oil consumption. A tritium radiotracer oil consumption measurement system with an accuracy of 94.6% was designed and constructed. This was used to perform direct measurements of the test engine oil consumption in two different test matrices. The first evaluated a piston ring configuration with the rings free to rotate. The second evaluated configurations with the top ring and second piston rings pinned to fix the azimuthal location of the end-gap; the azimuth of the top ring was varied. In the second test matrix, the oil film thickness on the piston's second land was measured, and predictions were made on the basis of that measurement.

  16. A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition (DISI) engine.

    SciTech Connect

    Wallner, T.; Miers, S. A.; McConnell, S.

    2009-05-01

    This study was designed to evaluate a 'what if' scenario in terms of using butanol as an oxygenate in place of ethanol in an engine calibrated for gasoline operation. No changes to the stock engine calibration were performed for this study. Combustion analysis, efficiency, and emissions of pure gasoline, 10% ethanol, and 10% butanol blends in a modern direct-injection four-cylinder spark-ignition engine were analyzed. Data were taken at engine speeds of 1000 rpm up to 4000 rpm with load varying from 0 N m (idle) to 150 N m. Relatively minor differences existed between the three fuels for the combustion characteristics such as heat release rate, 50% mass fraction burned, and coefficient of variation in indicated mean effective pressure at low and medium engine loads. However at high engine loads the reduced knock resistance of the butanol blend forced the engine control unit to retard the ignition timing substantially, compared with the gasoline baseline and, even more pronounced, compared with the ethanol blend. Brake specific volumetric fuel consumption, which represented a normalized volumetric fuel flow rate, was lowest for the gasoline baseline fuel due to the higher energy density. The 10% butanol blend had a lower volumetric fuel consumption compared with the ethanol blend, as expected, based on energy density differences. The results showed little difference in regulated emissions between 10% ethanol and 10% butanol. The ethanol blend produced the highest peak specific NO{sub x} due to the high octane rating of ethanol and effective antiknock characteristics. Overall, the ability of butanol to perform equally as well as ethanol from an emissions and combustion standpoint, with a decrease in fuel consumption, initially appears promising. Further experiments are planned to explore the full operating range of the engine and the potential benefits of higher blend ratios of butanol.

  17. High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine.

    PubMed

    Smith, James D; Sick, Volker

    2005-11-01

    An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.

  18. Potential benefits of oxygen-enriched intake air in a vehicle powered by a spark-ignition engine

    SciTech Connect

    Ng, H.K.; Sekar, R.R.

    1994-04-01

    A production vehicle powered by a spark-ignition engine (3.1-L Chevrolet Lumina, model year 1990) was tested. The test used oxygen-enriched intake air containing 25 and 28% oxygen by volume to determine (1) if the vehicle would run without difficulties and (2) if emissions benefits would result. Standard Federal Test Procedure (FTP) emissions test cycles were run satisfactorily. Test results of catalytic converter-out emissions (emissions out of the converter) showed that both carbon monoxide and hydrocarbons were reduced significantly in all three phases of the emissions test cycle. Test results of engine-out emissions (emissions straight out of the engine, with the converter removed) showed that carbon monoxide was significantly reduced in the cold phase. All emission test results were compared with those for normal air (21% oxygen). The catalytic converter also had an improved carbon monoxide conversion efficiency under the oxygen-enriched-air conditions. Detailed results of hydrocarbon speciation indicated large reductions in 1,3-butadiene, formaldehyde, acetaldehyde, and benzene from the engine with the oxygen-enriched air. Catalytic converter-out ozone was reduced by 60% with 25%-oxygen-content air. Although NO{sub x} emissions increased significantly, both for engine-out and catalytic converter-out emissions, we anticipate that they can be ameliorated in the near future with new control technologies. The automotive industry currently is developing exhaust-gas control technologies for an oxidizing environment; these technologies should reduce NO{sub x} emissions more efficiently in vehicles that use oxygen-enriched intake air. On the basis of estimates made from current data, several production vehicles that had low NO{sub x} emissions could meet the 2004 Tier II emissions standards with 25%-oxygen-content air.

  19. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    SciTech Connect

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  20. An analytical investigation of NO sub x control techniques for methanol fueled spark ignition engines

    NASA Technical Reports Server (NTRS)

    Browning, L. H.; Argenbright, L. A.

    1983-01-01

    A thermokinetic SI engine simulation was used to study the effects of simple nitrogen oxide control techniques on performance and emissions of a methanol fueled engine. As part of this simulation, a ring crevice storage model was formulated to predict UBF emissions. The study included spark retard, two methods of compression ratio increase and EGR. The study concludes that use of EGR in high turbulence, high compression engines will both maximize power and thermal efficiency while minimizing harmful exhaust pollutants.

  1. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine.

    PubMed

    Aleiferis, Pavlos; Charalambides, Alexandros; Hardalupas, Yannis; Soulopoulos, Nikolaos; Taylor, A M K P; Urata, Yunichi

    2015-05-10

    Schlieren [Schlieren and Shadowgraphy Techniques (McGraw-Hill, 2001); Optics of Flames (Butterworths, 1963)] is a non-intrusive technique that can be used to detect density variations in a medium, and thus, under constant pressure and mixture concentration conditions, measure whole-field temperature distributions. The objective of the current work was to design a schlieren system to measure line-of-sight (LOS)-averaged temperature distribution with the final aim to determine the temperature distribution inside the cylinder of internal combustion (IC) engines. In a preliminary step, we assess theoretically the errors arising from the data reduction used to determine temperature from a schlieren measurement and find that the total error, random and systematic, is less than 3% for typical conditions encountered in the present experiments. A Z-type, curved-mirror schlieren system was used to measure the temperature distribution from a hot air jet in an open air environment in order to evaluate the method. Using the Abel transform, the radial distribution of the temperature was reconstructed from the LOS measurements. There was good agreement in the peak temperature between the reconstructed schlieren and thermocouple measurements. Experiments were then conducted in a four-stroke, single-cylinder, optical spark ignition engine with a four-valve, pentroof-type cylinder head to measure the temperature distribution of the reaction zone of an iso-octane-air mixture. The engine optical windows were designed to produce parallel rays and allow accurate application of the technique. The feasibility of the method to measure temperature distributions in IC engines was evaluated with simulations of the deflection angle combined with equilibrium chemistry calculations that estimated the temperature of the reaction zone at the position of maximum ray deflection as recorded in a schlieren image. Further simulations showed that the effects of exhaust gas recirculation and air

  2. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect

    Matthias, Nick; Farron, Carrie; Foster, David E.; Andrie, Mike; Krieger, Roger; Najt, Paul; Narayanaswamy, Kushal; Solomon, Arun; Zelenyuk, Alla

    2012-01-01

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs) from an aerosol sample. One method is a Dekati Thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented for this project in an engine test cell built around a direct injection spark ignited (DISI) engine. The engine was designed for stoichiometric, homogeneous combustion. Direct injection is of particular interest for improved fuel efficiency but this comes with the production of a significant amount of (PM) and may therefore be subject to the proposed number based regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition. The first interesting observation is that PM number distributions, acquired using a TSI SMPS, have a large accumulation mode (30-294 nm) but a very small nuclei mode (8-30 nm). This is understood to represent a lack of condensation particles meaning that neither the exhaust conditions nor the sample handling conditions are conducive to condensation. This lack of nuclei mode does not, however, represent a lack of VOCs in the sample. It has been observed, using mass spectral analysis (limited to PM>50 nm), that PM from the DISI engine has approximately 40% organic content through varying operating conditions. This begs the question of how effective different sample handling methods are at removing these VOCs. For one specific operating condition, called Cold Start, the un-treated PM was 40% organic. The TD

  3. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine.

    PubMed

    Aleiferis, Pavlos; Charalambides, Alexandros; Hardalupas, Yannis; Soulopoulos, Nikolaos; Taylor, A M K P; Urata, Yunichi

    2015-05-10

    Schlieren [Schlieren and Shadowgraphy Techniques (McGraw-Hill, 2001); Optics of Flames (Butterworths, 1963)] is a non-intrusive technique that can be used to detect density variations in a medium, and thus, under constant pressure and mixture concentration conditions, measure whole-field temperature distributions. The objective of the current work was to design a schlieren system to measure line-of-sight (LOS)-averaged temperature distribution with the final aim to determine the temperature distribution inside the cylinder of internal combustion (IC) engines. In a preliminary step, we assess theoretically the errors arising from the data reduction used to determine temperature from a schlieren measurement and find that the total error, random and systematic, is less than 3% for typical conditions encountered in the present experiments. A Z-type, curved-mirror schlieren system was used to measure the temperature distribution from a hot air jet in an open air environment in order to evaluate the method. Using the Abel transform, the radial distribution of the temperature was reconstructed from the LOS measurements. There was good agreement in the peak temperature between the reconstructed schlieren and thermocouple measurements. Experiments were then conducted in a four-stroke, single-cylinder, optical spark ignition engine with a four-valve, pentroof-type cylinder head to measure the temperature distribution of the reaction zone of an iso-octane-air mixture. The engine optical windows were designed to produce parallel rays and allow accurate application of the technique. The feasibility of the method to measure temperature distributions in IC engines was evaluated with simulations of the deflection angle combined with equilibrium chemistry calculations that estimated the temperature of the reaction zone at the position of maximum ray deflection as recorded in a schlieren image. Further simulations showed that the effects of exhaust gas recirculation and air

  4. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    SciTech Connect

    Azer Yalin; Bryan Willson

    2008-06-30

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

  5. Active flow control for maximizing performance of spark ignited stratified charge engines. Final report

    SciTech Connect

    Fedewa, Andrew; Stuecken, Tom; Timm, Edward; Schock, Harold J.; Shih, Tom-I.P.; Koochesfahani, Manooch; Brereton, Giles

    2002-10-15

    Reducing the cycle-to-cycle variability present in stratified-charge engines is an important step in the process of increasing their efficiency. As a result of this cycle-to-cycle variability, fuel injection systems are calibrated to inject more fuel than necessary, in an attempt to ensure that the engines fire on every cycle. When the cycle-to-cycle variability is lowered, the variation of work per cycle is reduced and the lean operating limit decreases, resulting in increased fuel economy. In this study an active flow control device is used to excite the intake flow of an engine at various frequencies. The goal of this excitation is to control the way in which vortices shed off of the intake valve, thus lowering the cycle-to-cycle variability in the flow field. This method of controlling flow is investigated through the use of three engines. The results of this study show that the active flow control device did help to lower the cycle-to-cycle variability of the in-cylinder flow field; however, the reduction did not translate directly into improved engine performance.

  6. Quantitative Analysis of Mixture Preparation Processes in New Direct-Injection Spark Ignition Engines

    NASA Astrophysics Data System (ADS)

    Itoh, Teruyuki; Kakuho, Akihiko; Hiraya, Koji; Takahashi, Eiji; Urushihara, Tomonori

    Visualization plays an effective role in the establishment of a new combustion concept by helping to find the optimal results quickly among many different parameters and contributing to a shorter development period. Laser-induced fluorescence, Raman scattering and infrared absorption were used to measure the air/fuel ratio quantitatively in a third-generation direct-injection gasoline (DIG) engine with a spray-guided mixture formation process and comparisons were made with the mixture formation concepts of the first- and second-generation DIG engines. The optimum combination of fuel spray, gas flow and combustion chamber configuration was found to be different for the three generations of DIG engines. The characteristics of the stable combustion region for obtaining higher thermal efficiency and cleaner exhaust emissions differed among the three mixture formation concepts.

  7. Emissions and new technology programs for conventional spark-ignition aircraft engines

    NASA Technical Reports Server (NTRS)

    Wintucky, W. T.

    1976-01-01

    A long-range technology plan in support of general aviation engines was formulated and is being implemented at the Lewis Research Center. The overall program was described, and that part of the program that represents the in-house effort at Lewis was presented in detail. Three areas of government and industry effort involving conventional general-aviation piston engines were part of a coordinated overall plan: (1) FAA/NASA joint program, (2) NASA contract exhaust emissions pollution reduction program, and (3) NASA in-house emissions reduction and new technology program.

  8. Fiber delivery and diagnostics of laser spark ignition for natural gas engines

    NASA Astrophysics Data System (ADS)

    Joshi, Sachin

    2008-10-01

    Laser ignition via fiber optic delivery is challenging because of the need to deliver pulsed laser beam with relatively high energy and sufficient beam quality to refocus the light to the intensity required for creating spark. This dissertation presents work undertaken towards the development of a multiplexed fiber delivered laser ignition system for advanced lean-burn natural gas engines. It also describes the use of laser ignition system to perform in-cylinder optical diagnostics in gas engines. Key elements of the dissertation includes: (i) time resolved emission spectroscopy (TRES) of laser sparks in air to investigate the dependence of spark temperatures and electron number densities on ambient gas pressures, (ii) optical characterization of hollow core fibers, step-index silica fibers, photonic crystal fibers (PCFs) and fiber lasers, (iii) development and on-engine demonstration of a multiplexer to deliver the laser beam from a single laser source to two engine cylinders via optical fibers, and (iv) demonstration of simultaneous use of laser sparks for ignition and Laser Induced Breakdown Spectroscopy (LIBS) to measure in-cylinder equivalence ratios in a Cooperative Fuel Research (CFR) engine. For TRES of laser sparks, the ambient gas pressure is varied from 0.85 bar to 48.3 bar (high pressures to simulate elevated motored in-cylinder pressures at time of ignition in advanced gas engines). At later stages (˜1mus) of spark evolution, spark temperatures become comparable at all pressures. Electron number densities increase initially with increasing ambient gas pressure but become comparable at pressures greater than ˜20 bar. The effects of launch conditions and bending for 2-m long hollow core fibers are studied and an optimum launch f/# of ˜55 is shown to form spark in atmospheric pressure air. Spark formation using the output of a pulsed fiber laser is shown and delivery of 0.55 mJ nanosecond pulses through PCFs is achieved. Successful multiplexed laser

  9. Combustion parameters of spark ignition engine using waste potato bioethanol and gasoline blended fuels

    NASA Astrophysics Data System (ADS)

    Ghobadian, B.; Najafi, G.; Abasian, M.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the combustion parameters of a SI engine operating on bioethanol-gasoline blends (E0-E20: 20% bioethanol and 80% gasoline by volume). A reactor was designed, fabricated and evaluated for bioethanol production from potato wastes. The results showed that increasing the bioethanol content in the blend fuel will decrease the heating value of the blended fuel and increase the octane number. Combustion parameters were evaluated and analyzed at different engine speeds and loads (1000-5000 rpm). The results revealed that using bioethanol-gasoline blended fuels will increase the cylinder pressure and its 1st and 2nd derivatives (P(θ), P•(θ) and P••(θ)). Moreover, using bioethanol- gasoline blends will increase the heat release (Q•(θ)) and worked of the cycle. This improvement was due to the high oxygen percentage in the ethanol.

  10. An Experimental Measurement of Lubrication Behavior of Piston Rings in a Spark Ignition Engine

    NASA Astrophysics Data System (ADS)

    Cho, Sungwoo; Choi, Sangmin; Bae, Choongsik

    Friction forces of a piston ring pack for a typical SI engine were measured using a floating liner system, in which the effects of cylinder pressure, oil starvation and piston secondary motion were excluded. Friction patterns of each individual ring, represented by measured friction forces, were classified into five frictional modes with regard to the combination of predominant lubrication regimes (boundary, mixed and hydrodynamic lubrication) and stroke regions (mid-stroke and dead centers). Those modes were identified on a Stribeck diagram of the dimensionless bearing parameter and friction coefficients; the coefficients were evaluated at mid-stroke and at dead centers. Frictional modes were evaluated by varying operation parameters (such as engine speed and cylinder wall temperature). Compression rings operated in the mode in which hydrodynamic lubrication was dominant at mid-stroke, while mixed lubrication was dominant at dead centers in steady conditions. However, oil control rings operated in the mode in which mixed lubrication was dominant throughout the entire stroke.

  11. Performance of a Fuel-Injection Spark-Ignition Engine Using a Hydrogenated Safety Fuel

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1934-01-01

    This report presents the performance of a single-cylinder test engine using a hydrogenated safety fuel. The safety fuel has a flash point of 125 degrees f. (Cleveland open-dup method), which is high enough to remove most of the fire hazard, and an octane number of 95, which permits higher compression ratios to be used than are permissible with most undoped gasolines.

  12. Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  13. Spark Ignition Characteristics of a L02/LCH4 Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine s augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  14. A study of combustion of hydrogen-enriched gasoline in a spark ignition engine

    SciTech Connect

    Apostolescu, N.; Chiriac, R.

    1996-09-01

    An investigation has been done on the influence of small amounts of hydrogen added to hydrocarbons-air mixtures on combustion characteristics. The effect of hydrogen addition to a hydrocarbon-air mixture was firstly approached in an experimental bomb, to measure the laminar burning velocity and the shift of lean flammability limit. Experiments carried out with a single-cylinder four stroke SI engine confirmed the possibility of expanding the combustion stability limit, which correlates well with the general trend of enhancing the rate of combustion. An increase of brake thermal efficiency has been obtained with a reduction of HC emissions; the NO{sub x} emissions were higher, except for very lean mixtures.

  15. CFD Simulation of Stratified Combustion Process in a Direct Injection Spark Ignition Engine

    NASA Astrophysics Data System (ADS)

    Miyagawa, Hiroshi; Nomura, Yoshihiro; Koike, Makoto; Tomoda, Terutoshi

    A three-dimensional simulation technique for the stratified combustion process in direct injection gasoline engines is developed. The effects of a widely distributed mixture equivalence ratio and a large amount of EGR on laminar flame speed are briefly modeled taking into account only the temperature of the unburned mixture and the flame temperature. The suggested laminar flame speed model is incorporated into a CFD code in combination with the coherent flame model. In burned gas, chemical equilibrium depending on the local equivalence ratio is assumed so that the post flame reaction upon mixing rich burned gas and lean burned gas or fresh air can be simply modeled as a change of the equilibrium. The calculated flame propagation process, heat release rate and exhaust emissions are confirmed by the results of measurements including the LIF technique. The good agreements obtained under various conditions indicate the applicability of this method.

  16. Knocking Combustion Observed in a Spark-Ignition Engine with Simultaneous Direct and Schlieren High-Speed Motion Pictures and Pressure Records

    NASA Technical Reports Server (NTRS)

    Osterstrom, Gordon E

    1948-01-01

    Simultaneous direct and Schlieren photographs at 40,000 frames per second and correlated pressure records were taken of knocking combustion in a special spark-ignition engine to ascertain the intensity of certain end-zone reactions previously noted from Schlieren photography alone. A violent propagated homogeneous autoignition, or a similar phenomenon, previously observed, was again observed. The pressure records show autoignition of varying violence before the passage of a probable detonation wave. Extensive autoignition without occurrence of gas vibrations was seen in one explosion.

  17. Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines

    SciTech Connect

    Szybist, James P

    2016-01-01

    Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, iso-octane, toluene, and ethanol. Laminar flame speeds for these mixtures, which were calculated two different methods (an energy fraction mixing rule and a detailed kinetic simulation), spanned a range of about 6 cm/s. A constant fueling nominal load of 350 kPa IMEPg at 2000 rpm was operated with varying CA50 from 8-20 CAD aTDCf, and with EGR increasing until a COV of IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds increase EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned. The effect of the latent heat of vaporization on the flame speed is taken into account for the ethanol-containing fuels. At a 30 vol% blend level, the increased enthalpy of vaporization of ethanol compared to conventional hydrocarbons can decrease the temperature at the time of ignition by a maximum of 15 C, which can account for up to a 3.5 cm/s decrease in flame speed. The ethanol-containing fuels, however, still exhibit a flame speed advantage, and a dilution tolerance advantage over the slower flame-speed fuels. The fuel-specific differences in dilution tolerance are significant at the condition examined, allowing for a 50% relative increase in EGR (4% absolute difference in EGR) at a constant COV of IMEP of 3%.

  18. In-cylinder crank-angle-resolved imaging of fuel concentration in a firing spark-ignition engine using planar laser-induced fluorescence

    SciTech Connect

    Berckmueller, M.; Tait, N.P.; Lockett, R.D.; Greenhalgh, D.A.; Ishii, Kiyoshi; Urata, Yasuhiro; Umiyama, Hidezo; Yoshida, Kazuo

    1994-12-31

    The authors present a quantitative planar laser-induced fluorescence (PLIF) method for imaging the in-cylinder fuel concentration in a spark-ignition engine. The method is based on fluorescence from a carbonyl compound added to the iso-octane and excited by an excimer laser at 308 nm. The method has been applied to the study of charge stratification in a lean burn engine equipped with a four-valve pent-roof cylinder head. In this engine, stratification is achieved by fuel injection through an inlet valve, the paths of rich fuel pockets from induction through compression to the point of ignition is shown by a series of crank-angle-resolved air-to-fuel ratio (AFR) images.

  19. 40 CFR 1045.650 - Do delegated-assembly provisions apply for marine engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... marine engines? The provisions of 40 CFR 1068.261 related to delegated final assembly do not apply for... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  20. 40 CFR 1045.650 - Do delegated-assembly provisions apply for marine engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... marine engines? The provisions of 40 CFR 1068.261 related to delegated final assembly do not apply for... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  1. 40 CFR 1045.650 - Do delegated-assembly provisions apply for marine engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... marine engines? The provisions of 40 CFR 1068.261 related to delegated final assembly do not apply for... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  2. 40 CFR 1045.650 - Do delegated-assembly provisions apply for marine engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... marine engines? The provisions of 40 CFR 1068.261 related to delegated final assembly do not apply for... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  3. Research of some operating parameters and the emissions level variation in a spark ignited engine through on-board investigation methods in different loading conditions

    NASA Astrophysics Data System (ADS)

    Iosif, Ferenti; Baldean, Doru Laurean

    2014-06-01

    The present paper shows research made on a spark ignited engine with port fuel injection in different operation conditions in order to improve the comprehension about the cold start sequence, acceleration when changing the gear ratios, quality of combustion process and also any measures to be taken for pollutant reduction in such cases. The engineering endeavor encompasses the pollutants investigation during the operation time of gasoline supplied engine with four inline cylinders in different conditions. The temperature and any other parameters were measured with specific sensors installed on the engine or in the exhaust pipes. All the data collected has been evaluated using electronic investigation systems and highly developed equipment. In this manner it has enabled the outline of the idea of how pollutants of engine vary in different operating conditions. Air quality in the everyday environment is very important for the human health, and thus the ambient air quality has a well-known importance in the European pollution standards and legislation. The high level of attention directed to the pollution problem in the European lifestyle is a driving force for all kinds of studies in the field of the reduction of engine emission.

  4. Realization of the Atkinson-Miller cycle in spark-ignition engine by means of the fully variable inlet valve control system

    NASA Astrophysics Data System (ADS)

    Żmudka, Zbigniew; Postrzednik, Stefan; Przybyła, Grzegorz

    2014-09-01

    The theoretical analysis of the charge exchange process in a spark ignition engine has been presented. This process has significant impact on the effectiveness of engine operation because it is related to the necessity of overcoming the flow resistance, followed by the necessity of doing a work, so-called the charge exchange work. The flow resistance caused by the throttling valve is especially high during the part load operation. The open Atkinson-Miller cycle has been assumed as a model of processes taking place in the engine. Using fully variable inlet valve timing the A-M cycle can be realized according to two systems: system with late inlet valve closing and system with early inlet valve closing. The systems have been analysed individually and comparatively with the open Seiliger-Sabathe cycle which is a theoretical cycle for the classical throttle governing of the engine load. Benefits resulting from application of the systems with independent inlet valve control have been assessed on the basis of the selected parameters: fuel dose, cycle work, charge exchange work and a cycle efficiency. The use of the analysed systems to governing of the SI engine load will enable to eliminate a throttling valve from the system inlet and reduce the charge exchange work, especially within the range of part load operation.

  5. Studies of Temperature Elevation Due to the Pre-flame Reaction in a Spark-ignition Engine with CARS Temperature Measurements Using Fuels of Various Octane Numbers

    NASA Astrophysics Data System (ADS)

    Choi, Inyong; Chun, Kwang Min; Hahn, Jae Won; Park, Chul-Woung

    The unburned end-gas temperatures in a combustion chamber of a conventional 4-cylinder DOHC spark-ignition engine were measured using the broadband CARS temperature measurement technique. The test engine was fueled with primary reference fuel 80 and gasoline with research octane numbers of 70.9, 83.4, 91.5 and 100.4. The measured CARS temperatures were compared with the adiabatic core temperatures calculated from the measured pressures. Significant heating by pre-flame reaction in the end gas zone was observed in the late part of compression stroke under both knocking and non-knocking conditions. The measured CARS temperatures when the cylinder pressures were above 1400kPa were higher than the calculated adiabatic core temperatures. These results indicate that some exothermic reactions exist in relatively low pressure and temperature regions. The CARS temperatures began to be higher than the adiabatic core temperature when the end-gas temperatures reached 700K. The temperature elevation due to the pre-flame reaction correlated well with the unburned gas CARS temperature for different research octane number fuels tested.

  6. Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 1. Engine Load Range and Downsize Downspeed Opportunity

    SciTech Connect

    Splitter, Derek A; Szybist, James P

    2013-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine was used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with E30 as compared to 87 AKI, up to 20 bar IMEPg (indicated mean effective pressure gross) at = 1. EGR provided thermodynamic advantages and was a key enabler for increasing engine efficiency for all fuel types. However, with E30, EGR was less useful for knock mitigation than gasoline or IB24. Torque densities with E30 with 15% EGR at = 1 operation were similar or better than a modern EURO IV calibration turbo-diesel engine. The results of the present study suggest that it could be possible to implement a 40% downsize + downspeed configuration (1.2 L engine) into a representative midsize sedan. For example, for a midsize sedan at a 65 miles/h cruise, an estimated fuel consumption of 43.9 miles per gallon (MPG) (engine out 102 g-CO2/km) could be achieved with similar reserve power to a 2.0 L engine with 87AKI (38.6 MPG, engine out 135 g-CO2/km). Data suggest that, with midlevel alcohol gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol gasoline blends and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

  7. The influence of deposit control additives on nitrogen oxides emissions from spark ignition engines (case study: Tehran).

    PubMed

    Bidhendi, Gholamreza Nabi; Zand, Ali Daryabeigi; Tabrizi, Alireza Mikaeili; Pezeshk, Hamid; Baghvand, Akbar

    2007-04-15

    In the present research, the influence of a deposit control additive on NOx emissions from two types of gasoline engine vehicles i.e., Peykan (base on Hillman) and Pride (South Korea Kia motors) was studied. Exhaust NOx emissions were measured in to stages, before decarbonization process and after that. Statistical analysis was conducted on the measurement results. Results showed that NOx emissions from Peykans increased 0.28% and NOx emissions from Pride automobiles decreased 6.18% on average, due to the elimination of engine deposits. The observed variations were not statistically and practically significant. The results indicated that making use of detergent additives is not an effective way to reduce the exhaust NOx emissions from gasoline engine vehicles. PMID:19069943

  8. Equivalence Ratio-EGR Control of HCCI Engine Operation and the Potential for Transition to Spark-Ignited Operation

    SciTech Connect

    Martinez-Frias, J; Aceves, S M; Flowers, D L; Smith, J R; Dibble, R

    2001-07-31

    This research investigates a control system for HCCI engines, where equivalence ratio, fraction of EGR and intake pressure are adjusted as needed to obtain satisfactory combustion. HCCI engine operation is analyzed with a detailed chemical kinetics code, HCT (Hydrodynamics, Chemistry and Transport), that has been extensively modified for application to engines. HCT is linked to an optimizer that determines the operating conditions that result in maximum brake thermal efficiency, while meeting the peak cylinder pressure restriction. The results show the values of the operating conditions that yield optimum efficiency as a function of torque and rpm. The engine has high NO{sub x} emissions for high power operation, so the possibility of switching to stoichiometric operation for high torque conditions is considered. Stoichiometric operation would allow the use of a three-way catalyst to reduce NO{sub x} emissions to acceptable levels. Finally, the paper discusses the possibility of transitioning from HCCI operation to SI operation to achieve high power output.

  9. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE PAGESBeta

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; Chen, Jyh-Yuan; Dibble, Robert W.; Nishiyama, Atsushi; Moon, Ahsa; Ikeda, Yuji

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ, microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  10. Signal Analysis of Automotive Engine Spark Ignition System using Case-Based Reasoning (CBR) and Case-based Maintenance (CBM)

    NASA Astrophysics Data System (ADS)

    Huang, H.; Vong, C. M.; Wong, P. K.

    2010-05-01

    With the development of modern technology, modern vehicles adopt electronic control system for injection and ignition. In traditional way, whenever there is any malfunctioning in an automotive engine, an automotive mechanic usually performs a diagnosis in the ignition system of the engine to check any exceptional symptoms. In this paper, we present a case-based reasoning (CBR) approach to help solve human diagnosis problem. Nevertheless, one drawback of CBR system is that the case library will be expanded gradually after repeatedly running the system, which may cause inaccuracy and longer time for the CBR retrieval. To tackle this problem, case-based maintenance (CBM) framework is employed so that the case library of the CBR system will be compressed by clustering to produce a set of representative cases. As a result, the performance (in retrieval accuracy and time) of the whole CBR system can be improved.

  11. Signal Analysis of Automotive Engine Spark Ignition System using Case-Based Reasoning (CBR) and Case-based Maintenance (CBM)

    SciTech Connect

    Huang, H.; Vong, C. M.; Wong, P. K.

    2010-05-21

    With the development of modern technology, modern vehicles adopt electronic control system for injection and ignition. In traditional way, whenever there is any malfunctioning in an automotive engine, an automotive mechanic usually performs a diagnosis in the ignition system of the engine to check any exceptional symptoms. In this paper, we present a case-based reasoning (CBR) approach to help solve human diagnosis problem. Nevertheless, one drawback of CBR system is that the case library will be expanded gradually after repeatedly running the system, which may cause inaccuracy and longer time for the CBR retrieval. To tackle this problem, case-based maintenance (CBM) framework is employed so that the case library of the CBR system will be compressed by clustering to produce a set of representative cases. As a result, the performance (in retrieval accuracy and time) of the whole CBR system can be improved.

  12. Some aspects on use of kerosene and petrol blends in spark-ignition engine using surge technique

    SciTech Connect

    Ghosh, B.B.

    1980-12-01

    The object of the study reported in this paper was to investigate the possibility of using the blend of kerosene with petrol in a gasoline engines, without much losses in performance. The authors carried out experiments on a four-stroke cycle Briggs and Stratton S. I. Engine using five blends of kerosene with petrol at a compression ratios 5.3 and 7.47 to 1 with and without surge chambers, at a constant engine speed of 1500 rev/min with the following conclusions: 1. At part-load and the lower compression ratio the brake thermal efficiency is improved with percentage increase of kerosene but at the higher compression ratio it is improved only upto 50% kerosene blend with petrol. 2. The knock-free maximum bhp is reduced with (a) the percentage increase of kerosene, (b) the increase of compression ratio. 3. Use of a surge chamber increase the knock-free maximum bhp, and reduces the brake thermal efficiency.

  13. A historical analysis of the co-evolution of gasoline octane number and spark-ignition engines

    DOE PAGESBeta

    Splitter, Derek A.; Pawlowski, Alex E.; Wagner, Robert M.

    2016-01-06

    In our work, the authors reviewed engine, vehicle, and fuel data since 1925 to examine the historical and recent coupling of compression ratio and fuel antiknock properties (i.e., octane number) in the U.S. light-duty vehicle market. The analysis identified historical timeframes, trends, and illustrated how three factors: consumer preferences, technical capabilities, and regulatory legislation, affect personal mobility. Data showed that throughout history these three factors have a complex and time sensitive interplay. Long term trends in the data were identified where interaction and evolution between all three factors was observed. Transportation efficiency per unit power (gal/ton-mi/hp) was found to bemore » a good metric to integrate technical, societal, and regulatory effects into the evolutional pathway of personal mobility. From this framework, discussions of future evolutionary changes to personal mobility are also presented.« less

  14. Development of a local continuous sampling probe for the equivalence air-fuel ratio measurement. Application to spark ignition engine

    NASA Astrophysics Data System (ADS)

    Guibert, P.; Dicocco, E.

    This paper is a contribution to the development of an original technique for measuring the in-cylinder equivalence air-fuel ratio. The main objective was to construct an instrument able to furnish instantaneous values of hydrocarbon concentration for many consecutive cycles at a definite location, especially at the spark plug location. The probe is based on a hot-wire-like apparatus, but involves catalytic oxidation on the wire surface in order to be sensitive to the hydrocarbon concentration. In this paper, we present the different steps needed to develop and validate the probe. The first step focuses on the geometric configuration to simplify as much as possible the mass transfer phenomena on the wire. The second step is a parametric study to evaluate the sensitivity, confidence and lifetime of the wire. By physical analysis, we propose a relationship between the electrical signal and the air-fuel equivalence ratio of the sampled gases. The third step is the application of the probe to in-cylinder motored engine measurements, which confirms the ability of the technique to characterise, quantitatively, the homogeneity of the air-fuel mixture, especially during the compression stroke. This work points out that the global sensitivity is estimated at 4V per unit of equivalence air-fuel ratio and the response time is estimated at about 400μs. The equivalence air-fuel ratio range is from pure air to 1.2. Experiments show that it is necessary to calibrate the system before use because of the existence of multiple catalysis states. The probe presents advantages associated with its simplicity, its low cost and its direct engine application without any modifications.

  15. Experimental Investigation of Augmented Spark Ignition of a LO2/LCH4 Reaction Control Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.

  16. 75 FR 56491 - Technical Amendments for Marine Spark-Ignition Engines and Vessels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... 12898: Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations Executive Order (EO) 12898 (59 FR 7629 (Feb. 16, 1994)) establishes federal executive policy on..., policies, and activities on minority populations and low-income populations in the United States. EPA...

  17. 40 CFR 1045.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... power and engine speed for an engine, using the mapping procedures of 40 CFR part 1065, based on the...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  18. 40 CFR 1045.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... power and engine speed for an engine, using the mapping procedures of 40 CFR part 1065, based on the...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  19. 40 CFR 1045.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... power and engine speed for an engine, using the mapping procedures of 40 CFR part 1065, based on the...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  20. 40 CFR 1045.140 - What is my engine's maximum engine power?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... power and engine speed for an engine, using the mapping procedures of 40 CFR part 1065, based on the...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND...

  1. Testing of the J-2X Augmented Spark Igniter (ASI) and Its Electronics

    NASA Technical Reports Server (NTRS)

    Osborne, Robin

    2015-01-01

    Reliable operation of the spark ignition system electronics in the J-2X Augmented Spark Igniter (ASI) is imperative in assuring ASI ignition and subsequent Main Combustion Chamber (MCC) ignition events are reliable in the J-2X Engine. Similar to the man-rated J-2 and RS-25 engines, the J-2X ignition system electronics are equipped with spark monitor outputs intended to indicate that the spark igniters are properly energized and sparking. To better understand anomalous spark monitor data collected on the J-2X development engines at NASA Stennis Space Center (SSC), a comprehensive subsystem study of the engine's low- and high-tension spark ignition system electronics was conducted at NASA Marshall Space Flight Center (MSFC). Spark monitor output data were compared to more detailed spark diagnostics to determine if the spark monitor was an accurate indication of actual sparking events. In addition, ignition system electronics data were closely scrutinized for any indication of an electrical discharge in some location other than the firing tip of the spark igniter - a problem not uncommon in the development of high voltage ignition systems.

  2. 40 CFR Appendix A to Subpart G of... - Sampling Plans for Selective Enforcement Auditing of Marine Engines

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Enforcement Auditing of Marine Engines A Appendix A to Subpart G of Part 91 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Selective Enforcement Auditing Regulations Pt. 91, Subpt. G, App. A Appendix A to...

  3. 75 FR 47520 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Compression Ignition and Spark Ignition Internal Combustion Engines AGENCY: Environmental Protection Agency... combustion engines. In this ] notice, we are announcing a 30-day extension of the public comment period for... combustion engines. After publication of the proposed rule, EPA received requests from the American...

  4. 40 CFR 1045.305 - How must I prepare and test my production-line engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operated your emission-data engine for certifying the engine family (see 40 CFR part 1065, subpart E, or... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  5. 40 CFR 1045.305 - How must I prepare and test my production-line engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operated your emission-data engine for certifying the engine family (see 40 CFR part 1065, subpart E, or... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  6. 40 CFR 1045.305 - How must I prepare and test my production-line engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operated your emission-data engine for certifying the engine family (see 40 CFR part 1065, subpart E, or... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  7. 40 CFR 1045.305 - How must I prepare and test my production-line engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operated your emission-data engine for certifying the engine family (see 40 CFR part 1065, subpart E, or... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  8. 40 CFR 1045.305 - How must I prepare and test my production-line engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operated your emission-data engine for certifying the engine family (see 40 CFR part 1065, subpart E, or... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  9. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    NASA Astrophysics Data System (ADS)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  10. DESIGN OF A HIGH COMPRESSION, DIRECT INJECTION, SPARK-IGNITION, METHANOL FUELED RESEARCH ENGINE WITH AN INTEGRAL INJECTOR-IGNITION SOURCE INSERT, SAE PAPER 2001-01-3651

    EPA Science Inventory

    A stratified charge research engine and test stand were designed and built for this work. The primary goal of this project was to evaluate the feasibility of using a removal integral injector ignition source insert which allows a convenient method of charging the relative locat...

  11. The effects of fuel volatility, structure, speed and load on hydrocarbon emissions from piston wetting in direct injection spark ignition engines

    NASA Astrophysics Data System (ADS)

    Huang, Yiqun

    Piston wetting can be isolated from the other sources of hydrocarbon (HC) emissions from DISI engines by operating the engine predominantly on a gaseous fuel and using an injector probe to impact a small amount of liquid fuel on the piston top. This results in a marked increase in HC emissions. In the present study, a variety of pure liquid hydrocarbons are used to examine the influence of fuel volatility, structure, speed and load. The exhaust hydrocarbons were speciated to differentiate between the emissions resulting from the gaseous fuel and those resulting from the liquid fuel. It was shown that the HC emissions correspond to the Leidenfrost effect: fuels with very low boiling points yield high HCs and those with a boiling point near or above the piston temperature produce much lower HCs. To examine the fuel volatility and structure effects, tests of a matrix of nine pure liquid hydrocarbon fuels, including normal-alkanes, iso-alkanes, cyclo-alkanes and aromatics, were performed at a single operating condition: the Ford World Wide Mapping Point (WWMP). The effects of engine speed and load were also examined. For these tests, four different normal alkanes were used, including one that appears to be near the Leidenfrost point for operation at the WWMP, one that is near the Nukiyama point, and one that appears to be in the transition region. It is shown that the "Piston Wetting Emissions Index" for engine-out total hydrocarbon emissions increases with both decreasing speed and decreasing load, and that this is primarily an effect of oxidation kinetics. Speed and load have opposite effects on unburned fuel emissions, and this appears to be a pressure effect. For all speeds and loads the Leidenfrost effect appears to be important: the most volatile fuel has the highest total hydrocarbon and unburned fuel emissions whereas the two least volatile fuels have lower emissions and the fuel that is within the transition regime yields intermediate emissions.

  12. Mutagenicity of used crankcase oils from diesel and spark ignition automobiles.

    PubMed

    Dutcher, J S; Li, A P; McClellan, R O

    1986-06-01

    The Salmonella mutagenicity assay was used to compare the mutagenic activity of used crankcase oil (UCO) from diesel and spark-ignition (gasoline) engine passenger cars. UCO samples were obtained during periodic oil changes from 9 spark-ignition and 10 diesel-powered vehicles. Five samples of unused motor oil were also tested. Direct tests of UCO did not detect mutagenic activity in Salmonella typhimurium strain TA-98. Therefore, an extraction procedure was used to concentrate the mutagens and remove interfering chemicals. Extracts were tested both with and without Aroclor-1254-induced rat liver homogenate fraction (S-9). Dose-dependent mutagenicity with and without S-9 was observed in both diesel and spark-ignition engine UCO extracts. Mutagenic activity was also found in unused oil extracts, but it was lower than that in UCO extracts and generally required addition of S-9. The mutagenic potency of diesel UCO extracts was similar to that of gasoline UCO extracts, both with and without addition of S-9. This indicated that potential health risks associated with disposal, handling, and recycling of diesel UCO may not be significantly different from those of UCO from gasoline engines.

  13. Laser-induced spark ignition fundamental and applications

    NASA Astrophysics Data System (ADS)

    Phuoc, Tran X.

    2006-05-01

    Laser ignition has become an active research topic in recent years because it has the potential to replace the conventional electric spark plugs in engines that are required to operate under much higher compression ratios, faster compression rates, and much leaner fuel-to-air ratios than gas engines today. It is anticipated that the igniter in these engines will face with pressures as high as 50 MPa and temperatures as high as 4000 K. Using the conventional ignition system, the required voltage and energy must be greatly increased (voltages in excess of 40 kV) to reliably ignite the air and fuel mixture under these conditions. Increasing the voltage and energy does not always improve ignitability but it does create greater reliability problem. The objective of this paper is to review past work to identify some fundamental issues underlying the physics of the laser spark ignition process and research needs in order to bring the laser ignition concept into the realm of reality.

  14. Laser-induced spark ignition fundamental and applications

    SciTech Connect

    Tran, P.X.

    2006-05-01

    Laser ignition has become an active research topic in recent years because it has the potential to replace the conventional electric spark plugs in engines that are required to operate under much higher compression ratios, faster compression rates, and much leaner fuel-to-air ratios than gas engines today. It is anticipated that the igniter in these engines will face with pressures as high as 50MPa and temperatures as high as 4000 K. Using the conventional ignition system, the required voltage and energy must be greatly increased (voltages in excess of 40 kV) to reliably ignite the air and fuel mixture under these conditions. Increasing the voltage and energy does not always improve ignitability but it does create greater reliability problem. The objective of this paper is to review past work to identify some fundamental issues underlying the physics of the laser spark ignition process and research needs in order to bring the laser ignition concept into the realm of reality.

  15. US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"

    SciTech Connect

    William E. Wallace

    2006-09-30

    The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

  16. 40 CFR 91.410 - Engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 91.410 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.410 Engine... in dynamometer operation tests of marine engines. (b) During each non-idle mode the specified...

  17. 40 CFR 91.410 - Engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine test cycle. 91.410 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.410 Engine... in dynamometer operation tests of marine engines. (b) During each non-idle mode the specified...

  18. Spark ignited turbulent flame kernel growth. Annual report, January--December, 1992

    SciTech Connect

    Santavicca, D.A.

    1994-06-01

    Cyclic combustion variations in spark-ignition engines limit the use of dilute charge strategies for achieving low NO{sub x} emissions and improved fuel economy. Results from an experimental study of the effect of incomplete fuel-air mixing (ifam) on spark-ignited flame kernel growth in turbulent propane-air mixtures are presented. The experiments were conducted in a turbulent flow system that allows for independent variation of flow parameters, ignition system parameters, and the degree of fuel-air mixing. Measurements were made at 1 atm and 300 K conditions. Five cases were studied; a premixed and four incompletely mixed cases with 6%, 13%, 24% and 33% RMS (root-mean-square) fluctuations in the fuel/air equivalence ratio. High speed laser shadowgraphy at 4,000 frames-per-second was used to record flame kernel growth following spark ignition, from which the equivalent flame kernel radius as a function of time was determined. The effect of ifam was evaluated in terms of the flame kernel growth rate, cyclic variations in the flame kernel growth, and the rate of misfire. The results show that fluctuations in local mixture strength due to ifam cause the flame kernel surface to become wrinkled and distorted; and that the amount of wrinkling increases as the degree of ifam. Ifam was also found to result in a significant increase in cyclic variations in the flame kernel growth. The average flame kernel growth rates for the premixed and the incompletely mixed cases were found to be within the experimental uncertainty except for the 33%-RMS-fluctuation case where the growth rate is significantly lower. The premixed and 6%-RMS-fluctuation cases had a 0% misfire rate. The misfire rates were 1% and 2% for the 13%-RMS-fluctuation and 24%-RMS-fluctuation cases, respectively; however, it drastically increased to 23% in the 33%-RMS-fluctuation case.

  19. 40 CFR 91.506 - Engine sample selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine sample selection. 91.506... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Manufacturer Production Line Testing Program § 91.506 Engine sample selection. (a) At the start of each model year, the marine SI...

  20. 40 CFR 91.307 - Engine cooling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine cooling system. 91.307 Section...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.307 Engine cooling system. An engine cooling system is required with sufficient capacity to maintain the engine...

  1. 40 CFR 91.307 - Engine cooling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine cooling system. 91.307 Section...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.307 Engine cooling system. An engine cooling system is required with sufficient capacity to maintain the engine...

  2. Laser induced spark ignition of methane-oxygen mixtures

    NASA Technical Reports Server (NTRS)

    Santavicca, D. A.; Ho, C.; Reilly, B. J.; Lee, T.-W.

    1991-01-01

    Results from an experimental study of laser induced spark ignition of methane-oxygen mixtures are presented. The experiments were conducted at atmospheric pressure and 296 K under laminar pre-mixed and turbulent-incompletely mixed conditions. A pulsed, frequency doubled Nd:YAG laser was used as the ignition source. Laser sparks with energies of 10 mJ and 40 mJ were used, as well as a conventional electrode spark with an effective energy of 6 mJ. Measurements were made of the flame kernel radius as a function of time using pulsed laser shadowgraphy. The initial size of the spark ignited flame kernel was found to correlate reasonably well with breakdown energy as predicted by the Taylor spherical blast wave model. The subsequent growth rate of the flame kernel was found to increase with time from a value less than to a value greater than the adiabatic, unstretched laminar growth rate. This behavior was attributed to the combined effects of flame stretch and an apparent wrinkling of the flame surface due to the extremely rapid acceleration of the flame. The very large laminar flame speed of methane-oxygen mixtures appears to be the dominant factor affecting the growth rate of spark ignited flame kernels, with the mode of ignition having a small effect. The effect of incomplete fuel-oxidizer mixing was found to have a significant effect on the growth rate, one which was greater than could simply be accounted for by the effect of local variations in the equivalence ratio on the local flame speed.

  3. 40 CFR 1027.115 - What special provisions apply for certification related to nonroad and stationary engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... marine diesel engines to the standards that apply to land-based nonroad diesel engines under 40 CFR 94... stationary engines? (a) For spark-ignition engines above 19 kW that we regulate under 40 CFR part 1048 and... 40 CFR parts 94, 1042, and 1043). (h) If you produce engines for multiple categories in a...

  4. 40 CFR 1027.115 - What special provisions apply for certification related to nonroad and stationary engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... marine diesel engines to the standards that apply to land-based nonroad diesel engines under 40 CFR 94... stationary engines? (a) For spark-ignition engines above 19 kW that we regulate under 40 CFR part 1048 and... 40 CFR parts 94, 1042, and 1043). (h) If you produce engines for multiple categories in a...

  5. 40 CFR 1027.115 - What special provisions apply for certification related to nonroad and stationary engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... marine diesel engines to the standards that apply to land-based nonroad diesel engines under 40 CFR 94... stationary engines? (a) For spark-ignition engines above 19 kW that we regulate under 40 CFR part 1048 and... 40 CFR parts 94, 1042, and 1043). (h) If you produce engines for multiple categories in a...

  6. 40 CFR 1027.115 - What special provisions apply for certification related to nonroad and stationary engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... marine diesel engines to the standards that apply to land-based nonroad diesel engines under 40 CFR 94... stationary engines? (a) For spark-ignition engines above 19 kW that we regulate under 40 CFR part 1048 and... 40 CFR parts 94, 1042, and 1043). (h) If you produce engines for multiple categories in a...

  7. 40 CFR 91.116 - Certification procedure-test engine selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-specific fuel consumption over the appropriate engine test cycle. (c) The test engine must be constructed... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Certification procedure-test engine... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Standards...

  8. 40 CFR 1045.230 - How do I select engine families?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I select engine families? 1045.230 Section 1045.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  9. 40 CFR 1045.640 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What special provisions apply to branded engines? 1045.640 Section 1045.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  10. 40 CFR 1045.310 - How must I select engines for production-line testing?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How must I select engines for production-line testing? 1045.310 Section 1045.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  11. 40 CFR 1045.640 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What special provisions apply to branded engines? 1045.640 Section 1045.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  12. 40 CFR 1045.640 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What special provisions apply to branded engines? 1045.640 Section 1045.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  13. 40 CFR 1045.640 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What special provisions apply to branded engines? 1045.640 Section 1045.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  14. 40 CFR 1045.640 - What special provisions apply to branded engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What special provisions apply to branded engines? 1045.640 Section 1045.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  15. 40 CFR 1045.310 - How must I select engines for production-line testing?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How must I select engines for production-line testing? 1045.310 Section 1045.310 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  16. Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak

    1987-01-01

    A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.

  17. Identification and imaging of OH (nu'' = O) and O(2) (nu'' = 6 or 7) in an automobile spark-ignition engine using a tunable KrF excimer laser.

    PubMed

    Andresen, P; Schlüter, H; Wolff, D; Voges, H; Koch, A; Hentschel, W; Oppermann, W; Rothe, E

    1992-12-20

    Planar laser-induced predissociative fluorescence is applied to image state-specific densities of OH and hot O(2) inside an internal-combustion car engine. Improved instrumentation is described. It includes better imaging optics and a spectrometer that permits desired molecular quantum states to be selected and identified in real time. The OH (nu'' = 0) images are cleanly separated from the isooctane fuel and they display a thin superequilibrium region at the flame front. In contrast, vibrationally excited O(2) (nu'' = 6 or nu'' = 7) is uniformly distributed behind the front. Uneven and broken flame fronts are commonly observed.

  18. 40 CFR 1045.415 - What happens if in-use engines do not meet requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... meet requirements? 1045.415 Section 1045.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... remedial action under this subpart (see 40 CFR 1068.505). We may consider the results from any...

  19. 40 CFR 1045.415 - What happens if in-use engines do not meet requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meet requirements? 1045.415 Section 1045.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... remedial action under this subpart (see 40 CFR 1068.505). We may consider the results from any...

  20. 40 CFR 1045.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Use terms and abbreviations as described in 40 CFR 1068.45. You may omit this information from the... the vessel (see 40 CFR 1068.105); in that case, give them the number of duplicate labels they request... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  1. 40 CFR 1045.5 - Which engines are excluded from this part's requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 CFR part 90, 1048, or 1054 for the exhaust emission standards that apply. Evaporative emission... the requirements of 40 CFR part 1042 instead of this part even if they would otherwise meet the... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  2. 40 CFR 1045.5 - Which engines are excluded from this part's requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 CFR part 90, 1048, or 1054 for the exhaust emission standards that apply. Evaporative emission... the requirements of 40 CFR part 1042 instead of this part even if they would otherwise meet the... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  3. 40 CFR 1045.5 - Which engines are excluded from this part's requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 CFR part 90, 1048, or 1054 for the exhaust emission standards that apply. Evaporative emission... the requirements of 40 CFR part 1042 instead of this part even if they would otherwise meet the... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  4. 40 CFR 1045.5 - Which engines are excluded from this part's requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 CFR part 90, 1048, or 1054 for the exhaust emission standards that apply. Evaporative emission... the requirements of 40 CFR part 1042 instead of this part even if they would otherwise meet the... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  5. Spark ignition of turbulent nonpremixed bluff-body flames

    SciTech Connect

    Ahmed, S.F.; Marchione, T.; Mastorakos, E.; Balachandran, R.

    2007-10-15

    Spark ignition of turbulent nonpremixed bluff-body flames with radial fuel injection for different fuel and air bulk velocities and swirl conditions has been investigated in terms of stability and ignitability limits and ignition probability (P{sub ign}, defined as the probability of igniting the whole flame from a localized 2-mm spark). The velocity field and the mixture fraction distributions have been measured with laser Doppler velocimetry and planar laser-induced fluorescence (PLIF) of acetone, respectively. Successful and failed ignition events have been visualized by high-speed and OH PLIF imaging. The results show that the stability limits are much wider than the ignitability limits, but with swirl, they become closer. The mixture fraction distribution shows high sensitivity to any change in the fuel and air velocities, with the mixture inside the central recirculation zone (CRZ) tending to be relatively well-mixed and rich. Visualization of different spark realizations shows that successful ignition events manage to initiate a flame at the separation corner of the bluff body and that the direction of initial flame propagation depends more on the ignition location than on the flow conditions due to the convection of the flame kernel by the mean flow. With successful spark events inside the CRZ the flame expands in all directions, up to a certain point, when it starts forming the shape of the stable flame. The highest P{sub ign} was close to the CRZ boundaries with low P{sub ign} or no ignition inside CRZ when the mixture there was rich. Under conditions where the CRZ is not close to the rich flammability limit, P{sub ign} is substantial. Downstream of the CRZ, P{sub ign} is uniform but low due to the adverse velocity. The probability of just initiating a kernel is higher than P{sub ign}, especially, in the area above the CRZ. With swirl, the highest P{sub ign} is at the burner exit, with no ignition inside the CRZ because the mixture is too lean. The data

  6. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions and Existing Spark Ignition 4SRB Stationary RICE >500 HP Located at an Area Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at...

  7. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions and Existing Spark Ignition 4SRB Stationary RICE >500 HP Located at an Area Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at...

  8. Effect of unsteady stretch on spark-ignited flame kernel survival

    SciTech Connect

    Eichenberger, D.A.; Roberts, W.L.

    1999-08-01

    The chemistry-turbulence interaction remains one of the most important topics in combustion research. The ignition of premixed reactants in a highly turbulent environment is fundamentally coupled to this chemistry-turbulence interaction. The spark-ignition (SI) internal combustion (IC) engine relies on the ability of the flame kernel to survive the high-strain-rate, unsteady environment of a turbulent flowfield and successfully transition into a fully developed flame to operate cleanly and efficiently. If certain length and velocity scales within the turbulence spectrum are found to promote flame kernel growth, then by tailoring the flow passages and aerodynamics of the intake valves, piston, and combustion chamber, it may be possible to increase the efficiency and reduce the emissions of SI IC engines. This paper describes a novel experimental investigation of a spark-generated flame kernel interacting with a single vortex toroid with well-defined length and velocity scales. This experiment measured the ability of a vortex to quench a growing kernel in a very lean methane-air mixture at atmospheric pressure. The absence of superequilibrium OH concentrations, qualitatively determined by planar laser-induced fluorescence (PLIF), was used as in indicator of quenching. It was found that larger eddies are more effective at globally quenching the flamefront, requiring a lower strength, when compared to vortices with a smaller characteristic length. At the globally quenching condition, the maturity of the kernel was then increased incrementally until the vortex was no longer able to completely strain out the kernel. The result of this was surprising in that the larger vortices had a much narrower range of kernel maturity for which the vortex could still quench the growing kernel.

  9. Alternative Automobile Engines

    ERIC Educational Resources Information Center

    Wilson, David Gordon

    1978-01-01

    Requirements for cleaner and more efficient engines have stimulated a search for alternatives to the conventional spark-ignition engine. So far, the defects of the alternative engines are clearer than the virtues. The following engines are compared: spark ignition, diesel, vapor-cycle, Stirling, and gas turbine. (Author/MA)

  10. Ethanol Blend Effects On Direct Injection Spark-Ignition Gasoline Vehicle Particulate Matter Emissions

    SciTech Connect

    Storey, John Morse; Lewis Sr, Samuel Arthur; Barone, Teresa L

    2010-01-01

    Direct injection spark-ignition (DISI) gasoline engines can offer better fuel economy and higher performance over their port fuel-injected counterparts, and are now appearing increasingly in more U.S. vehicles. Small displacement, turbocharged DISI engines are likely to be used in lieu of large displacement engines, particularly in light-duty trucks and sport utility vehicles, to meet fuel economy standards for 2016. In addition to changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the 10% allowed by current law due to the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA). In this study, we present the results of an emissions analysis of a U.S.-legal stoichiometric, turbocharged DISI vehicle, operating on ethanol blends, with an emphasis on detailed particulate matter (PM) characterization. Gaseous species, particle mass, and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. For the gaseous species and particle mass measurements, dilution was carried out using a full flow constant volume sampling system (CVS). For the particle number concentration and size distribution measurements, a micro-tunnel dilution system was employed. The vehicles were fueled by a standard test gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. During steady-state operation, the geometric mean diameter of the particle-number size

  11. Large eddy simulation of spark ignition in a turbulent methane jet

    SciTech Connect

    Lacaze, G.; Richardson, E.; Poinsot, T.

    2009-10-15

    Large eddy simulation (LES) is used to compute the spark ignition in a turbulent methane jet flowing into air. Full ignition sequences are calculated for a series of ignition locations using a one-step chemical scheme for methane combustion coupled with the thickened flame model. The spark ignition is modeled in the LES as an energy deposition term added to the energy equation. Flame kernel formation, the progress and topology of the flame propagating upstream, and stabilization as a tubular edge flame are analyzed in detail and compared to experimental data for a range of ignition parameters. In addition to ignition simulations, statistical analysis of nonreacting LES solutions is carried out to discuss the ignition probability map established experimentally. (author)

  12. A comparative study of laser ignition and spark ignition with gasoline-air mixtures

    NASA Astrophysics Data System (ADS)

    Xu, Cangsu; Fang, Donghua; Luo, Qiyuan; Ma, Jian; Xie, Yang

    2014-12-01

    The ignition probability and minimum ignition energy (MIE) of premixed gasoline-air mixture for different equivalence ratio was experimentally studied using a nanosecond pulse at 532 nm and 1064 nm from a Q-switched Nd:YAG laser in a constant-volume combustion chamber (CVCC) The result was compared with the spark ignition. The initial pressure and temperature of the mixture was 0.1 MP and 363 K, respectively. The research indicates that within the flammable range, the probability increases when the ignition energy increases and the distribution of MIE with the equivalence ratios is U-shape for both laser and spark ignition. For laser ignition with 532 nm, when the incident energy is higher than 110 mJ or the absorbed energy is high than 31 mJ, 100% of ignition could be obtained within equivalence ratios of 0.8-1.6. For 1064 nm it is 235 mJ and 30 mJ. To get the same ignition probability of mixture with identical equivalence ratio, the incident energy of 1064 nm is twice more than the incident energy of 532 nm, while the absorbed energy values are virtually the same. It indicates that significant wavelength dependence is expected for the initial free electrons but irrelevant for the process of absorbing energy. The initial free electrons are produced from impurities in gasoline-air mixture because the intensity in the focus (1012 W/cm2) is too low to ionize gas molecules via the multi-photon ionization process, which requires higher irradiance (≥1014 W/cm2). The MIE obtained with a laser-spark ignition is greater than that measured by electrical sparks. The MIE for laser ignition was obtained at equivalence ratio of 1.0 both of 532 nm and 1064 nm, and it was 13.5 mJ and 9.5 mJ, respectively. But for spark ignition, the MIE is 3.76 mJ with equivalence ratio of 1.6. What's more, laser ignition extends the lean flammability limit from 0.8 to 0.6.

  13. Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber.

    PubMed

    Beaudou, B; Gerôme, F; Wang, Y Y; Alharbi, M; Bradley, T D; Humbert, G; Auguste, J-L; Blondy, J-M; Benabid, F

    2012-05-01

    We report on power handling oriented design of kagome lattice hollow-core fiber and demonstrate through it for the first time nanosecond laser pulses induced spark ignition in a friendly manner. Two different core designs and transmission bands are investigated and evaluated. The energy threshold damage was measured to be in excess of the 10 mJ level and the output power density is approaching the TW/cm2 after focusing; demonstrating the outstanding ability of such fiber for high power delivery.

  14. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... stationary RICE complying with the requirement to reduce formaldehyde emissions by 76 percent or more (or...

  15. Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin.

    PubMed

    Fujita, Eric M; Zielinska, Barbara; Campbell, David E; Arnott, W Patrick; Sagebiel, John C; Mazzoleni, Lynn; Chow, Judith C; Gabele, Peter A; Crews, William; Snow, Richard; Clark, Nigel N; Wayne, W Scott; Lawson, Douglas R

    2007-06-01

    The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used

  16. DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers

    SciTech Connect

    Neophytou, A.; Mastorakos, E.; Cant, R.S.

    2010-06-15

    A parametric study of forced ignition at the mixing layer between air and air carrying fine monosized fuel droplets is done through one-step chemistry direct numerical simulations to determine the influence of the size and volatility of the droplets, the spark location, the droplet-air mixing layer initial thickness and the turbulence intensity on the ignition success and the subsequent flame propagation. The propagation is analyzed in terms of edge flame displacement speed, which has not been studied before for turbulent edge spray flames. Spark ignition successfully resulted in a tribrachial flame if enough fuel vapour was available at the spark location, which occurred when the local droplet number density was high. Ignition was achieved even when the spark was offset from the spray, on the air side, due to the diffusion of heat from the spark, provided droplets evaporated rapidly. Large kernels were obtained by sparking close to the spray, since fuel was more readily available. At long times after the spark, for all flames studied, the probability density function of the displacement speed was wide, with a mean value in the range 0.55-0.75S{sub L}, with S{sub L} the laminar burning velocity of a stoichiometric gaseous premixed flame. This value is close to the mean displacement speed in turbulent edge flames with gaseous fuel. The displacement speed was negatively correlated with curvature. The detrimental effect of curvature was attenuated with a large initial kernel and by increasing the thickness of the mixing layer. The mixing layer was thicker when evaporation was slow and the turbulence intensity higher. However, high turbulence intensity also distorted the kernel which could lead to high values of curvature. The edge flame reaction component increased when the maximum temperature coincided with the stoichiometric contour. The results are consistent with the limited available experimental evidence and provide insights into the processes associated with

  17. 76 FR 67184 - California State Nonroad Engine Pollution Control Standards; Large Spark-Ignition (LSI) Engines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...).\\7\\ \\5\\ 59 FR 36969 (July 20, 1994). \\6\\ See 62 FR 67733 (December 30, 1997). The applicable... the California standard. \\7\\ See 59 FR 36969 (July 20, 1994). In order to be consistent with section...; Fleet Requirements for In-Use LSI Forklifts and Other Industrial Equipment; Opportunity for...

  18. 77 FR 20388 - California State Nonroad Engine Pollution Control Standards; Large Spark-Ignition (LSI) Engines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... context of section 209(b) motor vehicle waivers).\\7\\ \\5\\ 59 FR 36969 (July 20, 1994). \\6\\ See 62 FR 67733... increased risk of burn or fire) associated with compliance with the California standard. \\7\\ See 59 FR 36969... EPA review of the State decision to be a narrow one.'' \\12\\ \\12\\ See, e.g., 40 FR 21102-103 (May...

  19. An Overview of NASA Research on Positive Displacement Type General Aviation Engines

    NASA Technical Reports Server (NTRS)

    Kempke, E. E.; Willis, E. A.

    1979-01-01

    The general aviation positive displacement engine program encompassing conventional, lightweight diesel, and rotary combustion engines is described. Lean operation of current production type spark ignition engines and advanced alternative engine concepts are emphasized.

  20. Job Prospects for Marine Engineers.

    ERIC Educational Resources Information Center

    Basta, Nicholas

    1986-01-01

    Marine engineering is one of the smaller disciplines that have grown during recent decades. Job prospects in this field, salaries, types of employers (particularly Navy shipbuilding and infrastructure work), and marine/ocean engineers involvement with environmental issues are discussed. (JN)

  1. 40 CFR 1045.320 - What happens if one of my production-line engines fails to meet emission standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION... your certificate of conformity can cover that engine: (1) Correct the problem and retest the engine...

  2. 40 CFR 1045.320 - What happens if one of my production-line engines fails to meet emission standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION... your certificate of conformity can cover that engine: (1) Correct the problem and retest the engine...

  3. New Technology Sparks Smoother Engines and Cleaner Air

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.

  4. Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 2. Fuel and EGR Effects on Knock-Limited Load and Speed

    SciTech Connect

    Splitter, Derek A; Szybist, James P

    2013-01-01

    The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine is used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external-cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with E30 as compared to that of 87AKI, up to 20 bar IMEPg (indicating mean effective pressure gross) at = 1. The results demonstrate that for all fuels, EGR is a key enabler for increasing engine efficiency but is less useful for knock mitigation with E30 than for 87AKI gasoline or IB24. Under knocking conditions, 15% EGR is found to offer 1 CA of CA50 timing advance with E30, whereas up to 5 CA of CA50 advance is possible with knock-limited 87AKI gasoline. Compared to 87AKI, both E30 and IB24 are found to have reduced adiabatic flame temperature and shorter combustion durations, which reduce knocking propensity beyond that indicated by the octane number. However, E30+0% EGR is found to exhibit the better antiknock properties than either 87AKI+15% EGR or IB24+15% EGR, expanding the knock limited operating range and engine stoichiometric torque capability at high compression ratio. Furthermore, the fuel sensitivity (S) of E30 was attributed to reduced speed sensitivity of E30, expanding the low-speed stoichiometric torque capability at high compression ratio. The results illustrate that intermediate alcohol gasoline blends exhibit exceptional antiknock properties and performance beyond that indicated by the octane

  5. The influence of CO2 in biogas flammability limit and laminar burning velocity in spark ignited premix combustion at various pressures

    NASA Astrophysics Data System (ADS)

    Anggono, W.; Wardana, I. N. G.; Lawes, M.; Hughes, K. J.; Wahyudi, S.; Hamidi, N.; Hayakawa, A.

    2016-03-01

    Biogas is an alternative energy source that is sustainable and renewable containing more than 50% CH4 and its biggest impurity or inhibitor is CO2. Demands for replacing fossil fuels require an improved fundamental understanding of its combustion processes. Flammability limits and laminar burning velocities are important characteristics in these processes. Thus, this research focused on the effects of CO2 on biogas flammability limits and laminar burning velocities in spark ignited premixed combustion. Biogas was burned in a spark ignited spherical combustion bomb. Spherically expanding laminar premixed flames, freely propagating from spark ignition in initial, were continuously recorded by a high-speed digital camera. The combustion bomb was filled with biogas-air mixtures at various pressures, CO2 levels and equivalence ratios (ϕ) at ambient temperature. The results were also compared to those of the previous study into inhibitorless biogas (methane) at various pressures and equivalence ratios (ϕ). Either the flammable areas become narrower with increased percentages of carbon dioxide or the pressure become lower. In biogas with 50% CO2 content, there was no biogas flame propagation for any equivalence ratio at reduced pressure (0.5 atm). The results show that the laminar burning velocity at the same equivalence ratio declined in respect with the increased level of CO2. The laminar burning velocities were higher at the same equivalence ratio by reducing the initial pressure.

  6. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  7. Laser spark ignition of premixed methane-air mixtures: parameter measurements and determination of key factors for ultimate ignition results.

    PubMed

    Li, Xiaohui; Smith, Benjamin W; Omenetto, Nicoló

    2014-01-01

    In this study, we present an experimental investigation of the parameters of the laser spark ignition of premixed methane-air mixtures and the determination of the key factors for the ultimate ignition result. Ignition is achieved in a mesh honeycomb burner using the 1064 nm output of a neodymium-doped yttrium aluminum garnet (Nd : YAG) laser. All pertinent laser ignition parameters, including the minimum ignition energy, the ignition time and blow out time, and the effects that the variation of experimental conditions, such as the spark energy, ignition position, equivalence ratio (ER), and flow rate, have on these parameters have been addressed systematically. To identify the key factors for the ultimate result of laser ignition, several parameters of the ignition processes are measured simultaneously, with an emphasis given to the temporal behavior of the hydroxyl (OH) radicals in relation to the data regarding the spark energy and the local ER. A clear finding of the study is that successful ignition events are always related to higher OH radical photon emissions, considered to be proportional to the concentration level of the OH radicals present, thus indicating a direct link between the OH level at early times (on a microsecond scale) and the ultimate result of laser ignition. Two-dimensional correlation plots of the spark energy, local ER, and OH radical photon count at early times with the ultimate results of laser ignition indicate that the spark energy and local ER do not play a critical role in determining the success or failure of the ignition and that the OH concentration in the early time range is the key factor in determining the final fate of laser ignition. Finally, on the basis of the results obtained here and in the existing literature, some considerations of the mechanism of laser ignition are presented. PMID:25226251

  8. Marine Engine Mechanics. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are presented for each of ten terminal objectives for a two-semester course (3 hours daily). This 540-hour intermediate course includes advanced troubleshooting techniques on outboard marine engines, inboard-outboard marine engines, inboard marine engines, boat…

  9. An analysis of direct-injection spark-ignition (DISI) soot morphology

    NASA Astrophysics Data System (ADS)

    Barone, Teresa L.; Storey, John M. E.; Youngquist, Adam D.; Szybist, James P.

    2012-03-01

    We have characterized particle emissions produced by a 4-cylinder, 2.0 L DISI engine using transmission electron microscopy (TEM) and image analysis. Analyses of soot morphology provide insight to particle formation mechanisms and strategies for prevention. Particle emissions generated by two fueling strategies were investigated, early injection and injection modified for low particle number concentration emissions. A blend of 20% ethanol and 80% emissions certification gasoline was used for the study given the likelihood of increased ethanol content in widely available fuel. In total, about 200 particles and 3000 primary soot spherules were individually measured. For the fuel injection strategy which produced low particle number concentration emissions, we found a prevalence of single solid sub-25 nm particles and fractal-like aggregates. The modal diameter of single solid particles and aggregate primary particles was between 10 and 15 nm. Solid particles as small as 6 nm were present. Although nanoparticle aggregates had fractal-like morphology similar to diesel soot, the average primary particle diameter per aggregate had a much wider range that spanned from 7 to 60 nm. For the early fuel injection strategy, liquid droplets were prevalent, and the modal average primary particle diameter was between 20 and 25 nm. The presence of liquid droplets may have been the result of unburned fuel and/or lubricating oil originating from fuel impingement on the piston or cylinder wall; the larger modal aggregate primary particle diameter suggests greater fuel-rich zones in-cylinder than for the low particle number concentration point. However, both conditions produced aggregates with a wide range of primary particle diameters, which indicates heterogeneous fuel and air mixing.

  10. An Analysis of Direct-injection spark-ignition (DISI) soot morphology

    SciTech Connect

    Barone, Teresa L; Storey, John Morse; Youngquist, Adam D; Szybist, James P

    2012-01-01

    We have characterized particle emissions produced by a 4-cylinder, 2.0 L DISI engine using transmission electron microscopy (TEM) and image analysis. Analyses of soot morphology provide insight to particle formation mechanisms and strategies for prevention. Particle emissions generated by two fueling strategies were investigated, early injection and injection modified for low particle number concentration emissions. A blend of 20% ethanol and 80% emissions certification gasoline was used for the study given the likelihood of increased ethanol content in widely available fuel. In total, about 200 particles and 3000 primary soot spherules were individually measured. For the fuel injection strategy which produced low particle number concentration emissions, we found a prevalence of single solid sub-25 nm particles and fractal-like aggregates. The modal diameter of single solid particles and aggregate primary particles was between 10 and 15 nm. Solid particles as small as 6 nm were present. Although nanoparticle aggregates had fractal-like morphology similar to diesel soot, the average primary particle diameter per aggregate had a much wider range that spanned from 7 to 60 nm. For the early fuel injection strategy, liquid droplets were prevalent, and the modal average primary particle diameter was between 20 and 25 nm. The presence of liquid droplets may have been the result of unburned fuel and/or lubricating oil originating from fuel impingement on the piston or cylinder wall; the larger modal aggregate primary particle diameter suggests greater fuel-rich zones in-cylinder than for the low particle number concentration point. However, both conditions produced aggregates with a wide range of primary particle diameters, which indicates heterogeneous fuel and air mixing.

  11. Standardized Curriculum for Outboard Marine Engine Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    This curriculum guide for outboard marine engine mechanics was developed by the state of Mississippi to standardize vocational education course titles and core contents. The objectives contained in this document are common to all outboard marine engine mechanics programs in the state. The guide contains objectives for outboard marine engine…

  12. 46 CFR 70.20-1 - Marine engineering details.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Marine engineering details. 70.20-1 Section 70.20-1... General Marine Engineering Requirements § 70.20-1 Marine engineering details. All marine engineering... subchapter F (Marine Engineering) of this chapter....

  13. 46 CFR 188.20-1 - Marine engineering details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Marine engineering details. 188.20-1 Section 188.20-1... PROVISIONS General Marine Engineering Requirements § 188.20-1 Marine engineering details. (a) The marine engineering details shall be in accordance with Subchapter F (Marine Engineering) of this chapter....

  14. 46 CFR 70.20-1 - Marine engineering details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Marine engineering details. 70.20-1 Section 70.20-1... General Marine Engineering Requirements § 70.20-1 Marine engineering details. All marine engineering... subchapter F (Marine Engineering) of this chapter....

  15. 46 CFR 188.20-1 - Marine engineering details.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Marine engineering details. 188.20-1 Section 188.20-1... PROVISIONS General Marine Engineering Requirements § 188.20-1 Marine engineering details. (a) The marine engineering details shall be in accordance with Subchapter F (Marine Engineering) of this chapter....

  16. 46 CFR 70.20-1 - Marine engineering details.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Marine engineering details. 70.20-1 Section 70.20-1... General Marine Engineering Requirements § 70.20-1 Marine engineering details. All marine engineering... subchapter F (Marine Engineering) of this chapter....

  17. 46 CFR 70.20-1 - Marine engineering details.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Marine engineering details. 70.20-1 Section 70.20-1... General Marine Engineering Requirements § 70.20-1 Marine engineering details. All marine engineering... subchapter F (Marine Engineering) of this chapter....

  18. 46 CFR 70.20-1 - Marine engineering details.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Marine engineering details. 70.20-1 Section 70.20-1... General Marine Engineering Requirements § 70.20-1 Marine engineering details. All marine engineering... subchapter F (Marine Engineering) of this chapter....

  19. 46 CFR 188.20-1 - Marine engineering details.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Marine engineering details. 188.20-1 Section 188.20-1... PROVISIONS General Marine Engineering Requirements § 188.20-1 Marine engineering details. (a) The marine engineering details shall be in accordance with Subchapter F (Marine Engineering) of this chapter....

  20. 46 CFR 188.20-1 - Marine engineering details.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Marine engineering details. 188.20-1 Section 188.20-1... PROVISIONS General Marine Engineering Requirements § 188.20-1 Marine engineering details. (a) The marine engineering details shall be in accordance with Subchapter F (Marine Engineering) of this chapter....

  1. 46 CFR 188.20-1 - Marine engineering details.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Marine engineering details. 188.20-1 Section 188.20-1... PROVISIONS General Marine Engineering Requirements § 188.20-1 Marine engineering details. (a) The marine engineering details shall be in accordance with Subchapter F (Marine Engineering) of this chapter....

  2. Gas engines provide cogeneration service for Fantoni MDF plant

    SciTech Connect

    Chellini, R.

    1996-12-01

    A large MDF (medium density fiberboard) plant recently started industrial production at the headquarters of Fantoni, in Osoppo (UDINE) Italy. Providing electric power and thermal energy to the process is a cogeneration plant based on four large spark-ignited gas engines. The new Osoppo MDF plant processes 800 m{sup 3} of finished boards per day in a manufacturing line that combines the most advanced technologies available from several European equipment manufacturers. The cogeneration plant features four type 12VA32G spark-ignited gas engines from Fincantieri`s Diesel Engine Division, driving 50Hz, 6.3 kV, 5400 kVA Ansaldo generators at 750 r/min. The turbocharged and intercooled engines are a spark-ignited version of the company`s A32 diesel. They feature 12 Vee-arranged cylinders with 320 mm bore and 390 mm stroke. 5 figs.

  3. Time-resolved imaging of flame kernels: Laser spark ignition of H{sub 2}/O{sub 2}/Ar mixtures

    SciTech Connect

    Spiglanin, T.A.; Mcilroy, A.; Fournier, E.W.; Cohen, R.B.; Syage, J.A.

    1995-08-01

    The shape and structure of developing flame kernels in laser-induced spark ignited hydrogen/air mixtures is investigated as a function of gas composition and time. Using planar laser-induce fluorescence (PLIF) to measure the spatial distribution of OH radicals produced inside the reacting zone, the authors have recorded the evolution of the nascent flame kernel in a series of images following the laser-induced spark. This series provides the rate of flame growth, the evolution of the flame shape, and the intensity of the PLIF signal as a function of time for both igniting flames and nonignition events. The reaction zones grow quickly at early times, but slowly decrease in propagation rate as the energy density within the flame kernel decreases. A distinct anisotropy is observed in the expanding spark and flame kernel. At short times (t<100 {micro}s), as toroidal shape is observed similar to that seen previously for electrode-spark ignitions and for laser ignitions in methane/air. There is also a tendency for the flame to grow back toward the ignition laser. Successful ignitions appear virtually identical to failed ignitions during the first 100 {micro}s. Significant differences, notably in intensity, appear between 100 and 500 {micro}s following the spark. These observations imply that early flame kernel growth is dominated by gas motion induced by the short-duration spark. The ultimate fate of an ignition lies with the chemistry of the reactions which determines whether the gas undergoes a transition from hot plasma to propagating flame.

  4. On the study of threshold intensity dependence on the gain and loss processes in laser induced spark ignition of molecular hydrogen

    SciTech Connect

    Omar, M. M. Aboulfotouh, A. M.; Gamal, Y. E. E.

    2015-03-30

    In the present work, a numerical analysis is performed to investigate the comparative contribution of the mechanisms responsible for electron gain and losses in laser spark ignition and plasma formation of H{sub 2}. The analysis considered H{sub 2} over pressure range 150 -3000 torr irradiated by a Nd:YAG laser radiation at wavelengths 1064 and 532 nm with pulse length 5.5 ns. The study based on a modified electron cascade model by one of the authors which solves numerically the time dependent Boltzmann equation as well as a set of rate equations that describe the rate of change of the excited states population. The model includes most of the physical processes that might take place during the interaction. Computations of The threshold intensity are performed for the combined and separate contribution of each of the gain and loss processes. Reasonable agreement with the measured values over the tested pressure range is obtained only for the case of the combined contribution. Basing on the calculation of the electron energy distribution function, the determined relations of the time evolution of the electrons density for selected values of the tested gas pressure region revealed that photo-ionization of the excited states could determine the time of electron generation and hence spark ignition. Collisional ionization contributes to this phenomenon only at the high pressure regime. Loss processes due to electron diffusion, vibrational excitation are found to have significant effect over examined pressure values for the two applied laser wavelengths.

  5. Small Engines and Outboard Marine Mechanics Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of small engine and outboard marine mechanics programs. Based on a survey of Alaskan small engines and marine mechanics employers, it includes all competencies a student should acquire in such a mechanics program. The handbook stresses the importance of understanding the…

  6. 40 CFR 1068.1 - Does this part apply to me?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of 40 CFR part 1039, as indicated in 40 CFR part 60, subpart IIII. (5) Marine compression-ignition engines we regulate under 40 CFR part 1042. (6) Marine spark-ignition engines we regulate under 40 CFR... engines we regulate under 40 CFR part 90. (6) Marine spark-ignition engines we regulate under 40 CFR...

  7. 40 CFR 90.307 - Engine cooling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine cooling system. 90.307 Section...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient capacity...

  8. 40 CFR 90.307 - Engine cooling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Engine cooling system. 90.307 Section...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient capacity...

  9. 40 CFR 90.307 - Engine cooling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine cooling system. 90.307 Section...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Emission Test Equipment Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient capacity...

  10. Free-piston Stirling hydraulic engine and drive system for automobiles

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Slaby, J. G.; Nussle, R. C.; Miao, D.

    1982-01-01

    The calculated fuel economy for an automotive free piston Stirling hydraulic engine and drive system using a pneumatic accumulator with the fuel economy of both a conventional 1980 spark ignition engine in an X body class vehicle and the estimated fuel economy of a 1984 spark ignition vehicle system are compared. The results show that the free piston Stirling hydraulic system with a two speed transmission has a combined fuel economy nearly twice that of the 1980 spark ignition engine - 21.5 versus 10.9 km/liter (50.7 versus 25.6 mpg) under comparable conditions. The fuel economy improvement over the 1984 spark ignition engine was 81 percent. The fuel economy sensitivity of the Stirling hydraulic system to system weight, number of transmission shifts, accumulator pressure ratio and maximum pressure, auxiliary power requirements, braking energy recovery, and varying vehicle performance requirements are considered. An important finding is that a multispeed transmission is not required. The penalty for a single speed versus a two speed transmission is about a 12 percent drop in combined fuel economy to 19.0 km/liter (44.7 mpg). This is still a 60 percent improvement in combined fuel economy over the projected 1984 spark ignition vehicle.

  11. Computer program for Stirling engine performance calculations

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.

    1983-01-01

    The thermodynamic characteristics of the Stirling engine were analyzed and modeled on a computer to support its development as a possible alternative to the automobile spark ignition engine. The computer model is documented. The documentation includes a user's manual, symbols list, a test case, comparison of model predictions with test results, and a description of the analytical equations used in the model.

  12. 46 CFR 24.20-1 - Marine engineering details.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Marine engineering details. 24.20-1 Section 24.20-1... Engineering Requirements § 24.20-1 Marine engineering details. (a) All marine engineering details relative to... 40 feet in length will be found in subchapter F (Marine Engineering) of this chapter....

  13. 46 CFR 24.20-1 - Marine engineering details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Marine engineering details. 24.20-1 Section 24.20-1... Engineering Requirements § 24.20-1 Marine engineering details. (a) All marine engineering details relative to... 40 feet in length will be found in subchapter F (Marine Engineering) of this chapter....

  14. 46 CFR 24.20-1 - Marine engineering details.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Marine engineering details. 24.20-1 Section 24.20-1... Engineering Requirements § 24.20-1 Marine engineering details. All marine engineering details relative to the... in length will be found in subchapter F (Marine Engineering) of this chapter....

  15. 46 CFR 24.20-1 - Marine engineering details.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Marine engineering details. 24.20-1 Section 24.20-1... Engineering Requirements § 24.20-1 Marine engineering details. All marine engineering details relative to the... in length will be found in subchapter F (Marine Engineering) of this chapter....

  16. 46 CFR 24.20-1 - Marine engineering details.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Marine engineering details. 24.20-1 Section 24.20-1... Engineering Requirements § 24.20-1 Marine engineering details. All marine engineering details relative to the... in length will be found in subchapter F (Marine Engineering) of this chapter....

  17. 40 CFR 90.410 - Engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine test cycle. 90.410 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures § 90.410 Engine test cycle. (a) Follow the appropriate 6-mode test cycle for Class I, I-B and...

  18. 40 CFR 90.706 - Engine sample selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine sample selection. 90.706... (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Manufacturer Production Line Testing Program § 90.706 Engine sample selection. (a) At the start of each model year,...

  19. 40 CFR 90.410 - Engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Engine test cycle. 90.410 Section 90...) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures § 90.410 Engine test cycle. (a) Follow the appropriate 6-mode test cycle for Class I, I-B and...

  20. Injector spray characterization of methanol in reciprocating engines

    SciTech Connect

    Dodge, L.; Naegeli, D.

    1994-06-01

    This report covers a study that addressed cold-starting problems in alcohol-fueled, spark-ignition engines by using fine-spray port-fuel injectors to inject fuel directly into the cylinder. This task included development and characterization of some very fine-spray, port-fuel injectors for a methanol-fueled spark-ignition engine. After determining the spray characteristics, a computational study was performed to estimate the evaporation rate of the methanol fuel spray under cold-starting and steady-state conditions.

  1. Ethyl alcohol use in engines

    SciTech Connect

    Hofman, V.; Hauck, D.

    1980-11-01

    This article evaluates the use of ethanol as a fuel for internal combustion engines. The basic properties of ethanol are examined together with how it performs in an engine. Both spark ignition engines and diesel engines were tested with ethanol. The physical and chemical characteristics of ethanol provided a better match with the gasoline engines, although ethanol could be used to supplement diesel fuel in diesel engines.

  2. 40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.140 What are the provisions for certifying Blue... emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family...

  3. 40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.140 What are the provisions for certifying Blue... emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family...

  4. 40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.140 What are the provisions for certifying Blue... emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family...

  5. 40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.140 What are the provisions for certifying Blue... emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family...

  6. 40 CFR 1048.140 - What are the provisions for certifying Blue Sky Series engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.140 What are the provisions for certifying Blue... emission control for engines designated as “Blue Sky Series” engines. If you certify an engine family...

  7. 19 CFR 12.74 - Nonroad engine compliance with Federal antipollution emission requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Vehicles, Motor Vehicle Engines and Nonroad Engines Under the Clean Air Act, As Amended § 12.74 Nonroad...: (1) For nonroad compression-ignition engines at or above 37 kilowatts, see 40 CFR part 89, subpart G; (2) For nonroad spark-ignition engines at or below 19 kilowatts, see 40 CFR part 90, subpart G;...

  8. 46 CFR 90.20-1 - Marine engineering details.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Marine engineering details. 90.20-1 Section 90.20-1... PROVISIONS General Marine Engineering Requirements § 90.20-1 Marine engineering details. (a) All marine engineering details such as piping, valves, fittings, boilers, pressure vessels, etc., and their...

  9. 46 CFR 90.20-1 - Marine engineering details.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Marine engineering details. 90.20-1 Section 90.20-1... PROVISIONS General Marine Engineering Requirements § 90.20-1 Marine engineering details. (a) All marine engineering details such as piping, valves, fittings, boilers, pressure vessels, etc., and their...

  10. 46 CFR 189.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Marine engineering equipment. 189.25-35 Section 189.25... INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-35 Marine engineering equipment. (a) For inspection procedures of Marine Engineering equipment and systems, see Subchapter F (Marine Engineering)...

  11. 46 CFR 91.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Marine engineering equipment. 91.25-35 Section 91.25-35... INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-35 Marine engineering equipment. (a) For inspection procedures of marine engineering equipment and systems, see subchapter F (Marine Engineering)...

  12. 46 CFR 91.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Marine engineering equipment. 91.25-35 Section 91.25-35... INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-35 Marine engineering equipment. (a) For inspection procedures of marine engineering equipment and systems, see subchapter F (Marine Engineering)...

  13. 46 CFR 71.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Marine engineering equipment. 71.25-35 Section 71.25-35... CERTIFICATION Annual Inspection § 71.25-35 Marine engineering equipment. (a) For inspection procedures of marine engineering equipment and systems, see subchapter F. (Marine Engineering) of this chapter. (b)...

  14. 46 CFR 71.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Marine engineering equipment. 71.25-35 Section 71.25-35... CERTIFICATION Annual Inspection § 71.25-35 Marine engineering equipment. (a) For inspection procedures of marine engineering equipment and systems, see subchapter F. (Marine Engineering) of this chapter. (b)...

  15. 46 CFR 189.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Marine engineering equipment. 189.25-35 Section 189.25... INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-35 Marine engineering equipment. (a) For inspection procedures of Marine Engineering equipment and systems, see Subchapter F (Marine Engineering)...

  16. 46 CFR 91.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Marine engineering equipment. 91.25-35 Section 91.25-35... INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-35 Marine engineering equipment. (a) For inspection procedures of marine engineering equipment and systems, see subchapter F (Marine Engineering)...

  17. 46 CFR 189.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Marine engineering equipment. 189.25-35 Section 189.25... INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-35 Marine engineering equipment. (a) For inspection procedures of Marine Engineering equipment and systems, see Subchapter F (Marine Engineering)...

  18. 46 CFR 91.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Marine engineering equipment. 91.25-35 Section 91.25-35... INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-35 Marine engineering equipment. (a) For inspection procedures of marine engineering equipment and systems, see subchapter F (Marine Engineering)...

  19. 46 CFR 71.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Marine engineering equipment. 71.25-35 Section 71.25-35... CERTIFICATION Annual Inspection § 71.25-35 Marine engineering equipment. (a) For inspection procedures of marine engineering equipment and systems, see subchapter F. (Marine Engineering) of this chapter. (b)...

  20. 46 CFR 90.20-1 - Marine engineering details.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Marine engineering details. 90.20-1 Section 90.20-1... PROVISIONS General Marine Engineering Requirements § 90.20-1 Marine engineering details. (a) All marine engineering details such as piping, valves, fittings, boilers, pressure vessels, etc., and their...

  1. 46 CFR 71.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Marine engineering equipment. 71.25-35 Section 71.25-35... CERTIFICATION Annual Inspection § 71.25-35 Marine engineering equipment. (a) For inspection procedures of marine engineering equipment and systems, see subchapter F. (Marine Engineering) of this chapter. (b)...

  2. 46 CFR 189.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Marine engineering equipment. 189.25-35 Section 189.25... INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-35 Marine engineering equipment. (a) For inspection procedures of Marine Engineering equipment and systems, see Subchapter F (Marine Engineering)...

  3. 46 CFR 90.20-1 - Marine engineering details.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Marine engineering details. 90.20-1 Section 90.20-1... PROVISIONS General Marine Engineering Requirements § 90.20-1 Marine engineering details. (a) All marine engineering details such as piping, valves, fittings, boilers, pressure vessels, etc., and their...

  4. 46 CFR 91.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Marine engineering equipment. 91.25-35 Section 91.25-35... INSPECTION AND CERTIFICATION Inspection for Certification § 91.25-35 Marine engineering equipment. (a) For inspection procedures of marine engineering equipment and systems, see subchapter F (Marine Engineering)...

  5. 46 CFR 189.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Marine engineering equipment. 189.25-35 Section 189.25... INSPECTION AND CERTIFICATION Inspection for Certification § 189.25-35 Marine engineering equipment. (a) For inspection procedures of Marine Engineering equipment and systems, see Subchapter F (Marine Engineering)...

  6. 46 CFR 71.25-35 - Marine engineering equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Marine engineering equipment. 71.25-35 Section 71.25-35... CERTIFICATION Annual Inspection § 71.25-35 Marine engineering equipment. (a) For inspection procedures of marine engineering equipment and systems, see subchapter F. (Marine Engineering) of this chapter. (b)...

  7. 46 CFR 90.20-1 - Marine engineering details.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Marine engineering details. 90.20-1 Section 90.20-1... PROVISIONS General Marine Engineering Requirements § 90.20-1 Marine engineering details. (a) All marine engineering details such as piping, valves, fittings, boilers, pressure vessels, etc., and their...

  8. 40 CFR 91.1007 - Display exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91.1007 Display exemption. An uncertified marine SI engine is a display engine when it is to be...

  9. 40 CFR 91.1005 - Testing exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91... SI engines may request a testing exemption to cover marine SI engines intended for use in...

  10. 40 CFR 1068.1 - Does this part apply to me?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 60, subpart IIII. (4) Marine compression-ignition engines we regulate under 40 CFR part 1042. (5) Marine spark-ignition engines we regulate under 40 CFR part 1045. (6) Large nonroad spark-ignition... apply to any of the following engine or vehicle categories: (1) Light-duty motor vehicles (see 40...

  11. 40 CFR 1068.1 - Does this part apply to me?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 60, subpart IIII. (4) Marine compression-ignition engines we regulate under 40 CFR part 1042. (5) Marine spark-ignition engines we regulate under 40 CFR part 1045. (6) Large nonroad spark-ignition... apply to any of the following engine or vehicle categories: (1) Light-duty motor vehicles (see 40...

  12. 40 CFR 1048.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.135 How must I label and identify the engines I produce... engine. (6) Identify the emission control system. Use terms and abbreviations as described in 40 CFR...

  13. 40 CFR 1048.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.135 How must I label and identify the engines I produce... engine. (6) Identify the emission control system. Use terms and abbreviations as described in 40 CFR...

  14. 40 CFR 1048.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.135 How must I label and identify the engines I produce... engine. (6) Identify the emission control system. Use terms and abbreviations as described in 40 CFR...

  15. 40 CFR 1048.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.135 How must I label and identify the engines I produce... engine. (6) Identify the emission control system. Use terms and abbreviations as described in 40 CFR...

  16. 40 CFR 91.105 - Useful life period, recall, and warranty periods.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... occurs. The useful life for Outboard marine spark-ignition engines is a period of 350 hours of operation... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Useful life period, recall, and... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES...

  17. 40 CFR 91.105 - Useful life period, recall, and warranty periods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... occurs. The useful life for Outboard marine spark-ignition engines is a period of 350 hours of operation... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Useful life period, recall, and... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES...

  18. Marine Engine Technology. Instructor's Guide.

    ERIC Educational Resources Information Center

    Seminole Community Coll., Sanford, FL.

    This instructor's manual covers 20 competency-based instructional units designed to prepare entry-level outboard marine technicians. The first section explains how to use the materials and lists the units and the modules that constitute each. The second section lists the competencies taught in the course. The third section suggests instructional…

  19. 40 CFR 1054.635 - What special provisions apply for small-volume engine and equipment manufacturers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... manufacturers under 40 CFR part 1068. For example, see 40 CFR 1068.250. (d) Small-volume engine and equipment... Administration at 13 CFR 121.201) that manufactures nonroad spark-ignition engines or equipment, but you do not... small-volume engine and equipment manufacturers? 1054.635 Section 1054.635 Protection of...

  20. 40 CFR 1054.635 - What special provisions apply for small-volume engine and equipment manufacturers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... manufacturers under 40 CFR part 1068. For example, see 40 CFR 1068.250. (d) Small-volume engine and equipment... Administration at 13 CFR 121.201) that manufactures nonroad spark-ignition engines or equipment, but you do not... small-volume engine and equipment manufacturers? 1054.635 Section 1054.635 Protection of...

  1. On-Road Development of John Deere 6081 Natural Gas Engine: Final Technical Report, July 1999 - January 2001

    SciTech Connect

    McCaw, D. L.; Horrell, W. A.

    2001-09-24

    Report that discusses John Deere's field development of a heavy-duty natural gas engine. As part of the field development project, Waste Management of Orange County, California refitted four existing trash packers with John Deere's prototype spark ignited 280-hp 8.1 L CNG engines. This report describes the project and also contains information about engine performance, emissions, and driveability.

  2. 40 CFR 91.104 - Exhaust emission standards for outboard and personal watercraft engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... procedure in § 91.207 to determine compliance with the corporate average HC+NOX exhaust emission standard... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION..., for their useful life. (d) A manufacturer must comply with a corporate average HC+NOX...

  3. Marine Engine Emissions in Recreational Lakes

    NASA Astrophysics Data System (ADS)

    Miller, G. C.; Hoonhout, C.; Sufka, E.; Fiore-Wagner, M.; Allen, B.; Reuter, J.

    2001-12-01

    Release of gasoline and other contaminants, including polycyclic aromatic hydrocarbons, from marine engines into fresh water lakes has become a concern both due to potential impacts on drinking water sources, but also due to potential ecological impacts. Lake Tahoe, an ultraoligotrophic lake shared by Nevada and California, receives extensive recreational watercraft use, and analysis of water samples in 1997 and 1998 revealed widespread occurrence of MTBE, benzene, toluene, xylenes and ethyl benzene. Because carbureted two-cycle engines are known to release approximately 25% of gasoline unburned, these marine engines were suspected as a primary source of these volatile constituents. Further tests on a variety of engines confirmed that the carbureted two-cycle engines released greater amounts of gasoline components into water than either the newer direct injected two-stroke engines (Ficht technology) or four stroke engines. Using toluene as a surrogate for gasoline, and comparing other engines to a two-stroke carbureted engine, the direct injected two-stroke engine had an approximate 80% reduction in toluene released, and a four stroke engine had greater 90% reduction in toluene released. Based on these and other data obtained, a modeling effort indicated that banning of carbureted two-stroke engines at Lake Tahoe would result in an 80% reduction in gasoline constituents in the Lake. In June of 1999 a near complete ban on these engines was implemented by the Tahoe Regional Planning Agency, and by late summer of 1999 gasoline constituents had been reduced by 80-95%. Further research on polycyclic aromatic hydrocarbons has indicated that two cycle engines are also a major source of these phototoxic contaminants.

  4. Marine propulsion internal combustion engine

    SciTech Connect

    Anderson, P.A.; Bernau, W.A.; Breckenfeld, P.W.; Broughton, G.L.; Karrasch, W.R.

    1992-02-18

    This patent describes an engine. It comprises an engine block having an exterior surface and an interior, a crankshaft extending from the engine block interior, being rotatably supported by the block, and including a first portion extending exteriorly of the engine block surface, having a first radius, and a second portion extending from the first portion in concentric relation thereto and having a second radius less than the first radius so as to define a radially extending shoulder on the first portion, a flywheel including a surface engaging the shoulder, and a central aperture receiving the second portion of the crankshaft and having a third radius less than the first radius and greater than the second radius, and means extending through the flywheel and into the first portion of the crankshaft for securing the flywheel to the crankshaft.

  5. 40 CFR 1048.101 - What exhaust emission standards must my engines meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.101 What exhaust emission standards must my engines meet... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What exhaust emission standards...

  6. 40 CFR 1048.101 - What exhaust emission standards must my engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.101 What exhaust emission standards must my engines meet... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What exhaust emission standards...

  7. 40 CFR 1048.101 - What exhaust emission standards must my engines meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.101 What exhaust emission standards must my engines meet... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What exhaust emission standards...

  8. 40 CFR 1048.101 - What exhaust emission standards must my engines meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.101 What exhaust emission standards must my engines meet... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What exhaust emission standards...

  9. 40 CFR 1048.101 - What exhaust emission standards must my engines meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.101 What exhaust emission standards must my engines meet... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What exhaust emission standards...

  10. 40 CFR 1048.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission Standards and Related Requirements § 1048.135 How must I label and identify the engines I produce...) The label must— (1) Include the heading “EMISSION CONTROL INFORMATION”. (2) Include your...

  11. 40 CFR 1051.5 - Which engines are excluded from this part's requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with compression-ignition engines. See 40 CFR parts 89 and 1039 for regulations that cover these... part. Spark-ignition engines in these vehicles must instead meet emission standards specified in 40 CFR parts 90 and 1054. See 40 CFR 90.103(a) and the definition of handheld in 40 CFR 1054.801. (b) We...

  12. 77 FR 72851 - California State Nonroad Engine Pollution Control Standards; Portable Equipment Registration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... that request by a Federal Register notice published February 9, 2011. See 76 FR 7196 (February 9, 2011... Standards for 1996 and later New Diesel Cycle Engines 175 Horsepower and Greater, 60 FR 48981 (September 21... Off-Road Spark- Ignition Engine Standards, Notice of Decision, 71 FR 29621 (May 23, 2006). B....

  13. 46 CFR 126.470 - Marine-engineering systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Marine-engineering systems. 126.470 Section 126.470... CERTIFICATION Inspection for Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F of this chapter apply....

  14. 46 CFR 126.470 - Marine-engineering systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Marine-engineering systems. 126.470 Section 126.470... CERTIFICATION Inspection for Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F of this chapter apply....

  15. 46 CFR 126.470 - Marine-engineering systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Marine-engineering systems. 126.470 Section 126.470... CERTIFICATION Inspection for Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F of this chapter apply....

  16. 46 CFR 126.470 - Marine-engineering systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Marine-engineering systems. 126.470 Section 126.470... CERTIFICATION Inspection for Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F of this chapter apply....

  17. 46 CFR 126.470 - Marine-engineering systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Marine-engineering systems. 126.470 Section 126.470... CERTIFICATION Inspection for Certification § 126.470 Marine-engineering systems. The inspection procedures for marine-engineering systems contained in subchapter F of this chapter apply....

  18. 40 CFR 1054.635 - What special provisions apply for small-volume engine and equipment manufacturers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Administration at 13 CFR 121.201) that manufactures nonroad spark-ignition engines or equipment, but you do not...) Additional lead time and other provisions related to the transition to new emission standards. See § 1054.145... manufacturers under 40 CFR part 1068. For example, see 40 CFR 1068.250. (d) Small-volume engine and...

  19. 40 CFR 1051.605 - What provisions apply to engines already certified under the motor vehicle program or the Large...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... already certified to the requirements that apply to spark-ignition engines under 40 CFR parts 85 and 86 or 40 CFR part 1048 for the appropriate model year. If you comply with all the provisions of this section, we consider the certificate issued under 40 CFR part 86 or 1048 for each engine to also be...

  20. 40 CFR 1051.605 - What provisions apply to engines already certified under the motor vehicle program or the Large...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... already certified to the requirements that apply to spark-ignition engines under 40 CFR parts 85 and 86 or 40 CFR part 1048 for the appropriate model year. If you comply with all the provisions of this section, we consider the certificate issued under 40 CFR part 86 or 1048 for each engine to also be...

  1. 40 CFR 1051.605 - What provisions apply to engines already certified under the motor vehicle program or the Large...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... already certified to the requirements that apply to spark-ignition engines under 40 CFR parts 85 and 86 or 40 CFR part 1048 for the appropriate model year. If you comply with all the provisions of this section, we consider the certificate issued under 40 CFR part 86 or 1048 for each engine to also be...

  2. 40 CFR 1051.605 - What provisions apply to engines already certified under the motor vehicle program or the Large...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... already certified to the requirements that apply to spark-ignition engines under 40 CFR parts 85 and 86 or 40 CFR part 1048 for the appropriate model year. If you comply with all the provisions of this section, we consider the certificate issued under 40 CFR part 86 or 1048 for each engine to also be...

  3. 40 CFR 1051.605 - What provisions apply to engines already certified under the motor vehicle program or the Large...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... already certified to the requirements that apply to spark-ignition engines under 40 CFR parts 85 and 86 or 40 CFR part 1048 for the appropriate model year. If you comply with all the provisions of this section, we consider the certificate issued under 40 CFR part 86 or 1048 for each engine to also be...

  4. 40 CFR 1054.635 - What special provisions apply for small-volume engine and equipment manufacturers?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Administration at 13 CFR 121.201) that manufactures nonroad spark-ignition engines or equipment, but you do not... manufacturers under 40 CFR part 1068. For example, see 40 CFR 1068.250. (d) Small-volume engine and equipment... economic hardship, as long as you demonstrate to us in some other way that you will meet any...

  5. 40 CFR Appendix A to Subpart F of... - Sampling Plans for Selective Enforcement Auditing of Small Nonroad Engines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Enforcement Auditing of Small Nonroad Engines A Appendix A to Subpart F of Part 90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Selective Enforcement Auditing Pt. 90, Subpt. F, App. A...

  6. 40 CFR Appendix A to Subpart F of... - Sampling Plans for Selective Enforcement Auditing of Small Nonroad Engines

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Enforcement Auditing of Small Nonroad Engines A Appendix A to Subpart F of Part 90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Selective Enforcement Auditing Pt. 90, Subpt. F, App. A...

  7. 40 CFR 1048.110 - How must my engines diagnose malfunctions?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Emission... emission-control system using one of the following protocols: (1) If your emission-control strategy depends... approach that we approve in advance. Your alternative approach must generally detect when the...

  8. 40 CFR 1048.415 - What happens if in-use engines do not meet requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meet requirements? 1048.415 Section 1048.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... remedial action under this subpart (see 40 CFR 1068.505). We may consider the results from any...

  9. 40 CFR 1048.415 - What happens if in-use engines do not meet requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... meet requirements? 1048.415 Section 1048.415 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES... remedial action under this subpart (see 40 CFR 1068.505). We may consider the results from any...

  10. 40 CFR 1051.501 - What procedures must I use to test my vehicles or engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fuel C as specified in ASTM D 471-98 (see 40 CFR 1060.810) blended with 10 percent ethanol by volume... Fuel C as specified in ASTM D 471-98 (see 40 CFR 1060.810) blended with 10 percent ethanol by volume... spark-ignition engines in 40 CFR part 1065 to determine whether your snowmobiles meet the...

  11. 40 CFR 1051.501 - What procedures must I use to test my vehicles or engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fuel C as specified in ASTM D 471-98 (see 40 CFR 1060.810) blended with 10 percent ethanol by volume... Fuel C as specified in ASTM D 471-98 (see 40 CFR 1060.810) blended with 10 percent ethanol by volume... spark-ignition engines in 40 CFR part 1065 to determine whether your snowmobiles meet the...

  12. 40 CFR 1051.501 - What procedures must I use to test my vehicles or engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fuel C as specified in ASTM D 471-98 (see 40 CFR 1060.810) blended with 10 percent ethanol by volume... Fuel C as specified in ASTM D 471-98 (see 40 CFR 1060.810) blended with 10 percent ethanol by volume... spark-ignition engines in 40 CFR part 1065 to determine whether your snowmobiles meet the...

  13. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  14. 40 CFR 1045.105 - What exhaust emission standards must my sterndrive/inboard engines meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What exhaust emission standards must my sterndrive/inboard engines meet? 1045.105 Section 1045.105 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  15. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  16. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  17. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  18. 40 CFR 1045.105 - What exhaust emission standards must my sterndrive/inboard engines meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What exhaust emission standards must my sterndrive/inboard engines meet? 1045.105 Section 1045.105 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  19. 40 CFR 1045.105 - What exhaust emission standards must my sterndrive/inboard engines meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What exhaust emission standards must my sterndrive/inboard engines meet? 1045.105 Section 1045.105 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  20. 40 CFR 1045.105 - What exhaust emission standards must my sterndrive/inboard engines meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What exhaust emission standards must my sterndrive/inboard engines meet? 1045.105 Section 1045.105 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  1. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  2. 40 CFR 1054.225 - How do I amend my application for certification to include new or modified engines or fuel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT Certifying Emission Families § 1054... following actions: (1) Add an engine or fuel-system configuration to an emission family. In this case,...

  3. 40 CFR 1054.225 - How do I amend my application for certification to include new or modified engines or fuel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT Certifying Emission Families § 1054... following actions: (1) Add an engine or fuel-system configuration to an emission family. In this case,...

  4. 40 CFR 1054.225 - How do I amend my application for certification to include new or modified engines or fuel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK-IGNITION ENGINES AND EQUIPMENT Certifying Emission Families § 1054... following actions: (1) Add an engine or fuel-system configuration to an emission family. In this case,...

  5. Fuel economy screening study of advanced automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Klann, J. L.

    1980-01-01

    Fuel economy potentials were calculated and compared among ten turbomachinery configurations. All gas turbine engines were evaluated with a continuously variable transmission in a 1978 compact car. A reference fuel economy was calculated for the car with its conventional spark ignition piston engine and three speed automatic transmission. Two promising engine/transmission combinations, using gasoline, had 55 to 60 percent gains over the reference fuel economy. Fuel economy sensitivities to engine design parameter changes were also calculated for these two combinations.

  6. 40 CFR 1045.401 - What testing requirements apply to my engines that have gone into service?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What testing requirements apply to my engines that have gone into service? 1045.401 Section 1045.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  7. 40 CFR 1045.410 - How must I select, prepare, and test my in-use engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How must I select, prepare, and test my in-use engines? 1045.410 Section 1045.410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  8. 40 CFR 1045.660 - How do I certify outboard or personal watercraft engines for use in jet boats?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I certify outboard or personal watercraft engines for use in jet boats? 1045.660 Section 1045.660 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  9. 40 CFR 1045.401 - What testing requirements apply to my engines that have gone into service?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What testing requirements apply to my engines that have gone into service? 1045.401 Section 1045.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  10. 40 CFR 1045.410 - How must I select, prepare, and test my in-use engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How must I select, prepare, and test my in-use engines? 1045.410 Section 1045.410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  11. 40 CFR 1045.660 - How do I certify outboard or personal watercraft engines for use in jet boats?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I certify outboard or personal watercraft engines for use in jet boats? 1045.660 Section 1045.660 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  12. 40 CFR 1045.410 - How must I select, prepare, and test my in-use engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How must I select, prepare, and test my in-use engines? 1045.410 Section 1045.410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  13. 40 CFR 1045.401 - What testing requirements apply to my engines that have gone into service?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What testing requirements apply to my engines that have gone into service? 1045.401 Section 1045.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  14. 40 CFR 1045.401 - What testing requirements apply to my engines that have gone into service?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What testing requirements apply to my engines that have gone into service? 1045.401 Section 1045.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  15. 40 CFR 1045.410 - How must I select, prepare, and test my in-use engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How must I select, prepare, and test my in-use engines? 1045.410 Section 1045.410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  16. 40 CFR 1045.660 - How do I certify outboard or personal watercraft engines for use in jet boats?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I certify outboard or personal watercraft engines for use in jet boats? 1045.660 Section 1045.660 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  17. 40 CFR 1045.410 - How must I select, prepare, and test my in-use engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How must I select, prepare, and test my in-use engines? 1045.410 Section 1045.410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  18. 40 CFR 1045.401 - What testing requirements apply to my engines that have gone into service?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What testing requirements apply to my engines that have gone into service? 1045.401 Section 1045.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  19. 40 CFR 1045.701 - General provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... under 40 CFR part 1068. (2) Engines or vessels intended for export. (3) Engines or vessels that are... CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Averaging, Banking,...

  20. Potential for energy savings in old and new auto engines

    NASA Astrophysics Data System (ADS)

    Reitz, John R.

    1985-11-01

    This paper disucsses the potential for energy savings in the transportation sector through the use of both improved and entirely new automotive engines. Although spark-ignition and diesel internal combustion engines will remain the dominant choices for passenger-car use throughout the rest of this century, improved versions of these engines (lean-burn, low-friction spark-ignition and adiabatic, low-friction diesel engines) could, in the long term, provide a 20-30 percent improvement in fuel economy over what is currently available. The use of new materials, and modifications to both vehicle structure and vehicle transmissions may yield further improvements. Over a longer time frame, the introduction of the high-temperature gas-turbine engine and the use of new synfuels may provide further opportunities for energy conservation.

  1. An overview of NASA research on positive displacement general-aviation engines

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1980-01-01

    The research and technology program related to improved and advanced general aviation engines is described. Current research is directed at the near-term improvement of conventional air-cooled spark-ignition piston engines and at future alternative engine systems based on all-new spark-ignition piston engines, lightweight diesels, and rotary combustion engines that show potential for meeting program goals in the midterm and long-term future. The conventional piston engine activities involve efforts on applying existing technology to improve fuel economy, investigation of key processes to permit leaner operation and reduce drag, and the development of cost effective technology to permit flight at high-altitudes where fuel economy and safety are improved. The advanced engine concepts activities include engine conceptual design studies and enabling technology efforts on the critical or key technology items.

  2. Study of flame quenching and near-wall combustion of lean burn fuel-air mixture in a catalytically activated spark-ignited lean burn engine

    SciTech Connect

    Nedunchezhian, N.; Dhandapani, S.

    2006-01-01

    A study of the catalytic activation of charge near the combustion chamber wall and of the flame quenching phenomenon was carried out to identify whether flame quenches due to catalytic activation or due to thermal quenching. It was found that (1) the diffusion rate of fuel into the boundary sublayer limits the catalytic surface reaction rate during combustion; (2) the results of the present flame quench model indicate that the flame quenches due to the heat loss to walls, and the depletion of fuel due to the catalyst coated on the combustion chamber walls does not affect flame quenching; (3) the catalysts coated on the combustion chamber surface do not contribute increased hydrocarbon emissions, but actually reduce them; (4) each catalyst has a specific surface temperature, at which the Damkoehler number for surface reaction is unity.

  3. 78 FR 77671 - Information Collection Request Submitted to OMB for Review and Approval; Comment Request; NSPS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Stationary Spark Ignition Internal Combustion Engines (Renewal) AGENCY: Environmental Protection Agency (EPA... request (ICR), ``NSPS for Stationary Spark Ignition Internal Combustion Engines (40 CFR Part 60, Subpart...: Owners or operators of stationary spark ignition internal combustion engines. Respondent's obligation...

  4. Fuel property effects on engine combustion processes. Final report

    SciTech Connect

    Cernansky, N.P.; Miller, D.L.

    1995-04-27

    A major obstacle to improving spark ignition engine efficiency is the limitations on compression ratio imposed by tendency of hydrocarbon fuels to knock (autoignite). A research program investigated the knock problem in spark ignition engines. Objective was to understand low and intermediate temperature chemistry of combustion processes relevant to autoignition and knock and to determine fuel property effects. Experiments were conducted in an optically and physically accessible research engine, static reactor, and an atmospheric pressure flow reactor (APFR). Chemical kinetic models were developed for prediction of species evolution and autoignition behavior. The work provided insight into low and intermediate temperature chemistry prior to autoignition of n-butane, iso-butane, n-pentane, 1-pentene, n-heptane, iso-octane and some binary blends. Study of effects of ethers (MTBE, ETBE, TAME and DIPE ) and alcohols (methanol and ethanol) on the oxidation and autoignition of primary reference fuel (PRF) blends.

  5. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    SciTech Connect

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell; Mehl, Marco; Killingsworth, Nick J.; Westbrook, Charles K.

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  6. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Internal Combustion Engines Pt. 63, Subpt. ZZZZ, Table 1a Table 1a to Subpart ZZZZ of Part 63—Emission..., 2007 or Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which...

  7. 46 CFR 31.30-1 - Marine engineering regulations and material specifications-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Marine engineering regulations and material... INSPECTION AND CERTIFICATION Marine Engineering § 31.30-1 Marine engineering regulations and material..., of subchapter F (Marine Engineering) of this chapter, whenever applicable, except as such...

  8. 46 CFR 31.30-1 - Marine engineering regulations and material specifications-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Marine engineering regulations and material... INSPECTION AND CERTIFICATION Marine Engineering § 31.30-1 Marine engineering regulations and material..., of subchapter F (Marine Engineering) of this chapter, whenever applicable, except as such...

  9. 46 CFR 31.30-1 - Marine engineering regulations and material specifications-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Marine engineering regulations and material... INSPECTION AND CERTIFICATION Marine Engineering § 31.30-1 Marine engineering regulations and material..., of subchapter F (Marine Engineering) of this chapter, whenever applicable, except as such...

  10. 46 CFR 31.30-1 - Marine engineering regulations and material specifications-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Marine engineering regulations and material... INSPECTION AND CERTIFICATION Marine Engineering § 31.30-1 Marine engineering regulations and material..., of subchapter F (Marine Engineering) of this chapter, whenever applicable, except as such...

  11. 46 CFR 31.30-1 - Marine engineering regulations and material specifications-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Marine engineering regulations and material... INSPECTION AND CERTIFICATION Marine Engineering § 31.30-1 Marine engineering regulations and material..., of subchapter F (Marine Engineering) of this chapter, whenever applicable, except as such...

  12. Alternative general-aircraft engines

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.

    1976-01-01

    The most promising alternative engine (or engines) for application to general aircraft in the post-1985 time period was defined, and the level of technology was cited to the point where confident development of a new engine can begin early in the 1980's. Low emissions, multifuel capability, and fuel economy were emphasized. Six alternative propulsion concepts were considered to be viable candidates for future general-aircraft application: the advanced spark-ignition piston, rotary combustion, two- and four-stroke diesel, Stirling, and gas turbine engines.

  13. A simplified life-cycle cost comparison of various engines for small helicopter use

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Fishbach, L. M.

    1974-01-01

    A ten-year, life-cycle cost comparison is made of the following engines for small helicopter use: (1) simple turboshaft; (2) regenerative turboshaft; (3) compression-ignition reciprocator; (4) spark-ignited rotary; and (5) spark-ignited reciprocator. Based on a simplified analysis and somewhat approximate data, the simple turboshaft engine apparently has the lowest costs for mission times up to just under 2 hours. At 2 hours and above, the regenerative turboshaft appears promising. The reciprocating and rotary engines are less attractive, requiring from 10 percent to 80 percent more aircraft to have the same total payload capability as a given number of turbine powered craft. A nomogram was developed for estimating total costs of engines not covered in this study.

  14. 40 CFR 91.313 - Analyzers required.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.313.... The NO2 to NO converter efficiency must be at least 90 percent. (B) An ice bath located after the...

  15. 40 CFR 1045.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements of 40 CFR part 1045. We have not changed production processes or quality-control procedures for... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  16. 40 CFR 1045.10 - How is this part organized?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... references to other parts of the Code of Federal Regulations). (g) Subpart G of this part and 40 CFR part... CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Overview...

  17. 40 CFR 1045.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements of 40 CFR part 1045. We have not changed production processes or quality-control procedures for... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  18. 40 CFR 1045.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements of 40 CFR part 1045. We have not changed production processes or quality-control procedures for... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  19. 40 CFR 1045.10 - How is this part organized?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... references to other parts of the Code of Federal Regulations). (g) Subpart G of this part and 40 CFR part... CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Overview...

  20. 40 CFR 1045.10 - How is this part organized?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... references to other parts of the Code of Federal Regulations). (g) Subpart G of this part and 40 CFR part... CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Overview...

  1. 40 CFR 1045.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements of 40 CFR part 1045. We have not changed production processes or quality-control procedures for... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  2. 40 CFR 1045.10 - How is this part organized?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... references to other parts of the Code of Federal Regulations). (g) Subpart G of this part and 40 CFR part... CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Overview...

  3. 40 CFR 1045.10 - How is this part organized?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... references to other parts of the Code of Federal Regulations). (g) Subpart G of this part and 40 CFR part... CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Overview...

  4. 40 CFR 1045.345 - What production-line testing records must I send to EPA?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements of 40 CFR part 1045. We have not changed production processes or quality-control procedures for... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES...

  5. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Internal Combustion Engines Pt. 63, Subpt. ZZZZ, Table 1a Table 1a to Subpart ZZZZ of Part 63—Emission... emissions by 75 percent or more until June 15, 2007 or Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the...

  6. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Internal Combustion Engines Pt. 63, Subpt. ZZZZ, Table 1a Table 1a to Subpart ZZZZ of Part 63—Emission... emissions by 75 percent or more until June 15, 2007 or Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the...

  7. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Internal Combustion Engines Pt. 63, Subpt. ZZZZ, Table 1a Table 1a to Subpart ZZZZ of Part 63—Emission... emissions by 75 percent or more until June 15, 2007 or Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the...

  8. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Internal Combustion Engines Pt. 63, Subpt. ZZZZ, Table 1a Table 1a to Subpart ZZZZ of Part 63—Emission... emissions by 75 percent or more until June 15, 2007 or Minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the...

  9. Tropical rainforest response to marine sky brightening climate engineering

    NASA Astrophysics Data System (ADS)

    Muri, Helene; Niemeier, Ulrike; Kristjánsson, Jón Egill

    2015-04-01

    Tropical forests represent a major atmospheric carbon dioxide sink. Here the gross primary productivity (GPP) response of tropical rainforests to climate engineering via marine sky brightening under a future scenario is investigated in three Earth system models. The model response is diverse, and in two of the three models, the tropical GPP shows a decrease from the marine sky brightening climate engineering. Partial correlation analysis indicates precipitation to be important in one of those models, while precipitation and temperature are limiting factors in the other. One model experiences a reversal of its Amazon dieback under marine sky brightening. There, the strongest partial correlation of GPP is to temperature and incoming solar radiation at the surface. Carbon fertilization provides a higher future tropical rainforest GPP overall, both with and without climate engineering. Salt damage to plants and soils could be an important aspect of marine sky brightening.

  10. 46 CFR 127.620 - Marine engineering requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Marine engineering requirements. 127.620 Section 127.620 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND... engineering requirements. Steering gear on OSVs authorized for carriage of more than 240 persons must...

  11. Directions in automotive engine research and development

    SciTech Connect

    Samuels, G.

    1980-01-01

    The advent of high fuel costs and automotive fuel economy and emission regulations has cast doubt on the economic superiority and even the technical feasibility of conventional spark ignition and diesel engines, and has opened the field to other concepts. The emission regulations and their effect on the design and efficiency of conventional engines are reviewed, the research and development effort to improve the performance of conventional engines and to develop advanced engines is discussed, and the current status of these engines is presented.

  12. 40 CFR 91.1002 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91.1002... means an exemption granted under § 91.1104(b) for the purpose of exporting new marine SI engines... national security. Manufacturer-owned marine engine means an uncertified marine SI engine owned...

  13. Evaluation of heat engine for hybrid vehicle application

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1984-01-01

    The status of ongoing heat-engine developments, including spark-ignition, compression-ignition, internal-combustion, and external-combustion engines is presented. The potential of engine concepts under consideration for hybrid vehicle use is evaluated, using self-imposed criteria for selection. The deficiencies of the engines currently being evaluated in hybrid vehicles are discussed. Focus is on recent research with two-stroke, rotary, and free-piston engines. It is concluded that these engine concepts have the most promising potential for future application in hybrid vehicles. Recommendations are made for analysis and experimentation to evaluate stop-start and transient emission behavior of recommended engine concepts.

  14. 40 CFR 91.1004 - Who may request an exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI....1005. (b) Any marine SI engine manufacturer may request a national security exemption under § 91.1008. (c) For marine SI engine manufacturers, marine SI engines for export purposes are exempt...

  15. Hydrogen engine development: Experimental program

    SciTech Connect

    Van Blarigan, P.

    1996-10-01

    In the continuing development of a hydrogen fueled IC engine optimized for application to a generator set or hybrid vehicle, experiments were performed at Sandia National Laboratories on two engine configurations. The intent is to maximize thermal efficiency while complying with strict emissions standards. The initial investigation was conducted utilizing a spark ignited 0.491 liter single cylinder Onan engine and has progressed to a spark ignited 0.850 liter modified for single cylinder operation Perkins engine. Both combustion chamber geometries were {open_quotes}pancake{close_quotes} shaped and achieved a compression ratio of 14:1. The engines were operated under premixed conditions. The results demonstrate that both engines can comply with the California Air Resources Board`s proposed Equivalent Zero Emission Vehicle standards for NO{sub x} during operation at an equivalence ratio of 0.4. The Onan engine achieved an indicated thermal efficiency of 43% at 1800 RPM, as determined by integration of the pressure-volume relationships. Initial experiments with the larger displacement Perkins engine have realized a gain, relative to the Onan engine, in indicated thermal efficiency of 2% at 1800 RPM, and 15% at 1200 RPM.

  16. Complete modeling for systems of a marine diesel engine

    NASA Astrophysics Data System (ADS)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  17. Marine Engine Mechanics. Performance Objectives. Basic Course.

    ERIC Educational Resources Information Center

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are presented for each of six terminal objectives for a two-semester course (2 hours daily) which provides training in the terminology, construction, and function of both two- and four-cycle fuel-air mixture internal combustion engines with emphasis on outboard marine…

  18. Radiographic evidence of asbestos effects in American marine engineers.

    PubMed

    Jones, R N; Diem, J E; Ziskand, M M; Rodriguez, M; Weill, H

    1984-04-01

    Marine engineers undergoing routine annual chest roentgenography showed an unusual prevalence of pleural abnormalities including plaques suggestive of past asbestos exposure. A pilot survey, and a subsequent comprehensive study of the films of more than 5,000 men, showed an overall prevalence of 12% with pleural abnormality (typical calcification or plaque, or diffuse thickening). Prevalence of films classifiable for pneumoconiotic small opacities was negligible--1.2% in the pilot study. Prevalences of pleural abnormality were significantly higher among men with longer union membership, after controlling for age. Older merchant ships contain substantial amounts of asbestos-containing thermal insulation. Marine engineers often remove and reapply insulation, operations known to produce high airborne fiber concentrations. These roentgenographic survey results indicate significant past asbestos exposures of ships' engineering department personnel. PMID:6716195

  19. 40 CFR 91.1008 - National security exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91.1008 National security exemption. (a)(1) Any marine SI engine, otherwise subject to this part... request a national security exemption for any marine SI engine, otherwise subject to this part, which...

  20. MAN B&W`s latest HFO marine auxiliary engine

    SciTech Connect

    Kunberger, K.

    1996-09-01

    The ability to operate marine auxiliary generator sets on heavy fuel oil (HFO) provides the advantages of using a single fuel source onboard ships for all engine power, but also requires attention directed to engine maintenance, reliability and emissions. MAN B&W Diesel in Holeby, Denmark, has a world reputation and substantial market share for HFO burning auxiliary engines above 500 kW. Offering a guaranteed 20000 operating hours before major overhaul on its HFO auxiliary gen-sets, the company has promoted the unifuel concept for ship propulsion and auxiliary power plants for many years. Based on this experience, a new generation of small HFO burning diesels has been designed. Low operating and maintenance costs, low initial cost, heavy fuel capabilities with unrestricted load profile, high reliability at long maintenance intervals and low emmisions were the main design targets. The design, specifications, and performance of these engines are discussed in this article.

  1. Mariner Venus/Mercury 1973 rocket engine assembly

    NASA Technical Reports Server (NTRS)

    Snoke, D. R.; Williams, R. S.

    1972-01-01

    The fabrication and test of rocket engine assemblies (REA) for Mariner Venus/Mercury 1973 are reported. The fabrication, assembly and flight acceptance test of seven REA's including the type approval test of one engine and fabrication of one additional kit consisting of detail parts for an engine ready for catalyst loading are presented. The MV/M '73 REA which is a nominal 51 lbs thrust monopropellant engine is described. Under steady state operation the specific impulse is not less than 228 lb-sec at 55 lb and 218.5 lb-sec at 10 lb thrust varying linearly between these limits. The characteristic velocity is not less than 4100 ft/sec at any thrust level.

  2. 40 CFR 94.104 - Test procedures for Category 2 marine engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... using the test procedures specified in 40 CFR part 92, except as otherwise specified in this subpart. (b)(1) The requirements of 40 CFR part 92 related to charge air temperatures, engine speed and load, and engine air inlet restriction pressures do not apply for marine engines. (2) For marine engine...

  3. 40 CFR 91.1009 - Export exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines § 91.1009 Export exemptions. (a) A new marine SI engine intended solely for export, and so labeled or tagged... maintain a list of foreign countries that have in force marine SI emission standards identical to U.S....

  4. Low current extended duration spark ignition system

    DOEpatents

    Waters, Stephen Howard; Chan, Anthony Kok-Fai

    2005-08-30

    A system for firing a spark plug is disclosed. The system includes a timing controller configured to send a first timing signal and a second timing signal. The system also includes an ignition transformer having a primary winding and a secondary winding and a spark-plug that is operably associated with the secondary winding. A first switching element is disposed between the timing controller and the primary winding of the ignition transformer. The first switching element controls a supply of power to the primary winding based on the first timing signal. Also, a second switching element is disposed between the timing controller and the primary winding of the ignition transformer. The second switching element controls the supply of power to the primary winding based on the second timing signal. A method for firing a spark plug is also disclosed.

  5. Dual fuel development for an LNG marine engine

    SciTech Connect

    Acker, G.H.

    1988-01-01

    A dual-fuel conversion for the 3406-B Caterpillar marine diesel engine has been developed. The purpose of this conversion is to use lower priced natural gas as a fuel, thus providing substantial cost savings for large fuel consumers. Details of the conversion system are given. Data is presented showing fuel consumption, conditions leading to engine knock, conditions promoting methane flame propagation, and air-fuel ratios required for efficient combustion. The system resulting from this study will use Liquefied Natural Gas (LNG) to power a dual-fuel conversion of a shrimp boat's main engine and generator set. The cold temperatures of the LNG will also be used as a heat sink to refrigerate the fish-hold area of the boat.

  6. Fluid motion within the cylinder of internal combustion engines - The 1986 Freeman Scholar Lecture

    NASA Astrophysics Data System (ADS)

    Heywood, John B.

    1987-03-01

    Aspects of gas motion into, within, and out of the engine cylinder which govern the combustion characteristics and capabilities of spark-ignition engines and compression-ignition or diesel engines are considered. Flow characteristics through inlet and exhaust valves in four-stroke cycle engines, and through ports in the cylinder liner in two-stroke cycle engines, are discussed. Features and turbulence characteristics of common in-cylinder flows including the large scale rotating flows precipitated by the conical intake jet and two-stroke scavenger flows are reviewed. The flow phenomenon near walls are then discussed, with application to heat transfer and hydrocarbon emissions phenomena.

  7. Combustion engine system

    NASA Technical Reports Server (NTRS)

    Houseman, John (Inventor); Voecks, Gerald E. (Inventor)

    1986-01-01

    A flow through catalytic reactor which selectively catalytically decomposes methanol into a soot free hydrogen rich product gas utilizing engine exhaust at temperatures of 200 to 650 C to provide the heat for vaporizing and decomposing the methanol is described. The reactor is combined with either a spark ignited or compression ignited internal combustion engine or a gas turbine to provide a combustion engine system. The system may be fueled entirely by the hydrogen rich gas produced in the methanol decomposition reactor or the system may be operated on mixed fuels for transient power gain and for cold start of the engine system. The reactor includes a decomposition zone formed by a plurality of elongated cylinders which contain a body of vapor permeable, methanol decomposition catalyst preferably a shift catalyst such as copper-zinc.

  8. Analysis of experimental hydrogen engine data and hydrogen vehicle performance and emissions simulation

    SciTech Connect

    Aceves, S.A.

    1996-10-01

    This paper reports the engine and vehicle simulation and analysis done at Lawrence Livermore (LLNL) as a part of a joint optimized hydrogen engine development effort. Project participants are: Sandia National Laboratory; Los Alamos National Laboratory; and the University of Miami. Fuel cells are considered as the ideal power source for future vehicles, due to their high efficiency and low emissions. However, extensive use of fuel cells in light-duty vehicles is likely to be years away, due to their high manufacturing cost. Hydrogen-fueled, spark-ignited, homogeneous-charge engines offer a near-term alternative to fuel cells. Hydrogen in a spark-ignited engine can be burned at very low equivalence ratios. NO{sub x} emissions can be reduced to less than 10 ppm without catalyst. HC and CO emissions may result from oxidation of engine oil, but by proper design are negligible (a few ppm). Lean operation also results in increased indicated efficiency due to the thermodynamic properties of the gaseous mixture contained in the cylinder. The high effective octane number of hydrogen allows the use of a high compression ratio, further increasing engine efficiency. In this paper, a simplified engine model is used for predicting hydrogen engine efficiency and emissions. The model uses basic thermodynamic equations for the compression and expansion processes, along with an empirical correlation for heat transfer, to predict engine indicated efficiency. A friction correlation and a supercharger/turbocharger model are then used to calculate brake thermal efficiency. The model is validated with many experimental points obtained in a recent evaluation of a hydrogen research engine. The experimental data are used to adjust the empirical constants in the heat release rate and heat transfer correlation. The results indicate that hydrogen lean-burn spark-ignite engines can provide Equivalent Zero Emission Vehicle (EZEV) levels in either a series hybrid or a conventional automobile.

  9. An environmental decision framework applied to marine engine control technologies.

    PubMed

    Corbett, James J; Chapman, David

    2006-06-01

    This paper develops a decision framework for considering emission control technologies on marine engines, informed by standard decision theory, with an open structure that may be adapted by operators with specific vessel and technology attributes different from those provided here. Attributes relate objectives important to choosing control technologies with specific alternatives that may meet several of the objectives differently. The transparent framework enables multiple stakeholders to understand how different subjective judgments and varying attribute properties may result in different technology choices. Standard scoring techniques ensure that attributes are not biased by subjective scoring and that weights are the primary quantitative input where subjective preferences are exercised. An expected value decision structure is adopted that considers probabilities (likelihood) that a given alternative can meet its claims; alternative decision criteria are discussed. Capital and annual costs are combined using a net present value approach. An iterative approach is advocated that allows for screening and disqualifying alternatives that do not meet minimum conditions for acceptance, such as engine warranty or U.S. Coast Guard requirements. This decision framework assists vessel operators in considering explicitly important attributes and in representing choices clearly to other stakeholders concerned about reducing air pollution from vessels. This general decision structure may also be applied similarly to other environmental controls in marine applications.

  10. Oxygen diffusion in marine-derived tissue engineering scaffolds.

    PubMed

    Boccardi, E; Belova, I V; Murch, G E; Boccaccini, A R; Fiedler, T

    2015-06-01

    This paper addresses the computation of the effective diffusivity in new bioactive glass (BG) based tissue engineering scaffolds. High diffusivities facilitate the supply of oxygen and nutrients to grown tissue as well as the rapid disposal of toxic waste products. The present study addresses required novel types of bone tissue engineering BG scaffolds that are derived from natural marine sponges. Using the foam replication method, the scaffold geometry is defined by the porous structure of Spongia Agaricina and Spongia Lamella. These sponges present the advantage of attaining scaffolds with higher mechanical properties (2-4 MPa) due to a decrease in porosity (68-76%). The effective diffusivities of these structures are compared with that of conventional scaffolds based on polyurethane (PU) foam templates, characterised by high porosity (>90%) and lower mechanical properties (>0.05 MPa). Both the spatial and directional variations of diffusivity are investigated. Furthermore, the effect of scaffold decomposition due to immersion in simulated body fluid (SBF) on the diffusivity is addressed. Scaffolds based on natural marine sponges are characterised by lower oxygen diffusivity due to their lower porosity compared with the PU replica foams, which should enable the best oxygen supply to newly formed bone according the numerical results. The oxygen diffusivity of these new BG scaffolds increases over time as a consequence of the degradation in SBF.

  11. Preliminary analysis of a downsized advanced gas-turbine engine in a subcompact car

    NASA Technical Reports Server (NTRS)

    Klann, J. L.; Johnsen, R. L.

    1982-01-01

    Relative fuel economy advantages exist for a ceramic turbine engine when it is downsized for a small car were investigated. A 75 kW (100 hp) single shaft engine under development was analytically downsized to 37 kW (50 hp) and analyzed with a metal belt continuously variable transmission in a synthesized car. With gasoline, a 25% advantage was calculated over that of a current spark ignition engine, scaled to the same power, using the same transmission and car. With diesel fuel, a 21% advantage was calculated over that of a similar diesel engine vehicle.

  12. 40 CFR 1045.650 - Do delegated-assembly provisions apply for marine engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... marine engines? The provisions of 40 CFR 1068.261 related to delegated final assembly do not apply for... exhaust aftertreatment (such as catalysts), the engine manufacturers must either install...

  13. SI Engine Trends: A Historical Analysis with Future Projections

    SciTech Connect

    Pawlowski, Alexander; Splitter, Derek A

    2015-01-01

    It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. The results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number. However, over the last 15 years the sales weighted averages of compression ratios, specific output, and fuel economy have increased, while the fuel octane number requirement has remained largely unchanged. Using the developed correlations, 10-year-out projections of engine performance, design, and fuel economy are estimated for various fuel octane numbers, both with and without turbocharging. The 10-year-out projection shows that only by keeping power neutral while using 105 RON fuel will allow the vehicle fleet to meet CAFE targets if only the engine is relied upon to decrease fuel consumption. If 98 RON fuel is used, a power neutral fleet will have to reduce vehicle weight by 5%.

  14. 40 CFR 94.106 - Supplemental test procedures for Category 1 and Category 2 marine engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Supplemental test procedures for Category 1 and Category 2 marine engines. 94.106 Section 94.106 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Test Procedures §...

  15. 40 CFR 91.1103 - Prohibited acts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... United States of any new marine SI engine manufactured after the applicable effective date under this...) The provisions of 40 CFR 1045.645 apply starting January 1, 2010. (4) A new marine spark-ignition... case of a manufacturer of new marine SI engines or vessels for distribution in commerce, the sale,...

  16. Testing of high-octane fuels in the single-cylinder airplane engine

    NASA Technical Reports Server (NTRS)

    Seeber, Fritz

    1940-01-01

    One of the most important properties of aviation fuels for spark-ignition engines is their knock rating. The CFR engine tests of fuels of 87 octane and above does not always correspond entirely to the actual behavior of these fuels in the airplane engine. A method is therefore developed which, in contrast to the octane number determination, permits a testing of the fuel under various temperatures and fuel mixture conditions. The following reference fuels were employed: 1) Primary fuels; isooctane and n-heptane; 2) Secondary fuels; pure benzene and synthetic benzine.

  17. Further Studies of Flame Movement and Pressure Development in an Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Marvin, Charles F , Jr; Wharton, Armistead; Roeder, Carl H

    1937-01-01

    This report describes an investigation using a stroboscopic apparatus for observing flame movement through a large number of small windows distributed over the head of a spark-ignition engine in following flame spread with combustion chambers of different shapes at two engine speed and for a variety of spark-plug locations including single and twin ignition. The principal factors influencing flame movement in the engine are discussed, and the lack of reliable information regarding their separate effects upon the structure of the flame and its speed of propagation are emphasized.

  18. Railplug Ignition System for Enhanced Engine Performance and Reduced Maintenance

    SciTech Connect

    DK Ezekoye; Matt Hall; Ron Matthews

    2005-08-01

    This Final Technical Report discusses the progress that was made on the experimental and numerical tasks over the duration of this project. The primary objectives of the project were to (1) develop an improved understanding of the spark ignition process, and (2) develop the railplug as an improved ignitor for large bore stationary natural gas engines. We performed fundamental experiments on the physical processes occurring during spark ignition and used the results from these experiments to aid our development of the most complete model of the spark ignition process ever devised. The elements in this model include (1) the dynamic response of the ignition circuit, (2) a chemical kinetics mechanism that is suitable for the reactions that occur in the plasma, (3) conventional flame propagation kinetics, and (4) a multi-dimensional formulation so that bulk flow through the spark gap can be incorporated. This model (i.e., a Fortran code that can be used as a subroutine within an engine modeling code such as KIVA) can be obtained from Prof. Ron Matthews at rdmatt{at}mail.utexas.edu or Prof. DK Ezekoye at dezekoye{at}mail.utexas.edu. Fundamental experiments, engine experiments, and modeling tasks were used to help develop the railplug as a new ignitor for large bore natural gas engines. As the result of these studies, we developed a railplug that could extend the Lean Stability Limit (LSL) of an engine operating at full load on natural gas from {phi} = 0.59 for operation on spark plugs down to {phi} = 0.53 using railplugs with the same delivered energy (0.7 J). However, this delivered energy would rapidly wear out the spark plug. For a conventional delivered energy (<0.05 J), the LSL is {phi} = 0.63 for a spark plug. Further, using a permanent magnet to aid the plasma movement, the LSL was extended to {phi} = 0.54 for a railplug with a delivered energy of only 0.15 J/shot, a typical discharge energy for commercial capacitive discharge ignition systems. Here, it should be

  19. Downsizing assessment of automotive Stirling engines

    NASA Technical Reports Server (NTRS)

    Knoll, R. H.; Tew, R. C., Jr.; Klann, J. L.

    1983-01-01

    A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile was the focal point for developing automotive Stirling engine technology. Since recent trends are towards lighter vehicles, an assessment was made of the applicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage comparable spark ignition and diesel powered vehicles in the 1984 period.

  20. 40 CFR 91.1306 - Trading.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Trading. 91.1306 Section 91.1306... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Credit Program for New Marine Engines § 91.1306 Trading... engine manufacturers through trading. (b) In-use credits for trading can be obtained from credits...

  1. 40 CFR 1027.101 - To whom do these requirements apply?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regulate under 40 CFR part 89 or 1039. (iii) Marine compression-ignition engines we regulate under 40 CFR part 94, 1042, or 1043. (iv) Marine spark-ignition engines and vessels we regulate under 40 CFR part 91... POLLUTION CONTROLS FEES FOR ENGINE, VEHICLE, AND EQUIPMENT COMPLIANCE PROGRAMS § 1027.101 To whom do...

  2. 40 CFR 1027.101 - To whom do these requirements apply?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... regulate under 40 CFR part 89 or 1039. (iii) Marine compression-ignition engines we regulate under 40 CFR part 94, 1042, or 1043. (iv) Marine spark-ignition engines and vessels we regulate under 40 CFR part 91... POLLUTION CONTROLS FEES FOR ENGINE, VEHICLE, AND EQUIPMENT COMPLIANCE PROGRAMS § 1027.101 To whom do...

  3. 40 CFR 1027.101 - To whom do these requirements apply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regulate under 40 CFR part 89 or 1039. (iii) Marine compression-ignition engines we regulate under 40 CFR part 94, 1042, or 1043. (iv) Marine spark-ignition engines and vessels we regulate under 40 CFR part 91... POLLUTION CONTROLS FEES FOR ENGINE, VEHICLE, AND EQUIPMENT COMPLIANCE PROGRAMS § 1027.101 To whom do...

  4. 40 CFR 1027.101 - To whom do these requirements apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regulate under 40 CFR part 89 or 1039. (iii) Marine compression-ignition engines we regulate under 40 CFR part 94, 1042, or 1043. (iv) Marine spark-ignition engines and vessels we regulate under 40 CFR part 91... POLLUTION CONTROLS FEES FOR ENGINE, VEHICLE, AND EQUIPMENT COMPLIANCE PROGRAMS § 1027.101 To whom do...

  5. 40 CFR 1027.101 - To whom do these requirements apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... regulate under 40 CFR part 89 or 1039. (iii) Marine compression-ignition engines we regulate under 40 CFR part 94, 1042, or 1043. (iv) Marine spark-ignition engines and vessels we regulate under 40 CFR part 91... POLLUTION CONTROLS FEES FOR ENGINE, VEHICLE, AND EQUIPMENT COMPLIANCE PROGRAMS § 1027.101 To whom do...

  6. 40 CFR 1045.1 - Does this part apply for my products?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tanks used with marine engines that use a volatile liquid fuel (such as gasoline) as specified in 40 CFR...) See 40 CFR part 91 for requirements that apply to outboard and personal watercraft engines not yet... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  7. 40 CFR 1045.1 - Does this part apply for my products?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tanks used with marine engines that use a volatile liquid fuel (such as gasoline) as specified in 40 CFR...) See 40 CFR part 91 for requirements that apply to outboard and personal watercraft engines not yet... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  8. 40 CFR 1045.1 - Does this part apply for my products?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tanks used with marine engines that use a volatile liquid fuel (such as gasoline) as specified in 40 CFR...) See 40 CFR part 91 for requirements that apply to outboard and personal watercraft engines not yet... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  9. 40 CFR 1045.1 - Does this part apply for my products?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tanks used with marine engines that use a volatile liquid fuel (such as gasoline) as specified in 40 CFR...) See 40 CFR part 91 for requirements that apply to outboard and personal watercraft engines not yet... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS...

  10. Conventional engine technology. Volume 2: Status of diesel engine technology

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1981-01-01

    The engines of diesel cars marketed in the United States were examined. Prominent design features, performance characteristics, fuel economy and emissions data were compared. Specific problems, in particular those of NO and smoke emissions, the effects of increasing dieselization on diesel fuel price and availability, current R&D work and advanced diesel concepts are discussed. Diesel cars currently have a fuel economy advantage over gasoline engine powered cars. Diesel drawbacks (noise and odor) were reduced to a less objectionable level. An equivalent gasoline engine driveability was obtained with turbocharging. Diesel manufacturers see a growth in the diesel market for the next ten years. Uncertainties regarding future emission regulation may inhibit future diesel production investments. With spark ignition engine technology advancing in the direction of high compression ratios, the fuel economy advantages of the diesel car is expected to diminish. To return its fuel economy lead, the diesel's potential for future improvement must be used.

  11. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and...

  12. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and...

  13. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and...

  14. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation and... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line beginning at the southeasternmost corner of the U.S. Navy Marine Engineering Laboratory sea wall and...

  15. 40 CFR 91.120 - Compliance with Family Emission Limits over useful life.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission...) If all test engines representing an engine family have emissions, as determined in paragraph (c)(3...) If any test engine representing an engine family has emissions (as determined in paragraph...

  16. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    SciTech Connect

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes

    2015-05-15

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.

  17. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    NASA Astrophysics Data System (ADS)

    Izzuddin, Nur; Sunarsih, Priyanto, Agoes

    2015-05-01

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.

  18. 40 CFR 94.912 - Optional certification to land-based standards for auxiliary marine engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Optional certification to land-based... ENGINES Exclusion and Exemption Provisions § 94.912 Optional certification to land-based standards for... land-based engines. See § 94.907 for provisions that apply to propulsion marine engines or...

  19. Witnessing power: John Elder and the making of the marine compound engine, 1850-1858.

    PubMed

    Smith, Crosbie

    2014-01-01

    Shipowners' seemingly slow adoption of marine compound engines is often attributed to not appreciating the new technology's superior economy. This article argues that this slow adoption needs to be understood alongside the challenges faced by engine builders in persuading skeptical shipowners and practical engineers that their designs were trustworthy. It explores the rich cultural contexts within which Glasgow master engineer John Elder and his associates rendered their marine compound engines credible for Liverpool's Pacific Steam Navigation Company, the first line to deploy the new engine. Elder operated within a culture whose hallmarks were useful work, economy, and the power of direct witnessing. The article also explores the role of William McNaught, an independent consultant with a strong track record as both a practical engineer and the inventor of a steam-engine indicator. His indicator, deployed to evaluate the performance of Elder's compound engines, stood at the center of the controversy over their economy. PMID:24988795

  20. Witnessing power: John Elder and the making of the marine compound engine, 1850-1858.

    PubMed

    Smith, Crosbie

    2014-01-01

    Shipowners' seemingly slow adoption of marine compound engines is often attributed to not appreciating the new technology's superior economy. This article argues that this slow adoption needs to be understood alongside the challenges faced by engine builders in persuading skeptical shipowners and practical engineers that their designs were trustworthy. It explores the rich cultural contexts within which Glasgow master engineer John Elder and his associates rendered their marine compound engines credible for Liverpool's Pacific Steam Navigation Company, the first line to deploy the new engine. Elder operated within a culture whose hallmarks were useful work, economy, and the power of direct witnessing. The article also explores the role of William McNaught, an independent consultant with a strong track record as both a practical engineer and the inventor of a steam-engine indicator. His indicator, deployed to evaluate the performance of Elder's compound engines, stood at the center of the controversy over their economy.

  1. 40 CFR 1068.1 - Does this part apply to me?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of 40 CFR part 1039, as indicated in 40 CFR part 60, subpart IIII. (5) Marine compression-ignition engines we regulate under 40 CFR part 1042. (6) Marine spark-ignition engines we regulate under 40 CFR... categories: (1) Light-duty motor vehicles (see 40 CFR part 86). (2) Highway motorcycles (see 40 CFR part...

  2. 40 CFR 1068.1 - Does this part apply to me?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of 40 CFR part 1039, as indicated in 40 CFR part 60, subpart IIII. (5) Marine compression-ignition engines we regulate under 40 CFR part 1042. (6) Marine spark-ignition engines we regulate under 40 CFR... categories: (1) Light-duty motor vehicles (see 40 CFR part 86). (2) Heavy-duty motor vehicles and...

  3. 40 CFR 91.1001 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Applicability. 91.1001 Section 91.1001 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine SI Engines §...

  4. 40 CFR 91.1305 - Banking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Banking. 91.1305 Section 91.1305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Credit Program for New Marine Engines § 91.1305...

  5. 40 CFR 91.1305 - Banking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Banking. 91.1305 Section 91.1305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Credit Program for New Marine Engines § 91.1305...

  6. 40 CFR 91.1305 - Banking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Banking. 91.1305 Section 91.1305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Credit Program for New Marine Engines § 91.1305...

  7. 40 CFR 91.1305 - Banking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Banking. 91.1305 Section 91.1305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Credit Program for New Marine Engines § 91.1305...

  8. 40 CFR 91.1305 - Banking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Banking. 91.1305 Section 91.1305 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Credit Program for New Marine Engines § 91.1305...

  9. Analysis of experimental hydrogen engine data and hydrogen vehicle performance and emissions simulation

    SciTech Connect

    Aceves, S.M.

    1996-09-01

    This paper reports the engine and vehicle simulation and analysis done at Lawrence Livermore (LLNL) as a part of a joint optimized hydrogen engine development effort. Project participants are: Sandia National Laboratory, California (SNLC), responsible for experimental evaluation; Los Alamos National Laboratory (LANL), responsible for detailed fluid mechanics engine evaluations, and the University of Miami, responsible for engine friction reduction. Fuel cells are considered as the ideal power source for future vehicles, due to their high efficiency and low emissions. However, extensive use of fuel cells in light-duty vehicles is likely to be years away, due to their high manufacturing cost. Hydrogen-fueled, spark-ignited, homogeneous-charge engines offer a near-term alternative to fuel cells. Hydrogen in a spark-ignited engine can be burned at very low equivalence ratios, so that NO{sub x} emissions can be reduced to less than 10 ppm without catalyst. HC and CO emissions may result from oxidation of engine oil, but by proper design are negligible (a few ppm). Lean operation also results in increased indicated efficiency due to the thermodynamic properties of the gaseous mixture contained in the cylinder. The high effective octane number of hydrogen allows the use of a high compression ratio, further increasing engine efficiency.

  10. 40 CFR 1042.601 - General compliance provisions for marine engines and vessels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the provisions of this part, the requirements and prohibitions in 40 CFR part 1068, and the provisions of the Clean Air Act. The provisions of 40 CFR part 1068 apply for compression-ignition marine... recreational marine engine in a vessel that is not a recreational vessel is a violation of 40 CFR...

  11. 40 CFR 1042.601 - General compliance provisions for marine engines and vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the provisions of this part, the requirements and prohibitions in 40 CFR part 1068, and the provisions of the Clean Air Act. The provisions of 40 CFR part 1068 apply for compression-ignition marine... recreational marine engine in a vessel that is not a recreational vessel is a violation of 40 CFR...

  12. 40 CFR 1042.601 - General compliance provisions for marine engines and vessels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the provisions of this part, the requirements and prohibitions in 40 CFR part 1068, and the provisions of the Clean Air Act. The provisions of 40 CFR part 1068 apply for compression-ignition marine... recreational marine engine in a vessel that is not a recreational vessel is a violation of 40 CFR...

  13. 40 CFR 1042.601 - General compliance provisions for marine engines and vessels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the provisions of this part, the requirements and prohibitions in 40 CFR part 1068, and the provisions of the Clean Air Act. The provisions of 40 CFR part 1068 apply for compression-ignition marine... recreational marine engine in a vessel that is not a recreational vessel is a violation of 40 CFR...

  14. Optical Study of Flow and Combustion in an HCCI Engine with Negative Valve Overlap

    NASA Astrophysics Data System (ADS)

    Wilson, Trevor S.; Xu, Hongming; Richardson, Steve; Wyszynski, Miroslaw L.; Megaritis, Thanos

    2006-07-01

    One of the most widely used methods to enable Homogeneous Charge Compression Ignition (HCCI) combustion is using negative valve overlapping to trap a sufficient quantity of hot residual gas. The characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. In addition, the ignition process and combustion development in such engines are very different from those in conventional spark-ignition or diesel compression ignition engines. Very little data has been reported concerning optical diagnostics of the flow and combustion in the engine using negative valve overlapping. This paper presents an experimental investigation into the in-cylinder flow characteristics and combustion development in an optical engine operating in HCCI combustion mode. PIV measurements have been taken under motored engine conditions to provide a quantitative flow characterisation of negative valve overlap in-cylinder flows. The ignition and combustion process was imaged using a high resolution charge coupled device (CCD) camera and the combustion imaging data was supplemented by simultaneously recorded in-cylinder pressure data which assisted the analysis of the images. It is found that the flow characteristics with negative valve overlapping are less stable and more valve event driven than typical spark ignition in-cylinder flows, while the combustion initiation locations are not uniformly distributed.

  15. Evaluation of dissociated and steam-reformed methanol as automotive engine fuels

    NASA Technical Reports Server (NTRS)

    Lalk, T. R.; Mccall, D. M.; Mccanlies, J. M.

    1984-01-01

    Dissociated and steam reformed methanol were evaluated as automotive engine fuels. Advantages and disadvantages in using methanol in the reformed rather than liquid state were discussed. Engine dynamometer tests were conducted with a four cylinder, 2.3 liter, spark ignition automotive engine to determine performance and emission characteristics operating on simulated dissociated and steam reformed methanol (2H2 + CO and 3H2 + CO2 respectively), and liquid methanol. Results are presented for engine performance and emissions as functions of equivalence ratio, at various throttle settings and engine speeds. Operation on dissociated and steam reformed methanol was characterized by flashback (violent propagation of a flame into the intake manifold) which limited operation to lower power output than was obtainable using liquid methanol. It was concluded that: an automobile could not be operated solely on dissociated or steam reformed methanol over the entire required power range - a supplementary fuel system or power source would be necessary to attain higher powers; the use of reformed mechanol, compared to liquid methanol, may result in a small improvement in thermal efficiency in the low power range; dissociated methanol is a better fuel than steam reformed methanol for use in a spark ignition engine; and use of dissociated or steam reformed methanol may result in lower exhaust emissions compared to liquid methanol.

  16. 40 CFR 1045.115 - What other requirements apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conditions specified in 40 CFR 1065.520. Engines must meet applicable emission standards at all specified... POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Emission... apply with respect to engines that are required to meet the emission standards of this part:...

  17. One Approach to Senior Level Design in Naval Architecture and Marine Engineering. Report 09-92.

    ERIC Educational Resources Information Center

    Colella, Kurt J.

    The United States Coast Guard Academy has integrated a successful senior-level ship design course sequence into an undergraduate engineering curriculum in order to achieve specifically desired academic and professional outcomes. The Naval Architecture and Marine Engineering (NAME) curriculum discussed is designed to allow for efficient use of…

  18. Laser ignited engines: progress, challenges and prospects.

    PubMed

    Dearden, Geoff; Shenton, Tom

    2013-11-01

    Laser ignition (LI) has been shown to offer many potential benefits compared to spark ignition (SI) for improving the performance of internal combustion (IC) engines. This paper outlines progress made in recent research on laser ignited IC engines, discusses the potential advantages and control opportunities and considers the challenges faced and prospects for its future implementation. An experimental research effort has been underway at the University of Liverpool (UoL) to extend the stratified speed/load operating region of the gasoline direct injection (GDI) engine through LI research, for which an overview of some of the approaches, testing and results to date are presented. These indicate how LI can be used to improve control of the engine for: leaner operation, reductions in emissions, lower idle speed and improved combustion stability. PMID:24514930

  19. Laser ignited engines: progress, challenges and prospects.

    PubMed

    Dearden, Geoff; Shenton, Tom

    2013-11-01

    Laser ignition (LI) has been shown to offer many potential benefits compared to spark ignition (SI) for improving the performance of internal combustion (IC) engines. This paper outlines progress made in recent research on laser ignited IC engines, discusses the potential advantages and control opportunities and considers the challenges faced and prospects for its future implementation. An experimental research effort has been underway at the University of Liverpool (UoL) to extend the stratified speed/load operating region of the gasoline direct injection (GDI) engine through LI research, for which an overview of some of the approaches, testing and results to date are presented. These indicate how LI can be used to improve control of the engine for: leaner operation, reductions in emissions, lower idle speed and improved combustion stability.

  20. Advanced general aviation comparative engine/airframe integration study

    NASA Technical Reports Server (NTRS)

    Huggins, G. L.; Ellis, D. R.

    1981-01-01

    The NASA Advanced Aviation Comparative Engine/Airframe Integration Study was initiated to help determine which of four promising concepts for new general aviation engines for the 1990's should be considered for further research funding. The engine concepts included rotary, diesel, spark ignition, and turboprop powerplants; a conventional state-of-the-art piston engine was used as a baseline for the comparison. Computer simulations of the performance of single and twin engine pressurized aircraft designs were used to determine how the various characteristics of each engine interacted in the design process. Comparisons were made of how each engine performed relative to the others when integrated into an airframe and required to fly a transportation mission.

  1. 40 CFR 91.1010 - Granting of exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Granting of exemptions. 91.1010 Section 91.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine...

  2. 40 CFR 91.1011 - Submission of exemption requests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Submission of exemption requests. 91.1011 Section 91.1011 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Exclusion and Exemption of Marine...

  3. Additive Manufacturing for Affordable Rocket Engines

    NASA Technical Reports Server (NTRS)

    West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty

    2016-01-01

    Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch

  4. Stirling engine application study

    NASA Technical Reports Server (NTRS)

    Teagan, W. P.; Cunningham, D.

    1983-01-01

    A range of potential applications for Stirling engines in the power range from 0.5 to 5000 hp is surveyed. Over one hundred such engine applications are grouped into a small number of classes (10), with the application in each class having a high degree of commonality in technical performance and cost requirements. A review of conventional engines (usually spark ignition or Diesel) was then undertaken to determine the degree to which commercial engine practice now serves the needs of the application classes and to detemine the nature of the competition faced by a new engine system. In each application class the Stirling engine was compared to the conventional engines, assuming that objectives of ongoing Stirling engine development programs are met. This ranking process indicated that Stirling engines showed potential for use in all application classes except very light duty applications (lawn mowers, etc.). However, this potential is contingent on demonstrating much greater operating life and reliability than has been demonstrated to date by developmental Stirling engine systems. This implies that future program initiatives in developing Stirling engine systems should give more emphasis to life and reliability issues than has been the case in ongoing programs.

  5. Basic Study on Engine with Scroll Compressor and Expander

    NASA Astrophysics Data System (ADS)

    Morishita, Etsuo; Kitora, Yoshihisa; Nishida, Mitsuhiro

    Scroll compressors are becoming popular in air conditioning and refrigeration. This is primarily due to their higher efficiency and low noise/vibration characteristics. The scroll principle can be applied also to the steam expander and the Brayton cycle engine,as shown in the past literature. The Otto cycle spark-ignition engine with a scroll compressor and expander is studied in this report. The principle and basic structure of the scroll engine are explained,and the engine characteristic are calculated based on the idealized cycles and processes. A prototype model has been proposed and constructed. The rotary type engine has always had a problem with sealing. The scroll engine might overcome this shortcoming with its much lower rubbing speed compared to its previous counterparts,and is therefore worth investigating.

  6. Engine Control Improvement through Application of Chaotic Time Series Analysis

    SciTech Connect

    Green, J.B., Jr.; Daw, C.S.

    2003-07-15

    The objective of this program was to investigate cyclic variations in spark-ignition (SI) engines under lean fueling conditions and to develop options to reduce emissions of nitrogen oxides (NOx) and particulate matter (PM) in compression-ignition direct-injection (CIDI) engines at high exhaust gas recirculation (EGR) rates. The CIDI activity builds upon an earlier collaboration between ORNL and Ford examining combustion instabilities in SI engines. Under the original CRADA, the principal objective was to understand the fundamental causes of combustion instability in spark-ignition engines operating with lean fueling. The results of this earlier activity demonstrated that such combustion instabilities are dominated by the effects of residual gas remaining in each cylinder from one cycle to the next. A very simple, low-order model was developed that explained the observed combustion instability as a noisy nonlinear dynamical process. The model concept lead to development of a real-time control strategy that could be employed to significantly reduce cyclic variations in real engines using existing sensors and engine control systems. This collaboration led to the issuance of a joint patent for spark-ignition engine control. After a few years, the CRADA was modified to focus more on EGR and CIDI engines. The modified CRADA examined relationships between EGR, combustion, and emissions in CIDI engines. Information from CIDI engine experiments, data analysis, and modeling were employed to identify and characterize new combustion regimes where it is possible to simultaneously achieve significant reductions in NOx and PM emissions. These results were also used to develop an on-line combustion diagnostic (virtual sensor) to make cycle-resolved combustion quality assessments for active feedback control. Extensive experiments on engines at Ford and ORNL led to the development of the virtual sensor concept that may be able to detect simultaneous reductions in NOx and PM

  7. Method of operating a two-stroke-cycle engine with variable valve timing in a four-stroke-cycle mode

    SciTech Connect

    Richeson, W.E.

    1992-07-21

    This patent describes a method of operating an internal combustion engine of the type comprising a piston reciprocable in a cylinder, intake port means for admitting air into the cylinder, an exhaust valve that is opened and closed by valve actuator means independent of crankshaft position, spark ignition means, and fuel injection means. It comprises a first stroke wherein the piston moves from BDC to TDC, a second stroke wherein the piston moves from TDC to BDC, a third stroke wherein the piston moves from BDC to TDC, a fourth stroke wherein the piston moves from TDC to BDC.

  8. Effect of laser pulse energy on the laser ignition of compressed natural gas fueled engine

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Wintner, Ernst; Agarwal, Avinash Kumar

    2014-05-01

    Laser pulses of few a nanoseconds' duration are focused by an appropriate converging lens system, leading to breakdown of the medium (combustible gases), resulting in the formation of intense plasma. Plasma thus induced can be used to initiate the combustion of combustible air-fuel mixtures in a spark ignition engine provided the energy of the plasma spark is high enough. Laser ignition has several advantages over the conventional spark ignition system, especially in case of lean air-fuel mixture. In this study, laser ignition of compressed natural gas was investigated in a constant volume combustion chamber (CVCC) as well as in a single-cylinder engine. Flame kernel visualizations for different pulse energy of natural gas-air mixtures were carried out in the CVCC. The images of the development of early flame kernel stages and its growth with time were recorded by shadowgraphy technique. The effect of laser pulse energy on the engine combustion, performance, and emissions was investigated using different air-fuel mixtures. Increased peak cylinder pressure, higher rate of heat release, faster combustion, and increased combustion stability were observed for higher laser pulse energies. The effect of laser pulse energy on the engine-out emissions was also investigated in this study.

  9. Synthetic biology and metabolic engineering for marine carotenoids: new opportunities and future prospects.

    PubMed

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-09-17

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations.

  10. Synthetic Biology and Metabolic Engineering for Marine Carotenoids: New Opportunities and Future Prospects

    PubMed Central

    Wang, Chonglong; Kim, Jung-Hun; Kim, Seon-Won

    2014-01-01

    Carotenoids are a class of diverse pigments with important biological roles such as light capture and antioxidative activities. Many novel carotenoids have been isolated from marine organisms to date and have shown various utilizations as nutraceuticals and pharmaceuticals. In this review, we summarize the pathways and enzymes of carotenoid synthesis and discuss various modifications of marine carotenoids. The advances in metabolic engineering and synthetic biology for carotenoid production are also reviewed, in hopes that this review will promote the exploration of marine carotenoid for their utilizations. PMID:25233369

  11. 40 CFR 91.408 - Pre-test procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Pre-test procedures. 91.408 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.408 Pre-test... completed at that time. The manufacturer may elect to accumulate 12 hours on each test engine within...

  12. 40 CFR 91.408 - Pre-test procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Pre-test procedures. 91.408 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.408 Pre-test... completed at that time. The manufacturer may elect to accumulate 12 hours on each test engine within...

  13. 40 CFR 91.408 - Pre-test procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Pre-test procedures. 91.408 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.408 Pre-test... completed at that time. The manufacturer may elect to accumulate 12 hours on each test engine within...

  14. 40 CFR 91.408 - Pre-test procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Pre-test procedures. 91.408 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.408 Pre-test... completed at that time. The manufacturer may elect to accumulate 12 hours on each test engine within...

  15. 40 CFR 91.803 - Manufacturer in-use testing program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and Recall... not ordered a recall for that family), then only one engine for that family must be tested. If that... pursue remedial action under this subpart. The Administrator may order a recall pursuant to §§...

  16. 40 CFR 91.803 - Manufacturer in-use testing program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and Recall... not ordered a recall for that family), then only one engine for that family must be tested. If that... pursue remedial action under this subpart. The Administrator may order a recall pursuant to §§...

  17. 40 CFR 91.803 - Manufacturer in-use testing program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and Recall... not ordered a recall for that family), then only one engine for that family must be tested. If that... pursue remedial action under this subpart. The Administrator may order a recall pursuant to §§...

  18. 40 CFR 91.205 - Banking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Banking. 91.205 Section 91.205... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Averaging, Banking, and Trading Provisions § 91.205 Banking. (a... banking. (i) For outboard engines in model year (MY) 1997, a manufacturer may bank positive...

  19. 40 CFR 91.205 - Banking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Banking. 91.205 Section 91.205... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Averaging, Banking, and Trading Provisions § 91.205 Banking. (a... banking. (i) For outboard engines in model year (MY) 1997, a manufacturer may bank positive...

  20. 40 CFR 91.205 - Banking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Banking. 91.205 Section 91.205... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Averaging, Banking, and Trading Provisions § 91.205 Banking. (a... banking. (i) For outboard engines in model year (MY) 1997, a manufacturer may bank positive...

  1. 40 CFR 91.205 - Banking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Banking. 91.205 Section 91.205... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Averaging, Banking, and Trading Provisions § 91.205 Banking. (a... banking. (i) For outboard engines in model year (MY) 1997, a manufacturer may bank positive...

  2. Use of alcohol fuel: engine-conversion demonstration. Final report

    SciTech Connect

    Marsh, W.K.

    1982-01-01

    The use of ethanol as a fuel extender when mixed with gasoline, and the use of both hydrated and anhydrous ethanol as a fuel in gasoline and diesel engines are discussed. Required engine modifications for efficient use of ethanol are described, and include engine compression alterations, carburetor adjustments, and arrangement for fuel preheating. In 1981 and 1982 a demonstration of ethanol use in spark ignition engines was conducted at a major public park in South Carolina. The demonstration included a controlled road test with a pick-up truck and a demonstration of ethanol use in small, air cooled gasoline engines. One problem that was identified was that of contaminated fuel that clogged the fuel system after a few days' operation. (LEW)

  3. Air separation membranes : an alternative to EGR in large bore natural gas engines.

    SciTech Connect

    Biruduganti, M.; Gupta, S.; Bihari, B.; McConnell, S.; Sekar, R.; Energy Systems

    2010-08-01

    Air separation membranes (ASMs) could potentially replace exhaust gas recirculation (EGR) technology in engines due to the proven benefits in NOx reduction but without the drawbacks of EGR. Previous investigations of nitrogen-enriched air (NEA) combustion using nitrogen bottles showed up to 70% NOx reduction with modest 2% nitrogen enrichment. The investigation in this paper was performed with an ASM capable of delivering at least 3.5% NEA to a single-cylinder spark-ignited natural gas engine. Low temperature combustion is one of the pathways to meet the mandatory ultra low NOx emissions levels set by regulatory agencies. In this study, a comparative assessment is made between natural gas combustion in standard air and 2% NEA. Enrichment beyond this level degraded engine performance in terms of power density, brake thermal efficiency (BTE), and unburned hydrocarbon emissions for a given equivalence ratio. The ignition timing was optimized to yield maximum brake torque for standard air and NEA. Subsequently, conventional spark ignition was replaced by laser ignition (LI) to extend lean ignition limit. Both ignition systems were studied under a wide operating range from {Psi} :1.0 to the lean misfire limit. It was observed that with 2% NEA, for a similar fuel quantity, the equivalence ratio {Psi} increases by 0.1 relative to standard air conditions. Analysis showed that lean burn operation along with NEA and alternative ignition source, such as LI, could pave the pathway for realizing lower NO{sub x} emissions with a slight penalty in BTE.

  4. Development of the next generation medium-duty natural gas engine

    SciTech Connect

    Podnar, D.J.; Kubesh, J.T.

    2000-02-28

    This report summarizes the work done under this subcontract in the areas of System Design, System Fabrication, and Experimental Program. The report contains the details of the engine development process for achieving throttleless stratified charge spark ignition (SI) engine operation as well as advanced turbocharging strategies. Engine test results showing the potential of the direct-injection stratified charge combustion strategy for increasing part-load engine efficiency on a John Deere 8.1-liter natural gas engine are also included in this report. In addition, steady state and step transient engine data are presented that quantify the performance of a variable geometry turbocharger (VGT) as well as a modified waste-gated turbocharger on the engine. The benefits of the technologies investigated during this project will be realized in the form of increased drive-cycle efficiency to diesel-like levels, while retaining the low emissions characteristics of a lean-burn natural gas engine.

  5. Marine propulsion device with engine heat recovery system and streamlining hull closures

    SciTech Connect

    Haynes, H. W.

    1985-11-12

    A Marine Jet Propulsion System for use as an inboard engine for boats is herein described. An engine or motor means is attached in a driving relationship to a pump and thrust output apparatus. Heat generated by and rejected by the engine or motor is passed into the pump base for dissipation into the outputted jet thrust stream. Air and/or exhaust gas from the engine is ejected around the jet output stream to reduce against-the-hull turbulence and jet stream or thrust energy losses. Streamlining hull closures for the jet pump intake and output ports are provided to reduce system hull drag when not in use and to limit marine organism growth inside the pump.

  6. Industry and Technology: Keys to Oceanic Development, Volume 2, Panel Reports of the Commission on Marine Science, Engineering and Resources.

    ERIC Educational Resources Information Center

    Commission on Marine Science, Engineering and Resources, Washington, DC.

    This document is the second of a three-volume series of panel reports compiled by the Commission on Marine Science, Engineering and Resources. Contained in this volume are part V, Report of the Panel on Industry and Private Investment, and part VI, Report of the Panel on Marine Engineering and Technology. Major recommendations presented in part V…

  7. 33 CFR 334.150 - Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Marine Engineering Laboratory. (a) The restricted area. The waters of Severn River shoreward of a line... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Severn River at Annapolis, Md.; experimental test area, U.S. Navy Marine Engineering Laboratory. 334.150 Section 334.150 Navigation...

  8. 40 CFR 1042.610 - Certifying auxiliary marine engines to land-based standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the regulations during their useful life, we may require you to recall them under 40 CFR part 89 or... land-based standards. 1042.610 Section 1042.610 Protection of Environment ENVIRONMENTAL PROTECTION... to land-based standards. This section applies to auxiliary marine engines that are identical...

  9. Field test comparison of natural gas engine exhaust valves

    SciTech Connect

    Bicknell, W.B.; Hay, S.C.; Shade, W.N.; Statler, G.R.

    1996-12-31

    As part of a product improvement program, an extensive spark-ignited, turbocharged, natural gas engine exhaust valve test program was conducted using laboratory and field engines. Program objectives were to identify a valve and seat insert combination that increased mean time between overhauls (MTBO) while reducing the risk of premature valve cracking and failure. Following a thorough design review, a large number of valve and seat insert configurations were tested in a popular 900 RPM, 166 BHP (0.123 Mw) per cylinder industrial gas engine series. Material, head geometry, seat angle and other parameters were compared. Careful in-place measurements and post-test inspections compared various configurations and identified optimal exhaust valving for deployment in new units and upgrades of existing engines.

  10. Preliminary study of advanced turboprop and turboshaft engines for light aircraft. [cost effectiveness

    NASA Technical Reports Server (NTRS)

    Knip, G.; Plencner, R. M.; Eisenberg, J. D.

    1980-01-01

    The effects of engine configuration, advanced component technology, compressor pressure ratio and turbine rotor-inlet temperature on such figures of merit as vehicle gross weight, mission fuel, aircraft acquisition cost, operating, cost and life cycle cost are determined for three fixed- and two rotary-wing aircraft. Compared with a current production turboprop, an advanced technology (1988) engine results in a 23 percent decrease in specific fuel consumption. Depending on the figure of merit and the mission, turbine engine cost reductions required to achieve aircraft cost parity with a current spark ignition reciprocating (SIR) engine vary from 0 to 60 percent and from 6 to 74 percent with a hypothetical advanced SIR engine. Compared with a hypothetical turboshaft using currently available technology (1978), an advanced technology (1988) engine installed in a light twin-engine helicopter results in a 16 percent reduction in mission fuel and about 11 percent in most of the other figures of merit.

  11. E85 Optimized Engine

    SciTech Connect

    Bower, Stanley

    2011-12-31

    A 5.0L V8 twin-turbocharged direct injection engine was designed, built, and tested for the purpose of assessing the fuel economy and performance in the F-Series pickup of the Dual Fuel engine concept and of an E85 optimized FFV engine. Additionally, production 3.5L gasoline turbocharged direct injection (GTDI) EcoBoost engines were converted to Dual Fuel capability and used to evaluate the cold start emissions and fuel system robustness of the Dual Fuel engine concept. Project objectives were: to develop a roadmap to demonstrate a minimized fuel economy penalty for an F-Series FFV truck with a highly boosted, high compression ratio spark ignition engine optimized to run with ethanol fuel blends up to E85; to reduce FTP 75 energy consumption by 15% - 20% compared to an equally powered vehicle with a current production gasoline engine; and to meet ULEV emissions, with a stretch target of ULEV II / Tier II Bin 4. All project objectives were met or exceeded.

  12. Combustion in Homogeneous Charge Compression Ignition Engines: Experiments and Detailed Chemical Kinetic Simulations

    SciTech Connect

    Flowers, D L

    2002-06-07

    Homogeneous charge compression ignition (HCCI) engines are being considered as an alternative to diesel engines. The HCCI concept involves premixing fuel and air prior to induction into the cylinder (as is done in current spark-ignition engine) then igniting the fuel-air mixture through the compression process (as is done in current diesel engines). The combustion occurring in an HCCI engine is fundamentally different from a spark-ignition or Diesel engine in that the heat release occurs as a global autoignition process, as opposed to the turbulent flame propagation or mixing controlled combustion used in current engines. The advantage of this global autoignition is that the temperatures within the cylinder are uniformly low, yielding very low emissions of oxides of nitrogen (NO{sub x}, the chief precursors to photochemical smog). The inherent features of HCCI combustion allows for design of engines with efficiency comparable to, or potentially higher than, diesel engines. While HCCI engines have great potential, several technical barriers exist which currently prevent widespread commercialization of this technology. The most significant challenge is that the combustion timing cannot be controlled by typical in-cylinder means. Means of controlling combustion have been demonstrated, but a robust control methodology that is applicable to the entire range of operation has yet to be developed. This research focuses on understanding basic characteristics of controlling and operating HCCI engines. Experiments and detailed chemical kinetic simulations have been applied to the characterize some of the fundamental operational and design characteristics of HCCI engines. Experiments have been conducted on single and multi-cylinder engines to investigate general features of how combustion timing affects the performance and emissions of HCCI engines. Single-zone modeling has been used to characterize and compare the implementation of different control strategies. Multi

  13. Application of artificial neural network for prediction of marine diesel engine performance

    NASA Astrophysics Data System (ADS)

    Mohd Noor, C. W.; Mamat, R.; Najafi, G.; Nik, W. B. Wan; Fadhil, M.

    2015-12-01

    This study deals with an artificial neural network (ANN) modelling of a marine diesel engine to predict the brake power, output torque, brake specific fuel consumption, brake thermal efficiency and volumetric efficiency. The input data for network training was gathered from engine laboratory testing running at various engine speed. The prediction model was developed based on standard back-propagation Levenberg-Marquardt training algorithm. The performance of the model was validated by comparing the prediction data sets with the measured experiment data. Results showed that the ANN model provided good agreement with the experimental data with high accuracy.

  14. 40 CFR 91.206 - Trading.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Trading. 91.206 Section 91.206... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Averaging, Banking, and Trading Provisions § 91.206 Trading. (a... manufacturers in trading. These credits must be used in the same averaging set as generated. (b) Credits...

  15. 40 CFR 91.417 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Fuel flow measurement specifications... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.417 Fuel flow measurement specifications. (a) Fuel flow measurement is required only for...

  16. 40 CFR 91.601 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Applicability. 91.601 Section 91.601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Selective Enforcement Auditing Regulations §...

  17. 40 CFR 91.1107 - Warranty provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Warranty provisions. 91.1107 Section 91.1107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Prohibited Acts and General Enforcement...

  18. 40 CFR 91.1101 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Applicability. 91.1101 Section 91.1101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Prohibited Acts and General Enforcement Provisions §...

  19. 40 CFR 91.606 - Sample selection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....606 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Selective Enforcement Auditing Regulations § 91... (b) of this section. (d) The test order may specify that an EPA enforcement officer(s) or...

  20. 40 CFR 91.601 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Applicability. 91.601 Section 91.601 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Selective Enforcement Auditing Regulations §...

  1. 40 CFR 91.1102 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Definitions. 91.1102 Section 91.1102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Prohibited Acts and General Enforcement Provisions §...

  2. 40 CFR 91.1104 - General enforcement provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false General enforcement provisions. 91.1104 Section 91.1104 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Prohibited Acts and General...

  3. 40 CFR 91.608 - Compliance with acceptable quality level and passing and failing criteria for selective...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... level and passing and failing criteria for selective enforcement audits. 91.608 Section 91.608 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Selective Enforcement Auditing Regulations § 91.608...

  4. 40 CFR 91.1108 - In-use compliance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false In-use compliance provisions. 91.1108 Section 91.1108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Prohibited Acts and General...

  5. 40 CFR 91.607 - Test procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Selective Enforcement Auditing Regulations § 91.607 Test... to adjustment for certification and Selective Enforcement Audit testing in accordance with §...

  6. 40 CFR 91.608 - Compliance with acceptable quality level and passing and failing criteria for selective...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... level and passing and failing criteria for selective enforcement audits. 91.608 Section 91.608 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Selective Enforcement Auditing Regulations § 91.608...

  7. 40 CFR 91.1101 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Applicability. 91.1101 Section 91.1101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Prohibited Acts and General Enforcement Provisions §...

  8. 40 CFR 91.603 - Applicability of part 91, subpart F.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... 91.603 Section 91.603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Selective Enforcement Auditing Regulations § 91.603 Applicability of part 91, subpart F. (a) For purposes of selective enforcement...

  9. 40 CFR 91.602 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Definitions. 91.602 Section 91.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Selective Enforcement Auditing Regulations § 91.602...

  10. 40 CFR 91.605 - Testing by the Administrator.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Testing by the Administrator. 91.605 Section 91.605 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Selective Enforcement...

  11. 40 CFR 91.1108 - In-use compliance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false In-use compliance provisions. 91.1108 Section 91.1108 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Prohibited Acts and General...

  12. 40 CFR 91.602 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Definitions. 91.602 Section 91.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Selective Enforcement Auditing Regulations § 91.602...

  13. 40 CFR 91.1107 - Warranty provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Warranty provisions. 91.1107 Section 91.1107 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Prohibited Acts and General Enforcement...

  14. 40 CFR 91.604 - Test orders.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Selective Enforcement Auditing Regulations § 91.604 Test orders.... The test order must be delivered in person by an EPA enforcement officer or EPA...

  15. 40 CFR 91.1106 - Penalties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Prohibited Acts and General Enforcement Provisions § 91.1106... penalties, published in 40 CFR part 19, reference the applicable U.S. Code citation on which the...

  16. 40 CFR 91.606 - Sample selection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....606 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Selective Enforcement Auditing Regulations § 91... (b) of this section. (d) The test order may specify that an EPA enforcement officer(s) or...

  17. 40 CFR 91.1102 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Definitions. 91.1102 Section 91.1102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Prohibited Acts and General Enforcement Provisions §...

  18. 40 CFR 91.328 - Measurement equipment accuracy/calibration frequency table.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test... calibrations and checks. (1) Leak check the vacuum side of the system (see § 91.324(a)). (2) Verify that the... the CO2 rejection ratio as specified in § 91.325. (g) Verify that the dynamometer test stand and...

  19. 40 CFR 91.328 - Measurement equipment accuracy/calibration frequency table.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test... calibrations and checks. (1) Leak check the vacuum side of the system (see § 91.324(a)). (2) Verify that the... the CO2 rejection ratio as specified in § 91.325. (g) Verify that the dynamometer test stand and...

  20. 40 CFR 91.328 - Measurement equipment accuracy/calibration frequency table.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test... calibrations and checks. (1) Leak check the vacuum side of the system (see § 91.324(a)). (2) Verify that the... the CO2 rejection ratio as specified in § 91.325. (g) Verify that the dynamometer test stand and...

  1. 40 CFR 91.411 - Post-test analyzer procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the vacuum side leak check does not meet the requirements of § 91.324(a) the test is void. (d) Read... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Post-test analyzer procedures. 91.411... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures §...

  2. 40 CFR 91.319 - NOX converter check.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.319 NOX converter check. (a) The efficiency of the converter used for the conversion of NO2 to NO is tested as given... efficiency of converters by means of an ozonator. (2) Calibrate the HCLD in the most common operating...

  3. 40 CFR 91.323 - Analyzer bench checks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.323... either purging the converter with air for a minimum of four hours or until the converter efficiency is... procedure prior to checking converter efficiency on in-use converters....

  4. 40 CFR 91.312 - Analytical gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Analytical gases. 91.312 Section 91.312... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Emission Test Equipment Provisions § 91.312 Analytical gases. (a) The shelf life of a calibration gas may not be exceeded. Record the expiration date stated by...

  5. 40 CFR 91.504 - Maintenance of records; submittal of information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Manufacturer Production Line... pertain to each production line test conducted pursuant to this subpart and include: (i) The date, time... production line test; (iv) A record and description of any adjustment, repair, preparation or...

  6. 40 CFR 1045.335 - How do I ask EPA to reinstate my suspended certificate?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... suspended certificate? 1045.335 Section 1045.335 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... problem from happening again. (b) Give us data from production-line testing that shows the remedied...

  7. 40 CFR 1045.335 - How do I ask EPA to reinstate my suspended certificate?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... suspended certificate? 1045.335 Section 1045.335 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... problem from happening again. (b) Give us data from production-line testing that shows the remedied...

  8. 40 CFR 1045.120 - What emission-related warranty requirements apply to me?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements apply to me? 1045.120 Section 1045.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... of any regulated pollutant, including components listed in 40 CFR part 1068, Appendix I,...

  9. 40 CFR 1045.120 - What emission-related warranty requirements apply to me?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements apply to me? 1045.120 Section 1045.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND... of any regulated pollutant, including components listed in 40 CFR part 1068, Appendix I,...

  10. 40 CFR 91.802 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... part apply to this subpart. (b) The definitions of 40 CFR Part 85, subpart S, § 85.1801 also apply to... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and Recall Regulations § 91.802 Definitions....

  11. 40 CFR 91.806 - Voluntary emissions recall.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Voluntary emissions recall. 91.806... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and Recall Regulations § 91.806 Voluntary emissions recall. (a) Prior to an EPA ordered recall, the manufacturer may perform...

  12. 40 CFR 91.805 - In-use test program reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false In-use test program reporting requirements. 91.805 Section 91.805 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and...

  13. 40 CFR 91.805 - In-use test program reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false In-use test program reporting requirements. 91.805 Section 91.805 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and...

  14. 40 CFR 91.806 - Voluntary emissions recall.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Voluntary emissions recall. 91.806... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and Recall Regulations § 91.806 Voluntary emissions recall. (a) Prior to an EPA ordered recall, the manufacturer may perform...

  15. 40 CFR 91.803 - Manufacturer in-use testing program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and Recall Regulations... previously tested under paragraph (c) (1) or (2) of this section (and EPA has not ordered a recall for that... subpart. The Administrator may order a recall pursuant to §§ 91.807-91.814 before testing reaches...

  16. 40 CFR 91.806 - Voluntary emissions recall.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Voluntary emissions recall. 91.806... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and Recall Regulations § 91.806 Voluntary emissions recall. (a) Prior to an EPA ordered recall, the manufacturer may perform...

  17. 40 CFR 91.805 - In-use test program reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false In-use test program reporting requirements. 91.805 Section 91.805 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and...

  18. 40 CFR 91.806 - Voluntary emissions recall.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Voluntary emissions recall. 91.806... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and Recall Regulations § 91.806 Voluntary emissions recall. (a) Prior to an EPA ordered recall, the manufacturer may perform...

  19. 40 CFR 91.802 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... part apply to this subpart. (b) The definitions of 40 CFR Part 85, subpart S, § 85.1801 also apply to... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and Recall Regulations § 91.802 Definitions....

  20. 40 CFR 91.802 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... part apply to this subpart. (b) The definitions of 40 CFR Part 85, subpart S, § 85.1801 also apply to... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Testing and Recall Regulations § 91.802 Definitions....