Sample records for markal modelling exercise

  1. EPA U.S. NATIONAL MARKAL DATABASE: DATABASE DOCUMENTATION

    EPA Science Inventory

    This document describes in detail the U.S. Energy System database developed by EPA's Integrated Strategic Assessment Work Group for use with the MARKAL model. The group is part of the Office of Research and Development and is located in the National Risk Management Research Labor...

  2. EPAUS9R - An Energy Systems Database for use with the Market Allocation (MARKAL) Model

    EPA Pesticide Factsheets

    EPA’s MARKAL energy system databases estimate future-year technology dispersals and associated emissions. These databases are valuable tools for exploring a variety of future scenarios for the U.S. energy-production systems that can impact climate change c

  3. MARKAL SCENARIO ANALYSES OF TECHNOLOGY OPTIONS FOR THE ELECTRIC SECTOR: THE IMPACT ON AIR QUALITY

    EPA Science Inventory

    This report provides a general overview of EPA’s national MARKAL database and energy systems model and compares various scenarios to a business as usual baseline scenario. Under baseline assumptions, total electricity use increases 1.3% annually until 2030. Annual growth in ele...

  4. Overview of EPA tools for supporting local-, state- and regional-level decision makers addressing energy and environmental issues: NYC MARKAL Energy Systems Model and Municipal Solid Waste Decision Support Tool

    EPA Science Inventory

    A workshop will be conducted to demonstrate and focus on two decision support tools developed at EPA/ORD: 1. Community-scale MARKAL model: an energy-water technology evaluation tool and 2. Municipal Solid Waste Decision Support Tool (MSW DST). The Workshop will be part of Southea...

  5. A framework to analyze emissions implications of ...

    EPA Pesticide Factsheets

    Future year emissions depend highly on the evolution of the economy, technology and current and future regulatory drivers. A scenario framework was adopted to analyze various technology development pathways and societal change while considering existing regulations and future uncertainty in regulations and evaluate resulting emissions growth patterns. The framework integrates EPA’s energy systems model with an economic Input-Output (I/O) Life Cycle Assessment model. The EPAUS9r MARKAL database is assembled from a set of technologies to represent the U.S. energy system within MARKAL bottom-up technology rich energy modeling framework. The general state of the economy and consequent demands for goods and services from these sectors are taken exogenously in MARKAL. It is important to characterize exogenous inputs about the economy to appropriately represent the industrial sector outlook for each of the scenarios and case studies evaluated. An economic input-output (I/O) model of the US economy is constructed to link up with MARKAL. The I/O model enables user to change input requirements (e.g. energy intensity) for different sectors or the share of consumer income expended on a given good. This gives end-users a mechanism for modeling change in the two dimensions of technological progress and consumer preferences that define the future scenarios. The framework will then be extended to include environmental I/O framework to track life cycle emissions associated

  6. New MARKAL Tool Designed to Help Cities Meet Environmental Protection Goals

    EPA Pesticide Factsheets

    EPA researchers are creating an energy and water technology tool—called the Community-Scale MARKAL Model—to help cities and other municipalities make decisions on how to protect the environment, while also providing energy required for water services.

  7. Energy demand analytics using coupled technological and economic models

    EPA Science Inventory

    Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...

  8. Representing Carbon Capture and Storage in MARKAL EPAUS9r16a

    EPA Science Inventory

    Energy system models are used to evaluate the energy and environmental implications of alternative pathways for producing and using energy. Many such models include representations of the costs and capacities of carbon capture and sequestration (CCS). In this presentation, Dan Lo...

  9. EPA Science Matters Newsletter: Breaking Through? Evaluating Technologies for Greenhouse Gas Mitigation (Published April 2014)

    EPA Pesticide Factsheets

    Read about the MARKet ALlocation (MARKAL) model that Dan Loughlin and his research colleagues created to help researchers to identify technologies that can make a true difference in reducing Greenhouse Gas (GHG) emissions.

  10. Analysis of Methane Mitigation Options using the MARKAL Model for the US: Calibration Data for Methane Emissions

    EPA Pesticide Factsheets

    This dataset contains the output for modeling runs that were performed to investigate the effectiveness of various technologies and lay the groundwork for the formulation of policies for reducing methane emissions. See the full report at http://www.epa.gov/methane/projections.html.

  11. Energy Modeling Forum Study #26 CHANGING THE GAME?: EMISSIONS AND MARKET IMPLICATIONS OF NEW NATURAL GAS SUPPLIES: EPA US9r MARKAL Model Results

    EPA Science Inventory

    With the application of hydraulic fracturing and horizontal drilling, new natural gas shale formations are becoming widely available in North America at competitive prices. This development has created an extensive search for new markets where natural gas may compete effectively ...

  12. Energy Modeling Forum Study #26: Changing the game? Emissions and market implications of ?new natural gas supplies: EPA US9r MARKAL model results

    EPA Science Inventory

    With the application of hydraulic fracturing and horizontal drilling, new natural gas shale formations are becoming widely available in North America atcompetitive prices. This development has created an extensive search for new markets where natural gas may compete effectively w...

  13. Development of a Regional U.S. MARKAL Database for Energy and Emissions Modeling

    EPA Science Inventory

    The U.S. Climate Change Science Program (CCSP) is a collaborative effort among 13 agencies of the U.S. federal government. From the CCSP's 2003 strategic plan, its mission is to: "facilitate the creation and application of knowledge of the earth's global environment through resea...

  14. Energy, environmental and climate assessment with the EPA MARKAL energy system modeling framework

    EPA Science Inventory

    The energy system is comprised of the technologies and fuels that extend from the import or extraction of energy resources (e.g., mines and wells), through the conversion of these resources into useful forms (e.g., electricity and gasoline), to the technologies (e.g., cars, light...

  15. Insights into future air quality: Analysis of future emissions scenarios using the MARKAL model

    EPA Science Inventory

    This presentation will provide an update on the development and evaluation of four Air Quality Futures (AQF) scenarios. These scenarios represent widely different assumptions regarding the evolution of the U.S. energy system over the next 40 years. The primary differences between...

  16. Energy, environment and climate assessment using the MARKAL energy system model

    EPA Science Inventory

    As part of EPA ORD’s efforts to develop an understanding of the potential environmental impacts of future changes in energy use, the Energy and Climate Assessment Team has developed a database representation of the U.S. energy system for use with the MARKet ALlocation (MARK...

  17. Analysis of market penetration of renewable energy alternatives under uncertain and carbon constrained world

    EPA Science Inventory

    Future energy prices and supply, availability and costs can have a significant impact on how fast and cost effectively we could abate carbon emissions. Two-staged decision making methods embedded in U.S. EPA's MARKAL modeling system will be utilized to find the most robust mitig...

  18. Insights into future air quality: a multipollutant analysis of future scenarios using the MARKAL model

    EPA Science Inventory

    In this presentation, we will provide an update on the development and evaluation of the Air Quality Futures (AQF) scenarios. These scenarios represent widely different assumptions regarding the evolution of the U.S. energy system over the next 40 years. The four AQF scenarios di...

  19. Biomass resources for energy in Ohio: The OH-MARKAL modeling framework

    NASA Astrophysics Data System (ADS)

    Shakya, Bibhakar

    The latest reports from the Intergovernmental Panel on Climate Change have indicated that human activities are directly responsible for a significant portion of global warming trends. In response to the growing concerns regarding climate change and efforts to create a sustainable energy future, biomass energy has come to the forefront as a clean and sustainable energy resource. Biomass energy resources are environmentally clean and carbon neutral with net-zero carbon dioxide (CO2) emissions, since CO2 is absorbed or sequestered from the atmosphere during the plant growth. Hence, biomass energy mitigates greenhouse gases (GHG) emissions that would otherwise be added to the environment by conventional fossil fuels, such as coal. The use of biomass resources for energy is even more relevant in Ohio, as the power industry is heavily based on coal, providing about 90 percent of the state's total electricity while only 50 percent of electricity comes from coal at the national level. The burning of coal for electricity generation results in substantial GHG emissions and environmental pollution, which are responsible for global warming and acid rain. Ohio is currently one of the top emitters of GHG in the nation. This dissertation research examines the potential use of biomass resources by analyzing key economic, environmental, and policy issues related to the energy needs of Ohio over a long term future (2001-2030). Specifically, the study develops a dynamic linear programming model (OH-MARKAL) to evaluate biomass cofiring as an option in select coal power plants (both existing and new) to generate commercial electricity in Ohio. The OH-MARKAL model is based on the MARKAL (MARKet ALlocation) framework. Using extensive data on the power industry and biomass resources of Ohio, the study has developed the first comprehensive power sector model for Ohio. Hence, the model can serve as an effective tool for Ohio's energy planning, since it evaluates economic and environmental consequences of alternative energy scenarios for the future. The model can also be used to estimate the relative merits of various energy technologies. By developing OH-MARKAL as an empirical model, this study evaluates the prospects of biomass cofiring in Ohio to generate commercial electricity. As cofiring utilizes the existing infrastructure, it is an attractive option for utilizing biomass energy resources, with the objective of replacing non-renewable fuel (coal) with renewable and cleaner fuel (biomass). It addresses two key issues: first, the importance of diversifying the fuel resource base for the power industry; and second, the need to increase the use of biomass or renewable resources in Ohio. The results of the various model scenarios developed in this study indicate that policy interventions are necessary to make biomass co-firing competitive with coal, and that about 7 percent of electricity can be generated by using biomass feedstock in Ohio. This study recommends mandating an optimal level of a renewable portfolio standard (RPS) for Ohio to increase renewable electricity generation in the state. To set a higher goal of RPS than 7 percent level, Ohio needs to include other renewable sources such as wind, solar or hydro in its electricity generation portfolio. The results also indicate that the marginal price of electricity must increase by four fold to mitigate CO2 emissions 15 percent below the 2002 level, suggesting Ohio will also need to consider and invest in clean coal technologies and examine the option of carbon sequestration. Hence, Ohio's energy strategy should include a mix of domestic renewable energy options, energy efficiency, energy conservation, clean coal technology, and carbon sequestration options. It would seem prudent for Ohio to become proactive in reducing CO2 emissions so that it will be ready to deal with any future federal mandates, otherwise the consequences could be detrimental to the state's economy.

  20. Strategic responses to CO2 emission reduction targets drive shift in U.S. electric sector water use

    EPA Science Inventory

    The reliance of the U.S. electric sector on water makes this sector vulnerable to climate change and variability. We use the EPAUS9r MARKAL model to investigate changes in U.S. electric sector water withdrawal and consumption through 2055 under alternative energy system-wide CO2...

  1. Introduction of Energy and Climate Mitigation Policy Issues in Energy - Environment Model of Latvia

    NASA Astrophysics Data System (ADS)

    Klavs, G.; Rekis, J.

    2016-12-01

    The present research is aimed at contributing to the Latvian national climate policy development by projecting total GHG emissions up to 2030, by evaluating the GHG emission reduction path in the non-ETS sector at different targets set for emissions reduction and by evaluating the obtained results within the context of the obligations defined by the EU 2030 policy framework for climate and energy. The method used in the research was bottom-up, linear programming optimisation model MARKAL code adapted as the MARKAL-Latvia model with improvements for perfecting the integrated assessment of climate policy. The modelling results in the baseline scenario, reflecting national economic development forecasts and comprising the existing GHG emissions reduction policies and measures, show that in 2030 emissions will increase by 19.1 % compared to 2005. GHG emissions stabilisation and reduction in 2030, compared to 2005, were researched in respective alternative scenarios. Detailed modelling and analysis of the Latvian situation according to the scenario of non-ETS sector GHG emissions stabilisation and reduction in 2030 compared to 2005 have revealed that to implement a cost effective strategy of GHG emissions reduction first of all a policy should be developed that ensures effective absorption of the available energy efficiency potential in all consumer sectors. The next group of emissions reduction measures includes all non-ETS sectors (industry, services, agriculture, transport, and waste management).

  2. Economic and Environmental Evaluation of Flexible Integrated Gasification Polygeneration Facilities Equipped with Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Aitken, M.; Yelverton, W. H.; Dodder, R. S.; Loughlin, D. H.

    2014-12-01

    Among the diverse menu of technologies for reducing greenhouse gas (GHG) emissions, one option involves pairing carbon capture and storage (CCS) with the generation of synthetic fuels and electricity from co-processed coal and biomass. In this scheme, the feedstocks are first converted to syngas, from which a Fischer-Tropsch (FT) process reactor and combined cycle turbine produce liquid fuels and electricity, respectively. With low concentrations of sulfur and other contaminants, the synthetic fuels are expected to be cleaner than conventional crude oil products. And with CO2 as an inherent byproduct of the FT process, most of the GHG emissions can be eliminated by simply compressing the CO2 output stream for pipeline transport. In fact, the incorporation of CCS at such facilities can result in very low—or perhaps even negative—net GHG emissions, depending on the fraction of biomass as input and its CO2 signature. To examine the potential market penetration and environmental impact of coal and biomass to liquids and electricity (CBtLE), which encompasses various possible combinations of input and output parameters within the overall energy landscape, a system-wide analysis is performed using the MARKet ALlocation (MARKAL) model. With resource supplies, energy conversion technologies, end-use demands, costs, and pollutant emissions as user-defined inputs, MARKAL calculates—using linear programming techniques—the least-cost set of technologies that satisfy the specified demands subject to environmental and policy constraints. In this framework, the U.S. Environmental Protection Agency (EPA) has developed both national and regional databases to characterize assorted technologies in the industrial, commercial, residential, transportation, and generation sectors of the U.S. energy system. Here, the EPA MARKAL database is updated to include the costs and emission characteristics of CBtLE using figures from the literature. Nested sensitivity analysis is then carried out to investigate the impact of various assumptions and scenarios, such as the plant capacity factor, capital costs, CO2 mitigation targets, oil prices, and CO2 storage costs.

  3. EPA U.S. Nine-region MARKAL DATABASE, DATABASE DOCUMENTATION

    EPA Science Inventory

    The evolution of the energy system in the United States is an important factor in future environmental outcomes including air quality and climate change. Given this, decision makers need to understand how a changing energy landscape will impact future air quality and contribute ...

  4. Analysis on Dissemination Conditions of Photovoltaics in Japan by Using Energy System Model MARKAL

    NASA Astrophysics Data System (ADS)

    Endo, Eiichi; Ichinohe, Masayuki

    The national target for PV capacity in Japan is 4. 82, GW in 2010, and several PV Roadmaps until 2030 are also described. To achieve the target, several support programs, such as subsidization to capital cost, Green Credit by the Green Power Certification System, buy-back under the Renewable Portfolio Standard low, have been already introduced. Carbon tax is still under consideration, but there are several analyses about possible carbon tax. The purpose of this paper is to analyze PV system sales price and subsidy through buy-back which make photovoltaics cost-competitive with other energy technologies and make the target for PV capacity achievable by 2030 in Japan under an expected carbon tax. For the analysis energy system of Japan is modeled by using MARKAL. Based on the results of analysis, under 6000, JPY/t-C carbon tax, photovoltaics needs subsidy for a while even if we taking both fuel savings and Green Credit into account. For attaining the national target for PV capacity in 2010, photovoltaics needs more expensive buy-back than that in present, but after 2010 necessary buy-back decreases gradually. If 120, JPY/W PV system sales price is attained by 2030, photovoltaics becomes cost-competitive without any supports. Subsidy through buy-back becomes almost unnecessary in 2030, if we can reduce it less than 170, JPY/W. The total necessary buy-back meets peak in 2025. It is much more than ongoing subsidy to capital cost of PV systems, but annual revenue from the assumed carbon tax can finance the annual total necessary buy-back. This means if photovoltaics can attain the targeted PV system sales price, we should support it for a while by spending carbon tax revenue effectively and efficiently.

  5. Energy and environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loulou, Richard; Waaub, Jean-Philippe; Zaccour, Georges

    2005-07-01

    This volume on energy and environmental modeling describes a broad variety of modeling methodologies. It includes chapters covering: The Sustainability of Economic Growth by Cabo, Martin-Herran & Martinez-Garcia; Abatement Scenarios in the Swiss Housing Sector by L. Drouet and others; Support and Planning for Off-Site Emergency Management, by Geldermann and others; Hybrid Energy-Economy Models, by Jaccard; The World-MARKAL Model and Its Application, by Kanudia and others; Methodology for Evaluating a Market of Tradable CO{sub 2}-Permits, by Kunsch and Springael; MERGE - A Model for Global Climate Change, by Manne and Richels; A Linear Programming Model for Capacity Expansion in anmore » Autonomous Power Generation System, by Mavrotas and Diakoulaki; Transport and Climate Policy Modeling in the Transport Sector, by Paltsev and others; Analysis of Ontario Electricity Capacity Requirements and Emissions, by Pineau and Schott; Environmental Damage in Energy/Environmental Policy Evaluation, by Van Regemorter. 71 figs.« less

  6. THE POTENTIAL MID-TERM ROLE OF NUCLEAR POWER IN THE UNITED STATES: A SCENARIO ANALYSIS USING MARKAL

    EPA Science Inventory

    With all nations facing enormous challenges related to energy security, sustainability and environmental quality, nuclear power is likely to play an increasingly important role in the future. In particular, the life-cycle emissions of criteria pollutants and greenhouse gases (GHG...

  7. Characterizing the emission implications of future natural gas production and use in the U.S. and Rocky Mountain region: A scenario-based energy system modeling approach

    NASA Astrophysics Data System (ADS)

    McLeod, Jeffrey

    The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production and use by illustrating links between relevant economic and environmental variables.

  8. Examining hydrogen transitions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotkin, S. E.; Energy Systems

    2007-03-01

    This report describes the results of an effort to identify key analytic issues associated with modeling a transition to hydrogen as a fuel for light duty vehicles, and using insights gained from this effort to suggest ways to improve ongoing modeling efforts. The study reported on here examined multiple hydrogen scenarios reported in the literature, identified modeling issues associated with those scenario analyses, and examined three DOE-sponsored hydrogen transition models in the context of those modeling issues. The three hydrogen transition models are HyTrans (contractor: Oak Ridge National Laboratory), MARKAL/DOE* (Brookhaven National Laboratory), and NEMS-H2 (OnLocation, Inc). The goals ofmore » these models are (1) to help DOE improve its R&D effort by identifying key technology and other roadblocks to a transition and testing its technical program goals to determine whether they are likely to lead to the market success of hydrogen technologies, (2) to evaluate alternative policies to promote a transition, and (3) to estimate the costs and benefits of alternative pathways to hydrogen development.« less

  9. Oil substitution and energy saving - A research and development strategy of the International Energy Agency /IEA/

    NASA Astrophysics Data System (ADS)

    Rath-Nagel, S.

    1981-03-01

    Systems analyses were carried out by the International Energy Agency for the participating 15 countries in order to work out strategies and scenarios for lessening the dependence on imported oil and for developing new energy technologies. MARKAL model computations show the technology and energy mixes necessary for achieving a reduction of oil imports by two thirds over the next 40 years. The scenario 'high social security' examines the projected rise in energy consumption, the development of oil substitutes, the increase in alternative heating sources, the development of markets for liquid energy products, the demand for gas, and the relative usage of various energy generation methods. The recommended strategy involves as the most important points an increase in coal consumption, greater nuclear energy reliance and development of alternative technologies.

  10. GLIMPSE: A decision support tool for simultaneously achieving our air quality management and climate change mitigation goals

    NASA Astrophysics Data System (ADS)

    Pinder, R. W.; Akhtar, F.; Loughlin, D. H.; Henze, D. K.; Bowman, K. W.

    2012-12-01

    Poor air quality, ecosystem damages, and climate change all are caused by the combustion of fossil fuels, yet environmental management often addresses each of these challenges separately. This can lead to sub-optimal strategies and unintended consequences. Here we present GLIMPSE -- a decision support tool for simultaneously achieving our air quality and climate change mitigation goals. GLIMPSE comprises of two types of models, (i) the adjoint of the GEOS-Chem chemical transport model, to calculate the relationship between emissions and impacts at high spatial resolution, and (ii) the MARKAL energy system model, to calculate the relationship between energy technologies and emissions. This presentation will demonstrate how GLIMPSE can be used to explore energy scenarios to better achieve both improved air quality and mitigate climate change. Second, this presentation will discuss how space-based observations can be incorporated into GLIMPSE to improve decision-making. NASA satellite products, namely ozone radiative forcing from the Tropospheric Emission Spectrometer (TES), are used to extend GLIMPSE to include the impact of emissions on ozone radiative forcing. This provides a much needed observational constraint on ozone radiative forcing.

  11. Impacts of potential CO2-reduction policies on air quality in the United States.

    PubMed

    Trail, Marcus A; Tsimpidi, Alexandra P; Liu, Peng; Tsigaridis, Kostas; Hu, Yongtao; Rudokas, Jason R; Miller, Paul J; Nenes, Athanasios; Russell, Armistead G

    2015-04-21

    Impacts of emissions changes from four potential U.S. CO2 emission reduction policies on 2050 air quality are analyzed using the community multiscale air quality model (CMAQ). Future meteorology was downscaled from the Goddard Institute for Space Studies (GISS) ModelE General Circulation Model (GCM) to the regional scale using the Weather Research Forecasting (WRF) model. We use emissions growth factors from the EPAUS9r MARKAL model to project emissions inventories for two climate tax scenarios, a combined transportation and energy scenario, a biomass energy scenario and a reference case. Implementation of a relatively aggressive carbon tax leads to improved PM2.5 air quality compared to the reference case as incentives increase for facilities to install flue-gas desulfurization (FGD) and carbon capture and sequestration (CCS) technologies. However, less capital is available to install NOX reduction technologies, resulting in an O3 increase. A policy aimed at reducing CO2 from the transportation sector and electricity production sectors leads to reduced emissions of mobile source NOX, thus reducing O3. Over most of the U.S., this scenario leads to reduced PM2.5 concentrations. However, increased primary PM2.5 emissions associated with fuel switching in the residential and industrial sectors leads to increased organic matter (OM) and PM2.5 in some cities.

  12. Effects of recent energy system changes on CO2 projections for the United States.

    PubMed

    Lenox, Carol S; Loughlin, Daniel H

    2017-09-21

    Recent projections of future United States carbon dioxide (CO 2 ) emissions are considerably lower than projections made just a decade ago. A myriad of factors have contributed to lower forecasts, including reductions in end-use energy service demands, improvements in energy efficiency, and technological innovations. Policies that have encouraged these changes include renewable portfolio standards, corporate vehicle efficiency standards, smart growth initiatives, revisions to building codes, and air and climate regulations. Understanding the effects of these and other factors can be advantageous as society evaluates opportunities for achieving additional CO 2 reductions. Energy system models provide a means to develop such insights. In this analysis, the MARKet ALlocation (MARKAL) model was applied to estimate the relative effects of various energy system changes that have happened since the year 2005 on CO 2 projections for the year 2025. The results indicate that transformations in the transportation and buildings sectors have played major roles in lowering projections. Particularly influential changes include improved vehicle efficiencies, reductions in projected travel demand, reductions in miscellaneous commercial electricity loads, and higher efficiency lighting. Electric sector changes have also contributed significantly to the lowered forecasts, driven by demand reductions, renewable portfolio standards, and air quality regulations.

  13. How much do electric drive vehicles matter to future U.S. emissions?

    PubMed

    Babaee, Samaneh; Nagpure, Ajay S; DeCarolis, Joseph F

    2014-01-01

    Hybrid, plug-in hybrid, and battery electric vehicles--known collectively as electric drive vehicles (EDVs)--may represent a clean and affordable option to meet growing U.S. light duty vehicle (LDV) demand. The goal of this study is 2-fold: identify the conditions under which EDVs achieve high LDV market penetration in the U.S. and quantify the associated change in CO2, SO2, and NOX emissions through midcentury. We employ the Integrated MARKAL-EFOM System (TIMES), a bottom-up energy system model, along with a U.S. data set developed for this analysis. To characterize EDV deployment through 2050, varying assumptions related to crude oil and natural gas prices, a CO2 policy, a federal renewable portfolio standard, and vehicle battery cost were combined to form 108 different scenarios. Across these scenarios, oil prices and battery cost have the biggest effect on EDV deployment. The model results do not demonstrate a clear and consistent trend toward lower system-wide emissions as EDV deployment increases. In addition to the trade-off between lower tailpipe and higher electric sector emissions associated with plug-in vehicles, the scenarios produce system-wide emissions effects that often mask the effect of EDV deployment.

  14. Role of future scenarios in understanding deep uncertainty in ...

    EPA Pesticide Factsheets

    The environment and its interactions with human systems, whether economic, social or political, are complex. Relevant drivers may disrupt system dynamics in unforeseen ways, making it difficult to predict future conditions. This kind of deep uncertainty presents a challenge to organizations faced with making decisions about the future, including those involved in air quality management. Scenario Planning is a structured process that involves the development of narratives describing alternative future states of the world, designed to differ with respect to the most critical and uncertain drivers. The resulting scenarios are then used to understand the consequences of those futures and to prepare for them with robust management strategies. We demonstrate a novel air quality management application of Scenario Planning. Through a series of workshops, important air quality drivers were identified. The most critical and uncertain drivers were found to be “technological development” and “change in societal paradigms.” These drivers were used as a basis to develop four distinct scenario storylines. The energy and emission implications of each storyline were then modeled using the MARKAL energy system model. NOX and SO2 emissions were found to decrease for all scenarios, largely a response to existing air quality regulations. Future-year emissions differed considerably from one scenario to another, however, with key differentiating factors being transition

  15. Evolution of the US energy system and related emissions under varying social and technological development paradigms: Plausible scenarios for use in robust decision making.

    PubMed

    Brown, Kristen E; Hottle, Troy Alan; Bandyopadhyay, Rubenka; Babaee, Samaneh; Dodder, Rebecca Susanne; Kaplan, Pervin Ozge; Lenox, Carol; Loughlin, Dan

    2018-06-21

    The energy system is the primary source of air pollution. Thus, evolution of the energy system into the future will affect society's ability to maintain air quality. Anticipating this evolution is difficult because of inherent uncertainty in predicting future energy demand, fuel use, and technology adoption. We apply Scenario Planning to address this uncertainty, developing four very different visions of the future. Stakeholder engagement suggested technological progress and social attitudes toward the environment are critical and uncertain factors for determining future emissions. Combining transformative and static assumptions about these factors yields a matrix of four scenarios that encompass a wide range of outcomes. We implement these scenarios in the U.S. EPA MARKAL model. Results suggest that both shifting attitudes and technology transformation may lead to emission reductions relative to present, even without additional policies. Emission caps, such as the Cross State Air Pollution Rule, are most effective at protecting against future emission increases. An important outcome of this work is the scenario implementation approach, which uses technology-specific discount rates to encourage scenario-specific technology and fuel choices. End-use energy demands are modified to approximate societal changes. This implementation allows the model to respond to perturbations in manners consistent with each scenario.

  16. Role of natural gas in meeting an electric sector emissions ...

    EPA Pesticide Factsheets

    With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At high leakage levels, these methane emissions could outweigh the benefits of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is asked to meet a specific CO2 reduction target and the availability of natural gas changes. Scenarios are run with a range of upstream methane emission leakage rates from natural gas production. While the total CO2 emissions are reduced in most scenarios, total greenhouse gas emissions show an increase or no change when both natural gas availability and methane emissions from natural gas production are high. Article presents summary of results from an analyses of natural gas resource availability and power sector emissions reduction strategies under different estimates of methane leakage rates during natural gas extraction and production. This was study was undertaken as part of the Energy Modeling Forum Study #31:

  17. Seeking Energy System Pathways to Reduce Ozone Damage to Ecosystems through Adjoint-based Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Capps, S. L.; Pinder, R. W.; Loughlin, D. H.; Bash, J. O.; Turner, M. D.; Henze, D. K.; Percell, P.; Zhao, S.; Russell, M. G.; Hakami, A.

    2014-12-01

    Tropospheric ozone (O3) affects the productivity of ecosystems in addition to degrading human health. Concentrations of this pollutant are significantly influenced by precursor gas emissions, many of which emanate from energy production and use processes. Energy system optimization models could inform policy decisions that are intended to reduce these harmful effects if the contribution of precursor gas emissions to human health and ecosystem degradation could be elucidated. Nevertheless, determining the degree to which precursor gas emissions harm ecosystems and human health is challenging because of the photochemical production of ozone and the distinct mechanisms by which ozone causes harm to different crops, tree species, and humans. Here, the adjoint of a regional chemical transport model is employed to efficiently calculate the relative influences of ozone precursor gas emissions on ecosystem and human health degradation, which informs an energy system optimization. Specifically, for the summer of 2007 the Community Multiscale Air Quality (CMAQ) model adjoint is used to calculate the location- and sector-specific influences of precursor gas emissions on potential productivity losses for the major crops and sensitive tree species as well as human mortality attributable to chronic ozone exposure in the continental U.S. The atmospheric concentrations are evaluated with 12-km horizontal resolution with crop production and timber biomass data gridded similarly. These location-specific factors inform the energy production and use technologies selected in the MARKet ALlocation (MARKAL) model.

  18. Exercise, Affect, and Adherence: An Integrated Model and a Case for Self-Paced Exercise

    PubMed Central

    Williams, David M.

    2014-01-01

    This paper reviews research relevant to a proposed conceptual model of exercise adherence that integrates the dual mode model and hedonic theory. Exercise intensity is posited to influence affective response to exercise via interoceptive (e.g., ventilatory drive) and cognitive (e.g., perceived autonomy) pathways; affective response to exercise is posited to influence exercise adherence via anticipated affective response to future exercise. The potential for self-paced exercise to enhance exercise adherence is examined in the context of the proposed model and suggestions are given for future research. Further evidence in support of self-paced exercise could have implications for exercise prescription, especially among overweight, sedentary adults, who are most in need of interventions that enhance adherence to exercise programs. PMID:18971508

  19. [Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].

    PubMed

    Chen, Wen-Ying; Wu, Zong-Xin; Wang, Wei-Zhong

    2007-06-01

    Carbon capture and storage (CCS) has been widely recognized as one of the options to mitigate carbon emission to eventually stabilize carbon dioxide concentration in the atmosphere. Three parts of CCS, which are carbon capture, transport, and storage are assessed in this paper, covering comparisons of techno-economic parameters for different carbon capture technologies, comparisons of storage mechanism, capacity and cost for various storage formations, and etc. In addition, the role of CCS to mitigate global carbon emission is introduced. Finally, China MARKAL model is updated to include various CCS technologies, especially indirect coal liquefaction and poly-generation technologies with CCS, in order to consider carbon emission reduction as well as energy security issue. The model is used to generate different scenarios to study potential role of CCS to mitigate carbon emissions by 2050 in China. It is concluded that application of CCS can decrease marginal abatement cost and the decrease rate can reach 45% for the emission reduction rate of 50%, and it can lessen the dependence on nuclear power development for stringent carbon constrains. Moreover, coal resources can be cleanly used for longer time with CCS, e.g., for the scenario C70, coal share in the primary energy consumption by 2050 will increase from 10% when without CCS to 30% when with CCS. Therefore, China should pay attention to CCS R&D activities and to developing demonstration projects.

  20. Marginal abatement cost curves for NOx that account for ...

    EPA Pesticide Factsheets

    A marginal abatement cost curve (MACC) traces out the relationship between the quantity of pollution abated and the marginal cost of abating each additional unit. In the context of air quality management, MACCs typically are developed by sorting end-of-pipe controls by their respective cost effectiveness. Alternative measures, such as renewable electricity, energy efficiency, and fuel switching (RE/EE/FS), are not considered as it is difficult to quantify their abatement potential. In this paper, we demonstrate the use of an energy system model to develop a MACC for nitrogen oxides (NOx) that incorporates both end-of-pipe controls and these alternative measures. We decompose the MACC by sector, and evaluate the cost-effectiveness of RE/EE/FS relative to end-of-pipe controls. RE/EE/FS are shown to produce considerable emission reductions after end-of-pipe controls have been exhausted. Furthermore, some RE/EE/FS are shown to be cost-competitive with end-of-pipe controls. Demonstrate how the MARKAL energy system model can be used to evaluate the potential role of renewable electricity, energy efficiency and fuel switching (RE/EE/FS) in achieving NOx reductions. For this particular analysis, we show that RE/EE/FSs are able to increase the quantity of NOx reductions available for a particular marginal cost (ranging from $5k per ton to $40k per ton) by approximately 50%.

  1. Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance.

    PubMed

    Noakes, T D

    2000-06-01

    A popular concept in the exercise sciences holds that fatigue develops during exercise of moderate to high intensity, when the capacity of the cardiorespiratory system to provide oxygen to the exercising muscles falls behind their demand inducing "anaerobic" metabolism. But this cardiovascular/anaerobic model is unsatisfactory because (i) a more rigorous analysis indicates that the first organ to be affected by anaerobiosis during maximal exercise would likely be the heart, not the skeletal muscles. This probability was fully appreciated by the pioneering exercise physiologists, A. V Hill, A. Bock and D. B. Dill, but has been systematically ignored by modern exercise physiologists; (ii) no study has yet definitely established the presence of either anaerobiosis, hypoxia or ischaemia in skeletal muscle during maximal exercise; (iii) the model is unable to explain why exercise terminates in a variety of conditions including prolonged exercise, exercise in the heat and at altitude, and in those with chronic diseases of the heart and lungs, without any evidence for skeletal muscle anaerobiosis, hypoxia or ischaemia, and before there is full activation of the total skeletal muscle mass, and (iv) cardiovascular and other measures believed to relate to skeletal muscle anaerobiosis, including the maximum oxygen consumption (VO2 max) and the "anaerobic threshold", are indifferent predictors of exercise capacity in athletes with similar abilities. This review considers four additional models that need to be considered when factors limiting either short duration, maximal or prolonged submaximal exercise are evaluated. These additional models are: (i) the energy supply/energy depletion model; (ii) the muscle power/muscle recruitment model; (iii) the biomechanical model and (iv) the psychological model. By reviewing features of these models, this review provides a broad overview of the physiological, metabolic and biomechanical factors that may limit exercise performance under different exercise conditions. A more complete understanding of fatigue during exercise, and the relevance of the adaptations that develop with training, requires that the potential relevance of each model to fatigue under different conditions of exercise must be considered.

  2. Exercise self-identity: interactions with social comparison and exercise behaviour.

    PubMed

    Verkooijen, Kirsten T; de Bruijn, Gert-Jan

    2013-01-01

    Possible interactions among exercise self-identity, social comparison and exercise behaviour were explored in a sample of 417 undergraduate students (mean age = 21.5, SD = 3.0; 73% female). Two models were examined using self-report data; (1) a mediation model which proposed an association between social comparison and exercise behaviour mediated by exercise self-identity and (2) a moderation model proposing an association between exercise behaviour and self-identity moderated by social comparison. Results of the mediation analyses revealed partial mediation of the social comparison--exercise behaviour relationship by self-identity in females. Results of the moderation analyses revealed in males a significant interaction of social comparison with exercise behaviour in the prediction of self-identity - the positive association between exercise behaviour and exercise self-identity showed only significant among male students who believed to exercise equally much or less than peers. Possible explanations and implications for exercise promotion are discussed.

  3. Factors that influence exercise activity among women post hip fracture participating in the Exercise Plus Program.

    PubMed

    Resnick, Barbara; Orwig, Denise; D'Adamo, Christopher; Yu-Yahiro, Janet; Hawkes, William; Shardell, Michelle; Golden, Justine; Zimmerman, Sheryl; Magaziner, Jay

    2007-01-01

    Using a social ecological model, this paper describes selected intra- and interpersonal factors that influence exercise behavior in women post hip fracture who participated in the Exercise Plus Program. Model testing of factors that influence exercise behavior at 2, 6 and 12 months post hip fracture was done. The full model hypothesized that demographic variables; cognitive, affective, physical and functional status; pain; fear of falling; social support for exercise, and exposure to the Exercise Plus Program would influence self-efficacy, outcome expectations, and stage of change both directly and indirectly influencing total time spent exercising. Two hundred and nine female hip fracture patients (age 81.0 +/- 6.9), the majority of whom were Caucasian (97%), participated in this study. The three predictive models tested across the 12 month recovery trajectory suggest that somewhat different factors may influence exercise over the recovery period and the models explained 8 to 21% of the variance in time spent exercising. To optimize exercise activity post hip fracture, older adults should be helped to realistically assess their self-efficacy and outcome expectations related to exercise, health care providers and friends/peers should be encouraged to reinforce the positive benefits of exercise post hip fracture, and fear of falling should be addressed throughout the entire hip fracture recovery trajectory.

  4. Animal Models of Resistance Exercise and their Application to Neuroscience Research

    PubMed Central

    Strickland, Justin C.; Smith, Mark A.

    2016-01-01

    Background Numerous studies have demonstrated that participation in regular resistance exercise (e.g., strength training) is associated with improvements in mental health, memory, and cognition. However, less is known about the neurobiological mechanisms mediating these effects. The goal of this mini-review is to describe and evaluate the available animal models of resistance exercise that may prove useful for examining CNS activity. New Method Various models have been developed to examine resistance exercise in laboratory animals. Comparison with Existing Methods Resistance exercise models vary in how the resistance manipulation is applied, either through direct stimulation of the muscle (e.g., in situ models) or through behavior maintained by operant contingencies (e.g., whole organism models). Each model presents distinct advantages and disadvantages for examining central nervous system (CNS) activity, and consideration of these attributes is essential for the future investigation of underlying neurobiological substrates. Results Potential neurobiological mechanisms mediating the effects of resistance exercise on pain, anxiety, memory, and drug use have been efficiently and effectively investigated using resistance exercise models that minimize stress and maximize the relative contribution of resistance over aerobic factors. Conclusions Whole organism resistance exercise models that (1) limit the use of potentially stressful stimuli and (2) minimize the contribution of aerobic factors will be critical for examining resistance exercise and CNS function. PMID:27498037

  5. The integrated effect of moderate exercise on coronary heart disease.

    PubMed

    Mathews, Marc J; Mathews, Edward H; Mathews, George E

    Moderate exercise is associated with a lower risk for coronary heart disease (CHD). A suitable integrated model of the CHD pathogenetic pathways relevant to moderate exercise may help to elucidate this association. Such a model is currently not available in the literature. An integrated model of CHD was developed and used to investigate pathogenetic pathways of importance between exercise and CHD. Using biomarker relative-risk data, the pathogenetic effects are representable as measurable effects based on changes in biomarkers. The integrated model provides insight into higherorder interactions underlying the associations between CHD and moderate exercise. A novel 'connection graph' was developed, which simplifies these interactions. It quantitatively illustrates the relationship between moderate exercise and various serological biomarkers of CHD. The connection graph of moderate exercise elucidates all the possible integrated actions through which risk reduction may occur. An integrated model of CHD provides a summary of the effects of moderate exercise on CHD. It also shows the importance of each CHD pathway that moderate exercise influences. The CHD risk-reducing effects of exercise appear to be primarily driven by decreased inflammation and altered metabolism.

  6. Digital Astronaut Project Biomechanical Models: Biomechanical Modeling of Squat, Single-Leg Squat and Heel Raise Exercises on the Hybrid Ultimate Lifting Kit (HULK)

    NASA Technical Reports Server (NTRS)

    Thompson, William K.; Gallo, Christopher A.; Crentsil, Lawton; Lewandowski, Beth E.; Humphreys, Brad T.; DeWitt, John K.; Fincke, Renita S.; Mulugeta, Lealem

    2015-01-01

    The NASA Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and to enhance countermeasure development. The DAP Musculoskeletal Modeling effort is developing computational models to inform exercise countermeasure development and to predict physical performance capabilities after a length of time in space. For example, integrated exercise device-biomechanical models can determine localized loading, which will be used as input to muscle and bone adaptation models to estimate the effectiveness of the exercise countermeasure. In addition, simulations of mission tasks can be used to estimate the astronaut's ability to perform the task after exposure to microgravity and after using various exercise countermeasures. The software package OpenSim (Stanford University, Palo Alto, CA) (Ref. 1) is being used to create the DAP biomechanical models and its built-in muscle model is the starting point for the DAP muscle model. During Exploration missions, such as those to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Therefore, the crew must have access to exercise countermeasures that can maintain their musculoskeletal and aerobic health. Exploration vehicles may have very limited volume and power available to accommodate such capabilities, even more so than the International Space Station (ISS). The exercise devices flown on Exploration missions must be designed to provide sufficient load during the performance of various resistance and aerobic/anaerobic exercises while meeting potential additional requirements of limited mass, volume and power. Given that it is not practical to manufacture and test (ground, analog and/or flight) all candidate devices, nor is it always possible to obtain data such as localized muscle and bone loading empirically, computational modeling can estimate the localized loading during various exercise modalities performed on a given device to help formulate exercise prescriptions and other operational considerations. With this in mind, NASA's Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) laboratory and NSBRI-funded researchers by developing and implementing well-validated computational models of exercises with advanced exercise device concepts. This report focuses specifically on lower-body resistance exercises performed with the Hybrid Ultimate Lifting Kit (HULK) device as a deliverable to the AEC Project.

  7. An Exercise Health Simulation Method Based on Integrated Human Thermophysiological Model

    PubMed Central

    Chen, Xiaohui; Yu, Liang; Yang, Kaixing

    2017-01-01

    Research of healthy exercise has garnered a keen research for the past few years. It is known that participation in a regular exercise program can help improve various aspects of cardiovascular function and reduce the risk of suffering from illness. But some exercise accidents like dehydration, exertional heatstroke, and even sudden death need to be brought to attention. If these exercise accidents can be analyzed and predicted before they happened, it will be beneficial to alleviate or avoid disease or mortality. To achieve this objective, an exercise health simulation approach is proposed, in which an integrated human thermophysiological model consisting of human thermal regulation model and a nonlinear heart rate regulation model is reported. The human thermoregulatory mechanism as well as the heart rate response mechanism during exercise can be simulated. On the basis of the simulated physiological indicators, a fuzzy finite state machine is constructed to obtain the possible health transition sequence and predict the exercise health status. The experiment results show that our integrated exercise thermophysiological model can numerically simulate the thermal and physiological processes of the human body during exercise and the predicted exercise health transition sequence from finite state machine can be used in healthcare. PMID:28702074

  8. Development of an anaesthetized-rat model of exercise hyperpnoea: an integrative model of respiratory control using an equilibrium diagram.

    PubMed

    Miyamoto, Tadayoshi; Manabe, Kou; Ueda, Shinya; Nakahara, Hidehiro

    2018-05-01

    What is the central question of this study? The lack of useful small-animal models for studying exercise hyperpnoea makes it difficult to investigate the underlying mechanisms of exercise-induced ventilatory abnormalities in various disease states. What is the main finding and its importance? We developed an anaesthetized-rat model for studying exercise hyperpnoea, using a respiratory equilibrium diagram for quantitative characterization of the respiratory chemoreflex feedback system. This experimental model will provide an opportunity to clarify the major determinant mechanisms of exercise hyperpnoea, and will be useful for understanding the mechanisms responsible for abnormal ventilatory responses to exercise in disease models. Exercise-induced ventilatory abnormalities in various disease states seem to arise from pathological changes of respiratory regulation. Although experimental studies in small animals are essential to investigate the pathophysiological basis of various disease models, the lack of an integrated framework for quantitatively characterizing respiratory regulation during exercise prevents us from resolving these problems. The purpose of this study was to develop an anaesthetized-rat model for studying exercise hyperpnoea for quantitative characterization of the respiratory chemoreflex feedback system. In 24 anaesthetized rats, we induced muscle contraction by stimulating bilateral distal sciatic nerves at low and high voltage to mimic exercise. We recorded breath-by-breath respiratory gas analysis data and cardiorespiratory responses while running two protocols to characterize the controller and plant of the respiratory chemoreflex. The controller was characterized by determining the linear relationship between end-tidal CO 2 pressure (P ETC O2) and minute ventilation (V̇E), and the plant by the hyperbolic relationship between V̇E and P ETC O2. During exercise, the controller curve shifted upward without change in controller gain, accompanying increased oxygen uptake. The hyperbolic plant curve shifted rightward and downward depending on exercise intensity as predicted by increased metabolism. Exercise intensity-dependent changes in operating points (V̇E and P ETC O2) were estimated by integrating the controller and plant curves in a respiratory equilibrium diagram. In conclusion, we developed an anaesthetized-rat model for studying exercise hyperpnoea, using systems analysis for quantitative characterization of the respiratory system. This novel experimental model will be useful for understanding the mechanisms responsible for abnormal ventilatory responses to exercise in disease models. © 2018 Morinomiya University of Medical Sciences. Experimental Physiology © 2018 The Physiological Society.

  9. Computational Models of Exercise on the Advanced Resistance Exercise Device (ARED)

    NASA Technical Reports Server (NTRS)

    Newby, Nate; Caldwell, Erin; Scott-Pandorf, Melissa; Peters,Brian; Fincke, Renita; DeWitt, John; Poutz-Snyder, Lori

    2011-01-01

    Muscle and bone loss remain a concern for crew returning from space flight. The advanced resistance exercise device (ARED) is used for on-orbit resistance exercise to help mitigate these losses. However, characterization of how the ARED loads the body in microgravity has yet to be determined. Computational models allow us to analyze ARED exercise in both 1G and 0G environments. To this end, biomechanical models of the squat, single-leg squat, and deadlift exercise on the ARED have been developed to further investigate bone and muscle forces resulting from the exercises.

  10. Evaluation of Disaster Preparedness Based on Simulation Exercises: A Comparison of Two Models.

    PubMed

    Rüter, Andres; Kurland, Lisa; Gryth, Dan; Murphy, Jason; Rådestad, Monica; Djalali, Ahmadreza

    2016-08-01

    The objective of this study was to highlight 2 models, the Hospital Incident Command System (HICS) and the Disaster Management Indicator model (DiMI), for evaluating the in-hospital management of a disaster situation through simulation exercises. Two disaster exercises, A and B, with similar scenarios were performed. Both exercises were evaluated with regard to actions, processes, and structures. After the exercises, the results were calculated and compared. In exercise A the HICS model indicated that 32% of the required positions for the immediate phase were taken under consideration with an average performance of 70%. For exercise B, the corresponding scores were 42% and 68%, respectively. According to the DiMI model, the results for exercise A were a score of 68% for management processes and 63% for management structure (staff skills). In B the results were 77% and 86%, respectively. Both models demonstrated acceptable results in relation to previous studies. More research in this area is needed to validate which of these methods best evaluates disaster preparedness based on simulation exercises or whether the methods are complementary and should therefore be used together. (Disaster Med Public Health Preparedness. 2016;10:544-548).

  11. Accounting for climate and air quality damages in future U.S. electricity generation scenarios.

    PubMed

    Brown, Kristen E; Henze, Daven K; Milford, Jana B

    2013-04-02

    The EPA-MARKAL model of the U.S. electricity sector is used to examine how imposing emissions fees based on estimated health and environmental damages might change electricity generation. Fees are imposed on life-cycle emissions of SO(2), nitrogen oxides (NO(x)), particulate matter, and greenhouse gases (GHG) from 2015 through 2055. Changes in electricity production, fuel type, emissions controls, and emissions produced under various fees are examined. A shift in fuels used for electricity production results from $30/ton CO(2)-equivalent GHG fees or from criteria pollutant fees set at the higher-end of the range of published damage estimates, but not from criteria pollutant fees based on low or midrange damage estimates. With midrange criteria pollutant fees assessed, SO(2) and NOx emissions are lower than the business as usual case (by 52% and 10%, respectively), with larger differences in the western U.S. than in the eastern U.S. GHG emissions are not significantly impacted by midrange criteria pollutant fees alone; conversely, with only GHG fees, NO(x) emissions are reduced by up to 11%, yet SO(2) emissions are slightly higher than in the business as usual case. Therefore, fees on both GHG and criteria pollutants may be needed to achieve significant reductions in both sets of pollutants.

  12. Scenarios for Low Carbon and Low Water Electric Power Plant Operations: Implications for Upstream Water Use.

    PubMed

    Dodder, Rebecca S; Barnwell, Jessica T; Yelverton, William H

    2016-11-01

    Electric sector water use, in particular for thermoelectric operations, is a critical component of the water-energy nexus. On a life cycle basis per unit of electricity generated, operational (e.g., cooling system) water use is substantially higher than water demands for the fuel cycle (e.g., natural gas and coal) and power plant manufacturing (e.g., equipment and construction). However, could shifting toward low carbon and low water electric power operations create trade-offs across the electricity life cycle? We compare business-as-usual with scenarios of carbon reductions and water constraints using the MARKet ALlocation (MARKAL) energy system model. Our scenarios show that, for water withdrawals, the trade-offs are minimal: operational water use accounts for over 95% of life cycle withdrawals. For water consumption, however, this analysis identifies potential trade-offs under some scenarios. Nationally, water use for the fuel cycle and power plant manufacturing can reach up to 26% of the total life cycle consumption. In the western United States, nonoperational consumption can even exceed operational demands. In particular, water use for biomass feedstock irrigation and manufacturing/construction of solar power facilities could increase with high deployment. As the United States moves toward lower carbon electric power operations, consideration of shifting water demands can help avoid unintended consequences.

  13. Emissions implications of future natural gas production and use in the U.S. and in the Rocky Mountain region.

    PubMed

    McLeod, Jeffrey D; Brinkman, Gregory L; Milford, Jana B

    2014-11-18

    Enhanced prospects for natural gas production raise questions about the balance of impacts on air quality, as increased emissions from production activities are considered alongside the reductions expected when natural gas is burned in place of other fossil fuels. This study explores how trends in natural gas production over the coming decades might affect emissions of greenhouse gases (GHG), volatile organic compounds (VOCs) and nitrogen oxides (NOx) for the United States and its Rocky Mountain region. The MARKAL (MARKet ALlocation) energy system optimization model is used with the U.S. Environmental Protection Agency's nine-region database to compare scenarios for natural gas supply and demand, constraints on the electricity generation mix, and GHG emissions fees. Through 2050, total energy system GHG emissions show little response to natural gas supply assumptions, due to offsetting changes across sectors. Policy-driven constraints or emissions fees are needed to achieve net reductions. In most scenarios, wind is a less expensive source of new electricity supplies in the Rocky Mountain region than natural gas. U.S. NOx emissions decline in all the scenarios considered. Increased VOC emissions from natural gas production offset part of the anticipated reductions from the transportation sector, especially in the Rocky Mountain region.

  14. Analysis of alternative pathways for reducing nitrogen oxide emissions.

    PubMed

    Loughlin, Daniel H; Kaufman, Katherine R; Lenox, Carol S; Hubbell, Bryan J

    2015-09-01

    Strategies for reducing tropospheric ozone (O3) typically include modifying combustion processes to reduce the formation of nitrogen oxides (NOx) and applying control devices that remove NOx from the exhaust gases of power plants, industrial sources and vehicles. For portions of the U.S., these traditional controls may not be sufficient to achieve the National Ambient Air Quality Standard for ozone. We apply the MARKet ALlocation (MARKAL) energy system model in a sensitivity analysis to explore whether additional NOx reductions can be achieved through extensive electrification of passenger vehicles, adoption of energy efficiency and conservation measures within buildings, and deployment of wind and solar power in the electric sector. Nationally and for each region of the country, we estimate the NOx implications of these measures. Energy efficiency and renewable electricity are shown to reduce NOx beyond traditional controls. Wide-spread light duty vehicle electrification produces varied results, with NOx increasing in some regions and decreasing in others. However, combining vehicle electrification with renewable electricity reduces NOx in all regions. State governments are charged with developing plans that demonstrate how air quality standards will be met and maintained. The results presented here provide an indication of the national and regional NOx reductions available beyond traditional controls via extensive adoption of energy efficiency, renewable electricity, and vehicle electrification.

  15. Emission Impacts of Electric Vehicles in the US Transportation Sector Following Optimistic Cost and Efficiency Projections.

    PubMed

    Keshavarzmohammadian, Azadeh; Henze, Daven K; Milford, Jana B

    2017-06-20

    This study investigates emission impacts of introducing inexpensive and efficient electric vehicles into the US light duty vehicle (LDV) sector. Scenarios are explored using the ANSWER-MARKAL model with a modified version of the Environmental Protection Agency's (EPA) 9-region database. Modified cost and performance projections for LDV technologies are adapted from the National Research Council (2013) optimistic case. Under our optimistic scenario (OPT) we find 15% and 47% adoption of battery electric vehicles (BEVs) in 2030 and 2050, respectively. In contrast, gasoline vehicles (ICEVs) remain dominant through 2050 in the EPA reference case (BAU). Compared to BAU, OPT gives 16% and 36% reductions in LDV greenhouse gas (GHG) emissions for 2030 and 2050, respectively, corresponding to 5% and 9% reductions in economy-wide emissions. Total nitrogen oxides, volatile organic compounds, and SO 2 emissions are similar in the two scenarios due to intersectoral shifts. Moderate, economy-wide GHG fees have little effect on GHG emissions from the LDV sector but are more effective in the electricity sector. In the OPT scenario, estimated well-to-wheels GHG emissions from full-size BEVs with 100-mile range are 62 gCO 2 -e mi -1 in 2050, while those from full-size ICEVs are 121 gCO 2 -e mi -1 .

  16. Examination of a sociocultural model of excessive exercise among male and female adolescents.

    PubMed

    White, James; Halliwell, Emma

    2010-06-01

    There is substantial evidence that sociocultural pressures and body image disturbances can lead to disordered eating, yet few studies have examined their impact on excessive exercise. The study adapted a sociocultural model for disordered eating to predict excessive exercise using data from boys and girls in early adolescence (N=421). Perceived sociocultural pressures to lose weight and build muscle, body image disturbance and appearance investment were associated with a compulsive need to exercise. Adolescents' investment in appearance and body image disturbance fully mediated the relationship between sociocultural pressures and a compulsive need for exercise. There was no support for the meditational model in predicting adolescents' frequency or duration of exercise. Results support the sociocultural model as an explanatory model for excessive exercise, but suggest appearance investment and body image disturbance are important mediators of sociocultural pressures. 2010 Elsevier Ltd. All rights reserved.

  17. Identifying the features of an exercise addiction: A Delphi study

    PubMed Central

    Macfarlane, Lucy; Owens, Glynn; Cruz, Borja del Pozo

    2016-01-01

    Objectives There remains limited consensus regarding the definition and conceptual basis of exercise addiction. An understanding of the factors motivating maintenance of addictive exercise behavior is important for appropriately targeting intervention. The aims of this study were twofold: first, to establish consensus on features of an exercise addiction using Delphi methodology and second, to identify whether these features are congruous with a conceptual model of exercise addiction adapted from the Work Craving Model. Methods A three-round Delphi process explored the views of participants regarding the features of an exercise addiction. The participants were selected from sport and exercise relevant domains, including physicians, physiotherapists, coaches, trainers, and athletes. Suggestions meeting consensus were considered with regard to the proposed conceptual model. Results and discussion Sixty-three items reached consensus. There was concordance of opinion that exercising excessively is an addiction, and therefore it was appropriate to consider the suggestions in light of the addiction-based conceptual model. Statements reaching consensus were consistent with all three components of the model: learned (negative perfectionism), behavioral (obsessive–compulsive drive), and hedonic (self-worth compensation and reduction of negative affect and withdrawal). Conclusions Delphi methodology allowed consensus to be reached regarding the features of an exercise addiction, and these features were consistent with our hypothesized conceptual model of exercise addiction. This study is the first to have applied Delphi methodology to the exercise addiction field, and therefore introduces a novel approach to exercise addiction research that can be used as a template to stimulate future examination using this technique. PMID:27554504

  18. Anatomical knowledge gain through a clay-modeling exercise compared to live and video observations.

    PubMed

    Kooloos, Jan G M; Schepens-Franke, Annelieke N; Bergman, Esther M; Donders, Rogier A R T; Vorstenbosch, Marc A T M

    2014-01-01

    Clay modeling is increasingly used as a teaching method other than dissection. The haptic experience during clay modeling is supposed to correspond to the learning effect of manipulations during exercises in the dissection room involving tissues and organs. We questioned this assumption in two pretest-post-test experiments. In these experiments, the learning effects of clay modeling were compared to either live observations (Experiment I) or video observations (Experiment II) of the clay-modeling exercise. The effects of learning were measured with multiple choice questions, extended matching questions, and recognition of structures on illustrations of cross-sections. Analysis of covariance with pretest scores as the covariate was used to elaborate the results. Experiment I showed a significantly higher post-test score for the observers, whereas Experiment II showed a significantly higher post-test score for the clay modelers. This study shows that (1) students who perform clay-modeling exercises show less gain in anatomical knowledge than students who attentively observe the same exercise being carried out and (2) performing a clay-modeling exercise is better in anatomical knowledge gain compared to the study of a video of the recorded exercise. The most important learning effect seems to be the engagement in the exercise, focusing attention and stimulating time on task. © 2014 American Association of Anatomists.

  19. Spatio-temporal Assessment Of The Land Use Implications Of Solar PV And Bioenergy Deployment In The UK TM Energy Model

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Z.; Konadu, D. D.; Skelton, S.; Lupton, R.

    2015-12-01

    The UK TIMES model (UKTM) succeeds the UK MARKAL as the underlying model of the UK Department of Energy and Climate Change (DECC) for long term energy system planning and policy development. It generates energy system pathways which achieve the 80% greenhouse gas (GHG) emissions reduction target by 2050, stipulated in the UK Climate Change Act (2008), at the least possible cost. Some of these pathways prescribe large-scale deployment of solar PV and indigenously sourced bioenergy, which are land intensive and could result in significant land use transitions; but would this create competition and stress for UK land use? To answer the above question, this study uses an integrated spatio-temporal modelling approach, ForeseerTM, which characterises the interdependencies between the energy and land systems by evaluating the land required under each pathways for solar PV and bioenergy, based on scenarios of a range of PV conversion efficiencies, and energy crop yield projections. The outcome is compared with availability of suitable locations for solar PV and sustainable limits of agricultural land appropriation for bioenergy production to assess potential stresses and competition with other land use services. Preliminary results show UKTM pathways could pose significant impact on the UK land use system. Bioenergy deployment could potentially compete with other land services by taking up a significant part of the available UK agricultural land thus competing directly with food production, most notably livestock production. For pathways with significant solar PV deployment, direct competition would not be focussed on the high quality land used for food crop production but rather for land used for livestock production and other ecosystem services.

  20. Relationships between negative affect and academic achievement among secondary school students: the mediating effects of habituated exercise.

    PubMed

    Hashim, Hairul A; Freddy, Golok; Rosmatunisah, Ali

    2012-09-01

    The current study was undertaken to examine the associations between self-determination, exercise habit, anxiety, depression, stress, and academic achievement among adolescents aged 13 and 14 years in eastern Malaysia. The sample consisted of 750 secondary school students (mean age = 13.4 years, SD = 0.49). Participants completed self-report measures of exercise behavioral regulation, negative affect, and exercise habit strength. Midyear exam results were used as an indicator of academic performance. Structural equation modeling was used to analyze the data. The results of structural equation modeling revealed a close model fit for the hypothesized model, which indicates that higher levels of self-determination were positively associated with habituated exercise behavior. In turn, exercise habit strength fostered academic achievement and buffered the debilitative effect of stress, depression, and anxiety on student academic performance. The analysis of model invariance revealed a nonsignificant difference between male and female subjects. The findings support the notion that habituated exercise fosters academic performance. In addition, we found that habituated exercise buffers the combined effects of stress, anxiety and depression on academic performance. The finding also supports the roles of self-determination in promoting exercise habituation.

  1. Integrated Modeling, Mapping, and Simulation (IMMS) Framework for Exercise and Response Planning

    NASA Technical Reports Server (NTRS)

    Mapar, Jalal; Hoette, Trisha; Mahrous, Karim; Pancerella, Carmen M.; Plantenga, Todd; Yang, Christine; Yang, Lynn; Hopmeier, Michael

    2011-01-01

    EmergenCy management personnel at federal, stale, and local levels can benefit from the increased situational awareness and operational efficiency afforded by simulation and modeling for emergency preparedness, including planning, training and exercises. To support this goal, the Department of Homeland Security's Science & Technology Directorate is funding the Integrated Modeling, Mapping, and Simulation (IMMS) program to create an integrating framework that brings together diverse models for use by the emergency response community. SUMMIT, one piece of the IMMS program, is the initial software framework that connects users such as emergency planners and exercise developers with modeling resources, bridging the gap in expertise and technical skills between these two communities. SUMMIT was recently deployed to support exercise planning for National Level Exercise 2010. Threat, casualty. infrastructure, and medical surge models were combined within SUMMIT to estimate health care resource requirements for the exercise ground truth.

  2. A theoretical model to describe progressions and regressions for exercise rehabilitation.

    PubMed

    Blanchard, Sam; Glasgow, Phil

    2014-08-01

    This article aims to describe a new theoretical model to simplify and aid visualisation of the clinical reasoning process involved in progressing a single exercise. Exercise prescription is a core skill for physiotherapists but is an area that is lacking in theoretical models to assist clinicians when designing exercise programs to aid rehabilitation from injury. Historical models of periodization and motor learning theories lack any visual aids to assist clinicians. The concept of the proposed model is that new stimuli can be added or exchanged with other stimuli, either intrinsic or extrinsic to the participant, in order to gradually progress an exercise whilst remaining safe and effective. The proposed model maintains the core skills of physiotherapists by assisting clinical reasoning skills, exercise prescription and goal setting. It is not limited to any one pathology or rehabilitation setting and can adapted by any level of skilled clinician. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Exercise as a pro-cognitive, pro-neurogenic and anti-inflammatory intervention in transgenic mouse models of Alzheimer's disease.

    PubMed

    Ryan, Sinéad M; Kelly, Áine M

    2016-05-01

    It is now well established, at least in animal models, that exercise elicits potent pro-cognitive and pro-neurogenic effects. Alzheimer's disease (AD) is one of the leading causes of dementia and represents one of the greatest burdens on healthcare systems worldwide, with no effective treatment for the disease to date. Exercise presents a promising non-pharmacological option to potentially delay the onset of or slow down the progression of AD. Exercise interventions in mouse models of AD have been explored and have been found to reduce amyloid pathology and improve cognitive function. More recent studies have expanded the research question by investigating potential pro-neurogenic and anti-inflammatory effects of exercise. In this review we summarise studies that have examined exercise-mediated effects on AD pathology, cognitive function, hippocampal neurogenesis and neuroinflammation in transgenic mouse models of AD. Furthermore, we attempt to identify the optimum exercise conditions required to elicit the greatest benefits, taking into account age and pathology of the model, as well as type and duration of exercise. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A Probability Model of Decompression Sickness at 4.3 Psia after Exercise Prebreathe

    NASA Technical Reports Server (NTRS)

    Conkin, Johnny; Gernhardt, Michael L.; Powell, Michael R.; Pollock, Neal

    2004-01-01

    Exercise PB can reduce the risk of decompression sickness on ascent to 4.3 psia when performed at the proper intensity and duration. Data are from seven tests. PB times ranged from 90 to 150 min. High intensity, short duration dual-cycle ergometry was done during the PB. This was done alone, or combined with intermittent low intensity exercise or periods of rest for the remaining PB. Nonambulating men and women performed light exercise from a semi-recumbent position at 4.3 psia for four hrs. The Research Model with age tested the probability that DCS increases with advancing age. The NASA Model with gender hypothesized that the probability of DCS increases if gender is female. Accounting for exercise and rest during PB with a variable half-time compartment for computed tissue N2 pressure advances our probability modeling of hypobaric DCS. Both models show that a small increase in exercise intensity during PB reduces the risk of DCS, and a larger increase in exercise intensity dramatically reduces risk. These models support the hypothesis that aerobic fitness is an important consideration for the risk of hypobaric DCS when exercise is performed during the PB.

  5. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance.

    PubMed

    Tucker, R

    2009-06-01

    During self-paced exercise, the exercise work rate is regulated by the brain based on the integration of numerous signals from various physiological systems. It has been proposed that the brain regulates the degree of muscle activation and thus exercise intensity specifically to prevent harmful physiological disturbances. It is presently proposed how the rating of perceived exertion (RPE) is generated as a result of the numerous afferent signals during exercise and serves as a mediator of any subsequent alterations in skeletal muscle activation levels and exercise intensity. A conceptual model for how the RPE mediates feedforward, anticipatory regulation of exercise performance is proposed, and this model is applied to previously described research studies of exercise in various conditions, including heat, hypoxia and reduced energy substrate availability. Finally, the application of this model to recent novel studies that altered pacing strategies and performance is described utilising an RPE clamp design, central nervous system drugs and the provision of inaccurate duration or distance feedback to exercising athletes.

  6. Exercise motives and positive body image in physically active college women and men: Exploring an expanded acceptance model of intuitive eating.

    PubMed

    Tylka, Tracy L; Homan, Kristin J

    2015-09-01

    The acceptance model of intuitive eating posits that body acceptance by others facilitates body appreciation and internal body orientation, which contribute to intuitive eating. Two domains of exercise motives (functional and appearance) may also be linked to these variables, and thus were integrated into the model. The model fit the data well for 406 physically active U.S. college students, although some pathways were stronger for women. Body acceptance by others directly contributed to higher functional exercise motives and indirectly contributed to lower appearance exercise motives through higher internal body orientation. Functional exercise motives positively, and appearance exercise motives inversely, contributed to body appreciation. Whereas body appreciation positively, and appearance exercise motives inversely, contributed to intuitive eating for women, only the latter association was evident for men. To benefit positive body image and intuitive eating, efforts should encourage body acceptance by others and emphasize functional and de-emphasize appearance exercise motives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Longitudinal associations between exercise identity and exercise motivation: A multilevel growth curve model approach.

    PubMed

    Ntoumanis, N; Stenling, A; Thøgersen-Ntoumani, C; Vlachopoulos, S; Lindwall, M; Gucciardi, D F; Tsakonitis, C

    2018-02-01

    Past work linking exercise identity and exercise motivation has been cross-sectional. This is the first study to model the relations between different types of exercise identity and exercise motivation longitudinally. Understanding the dynamic associations between these sets of variables has implications for theory development and applied research. This was a longitudinal survey study. Participants were 180 exercisers (79 men, 101 women) from Greece, who were recruited from fitness centers and were asked to complete questionnaires assessing exercise identity (exercise beliefs and role-identity) and exercise motivation (intrinsic, identified, introjected, external motivation, and amotivation) three times within a 6 month period. Multilevel growth curve modeling examined the role of motivational regulations as within- and between-level predictors of exercise identity, and a model in which exercise identity predicted exercise motivation at the within- and between-person levels. Results showed that within-person changes in intrinsic motivation, introjected, and identified regulations were positively and reciprocally related to within-person changes in exercise beliefs; intrinsic motivation was also a positive predictor of within-person changes in role-identity but not vice versa. Between-person differences in the means of predictor variables were predictive of initial levels and average rates of change in the outcome variables. The findings show support to the proposition that a strong exercise identity (particularly exercise beliefs) can foster motivation for behaviors that reinforce this identity. We also demonstrate that such relations can be reciprocal overtime and can depend on the type of motivation in question as well as between-person differences in absolute levels of these variables. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Active lifestyles in older adults: an integrated predictive model of physical activity and exercise

    PubMed Central

    Galli, Federica; Chirico, Andrea; Mallia, Luca; Girelli, Laura; De Laurentiis, Michelino; Lucidi, Fabio; Giordano, Antonio; Botti, Gerardo

    2018-01-01

    Physical activity and exercise have been identified as behaviors to preserve physical and mental health in older adults. The aim of the present study was to test the Integrated Behavior Change model in exercise and physical activity behaviors. The study evaluated two different samples of older adults: the first engaged in exercise class, the second doing spontaneous physical activity. The key analyses relied on Variance-Based Structural Modeling, which were performed by means of WARP PLS 6.0 statistical software. The analyses estimated the Integrated Behavior Change model in predicting exercise and physical activity, in a longitudinal design across two months of assessment. The tested models exhibited a good fit with the observed data derived from the model focusing on exercise, as well as with those derived from the model focusing on physical activity. Results showed, also, some effects and relations specific to each behavioral context. Results may form a starting point for future experimental and intervention research. PMID:29875997

  9. A comparison of modelling techniques used to characterise oxygen uptake kinetics during the on-transient of exercise.

    PubMed

    Bell, C; Paterson, D H; Kowalchuk, J M; Padilla, J; Cunningham, D A

    2001-09-01

    We compared estimates for the phase 2 time constant (tau) of oxygen uptake (VO2) during moderate- and heavy-intensity exercise, and the slow component of VO2 during heavy-intensity exercise using previously published exponential models. Estimates for tau and the slow component were different (P < 0.05) among models. For moderate-intensity exercise, a two-component exponential model, or a mono-exponential model fitted from 20 s to 3 min were best. For heavy-intensity exercise, a three-component model fitted throughout the entire 6 min bout of exercise, or a two-component model fitted from 20 s were best. When the time delays for the two- and three-component models were equal the best statistical fit was obtained; however, this model produced an inappropriately low DeltaVO2/DeltaWR (WR, work rate) for the projected phase 2 steady state, and the estimate of phase 2 tau was shortened compared with other models. The slow component was quantified as the difference between VO2 at end-exercise (6 min) and at 3 min (DeltaVO2 (6-3 min)); 259 ml x min(-1)), and also using the phase 3 amplitude terms (truncated to end-exercise) from exponential fits (409-833 ml x min(-1)). Onset of the slow component was identified by the phase 3 time delay parameter as being of delayed onset approximately 2 min (vs. arbitrary 3 min). Using this delay DeltaVO2 (6-2 min) was approximately 400 ml x min(-1). Use of valid consistent methods to estimate tau and the slow component in exercise are needed to advance physiological understanding.

  10. Modest Amounts of Voluntary Exercise Reduce Pain- and Stress-Related Outcomes in a Rat Model of Persistent Hind Limb Inflammation.

    PubMed

    Pitcher, Mark H; Tarum, Farid; Rauf, Imran Z; Low, Lucie A; Bushnell, Catherine

    2017-06-01

    Aerobic exercise improves outcomes in a variety of chronic health conditions, yet the support for exercise-induced effects on chronic pain in humans is mixed. Although many rodent studies have examined the effects of exercise on persistent hypersensitivity, the most used forced exercise paradigms that are known to be highly stressful. Because stress can also produce analgesic effects, we studied how voluntary exercise, known to reduce stress in healthy subjects, alters hypersensitivity, stress, and swelling in a rat model of persistent hind paw inflammation. Our data indicate that voluntary exercise rapidly and effectively reduces hypersensitivity as well as stress-related outcomes without altering swelling. Moreover, the level of exercise is unrelated to the analgesic and stress-reducing effects, suggesting that even modest amounts of exercise may impart significant benefit in persistent inflammatory pain states. Modest levels of voluntary exercise reduce pain- and stress-related outcomes in a rat model of persistent inflammatory pain, independently of the amount of exercise. As such, consistent, self-regulated activity levels may be more relevant to health improvement in persistent pain states than standardized exercise goals. Published by Elsevier Inc.

  11. A system model of the effects of exercise on plasma Interleukin-6 dynamics in healthy individuals: Role of skeletal muscle and adipose tissue.

    PubMed

    Morettini, Micaela; Palumbo, Maria Concetta; Sacchetti, Massimo; Castiglione, Filippo; Mazzà, Claudia

    2017-01-01

    Interleukin-6 (IL-6) has been recently shown to play a central role in glucose homeostasis, since it stimulates the production and secretion of Glucagon-like Peptide-1 (GLP-1) from intestinal L-cells and pancreas, leading to an enhanced insulin response. In resting conditions, IL-6 is mainly produced by the adipose tissue whereas, during exercise, skeletal muscle contractions stimulate a marked IL-6 secretion as well. Available mathematical models describing the effects of exercise on glucose homeostasis, however, do not account for this IL-6 contribution. This study aimed at developing and validating a system model of exercise's effects on plasma IL-6 dynamics in healthy humans, combining the contributions of both adipose tissue and skeletal muscle. A two-compartment description was adopted to model plasma IL-6 changes in response to oxygen uptake's variation during an exercise bout. The free parameters of the model were estimated by means of a cross-validation procedure performed on four different datasets. A low coefficient of variation (<10%) was found for each parameter and the physiologically meaningful parameters were all consistent with literature data. Moreover, plasma IL-6 dynamics during exercise and post-exercise were consistent with literature data from exercise protocols differing in intensity, duration and modality. The model successfully emulated the physiological effects of exercise on plasma IL-6 levels and provided a reliable description of the role of skeletal muscle and adipose tissue on the dynamics of plasma IL-6. The system model here proposed is suitable to simulate IL-6 response to different exercise modalities. Its future integration with existing models of GLP-1-induced insulin secretion might provide a more reliable description of exercise's effects on glucose homeostasis and hence support the definition of more tailored interventions for the treatment of type 2 diabetes.

  12. Relationships among adolescents' weight perceptions, exercise goals, exercise motivation, quality of life and leisure-time exercise behaviour: a self-determination theory approach.

    PubMed

    Gillison, F B; Standage, M; Skevington, S M

    2006-12-01

    Exercise has an important role to play in the prevention of child and adolescent obesity. Recent school-based interventions have struggled to achieve meaningful and lasting changes to exercise levels. Theorists have suggested that this may, in part, be due to the failure to incorporate psychosocial mediators as they relate to behaviour change. Using a sample of 580 British schoolchildren, a model grounded in self-determination theory was explored to examine the effects of exercise goals on exercise motivation, leisure-time exercise behaviour and quality of life (QoL). Results of structural equation modelling revealed that adolescents perceiving themselves to be overweight and pressurized to lose weight, endorsed extrinsic weight-related goals for exercise. Extrinsic goals negatively predicted, whereas intrinsic goals positively predicted, self-determined motivation, which in turn positively predicted QoL and exercise behaviour. Furthermore, self-determined motivation partially mediated the effects of exercise goals on reported exercise behaviour and QoL. Multi-sample invariance testing revealed the proposed model to be largely invariant across gender. Results suggest that holding extrinsic exercise goals could compromise exercise participation levels and QoL. A role for teachers and parents is proposed with the aim of orienting young people towards intrinsic goals in an attempt to enhance future exercise behaviour and QoL.

  13. Physical activity into the meal glucose-insulin model of type 1 diabetes: in silico studies.

    PubMed

    Man, Chiara Dalla; Breton, Marc D; Cobelli, Claudio

    2009-01-01

    A simulation model of a glucose-insulin system accounting for physical activity is needed to reliably simulate normal life conditions, thus accelerating the development of an artificial pancreas. In fact, exercise causes a transient increase of insulin action and may lead to hypoglycemia. However, physical activity is difficult to model. In the past, it was described indirectly as a rise in insulin. Recently, a new parsimonious model of exercise effect on glucose homeostasis has been proposed that links the change in insulin action and glucose effectiveness to heart rate (HR). The aim of this study was to plug this exercise model into our recently proposed large-scale simulation model of glucose metabolism in type 1 diabetes to better describe normal life conditions. The exercise model describes changes in glucose-insulin dynamics in two phases: a rapid on-and-off change in insulin-independent glucose clearance and a rapid-on/slow-off change in insulin sensitivity. Three candidate models of glucose effectiveness and insulin sensitivity as a function of HR have been considered, both during exercise and recovery after exercise. By incorporating these three models into the type 1 diabetes model, we simulated different levels (from mild to moderate) and duration of exercise (15 and 30 minutes), both in steady-state (e.g., during euglycemic-hyperinsulinemic clamp) and in nonsteady state (e.g., after a meal) conditions. One candidate exercise model was selected as the most reliable. A type 1 diabetes model also describing physical activity is proposed. The model represents a step forward to accurately describe glucose homeostasis in normal life conditions; however, further studies are needed to validate it against data. © Diabetes Technology Society

  14. Acute and Chronic Exercise in Animal Models.

    PubMed

    Thu, Vu Thi; Kim, Hyoung Kyu; Han, Jin

    2017-01-01

    Numerous animal cardiac exercise models using animal subjects have been established to uncover the cardiovascular physiological mechanism of exercise or to determine the effects of exercise on cardiovascular health and disease. In most cases, animal-based cardiovascular exercise modalities include treadmill running, swimming, and voluntary wheel running with a series of intensities, times, and durations. Those used animals include small rodents (e.g., mice and rats) and large animals (e.g., rabbits, dogs, goats, sheep, pigs, and horses). Depending on the research goal, each experimental protocol should also describe whether its respective exercise treatment can produce the anticipated acute or chronic cardiovascular adaptive response. In this chapter, we will briefly describe the most common kinds of animal models of acute and chronic cardiovascular exercises that are currently being conducted and are likely to be chosen in the near future. Strengths and weakness of animal-based cardiac exercise modalities are also discussed.

  15. Need satisfaction, motivational regulations and exercise: moderation and mediation effects.

    PubMed

    Weman-Josefsson, Karin; Lindwall, Magnus; Ivarsson, Andreas

    2015-05-20

    Based on the Self-determination theory process model, this study aimed to explore relationships between the latent constructs of psychological need satisfaction, autonomous motivation and exercise behaviour; the mediational role of autonomous motivation in the association of psychological need satisfaction with exercise behaviour; as well as gender and age differences in the aforementioned associations. Adult active members of an Internet-based exercise program (n = 1091) between 18 and 78 years of age completed a test battery on motivational aspects based on Self-determination theory. The Basic Psychological Needs in Exercise Scale and the Behavioural Regulation in Exercise Questionnaire-2 were used to measure need satisfaction and type of motivation and the Leisure Time Exercise Questionnaire to measure self-reported exercise. Need satisfaction predicted autonomous motivation, which in turn predicted exercise, especially for women. Autonomous motivation was found to mediate the association between need satisfaction and exercise. Age and gender moderated several of the paths in the model linking need satisfaction with motivation and exercise. The results demonstrated gender and age differences in the proposed sequential mechanisms between autonomous motivation and exercise in the process model. This study thus highlights a potential value in considering moderating factors and the need to further examine the underlying mechanisms between needs, autonomous motivation, and exercise behaviour.

  16. Verification, Validation and Credibility Assessment of a Computational Model of the Advanced Resistive Exercise Device (ARED)

    NASA Technical Reports Server (NTRS)

    Werner, C. R.; Humphreys, B. T.; Mulugeta, L.

    2014-01-01

    The Advanced Resistive Exercise Device (ARED) is the resistive exercise device used by astronauts on the International Space Station (ISS) to mitigate bone loss and muscle atrophy due to extended exposure to microgravity (micro g). The Digital Astronaut Project (DAP) has developed a multi-body dynamics model of biomechanics models for use in spaceflight exercise physiology research and operations. In an effort to advance model maturity and credibility of the ARED model, the DAP performed verification, validation and credibility (VV and C) assessment of the analyses of the model in accordance to NASA-STD-7009 'Standards for Models and Simulations'.

  17. Feelings of energy, exercise-related self-efficacy, and voluntary exercise participation.

    PubMed

    Yoon, Seok; Buckworth, Janet; Focht, Brian; Ko, Bomna

    2013-12-01

    This study used a path analysis approach to examine the relationship between feelings of energy, exercise-related self-efficacy beliefs, and exercise participation. A cross-sectional mailing survey design was used to measure feelings of physical and mental energy, task and scheduling self-efficacy beliefs, and voluntary moderate and vigorous exercise participation in 368 healthy, full-time undergraduate students (mean age = 21.43 ± 2.32 years). The path analysis revealed that the hypothesized path model had a strong fit to the study data. The path model showed that feelings of physical energy had significant direct effects on task and scheduling self-efficacy beliefs as well as exercise behaviors. In addition, scheduling self-efficacy had direct effects on moderate and vigorous exercise participation. However, there was no significant direct relationship between task self-efficacy and exercise participation. The path model also revealed that scheduling self-efficacy partially mediated the relationship between feelings of physical energy and exercise participation.

  18. A phenomenological model of muscle fatigue and the power-endurance relationship.

    PubMed

    James, A; Green, S

    2012-11-01

    The relationship between power output and the time that it can be sustained during exercise (i.e., endurance) at high intensities is curvilinear. Although fatigue is implicit in this relationship, there is little evidence pertaining to it. To address this, we developed a phenomenological model that predicts the temporal response of muscle power during submaximal and maximal exercise and which was based on the type, contractile properties (e.g., fatiguability), and recruitment of motor units (MUs) during exercise. The model was first used to predict power outputs during all-out exercise when fatigue is clearly manifest and for several distributions of MU type. The model was then used to predict times that different submaximal power outputs could be sustained for several MU distributions, from which several power-endurance curves were obtained. The model was simultaneously fitted to two sets of human data pertaining to all-out exercise (power-time profile) and submaximal exercise (power-endurance relationship), yielding a high goodness of fit (R(2) = 0.96-0.97). This suggested that this simple model provides an accurate description of human power output during submaximal and maximal exercise and that fatigue-related processes inherent in it account for the curvilinearity of the power-endurance relationship.

  19. Regular exercise and related factors in patients with Parkinson's disease: Applying zero-inflated negative binomial modeling of exercise count data.

    PubMed

    Lee, JuHee; Park, Chang Gi; Choi, Moonki

    2016-05-01

    This study was conducted to identify risk factors that influence regular exercise among patients with Parkinson's disease in Korea. Parkinson's disease is prevalent in the elderly, and may lead to a sedentary lifestyle. Exercise can enhance physical and psychological health. However, patients with Parkinson's disease are less likely to exercise than are other populations due to physical disability. A secondary data analysis and cross-sectional descriptive study were conducted. A convenience sample of 106 patients with Parkinson's disease was recruited at an outpatient neurology clinic of a tertiary hospital in Korea. Demographic characteristics, disease-related characteristics (including disease duration and motor symptoms), self-efficacy for exercise, balance, and exercise level were investigated. Negative binomial regression and zero-inflated negative binomial regression for exercise count data were utilized to determine factors involved in exercise. The mean age of participants was 65.85 ± 8.77 years, and the mean duration of Parkinson's disease was 7.23 ± 6.02 years. Most participants indicated that they engaged in regular exercise (80.19%). Approximately half of participants exercised at least 5 days per week for 30 min, as recommended (51.9%). Motor symptoms were a significant predictor of exercise in the count model, and self-efficacy for exercise was a significant predictor of exercise in the zero model. Severity of motor symptoms was related to frequency of exercise. Self-efficacy contributed to the probability of exercise. Symptom management and improvement of self-efficacy for exercise are important to encourage regular exercise in patients with Parkinson's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Standardized verification of fuel cycle modeling

    DOE PAGES

    Feng, B.; Dixon, B.; Sunny, E.; ...

    2016-04-05

    A nuclear fuel cycle systems modeling and code-to-code comparison effort was coordinated across multiple national laboratories to verify the tools needed to perform fuel cycle analyses of the transition from a once-through nuclear fuel cycle to a sustainable potential future fuel cycle. For this verification study, a simplified example transition scenario was developed to serve as a test case for the four systems codes involved (DYMOND, VISION, ORION, and MARKAL), each used by a different laboratory participant. In addition, all participants produced spreadsheet solutions for the test case to check all the mass flows and reactor/facility profiles on a year-by-yearmore » basis throughout the simulation period. The test case specifications describe a transition from the current US fleet of light water reactors to a future fleet of sodium-cooled fast reactors that continuously recycle transuranic elements as fuel. After several initial coordinated modeling and calculation attempts, it was revealed that most of the differences in code results were not due to different code algorithms or calculation approaches, but due to different interpretations of the input specifications among the analysts. Therefore, the specifications for the test case itself were iteratively updated to remove ambiguity and to help calibrate interpretations. In addition, a few corrections and modifications were made to the codes as well, which led to excellent agreement between all codes and spreadsheets for this test case. Although no fuel cycle transition analysis codes matched the spreadsheet results exactly, all remaining differences in the results were due to fundamental differences in code structure and/or were thoroughly explained. As a result, the specifications and example results are provided so that they can be used to verify additional codes in the future for such fuel cycle transition scenarios.« less

  1. Development of a High Fidelity Dynamic Module of the Advanced Resistive Exercise Device (ARED) Using Adams

    NASA Technical Reports Server (NTRS)

    Humphreys, B. T.; Thompson, W. K.; Lewandowski, B. E.; Cadwell, E. E.; Newby, N. J.; Fincke, R. S.; Sheehan, C.; Mulugeta, L.

    2012-01-01

    NASA's Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and enhance countermeasure development. DAP provides expertise and computation tools to its research customers for model development, integration, or analysis. DAP is currently supporting the NASA Exercise Physiology and Countermeasures (ExPC) project by integrating their biomechanical models of specific exercise movements with dynamic models of the devices on which the exercises were performed. This presentation focuses on the development of a high fidelity dynamic module of the Advanced Resistive Exercise Device (ARED) on board the ISS. The ARED module, illustrated in the figure below, was developed using the Adams (MSC Santa Ana, California) simulation package. The Adams package provides the capabilities to perform multi rigid body, flexible body, and mixed dynamic analyses of complex mechanisms. These capabilities were applied to accurately simulate: Inertial and mass properties of the device such as the vibration isolation system (VIS) effects and other ARED components, Non-linear joint friction effects, The gas law dynamics of the vacuum cylinders and VIS components using custom written differential state equations, The ARED flywheel dynamics, including torque limiting clutch. Design data from the JSC ARED Engineering team was utilized in developing the model. This included solid modeling geometry files, component/system specifications, engineering reports and available data sets. The Adams ARED module is importable into LifeMOD (Life Modeler, Inc., San Clemente, CA) for biomechanical analyses of different resistive exercises such as squat and dead-lift. Using motion capture data from ground test subjects, the ExPC developed biomechanical exercise models in LifeMOD. The Adams ARED device module was then integrated with the exercise subject model into one integrated dynamic model. This presentation will describe the development of the Adams ARED module including its capabilities, limitations, and assumptions. Preliminary results, validation activities, and a practical application of the module to inform the relative effect of the flywheels on exercise will be discussed.

  2. Striving for success or addiction? Exercise dependence among elite Australian athletes.

    PubMed

    McNamara, Justin; McCabe, Marita P

    2012-01-01

    Exercise dependence is a condition that involves a preoccupation and involvement with training and exercise, and has serious health and performance consequences for athletes. We examined the validity of a biopsychosocial model to explain the development and maintenance of exercise dependence among elite Australian athletes. Participants were 234 elite Australian athletes recruited from institutes and academies of sport. Thirty-four percent of elite athletes were classified as having exercise dependence based on high scores on the measure of exercise dependence. These athletes had a higher body mass index, and more extreme and maladaptive exercise beliefs compared to non-dependent athletes. They also reported higher pressure from coaches and teammates, and lower social support, compared to athletes who were not exercise dependent. These results support the utility of a biopsychosocial model of exercise dependence in understanding the aetiology of exercise dependence among elite athletes. Limitations of the study and future research directions are highlighted.

  3. OpenSim Model Improvements to Support High Joint Angle Resistive Exercising

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher; Thompson, William; Lewandowski, Beth; Humphreys, Brad

    2016-01-01

    Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited. Therefore, compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Rigorous testing of these proposed devices in space flight is difficult so computational modeling provides an estimation of the muscle forces and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts. The NASA Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) project and the National Space Biomedical Research Institute (NSBRI) funded researchers by developing computational models of exercising with these new advanced exercise device concepts

  4. QOL models constructed for the community-dwelling elderly with ikigai (purpose in life) as a composition factor, and the effect of habitual exercise.

    PubMed

    Demura, Shinichi; Kobayashi, Hidetsugu; Kitabayashi, Tamotsu

    2005-09-01

    The purpose of this study was to construct QOL models for the elderly that included ikigai as a composition factor and to clarify differences in two kinds of models, one constructed for the elderly with habitual exercise and the other for those without it. The subjects were 1,566 healthy community-dwelling independent people aged 60 years or more (752 males, 814 females). First, the ratio of subjects with ikigai was calculated. The ratios of subjects with different kinds of objects of ikigai were also calculated. Next, structural equation models (SEM) were constructed on the basis of social, physical, and mental QOL and ikigai. Fits of the models were evaluated. To examine whether the presence or absence of habitual exercise caused any difference in the QOL model, subjects were divided into 4 groups according to whether they were male or female and whether they had or did not have an exercise habit. Multi-population group simultaneous analysis was then performed among the four groups. More than 85% of the subjects had objects of ikigai. Ikigai is an important factor for comprehending the QOL of the elderly. It was possible to construct QOL models for the elderly with ikigai as a composition factor. The effect of physical QOL on mental QOL was negligible in females irrespective of whether they had an exercise habit. The effect of social QOL on mental QOL was profound in aged females with an exercise habit. The effect of the living situation on mental QOL was profound in aged females without an exercise habit. The effect of mental QOL on ikigai was more marked in subjects without an exercise habit than in those with an exercise habit.

  5. Understanding exercise uptake and adherence for people with chronic conditions: a new model demonstrating the importance of exercise identity, benefits of attending and support.

    PubMed

    Pentecost, C; Taket, A

    2011-10-01

    Understanding the factors influencing uptake and adherence to exercise for people with chronic conditions from different ages, genders and ethnicities is important for planning exercise services. This paper presents evidence supporting a new model of exercise uptake and adherence applicable to people with chronic conditions from diverse socio-demographic backgrounds. The study is based on 130 semi-structured interviews with people with chronic conditions, including both those who did and those who did not attend exercise services, and supporters of those who attended. Analysis followed the guidelines of 'framework analysis'. Results show that three factors were particularly important in influencing adherence behavior: (i) exercise identity, (ii) support and (iii) perceived benefits of attending. Social and cultural identities impacted on willingness to exercise, importance of exercise and perceived appropriateness of exercising. Having at least one supporter providing different types of support was associated with high levels of attendance. Those people who valued the social and psychological benefits of attending were more likely to be high attenders. The new model illustrates interaction between these three factors and discusses how these can be taken into account when planning exercise services for people with chronic conditions drawn from diverse socio-demographic groups.

  6. Predicting short and long-term exercise intentions and behaviour in patients with coronary artery disease: A test of protection motivation theory.

    PubMed

    Tulloch, Heather; Reida, Robert; D'Angeloa, Monika Slovinec; Plotnikoff, Ronald C; Morrina, Louise; Beatona, Louise; Papadakisa, Sophia; Pipe, Andrew

    2009-03-01

    The purpose of this study was to examine the utility of protection motivation theory (PMT) in the prediction of exercise intentions and behaviour in the year following hospitalisation for coronary artery disease (CAD). Patients with documented CAD (n = 787), recruited at hospital discharge, completed questionnaires measuring PMT's threat (i.e. perceived severity and vulnerability) and coping (i.e. self-efficacy, response efficacy) appraisal constructs at baseline, 2 and 6 months, and exercise behaviour at baseline, 6 and 12 months post-hospitalisation. Structural equation modelling showed that the PMT model of exercise at 6 months had a good fit with the empirical data. Self-efficacy, response efficacy, and perceived severity predicted exercise intentions, which, in turn predicted exercise behaviour. Overall, the PMT variables accounted for a moderate amount of variance in exercise intentions (23%) and behaviour (20%). In contrast, the PMT model was not reliable for predicting exercise behaviour at 12 months post-hospitalisation. The data provided support for PMT applied to short-term, but not long-term, exercise behaviour among patients with CAD. Health education should concentrate on providing positive coping messages to enhance patients' confidence regarding exercise and their belief that exercise provides health benefits, as well as realistic information about disease severity.

  7. Computer Aided Modeling to Determine the Effectiveness of Resistive Exercises as Countermeasures for Bone Mineral Density Loss

    NASA Technical Reports Server (NTRS)

    Murphy, Benjamin M.

    1999-01-01

    Due to the loss of gravitational loading, astronauts have a tendency to lose bone mineral density in their lumbar spine and lower extremities on orbit. NASA requires astronauts to perform exercises during space flight to help reduce the amount of demineralization. To test these exercises on earth, 17 week bed rest studies are conducted that consist of specific diet and exercise regimes. Developing a finite element model of these exercises will help to quantify the stress distribution imposed by of each of these exercises. To help develop this model, MRI images are acquired from individuals participating in the bed rest studies. The MRIs can be used to create a subject specific model of each individual for testing. The MRIs are processed in the Magnetic Resonance Imaging Data Transfer System program to develop a three-dimensional finite element model of the femur for evaluation. Modifications were made to the MRIDTS that simplified the model creation process. These modifications made it possible to construct two separate models of different portions of a bone simultaneously and then later connect them manually. This helped alleviate the warping problem associated with the drastic changes in geometry found in some body parts, such as the joints. The code was also modified to incorporate material properties of various bone components into the model. Interior meshing was also incorporated into the program to allow for both the cortical shell and the entire bone to be modeled. A prototype model of the right femur of an adult female is being constructed and tested to determine the feasibility of finite element analysis as a tool for evaluating exercise effectiveness. The model is being run through the ANSYS finite element program on the Alabama Super Computer Network. After the model is validated, models of bedrest subjects can be generated to investigate exercise countermeasures.

  8. Scenarios for low carbon and low water electric power plant ...

    EPA Pesticide Factsheets

    In the water-energy nexus, water use for the electric power sector is critical. Currently, the operational phase of electric power production dominates the electric sector's life cycle withdrawal and consumption of fresh water resources. Water use associated with the fuel cycle and power plant equipment manufacturing phase is substantially lower on a life cycle basis. An outstanding question is: how do regional shifts to lower carbon electric power mixes affect the relative contribution of the upstream life cycle water use? To test this, we examine a range of scenarios comparing a baseline with scenarios of carbon reduction and water use constraints using the MARKet ALlocation (MARKAL) energy systems model with ORD's 2014 U.S. 9-region database (EPAUS9r). The results suggest that moving toward a low carbon and low water electric power mix may increase the non-operational water use. In particular, power plant manufacturing water use for concentrating solar power, and fuel cycle water use for biomass feedstock, could see sharp increases under scenarios of high deployment of these low carbon options. Our analysis addresses the following questions. First, how does moving to a lower carbon electricity generation mix affect the overall regional electric power water use from a life cycle perspective? Second, how does constraining the operational water use for power plants affect the mix, if at all? Third, how does the life cycle water use differ among regions under

  9. Mental models of adherence: parallels in perceptions, values, and expectations in adherence to prescribed home exercise programs and other personal regimens.

    PubMed

    Rizzo, Jon; Bell, Alexandra

    2018-05-09

    A mental model is the collection of an individual's perceptions, values, and expectations about a particular aspect of their life, which strongly influences behaviors. This study explored orthopedic outpatients mental models of adherence to prescribed home exercise programs and how they related to mental models of adherence to other types of personal regimens. The study followed an interpretive description qualitative design. Data were collected via two semi-structured interviews. Interview One focused on participants prior experiences adhering to personal regimens. Interview Two focused on experiences adhering to their current prescribed home exercise program. Data analysis followed a constant comparative method. Findings revealed similarity in perceptions, values, and expectations that informed individuals mental models of adherence to personal regimens and prescribed home exercise programs. Perceived realized results, expected results, perceived social supports, and value of convenience characterized mental models of adherence. Parallels between mental models of adherence for prescribed home exercise and other personal regimens suggest that patients adherence behavior to prescribed routines may be influenced by adherence experiences in other aspects of their lives. By gaining insight into patients adherence experiences, values, and expectations across life domains, clinicians may tailor supports that enhance home exercise adherence. Implications for Rehabilitation A mental model is the collection of an individual's perceptions, values, and expectations about a particular aspect of their life, which is based on prior experiences and strongly influences behaviors. This study demonstrated similarity in orthopedic outpatients mental models of adherence to prescribed home exercise programs and adherence to personal regimens in other aspects of their lives. Physical therapists should inquire about patients non-medical adherence experiences, as strategies patients customarily use to adhere to other activities may inform strategies to promote prescribed home exercise adherence.

  10. Feasibility and utility of positive psychology exercises for suicidal inpatients.

    PubMed

    Huffman, Jeff C; DuBois, Christina M; Healy, Brian C; Boehm, Julia K; Kashdan, Todd B; Celano, Christopher M; Denninger, John W; Lyubomirsky, Sonja

    2014-01-01

    The objective was to assess the feasibility and acceptability of nine positive psychology exercises delivered to patients hospitalized for suicidal thoughts or behaviors, and to secondarily explore the relative impact of the exercises. Participants admitted to a psychiatric unit for suicidal ideation or behavior completed daily positive psychology exercises while hospitalized. Likert-scale ratings of efficacy (optimism, hopelessness, perceived utility) and ease of completion were consolidated and compared across exercises using mixed models accounting for age, missing data and exercise order. Overall effects of exercise on efficacy and ease were also examined using mixed models. Fifty-two (85.3%) of 61 participants completed at least one exercise, and 189/213 (88.7%) assigned exercises were completed. There were overall effects of exercise on efficacy (χ(2)=19.39; P=.013) but not ease of completion (χ(2)=11.64; P=.17), accounting for age, order and skipped exercises. Effect (Cohen's d) of exercise on both optimism and hopelessness was moderate for the majority of exercises. Exercises related to gratitude and personal strengths ranked highest. Both gratitude exercises had efficacy scores that were significantly (P=.001) greater than the lowest-ranked exercise (forgiveness). In this exploratory project, positive psychology exercises delivered to suicidal inpatients were feasible and associated with short-term gains in clinically relevant outcomes. © 2014.

  11. Exercisers' identities and exercise dependence: the mediating effect of exercise commitment.

    PubMed

    Lu, Frank Jing-Horng; Hsu, Eva Ya-Wen; Wang, Junn-Ming; Huang, Mei-Yao; Chang, Jo-Ning; Wang, Chien-Hsin

    2012-10-01

    The purpose of this study was to examine the associations of exercise identity, exercise commitment, exercise dependence, and, particularly, the mediating effects of exercise commitment on the relationship between exercise identity and exercise dependence. 253 Taiwanese regular exercisers completed measures, including the Exercise Dependence Scale-Revised, the Exercise Identity Scale, the Exercise Commitment Scale, and the Godin Leisure Time Exercise Questionnaire. Results showed that exercise identity, exercise dependence, and two types of exercise commitment were moderately to highly correlated. Furthermore, structural equation modelling indicated that a "have to" commitment partially mediated the relationship between exercise identity and exercise dependence. Based on the mediating role of a "have to" commitment, the findings are particularly informative to exercise instructors and for exercise program managers.

  12. A twin-sibling study on the relationship between exercise attitudes and exercise behavior.

    PubMed

    Huppertz, Charlotte; Bartels, Meike; Jansen, Iris E; Boomsma, Dorret I; Willemsen, Gonneke; de Moor, Marleen H M; de Geus, Eco J C

    2014-01-01

    Social cognitive models of health behavior propose that individual differences in leisure time exercise behavior are influenced by the attitudes towards exercise. At the same time, large scale twin-family studies show a significant influence of genetic factors on regular exercise behavior. This twin-sibling study aimed to unite these findings by demonstrating that exercise attitudes can be heritable themselves. Secondly, the genetic and environmental cross-trait correlations and the monozygotic (MZ) twin intrapair differences model were used to test whether the association between exercise attitudes and exercise behavior can be causal. Survey data were obtained from 5,095 twins and siblings (18-50 years). A genetic contribution was found for exercise behavior (50 % in males, 43 % in females) and for the six exercise attitude components derived from principal component analysis: perceived benefits (21, 27 %), lack of skills, support and/or resources (45, 48 %), time constraints (25, 30 %), lack of energy (34, 44 %), lack of enjoyment (47, 44 %), and embarrassment (42, 49 %). These components were predictive of leisure time exercise behavior (R(2) = 28 %). Bivariate modeling further showed that all the genetic (0.36 < |rA| < 0.80) and all but two unique environmental (0.00 < |rE| < 0.27) correlations between exercise attitudes and exercise behavior were significantly different from zero, which is a necessary condition for the existence of a causal effect driving the association. The correlations between the MZ twins' difference scores were in line with this finding. It is concluded that exercise attitudes and exercise behavior are heritable, that attitudes and behavior are partly correlated through pleiotropic genetic effects, but that the data are compatible with a causal association between exercise attitudes and behavior.

  13. A Twin-Sibling Study on the Relationship Between Exercise Attitudes and Exercise Behavior

    PubMed Central

    Bartels, Meike; Jansen, Iris E.; Boomsma, Dorret I.; Willemsen, Gonneke; de Moor, Marleen H. M.; de Geus, Eco J. C.

    2013-01-01

    Social cognitive models of health behavior propose that individual differences in leisure time exercise behavior are influenced by the attitudes towards exercise. At the same time, large scale twin-family studies show a significant influence of genetic factors on regular exercise behavior. This twin–sibling study aimed to unite these findings by demonstrating that exercise attitudes can be heritable themselves. Secondly, the genetic and environmental cross-trait correlations and the monozygotic (MZ) twin intrapair differences model were used to test whether the association between exercise attitudes and exercise behavior can be causal. Survey data were obtained from 5,095 twins and siblings (18–50 years). A genetic contribution was found for exercise behavior (50 % in males, 43 % in females) and for the six exercise attitude components derived from principal component analysis: perceived benefits (21, 27 %), lack of skills, support and/or resources (45, 48 %), time constraints (25, 30 %), lack of energy (34, 44 %), lack of enjoyment (47, 44 %), and embarrassment (42, 49 %). These components were predictive of leisure time exercise behavior (R2 = 28 %). Bivariate modeling further showed that all the genetic (0.36 <|rA| <0.80) and all but two unique environmental (0.00 <|rE| <0.27) correlations between exercise attitudes and exercise behavior were significantly different from zero, which is a necessary condition for the existence of a causal effect driving the association. The correlations between the MZ twins’ difference scores were in line with this finding. It is concluded that exercise attitudes and exercise behavior are heritable, that attitudes and behavior are partly correlated through pleiotropic genetic effects, but that the data are compatible with a causal association between exercise attitudes and behavior. PMID:24072598

  14. Biomechanical Modeling of the Deadlift Exercise on the HULK Device to Improve the Efficacy of Resistive Exercise Microgravity Countermeasures

    NASA Technical Reports Server (NTRS)

    Jagodnik, K. M.; Thompson, W. K.; Gallo, C. A.; Crentsil, L.; Funk, J. H.; Funk, N. W.; Perusek, G. P.; Sheehan, C. C.; Lewandowski, B. E.

    2016-01-01

    Extended spaceflight typically results in the loss of muscular strength and bone density due to exposure to microgravity. Resistive exercise countermeasures have been developed to maintain musculoskeletal health during spaceflight. The Advanced Resistive Exercise Device (ARED) is the "gold standard" of available devices; however, its footprint and volume are too large for use in space capsules employed in exploration missions. The Hybrid Ultimate Lifting Kit (HULK) device, with its smaller footprint, is a prototype exercise device for exploration missions. This work models the deadlift exercise being performed on the HULK device using biomechanical simulation, with the long-term goal to improve and optimize astronauts' exercise prescriptions, to maximize the benefit of exercise while minimizing time and effort invested.

  15. Modeling the effects of exercise during 100% oxygen prebreathe on the risk of hypobaric decompression sickness

    NASA Technical Reports Server (NTRS)

    Loftin, K. C.; Conkin, J.; Powell, M. R.

    1997-01-01

    BACKGROUND: Several previous studies indicated that exercise during prebreathe with 100% O2 decreased the incidence of hypobaric decompression sickness (DCS). We report a meta-analysis of these investigations combined with a new study in our laboratory to develop a statistical model as a predictive tool for DCS. HYPOTHESIS: Exercise during prebreathe increases N2 elimination in a theoretical 360-min half-time compartment decreasing the incidence of DCS. METHODS: A dose-response probability tissue ratio (TR) model with 95% confidence limits was created for two groups, prebreathe with exercise (n = 113) and resting prebreathe (n = 113), using nonlinear regression analysis with maximum likelihood optimization. RESULTS: The model predicted that prebreathe exercise would reduce the residual N2 in a 360-min half-time compartment to a level analogous to that in a 180-min compartment. This finding supported the hypothesis. The incidence of DCS for the exercise prebreathe group was significantly decreased (Chi-Square = 17.1, p < 0.0001) from the resting prebreathe group. CONCLUSIONS: The results suggested that exercise during prebreathe increases tissue perfusion and N2 elimination approximately 2-fold and markedly lowers the risk of DCS. Based on the model, the prebreathe duration may be reduced from 240 min to a predicted 91 min for the protocol in our study, but this remains to be verified. The model provides a useful planning tool to develop and test appropriate prebreathe exercise protocols and to predict DCS risks for astronauts.

  16. Modeling Stretching Modes of Common Organic Molecules with the Quantum Mechanical Harmonic Oscillator: An Undergraduate Vibrational Spectroscopy Laboratory Exercise

    ERIC Educational Resources Information Center

    Parnis, J. Mark; Thompson, Matthew G. K.

    2004-01-01

    An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.

  17. Planning and executing complex large-scale exercises.

    PubMed

    McCormick, Lisa C; Hites, Lisle; Wakelee, Jessica F; Rucks, Andrew C; Ginter, Peter M

    2014-01-01

    Increasingly, public health departments are designing and engaging in complex operations-based full-scale exercises to test multiple public health preparedness response functions. The Department of Homeland Security's Homeland Security Exercise and Evaluation Program (HSEEP) supplies benchmark guidelines that provide a framework for both the design and the evaluation of drills and exercises; however, the HSEEP framework does not seem to have been designed to manage the development and evaluation of multiple, operations-based, parallel exercises combined into 1 complex large-scale event. Lessons learned from the planning of the Mississippi State Department of Health Emergency Support Function--8 involvement in National Level Exercise 2011 were used to develop an expanded exercise planning model that is HSEEP compliant but accounts for increased exercise complexity and is more functional for public health. The Expanded HSEEP (E-HSEEP) model was developed through changes in the HSEEP exercise planning process in areas of Exercise Plan, Controller/Evaluator Handbook, Evaluation Plan, and After Action Report and Improvement Plan development. The E-HSEEP model was tested and refined during the planning and evaluation of Mississippi's State-level Emergency Support Function-8 exercises in 2012 and 2013. As a result of using the E-HSEEP model, Mississippi State Department of Health was able to capture strengths, lessons learned, and areas for improvement, and identify microlevel issues that may have been missed using the traditional HSEEP framework. The South Central Preparedness and Emergency Response Learning Center is working to create an Excel-based E-HSEEP tool that will allow practice partners to build a database to track corrective actions and conduct many different types of analyses and comparisons.

  18. Does Stress Result in You Exercising Less? Or Does Exercising Result in You Being Less Stressed? Or is it Both?

    PubMed Central

    Burg, Matthew M.; Schwartz, Joseph E.; Kronish, Ian M.; Diaz, Keith M.; Alcantara, Carmela; Duer-Hefele, Joan; Davidson, Karina W.

    2017-01-01

    Background Psychosocial stress contributes to heart disease in part by adversely affecting maintenance of health behaviors, while exercise can reduce stress. Assessing the bi-directional relationship between stress and exercise has been limited by lack of real-time data, and theoretical and statistical models. This lack may hinder efforts to promote exercise maintenance. Purpose We test the bi-directional relationship between stress and exercise using real-time data for the average person, and the variability – individual differences – in this relationship. Methods A single cohort randomized controlled experiment. Healthy young adults (n=79) who reported only intermittent exercise, completed 12 months of stress monitoring by ecological momentary assessment (at the beginning of, end of, and during the day), and continuous activity monitoring by Fitbit. A random coefficients linear mixed model was used to predict end-of-day stress from the occurrence/non-occurrence of exercise that day; a logistic mixed model was used to predict the occurrence/non-occurrence of exercise from ratings of anticipated stress. Separate regression analyses were also performed for each participant. Sensitivity analysis tested all models, restricted to the first 180 days of observation (prior to randomization). Results We found a significant average inverse (i.e., negative) effect of exercise on stress and of stress on exercise. There was significant between-person variability. Of N=69, exercise was associated with a stress reduction for 15, a stress increase for 2, and no change for the remainder. We also found that an increase in anticipated stress reported the previous night or that morning was associated with a significant 20–22% decrease (OR=0.78–0.80) in the odds of exercising that day. Of N=69, this increase in stress reduced the likelihood of exercise for 17, increased the odds for 1, and had no effect for the remainder. We were unable to identify psychosocial factors that moderate the individual differences in these effects. Conclusions The relationship of stress to exercise can be uni- or bi-directional, and varies from person to person. A precision medicine approach may improve exercise uptake. PMID:28290065

  19. Voluntary Physical Exercise Improves Subsequent Motor and Cognitive Impairments in a Rat Model of Parkinson’s Disease

    PubMed Central

    Hsueh, Shih-Chang; Lai, Jing-Huei; Wu, Chung-Che; Yu, Yu-Wen; Luo, Yu; Hsieh, Tsung-Hsun; Chiang, Yung-Hsiao

    2018-01-01

    Background: Parkinson’s disease (PD) is typically characterized by impairment of motor function. Gait disturbances similar to those observed in patients with PD can be observed in animals after injection of neurotoxin 6-hydroxydopamine (6-OHDA) to induce unilateral nigrostriatal dopamine depletion. Exercise has been shown to be a promising non-pharmacological approach to reduce the risk of neurodegenerative disease. Methods: In this study, we investigated the long-term effects of voluntary running wheel exercise on gait phenotypes, depression, cognitive, rotational behaviors as well as histology in a 6-OHDA-lesioned rat model of PD. Results: We observed that, when compared with the non-exercise controls, five-week voluntary exercise alleviated and postponed the 6-OHDA-induced gait deficits, including a significantly improved walking speed, step/stride length, base of support and print length. In addition, we found that the non-motor functions, such as novel object recognition and forced swim test, were also ameliorated by voluntary exercise. However, the rotational behavior of the exercise group did not show significant differences when compared with the non-exercise group. Conclusions: We first analyzed the detailed spatiotemporal changes of gait pattern to investigate the potential benefits after long-term exercise in the rat model of PD, which could be useful for future objective assessment of locomotor function in PD or other neurological animal models. Furthermore, these results suggest that short-term voluntary exercise is sufficient to alleviate cognition deficits and depressive behavior in 6-OHDA lesioned rats and long-term treatment reduces the progression of motor symptoms and elevates tyrosine hydroxylase (TH), Brain-derived neurotrophic factor (BDNF), bone marrow tyrosine kinase in chromosome X (BMX) protein expression level without affecting dopaminergic (DA) neuron loss in this PD rat model. PMID:29419747

  20. Multimedia-Based Therapy Model for Non-Pharmacological Stroke with Decrease Impaired Muscle Strength

    NASA Astrophysics Data System (ADS)

    Hajar Puji Sejati, Rr; Muhimmah, Izzati; Mahtarami, Affan

    2016-01-01

    Stroke patients who experience a decrease in muscle strength need to do exercises so that they can increase their muscle strength. In order to enable the patient does exercise independently the multimedia-based stroke therapy model is needed. These exercises can be done independently, with supervision of the family member at home. So, we develop prototype of the multimedia-based therapy for the family member so that they can assist patients performing exercises without attending therapy session in hospital. This model was built according to the advices from physiotherapist and a medical rehabilitation doctor. This model has been evaluated through focused group discussion by physiotherapists. And they gave positive responses to this proposed model.

  1. Gender differences in exercise dependence and eating disorders in young adults: a path analysis of a conceptual model.

    PubMed

    Meulemans, Shelli; Pribis, Peter; Grajales, Tevni; Krivak, Gretchen

    2014-11-05

    The purpose of our study was to study the prevalence of exercise dependence (EXD) among college students and to investigate the role of EXD and gender on exercise behavior and eating disorders. Excessive exercise can become an addiction known as exercise dependence. In our population of 517 college students, 3.3% were at risk for EXD and 8% were at risk for an eating disorder. We used Path analysis the simplest case of Structural Equation Modeling (SEM) to investigate the role of EXD and exercise behavior on eating disorders. We observed a small direct effect from gender to eating disorders. In females we observed significant direct effect between exercise behavior (r = -0.17, p = 0.009) and EXD (r = 0.34, p < 0.001) on eating pathology. We also observed an indirect effect of exercise behavior on eating pathology (r = 0.16) through EXD (r = 0.48, r2 = 0.23, p < 0.001). In females the total variance of eating pathology explained by the SEM model was 9%. In males we observed a direct effect between EXD (r = 0.23, p < 0.001) on eating pathology. We also observed indirect effect of exercise behavior on eating pathology (r = 0.11) through EXD (r = 0.49, r2 = 0.24, p < 0.001). In males the total variance of eating pathology explained by the SEM model was 5%.

  2. Connecting people with cancer to physical activity and exercise programs: a pathway to create accessibility and engagement.

    PubMed

    Mina, D Santa; Sabiston, C M; Au, D; Fong, A J; Capozzi, L C; Langelier, D; Chasen, M; Chiarotto, J; Tomasone, J R; Jones, J M; Chang, E; Culos-Reed, S N

    2018-04-01

    Recent guidelines concerning exercise for people with cancer provide evidence-based direction for exercise assessment and prescription for clinicians and their patients. Although the guidelines promote exercise integration into clinical care for people with cancer, they do not support strategies for bridging the guidelines with related resources or programs. Exercise program accessibility remains a challenge in implementing the guidelines, but that challenge might be mitigated with conceptual frameworks ("pathways") that connect patients with exercise-related resources. In the present paper, we describe a pathway model and related resources that were developed by an expert panel of practitioners and researchers in the field of exercise and rehabilitation in oncology and that support the transition from health care practitioner to exercise programs or services for people with cancer. The model acknowledges the nuanced distinctions between research and exercise programming, as well as physical activity promotion, that, depending on the available programming in the local community or region, might influence practitioner use. Furthermore, the pathway identifies and provides examples of processes for referral, screening, medical clearance, and programming for people after a cancer diagnosis. The pathway supports the implementation of exercise guidelines and should serve as a model of enhanced care delivery to increase the health and well-being of people with cancer.

  3. Connecting people with cancer to physical activity and exercise programs: a pathway to create accessibility and engagement

    PubMed Central

    Mina, D. Santa; Sabiston, C.M.; Au, D.; Fong, A.J.; Capozzi, L.C.; Langelier, D.; Chasen, M.; Chiarotto, J.; Tomasone, J.R.; Jones, J.M.; Chang, E.; Culos-Reed, S.N.

    2018-01-01

    Recent guidelines concerning exercise for people with cancer provide evidence-based direction for exercise assessment and prescription for clinicians and their patients. Although the guidelines promote exercise integration into clinical care for people with cancer, they do not support strategies for bridging the guidelines with related resources or programs. Exercise program accessibility remains a challenge in implementing the guidelines, but that challenge might be mitigated with conceptual frameworks (“pathways”) that connect patients with exercise-related resources. In the present paper, we describe a pathway model and related resources that were developed by an expert panel of practitioners and researchers in the field of exercise and rehabilitation in oncology and that support the transition from health care practitioner to exercise programs or services for people with cancer. The model acknowledges the nuanced distinctions between research and exercise programming, as well as physical activity promotion, that, depending on the available programming in the local community or region, might influence practitioner use. Furthermore, the pathway identifies and provides examples of processes for referral, screening, medical clearance, and programming for people after a cancer diagnosis. The pathway supports the implementation of exercise guidelines and should serve as a model of enhanced care delivery to increase the health and well-being of people with cancer. PMID:29719431

  4. Prediction of exercise in patients across various stages of bariatric surgery: a comparison of the merits of the theory of reasoned action versus the theory of planned behavior.

    PubMed

    Hunt, Hillary R; Gross, Alan M

    2009-11-01

    Obesity is a world-wide health concern approaching epidemic proportions. Successful long-term treatment involves a combination of bariatric surgery, diet, and exercise. Social cognitive models, such as the Theory of Reasoned Action (TRA) and the Theory of Planned Behavior (TPB), are among the most commonly tested theories utilized in the prediction of exercise. As exercise is not a completely volitional behavior, it is hypothesized that the TPB is a superior theoretical model for the prediction of exercise intentions and behavior. This study tested validity of the TPB in a sample of bariatric patients and further validated its improvement over the TRA in predicting exercise adherence at different operative stages. Results generally confirmed research hypotheses. Superiority of the TPB model was validated in this sample of bariatric patients, and Perceived Behavioral Control emerged as the single-best predictor of both exercise intentions and self-reported behavior. Finally, results suggested that both subjective norms and attitudes toward exercise played a larger role in the prediction of intention and behavior than previously reported.

  5. Biomechanical Modeling of the Deadlift Exercise to Improve the Efficacy of Resistive Exercise Microgravity Countermeasures

    NASA Technical Reports Server (NTRS)

    Jagodnik, K. M.; Thompson, W. K.; Gallo, C. A.; DeWitt, J. K.; Funk, J. H.; Funk, N. W.; Perusek, G. P.; Sheehan, C. C.; Lewandowski, B. E.

    2016-01-01

    During long-duration spaceflight missions, astronauts exposure to microgravity without adequate countermeasures can result in losses of muscular strength and endurance, as well as loss of bone mass. As a countermeasure to this challenge, astronauts engage in resistive exercise during spaceflight to maintain their musculoskeletal function. The Hybrid Ultimate Lifting Kit (HULK) has been designed as a prototype exercise device for an exploration-class vehicle; the HULK features a much smaller footprint than previous devices such as the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS), which makes the HULK suitable for extended spaceflight missions in vehicles with limited volume. As current ISS exercise countermeasure equipment represents an improvement over previous generations of such devices, the ARED is being employed as a benchmark of functional performance. This project involves the development of a biomechanical model of the deadlift exercise, and is novel in that it is the first exercise analyzed in this context to include the upper limbs in the loading path, in contrast to the squat, single-leg squat, and heel raise exercises also being modeled by our team. OpenSim software is employed to develop these biomechanical models of humans performing resistive exercises to assess and improve the new exercise device designs. Analyses include determining differences in joint and muscle forces when using different loading strategies with the device, comparing and contrasting with the ARED benchmark, and determining whether the loading is sufficient to maintain musculoskeletal health. During data collection, the number of repetitions, load, cadence, stance, and grip width are controlled in order to facilitate comparisons between loading configurations. To date, data have been collected for two human subjects performing the deadlift exercise on the HULK device using two different loading conditions. Recorded data include motion capture, electromyography (EMG), ground reaction forces, device load cell data, photos and videos, and anthropometric data. Work is ongoing to perform biomechanical analyses including inverse kinematics and inverse dynamics to compare different versions of the deadlift model in order to determine which provides an appropriate level of detail to study this exercise. This work is supported by the National Space Biomedical Research Institute through NCC 9-58.

  6. Investigating human skeletal muscle physiology with unilateral exercise models: when one limb is more powerful than two.

    PubMed

    MacInnis, Martin J; McGlory, Chris; Gibala, Martin J; Phillips, Stuart M

    2017-06-01

    Direct sampling of human skeletal muscle using the needle biopsy technique can facilitate insight into the biochemical and histological responses resulting from changes in exercise or feeding. However, the muscle biopsy procedure is invasive, and analyses are often expensive, which places pragmatic restraints on sample sizes. The unilateral exercise model can serve to increase statistical power and reduce the time and cost of a study. With this approach, 2 limbs of a participant are randomized to 1 of 2 treatments that can be applied almost concurrently or sequentially depending on the nature of the intervention. Similar to a typical repeated measures design, comparisons are made within participants, which increases statistical power by reducing the amount of between-person variability. A washout period is often unnecessary, reducing the time needed to complete the experiment and the influence of potential confounding variables such as habitual diet, activity, and sleep. Variations of the unilateral exercise model have been employed to investigate the influence of exercise, diet, and the interaction between the 2, on a wide range of variables including mitochondrial content, capillary density, and skeletal muscle hypertrophy. Like any model, unilateral exercise has some limitations: it cannot be used to study variables that potentially transfer across limbs, and it is generally limited to exercises that can be performed in pairs of treatments. Where appropriate, however, the unilateral exercise model can yield robust, well-controlled investigations of skeletal muscle responses to a wide range of interventions and conditions including exercise, dietary manipulation, and disuse or immobilization.

  7. Animal models of exercise and obesity.

    PubMed

    Kasper, Christine E

    2013-01-01

    Animal models have been invaluable in the conduct of nursing research for the past 40 years. This review will focus on specific animal models that can be used in nursing research to study the physiologic phenomena of exercise and obesity when the use of human subjects is either scientifically premature or inappropriate because of the need for sampling tissue or the conduct of longitudinal studies of aging. There exists an extensive body of literature reporting the experimental use of various animal models, in both exercise science and the study of the mechanisms of obesity. Many of these studies are focused on the molecular and genetic mechanisms of organ system adaptation and plasticity in response to exercise, obesity, or both. However, this review will narrowly focus on the models useful to nursing research in the study of exercise in the clinical context of increasing performance and mobility, atrophy and bedrest, fatigue, and aging. Animal models of obesity focus on those that best approximate clinical pathology.

  8. Factors Associated with Exercise Motivation among African-American Men.

    PubMed

    Mohammed, Alana; Harrell, Jules P; Makambi, Kepher H; Campbell, Alfonso L; Sloan, Lloyd Ren; Carter-Nolan, Pamela L; Taylor, Teletia R

    2016-09-01

    The primary aims of this study were to: (1) characterize exercise stages of change among a sample of African-American men, (2) determine if exercise motivation was associated with self-reported exercise behavior, and (3) examine if groups of personal (i.e., age, BMI, income, educational attainment, and perceived health), psycho-social (i.e., exercise self-efficacy, personality type, social influence), and environmental factors (i.e., neighborhood safety) predicted stages of change for physical exercise among African-American men. One hundred seventy African-American male participants were recruited for this study (age: 47.63(10.23) years). Participants completed a self-report questionnaire assessing study variables. Multinomial logistic regression models were used to examine the association of exercise stages of change with an array of personal, psychosocial, and environmental factors. BMI, exercise self-efficacy, and nighttime neighborhood safety were entered as independent variables in the full model. BMI and exercise self-efficacy continued to be significant predictors of exercise stages of change in the full model. Obese men had a 9.24 greater odds of being in the action stage of change than in the maintenance stage. Also, men reporting greater exercise self-efficacy had lower odds of being in the lower stages of change categories (pre-preparation, preparation, and action) than in the maintenance stage. Our results confirmed that using an ecological framework explained more of the variance in exercise stages of change than any of the individual components alone. Information gleaned from this study could inform interventionists of the best ways to create tailored exercise programs for African-American men.

  9. Applying theory of planned behavior to predict exercise maintenance in sarcopenic elderly.

    PubMed

    Ahmad, Mohamad Hasnan; Shahar, Suzana; Teng, Nur Islami Mohd Fahmi; Manaf, Zahara Abdul; Sakian, Noor Ibrahim Mohd; Omar, Baharudin

    2014-01-01

    This study aimed to determine the factors associated with exercise behavior based on the theory of planned behavior (TPB) among the sarcopenic elderly people in Cheras, Kuala Lumpur. A total of 65 subjects with mean ages of 67.5±5.2 (men) and 66.1±5.1 (women) years participated in this study. Subjects were divided into two groups: 1) exercise group (n=34; 25 men, nine women); and 2) the control group (n=31; 22 men, nine women). Structural equation modeling, based on TPB components, was applied to determine specific factors that most contribute to and predict actual behavior toward exercise. Based on the TPB's model, attitude (β=0.60) and perceived behavioral control (β=0.24) were the major predictors of intention to exercise among men at the baseline. Among women, the subjective norm (β=0.82) was the major predictor of intention to perform the exercise at the baseline. After 12 weeks, attitude (men's, β=0.68; women's, β=0.24) and subjective norm (men's, β=0.12; women's, β=0.87) were the predictors of the intention to perform the exercise. "Feels healthier with exercise" was the specific factor to improve the intention to perform and to maintain exercise behavior in men (β=0.36) and women (β=0.49). "Not motivated to perform exercise" was the main barrier among men's intention to exercise. The intention to perform the exercise was able to predict actual behavior regarding exercise at the baseline and at 12 weeks of an intervention program. As a conclusion, TPB is a useful model to determine and to predict maintenance of exercise in the sarcopenic elderly.

  10. Hormetic effects by exercise on hippocampal neurogenesis with glucocorticoid signaling

    PubMed Central

    Okamoto, Masahiro; Yamamura, Yuhei; Liu, Yu-Fan; Min-Chul, Lee; Matsui, Takashi; Shima, Takeru; Soya, Mariko; Takahashi, Kanako; Soya, Shingo; McEwen, Bruce S.; Soya, Hideaki

    2015-01-01

    Abstract Exercise enhances adult hippocampal neurogenesis (AHN), although the exact nature of how this happens remains controversial. The beneficial effects of exercise vary depending upon the exercise condition, especially intensity. Most animal studies, however, have used wheel running, which only evaluates running distance (exercise volume) and does not consider intensity. In our rat model, we have found that exercise-induced neurogenesis varies depending on the intensity of the exercise and have found that exercise-enhanced neurogenesis is more pronounced with mild exercise than with moderate and/or intense exercise. This may be due, at least in part, to increased glucocorticoid (CORT) secretion. To test this hypothesis, we used our special exercise model in mice, with and without a stress response, based on the lactate threshold (LT) in which moderate exercise above the LT increases lactate and adrenocorticotropic hormone (ACTH) release, while mild exercise does not. Adult male C57BL/6J mice were subjected to two weeks of exercise training and AHN was measured with a 5-Bromo-2-deoxyuridine (BrdU) pre-injection and immunohistochemistry. The role of glucocorticoid signaling was examined using intrapertioneal injections of antagonists for the glucocorticoid receptor (GR), mifepristone, and the mineralocorticoid receptor (MR), spironolactone. We found that, while mild exercise increased AHN without elevating CORT blood levels, both MR and GR antagonists abolished mild-exercise-induced AHN, but did not affect AHN under intense exercise. This suggests a facilitative, permissive role of glucocorticoid and mineralocorticoid receptors in AHN during mild exercise (234/250)

  11. Does Stress Result in You Exercising Less? Or Does Exercising Result in You Being Less Stressed? Or Is It Both? Testing the Bi-directional Stress-Exercise Association at the Group and Person (N of 1) Level.

    PubMed

    Burg, Matthew M; Schwartz, Joseph E; Kronish, Ian M; Diaz, Keith M; Alcantara, Carmela; Duer-Hefele, Joan; Davidson, Karina W

    2017-12-01

    Psychosocial stress contributes to heart disease in part by adversely affecting maintenance of health behaviors, while exercise can reduce stress. Assessing the bi-directional relationship between stress and exercise has been limited by lack of real-time data and theoretical and statistical models. This lack may hinder efforts to promote exercise maintenance. We test the bi-directional relationship between stress and exercise using real-time data for the average person and the variability-individual differences-in this relationship. An observational study was conducted within a single cohort randomized controlled experiment. Healthy young adults, (n = 79) who reported only intermittent exercise, completed 12 months of stress monitoring by ecological momentary assessment (at the beginning of, end of, and during the day) and continuous activity monitoring by Fitbit. A random coefficients linear mixed model was used to predict end-of-day stress from the occurrence/non-occurrence of exercise that day; a logistic mixed model was used to predict the occurrence/non-occurrence of exercise from ratings of anticipated stress. Separate regression analyses were also performed for each participant. Sensitivity analysis tested all models, restricted to the first 180 days of observation (prior to randomization). We found a significant average inverse (i.e., negative) effect of exercise on stress and of stress on exercise. There was significant between-person variability. Of N = 69, exercise was associated with a stress reduction for 15, a stress increase for 2, and no change for the remainder. We also found that an increase in anticipated stress reported the previous night or that morning was associated with a significant 20-22% decrease (OR = 0.78-0.80) in the odds of exercising that day. Of N = 69, this increase in stress reduced the likelihood of exercise for 17, increased the odds for 1, and had no effect for the remainder. We were unable to identify psychosocial factors that moderate the individual differences in these effects. The relationship of stress to exercise can be uni- or bi-directional and varies from person to person. A precision medicine approach may improve exercise uptake.

  12. The role of exercise dependence for the relationship between exercise behavior and eating pathology: mediator or moderator?

    PubMed

    Cook, Brian J; Hausenblas, Heather A

    2008-05-01

    Our study examined the potential mediating or moderating effect of exercise dependence on the exercise-eating pathology relationship. Female university students (N = 330) completed Internet-based self-report measures of exercise behavior, exercise dependence, and eating pathology. Exercise dependence served as a mediator for the relationship between exercise and eating pathology. This unidirectional causal model suggests that an individual's pathological motivation or compulsion to exercise is the critical mediating component in the exercise-eating pathology relationship. The best target for removing the link between exercise behavior and eating pathology may be reformulating exercise dependence symptoms.

  13. Detection of Urine Metabolites in a Rat Model of Chronic Fatigue Syndrome before and after Exercise

    PubMed Central

    Shao, Changzhuan; Ren, Yiming; Wang, Zinan; Kang, Chenzhe

    2017-01-01

    Purpose. The aim of the present study was to elucidate the metabolic mechanisms associated with chronic fatigue syndrome (CFS) via an analysis of urine metabolites prior to and following exercise in a rat model. Methods. A rat model of CFS was established using restraint-stress, forced exercise, and crowded and noisy environments over a period of 4 weeks. Behavioral experiments were conducted in order to evaluate the model. Urine metabolites were analyzed via gas chromatography-mass spectrometry (GC-MS) in combination with multivariate statistical analysis before and after exercise. Results. A total of 20 metabolites were detected in CFS rats before and after exercise. Three metabolic pathways (TCA cycle; alanine, aspartate, and glutamate metabolism; steroid hormone biosynthesis) were significantly impacted before and after exercise, while sphingolipid metabolism alone exhibited significant alterations after exercise only. Conclusion. In addition to metabolic disturbances involving some energy substances, alterations in steroid hormone biosynthesis and sphingolipid metabolism were detected in CFS rats. Sphingosine and 21-hydroxypregnenolone may be key biomarkers of CFS, potentially offering evidence in support of immune dysfunction and hypothalamic-pituitary-adrenal (HPA) axis hypoactivity in patients with CFS. PMID:28421200

  14. A Sport and Exercise Psychology Perspective on Stress.

    ERIC Educational Resources Information Center

    Gill, Diane L.

    1994-01-01

    Introduces psychological perspectives on stress, noting conceptual models that guide sport and exercise psychology. After presenting key aspects of Lazarus' stress model, the paper reviews major lines of research related to stress within sport and exercise psychology. Lazarus suggests more information can be gained by considering emotion along…

  15. Characterization of the Rotating Exercise Quantification System (REQS), a novel Drosophila exercise quantification apparatus

    PubMed Central

    Watanabe, Louis Patrick

    2017-01-01

    Obesity is a disease that has reached epidemic proportions in the United States and has prompted international legislation in an attempt to curtail its prevalence. Despite the fact that one of the most prescribed treatment options for obesity is exercise, the genetic mechanisms underlying exercise response in individuals are still largely unknown. The fruit fly Drosophila melanogaster is a promising new model for studying exercise genetics. Currently, the lack of an accurate method to quantify the amount of exercise performed by the animals is limiting the utility of the Drosophila model for exercise genetics research. To address this limitation, we developed the Rotational Exercise Quantification System (REQS), a novel apparatus that is able to simultaneously induce exercise in flies while recording their activity levels. Thus, the REQS provides a method to standardize Drosophila exercise and ensure that all animals irrespective of genotype and sex experience the same level of exercise. Here, we provide a basic characterization of the REQS, validate its measurements using video-tracking technology, illustrate its potential use by presenting a comparison of two different exercise regimes, and demonstrate that it can be used to detect genotype-dependent variation in activity levels. PMID:29016615

  16. Characterization of the Rotating Exercise Quantification System (REQS), a novel Drosophila exercise quantification apparatus.

    PubMed

    Watanabe, Louis Patrick; Riddle, Nicole C

    2017-01-01

    Obesity is a disease that has reached epidemic proportions in the United States and has prompted international legislation in an attempt to curtail its prevalence. Despite the fact that one of the most prescribed treatment options for obesity is exercise, the genetic mechanisms underlying exercise response in individuals are still largely unknown. The fruit fly Drosophila melanogaster is a promising new model for studying exercise genetics. Currently, the lack of an accurate method to quantify the amount of exercise performed by the animals is limiting the utility of the Drosophila model for exercise genetics research. To address this limitation, we developed the Rotational Exercise Quantification System (REQS), a novel apparatus that is able to simultaneously induce exercise in flies while recording their activity levels. Thus, the REQS provides a method to standardize Drosophila exercise and ensure that all animals irrespective of genotype and sex experience the same level of exercise. Here, we provide a basic characterization of the REQS, validate its measurements using video-tracking technology, illustrate its potential use by presenting a comparison of two different exercise regimes, and demonstrate that it can be used to detect genotype-dependent variation in activity levels.

  17. Using built environment characteristics to predict walking for exercise

    PubMed Central

    Lovasi, Gina S; Moudon, Anne V; Pearson, Amber L; Hurvitz, Philip M; Larson, Eric B; Siscovick, David S; Berke, Ethan M; Lumley, Thomas; Psaty, Bruce M

    2008-01-01

    Background Environments conducive to walking may help people avoid sedentary lifestyles and associated diseases. Recent studies developed walkability models combining several built environment characteristics to optimally predict walking. Developing and testing such models with the same data could lead to overestimating one's ability to predict walking in an independent sample of the population. More accurate estimates of model fit can be obtained by splitting a single study population into training and validation sets (holdout approach) or through developing and evaluating models in different populations. We used these two approaches to test whether built environment characteristics near the home predict walking for exercise. Study participants lived in western Washington State and were adult members of a health maintenance organization. The physical activity data used in this study were collected by telephone interview and were selected for their relevance to cardiovascular disease. In order to limit confounding by prior health conditions, the sample was restricted to participants in good self-reported health and without a documented history of cardiovascular disease. Results For 1,608 participants meeting the inclusion criteria, the mean age was 64 years, 90 percent were white, 37 percent had a college degree, and 62 percent of participants reported that they walked for exercise. Single built environment characteristics, such as residential density or connectivity, did not significantly predict walking for exercise. Regression models using multiple built environment characteristics to predict walking were not successful at predicting walking for exercise in an independent population sample. In the validation set, none of the logistic models had a C-statistic confidence interval excluding the null value of 0.5, and none of the linear models explained more than one percent of the variance in time spent walking for exercise. We did not detect significant differences in walking for exercise among census areas or postal codes, which were used as proxies for neighborhoods. Conclusion None of the built environment characteristics significantly predicted walking for exercise, nor did combinations of these characteristics predict walking for exercise when tested using a holdout approach. These results reflect a lack of neighborhood-level variation in walking for exercise for the population studied. PMID:18312660

  18. Predictors of physical activity in persons with mental illness: Testing a social cognitive model.

    PubMed

    Zechner, Michelle R; Gill, Kenneth J

    2016-12-01

    This study examined whether the social cognitive theory (SCT) model can be used to explain the variance in physical exercise among persons with serious mental illnesses. A cross-sectional, correlational design was employed. Participants from community mental health centers and supported housing programs (N = 120) completed 9 measures on exercise, social support, self-efficacy, outcome expectations, barriers, and goal-setting. Hierarchical regression tested the relationship between self-report physical activity and SCT determinants while controlling for personal characteristics. The model explained 25% of the variance in exercise. Personal characteristics explained 18% of the variance in physical activity, SCT variables of social support, self-efficacy, outcome expectations, barriers, and goals were entered simultaneously, and they added an r2 change value of .07. Gender (β = -.316, p = .001) and Brief Symptom Inventory Depression subscale (β = -2.08, p < .040) contributed significantly to the prediction of exercise. In a separate stepwise multiple regression, we entered only SCT variables as potential predictors of exercise. Goal-setting was the single significant predictor, F(1, 118) = 13.59, p < .01), r2 = .10. SCT shows promise as an explanatory model of exercise in persons with mental illnesses. Goal-setting practices, self-efficacy, outcome expectations and social support from friends for exercise should be encouraged by psychiatric rehabilitation practitioners. People with more depressive symptoms and women exercise less. More work is needed on theoretical exploration of predictors of exercise. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Gender Differences in Exercise Dependence and Eating Disorders in Young Adults: A Path Analysis of a Conceptual Model

    PubMed Central

    Meulemans, Shelli; Pribis, Peter; Grajales, Tevni; Krivak, Gretchen

    2014-01-01

    The purpose of our study was to study the prevalence of exercise dependence (EXD) among college students and to investigate the role of EXD and gender on exercise behavior and eating disorders. Excessive exercise can become an addiction known as exercise dependence. In our population of 517 college students, 3.3% were at risk for EXD and 8% were at risk for an eating disorder. We used Path analysis the simplest case of Structural Equation Modeling (SEM) to investigate the role of EXD and exercise behavior on eating disorders. We observed a small direct effect from gender to eating disorders. In females we observed significant direct effect between exercise behavior (r = −0.17, p = 0.009) and EXD (r = 0.34, p < 0.001) on eating pathology. We also observed an indirect effect of exercise behavior on eating pathology (r = 0.16) through EXD (r = 0.48, r2 = 0.23, p < 0.001). In females the total variance of eating pathology explained by the SEM model was 9%. In males we observed a direct effect between EXD (r = 0.23, p < 0.001) on eating pathology. We also observed indirect effect of exercise behavior on eating pathology (r = 0.11) through EXD (r = 0.49, r2 = 0.24, p < 0.001). In males the total variance of eating pathology explained by the SEM model was 5%. PMID:25379689

  20. Resistance to Aerobic Exercise Training Causes Metabolic Dysfunction and Reveals Novel Exercise-Regulated Signaling Networks

    PubMed Central

    Lessard, Sarah J.; Rivas, Donato A.; Alves-Wagner, Ana B.; Hirshman, Michael F.; Gallagher, Iain J.; Constantin-Teodosiu, Dumitru; Atkins, Ryan; Greenhaff, Paul L.; Qi, Nathan R.; Gustafsson, Thomas; Fielding, Roger A.; Timmons, James A.; Britton, Steven L.; Koch, Lauren G.; Goodyear, Laurie J.

    2013-01-01

    Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are “exercise-resistant” and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-β signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease. PMID:23610057

  1. Exercise Performance and Corticospinal Excitability during Action Observation

    PubMed Central

    Wrightson, James G.; Twomey, Rosie; Smeeton, Nicholas J.

    2016-01-01

    Purpose: Observation of a model performing fast exercise improves simultaneous exercise performance; however, the precise mechanism underpinning this effect is unknown. The aim of the present study was to investigate whether the speed of the observed exercise influenced both upper body exercise performance and the activation of a cortical action observation network (AON). Method: In Experiment 1, 10 participants completed a 5 km time trial on an arm-crank ergometer whilst observing a blank screen (no-video) and a model performing exercise at both a typical (i.e., individual mean cadence during baseline time trial) and 15% faster than typical speed. In Experiment 2, 11 participants performed arm crank exercise whilst observing exercise at typical speed, 15% slower and 15% faster than typical speed. In Experiment 3, 11 participants observed the typical, slow and fast exercise, and a no-video, whilst corticospinal excitability was assessed using transcranial magnetic stimulation. Results: In Experiment 1, performance time decreased and mean power increased, during observation of the fast exercise compared to the no-video condition. In Experiment 2, cadence and power increased during observation of the fast exercise compared to the typical speed exercise but there was no effect of observation of slow exercise on exercise behavior. In Experiment 3, observation of exercise increased corticospinal excitability; however, there was no difference between the exercise speeds. Conclusion: Observation of fast exercise improves simultaneous upper-body exercise performance. However, because there was no effect of exercise speed on corticospinal excitability, these results suggest that these improvements are not solely due to changes in the activity of the AON. PMID:27014037

  2. Relationships among exercise beliefs, physical exercise, and subjective well-being: Evidence from Korean middle-aged adults.

    PubMed

    You, Sukkyung; Shin, Kyulee

    2017-12-01

    Physically active leisure plays a key role in successful aging. Exercise beliefs are one of the key predictors of exercise behavior. We used structural equation modeling to assess the plausibility of a conceptual model specifying hypothesized linkages among middle-aged adults' perceptions of (a) exercise beliefs, (b) physical exercise behavior, and (c) subjective well-being. Four hundred two adults in South Korea responded to survey questions designed to capture the above constructs. We found that physically active leisure participation leads to subjective well-being for both middle-aged men and women. However, men and women exercised for different reasons. Women exercised for the sake of their physical appearance and mental and emotional functioning, whereas men exercised for the sake of their social desirability and vulnerability to disease and aging. Based on our results, we suggest that men tend to show higher social face sensitivity, while women show more appearance management behavior. Based on these findings, we discussed the implications and future research directions.

  3. Validity of the Eating Attitude Test among Exercisers.

    PubMed

    Lane, Helen J; Lane, Andrew M; Matheson, Hilary

    2004-12-01

    Theory testing and construct measurement are inextricably linked. To date, no published research has looked at the factorial validity of an existing eating attitude inventory for use with exercisers. The Eating Attitude Test (EAT) is a 26-item measure that yields a single index of disordered eating attitudes. The original factor analysis showed three interrelated factors: Dieting behavior (13-items), oral control (7-items), and bulimia nervosa-food preoccupation (6-items). The primary purpose of the study was to examine the factorial validity of the EAT among a sample of exercisers. The second purpose was to investigate relationships between eating attitudes scores and selected psychological constructs. In stage one, 598 regular exercisers completed the EAT. Confirmatory factor analysis (CFA) was used to test the single-factor, a three-factor model, and a four-factor model, which distinguished bulimia from food pre-occupation. CFA of the single-factor model (RCFI = 0.66, RMSEA = 0.10), the three-factor-model (RCFI = 0.74; RMSEA = 0.09) showed poor model fit. There was marginal fit for the 4-factor model (RCFI = 0.91, RMSEA = 0.06). Results indicated five-items showed poor factor loadings. After these 5-items were discarded, the three models were re-analyzed. CFA results indicated that the single-factor model (RCFI = 0.76, RMSEA = 0.10) and three-factor model (RCFI = 0.82, RMSEA = 0.08) showed poor fit. CFA results for the four-factor model showed acceptable fit indices (RCFI = 0.98, RMSEA = 0.06). Stage two explored relationships between EAT scores, mood, self-esteem, and motivational indices toward exercise in terms of self-determination, enjoyment and competence. Correlation results indicated that depressed mood scores positively correlated with bulimia and dieting scores. Further, dieting was inversely related with self-determination toward exercising. Collectively, findings suggest that a 21-item four-factor model shows promising validity coefficients among exercise participants, and that future research is needed to investigate eating attitudes among samples of exercisers. Key PointsValidity of psychometric measures should be thoroughly investigated. Researchers should not assume that a scale validation on one sample will show the same validity coefficients in a different population.The Eating Attitude Test is a commonly used scale. The present study shows a revised 21-item scale was suitable for exercisers.Researchers using the Eating Attitude Test should use subscales of Dieting, Oral control, Food pre-occupation, and Bulimia.Future research should involve qualitative techniques and interview exercise participants to explore the nature of eating attitudes.

  4. The Effects of Exercise on Cognitive Recovery after Acquired Brain Injury in Animal Models: A Systematic Review

    PubMed Central

    Wogensen, Elise; Malá, Hana

    2015-01-01

    The objective of the present paper is to review the current status of exercise as a tool to promote cognitive rehabilitation after acquired brain injury (ABI) in animal model-based research. Searches were conducted on the PubMed, Scopus, and psycINFO databases in February 2014. Search strings used were: exercise (and) animal model (or) rodent (or) rat (and) traumatic brain injury (or) cerebral ischemia (or) brain irradiation. Studies were selected if they were (1) in English, (2) used adult animals subjected to acquired brain injury, (3) used exercise as an intervention tool after inflicted injury, (4) used exercise paradigms demanding movement of all extremities, (5) had exercise intervention effects that could be distinguished from other potential intervention effects, and (6) contained at least one measure of cognitive and/or emotional function. Out of 2308 hits, 22 publications fulfilled the criteria. The studies were examined relative to cognitive effects associated with three themes: exercise type (forced or voluntary), timing of exercise (early or late), and dose-related factors (intensity, duration, etc.). The studies indicate that exercise in many cases can promote cognitive recovery after brain injury. However, the optimal parameters to ensure cognitive rehabilitation efficacy still elude us, due to considerable methodological variations between studies. PMID:26509085

  5. [A study of factors influenced by self-efficacy for exercise among community-dwelling elderly men in urban areas].

    PubMed

    Takai, Itsushi

    2012-01-01

    It is important to promote self-efficacy for exercise for developing exercise habit. The purpose of this study was to investigate factors influenced by self-efficacy for exercise among community-dwelling elderly men in urban areas. The subjects were 69 elderly men (mean age of 74.2±2.0 SD) who had given approval for participation in the study. We examined the following factors: family situation, history of falls, frequency of going out, stage model of a change, self-efficacy for exercise, fall efficacy scale (FES), geriatric depression scale (GDS), subjective health, functional ability and motor function (5 m walking time, chair stand test-5times). Analysis of variance was used to assess a stage model of a change differences in self-efficacy for exercise and other measures. Correlation analysis and multiple regression analysis were performed to determine the relationships between self-efficacy for exercise and other measures. We found that self-efficacy of exercise, FES, GDS (p<0.01) and CST (p<0.05) vary depending on the stage model of change. Self-efficacy for exercise was found to correlate with psychological factors and functional ability (|r|=0.47-0.67). Multiple regression analysis revealed that the independent factors related to self-efficacy for exercise were FES and GDS. FES and GDS were found to be significant and independent predictors of self-efficacy for exercise in community-dwelling elderly men in urban areas. We should consider not only the approach based on behavioral science but also mental support for depression and fear of falling to promote exercise self-efficacy.

  6. Why don't you exercise? Development of the Amotivation Toward Exercise Scale among older inactive individuals.

    PubMed

    Vlachopoulos, Symeon P; Gigoudi, Maria A

    2008-07-01

    This article reports on the development and initial validation of the Amotivation Toward Exercise Scale (ATES), which reflects a taxonomy of older adults' reasons to refrain from exercise. Drawing on work by Pelletier, Dion, Tuson, and Green-Demers (1999) and Legault, Green-Demers, and Pelletier (2006), these dimensions were the outcome beliefs, capacity beliefs, effort beliefs, and value amotivation beliefs toward exercise. The results supported a 4-factor correlated model that fit the data better than either a unidimensional model or a 4-factor uncorrelated model or a hierarchical model with strong internal reliability for all the subscales. Evidence also emerged for the discriminant validity of the subscale scores. Furthermore, the predictive validity of the subscale scores was supported, and satisfactory measurement invariance was demonstrated across the calibration and validation samples, supporting the generalizability of the scale's measurement properties.

  7. The effects of exposure to muscular male models among men: exploring the moderating role of gym use and exercise motivation.

    PubMed

    Halliwell, Emma; Dittmar, Helga; Orsborn, Amber

    2007-09-01

    This study examines the effects of exposure to the muscular male body ideal on body-focused negative affect among male gym users and non-exercisers. As hypothesized, the impact of media exposure depended on men's exercise status. Non-exercisers (n = 58) reported greater body-focused negative affect after exposure to images of muscular male models than after neutral images (no model controls), whereas gym users (n = 58) showed a tendency for less body-focused negative affect after the model images than after the control images. Furthermore, the extent to which gym users were motivated to increase strength and muscularity moderated these exposure effects; men who reported stronger strength and muscularity exercise motivation reported a greater degree of self-enhancement after exposure to the muscular ideal. The findings are interpreted with respect to likely differences in motives for social comparisons.

  8. Promoting exercise behavior among Chinese youth with hearing loss: a randomized controlled trial based on the transtheoretical model.

    PubMed

    Si, Qi; Yu, Kehong; Cardinal, Bradley J; Lee, Hyo; Yan, Zi; Loprinzi, Paul D; Li, Fuzhong; Liu, Haiqun

    2011-12-01

    The transtheoretical model proposes that behavior change is experienced as a series of stages. Interventions tailored to these stages are most likely to be effective in progressing people through the model's hypothesized behavior change continuum. In this study, a stage-tailored, 12-week, exercise behavior intervention based on the transtheoretical model was conducted among a sample of 150 Chinese youth with hearing loss. Participants were randomized into an intervention or control group with all the core transtheoretical model constructs assessed pre- and post-intervention. Participants in the intervention group showed greater advances in their stage of exercise behavior change, decisional balance, and processes of change use compared to those in the control group. The intervention, however, was insufficient for increasing participants' self-efficacy for exercise behavior. The findings partially support the utility of the theory-based intervention for improving the exercise behavior of Chinese youth with hearing loss, while simultaneously helping to identify areas in need of improvement for future applications.

  9. Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing

    PubMed Central

    Arzani, Amirhossein; Les, Andrea S.; Dalman, Ronald L.; Shadden, Shawn C.

    2014-01-01

    SUMMARY Computational fluid dynamics modeling was used to investigate changes in blood transport topology between rest and exercise conditions in five patient-specific abdominal aortic aneurysm models. Magnetic resonance imaging was used to provide the vascular anatomy and necessary boundary conditions for simulating blood velocity and pressure fields inside each model. Finite-time Lyapunov exponent fields, and associated Lagrangian coherent structures, were computed from blood velocity data, and used to compare features of the transport topology between rest and exercise both mechanistically and qualitatively. A mix-norm and mix-variance measure based on fresh blood distribution throughout the aneurysm over time were implemented to quantitatively compare mixing between rest and exercise. Exercise conditions resulted in higher and more uniform mixing, and reduced the overall residence time in all aneurysms. Separated regions of recirculating flow were commonly observed in rest, and these regions were either reduced or removed by attached and unidirectional flow during exercise, or replaced with regional chaotic and transiently turbulent mixing, or persisted and even extended during exercise. The main factor that dictated the change in flow topology from rest to exercise was the behavior of the jet of blood penetrating into the aneurysm during systole. PMID:24493404

  10. Computational Modeling of Pathophysiologic Responses to Exercise in Fontan Patients

    PubMed Central

    Kung, Ethan; Perry, James C.; Davis, Christopher; Migliavacca, Francesco; Pennati, Giancarlo; Giardini, Alessandro; Hsia, Tain-Yen; Marsden, Alison

    2014-01-01

    Reduced exercise capacity is nearly universal among Fontan patients. Although many factors have emerged as possible contributors, the degree to which each impacts the overall hemodynamics is largely unknown. Computational modeling provides a means to test hypotheses of causes of exercise intolerance via precisely controlled virtual experiments and measurements. We quantified the physiological impacts of commonly encountered, clinically relevant dysfunctions introduced to the exercising Fontan system via a previously developed lumped-parameter model of Fontan exercise. Elevated pulmonary arterial pressure was observed in all cases of dysfunction, correlated with lowered cardiac output, and often mediated by elevated atrial pressure. Pulmonary vascular resistance was not the most significant factor affecting exercise performance as measured by cardiac output. In the absence of other dysfunctions, atrioventricular valve insufficiency alone had significant physiological impact, especially under exercise demands. The impact of isolated dysfunctions can be linearly summed to approximate the combined impact of several dysfunctions occurring in the same system. A single dominant cause of exercise intolerance was not identified, though several hypothesized dysfunctions each led to variable decreases in performance. Computational predictions of performance improvement associated with various interventions should be weighed against procedural risks and potential complications, contributing to improvements in routine patient management protocol. PMID:25260878

  11. Near-Infrared Monitoring of Model Chronic Compartment Syndrome In Exercising Skeletal Muscle

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Breit, G. A.; Gross, J. H.; Watenpaugh, D. E.; Chance, B.

    1995-01-01

    Chronic compartment syndrome (CCS) is characterized by muscle ischemia, usually in the anterior oompartment of the leg, caused by high intramuscular pressure during exercise. Dual-wave near-infrared (NIR) spectroscopy is an optical technique that allows noninvasive tracking of variations in muscle tissue oxygenation (Chance et al., 1988). We hypothesized that with a model CCS, muscle tissue oxygenation will show a greater decline during exercise and a slower recovery post-exercise than under normal conditions.

  12. The Study of Cognitive Change Process on Depression during Aerobic Exercises.

    PubMed

    Sadeghi, Kheirollah; Ahmadi, Seyed Mojtaba; Moghadam, Arash Parsa; Parvizifard, Aliakbar

    2017-04-01

    Several studies have shown that aerobic exercise is effective in treating the depression and improving the mental health. There are various theories which explains why aerobic exercise is effective in the treatment of depression and improve mental health, but there are limited studies to show how cognitive components and depression improve during aerobic exercises. The current study was carried out to investigate the cognitive change process during aerobic exercises in depressed students. This study was conducted through structural equation modeling; the study sample included 85 depressed students. Participants were selected through purposive sampling method. Beck Depression Inventory (BDI-II), Automatic Negative Thoughts (ATQ), and the Dysfunctional Attitude Scale (DAS) were used as the data collection instruments. The participants received eight sessions of aerobic exercise (three times a week). The obtained data was analysed by AMOS-18 & SPSS 18 software. The results showed that depression (p=0.001), automatic thoughts (ferquency p=0.413, beliefs p=0.676) and dysfunctional assumptions (p=0.219) reduce during aerobic exercise; however, it was only meaningful for the depression. The casual and consequential models were not fit to the data and partially and fully interactive models provided an adequate fit to the data. Fully interactive model provided the best fit of the data. It seems that aerobic exercise reduced cognitive components separately leading to reduce depression.

  13. Effects of exercise on tumor physiology and metabolism.

    PubMed

    Pedersen, Line; Christensen, Jesper Frank; Hojman, Pernille

    2015-01-01

    Exercise is a potent regulator of a range of physiological processes in most tissues. Solid epidemiological data show that exercise training can reduce disease risk and mortality for several cancer diagnoses, suggesting that exercise training may directly regulate tumor physiology and metabolism. Here, we review the body of literature describing exercise intervention studies performed in rodent tumor models and elaborate on potential mechanistic effects of exercise on tumor physiology. Exercise has been shown to reduce tumor incidence, tumor multiplicity, and tumor growth across numerous different transplantable, chemically induced or genetic tumor models. We propose 4 emerging mechanistic effects of exercise, including (1) vascularization and blood perfusion, (2) immune function, (3) tumor metabolism, and (4) muscle-to-cancer cross-talk, and discuss these in details. In conclusion, exercise training has the potential to be a beneficial and integrated component of cancer management, but has yet to fully elucidate its potential. Understanding the mechanistic effects of exercise on tumor physiology is warranted. Insight into these mechanistic effects is emerging, but experimental intervention studies are still needed to verify the cause-effect relationship between these mechanisms and the control of tumor growth.

  14. It Takes One to Know One: A Class Exercise in Mental Models

    ERIC Educational Resources Information Center

    Wilson, Theresa

    2014-01-01

    An active learning class exercise is presented that gives students the personal experience of the decision-making limitations of mental models. This innovative exercise was shown to increase student learning through greater understanding of the concept and higher retention of knowledge. The results suggest that student critical thinking skills…

  15. Exercices de grammaire et travail de groupe (Grammar Exercises and Group Work)

    ERIC Educational Resources Information Center

    Eluerd, Roland

    1977-01-01

    A discussion of pedagogical models and modes of communication as these apply to the adaptation of grammar exercises to group work. The model used is the small homogeneous group. Various types of exercises are suggested and the relevance of this procedure to communication is discussed. (Text is in French.) (AMH)

  16. Application of the transtheoretical model: exercise behavior in Korean adults with metabolic syndrome.

    PubMed

    Kim, Chun-Ja; Kim, Bom-Taeck; Chae, Sun-Mi

    2010-01-01

    Although regular exercise has been recommended to reduce the risk of cardiovascular disease (CVD) among people with metabolic syndrome, little information is available about psychobehavioral strategies in this population. The purpose of this study was to identify the stages, processes of change, decisional balance, and self-efficacy of exercise behavior and to determine the significant predictors explaining regular exercise behavior in adults with metabolic syndrome. This descriptive, cross-sectional survey design enrolled a convenience sample of 210 people with metabolic syndrome at a university hospital in South Korea. Descriptive statistics were used to analyze demographic characteristics, metabolic syndrome risk factors, and transtheoretical model-related variables. A multivariate logistic regression analysis was used to determine the most important predictors of regular exercise stages. Action and maintenance stages comprised 51.9% of regular exercise stages, whereas 48.1% of non-regular exercise stages were precontemplation, contemplation, and preparation stages. Adults with regular exercise stages displayed increased high-density lipoprotein cholesterol level, were more likely to use consciousness raising, self-reevaluation, and self-liberation strategies, and were less likely to evaluate the merits/disadvantages of exercise, compared with those in non-regular exercise stages. In this study of regular exercise behavior and transtheoretical model-related variables, consciousness raising, self-reevaluation, and self-liberation were associated with a positive effect on regular exercise behavior in adults with metabolic syndrome. Our findings could be used to develop strategies and interventions to maintain regular exercise behavior directed at Korean adults with metabolic syndrome to reduce CVD risk. Further prospective intervention studies are needed to investigate the effect of regular exercise program on the prevention and/or reduction of CVD risk among this population. Health care providers, especially nurses, are optimally positioned to help their clients initiate and maintain regular exercise behavior in clinical and community settings.

  17. Effects of aquatic exercises in a rat model of brainstem demyelination with ethidium bromide on the beam walking test.

    PubMed

    Nassar, Cíntia Cristina Souza; Bondan, Eduardo Fernandes; Alouche, Sandra Regina

    2009-09-01

    Multiple sclerosis is a demyelinating disease of the central nervous system associated with varied levels of disability. The impact of early physiotherapeutic interventions in the disease progression is unknown. We used an experimental model of demyelination with the gliotoxic agent ethidium bromide and early aquatic exercises to evaluate the motor performance of the animals. We quantified the number of footsteps and errors during the beam walking test. The demyelinated animals walked fewer steps with a greater number of errors than the control group. The demyelinated animals that performed aquatic exercises presented a better motor performance than those that did not exercise. Therefore aquatic exercising was beneficial to the motor performance of rats in this experimental model of demyelination.

  18. W' expenditure and reconstitution during severe intensity constant power exercise: mechanistic insight into the determinants of W'.

    PubMed

    Broxterman, Ryan M; Skiba, Phillip F; Craig, Jesse C; Wilcox, Samuel L; Ade, Carl J; Barstow, Thomas J

    2016-10-01

    The sustainable duration of severe intensity exercise is well-predicted by critical power (CP) and the curvature constant (W'). The development of the W'BAL model allows for the pattern of W' expenditure and reconstitution to be characterized and this model has been applied to intermittent exercise protocols. The purpose of this investigation was to assess the influence of relaxation phase duration and exercise intensity on W' reconstitution during dynamic constant power severe intensity exercise. Six men (24.6 ± 0.9 years, height: 173.5 ± 1.9 cm, body mass: 78.9 ± 5.6 kg) performed severe intensity dynamic handgrip exercise to task failure using 50% and 20% duty cycles. The W'BAL model was fit to each exercise test and the time constant for W' reconstitution (τW') was determined. The τW' was significantly longer for the 50% duty cycle (1640 ± 262 sec) than the 20% duty cycle (863 ± 84 sec, P = 0.02). Additionally, the relationship between τW' and CP was well described as an exponential decay (r(2) = 0.90, P < 0.0001). In conclusion, the W'BAL model is able to characterize the expenditure and reconstitution of W' across the contraction-relaxation cycles comprising severe intensity constant power handgrip exercise. Moreover, the reconstitution of W' during constant power severe intensity exercise is influenced by the relative exercise intensity, the duration of relaxation between contractions, and CP. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  19. Aerobic exercise regulates blood lipid and insulin resistance via the toll‑like receptor 4‑mediated extracellular signal‑regulated kinases/AMP‑activated protein kinases signaling pathway.

    PubMed

    Wang, Mei; Li, Sen; Wang, Fubaihui; Zou, Jinhui; Zhang, Yanfeng

    2018-06-01

    Diabetes mellitus is a complicated metabolic disease with symptoms of hyperglycemia, insulin resistance, chronic damage and dysfunction of tissues, and metabolic syndrome for insufficient insulin production. Evidence has indicated that exercise treatments are essential in the progression of type‑ІІ diabetes mellitus, and affect insulin resistance and activity of islet β‑cells. In the present study, the efficacy and signaling mechanism of aerobic exercise on blood lipids and insulin resistance were investigated in the progression of type‑ІІ diabetes mellitus. Body weight, glucose metabolism and insulin serum levels were investigated in mouse models of type‑ІІ diabetes mellitus following experienced aerobic exercise. Expression levels of inflammatory factors, interleukin (IL)‑6, high‑sensitivity C‑reactive protein, tumor necrosis factor‑α and leucocyte differentiation antigens, soluble CD40 ligand in the serum were analyzed in the experimental mice. In addition, expression levels of toll‑like receptor 4 (TLR‑4) were analyzed in the liver cells of experimental mice. Changes of oxidative stress indicators, including reactive oxygen species, superoxide dismutase, glutathione and catalase were examined in the liver cells of experimental mice treated by aerobic exercise. Expression levels and activity of extracellular signal‑regulated kinases (ERK) and AMP‑activated protein kinase (AMPK) signaling pathways were investigated in the liver cells of mouse models of type‑ІІ diabetes mellitus after undergoing aerobic exercise. Aerobic exercise decreased the expression levels of inflammatory factors in the serum of mouse models of type‑ІІ diabetes mellitus. The results indicated that aerobic exercise downregulated oxidative stress indicators in liver cells from mouse models of type‑ІІ diabetes mellitus. In addition, the ERK and AMPK signaling pathways were inactivated by aerobic exercise in liver cells in mouse models of type‑ІІ diabetes mellitus. The activity of ERK and AMPK, and the function of islet β‑cells were observed to be improved in experimental mice treated with aerobic exercise. Furthermore, blood lipid metabolism and insulin resistance were improved by treatment with aerobic exercise. Body weight and glucose concentration of serology was markedly improved in mouse models of type‑ІІ diabetes mellitus. Furthermore, TLR‑4 inhibition markedly promoted ERK and AMPK expression levels and activity. Thus, these results indicate that aerobic exercise may improve blood lipid metabolism, insulin resistance and glucose plasma concentration in mouse models of type‑ІІ diabetes mellitus. Thus indicating aerobic exercise is beneficial for improvement of blood lipid and insulin resistance via the TLR‑4‑mediated ERK/AMPK signaling pathway in the progression of type‑ІІ diabetes mellitus.

  20. [Confirmative study of a French version of the Exercise Dependence Scale-revised with a French population].

    PubMed

    Allegre, B; Therme, P

    2008-10-01

    Since the first writings on excessive exercise, there has been an increased interest in exercise dependence. One of the major consequences of this increased interest has been the development of several definitions and measures of exercise dependence. The work of Veale [Does primary exercise dependence really exist? In: Annet J, Cripps B, Steinberg H, editors. Exercise addiction: Motivation for participation in sport and exercise.Leicester, UK: Br Psychol Soc; 1995. p. 1-5.] provides an advance for the definition and measure of exercise dependence. These studies have adapted the DSM-IV criteria for substance dependence to measure exercise dependence. The Exercise Dependence Scale-Revised is based on these diagnostic criteria, which are: tolerance; withdrawal effects; intention effect; lack of control; time; reductions in other activities; continuance. Confirmatory factor analyses of EDS-R provided support to present a measurement model (21 items loaded in seven factors) of EDS-R (Comparative Fit Index=0.97; Root mean Square Error of Approximation=0.05; Tucker-Lewis Index=0.96). The aim of this study was to examine the psychometric properties of a French version of the EDS-R [Factorial validity and psychometric examination of the exercise dependence scale-revised. Meas Phys Educ Exerc Sci 2004;8(4):183-201.] to test the stability of the seven-factor model of the original version with a French population. A total of 516 half-marathoners ranged in age from 17 to 74 years old (Mean age=39.02 years, ET=10.64), with 402 men (77.9%) and 114 women (22.1%) participated in the study. The principal component analysis results in a six-factor structure, which accounts for 68.60% of the total variance. Because principal component analysis presents a six-factor structure differing from the original seven-factor structure, two models were tested, using confirmatory factor analysis. The first model is the seven-factor model of the original version of the EDS-R and the second is the model produced by the principal component analysis. The results of confirmatory factor analysis presented the original model (with a seven-factor structure) as a good model and fit indices were good (X(2)/ddl=2.89, Root Mean Square Error of Approximation (RMSEA)=0.061, Expected Cross Validation Index (ECVI)=1.20, Goodness-of-Fit Index (GFI)=0.92, Comparative Fit Index (CFI)=0.94, Standardized Root Mean Square (SRMS)=0.048). These results showed that the French version of EDS-R has an identical factor structure to the original. Therefore, the French version of EDS-R was an acceptable scale to measure exercise dependence and can be used on a French population.

  1. Factors Influencing Amount of Weekly Exercise Time in Colorectal Cancer Survivors.

    PubMed

    Chou, Yun-Jen; Lai, Yeur-Hur; Lin, Been-Ren; Liang, Jin-Tung; Shun, Shiow-Ching

    Performing regular exercise of at least 150 minutes weekly has benefits for colorectal cancer survivors. However, barriers inhibit these survivors from performing regular exercise. The aim of this study was to explore exercise behaviors and significant factors influencing weekly exercise time of more than 150 minutes in colorectal cancer survivors. A cross-sectional study design was used to recruit participants in Taiwan. Guided by the ecological model of health behavior, exercise barriers were assessed including intrapersonal, interpersonal, and environment-related barriers. A multiple logistic regression was used to explore the factors associated with the amount of weekly exercise. Among 321 survivors, 57.0% of them had weekly exercise times of more than 150 minutes. The results identified multiple levels of significant factors related to weekly exercise times including intrapersonal factors (occupational status, functional status, pain, interest in exercise, and beliefs about the importance of exercise) and exercise barriers related to environmental factors (lack of time and bad weather). No interpersonal factors were found to be significant. Colorectal cancer survivors experienced low levels of physical and psychological distress. Multiple levels of significant factors related to exercise time including intrapersonal factors as well as exercise barriers related to environmental factors should be considered. Healthcare providers should discuss with their patients how to perform exercise programs; the discussion should address multiple levels of the ecological model such as any pain problems, functional status, employment status, and time limitations, as well as community environment.

  2. Theoretical framework to study exercise motivation for breast cancer risk reduction.

    PubMed

    Wood, Maureen E

    2008-01-01

    To identify an appropriate theoretical framework to study exercise motivation for breast cancer risk reduction among high-risk women. An extensive review of the literature was conducted to gather relevant information pertaining to the Health Promotion Model, self-determination theory, social cognitive theory, Health Belief Model, Transtheoretical Model, theory of planned behavior, and protection motivation theory. An iterative approach was used to summarize the literature related to exercise motivation within each theoretical framework. Protection motivation theory could be used to examine the effects of perceived risk and self-efficacy in motivating women to exercise to facilitate health-related behavioral change. Evidence-based research within a chosen theoretical model can aid practitioners when making practical recommendations to reduce breast cancer risk.

  3. Effects of artificial gravity on the cardiovascular system: Computational approach

    NASA Astrophysics Data System (ADS)

    Diaz Artiles, Ana; Heldt, Thomas; Young, Laurence R.

    2016-09-01

    Artificial gravity has been suggested as a multisystem countermeasure against the negative effects of weightlessness. However, many questions regarding the appropriate configuration are still unanswered, including optimal g-level, angular velocity, gravity gradient, and exercise protocol. Mathematical models can provide unique insight into these questions, particularly when experimental data is very expensive or difficult to obtain. In this research effort, a cardiovascular lumped-parameter model is developed to simulate the short-term transient hemodynamic response to artificial gravity exposure combined with ergometer exercise, using a bicycle mounted on a short-radius centrifuge. The model is thoroughly described and preliminary simulations are conducted to show the model capabilities and potential applications. The model consists of 21 compartments (including systemic circulation, pulmonary circulation, and a cardiac model), and it also includes the rapid cardiovascular control systems (arterial baroreflex and cardiopulmonary reflex). In addition, the pressure gradient resulting from short-radius centrifugation is captured in the model using hydrostatic pressure sources located at each compartment. The model also includes the cardiovascular effects resulting from exercise such as the muscle pump effect. An initial set of artificial gravity simulations were implemented using the Massachusetts Institute of Technology (MIT) Compact-Radius Centrifuge (CRC) configuration. Three centripetal acceleration (artificial gravity) levels were chosen: 1 g, 1.2 g, and 1.4 g, referenced to the subject's feet. Each simulation lasted 15.5 minutes and included a baseline period, the spin-up process, the ergometer exercise period (5 minutes of ergometer exercise at 30 W with a simulated pedal cadence of 60 RPM), and the spin-down process. Results showed that the cardiovascular model is able to predict the cardiovascular dynamics during gravity changes, as well as the expected steady-state cardiovascular behavior during sustained artificial gravity and exercise. Further validation of the model was performed using experimental data from the combined exercise and artificial gravity experiments conducted on the MIT CRC, and these results will be presented separately in future publications. This unique computational framework can be used to simulate a variety of centrifuge configuration and exercise intensities to improve understanding and inform decisions about future implementation of artificial gravity in space.

  4. Applying theory of planned behavior to predict exercise maintenance in sarcopenic elderly

    PubMed Central

    Ahmad, Mohamad Hasnan; Shahar, Suzana; Teng, Nur Islami Mohd Fahmi; Manaf, Zahara Abdul; Sakian, Noor Ibrahim Mohd; Omar, Baharudin

    2014-01-01

    This study aimed to determine the factors associated with exercise behavior based on the theory of planned behavior (TPB) among the sarcopenic elderly people in Cheras, Kuala Lumpur. A total of 65 subjects with mean ages of 67.5±5.2 (men) and 66.1±5.1 (women) years participated in this study. Subjects were divided into two groups: 1) exercise group (n=34; 25 men, nine women); and 2) the control group (n=31; 22 men, nine women). Structural equation modeling, based on TPB components, was applied to determine specific factors that most contribute to and predict actual behavior toward exercise. Based on the TPB’s model, attitude (β=0.60) and perceived behavioral control (β=0.24) were the major predictors of intention to exercise among men at the baseline. Among women, the subjective norm (β=0.82) was the major predictor of intention to perform the exercise at the baseline. After 12 weeks, attitude (men’s, β=0.68; women’s, β=0.24) and subjective norm (men’s, β=0.12; women’s, β=0.87) were the predictors of the intention to perform the exercise. “Feels healthier with exercise” was the specific factor to improve the intention to perform and to maintain exercise behavior in men (β=0.36) and women (β=0.49). “Not motivated to perform exercise” was the main barrier among men’s intention to exercise. The intention to perform the exercise was able to predict actual behavior regarding exercise at the baseline and at 12 weeks of an intervention program. As a conclusion, TPB is a useful model to determine and to predict maintenance of exercise in the sarcopenic elderly. PMID:25258524

  5. An Exercise in Modelling Using the US Standard Atmosphere

    ERIC Educational Resources Information Center

    LoPresto, Michael C.; Jacobs, Diane A.

    2007-01-01

    In this exercise the US Standard Atmosphere is used as "data" that a student is asked to model by deriving equations to reproduce it with the help of spreadsheet and graphing software. The exercise can be used as a laboratory or an independent study for a student of introductory physics to provide an introduction to scientific research…

  6. On the kinetics of anaerobic power

    PubMed Central

    2012-01-01

    Background This study investigated two different mathematical models for the kinetics of anaerobic power. Model 1 assumes that the work power is linear with the work rate, while Model 2 assumes a linear relationship between the alactic anaerobic power and the rate of change of the aerobic power. In order to test these models, a cross country skier ran with poles on a treadmill at different exercise intensities. The aerobic power, based on the measured oxygen uptake, was used as input to the models, whereas the simulated blood lactate concentration was compared with experimental results. Thereafter, the metabolic rate from phosphocreatine break down was calculated theoretically. Finally, the models were used to compare phosphocreatine break down during continuous and interval exercises. Results Good similarity was found between experimental and simulated blood lactate concentration during steady state exercise intensities. The measured blood lactate concentrations were lower than simulated for intensities above the lactate threshold, but higher than simulated during recovery after high intensity exercise when the simulated lactate concentration was averaged over the whole lactate space. This fit was improved when the simulated lactate concentration was separated into two compartments; muscles + internal organs and blood. Model 2 gave a better behavior of alactic energy than Model 1 when compared against invasive measurements presented in the literature. During continuous exercise, Model 2 showed that the alactic energy storage decreased with time, whereas Model 1 showed a minimum value when steady state aerobic conditions were achieved. During interval exercise the two models showed similar patterns of alactic energy. Conclusions The current study provides useful insight on the kinetics of anaerobic power. Overall, our data indicate that blood lactate levels can be accurately modeled during steady state, and suggests a linear relationship between the alactic anaerobic power and the rate of change of the aerobic power. PMID:22830586

  7. Exercise Activates p53 and Negatively Regulates IGF-1 Pathway in Epidermis within a Skin Cancer Model.

    PubMed

    Yu, Miao; King, Brenee; Ewert, Emily; Su, Xiaoyu; Mardiyati, Nur; Zhao, Zhihui; Wang, Weiqun

    2016-01-01

    Exercise has been previously reported to lower cancer risk through reducing circulating IGF-1 and IGF-1-dependent signaling in a mouse skin cancer model. This study aims to investigate the underlying mechanisms by which exercise may down-regulate the IGF-1 pathway via p53 and p53-related regulators in the skin epidermis. Female SENCAR mice were pair-fed an AIN-93 diet with or without 10-week treadmill exercise at 20 m/min, 60 min/day and 5 days/week. Animals were topically treated with TPA 2 hours before sacrifice and the target proteins in the epidermis were analyzed by both immunohistochemistry and Western blot. Under TPA or vehicle treatment, MDM2 expression was significantly reduced in exercised mice when compared with sedentary control. Meanwhile, p53 was significantly elevated. In addition, p53-transcriptioned proteins, i.e., p21, IGFBP-3, and PTEN, increased in response to exercise. There was a synergy effect between exercise and TPA on the decreased MDM2 and increased p53, but not p53-transcripted proteins. Taken together, exercise appeared to activate p53, resulting in enhanced expression of p21, IGFBP-3, and PTEN that might induce a negative regulation of IGF-1 pathway and thus contribute to the observed cancer prevention by exercise in this skin cancer model.

  8. An Undergraduate Laboratory Exercise for Studying Kinetics of Batch Crystallization

    ERIC Educational Resources Information Center

    Louhi­-Kultanen, Marjatta; Han, Bing; Nurkka, Annikka; Hatakka, Henry

    2015-01-01

    The present work describes an undergraduate laboratory exercise for improving understanding of fundamental phenomena in cooling crystallization. The exercise of nucleation and crystal growth kinetics supports learning of theories and models presented in lectures and calculation exercises. The teaching methodology incorporates precepts the…

  9. Understanding exercise behavior among Korean adults: a test of the transtheoretical model.

    PubMed

    Kim, YoungHo; Cardinal, Bradley J; Lee, JongYoung

    2006-01-01

    The purpose of this study was to examine the theorized association of Transtheoretical Model (TTM) of behavior change constructs by stage of change for exercise behavior among Korean adults. A total of 1,335 Korean adults were recruited and surveyed from the Nowon district, geographically located in northern Seoul. Four Korean-version questionnaires were used to identify the stage of exercise behavior and psychological attributes of adolescents. Data were analyzed by frequency analysis, MANOVA, correlation analysis, and discriminant analysis. Multivariate F tests indicated that behavioral and cognitive processes of change, exercise efficacy, and pros differentiated participants across the stages of exercise behavior. Furthermore, the findings revealed that adults' exercise behavior was significantly correlated with the TTM constructs and that overall classification accuracy across the stages of change was 50.6%. This study supports the internal and external validity of the TTM for explaining exercise behavior.

  10. Optimizing Cardiovascular Benefits of Exercise: A Review of Rodent Models

    PubMed Central

    Davis, Brittany; Moriguchi, Takeshi; Sumpio, Bauer

    2013-01-01

    Although research unanimously maintains that exercise can ward off cardiovascular disease (CVD), the optimal type, duration, intensity, and combination of forms are yet not clear. In our review of existing rodent-based studies on exercise and cardiovascular health, we attempt to find the optimal forms, intensities, and durations of exercise. Using Scopus and Medline, a literature review of English language comparative journal studies of cardiovascular benefits and exercise was performed. This review examines the existing literature on rodent models of aerobic, anaerobic, and power exercise and compares the benefits of various training forms, intensities, and durations. The rodent studies reviewed in this article correlate with reports on human subjects that suggest regular aerobic exercise can improve cardiac and vascular structure and function, as well as lipid profiles, and reduce the risk of CVD. Findings demonstrate an abundance of rodent-based aerobic studies, but a lack of anaerobic and power forms of exercise, as well as comparisons of these three components of exercise. Thus, further studies must be conducted to determine a truly optimal regimen for cardiovascular health. PMID:24436579

  11. Effect of intrinsic motivation on affective responses during and after exercise: latent curve model analysis.

    PubMed

    Shin, Myoungjin; Kim, Inwoo; Kwon, Sungho

    2014-12-01

    Understanding the relationship between affect and exercise is helpful in predicting human behavior with respect to exercise participation. The goals of the present study were to investigate individual differences in affective response during and after exercise and to identify the role of intrinsic motivation in affective changes. 30 active male college students (M age = 21.4 yr.) who regularly participated in sports activities volunteered to answer a questionnaire measuring intrinsic motivation toward running activities and performed a 20-min. straight running protocol at heavy intensity (about 70% of VO2max). Participants' affective responses were measured every 5 min. from the beginning of the run to 10 min. after completing the run. Latent curve model analysis indicated that individuals experienced different changes in affective state during exercise, moderated by intrinsic motivation. Higher intrinsic motivation was associated with more positive affect during exercise. There were no significant individual differences in the positive tendency of the participants' affective responses after exercise over time. Intrinsic motivation seems to facilitate positive feelings during exercise and encourages participation in exercise.

  12. Role of future scenarios in understanding deep uncertainty in long-term air quality management.

    PubMed

    Gamas, Julia; Dodder, Rebecca; Loughlin, Dan; Gage, Cynthia

    2015-11-01

    The environment and its interactions with human systems, whether economic, social, or political, are complex. Relevant drivers may disrupt system dynamics in unforeseen ways, making it difficult to predict future conditions. This kind of "deep uncertainty" presents a challenge to organizations faced with making decisions about the future, including those involved in air quality management. Scenario Planning is a structured process that involves the development of narratives describing alternative future states of the world, designed to differ with respect to the most critical and uncertain drivers. The resulting scenarios are then used to understand the consequences of those futures and to prepare for them with robust management strategies. We demonstrate a novel air quality management application of Scenario Planning. Through a series of workshops, important air quality drivers were identified. The most critical and uncertain drivers were found to be "technological development" and "change in societal paradigms." These drivers were used as a basis to develop four distinct scenario storylines. The energy and emissions implications of each storyline were then modeled using the MARKAL energy system model. NOx emissions were found to decrease for all scenarios, largely a response to existing air quality regulations, whereas SO2 emissions ranged from 12% greater to 7% lower than 2015 emissions levels. Future-year emissions differed considerably from one scenario to another, however, with key differentiating factors being transition to cleaner fuels and energy demand reductions. Application of scenarios in air quality management provides a structured means of sifting through and understanding the dynamics of the many complex driving forces affecting future air quality. Further, scenarios provide a means to identify opportunities and challenges for future air quality management, as well as a platform for testing the efficacy and robustness of particular management options across wide-ranging conditions.

  13. Prefrontal oxygenation and the acoustic startle eyeblink response during exercise: A test of the dual-mode model.

    PubMed

    Tempest, Gavin D; Parfitt, Gaynor

    2017-07-01

    The interplay between the prefrontal cortex and amygdala is proposed to explain the regulation of affective responses (pleasure/displeasure) during exercise as outlined in the dual-mode model. However, due to methodological limitations the dual-mode model has not been fully tested. In this study, prefrontal oxygenation (using near-infrared spectroscopy) and amygdala activity (reflected by eyeblink amplitude using acoustic startle methodology) were recorded during exercise standardized to metabolic processes: 80% of ventilatory threshold (below VT), at the VT, and at the respiratory compensation point (RCP). Self-reported tolerance of the intensity of exercise was assessed prior to, and affective responses recorded during exercise. The results revealed that, as the intensity of exercise became more challenging (from below VT to RCP), prefrontal oxygenation was larger and eyeblink amplitude and affective responses were reduced. Below VT and at VT, larger prefrontal oxygenation was associated with larger eyeblink amplitude. At the RCP, prefrontal oxygenation was greater in the left than right hemisphere, and eyeblink amplitude explained significant variance in affective responses (with prefrontal oxygenation) and self-reported tolerance. These findings highlight the role of the prefrontal cortex and potentially the amygdala in the regulation of affective (particularly negative) responses during exercise at physiologically challenging intensities (above VT). In addition, a psychophysiological basis of self-reported tolerance is indicated. This study provides some support of the dual-mode model and insight into the neural basis of affective responses during exercise. © 2017 Society for Psychophysiological Research.

  14. Effect of exercise on patient specific abdominal aortic aneurysm flow topology and mixing.

    PubMed

    Arzani, Amirhossein; Les, Andrea S; Dalman, Ronald L; Shadden, Shawn C

    2014-02-01

    Computational fluid dynamics modeling was used to investigate changes in blood transport topology between rest and exercise conditions in five patient-specific abdominal aortic aneurysm models. MRI was used to provide the vascular anatomy and necessary boundary conditions for simulating blood velocity and pressure fields inside each model. Finite-time Lyapunov exponent fields and associated Lagrangian coherent structures were computed from blood velocity data and were used to compare features of the transport topology between rest and exercise both mechanistically and qualitatively. A mix-norm and mix-variance measure based on fresh blood distribution throughout the aneurysm over time were implemented to quantitatively compare mixing between rest and exercise. Exercise conditions resulted in higher and more uniform mixing and reduced the overall residence time in all aneurysms. Separated regions of recirculating flow were commonly observed in rest, and these regions were either reduced or removed by attached and unidirectional flow during exercise, or replaced with regional chaotic and transiently turbulent mixing, or persisted and even extended during exercise. The main factor that dictated the change in flow topology from rest to exercise was the behavior of the jet of blood penetrating into the aneurysm during systole. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Prediction of Maximum Oxygen Uptake Using Both Exercise and Non-Exercise Data

    ERIC Educational Resources Information Center

    George, James D.; Paul, Samantha L.; Hyde, Annette; Bradshaw, Danielle I.; Vehrs, Pat R.; Hager, Ronald L.; Yanowitz, Frank G.

    2009-01-01

    This study sought to develop a regression model to predict maximal oxygen uptake (VO[subscript 2max]) based on submaximal treadmill exercise (EX) and non-exercise (N-EX) data involving 116 participants, ages 18-65 years. The EX data included the participants' self-selected treadmill speed (at a level grade) when exercise heart rate first reached…

  16. Using Social Network Analysis to Better Understand Compulsive Exercise Behavior Among a Sample of Sorority Members.

    PubMed

    Patterson, Megan S; Goodson, Patricia

    2017-05-01

    Compulsive exercise, a form of unhealthy exercise often associated with prioritizing exercise and feeling guilty when exercise is missed, is a common precursor to and symptom of eating disorders. College-aged women are at high risk of exercising compulsively compared with other groups. Social network analysis (SNA) is a theoretical perspective and methodology allowing researchers to observe the effects of relational dynamics on the behaviors of people. SNA was used to assess the relationship between compulsive exercise and body dissatisfaction, physical activity, and network variables. Descriptive statistics were conducted using SPSS, and quadratic assignment procedure (QAP) analyses were conducted using UCINET. QAP regression analysis revealed a statistically significant model (R 2 = .375, P < .0001) predicting compulsive exercise behavior. Physical activity, body dissatisfaction, and network variables were statistically significant predictor variables in the QAP regression model. In our sample, women who are connected to "important" or "powerful" people in their network are likely to have higher compulsive exercise scores. This result provides healthcare practitioners key target points for intervention within similar groups of women. For scholars researching eating disorders and associated behaviors, this study supports looking into group dynamics and network structure in conjunction with body dissatisfaction and exercise frequency.

  17. An activity recognition model using inertial sensor nodes in a wireless sensor network for frozen shoulder rehabilitation exercises.

    PubMed

    Lin, Hsueh-Chun; Chiang, Shu-Yin; Lee, Kai; Kan, Yao-Chiang

    2015-01-19

    This paper proposes a model for recognizing motions performed during rehabilitation exercises for frozen shoulder conditions. The model consists of wearable wireless sensor network (WSN) inertial sensor nodes, which were developed for this study, and enables the ubiquitous measurement of bodily motions. The model employs the back propagation neural network (BPNN) algorithm to compute motion data that are formed in the WSN packets; herein, six types of rehabilitation exercises were recognized. The packets sent by each node are converted into six components of acceleration and angular velocity according to three axes. Motor features such as basic acceleration, angular velocity, and derivative tilt angle were input into the training procedure of the BPNN algorithm. In measurements of thirteen volunteers, the accelerations and included angles of nodes were adopted from possible features to demonstrate the procedure. Five exercises involving simple swinging and stretching movements were recognized with an accuracy of 85%-95%; however, the accuracy with which exercises entailing spiral rotations were recognized approximately 60%. Thus, a characteristic space and enveloped spectrum improving derivative features were suggested to enable identifying customized parameters. Finally, a real-time monitoring interface was developed for practical implementation. The proposed model can be applied in ubiquitous healthcare self-management to recognize rehabilitation exercises.

  18. My mother told me: the roles of maternal messages, body image, and disordered eating in maladaptive exercise.

    PubMed

    Lease, Haidee J; Doley, Joanna R; Bond, Malcolm J

    2016-09-01

    The current study examined the relevance of familial environment (negative maternal messages) to the phenomenon of maladaptive (obligatory) exercise, defined as exercise fixation. Weight/shape concerns and exercise frequency were examined as potential mediators, evaluated both with and without eating disorder symptoms as a covariate. Self-report data comprising sociodemographic details and measures of parental weight messages, body image, obligatory exercise, and disordered eating symptoms were completed by 298 young female attendees of health and fitness centres. The frequency of negative maternal messages demonstrated significant associations with all of weight/shape concerns, exercise frequency, exercise fixation, and eating disorder symptoms. In the initial model, partial mediation of maternal messages to exercise fixation was evident as negative maternal messages continued to have a direct effect on exercise fixation. In the second model, with the inclusion of eating disorder symptoms as a covariate, this direct effect was maintained while mediation was no longer evident. The data provide further support for the association between disordered eating symptoms and maladaptive exercise, as defined by exercise fixation. Nevertheless, the importance of negative maternal messages as a key environmental enabler of exercise fixation has been demonstrated, even after the effects of weight/shape concerns and exercise frequency were accounted for. Clinically, addressing weight-related talk in the family home may reduce the incidence of problematic cognitions and behaviours associated with both maladaptive exercise and disordered eating symptoms.

  19. [pi] Backbonding in Carbonyl Complexes and Carbon-Oxygen Stretching Frequencies: A Molecular Modeling Exercise

    ERIC Educational Resources Information Center

    Montgomery, Craig D.

    2007-01-01

    An exercise is described that has illustrated the effect of various factors on [pi] backbonding to carbonyl ligands, where the students can view the molecular orbitals corresponding to the M-CO [pi] interaction as well as the competing interaction between the metal and co-ligands. The visual and hands-on nature of the modeling exercise has helped…

  20. Physical Exercise Restores the Generation of Newborn Neurons in an Animal Model of Chronic Epilepsy

    PubMed Central

    Mendonça, Fabricio N.; Santos, Luiz E. C.; Rodrigues, Antônio M.; Gomes da Silva, Sérgio; Arida, Ricardo M.; da Silveira, Gilcélio A.; Scorza, Fulvio A.; Almeida, Antônio-Carlos G.

    2017-01-01

    Neurogenesis impairment is associated with the chronic phase of the epilepsy in humans and also observed in animal models. Recent studies with animal models have shown that physical exercise is capable of improving neurogenesis in adult subjects, alleviating cognitive impairment and depression. Here, we show that there is a reduction in the generation of newborn granule cells in the dentate gyrus of adult rats subjected to a chronic model of epilepsy during the postnatal period of brain development. We also show that the physical exercise was capable to restore the number of newborn granule cells in this animals to the level observed in the control group. Notably, a larger number of newborn granule cells exhibiting morphological characteristics indicative of correct targeting into the hippocampal circuitry and the absence of basal dendrite projections was also observed in the epileptic animals subjected to physical exercise compared to the epileptic animals. The results described here could represent a positive interference of the physical exercise on the neurogenesis process in subjects with chronic epilepsy. The results may also help to reinterpret the benefits of the physical exercise in alleviating symptoms of depression and cognitive dysfunction. PMID:28298884

  1. High Intensity Aerobic Exercise Training Improves Deficits of Cardiovascular Autonomic Function in a Rat Model of Type 1 Diabetes Mellitus with Moderate Hyperglycemia

    PubMed Central

    Grisé, Kenneth N.; Olver, T. Dylan; McDonald, Matthew W.; Dey, Adwitia; Jiang, Mao; Lacefield, James C.; Shoemaker, J. Kevin; Noble, Earl G.; Melling, C. W. James

    2016-01-01

    Indices of cardiovascular autonomic neuropathy (CAN) in experimental models of Type 1 diabetes mellitus (T1DM) are often contrary to clinical data. Here, we investigated whether a relatable insulin-treated model of T1DM would induce deficits in cardiovascular (CV) autonomic function more reflective of clinical results and if exercise training could prevent those deficits. Sixty-four rats were divided into four groups: sedentary control (C), sedentary T1DM (D), control exercise (CX), or T1DM exercise (DX). Diabetes was induced via multiple low-dose injections of streptozotocin and blood glucose was maintained at moderate hyperglycemia (9–17 mM) through insulin supplementation. Exercise training consisted of daily treadmill running for 10 weeks. Compared to C, D had blunted baroreflex sensitivity, increased vascular sympathetic tone, increased serum neuropeptide Y (NPY), and decreased intrinsic heart rate. In contrast, DX differed from D in all measures of CAN (except NPY), including heart rate variability. These findings demonstrate that this T1DM model elicits deficits and exercise-mediated improvements to CV autonomic function which are reflective of clinical T1DM. PMID:26885531

  2. Mild aerobic exercise blocks elastin fiber fragmentation and aortic dilatation in a mouse model of Marfan syndrome associated aortic aneurysm.

    PubMed

    Gibson, Christine; Nielsen, Cory; Alex, Ramona; Cooper, Kimbal; Farney, Michael; Gaufin, Douglas; Cui, Jason Z; van Breemen, Cornelis; Broderick, Tom L; Vallejo-Elias, Johana; Esfandiarei, Mitra

    2017-07-01

    Regular low-impact physical activity is generally allowed in patients with Marfan syndrome, a connective tissue disorder caused by heterozygous mutations in the fibrillin-1 gene. However, being above average in height encourages young adults with this syndrome to engage in high-intensity contact sports, which unfortunately increases the risk for aortic aneurysm and rupture, the leading cause of death in Marfan syndrome. In this study, we investigated the effects of voluntary (cage-wheel) or forced (treadmill) aerobic exercise at different intensities on aortic function and structure in a mouse model of Marfan syndrome. Four-week-old Marfan and wild-type mice were subjected to voluntary and forced exercise regimens or sedentary lifestyle for 5 mo. Thoracic aortic tissue was isolated and subjected to structural and functional studies. Our data showed that exercise improved aortic wall structure and function in Marfan mice and that the beneficial effect was biphasic, with an optimum at low intensity exercise (55-65% V̇o 2max ) and tapering off at a higher intensity of exercise (85% V̇o 2max ). The mechanism underlying the reduced elastin fragmentation in Marfan mice involved reduction of the expression of matrix metalloproteinases 2 and 9 within the aortic wall. These findings present the first evidence of potential beneficial effects of mild exercise on the structural integrity of the aortic wall in Marfan syndrome associated aneurysm. Our finding that moderate, but not strenuous, exercise protects aortic structure and function in a mouse model of Marfan syndrome could have important implications for the medical care of young Marfan patients. NEW & NOTEWORTHY The present study provides conclusive scientific evidence that daily exercise can improve aortic health in a mouse model of Marfan syndrome associated aortic aneurysm, and it establishes the threshold for the exercise intensity beyond which exercise may not be as protective. These findings establish a platform for a new focus on promoting regular exercise in Marfan patients at an optimum intensity and create a paradigm shift in clinical care of Marfan patients suffering from aortic aneurysm complications. Copyright © 2017 the American Physiological Society.

  3. Predictors of Obligatory Exercise among Undergraduates: Differential Implications for Counseling College Men and Women

    ERIC Educational Resources Information Center

    Chalk, Holly M.; Miller, Sarah E.; Roach, Megan E.; Schultheis, Kara S.

    2013-01-01

    This study examined predictors of obligatory exercise in college undergraduates ("N"= 172). Regression models indicated that internalization of Western attitudes toward appearance predicted exercise fixation and commitment in women, whereas perceived pressure from dating partners predicted exercise commitment in men. Findings suggest…

  4. Protective effects of different exercise modalities in an Alzheimer's disease-like model.

    PubMed

    Özbeyli, Dilek; Sarı, Gülce; Özkan, Naziye; Karademir, Betül; Yüksel, Meral; Çilingir Kaya, Özlem Tuğçe; Kasımay Çakır, Özgür

    2017-06-15

    Our aim was to investigate the probable protective effects of aerobic, resistance and combined exercise methods on ovariectomy and d-galactose induced Alzheimer's Disease (AD)-like model. d-galactose (100mg/kg) or saline were administered intraperitoneally for 6 weeks to ovariectomized or sham-operated rats (n=8/group). Aerobic (AE), resistance (RE) and combined exercises (CE) (aerobic+resistance) were performed for 3 times a week for 6 weeks. Anxiety level and cognitive functions were evaluated via hole-board and object recognition tests. Brain myeloperoxidase, malondialdehyde, nitric oxide activity, lucigenin-enhanced chemiluminescence, glutathione and serum insulin like growth factor-I (IGF-I) assays were done. Hippocampal mRNA levels of nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), and amyloid precursor protein 695 (APP695) were measured. Amyloid Beta (Aβ), NGF, BDNF, IGF-I immunoreactive neurons were evaluated. Freezing time were increased in AD-like model and decreased back with AE (p<0.05). Deteriorated working memory in AD-like model was improved with all exercise types (p<0.05-0.001). Reduced glutathione levels in AD-like model were increased and increased malondialdehyde levels were reduced and serum IGF-I levels were increased by all exercises (p<0.05-0.001). Increased APP mRNA levels in AD-like model were decreased via CE (p<0.05). Elevated Aβ scores in AD-like model were decreased by RE and CE (p<0.01) in hippocampus and by all exercise types in cortex (p<0.05-0.01). Decreased cortical NGF immunocytochemical scores of AD-like model were increased by CE (p<0.05). Different exercise models may have protective effects in development stage of AD via reducing oxidative stress and Aβ scores, and by improving antioxidant system and brain plasticity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Exercise habit formation in new gym members: a longitudinal study.

    PubMed

    Kaushal, Navin; Rhodes, Ryan E

    2015-08-01

    Reasoned action approaches have primarily been applied to understand exercise behaviour for the past three decades, yet emerging findings in unconscious and Dual Process research show that behavior may also be predicted by automatic processes such as habit. The purpose of this study was to: (1) investigate the behavioral requirements for exercise habit formation, (2) how Dual Process approach predicts behaviour, and (3) what predicts habit by testing a model (Lally and Gardner in Health Psychol Rev 7:S137-S158, 2013). Participants (n = 111) were new gym members who completed surveys across 12 weeks. It was found that exercising for at least four bouts per week for 6 weeks was the minimum requirement to establish an exercise habit. Dual Process analysis using Linear Mixed Models (LMM) revealed habit and intention to be parallel predictors of exercise behavior in the trajectory analysis. Finally, the habit antecedent model in LLM showed that consistency (β = .21), low behavioral complexity (β = .19), environment (β = .17) and affective judgments (β = .13) all significantly (p < .05) predicted changes in habit formation over time. Trainers should keep exercises fun and simple for new clients and focus on consistency which could lead to habit formation in nearly 6 weeks.

  6. Compulsive exercise as a mediator between clinical perfectionism and eating pathology.

    PubMed

    Egan, Sarah J; Bodill, Kate; Watson, Hunna J; Valentine, Emily; Shu, Chloe; Hagger, Martin S

    2017-01-01

    The aim of this study was to examine whether compulsive exercise mediates the relationship between clinical perfectionism and eating pathology, based on the cognitive behavioral model of compulsive exercise. Participants were 368 adults who participated regularly in sport/exercise and completed online measures of perfectionism, compulsive exercise and eating disorders. In support of the well-established link between perfectionism and eating disorders, clinical perfectionism predicted eating pathology both directly and indirectly mediated by compulsive exercise. In addition, there were also direct effects of clinical perfectionism on the avoidance/rule-driven behavior, weight control, and mood improvement subscales of the Compulsive Exercise Test (CET). There was a direct effect of the CET weight control subscale on eating pathology and a negative direct effect of the CET subscale mood improvement on eating pathology. Findings lend support to the cognitive behavioral model of compulsive exercise in which clinical perfectionism is conceptualized as related to eating disorders directly and indirectly through the mediation of compulsive exercise. Compulsive exercise was also found to have a direct effect on eating disorders. Compulsive exercise may be a symptom of eating pathology, rather than an antecedent, however causal inferences could not be established given the correlational design. Longitudinal research using cross-lagged panel designs to examine a bidirectional relationship between compulsive exercise and eating disorders is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A Simple Exercise Reveals the Way Students Think about Scientific Modeling

    ERIC Educational Resources Information Center

    Ruebush, Laura; Sulikowski, Michelle; North, Simon

    2009-01-01

    Scientific modeling is an integral part of contemporary science, yet many students have little understanding of how models are developed, validated, and used to predict and explain phenomena. A simple modeling exercise led to significant gains in understanding key attributes of scientific modeling while revealing some stubborn misconceptions.…

  8. Squat Biomechanical Modeling Results from Exercising on the Hybrid Ultimate Lifting Kit

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen M.

    2016-01-01

    Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. The computational models currently under development utilize the OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from test subjects for estimation of muscle and joint loads. The subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. Test variables include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data is also obtained using free weights for a comparison to the resistively loaded exercise device. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. The focus of this presentation is to summarize the results from the full squat exercises across the different test variables.

  9. Effects of Exercise Intervention on Preventing Letrozole-Exposed Rats From Polycystic Ovary Syndrome.

    PubMed

    Cao, Si-Fan; Hu, Wen-Long; Wu, Min-Min; Jiang, Li-Yan

    2017-03-01

    Polycystic ovary syndrome (PCOS) is a prevalent endocrinological disorder in reproductive-age women and is often associated with a metabolic syndrome. To investigate whether exercise intervention promotes PCOS prevention, a rat model was used. Polycystic ovary syndrome was induced by letrozole administration, and animals presented with obesity, sex hormone disorder, no ovulation, large cystic follicles, and increasing fasting insulin (FINS) and leptin levels. The intervention was set at 3 different intensities of swimming exercise: low (0.5 h/d), moderate (1 h/d), and high (2 h/d), and compared with a PCOS model group (letrozole administration without exercise intervention) and a control group. The exercise intervention in the low-intensity group did not produce changes in obesity, testosterone, progesterone (P), and follicle-stimulating hormone (FSH) levels. Moderate-intensity exercise reduced body weight, retained ovulation, and P levels were increased but remained lower than those in the control group. The FSH levels were significantly higher, and FINS and leptin levels were lower than in the model group ( P < 0.05) but not in the control group. The high-intensity group demonstrated the greatest effect of PCOS prevention. Testosterone, luteinizing hormone, FINS, and leptin levels were significantly lower in the high-intensity group, and FSH and P levels were higher compared with the model group. These results suggest that high-intensity exercise intervention can effectively prevent PCOS development.

  10. Psychological determinants of exercise behavior of nursing students.

    PubMed

    Chan, Joanne Chung-Yan

    2014-01-01

    Though expected to be role models in health promotion, research has shown that nursing students often have suboptimal exercise behavior. This study explored the psychological factors associated with the exercise behavior of nursing students. A total of 195 first-year undergraduate nursing students completed a cross-sectional quantitative survey questionnaire, which included measures of their exercise behavior, the Physical Exercise Self-efficacy Scale, and the Exercise Barriers/Benefits Scale. The results showed that male students spent more time exercising and had higher exercise self-efficacy compared with female students, but there were no gender differences in the perceived barriers to or benefits of exercise. Fatigue brought on by exercising was the greatest perceived barrier to exercise, whereas increasing physical fitness and mental health were the greatest perceived benefits of exercise. Multiple linear regression showed that gender, exercise self-efficacy, perceived barriers to exercise, and perceived benefits of exercise were independent predictors of exercise behavior. Nurse educators can endeavor to promote exercise behavior among nursing students by highlighting the specific benefits of exercise, empowering students to overcome their perceived barriers to exercise, and enhancing students' exercise self-efficacy.

  11. Supplementing biomechanical modeling with EMG analysis

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Jagodnik, Kathleen; Crentsil, Lawton; Humphreys, Bradley; Funk, Justin; Gallo, Christopher; Thompson, William; DeWitt, John; Perusek, Gail

    2016-01-01

    It is well established that astronauts experience musculoskeletal deconditioning when exposed to microgravity environments for long periods of time. Spaceflight exercise is used to counteract these effects, and the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS) has been effective in minimizing musculoskeletal losses. However, the exercise devices of the new exploration vehicles will have requirements of limited mass, power and volume. Because of these limitations, there is a concern that the exercise devices will not be as effective as ARED in maintaining astronaut performance. Therefore, biomechanical modeling is being performed to provide insight on whether the small Multi-Purpose Crew Vehicle (MPCV) device, which utilizes a single-strap design, will provide sufficient physiological loading to maintain musculoskeletal performance. Electromyography (EMG) data are used to supplement the biomechanical model results and to explore differences in muscle activation patterns during exercises using different loading configurations.

  12. Biomechanical Modeling of Split-leg Squat and Heel Raise on the Hybrid Ultimate Lifting Kit (HULK)

    NASA Technical Reports Server (NTRS)

    Thompson, William K.; Gallo, Christopher A.; Lewandowski, Beth E.; Jagodnik, Kathleen M.; Humphreys, Brad; Funk, Justin; Funk, Nathan; Dewitt, John K.

    2016-01-01

    Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and musculoskeletal forces that occur during exercises performed on the prototype devices. Computational models currently use OpenSim software, an open source code for musculoskeletal modeling, with biomechanical input data from subjects for estimation of muscle and joint loads. Subjects are instrumented with reflective markers for motion capture data collection while exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device. Ground reaction force data is collected with force plates under the feet and device loading is recorded through load cells internal to the HULK. This data is input into the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the loads on the body. Multiple exercises are performed and evaluated during a test session such as a full squat, single leg squat, heel raise and dead lift. Variables for these exercises include applied device load, narrow or wide foot stance, slow or fast cadence and the harness or long bar interface between the test subject and the device. Data from free weights are compared to the resistively loaded exercise device. The focus of this presentation is to summarize the results from the single-leg squat and heel raise exercises performed during three sessions occurring in 2015. Differences in loading configuration, cadence and stance produce differences in kinematics, joint toques and force and muscle forces.

  13. Exercise identity as a risk factor for exercise dependence.

    PubMed

    Murray, Aja L; McKenzie, Karen; Newman, Emily; Brown, Erin

    2013-05-01

    The aim of the study was to explore the relationship between exercise identity and exercise dependence. We hypothesized that stronger exercise identities would be associated with greater odds of experiencing exercise dependence symptoms. Logistic regression was used to assess the extent of association between exercise identity and the risk of experiencing exercise dependence symptoms. Participants (101) were recruited online via sports clubs and social networking sites and were asked to complete online measures of exercise identity and exercise dependence. The overall model fit was a significant improvement on the baseline model, but only the exercise beliefs factor was significantly associated with the odds of dependence symptoms, with higher scores on the belief scale predicting greater odds of experiencing dependence symptoms. Exercise role identity, in contrast, was not significantly associated with odds of experiencing dependence symptoms. Per cent correct classification was 55.9% for asymptomatic and 88.2% for symptomatic individuals and the overall per cent correct classification was 77.5%. The relation between identity and dependence could represent both a fruitful research avenue and a potential therapeutic target for those experiencing dependence symptoms; although our findings only showed a relationship between one of the two factors of the exercise identity measure and dependence. Longitudinal research is required to examine the relationship between identity and dependence in the context of other variables to better understand why some individuals become exercise dependent whereas others do not. What is already known on this subject? Exercise identity has been identified as an important determinant of exercise behaviour and studies within the exercise identity framework have proven elucidative with respect to the psychological processes that may underpin commitment to exercise. It has separately been established that some individuals may become dependent on exercise and exhibit symptoms indicative of a behavioural addiction to exercise according in line with clinical definitions. What does this study add? Psychological explanation for exercise dependence based on escalation of normal exercise identity processes. Empirical investigation of identity-dependence link using a sample of physically active individuals. Comparison of two alternative structures for the exercise identity construct. © 2012 The British Psychological Society.

  14. Aerobic Exercise Alters Analgesia and Neurotrophin-3 Synthesis in an Animal Model of Chronic Widespread Pain

    PubMed Central

    Ryals, Janelle M.; Gajewski, Byron J.; Wright, Douglas E.

    2010-01-01

    Background Present literature and clinical practice provide strong support for the use of aerobic exercise in reducing pain and improving function for individuals with chronic musculoskeletal pain syndromes. However, the molecular basis for the positive actions of exercise remains poorly understood. Recent studies suggest that neurotrophin-3 (NT-3) may act in an analgesic fashion in various pain states. Objective The purpose of the present study was to examine the effects of moderate-intensity aerobic exercise on pain-like behavior and NT-3 in an animal model of widespread pain. Design This was a repeated-measures, observational cross-sectional study. Methods Forty female mice were injected with either normal (pH 7.2; n=20) or acidic (pH 4.0; n=20) saline in the gastrocnemius muscle to induce widespread hyperalgesia and exercised for 3 weeks. Cutaneous (von Frey monofilament) and muscular (forceps compression) mechanical sensitivity were assessed. Neurotrophin-3 was quantified in 2 hind-limb skeletal muscles for both messenger RNA (mRNA) and protein levels after exercise training. Data were analyzed with 2-factor analysis of variance for repeated measures (group × time). Results Moderate-intensity aerobic exercise reduced cutaneous and deep tissue hyperalgesia induced by acidic saline and stimulated NT-3 synthesis in skeletal muscle. The increase in NT-3 was more pronounced at the protein level compared with mRNA expression. In addition, the increase in NT-3 protein was significant in the gastrocnemius muscle but not in the soleus muscle, suggesting that exercise can preferentially target NT-3 synthesis in specific muscle types. Limitations Results are limited to animal models and cannot be generalized to chronic pain syndromes in humans. Conclusions This is the first study demonstrating the effect of exercise on deep tissue mechanical hyperalgesia in a rodent model of pain and providing a possible molecular basis for exercise training in reducing muscular pain. PMID:20338916

  15. Resistance exercise improves hippocampus-dependent memory

    PubMed Central

    Cassilhas, R.C.; Lee, K.S.; Venâncio, D.P.; Oliveira, M.G.M.; Tufik, S.; de Mello, M.T.

    2012-01-01

    It has been demonstrated that resistance exercise improves cognitive functions in humans. Thus, an animal model that mimics this phenomenon can be an important tool for studying the underlying neurophysiological mechanisms. Here, we tested if an animal model for resistance exercise was able to improve the performance in a hippocampus-dependent memory task. In addition, we also evaluated the level of insulin-like growth factor 1/insulin growth factor receptor (IGF-1/IGF-1R), which plays pleiotropic roles in the nervous system. Adult male Wistar rats were divided into three groups (N = 10 for each group): control, SHAM, and resistance exercise (RES). The RES group was submitted to 8 weeks of progressive resistance exercise in a vertical ladder apparatus, while the SHAM group was left in the same apparatus without exercising. Analysis of a cross-sectional area of the flexor digitorum longus muscle indicated that this training period was sufficient to cause muscle fiber hypertrophy. In a step-through passive avoidance task (PA), the RES group presented a longer latency than the other groups on the test day. We also observed an increase of 43 and 94% for systemic and hippocampal IGF-1 concentration, respectively, in the RES group compared to the others. A positive correlation was established between PA performance and systemic IGF-1 (r = 0.46, P < 0.05). Taken together, our data indicate that resistance exercise improves the hippocampus-dependent memory task with a concomitant increase of IGF-1 level in the rat model. This model can be further explored to better understand the effects of resistance exercise on brain functions. PMID:22930413

  16. Model testing for reliability and validity of the Outcome Expectations for Exercise Scale.

    PubMed

    Resnick, B; Zimmerman, S; Orwig, D; Furstenberg, A L; Magaziner, J

    2001-01-01

    Development of a reliable and valid measure of outcome expectations for exercise appropriate for older adults will help establish the relationship between outcome expectations and exercise. Once established, this measure can be used to facilitate the development of interventions to strengthen outcome expectations and improve adherence to regular exercise in older adults. Building on initial psychometrics of the Outcome Expectation for Exercise (OEE) Scale, the purpose of the current study was to use structural equation modeling to provide additional support for the reliability and validity of this measure. The OEE scale is a 9-item measure specifically focusing on the perceived consequences of exercise for older adults. The OEE scale was given to 191 residents in a continuing care retirement community. The mean age of the participants was 85 +/- 6.1 and the majority were female (76%), White (99%), and unmarried (76%). Using structural equation modeling, reliability was based on R2 values, and validity was based on a confirmatory factor analysis and path coefficients. There was continued evidence for reliability of the OEE based on R2 values ranging from .42 to .77, and validity with path coefficients ranging from .69 to .87, and evidence of model fit (X2 of 69, df = 27, p < .05, NFI = .98, RMSEA = .07). The evidence of reliability and validity of this measure has important implications for clinical work and research. The OEE scale can be used to identify older adults who have low outcome expectations for exercise, and interventions can then be implemented to strengthen these expectations and thereby improve exercise behavior.

  17. Facilitators and barriers to exercising among people with osteoarthritis: a phenomenological study.

    PubMed

    Petursdottir, Unnur; Arnadottir, Solveig A; Halldorsdottir, Sigridur

    2010-07-01

    Evidence indicates that regular exercise improves the well-being of individuals with osteoarthritis (OA). However, these individuals seem to exercise less frequently than the general population and seem to have limited adherence to exercising. The purposes of this study were: (1) to increase knowledge and understanding of the experience of exercising among individuals with OA and (2) to determine what they perceive as facilitators and barriers to exercising. This study used a qualitative method, based on the Vancouver School of doing phenomenology, involving purposive sampling of 12 individuals and 16 interviews. The participants, 9 women and 3 men, were 50 to 82 years of age. Extended information on exercise behavior among people with OA is presented in a model in which internal and external facilitators and barriers to exercising are delineated. Based on this model, a checklist is proposed for physical therapists' assessment of these factors. Internal factors include individual attributes and personal experience of exercising, whereas external factors include the social and physical environment. The participants expressed how each of these internal and external factors could act both as a facilitator and a barrier to exercise participation and the pattern of exercising; for example, the presence of pain was an important aspect concerning internal barriers to exercising, whereas the hope of less pain was one of the main facilitators. Increased knowledge and understanding of the factors influencing exercise behavior in people with OA can help physical therapists and other health care professionals support them in initiating and maintaining a healthy exercise routine and, consequently, achieving a better quality of life.

  18. Explaining adolescent exercise behavior change: a longitudinal application of the transtheoretical model.

    PubMed

    Nigg, C R

    2001-01-01

    The developmental decline and benefits of exercise are documented, however, relatively little is known about the mechanisms and motivations underlying adolescent exercise behavior This project investigates which variables drive exercise or are a consequence thereof, within the Transtheoretical Model (TTM). Baseline questionnaires (N = 819) were collected through 5 Canadian high schools. For this longitudinal investigation, all baseline participants were approached for a 3-year follow up. Follow-up questionnaire completers (n = 400: mean baseline age = 14.89, SD = 1.15, mean follow-up age = 17.62 years, SD = 1.18) were not different from noncompleters (n = 419) on all baseline variables, except for sex (54. 75% and 43. 68% females, respectively; p <. 003). Stages, processes, self-efficacy, pros and cons of exercise from the TTM, and self-reported exercise were assessed. Panel analyses revealed that although the directions of the relations were as hypothesized, the processes did not significantly lead to exercise or vice versa. As hypothesized, exercise leads to self-efficacy and pros and cons, showing that the TTM can serve as a framework to understand adolescent exercise behavior Future research needs to incorporate shorter assessment intervals and use larger samples to be able to look at adjacent stage transitions.

  19. Cigarette Taxes, Smoking-and Exercise?

    PubMed

    Conway, Karen Smith; Niles, David P

    2017-08-01

    This research provides the first in-depth analysis of the effect that increased cigarette taxes have on exercise behavior. Smoking may diminish the ability to exercise; individuals may also use exercise to compensate for the harmful health effects of smoking or to avoid gaining weight if they cut back. Our conceptual model highlights these and several other avenues for effect and reveals that the predicted effect of cigarette costs on exercise behavior is theoretically ambiguous. To investigate the relationship empirically, 1994-2012 data from the behavioral risk factor surveillance system are combined with state level cigarette tax rates and other state level variables. Several measures of both smoking and exercise behavior are created and estimated in reduced form models. Our results suggest that both smoking and exercise are reduced by cigarette taxes. However, the effects on exercise may be more complicated as we find that certain groups, such as young adults or those who have recently quit smoking, are affected differently. Our analyses also show that the responsiveness of both smoking and exercise behavior to cigarette costs is much smaller in the 2000s, an era of high-tax increases. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Effects of current physical activity on affective response to exercise: physical and social-cognitive mechanisms.

    PubMed

    Magnan, Renee E; Kwan, Bethany M; Bryan, Angela D

    2013-01-01

    Affective responses during exercise are often important determinants of exercise initiation and maintenance. Current physical activity may be one individual difference that is associated with the degree to which individuals have positive (or negative) affective experiences during exercise. The objective of this study was to explore physical and cognitive explanations of the relationship between current activity status (more versus less active) and affective response during a 30-minute bout of moderate-intensity exercise. Participants reported their current level of physical activity, exercise self-efficacy and affect during a 30-minute bout of moderate-intensity exercise. More active individuals experienced higher levels of positive affect and tranquillity and lower levels of negative affect and fatigue during exercise. Multivariate models for each affective state indicated separate processes through which physical activity may be associated with changes in affect during exercise. These models indicate that affect experienced during physical activity is related to the current activity level and these relationships can be partially explained by the physical and cognitive factors explored in this study. Recommendations for future research to elucidate whether positive affective response to physical activity improves as a function of becoming more active over time are discussed.

  1. Mind racing: The influence of exercise on long-term memory consolidation.

    PubMed

    McNerney, M Windy; Radvansky, Gabriel A

    2015-01-01

    Over time, regular exercise can lower the risk for age-related decline in cognition. However, the immediate effects of exercise on memory consolidation in younger adults have not been fully investigated. In two experiments, the effects of exercise were assessed on three different memory tasks. These included paired-associate learning, procedural learning and text memory. Results indicate that performance on procedural learning and situation model memory was increased with exercise, regardless of if participants exercised before or after encoding. No benefit of exercise was found for paired-associate learning. These findings suggest that intense exercise may benefit certain types of memory consolidation.

  2. The Moderated Mediating Effect of Self-Efficacy on Exercise Among Older Adults in an Online Bone Health Intervention Study: A Parallel Process Latent Growth Curve Model.

    PubMed

    Zhu, Shijun; Nahm, Eun-Shim; Resnick, Barbara; Friedmann, Erika; Brown, Clayton; Park, Jumin; Cheon, Jooyoung; Park, DoHwan

    2017-07-01

    This secondary data analyses of a longitudinal study assessed whether self-efficacy for exercise (SEE) mediated online intervention effects on exercise among older adults and whether age (50-64 vs. ≥65 years) moderated the mediation. Data were from an online bone health intervention study. Eight hundred sixty-six older adults (≥50 years) were randomized to three arms: Bone Power (n = 301), Bone Power Plus (n = 302), or Control (n = 263). Parallel process latent growth curve modeling (LGCM) was used to jointly model growths in SEE and in exercise and to assess the mediating effect of SEE on the effect of intervention on exercise. SEE was a significant mediator in 50- to 64-year-old adults (0.061, 95 BCI: 0.011, 0.163) but not in the ≥65 age group (-0.004, 95% BCI: -0.047, 0.025). Promotion of SEE is critical to improve exercise among 50- to 64-year-olds.

  3. Predicting Insulin Absorption and Glucose Uptake during Exercise in Type 1 Diabetes

    NASA Astrophysics Data System (ADS)

    Frank, Spencer; Hinshaw, Ling; Basu, Rita; Szeri, Andrew; Basu, Ananda

    2017-11-01

    A dose of insulin infused into subcutaneous tissue has been shown to absorb more quickly during exercise, potentially causing hypoglycemia in persons with type 1 diabetes. We develop a model that relates exercise-induced physiological changes to enhanced insulin-absorption (k) and glucose uptake (GU). Drawing on concepts of the microcirculation we derive a relationship that reveals that k and GU are mainly determined by two physiological parameters that characterize the tissue: the tissue perfusion rate (Q) and the capillary permeability surface area (PS). Independently measured values of Q and PS from the literature are used in the model to make predictions of k and GU. We compare these predictions to experimental observations of healthy and diabetic patients that are given a meal followed by rest or exercise. The experiments show that during exercise insulin concentrations significantly increase and that glucose levels fall rapidly. The model predictions are consistent with the experiments and show that increases in Q and PS directly increase k and GU. This mechanistic understanding provides a basis for handling exercise in control algorithms for an artificial pancreas. Now at University of British Columbia.

  4. BASINS Tutorials and Training

    EPA Pesticide Factsheets

    A series of lectures and exercises on how to use BASINS for water quality modeling and watershed assessment. The lectures follow sequentially. Companion exercises are provided for users to practice different BASINS water quality modeling techniques.

  5. The Critical Thinking Workout.

    ERIC Educational Resources Information Center

    Masters, Terry McDaniel

    1991-01-01

    Presents a critical thinking exercise program, modeled on a physical exercise workout, for elementary teachers to use in the classroom. It includes warm-up exercises, a more strenuous workout, and a cool-down period for the brain. (SM)

  6. Counseling through Physical Fitness and Exercise.

    ERIC Educational Resources Information Center

    Carlson, Jon

    1990-01-01

    Discusses health, emotional, cognitive, social, and behavioral benefits of physical exercise. Discusses applications of physical exercise and diet in counseling children. Concludes counselors need to develop physical fitness levels and diets for their clients to model. (ABL)

  7. Exploring the relationship between socioeconomic status, control beliefs and exercise behavior: a multiple mediator model.

    PubMed

    Murray, Terra C; Rodgers, Wendy M; Fraser, Shawn N

    2012-02-01

    The purpose of this study was to examine the relationship between control beliefs, socioeconomic status and exercise intentions and behavior. Specifically, we examined whether distal and proximal control beliefs mediated the association between socioeconomic status and exercise intentions and behavior. A one time, cross sectional mail out survey (N = 350) was conducted in a large urban Canadian city. Distal (i.e., personal constraints) and proximal (i.e., scheduling self-efficacy) control beliefs mediated the association between socioeconomic status and exercise, explaining approximately 30% of the variance. Proximal control beliefs (i.e., scheduling self-efficacy) partially mediated the association between socioeconomic status and intentions, with the models explaining approximately 50% of the variance. Compared to individuals with lower socioeconomic status, individuals with higher socioeconomic status reported more exercise and stronger intentions to exercise. This was at least partly because higher socioeconomic status respondents reported fewer barriers in their lives, and were more confident to cope with the scheduling demands of exercise.

  8. Saxagliptin Restores Vascular Mitochondrial Exercise Response in the Goto-Kakizaki Rat

    PubMed Central

    Keller, Amy C.; Knaub, Leslie A.; Miller, Matthew W.; Birdsey, Nicholas; Klemm, Dwight J.

    2015-01-01

    Abstract: Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPARγ coactivator 1α (PGC-1α), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg−1·d−1). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1α, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature. PMID:25264749

  9. Saxagliptin restores vascular mitochondrial exercise response in the Goto-Kakizaki rat.

    PubMed

    Keller, Amy C; Knaub, Leslie A; Miller, Matthew W; Birdsey, Nicholas; Klemm, Dwight J; Reusch, Jane E B

    2015-02-01

    Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPARγ coactivator 1α (PGC-1α), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg·d). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1α, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature.

  10. Cardiometabolic and reproductive benefits of early dietary energy restriction and voluntary exercise in an obese PCOS-prone rodent model.

    PubMed

    Diane, Abdoulaye; Kupreeva, Maria; Borthwick, Faye; Proctor, Spencer D; Pierce, W David; Vine, Donna F

    2015-09-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine-metabolic disorders in women of reproductive age characterized by ovulatory dysfunction, hyperandrogenism and cardiometabolic risk. The overweight-obese PCOS phenotype appears to have exacerbated reproductive dysfunction and cardiometabolic risk. In overweight-obese adult women with PCOS, exercise and energy restricted diets have shown limited and inconsistent effects on both cardiometabolic indices and reproductive outcomes. We hypothesized that an early lifestyle intervention involving exercise and dietary energy restriction to prevent or reduce the propensity for adiposity would modulate reproductive indices and cardiometabolic risk in an obese PCOS-prone rodent model. Weanling obese PCOS-prone and Lean-Control JCR:LA-cp rodents were given a chow diet ad libitum or an energy-restricted diet combined with or without voluntary exercise (4  h/day) for 8 weeks. Dietary energy restriction and exercise lowered total body weight gain and body fat mass by 30% compared to free-fed sedentary or exercising obese PCOS-prone animals (P<0.01). Energy restriction induced an increase in exercise intensity compared to free-feeding plus exercise conditions. Energy restriction and exercise decreased fasting plasma triglycerides and apoB48 concentrations in obese PCOS-prone animals compared to free-fed and exercise or sedentary groups. The energy restriction and exercise combination in obese PCOS-prone animals significantly increased plasma sex-hormone binding globulin, hypothalamic cocaine-and amphetamine-regulated transcript (CART) and Kisspeptin mRNA expression to levels of the Lean-Control group, and this was further associated with improvements in estrous cyclicity. The combination of exercise and dietary energy restriction when initiated in early life exerts beneficial effects on cardiometabolic and reproductive indices in an obese PCOS-prone rodent model, and this may be associated with normalization of the hypothalamic neuropeptides, Kisspeptin and CART. © 2015 Society for Endocrinology.

  11. An Improved Dynamic Model for the Respiratory Response to Exercise

    PubMed Central

    Serna, Leidy Y.; Mañanas, Miguel A.; Hernández, Alher M.; Rabinovich, Roberto A.

    2018-01-01

    Respiratory system modeling has been extensively studied in steady-state conditions to simulate sleep disorders, to predict its behavior under ventilatory diseases or stimuli and to simulate its interaction with mechanical ventilation. Nevertheless, the studies focused on the instantaneous response are limited, which restricts its application in clinical practice. The aim of this study is double: firstly, to analyze both dynamic and static responses of two known respiratory models under exercise stimuli by using an incremental exercise stimulus sequence (to analyze the model responses when step inputs are applied) and experimental data (to assess prediction capability of each model). Secondly, to propose changes in the models' structures to improve their transient and stationary responses. The versatility of the resulting model vs. the other two is shown according to the ability to simulate ventilatory stimuli, like exercise, with a proper regulation of the arterial blood gases, suitable constant times and a better adjustment to experimental data. The proposed model adjusts the breathing pattern every respiratory cycle using an optimization criterion based on minimization of work of breathing through regulation of respiratory frequency. PMID:29467674

  12. Modelling in vivo creatine/phosphocreatine in vitro reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise.

    PubMed

    Ydfors, Mia; Hughes, Meghan C; Laham, Robert; Schlattner, Uwe; Norrbom, Jessica; Perry, Christopher G R

    2016-06-01

    Mitochondrial respiratory sensitivity to ADP is thought to influence muscle fitness and is partly regulated by cytosolic-mitochondrial diffusion of ADP or phosphate shuttling via creatine/phosphocreatine (Cr/PCr) through mitochondrial creatine kinase (mtCK). Previous measurements of respiration in vitro with Cr (saturate mtCK) or without (ADP/ATP diffusion) show mixed responses of ADP sensitivity following acute exercise vs. less sensitivity after chronic exercise. In human muscle, modelling in vivo 'exercising' [Cr:PCr] during in vitro assessments revealed novel responses to exercise that differ from detections with or without Cr (±Cr). Acute exercise increased ADP sensitivity when measured without Cr but had no effect ±Cr or with +Cr:PCr, whereas chronic exercise increased sensitivity ±Cr but lowered sensitivity with +Cr:PCr despite increased markers of mitochondrial oxidative capacity. Controlling in vivo conditions during in vitro respiratory assessments reveals responses to exercise that differ from typical ±Cr comparisons and challenges our understanding of how exercise improves metabolic control in human muscle. Mitochondrial respiratory control by ADP (Kmapp ) is viewed as a critical regulator of muscle energy homeostasis. However, acute exercise increases, decreases or has no effect on Kmapp in human muscle, whereas chronic exercise surprisingly decreases sensitivity despite greater mitochondrial content. We hypothesized that modelling in vivo mitochondrial creatine kinase (mtCK)-dependent phosphate-shuttling conditions in vitro would reveal increased sensitivity (lower Kmapp ) after acute and chronic exercise. The Kmapp was determined in vitro with 20 mm Cr (+Cr), 0 mm Cr (-Cr) or 'in vivo exercising' 20 mm Cr/2.4 mm PCr (Cr:PCr) on vastus lateralis biopsies sampled from 11 men before, immediately after and 3 h after exercise on the first, fifth and ninth sessions over 3 weeks. Dynamic responses to acute exercise occurred throughout training, whereby the first session did not change Kmapp with in vivo Cr:PCr despite increases in -Cr. The fifth session decreased sensitivity with Cr:PCr or +Cr despite no change in -Cr. Chronic exercise increased sensitivity ±Cr in association with increased electron transport chain content (+33-62% complexes I-V), supporting classic proposals that link increased sensitivity to oxidative capacity. However, in vivo Cr:PCr reveals a perplexing decreased sensitivity, contrasting the increases seen ±Cr. Functional responses occurred without changes in fibre type or proteins regulating mitochondrial-cytosolic energy exchange (mtCK, VDAC and ANT). Despite the dynamic responses seen with ±Cr, modelling in vivo phosphate-shuttling conditions in vitro reveals that ADP sensitivity is unchanged after high-intensity exercise and is decreased after training. These findings challenge our understanding of how exercise regulates skeletal muscle energy homeostasis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  13. Biomechanical Modeling Analysis of Loads Configuration for Squat Exercise

    NASA Technical Reports Server (NTRS)

    Gallo, Christopher A.; Thompson, William K.; Lewandowski, Beth E.; Jagodnik, Kathleen; De Witt, John K.

    2017-01-01

    INTRODUCTION: Long duration space travel will expose astronauts to extended periods of reduced gravity. Since gravity is not present to assist loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft for travel to the Moon or to Mars is limited and therefore compact resistance exercise device prototypes are being developed. The Advanced Resistive Exercise Device (ARED) currently on the ISS is being used as a benchmark for the functional performance of these new devices. Biomechanical data collection and computational modeling aid the device design process by quantifying the joint torques and the musculoskeletal forces that occur during exercises performed on the prototype devices. METHODS The computational models currently under development utilize the OpenSim [1] software platform, consisting of open source code for musculoskeletal modeling, using biomechanical input data from test subjects for estimation of muscle and joint loads. The OpenSim Full Body Model [2] is used for all analyses. The model incorporates simplified wrap surfaces, a new knee model and updated lower body muscle parameters derived from cadaver measurements and magnetic resonance imaging of young adults. The upper body uses torque actuators at the lumbar and extremity joints. The test subjects who volunteer for this study are instrumented with reflective markers for motion capture data collection while performing squat exercising on the Hybrid Ultimate Lifting Kit (HULK) prototype device (ZIN Technologies, Middleburg Heights, OH). Ground reaction force data is collected with force plates under the feet, and device loading is recorded through load cells internal to the HULK. Test variables include the applied device load and the dual cable long bar or single cable T-bar interface between the test subject and the device. Data is also obtained using free weights with the identical loading for a comparison to the resistively loaded exercise device trials. The data drives the OpenSim biomechanical model, which has been scaled to match the anthropometrics of the test subject, to calculate the body loads. RESULTS Lower body kinematics, joint moments, joint forces and muscle forces are obtained from the OpenSim biomechanical analysis of the squat exercises under different loading conditions. Preliminary results from the model for the loading conditions will be presented as will hypotheses developed for follow on work.

  14. Predicting Athletes' Pre-Exercise Fluid Intake: A Theoretical Integration Approach.

    PubMed

    Li, Chunxiao; Sun, Feng-Hua; Zhang, Liancheng; Chan, Derwin King Chung

    2018-05-21

    Pre-exercise fluid intake is an important healthy behavior for maintaining athletes’ sports performances and health. However, athletes’ behavioral adherence to fluid intake and its underlying psychological mechanisms have not been investigated. This prospective study aimed to use a health psychology model that integrates the self-determination theory and the theory of planned behavior for understanding pre-exercise fluid intake among athletes. Participants ( n = 179) were athletes from college sport teams who completed surveys at two time points. Baseline (Time 1) assessment comprised psychological variables of the integrated model (i.e., autonomous and controlled motivation, attitude, subjective norm, perceived behavioral control, and intention) and fluid intake (i.e., behavior) was measured prospectively at one month (Time 2). Path analysis showed that the positive association between autonomous motivation and intention was mediated by subjective norm and perceived behavioral control. Controlled motivation positively predicted the subjective norm. Intentions positively predicted pre-exercise fluid intake behavior. Overall, the pattern of results was generally consistent with the integrated model, and it was suggested that athletes’ pre-exercise fluid intake behaviors were associated with the motivational and social cognitive factors of the model. The research findings could be informative for coaches and sport scientists to promote athletes’ pre-exercise fluid intake behaviors.

  15. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms

    PubMed Central

    Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony

    2015-01-01

    Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. PMID:26838314

  16. Does exercise habit strength moderate the relationship between emotional distress and short-term memory in Malaysian primary school children?

    PubMed

    Zainol, Nurul Ain; Hashim, Hairul Anuar

    2015-01-01

    We examined the moderating effects of exercise habit strength on the relationship between emotional distress and short-term memory in primary school children. The sample consisted of 165 primary school students (10-12 years old). Participants completed measures of emotional distress, exercise habit strength, and the Digit Span Test. Mid-year exam results were used as an indicator of academic performance. Structural equation modelling (SEM) was used to analyse the data. The results of SEM revealed an acceptable fit for the hypothesised model. Exercise habit was positively associated with short-term memory, and better short-term memory was associated with better academic performance. However, although an inverse relationship was found between emotional distress and short-term memory, a positive association was found between exercise habit strength and emotional distress. The findings indicate that exercise habit is positively associated with cognitive ability and mediates the negative effect of distress.

  17. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms.

    PubMed

    Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony

    2016-01-22

    Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. © 2016 American Heart Association, Inc.

  18. Operational evaluation of high-throughput community-based mass prophylaxis using Just-in-time training.

    PubMed

    Spitzer, James D; Hupert, Nathaniel; Duckart, Jonathan; Xiong, Wei

    2007-01-01

    Community-based mass prophylaxis is a core public health operational competency, but staffing needs may overwhelm the local trained health workforce. Just-in-time (JIT) training of emergency staff and computer modeling of workforce requirements represent two complementary approaches to address this logistical problem. Multnomah County, Oregon, conducted a high-throughput point of dispensing (POD) exercise to test JIT training and computer modeling to validate POD staffing estimates. The POD had 84% non-health-care worker staff and processed 500 patients per hour. Post-exercise modeling replicated observed staff utilization levels and queue formation, including development and amelioration of a large medical evaluation queue caused by lengthy processing times and understaffing in the first half-hour of the exercise. The exercise confirmed the feasibility of using JIT training for high-throughput antibiotic dispensing clinics staffed largely by nonmedical professionals. Patient processing times varied over the course of the exercise, with important implications for both staff reallocation and future POD modeling efforts. Overall underutilization of staff revealed the opportunity for greater efficiencies and even higher future throughputs.

  19. Blood pressure regulation X: what happens when the muscle pump is lost? Post-exercise hypotension and syncope.

    PubMed

    Halliwill, John R; Sieck, Dylan C; Romero, Steven A; Buck, Tahisha M; Ely, Matthew R

    2014-03-01

    Syncope which occurs suddenly in the setting of recovery from exercise, known as post-exercise syncope, represents a failure of integrative physiology during recovery from exercise. We estimate that between 50 and 80% of healthy individuals will develop pre-syncopal signs and symptoms if subjected to a 15-min head-up tilt following exercise. Post-exercise syncope is most often neurally mediated syncope during recovery from exercise, with a combination of factors associated with post-exercise hypotension and loss of the muscle pump contributing to the onset of the event. One can consider the initiating reduction in blood pressure as the tip of the proverbial iceberg. What is needed is a clear model of what lies under the surface; a model that puts the observational variations in context and provides a rational framework for developing strategic physical or pharmacological countermeasures to ultimately protect cerebral perfusion and avert loss of consciousness. This review summarizes the current mechanistic understanding of post-exercise syncope and attempts to categorize the variation of the physiological processes that arise in multiple exercise settings. Newer investigations into the basic integrative physiology of recovery from exercise provide insight into the mechanisms and potential interventions that could be developed as countermeasures against post-exercise syncope. While physical counter maneuvers designed to engage the muscle pump and augment venous return are often found to be beneficial in preventing a significant drop in blood pressure after exercise, countermeasures that target the respiratory pump and pharmacological countermeasures based on the involvement of histamine receptors show promise.

  20. Effectiveness of health education programs on exercise behavior among patients with heart disease: a systematic review and meta-analysis.

    PubMed

    Zhu, Li-Xia; Ho, Shuk-Ching; Wong, Thomas K S

    2013-11-01

    Regular exercise has been shown to be beneficial to patients with heart disease. Previous studies have indicated that health education can effectively increase participants' physical activity. However, no systematic review was conducted to evaluate the effectiveness of health education programs on changing exercise behavior among patients with heart disease. The aim of this study was to examine the effectiveness of health education programs on exercise behavior among heart disease patients. Potential studies were retrieved in the Cochrane Central Register of Controlled Trials, MEDLINE, CINAHL, EMbase, PsycINFO, the British Nursing Index and Archive, Science Direct, and ERIC via EBSCOhost. Meta-analysis was done using the random-effect model. Thirty-seven studies were identified. Only 12 studies delivered health education based on various theories/models. Twenty-eight studies were included in the meta-analyses. The results showed that health education had significantly positive effects on exercise adherence (risk ratio = 1.35 to 1.48), exercise duration (SMD = 0.25 to 0.69), exercise frequency (MD = 0.54 to 1.46 session/week), and exercise level (SMD = 0.25), while no significant effects were found on exercise energy expenditure and cognitive exercise behavior. Health education has overall positive effects on changing exercise behavior among heart disease patients. Few theoretical underpinning studies were conducted for changing exercise behavior among heart disease patients. The findings suggest that health education improves exercise behavior for heart disease patients. Health professionals should reinforce health education programs for them. © 2013 Chinese Cochrane Center, West China Hospital of Sichuan University and Wiley Publishing Asia Pty Ltd.

  1. Blood pressure regulation X: What happens when the muscle pump is lost? Post-exercise hypotension and syncope

    PubMed Central

    Halliwill, John R.; Sieck, Dylan C.; Romero, Steven A.; Buck, Tahisha M.; Ely, Matthew R.

    2013-01-01

    Syncope which occurs suddenly in the setting of recovery from exercise, known as post-exercise syncope, represents a failure of integrative physiology during recovery from exercise. We estimate that between 50 and 80% of healthy individuals will develop pre-syncopal signs and symptoms if subjected to a 15-min head-up tilt following exercise. Post-exercise syncope is most often neurally mediated syncope during recovery from exercise, with a combination of factors associated with post-exercise hypotension and loss of the muscle pump contributing to the onset of the event. One can consider the initiating reduction in blood pressure as the tip of the proverbial iceberg. What is needed is a clear model of what lies under the surface; a model that puts the observational variations in context and provides a rational framework for developing strategic physical or pharmacological countermeasures to ultimately protect cerebral perfusion and avert loss of consciousness. This review summarizes the current mechanistic understanding of post-exercise syncope and attempts to categorize the variation of the physiological processes that arise in multiple exercise settings. Newer investigations into the basic integrative physiology of recovery from exercise provide insight into the mechanisms and potential interventions that could be developed as countermeasures against post-exercise syncope. While physical counter maneuvers designed to engage the muscle pump and augment venous return are often found to be beneficial in preventing a significant drop in blood pressure after exercise, countermeasures that target the respiratory pump and pharmacological countermeasures based on the involvement of histamine receptors show promise. PMID:24197081

  2. Does vigorous exercise have a neuroprotective effect in Parkinson disease?

    PubMed Central

    2011-01-01

    Parkinson disease (PD) is progressive, with dementia and medication-refractory motor problems common reasons for late-stage nursing-home placement. Increasing evidence suggests that ongoing vigorous exercise/physical fitness may favorably influence this progression. Parkinsonian animal models reveal exercise-related protection from dopaminergic neurotoxins, apparently mediated by brain neurotrophic factors and neuroplasticity (predicted from in vitro studies). Similarly, exercise consistently improves cognition in animals, also linked to enhanced neuroplasticity and increased neurotrophic factor expression. In these animal models, immobilization has the opposite effect. Brain-derived neurotrophic factor (BDNF) may mediate at least some of this exercise benefit. In humans, exercise increases serum BDNF, and this is known to cross the blood–brain barrier. PD risk in humans is significantly reduced by midlife exercise, documented in large prospective studies. No studies have addressed whether exercise influences dementia risk in PD, but exercised patients with PD improve cognitive scores. Among seniors in general, exercise or physical fitness has not only been associated with better cognitive scores, but midlife exercise significantly reduces the later risk of both dementia and mild cognitive impairment. Finally, numerous studies in seniors with and without dementia have reported increased cerebral gray matter volumes associated with physical fitness or exercise. These findings have several implications for PD clinicians. 1) Ongoing vigorous exercise and physical fitness should be highly encouraged. 2) PD physical therapy programs should include structured, graduated fitness instruction and guidance for deconditioned patients with PD. 3) Levodopa and other forms of dopamine replenishment therapy should be utilized to achieve the maximum capability and motivation for patients to maintain fitness. PMID:21768599

  3. Factor structure and internal reliability of an exercise health belief model scale in a Mexican population.

    PubMed

    Villar, Oscar Armando Esparza-Del; Montañez-Alvarado, Priscila; Gutiérrez-Vega, Marisela; Carrillo-Saucedo, Irene Concepción; Gurrola-Peña, Gloria Margarita; Ruvalcaba-Romero, Norma Alicia; García-Sánchez, María Dolores; Ochoa-Alcaraz, Sergio Gabriel

    2017-03-01

    Mexico is one of the countries with the highest rates of overweight and obesity around the world, with 68.8% of men and 73% of women reporting both. This is a public health problem since there are several health related consequences of not exercising, like having cardiovascular diseases or some types of cancers. All of these problems can be prevented by promoting exercise, so it is important to evaluate models of health behaviors to achieve this goal. Among several models the Health Belief Model is one of the most studied models to promote health related behaviors. This study validates the first exercise scale based on the Health Belief Model (HBM) in Mexicans with the objective of studying and analyzing this model in Mexico. Items for the scale called the Exercise Health Belief Model Scale (EHBMS) were developed by a health research team, then the items were applied to a sample of 746 participants, male and female, from five cities in Mexico. The factor structure of the items was analyzed with an exploratory factor analysis and the internal reliability with Cronbach's alpha. The exploratory factor analysis reported the expected factor structure based in the HBM. The KMO index (0.92) and the Barlett's sphericity test (p < 0.01) indicated an adequate and normally distributed sample. Items had adequate factor loadings, ranging from 0.31 to 0.92, and the internal consistencies of the factors were also acceptable, with alpha values ranging from 0.67 to 0.91. The EHBMS is a validated scale that can be used to measure exercise based on the HBM in Mexican populations.

  4. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness?

    PubMed

    Gillen, Jenna B; Gibala, Martin J

    2014-03-01

    Growing research suggests that high-intensity interval training (HIIT) is a time-efficient exercise strategy to improve cardiorespiratory and metabolic health. "All out" HIIT models such as Wingate-type exercise are particularly effective, but this type of training may not be safe, tolerable or practical for many individuals. Recent studies, however, have revealed the potential for other models of HIIT, which may be more feasible but are still time-efficient, to stimulate adaptations similar to more demanding low-volume HIIT models and high-volume endurance-type training. As little as 3 HIIT sessions per week, involving ≤10 min of intense exercise within a time commitment of ≤30 min per session, including warm-up, recovery between intervals and cool down, has been shown to improve aerobic capacity, skeletal muscle oxidative capacity, exercise tolerance and markers of disease risk after only a few weeks in both healthy individuals and people with cardiometabolic disorders. Additional research is warranted, as studies conducted have been relatively short-term, with a limited number of measurements performed on small groups of subjects. However, given that "lack of time" remains one of the most commonly cited barriers to regular exercise participation, low-volume HIIT is a time-efficient exercise strategy that warrants consideration by health practitioners and fitness professionals.

  5. Improvement of Student Understanding of How Kinetic Data Facilitates the Determination of Amino Acid Catalytic Function through an Alkaline Phosphatase Structure/Mechanism Bioinformatics Exercise

    ERIC Educational Resources Information Center

    Grunwald, Sandra K.; Krueger, Katherine J.

    2008-01-01

    Laboratory exercises, which utilize alkaline phosphatase as a model enzyme, have been developed and used extensively in undergraduate biochemistry courses to illustrate enzyme steady-state kinetics. A bioinformatics laboratory exercise for the biochemistry laboratory, which complements the traditional alkaline phosphatase kinetics exercise, was…

  6. Patient Experiences of Swallowing Exercises After Head and Neck Cancer: A Qualitative Study Examining Barriers and Facilitators Using Behaviour Change Theory.

    PubMed

    Govender, Roganie; Wood, Caroline E; Taylor, Stuart A; Smith, Christina H; Barratt, Helen; Gardner, Benjamin

    2017-08-01

    Poor patient adherence to swallowing exercises is commonly reported in the dysphagia literature on patients treated for head and neck cancer. Establishing the effectiveness of exercise interventions for this population may be undermined by patient non-adherence. The purpose of this study was to explore the barriers and facilitators to exercise adherence from a patient perspective, and to determine the best strategies to reduce the barriers and enhance the facilitators. In-depth interviews were conducted on thirteen patients. We used a behaviour change framework and model [Theoretical domains framework and COM-B (Capability-opportunity-motivation-behaviour) model] to inform our interview schedule and structure our results, using a content analysis approach. The most frequent barrier identified was psychological capability. This was highlighted by patient reports of not clearly understanding reasons for the exercises, forgetting to do the exercises and not having a system to keep track. Other barriers included feeling overwhelmed by information at a difficult time (lack of automatic motivation) and pain and fatigue (lack of physical capability). Main facilitators included having social support from family and friends, the desire to prevent negative consequences such as long-term tube feeding (reflective motivation), having the skills to do the exercises (physical capability), having a routine or trigger and receiving feedback on the outcome of doing exercises (automatic motivation). Linking these findings back to the theoretical model allows for a more systematic selection of theory-based strategies that may enhance the design of future swallowing exercise interventions for patients with head and neck cancer.

  7. Social Cognitive Theory Predictors of Exercise Behavior in Endometrial Cancer Survivors

    PubMed Central

    Basen-Engquist, Karen; Carmack, Cindy L.; Li, Yisheng; Brown, Jubilee; Jhingran, Anuja; Hughes, Daniel C.; Perkins, Heidi Y.; Scruggs, Stacie; Harrison, Carol; Baum, George; Bodurka, Diane C.; Waters, Andrew

    2014-01-01

    Objective This study evaluated whether social cognitive theory (SCT) variables, as measured by questionnaire and ecological momentary assessment (EMA), predicted exercise in endometrial cancer survivors. Methods One hundred post-treatment endometrial cancer survivors received a 6-month home-based exercise intervention. EMAs were conducted using hand-held computers for 10- to 12-day periods every 2 months. Participants rated morning self-efficacy and positive and negative outcome expectations using the computer, recorded exercise information in real time and at night, and wore accelerometers. At the midpoint of each assessment period participants completed SCT questionnaires. Using linear mixed-effects models, we tested whether morning SCT variables predicted minutes of exercise that day (Question 1) and whether exercise minutes at time point Tj could be predicted by questionnaire measures of SCT variables from time point Tj-1 (Question 2). Results Morning self-efficacy significantly predicted that day’s exercise minutes (p<.0001). Morning positive outcome expectations was also associated with exercise minutes (p=0.0003), but the relationship was attenuated when self-efficacy was included in the model (p=0.4032). Morning negative outcome expectations was not associated with exercise minutes. Of the questionnaire measures of SCT variables, only exercise self-efficacy predicted exercise at the next time point (p=0.003). Conclusions The consistency of the relationship between self-efficacy and exercise minutes over short (same day) and longer (Tj to Tj-1) time periods provides support for a causal relationship. The strength of the relationship between morning self-efficacy and exercise minutes suggest that real-time interventions that target daily variation in self-efficacy may benefit endometrial cancer survivors’ exercise adherence. PMID:23437853

  8. The roles of self-efficacy and motivation in the prediction of short- and long-term adherence to exercise among patients with coronary heart disease.

    PubMed

    Slovinec D'Angelo, Monika E; Pelletier, Luc G; Reid, Robert D; Huta, Veronika

    2014-11-01

    Poor adherence to regular exercise is a documented challenge among people with heart disease. Identifying key determinants of exercise adherence and distinguishing between the processes driving short- and long-term adherence to regular exercise is a valuable endeavor. The purpose of the present study was to test a model of exercise behavior change, which incorporates motivational orientations and self-efficacy for exercise behavior, in the prediction of short- and long-term exercise adherence. Male and female patients (N = 801) hospitalized for coronary heart disease were recruited from 3 tertiary care cardiac centers and followed for a period of 1 year after hospital discharge. A prospective, longitudinal design was used to examine the roles of motivation and self-efficacy (measured at recruitment and at 2 and 6 months after discharge) in the prediction of exercise behavior at 6 and 12 months. Baseline measures of exercise and clinical and demographic covariates were included in the analyses. Structural equation modeling showed that both autonomous motivation and self-efficacy were important determinants of short-term (6-month) exercise behavior regulation, but that only autonomous motivation remained a significant predictor of long-term (12-month) exercise behavior. Self-efficacy partially mediated the relationship between motivation for exercise and 6-month exercise behavior. This research confirmed the roles of autonomous motivation and self-efficacy in the health behavior change process and emphasized the key function of autonomous motivation in exercise maintenance. Theoretical and cardiac rehabilitation program applications of this research are discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. NASA's Functional Task Test: High Intensity Exercise Improves the Heart Rate Response to a Stand Test Following 70 Days of Bedrest

    NASA Technical Reports Server (NTRS)

    Laurie, Steven S.; Lee, Stuart M. C.; Phillips, Tiffany R.; Dillon, E. Lichar; Sheffield-Moore, Melinda; Urban, Randall J.; Ploutz-Snyder, Lori; Stenger, Michael B.; Bloomberg, Jacob J.

    2015-01-01

    Cardiovascular adaptations due to spaceflight are modeled with 6deg head-down tilt bed rest (BR) and result in decreased orthostatic tolerance. We investigated if high-intensity resistive and aerobic exercise with and without testosterone supplementation would improve the heart rate (HR) response to a 3.5-min stand test and how quickly these changes recovered following BR. During 70 days of BR male subjects performed no exercise (Control, n=10), high intensity supine resistive and aerobic exercise (Exercise, n=9), or supine exercise plus supplemental testosterone (Exercise+T, n=8; 100 mg i.m., weekly in 2-week on/off cycles). We measured HR for 2 min while subjects were prone and for 3 min after standing twice before and 0, 1, 6, and 11 days after BR. Mixed-effects linear regression models were used to evaluate group, time, and interaction effects. Compared to pre-bed rest, prone HR was elevated on BR+0 and BR+1 in Control, but not Exercise or Exercise+T groups, and standing HR was greater in all 3 groups. The increase in prone and standing HR in Control subjects was greater than either Exercise or Exercise+T groups and all groups recovered by BR+6. The change in HR from prone to standing more than doubled on BR+0 in all groups, but was significantly less in the Exericse+T group compared to the Control, but not Exercise group. Exercise reduces, but does not prevent the increase in HR observed in response to standing. The significantly lower HR response in the Exercise+T group requires further investigation to determine physiologic significance.

  10. Effects of the stages of change model-based education and motivational interview on exercise behavior in diabetic women.

    PubMed

    Sekerci, Yasemin Gümüs; Kitis, Yeter

    2018-05-08

    In this study, we examined the effects of exercise education and a motivational interview program, based on the stages of change model (SCM), on stage of change, using cognitive and behavioral methods, perceived benefits and barriers and self-confidence in Turkish women with diabetes. This intervention study was carried out in 2015 on 55 women selected from a family health centers' population. An exercise guide was prepared based on the SCM for the intervention group. The intervention group was followed seven times at 1-month intervals via home visits, and exercise education and the motivational interview program were conducted to identify changes in behavior. The control group received no intervention. Data were collected from both groups using a personal description form, Exercise Stages of Change Scale, Exercise Processes of Change Scale, Exercise Decisional Balance Scale, and Exercise Self-Efficacy Scale. After the exercise program, each group was re-subjected to the same scales. We used a chi-square test and independent and paired sample t-tests to analyze the data. The stages of change, using cognitive and behavioral methods, perceived benefits and self-confidence for exercise in the intervention group significantly improved compared with that in the control group (p < .05). In the intervention group, 81.5% of the participants started exercising. The exercise education and motivational interview program based on SCM positively affected stages of change, using cognitive and behavioral methods, perceived benefits, perceived barriers, and self-confidence for exercise behavior in women with diabetes. We conclude that the education and motivational interview program based on SCM are effective in promoting exercise habit.

  11. Modelling and regulating of cardio-respiratory response for the enhancement of interval training

    PubMed Central

    2014-01-01

    Background The interval training method has been a well known exercise protocol which helps strengthen and improve one’s cardiovascular fitness. Purpose To develop an effective training protocol to improve cardiovascular fitness based on modelling and analysis of Heart Rate (HR) and Oxygen Uptake (VO2) dynamics. Methods In order to model the cardiorespiratory response to the onset and offset exercises, the (K4b2, Cosmed) gas analyzer was used to monitor and record the heart rate and oxygen uptake for ten healthy male subjects. An interval training protocol was developed for young health users and was simulated using a proposed RC switching model which was presented to accommodate the variations of the cardiorespiratory dynamics to running exercises. A hybrid system model was presented to describe the adaptation process and a multi-loop PI control scheme was designed for the tuning of interval training regime. Results By observing the original data for each subject, we can clearly identify that all subjects have similar HR and VO2 profiles. The proposed model is capable to simulate the exercise responses during onset and offset exercises; it ensures the continuity of the outputs within the interval training protocol. Under some mild assumptions, a hybrid system model can describe the adaption process and accordingly a multi-loop PI controller can be designed for the tuning of interval training protocol. The self-adaption feature of the proposed controller gives the exerciser the opportunity to reach his desired setpoints after a certain number of training sessions. Conclusions The established interval training protocol targets a range of 70-80% of HRmax which is mainly a training zone for the purpose of cardiovascular system development and improvement. Furthermore, the proposed multi-loop feedback controller has the potential to tune the interval training protocol according to the feedback from an individual exerciser. PMID:24499131

  12. The 'Critical Power' Concept: Applications to Sports Performance with a Focus on Intermittent High-Intensity Exercise.

    PubMed

    Jones, Andrew M; Vanhatalo, Anni

    2017-03-01

    The curvilinear relationship between power output and the time for which it can be sustained is a fundamental and well-known feature of high-intensity exercise performance. This relationship 'levels off' at a 'critical power' (CP) that separates power outputs that can be sustained with stable values of, for example, muscle phosphocreatine, blood lactate, and pulmonary oxygen uptake ([Formula: see text]), from power outputs where these variables change continuously with time until their respective minimum and maximum values are reached and exercise intolerance occurs. The amount of work that can be done during exercise above CP (the so-called W') is constant but may be utilized at different rates depending on the proximity of the exercise power output to CP. Traditionally, this two-parameter CP model has been employed to provide insights into physiological responses, fatigue mechanisms, and performance capacity during continuous constant power output exercise in discrete exercise intensity domains. However, many team sports (e.g., basketball, football, hockey, rugby) involve frequent changes in exercise intensity and, even in endurance sports (e.g., cycling, running), intensity may vary considerably with environmental/course conditions and pacing strategy. In recent years, the appeal of the CP concept has been broadened through its application to intermittent high-intensity exercise. With the assumptions that W' is utilized during work intervals above CP and reconstituted during recovery intervals below CP, it can be shown that performance during intermittent exercise is related to four factors: the intensity and duration of the work intervals and the intensity and duration of the recovery intervals. However, while the utilization of W' may be assumed to be linear, studies indicate that the reconstitution of W' may be curvilinear with kinetics that are highly variable between individuals. This has led to the development of a new CP model for intermittent exercise in which the balance of W' remaining ([Formula: see text]) may be calculated with greater accuracy. Field trials of athletes performing stochastic exercise indicate that this [Formula: see text] model can accurately predict the time at which W' tends to zero and exhaustion is imminent. The [Formula: see text] model potentially has important applications in the real-time monitoring of athlete fatigue progression in endurance and team sports, which may inform tactics and influence pacing strategy.

  13. Selectively bred rat model system for low and high response to exercise training

    PubMed Central

    Pollott, Geoffrey E.; Britton, Steven L.

    2013-01-01

    We initiated a large-scale bidirectional selection experiment in a genetically heterogeneous rat population (N/NIH stock, n = 152) to develop lines of low response trainers (LRT) and high response trainers (HRT) as a contrasting animal model system. Maximal treadmill running distance [meters (m)] was tested before (DIST1) and after (DIST2) standardized aerobic treadmill training over an 8 wk period (3 exercise sessions per week). Response to training was calculated as the change in exercise capacity (ΔDIST = DIST2 − DIST1). A within-family selection and rotational breeding paradigm between 10 families was practiced for both selected lines. For the founder population, exercise training produced a 140 ± 15 m gain in exercise capacity with interindividual variation ranging from −339 to +627 m. After 15 generations of selection (n = 3,114 rats), HRT rats improved 223 ± 20 m as a result of exercise training while exercise capacity declined −65 ± 15 m in LRT rats given the same absolute training environment. The narrow-sense heritability (h2) for ΔDIST was 0.10 ± 0.02. The LRT and HRT lines did not differ significantly for body weight or intrinsic (i.e., DIST1) exercise capacity. Using pedigree records the inbreeding coefficient increased at a rate of 1.7% per generation for HRT and 1.6% per generation for LRT, ∼30% slower than expected from random mating. Animal models developed from heterogeneous stock and enriched via selection, as presented here, often generate extreme values for traits of interest and may prove more useful than current models for uncovering genetic underpinnings. PMID:23715262

  14. Statins are related to impaired exercise capacity in males but not females.

    PubMed

    Bahls, Martin; Groß, Stefan; Ittermann, Till; Busch, Raila; Gläser, Sven; Ewert, Ralf; Völzke, Henry; Felix, Stephan B; Dörr, Marcus

    2017-01-01

    Exercise and statins reduce cardiovascular disease (CVD). Exercise capacity may be assessed using cardiopulmonary exercise testing (CPET). Whether statin medication is associated with CPET parameters is unclear. We investigated if statins are related with exercise capacity during CPET in the general population. Cross-sectional data of two independent cohorts of the Study of Health in Pomerania (SHIP) were merged (n = 3,500; 50% males). Oxygen consumption (VO2) at peak exercise (VO2peak) and anaerobic threshold (VO2@AT) was assessed during symptom-limited CPET. Two linear regression models related VO2peak with statin usage were calculated. Model 1 adjusted for age, sex, previous myocardial infarction, and physical inactivity and model 2 additionally for body mass index, smoking, hypertension, diabetes and estimated glomerular filtration rate. Propensity score matching was used for validation. Statin usage was associated with lower VO2peak (no statin: 2336; 95%-confidence interval [CI]: 2287-2,385 vs. statin 2090; 95%-CI: 2,031-2149 ml/min; P < .0001) and VO2@AT (no statin: 1,172; 95%-CI: 1,142-1,202 vs. statin: 1,111; 95%-CI: 1,075-1,147 ml/min; P = .0061) in males but not females (VO2peak: no statin: 1,467; 95%-CI: 1,417-1,517 vs. statin: 1,503; 95%-CI: 1,426-1,579 ml/min; P = 1.00 and VO2@AT: no statin: 854; 95%-CI: 824-885 vs. statin 864; 95%-CI: 817-911 ml/min; P = 1.00). Model 2 revealed similar results. Propensity scores analysis confirmed the results. In the general population present statin medication was related with impaired exercise capacity in males but not females. Sex specific effects of statins on cardiopulmonary exercise capacity deserve further research.

  15. An Active Learning Exercise for Introducing Agent-Based Modeling

    ERIC Educational Resources Information Center

    Pinder, Jonathan P.

    2013-01-01

    Recent developments in agent-based modeling as a method of systems analysis and optimization indicate that students in business analytics need an introduction to the terminology, concepts, and framework of agent-based modeling. This article presents an active learning exercise for MBA students in business analytics that demonstrates agent-based…

  16. Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise

    ERIC Educational Resources Information Center

    Bindel, Thomas H.

    2008-01-01

    A crystal model laboratory exercise is presented that allows students to examine relations among the microscopic-macroscopic-symbolic levels, using crystalline mineral samples and corresponding crystal models. Students explore the relationship between solid-state structure and crystal form. Other structure-property relationships are explored. The…

  17. Using Visual Models as Pre-Reading Exercises in Teaching Literature.

    ERIC Educational Resources Information Center

    Meeker, Michael W.

    Adapting strategies of invention from the new process-oriented rhetoric, the literature teacher can help students understand what they read through prereading exercises. Presenting students with an abstract model of a text's metaphoric structure, the teacher can spark students' immediate and imaginative response to the model, involving them…

  18. Complex messages regarding a thin ideal appearing in teenage girls' magazines from 1956 to 2005.

    PubMed

    Luff, Gina M; Gray, James J

    2009-03-01

    Seventeen and YM were assessed from 1956 through 2005 (n=312) to examine changes in the messages about thinness sent to teenage women. Trends were analyzed through an investigation of written, internal content focused on dieting, exercise, or both, while cover models were examined to explore fluctuations in body size. Pearson's Product correlations and weighted-least squares linear regression models were used to demonstrate changes over time. The frequency of written content related to exercise and combined plans increased in Seventeen, while a curvilinear relationship between time and content relating to dieting appeared. YM showed a linear increase in content related to dieting, exercise, and combined plans. Average cover model body size increased over time in YM while demonstrating no significant changes in Seventeen. Overall, more written messages about dieting and exercise appeared in teen's magazines in 2005 than before while the average cover model body size increased.

  19. Comparison between the Health Belief Model and Subjective Expected Utility Theory: predicting incontinence prevention behaviour in post-partum women.

    PubMed

    Dolman, M; Chase, J

    1996-08-01

    A small-scale study was undertaken to test the relative predictive power of the Health Belief Model and Subjective Expected Utility Theory for the uptake of a behaviour (pelvic floor exercises) to reduce post-partum urinary incontinence in primigravida females. A structured questionnaire was used to gather data relevant to both models from a sample antenatal and postnatal primigravida women. Questions examined the perceived probability of becoming incontinent, the perceived (dis)utility of incontinence, the perceived probability of pelvic floor exercises preventing future urinary incontinence, the costs and benefits of performing pelvic floor exercises and sources of information and knowledge about incontinence. Multiple regression analysis focused on whether or not respondents intended to perform pelvic floor exercises and the factors influencing their decisions. Aggregated data were analysed to compare the Health Belief Model and Subjective Expected Utility Theory directly.

  20. Anti-inflammatory effects of physical activity in relationship to improved cognitive status in humans and mouse models of Alzheimer's disease.

    PubMed

    Stranahan, Alexis M; Martin, Bronwen; Maudsley, Stuart

    2012-01-01

    Physical activity has been correlated with a reduced incidence of cognitive decline and Alzheimer's disease in human populations. Although data from intervention-based randomized trials is scarce, there is some indication that exercise may confer protection against age-related deficits in cognitive function. Data from animal models suggests that exercise, in the form of voluntary wheel running, is associated with reduced amyloid deposition and enhanced clearance of amyloid beta, the major constituent of plaques in Alzheimer's disease. Treadmill exercise has also been shown to ameliorate the accumulation of phosphorylated tau, an essential component of neurofibrillary tangles in Alzheimer's models. A common therapeutic theme arising from studies of exercise-induced neuroprotection in human populations and in animal models involves reduced inflammation in the central nervous system. In this respect, physical activity may promote neuronal resilience by reducing inflammation.

  1. Using stochastic models to incorporate spatial and temporal variability [Exercise 14

    Treesearch

    Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke

    2003-01-01

    To this point, our analysis of population processes and viability in the western prairie fringed orchid has used only deterministic models. In this exercise, we conduct a similar analysis, using a stochastic model instead. This distinction is of great importance to population biology in general and to conservation biology in particular. In deterministic models,...

  2. Exercise Prevents Enhanced Postoperative Neuroinflammation and Cognitive Decline and Rectifies the Gut Microbiome in a Rat Model of Metabolic Syndrome.

    PubMed

    Feng, Xiaomei; Uchida, Yosuke; Koch, Lauren; Britton, Steve; Hu, Jun; Lutrin, David; Maze, Mervyn

    2017-01-01

    Postoperative cognitive decline (PCD) can affect in excess of 10% of surgical patients and can be considerably higher with risk factors including advanced age, perioperative infection, and metabolic conditions such as obesity and insulin resistance. To define underlying pathophysiologic processes, we used animal models including a rat model of metabolic syndrome generated by breeding for a trait of low aerobic exercise tolerance. After 35 generations, the low capacity runner (LCR) rats differ 10-fold in their aerobic exercise capacity from high capacity runner (HCR) rats. The LCR rats respond to surgical procedure with an abnormal phenotype consisting of exaggerated and persistent PCD and failure to resolve neuroinflammation. We determined whether preoperative exercise can rectify the abnormal surgical phenotype. Following institutional approval of the protocol each of male LCR and male HCR rats were randomly assigned to four groups and subjected to isoflurane anesthesia and tibia fracture with internal fixation (surgery) or anesthesia alone (sham surgery) and to a preoperative exercise regimen that involved walking for 10 km on a treadmill over 6 weeks (exercise) or being placed on a stationary treadmill (no exercise). Feces were collected before and after exercise for assessment of gut microbiome. Three days following surgery or sham surgery the rats were tested for ability to recall a contextual aversive stimulus in a trace fear conditioning paradigm. Thereafter some rats were euthanized and the hippocampus harvested for analysis of inflammatory mediators. At 3 months, the remainder of the rats were tested for memory recall by the probe test in a Morris Water Maze. Postoperatively, LCR rats exhibited exaggerated cognitive decline both at 3 days and at 3 months that was prevented by preoperative exercise. Similarly, LCR rats had excessive postoperative neuroinflammation that was normalized by preoperative exercise. Diversity of the gut microbiome in the LCR rats improved after exercise. Preoperative exercise eliminated the metabolic syndrome risk for the abnormal surgical phenotype and was associated with a more diverse gut microbiome. Prehabilitation with exercise should be considered as a possible intervention to prevent exaggerated and persistent PCD in high-risk settings.

  3. Overcoming barriers to exercise among parents: A social cognitive theory perspective

    PubMed Central

    Mailey, Emily L.; Phillips, Siobhan M.; Dlugonski, Deirdre; Conroy, David E.

    2017-01-01

    Parents face numerous barriers to exercise and exhibit high levels of inactivity. Examining theory-based determinants of exercise among parents may inform interventions for this population. The purpose of this study was to test a social-cognitive model of parental exercise participation over a 12-month period. Mothers (n=226) and fathers (n=70) of children <16 completed measures of exercise, barriers self-efficacy, perceived barriers, and exercise planning at baseline and one year later. Panel analyses were used to test the hypothesized relationships. Barriers self-efficacy was related to exercise directly and indirectly through perceived barriers and prioritization/planning. Prioritization and planning also mediated the relationship between perceived barriers and exercise. These paths remained significant at 12 months. These results suggest efforts to increase exercise in parents should focus on improving confidence to overcome exercise barriers, reducing perceptions of barriers, and helping parents make specific plans for prioritizing and engaging in exercise. PMID:27108160

  4. The relationship between exercise motives and psychological well-being.

    PubMed

    Maltby, J; Day, L

    2001-11-01

    The aim of the present study was to use the self-determination model of exercise motives to examine the relationship between extrinsic and intrinsic motives for exercise and a number of measures of psychological well-being. Undergraduate students purporting to exercise regularly (N = 227; 102 men, 125 women) were split into 2 groups: those exercising for less than 6 months and those exercising for 6 months or more. The respondents were asked to complete measures of exercise motivation, self-esteem, psychological well-being, and stress. Among individuals exercising for less than 6 months, a number of extrinsic motivations for exercise were significantly related to poorer psychological well-being. Among individuals exercising for 6 months or more, a number of intrinsic motivations were significantly related to better psychological well-being. The present findings suggest that researchers can use self-determination theory to understand the relationship between exercise motivation and psychological well-being.

  5. Contextual effects on the perceived health benefits of exercise: the exercise rank hypothesis.

    PubMed

    Maltby, John; Wood, Alex M; Vlaev, Ivo; Taylor, Michael J; Brown, Gordon D A

    2012-12-01

    Many accounts of social influences on exercise participation describe how people compare their behaviors to those of others. We develop and test a novel hypothesis, the exercise rank hypothesis, of how this comparison can occur. The exercise rank hypothesis, derived from evolutionary theory and the decision by sampling model of judgment, suggests that individuals' perceptions of the health benefits of exercise are influenced by how individuals believe the amount of exercise ranks in comparison with other people's amounts of exercise. Study 1 demonstrated that individuals' perceptions of the health benefits of their own current exercise amounts were as predicted by the exercise rank hypothesis. Study 2 demonstrated that the perceptions of the health benefits of an amount of exercise can be manipulated by experimentally changing the ranked position of the amount within a comparison context. The discussion focuses on how social norm-based interventions could benefit from using rank information.

  6. Evaluation of two cold thermoregulatory models for prediction of core temperature during exercise in cold water.

    PubMed

    Castellani, John W; O'Brien, Catherine; Tikuisis, Peter; Sils, Ingrid V; Xu, Xiaojiang

    2007-12-01

    Cold thermoregulatory models (CTM) have primarily been developed to predict core temperature (T(core)) responses during sedentary immersion. Few studies have examined their efficacy to predict T(core) during exercise cold exposure. The purpose of this study was to compare observed T(core) responses during exercise in cold water with the predicted T(core) from a three-cylinder (3-CTM) and a six-cylinder (6-CTM) model, adjusted to include heat production from exercise. A matrix of two metabolic rates (0.44 and 0.88 m/s walking), two water temperatures (10 and 15 degrees C), and two immersion depths (chest and waist) were used to elicit different rates of T(core) changes. Root mean square deviation (RMSD) and nonparametric Bland-Altman tests were used to test for acceptable model predictions. Using the RMSD criterion, the 3-CTM did not fit the observed data in any trial, whereas the 6-CTM fit the data (RMSD less than standard deviation) in four of eight trials. In general, the 3-CTM predicted a rapid decline in core temperature followed by a plateau. For the 6-CTM, the predicted T(core) appeared relatively tight during the early part of immersion, but was much lower during the latter portions of immersion, accounting for the nonagreement between RMSD and SD values. The 6-CTM was rerun with no adjustment for exercise metabolism, and core temperature and heat loss predictions were tighter. In summary, this study demonstrated that both thermoregulatory models designed for sedentary cold exposure, currently, cannot be extended for use during partial immersion exercise in cold water. Algorithms need to be developed to better predict heat loss during exercise in cold water.

  7. Dynamics and rate-dependence of the spatial angle between ventricular depolarization and repolarization wave fronts during exercise ECG.

    PubMed

    Kenttä, Tuomas; Karsikas, Mari; Kiviniemi, Antti; Tulppo, Mikko; Seppänen, Tapio; Huikuri, Heikki V

    2010-07-01

    QRS/T angle and the cosine of the angle between QRS and T-wave vectors (TCRT), measured from standard 12-lead electrocardiogram (ECG), have been used in risk stratification of patients. This study assessed the possible rate dependence of these variables during exercise ECG in healthy subjects. Forty healthy volunteers, 20 men and 20 women, aged 34.6 +/- 3.4, underwent an exercise ECG testing. Twelve-lead ECG was recorded from each test subject and the spatial QRS/T angle and TCRT were automatically analyzed in a beat-to-beat manner with custom-made software. The individual TCRT/RR and QRST/RR patterns were fitted with seven different regression models, including a linear model and six nonlinear models. TCRT and QRS/T angle showed a significant rate dependence, with decreased values at higher heart rates (HR). In individual subjects, the second-degree polynomic model was the best regression model for TCRT/RR and QRST/RR slopes. It provided the best fit for both exercise and recovery. The overall TCRT/RR and QRST/RR slopes were similar between men and women during exercise and recovery. However, women had predominantly higher TCRT and QRS/T values. With respect to time, the dynamics of TCRT differed significantly between men and women; with a steeper exercise slope in women (women, -0.04/min vs -0.02/min in men, P < 0.0001). In addition, evident hysteresis was observed in the TCRT/RR slopes; with higher TCRT values during exercise. The individual patterns of TCRT and QRS/T angle are affected by HR and gender. Delayed rate adaptation creates hysteresis in the TCRT/RR slopes.

  8. The measurement conundrum in exercise adherence research.

    PubMed

    Dishman, R K

    1994-11-01

    This paper has two purposes. It first prefaces a symposium titled "Exercise adherence and behavior change: prospects, problems, and future directions." The symposium describes the progress made during the past 5 years toward understanding the adoption and maintenance of physical activity and exercise. Specifically, research is discussed that has tested the applicability to physical activity of four psychological models of behavior: Reasoned Action, Planned Behavior, Social-Cognitive Theory, and the Transtheoretical Model of stages of change. Recent exercise interventions in clinical/community settings also are discussed to illustrate how theoretical models can be implemented to increase and maintain exercise. The second purpose of this paper is to provide a brief summary of the contemporary literatures on the determinants of physical activity and interventions designed to increase and maintain physical activity. The summary focuses on the measurement problems that have limited the advances made in theory and application in these areas of research. Progress toward resolving the measurement problems during the past 5 years is contrasted with earlier scientific consensus.

  9. Computational Modeling Using OpenSim to Simulate a Squat Exercise Motion

    NASA Technical Reports Server (NTRS)

    Gallo, C. A.; Thompson, W. K.; Lewandowski, B. E.; Humphreys, B. T.; Funk, J. H.; Funk, N. H.; Weaver, A. S.; Perusek, G. P.; Sheehan, C. C.; Mulugeta, L.

    2015-01-01

    Long duration space travel to destinations such as Mars or an asteroid will expose astronauts to extended periods of reduced gravity. Astronauts will use an exercise regime for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Since the area available in the spacecraft for an exercise device is limited and gravity is not present to aid loading, compact resistance exercise device prototypes are being developed. Since it is difficult to rigorously test these proposed devices in space flight, computational modeling provides an estimation of the muscle forces, joint torques and joint loads during exercise to gain insight on the efficacy to protect the musculoskeletal health of astronauts.

  10. Adherence of older women with strength training and aerobic exercise

    PubMed Central

    Picorelli, Alexandra Miranda Assumpção; Pereira, Daniele Sirineu; Felício, Diogo Carvalho; Dos Anjos, Daniela Maria; Pereira, Danielle Aparecida Gomes; Dias, Rosângela Corrêa; Assis, Marcella Guimarães; Pereira, Leani Souza Máximo

    2014-01-01

    Background Participation of older people in a program of regular exercise is an effective strategy to minimize the physical decline associated with age. The purpose of this study was to assess adherence rates in older women enrolled in two different exercise programs (one aerobic exercise and one strength training) and identify any associated clinical or functional factors. Methods This was an exploratory observational study in a sample of 231 elderly women of mean age 70.5 years. We used a structured questionnaire with standardized tests to evaluate the relevant clinical and functional measures. A specific adherence questionnaire was developed by the researchers to determine motivators and barriers to exercise adherence. Results The adherence rate was 49.70% in the aerobic exercise group and 56.20% in the strength training group. Multiple logistic regression models for motivation were significant (P=0.003) for the muscle strengthening group (R2=0.310) and also significant (P=0.008) for the aerobic exercise group (R2=0.154). A third regression model for barriers to exercise was significant (P=0.003) only for the muscle strengthening group (R2=0.236). The present study shows no direct relationship between worsening health status and poor adherence. Conclusion Factors related to adherence with exercise in the elderly are multifactorial. PMID:24600212

  11. Effects of current physical activity on affective response to exercise: Physical and social-cognitive mechanisms

    PubMed Central

    Magnan, Renee E.; Kwan, Bethany M.; Bryan, Angela D.

    2012-01-01

    Objective Affective responses during exercise are often important determinants of exercise initiation and maintenance. Current physical activity may be one individual difference that is associated with the degree to which individuals have positive (or negative) affective experiences during exercise. The objective of this investigation was to explore physical and cognitive explanations of the relationship between current activity status (more versus less active) and affective response during a 30-minute bout of moderate-intensity exercise. Method Participants reported their current level of physical activity, exercise self-efficacy, and affect during a 30-minute bout of moderate-intensity exercise. Results More active individuals experienced higher levels of positive affect and tranquility and lower levels of negative affect and fatigue during exercise. Multivariate models for each affective state indicated separate processes through which physical activity may be associated with changes in affect during exercise. Conclusions These models indicate that affect experienced during physical activity is related to current activity level and these relationships can be partially explained by the physical and cognitive factors explored in this study. Recommendations for future research to elucidate whether positive affective response to physical activity improves as a function of becoming more active over time are discussed. PMID:23088712

  12. Voluntary physical exercise alters attentional orienting and social behavior in a rat model of attention-deficit/hyperactivity disorder.

    PubMed

    Hopkins, Michael E; Sharma, Mita; Evans, Gretchen C; Bucci, David J

    2009-06-01

    The effects of voluntary physical exercise on attentional function and social behavior were examined in male and female spontaneously hypertensive rats (SHR), a commonly used animal model of attention-deficit/hyperactivity disorder (ADHD). Rats in the exercise groups had free access to a running wheel for 2 weeks and then all rats received nonreinforced presentations of a visual stimulus (light) during the 1st training session, followed by daily sessions in which the light was paired with food. Nonexercising male and female SHR rats exhibited more unconditioned orienting behavior than Wistar-Kyoto rats. SHRs also exhibited impaired conditioning when the light was paired with food. Exercise reduced orienting in female SHRs but not in male SHRs. In the social interaction task, nonexercising male and female SHRs interacted more with an unfamiliar rat than Wistar-Kyoto rats. Exercise reduced the number of social interactions in female SHRs but not male SHRs. There were no differences in general locomotor activity observed between the nonexercising and exercising SHRs. These data indicate that exercise may preferentially benefit female SHRs, and has implications for using exercise as an intervention for ADHD and for understanding sex differences in the effects of exercise on behavior. Copyright (c) 2009 APA, all rights reserved.

  13. Modelling decremental ramps using 2- and 3-parameter "critical power" models.

    PubMed

    Morton, R Hugh; Billat, Veronique

    2013-01-01

    The "Critical Power" (CP) model of human bioenergetics provides a valuable way to identify both limits of tolerance to exercise and mechanisms that underpin that tolerance. It applies principally to cycling-based exercise, but with suitable adjustments for analogous units it can be applied to other exercise modalities; in particular to incremental ramp exercise. It has not yet been applied to decremental ramps which put heavy early demand on the anaerobic energy supply system. This paper details cycling-based bioenergetics of decremental ramps using 2- and 3-parameter CP models. It derives equations that, for an individual of known CP model parameters, define those combinations of starting intensity and decremental gradient which will or will not lead to exhaustion before ramping to zero; and equations that predict time to exhaustion on those decremental ramps that will. These are further detailed with suitably chosen numerical and graphical illustrations. These equations can be used for parameter estimation from collected data, or to make predictions when parameters are known.

  14. Expected for acquisition movement exercise is more effective for functional recovery than simple exercise in a rat model of hemiplegia.

    PubMed

    Ikeda, Satoshi; Ohwatashi, Akihiko; Harada, Katsuhiro; Kamikawa, Yurie; Yoshida, Akira

    2013-01-01

    The use of novel rehabilitative approaches for effecting functional recovery following stroke is controversial. Effects of different but effective rehabilitative interventions in the hemiplegic patient are not clear. We studied the effects of different rehabilitative approaches on functional recovery in the rat photochecmical cerebral infarction model. Twenty-four male Wistar rats aged 8 weeks were used. The cranial bone was exposed under deep anesthesia. Rose bengal (20 mg/kg) was injected intravenously, and the sensorimotor area of the cerebral cortex was irradiated transcranially for 20 min with a light beam of 533-nm wavelength. Animals were divided into 3 groups. In the simple-exercise group, treadmill exercise was performed for 20 min every day. In the expected for acquisition movement-training group, beam-walking exercise was done for 20 min daily. The control group was left to recover without additional intervention. Hindlimb function was evaluated with the beam-walking test. Following cerebral infarction, dysfunction of the contralateral extremities was observed. Functional recovery was observed earlier in the expected for acquisition training group than in the other groups. Although rats in the treadmill group recovered more quickly than controls, the beam-walking group had the shortest overall recovery time. Exercise facilitated functional recovery in the rat hemiplegic model, and expected for acquisition exercise was more effective than simple exercise. These findings are considered to have important implications for the future development of clinical rehabilitation programs.

  15. Predictors of exercise relapse in a college population.

    PubMed

    Sullum, J; Clark, M M; King, T K

    2000-01-01

    Exercise improves physical and mental health. Nevertheless, most 20-year-olds do not exercise, and approximately 50% of the participants in exercise programs drop out in the first 3 to 6 months. In view of the health benefits of exercise, college health educators and clinicians need to be able to identify factors that predict exercise relapse in a student population. The authors administered questionnaires measuring Prochaska's 10 processes of change for exercise, self-efficacy, and decisional balance to 52 physically active undergraduate students. They assessed baseline exercise levels in October and reassessed them about 8 weeks later. At baseline, relapsers had significantly lower self-efficacy scores than those who maintained their exercise levels. The relapsers also had higher perceived negative views of exercise. These findings provide support for applying the transtheoretical model of behavioral change to a college population.

  16. Development and validation of a risk calculator predicting exercise-induced ventricular arrhythmia in patients with cardiovascular disease.

    PubMed

    Hermes, Ilarraza-Lomelí; Marianna, García-Saldivia; Jessica, Rojano-Castillo; Carlos, Barrera-Ramírez; Rafael, Chávez-Domínguez; María Dolores, Rius-Suárez; Pedro, Iturralde

    2016-10-01

    Mortality due to cardiovascular disease is often associated with ventricular arrhythmias. Nowadays, patients with cardiovascular disease are more encouraged to take part in physical training programs. Nevertheless, high-intensity exercise is associated to a higher risk for sudden death, even in apparently healthy people. During an exercise testing (ET), health care professionals provide patients, in a controlled scenario, an intense physiological stimulus that could precipitate cardiac arrhythmia in high risk individuals. There is still no clinical or statistical tool to predict this incidence. The aim of this study was to develop a statistical model to predict the incidence of exercise-induced potentially life-threatening ventricular arrhythmia (PLVA) during high intensity exercise. 6415 patients underwent a symptom-limited ET with a Balke ramp protocol. A multivariate logistic regression model where the primary outcome was PLVA was performed. Incidence of PLVA was 548 cases (8.5%). After a bivariate model, thirty one clinical or ergometric variables were statistically associated with PLVA and were included in the regression model. In the multivariate model, 13 of these variables were found to be statistically significant. A regression model (G) with a X(2) of 283.987 and a p<0.001, was constructed. Significant variables included: heart failure, antiarrhythmic drugs, myocardial lower-VD, age and use of digoxin, nitrates, among others. This study allows clinicians to identify patients at risk of ventricular tachycardia or couplets during exercise, and to take preventive measures or appropriate supervision. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Aerobic-synergized exercises may improve fall-related physical fitness in older adults.

    PubMed

    Chang, Yu-Chen; Wang, Jung-Der; Chen, Ho-Cheng; Hu, Susan C

    2017-05-01

    The purpose of the present study was to determine whether a synergistic exercise model based on aerobics with additional fall-preventive components could provide extra benefits compared with the same duration of aerobic-synergistic exercise alone. A total of 102 adults aged 65 years and over from three geographically separated communities were assigned to three groups: the general aerobic exercise (GAE) group (N.=44), the GAE plus ball game group (BG group; N.=30) and the GAE plus square-stepping exercise group (SSE group; N.=28). Each group participated in one hour of exercise intervention and two hours of leisure activities twice weekly for 12 weeks. Each exercise session consisted of one hour of combined exercises performed in the following order: 10 minutes of warm-up activities, 20 minutes of aerobics, 20 minutes of the respective exercise model, and 10 minutes of cool-down activities. Functional fitness tests, including aerobic endurance, leg strength, flexibility, reaction time, static balance and mobility, were measured before and after the intervention. Paired t-tests and mixed model analyses were conducted to compare the differences in each measurement within and among the groups. All of the groups exhibited significantly positive effects (P<0.05), including improvements in aerobic endurance, leg muscle strength, static balance, and mobility, after the intervention. There were no significant differences in these improvements in the other two groups compared with group GAE. However, group BG and group SSE showed significantly greater improvements in mobility compared with group GAE (P<0.05). We conclude that a combination of aerobics and selected fall-prevention exercises performed over a consistent period may improve mobility without compromising the fundamental benefits of aerobics. Future studies using randomized control trials with recorded fall events and a longer period of follow-up are indicated to validate the effects of fall prevention exercises.

  18. Modeling rate sensitivity of exercise transient responses to limb motion.

    PubMed

    Yamashiro, Stanley M; Kato, Takahide

    2014-10-01

    Transient responses of ventilation (V̇e) to limb motion can exhibit predictive characteristics. In response to a change in limb motion, a rapid change in V̇e is commonly observed with characteristics different than during a change in workload. This rapid change has been attributed to a feed-forward or adaptive response. Rate sensitivity was explored as a specific hypothesis to explain predictive V̇e responses to limb motion. A simple model assuming an additive feed-forward summation of V̇e proportional to the rate of change of limb motion was studied. This model was able to successfully account for the adaptive phase correction observed during human sinusoidal changes in limb motion. Adaptation of rate sensitivity might also explain the reduction of the fast component of V̇e responses previously reported following sudden exercise termination. Adaptation of the fast component of V̇e response could occur by reduction of rate sensitivity. Rate sensitivity of limb motion was predicted by the model to reduce the phase delay between limb motion and V̇e response without changing the steady-state response to exercise load. In this way, V̇e can respond more quickly to an exercise change without interfering with overall feedback control. The asymmetry between responses to an incremental and decremental ramp change in exercise can also be accounted for by the proposed model. Rate sensitivity leads to predicted behavior, which resembles responses observed in exercise tied to expiratory reserve volume. Copyright © 2014 the American Physiological Society.

  19. Development of mathematical models of environmental physiology

    NASA Technical Reports Server (NTRS)

    Stolwijk, J. A. J.; Mitchell, J. W.; Nadel, E. R.

    1971-01-01

    Selected articles concerned with mathematical or simulation models of human thermoregulation are presented. The articles presented include: (1) development and use of simulation models in medicine, (2) model of cardio-vascular adjustments during exercise, (3) effective temperature scale based on simple model of human physiological regulatory response, (4) behavioral approach to thermoregulatory set point during exercise, and (5) importance of skin temperature in sweat regulation.

  20. A Better ARED Squat

    NASA Technical Reports Server (NTRS)

    Caldwell, E. E.; Newby, N. J.; Ploutz-Snyder, L.

    2014-01-01

    The 0-G ARED squat under loads the legs relative to the 1g ARED squat. In 1g the knee extensor/flexor muscles are primarily engaged due to the body's center of gravity is behind the knees during the motion of the squat. As body weight does not play a sufficient role 0 G, a crewmember's load exposure is limited by the load delivered by ARED through the exercise bar. Prescription loads for lowerbody resistance exercise in microgravity aim to include 1-G exercise bar load in addition to the crewmember's Earth body weight (BW); however, pressure points from the bar and the 1BW increased load at the shoulders translating to higher loads on the back have been a historical limitation for shoulders, requiring a decrease in exercise load at the start of the mission. Analogous to crewmembers, bed rest subjects report limitations of exercising with high loads on the back while performing squats on the horizontal exercise fixture (HEF), a custom exercise device that serves as an analog to 0-G ARED. Improvements for increasing loads on the HEF squat were suggested by distributing total exercise load between the hips and the bar1. The same is recommended for the 0-G ARED squat, with using current equipment on the ISS, which include the T2 running harness and T2 bungees. Quantification of this improvement has been accessed through computational modeling. The purpose of this study is to characterize joint torque during a squat with a distribution in exercise load on the ARED in 0 G. The analysis used existing models from NASA's Digital Astronaut Project. The biomechanics squat model was integrated with the ARED model and T2 bungees. The spring constant for the bungees were derived from ground testing. Forward dynamic simulation was performed for various conditions including anchor point attachments on the footplate of the ARED, bar load, hip load, and gravitational environment. The model confirms joint torques at knees is lower relative to 1G conditions primarily because the load delivery system is just with the exercise bar in 0 G. By distributing partial loads through use of the bungees to the hips joint-torque profiles were altered during a squat and provided options to enhance targeting lower-body loading in aims as for an improved countermeasure.

  1. Evaluation of alternative future energy scenarios for Brazil using an energy mix model

    NASA Astrophysics Data System (ADS)

    Coelho, Maysa Joppert

    The purpose of this study is to model and assess the performance and the emissions impacts of electric energy technologies in Brazil, based on selected economic scenarios, for a time frame of 40 years, taking the year of 1995 as a base year. A Base scenario has been developed, for each of three economic development projections, based upon a sectoral analysis. Data regarding the characteristics of over 300 end-use technologies and 400 energy conversion technologies have been collected. The stand-alone MARKAL technology-based energy-mix model, first developed at Brookhaven National Laboratory, was applied to a base case study and five alternative case studies, for each economic scenario. The alternative case studies are: (1) minimum increase in the thermoelectric contribution to the power production system of 20 percent after 2010; (2) extreme values for crude oil price; (3) minimum increase in the renewable technologies contribution to the power production system of 20 percent after 2010; (4) uncertainty on the cost of future renewable conversion technologies; and (5) model is forced to use the natural gas plants committed to be built in the country. Results such as the distribution of fuel used for power generation, electricity demand across economy sectors, total CO2 emissions from burning fossil fuels for power generation, shadow price (marginal cost) of technologies, and others, are evaluated and compared to the Base scenarios previous established. Among some key findings regarding the Brazilian energy system it may be inferred that: (1) diesel technologies are estimated to be the most cost-effective thermal technology in the country; (2) wind technology is estimated to be the most cost-effective technology to be used when a minimum share of renewables is imposed to the system; and (3) hydroelectric technologies present the highest cost/benefit relation among all conversion technologies considered. These results are subject to the limitations of key input assumptions and key assumptions of modeling framework, and are used as the basis for recommendations regarding energy development priorities for Brazil.

  2. MPCV Exercise Operational Volume Analysis

    NASA Technical Reports Server (NTRS)

    Godfrey, A.; Humphreys, B.; Funk, J.; Perusek, G.; Lewandowski, B. E.

    2017-01-01

    In order to minimize the loss of bone and muscle mass during spaceflight, the Multi-purpose Crew Vehicle (MPCV) will include an exercise device and enough free space within the cabin for astronauts to use the device effectively. The NASA Digital Astronaut Project (DAP) has been tasked with using computational modeling to aid in determining whether or not the available operational volume is sufficient for in-flight exercise.Motion capture data was acquired using a 12-camera Smart DX system (BTS Bioengineering, Brooklyn, NY), while exercisers performed 9 resistive exercises without volume restrictions in a 1g environment. Data were collected from two male subjects, one being in the 99th percentile of height and the other in the 50th percentile of height, using between 25 and 60 motion capture markers. Motion capture data was also recorded as a third subject, also near the 50th percentile in height, performed aerobic rowing during a parabolic flight. A motion capture system and algorithms developed previously and presented at last years HRP-IWS were utilized to collect and process the data from the parabolic flight [1]. These motions were applied to a scaled version of a biomechanical model within the biomechanical modeling software OpenSim [2], and the volume sweeps of the motions were visually assessed against an imported CAD model of the operational volume. Further numerical analysis was performed using Matlab (Mathworks, Natick, MA) and the OpenSim API. This analysis determined the location of every marker in space over the duration of the exercise motion, and the distance of each marker to the nearest surface of the volume. Containment of the exercise motions within the operational volume was determined on a per-exercise and per-subject basis. The orientation of the exerciser and the angle of the footplate were two important factors upon which containment was dependent. Regions where the exercise motion exceeds the bounds of the operational volume have been identified by determining which markers from the motion capture exceed the operational volume and by how much. A credibility assessment of this analysis was performed in accordance with NASA-STD-7009 prior to delivery to the MPCV program.

  3. The Singing Wineglass: An Exercise in Mathematical Modelling

    ERIC Educational Resources Information Center

    Voges, E. L.; Joubert, S. V.

    2008-01-01

    Lecturers in mathematical modelling courses are always on the lookout for new examples to illustrate the modelling process. A physical phenomenon, documented as early as the nineteenth century, was recalled: when a wineglass "sings", waves are visible on the surface of the wine. These surface waves are used as an exercise in mathematical…

  4. An exercise prescription primer for people with depression.

    PubMed

    Stanton, Robert; Happell, Brenda M

    2013-08-01

    A substantial body of evidence supports the value of exercise in the treatment of people with depression. The guidelines for exercise prescription, however, are limited, and based on those developed for healthy populations. This article explores the evidence for exercise in the treatment of depression and the role mental health nurses may play in the delivery of this information. A model of exercise prescription is put forward based on the available evidence and taking into account the challenges faced by mental health nurses and people with depression.

  5. Exercise dependence as a mediator of the exercise and eating disorders relationship: a pilot study.

    PubMed

    Cook, Brian; Hausenblas, Heather; Crosby, Ross D; Cao, Li; Wonderlich, Stephen A

    2015-01-01

    Excessive exercise is a common feature of eating disorders (ED) and is associated with earlier ED onset, more ED symptoms, and higher persistence of ED behavior. Research indicates that exercise amount alone is not associated with ED. The purpose of this study was to investigate pathological attitudes and behaviors related to exercise (e.g., exercise dependence) as a mediator of the exercise and ED relationship. Participants were 43 women with an ED who completed measures of ED symptoms, exercise behavior, and exercise dependence. Analyses were conducted using the indirect bootstrapping method for examining mediation. Exercise dependence mediated the relationship between exercise and ED. This mediation model accounted for 14.34% of the variance in the relationship. Our results extend the literature by offering preliminary evidence of a psychological variable that may be a candidate for future interventions on the exercise and ED relationship. Implications and suggestions for future research are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Moderators of the Association Between Exercise Identity and Obligatory Exercise Among Participants of an Athletic Event

    PubMed Central

    Karr, Trisha M.; Zunker, Christie; Thompson, Ron A.; Sherman, Roberta; Erickson, Ann; Cao, Li; Crosby, Ross D.; Mitchell, James E.

    2012-01-01

    Previous research has connected exercise identity with obligatory exercise, yet to date no empirical studies have identified moderator variables of this association. The current study included participants of an athletic event (full marathon, n = 582; half marathon, n = 1,106; shorter distance, n = 733) who completed questionnaires about exercise behaviors, obligatory exercise, and internalization of both the thin-ideal and athletic-ideal body shapes. General linear model analyses were conducted to examine the exercise identity-obligatory exercise relationship; moderator variables included gender, internalization of the thin-ideal body shape, and internalization of the athletic-ideal body shape. After controlling for the effects of body mass index, age, and distance group, the three-way interaction of exercise identity, gender, and internalization of the athletic-ideal body shape predicted obligatory exercise. Findings suggest that women who report high identification with exercise and high value on having an athletic physique may be vulnerable to obligatory exercise. PMID:23092850

  7. Acute exercises induce disorders of the gastrointestinal integrity in a murine model.

    PubMed

    Gutekunst, Katrin; Krüger, Karsten; August, Christian; Diener, Martin; Mooren, Frank-Christoph

    2014-03-01

    Many endurance athletes complain about gastrointestinal (GI) symptoms. It is assumed that exercise-induced shift of perfusion with consecutive hypoperfusion of the enteral vascular system leads to an increased GI permeability and tissue damage. Therefore, the aim of the study was to investigate permeability, apoptosis, electrogenic ion transport (Isc), and tissue conductance (Gt) of the small intestine in a murine exercise model. After spirometry, male Swiss CD-1 mice were subjected to an intensive treadmill exercise (80% VO2max). Sedentary mice served as controls. The small intestine was removed at several time intervals post-exercise. Apoptotic cells were determined by the TUNEL method, while fluorescein isothiocyanate dextran permeation indicated intestinal permeability. The Gt and Isc measurements were carried out in a modified Ussing chamber. Apoptosis of epithelial cells increased continuously until 24 h post exercise (0.8 ± 0.42 versus 39.2 ± 26.0%; p < 0.05). Compared with the control group the permeability increased 2 h after exercise (0.47 ± 0.07 versus 0.67 ± 0.14 FU/min; p < 0.05). Isc measurements of the ileum were augmented after 24 h (3.33 ± 0.56 versus 5.77 ± 1.16 μEq/h/cm(2); p < 0.05). At this time the Gt increased as well (28.8 ± 3.37 versus 32.5 ± 2.59 mS/cm(2); p < 0.05). In the murine exercise model there is evidence that after intense endurance exercise repair processes occur in small intestinal epithelial cells, which affect permeability, Gt, and Isc. The formation of lamellipodia to close the "leaky" tight junctions caused by apoptosis might be an underlying mechanism.

  8. Intensity level for exercise training in fibromyalgia by using mathematical models.

    PubMed

    Lemos, Maria Carolina D; Valim, Valéria; Zandonade, Eliana; Natour, Jamil

    2010-03-22

    It has not been assessed before whether mathematical models described in the literature for prescriptions of exercise can be used for fibromyalgia syndrome patients. The objective of this paper was to determine how age-predicted heart rate formulas can be used with fibromyalgia syndrome populations as well as to find out which mathematical models are more accurate to control exercise intensity. A total of 60 women aged 18-65 years with fibromyalgia syndrome were included; 32 were randomized to walking training at anaerobic threshold. Age-predicted formulas to maximum heart rate ("220 minus age" and "208 minus 0.7 x age") were correlated with achieved maximum heart rate (HRMax) obtained by spiroergometry. Subsequently, six mathematical models using heart rate reserve (HRR) and age-predicted HRMax formulas were studied to estimate the intensity level of exercise training corresponding to heart rate at anaerobic threshold (HRAT) obtained by spiroergometry. Linear and nonlinear regression models were used for correlations and residues analysis for the adequacy of the models. Age-predicted HRMax and HRAT formulas had a good correlation with achieved heart rate obtained in spiroergometry (r = 0.642; p < 0.05). For exercise prescription in the anaerobic threshold intensity, the percentages were 52.2-60.6% HRR and 75.5-80.9% HRMax. Formulas using HRR and the achieved HRMax showed better correlation. Furthermore, the percentages of HRMax and HRR were significantly higher for the trained individuals (p < 0.05). Age-predicted formulas can be used for estimating HRMax and for exercise prescriptions in women with fibromyalgia syndrome. Karnoven's formula using heart rate achieved in ergometric test showed a better correlation. For the prescription of exercises in the threshold intensity, 52% to 60% HRR or 75% to 80% HRMax must be used in sedentary women with fibromyalgia syndrome and these values are higher and must be corrected for trained patients.

  9. Intensity level for exercise training in fibromyalgia by using mathematical models

    PubMed Central

    2010-01-01

    Background It has not been assessed before whether mathematical models described in the literature for prescriptions of exercise can be used for fibromyalgia syndrome patients. The objective of this paper was to determine how age-predicted heart rate formulas can be used with fibromyalgia syndrome populations as well as to find out which mathematical models are more accurate to control exercise intensity. Methods A total of 60 women aged 18-65 years with fibromyalgia syndrome were included; 32 were randomized to walking training at anaerobic threshold. Age-predicted formulas to maximum heart rate ("220 minus age" and "208 minus 0.7 × age") were correlated with achieved maximum heart rate (HRMax) obtained by spiroergometry. Subsequently, six mathematical models using heart rate reserve (HRR) and age-predicted HRMax formulas were studied to estimate the intensity level of exercise training corresponding to heart rate at anaerobic threshold (HRAT) obtained by spiroergometry. Linear and nonlinear regression models were used for correlations and residues analysis for the adequacy of the models. Results Age-predicted HRMax and HRAT formulas had a good correlation with achieved heart rate obtained in spiroergometry (r = 0.642; p < 0.05). For exercise prescription in the anaerobic threshold intensity, the percentages were 52.2-60.6% HRR and 75.5-80.9% HRMax. Formulas using HRR and the achieved HRMax showed better correlation. Furthermore, the percentages of HRMax and HRR were significantly higher for the trained individuals (p < 0.05). Conclusion Age-predicted formulas can be used for estimating HRMax and for exercise prescriptions in women with fibromyalgia syndrome. Karnoven's formula using heart rate achieved in ergometric test showed a better correlation. For the prescription of exercises in the threshold intensity, 52% to 60% HRR or 75% to 80% HRMax must be used in sedentary women with fibromyalgia syndrome and these values are higher and must be corrected for trained patients. PMID:20307323

  10. A Java-based enterprise system architecture for implementing a continuously supported and entirely Web-based exercise solution.

    PubMed

    Wang, Zhihui; Kiryu, Tohru

    2006-04-01

    Since machine-based exercise still uses local facilities, it is affected by time and place. We designed a web-based system architecture based on the Java 2 Enterprise Edition that can accomplish continuously supported machine-based exercise. In this system, exercise programs and machines are loosely coupled and dynamically integrated on the site of exercise via the Internet. We then extended the conventional health promotion model, which contains three types of players (users, exercise trainers, and manufacturers), by adding a new player: exercise program creators. Moreover, we developed a self-describing strategy to accommodate a variety of exercise programs and provide ease of use to users on the web. We illustrate our novel design with examples taken from our feasibility study on a web-based cycle ergometer exercise system. A biosignal-based workload control approach was introduced to ensure that users performed appropriate exercise alone.

  11. Computer model of cardiovascular control system responses to exercise

    NASA Technical Reports Server (NTRS)

    Croston, R. C.; Rummel, J. A.; Kay, F. J.

    1973-01-01

    Approaches of systems analysis and mathematical modeling together with computer simulation techniques are applied to the cardiovascular system in order to simulate dynamic responses of the system to a range of exercise work loads. A block diagram of the circulatory model is presented, taking into account arterial segments, venous segments, arterio-venous circulation branches, and the heart. A cardiovascular control system model is also discussed together with model test results.

  12. Self-regulation of Exercise Behavior in the TIGER Study

    PubMed Central

    Dishman, Rod K.; Jackson, Andrew S.; Bray, Molly S.

    2014-01-01

    Objective To test experiential and behavioral processes of change as mediators of the prediction of exercise behavior by two self-regulation traits, self-efficacy and self-motivation, while controlling for exercise enjoyment. Methods Structural equation modeling was applied to questionnaire responses obtained from a diverse sample of participants. Objective measures defined adherence (928 of 1279 participants attended 80% or more of sessions) and compliance (867 of 1145 participants exercised 30 minutes or more each session at their prescribed heart rate). Results Prediction of attendance by self-efficacy (inversely) and self-motivation was direct and also indirect, mediated through positive relations with the typical use of behavioral change processes. Enjoyment and self-efficacy (inversely) predicted compliance with the exercise prescription. Conclusions The results support the usefulness of self-regulatory behavioral processes of the Transtheoretical Model for predicting exercise adherence, but not compliance, extending the supportive evidence for self-regulation beyond self-reports of physical activity used in prior observational studies. PMID:24311018

  13. [Applying the Theory of Planned Behavior: Which factors influence on doing physical exercise?].

    PubMed

    Neipp, Mari Carmen; Quiles, María José; León, Eva; Tirado, Sonia; Rodríguez-Marín, Jesús

    2015-05-01

    The purpose of this study was analyzed the influence of attitude, subjective norm, and Perceived behavioral control (PBC) on intention of doing physical exercise in a group of people. Cross-sectional and observational study. Questionnaire was applied to general population in the province of Alicante 679 people who practiced physical exercise in the province of Alicante. It was applied a questionnaire measuring the components of the Theory of Plan Behavior model (TPB). Results showed that variables of the model (TPB) had good fit to the data. Moreover, subjective norm and perceived behavioural control had a significant impact on intention and the three variables explained 61% of its variance. Findings supported the important role of TPB in the context of physical exercise. Perceived behavioral control was the strongest predictor of intention to practice physical exercise. A possible intervention might lead to implement programs focused in increasing control perception of people to engage in physical exercise. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  14. Voluntary exercise confers protection against age-related deficits in brain oxygenation in awake mice model of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Lu, Xuecong; Moeini, Mohammad; Li, Baoqiang; Sakadžić, Sava; Lesage, Frédéric

    2018-02-01

    Alzheimer's disease (AD) is a neurodegenerative disease characterized by short-term memory loss and cognitive inabilities. This work seeks to study the effects of voluntary exercise on the change in oxygen delivery in awake mice models of Alzheimer's disease by monitoring brain tissue oxygenation. Experiments were performed on Young (AD_Y, 3-4 months, n=8), Old (AD_O, 6-7 months, n=8), and Old with exercise (AD_OEX, 6-7 months, n=8) transgenic APPPS1 mice and their controls. Brain tissue oxygenation was measured by two photon phosphorescence lifetime microscopy on the left sensory motor cortex. We found that the average tissue PO2 decreased with age but were regulated by exercise. The results suggest a potential for exercise to improve brain function with age and AD.

  15. Does the extended parallel process model fear appeal theory explain fears and barriers to prenatal physical activity?

    PubMed

    Redmond, Michelle L; Dong, Fanglong; Frazier, Linda M

    2015-01-01

    Few studies have looked at the impact of fear on exercise behavior during pregnancy using a fear appeal theory. It is beneficial to understand how women receive the message of safe exercise during pregnancy and whether established guidelines have any influence on their decision to exercise. Using the extended parallel process model (EPPM), we explored women's fears about prenatal physical activity. We conducted a prospective, cross-sectional study on the fears and barriers to prenatal exercise among a racially/ethnically diverse population of pregnant women. Participants were recruited from local prenatal clinics. Ninety females with a singleton pregnancy between 16 and 30 weeks gestation were enrolled in the study. The primary outcome measure was classification of risk behavior based on the EPPM theory. Women who scored high on self-efficacy for exercising safely were more likely to exercise during pregnancy (adjusted odds ratio, 5.95; 95% CI, 1.39-25.39; P=.016) for at least 90 minutes per week. Participants who exercised at least 90 minutes per week during pregnancy scored higher on their perceived ability to control danger to the baby, as well as less susceptibility of harm and threat to baby of moderate exercise from prenatal exercise. More education and counseling on specific guidelines for safely exercising during pregnancy are needed. The EPPM framework has the potential to help improve health communications about exercise safety and guidelines between patients and health care professionals during pregnancy. Copyright © 2015 Jacobs Institute of Women's Health. Published by Elsevier Inc. All rights reserved.

  16. Chronic Exercise Reduces CETP and Mesterolone Treatment Counteracts Exercise Benefits on Plasma Lipoproteins Profile: Studies in Transgenic Mice.

    PubMed

    Casquero, Andrea Camargo; Berti, Jairo Augusto; Teixeira, Laura Lauand Sampaio; de Oliveira, Helena Coutinho Franco

    2017-12-01

    Regular exercise and anabolic androgenic steroids have opposing effects on the plasma lipoprotein profile and risk of cardio-metabolic diseases in humans. Studies in humans and animal models show conflicting results. Here, we used a mice model genetically modified to mimic human lipoprotein profile and metabolism. They under-express the endogenous LDL receptor gene (R1) and express a human transgene encoding the cholesteryl ester transfer protein (CETP), normally absent in mice. The present study was designed to evaluate the independent and interactive effects of testosterone supplementation, exercise training and CETP expression on the plasma lipoprotein profile and CETP activity. CETP/R1 and R1 mice were submitted to a 6-week swimming training and mesterolone (MEST) supplementation in the last 3 weeks. MEST treatment increased markedly LDL levels (40%) in sedentary CETP/R1 mice and reduced HDL levels in exercised R1 mice (18%). A multifactorial ANOVA revealed the independent effects of each factor, as follows. CETP expression reduced HDL (21%) and increased non-HDL (15%) fractions. MEST treatment increased the VLDL concentrations (42%) regardless of other interventions. Exercise training reduced triacylglycerol (25%) and free fatty acids (20%), increased both LDL and HDL (25-33%), and reduced CETP (19%) plasma levels. Significant factor interactions showed that the increase in HDL induced by exercise is explained by reducing CETP activity and that MEST blunted the exercise-induced elevation of HDL-cholesterol. These results reinforce the positive metabolic effects of exercise, resolved a controversy about CETP response to exercise and evidenced MEST potency to counteract specific exercise benefits.

  17. Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease

    PubMed Central

    Hou, Lijuan; Chen, Wei; Liu, Xiaoli; Qiao, Decai; Zhou, Fu-Ming

    2017-01-01

    Epidemiological studies indicate that physical activity and exercise may reduce the risk of developing Parkinson's disease (PD), and clinical observations suggest that physical exercise can reduce the motor symptoms in PD patients. In experimental animals, a profound observation is that exercise of appropriate timing, duration, and intensity can reduce toxin-induced lesion of the nigrostriatal dopamine (DA) system in animal PD models, although negative results have also been reported, potentially due to inappropriate timing and intensity of the exercise regimen. Exercise may also minimize DA denervation-induced medium spiny neuron (MSN) dendritic atrophy and other abnormalities such as enlarged corticostriatal synapse and abnormal MSN excitability and spiking activity. Taken together, epidemiological studies, clinical observations, and animal research indicate that appropriately dosed physical activity and exercise may not only reduce the risk of developing PD in vulnerable populations but also benefit PD patients by potentially protecting the residual DA neurons or directly restoring the dysfunctional cortico-basal ganglia motor control circuit, and these benefits may be mediated by exercise-triggered production of endogenous neuroprotective molecules such as neurotrophic factors. Thus, exercise is a universally available, side effect-free medicine that should be prescribed to vulnerable populations as a preventive measure and to PD patients as a component of treatment. Future research needs to establish standardized exercise protocols that can reliably induce DA neuron protection, enabling the delineation of the underlying cellular and molecular mechanisms that in turn can maximize exercise-induced neuroprotection and neurorestoration in animal PD models and eventually in PD patients. PMID:29163139

  18. Exercise in prevention and treatment of anxiety and depression among children and young people.

    PubMed

    Larun, L; Nordheim, L V; Ekeland, E; Hagen, K B; Heian, F

    2006-07-19

    Depression and anxiety are common psychological disorders for children and adolescents. Psychological (e.g. psychotherapy), psychosocial (e.g. cognitive behavioral therapy) and biological (e.g. SSRIs or tricyclic drugs) treatments are the most common treatments being offered. The large variety of therapeutic interventions give rise to questions of clinical effectiveness and side effects. Physical exercise is inexpensive with few, if any, side effects. To assess the effects of exercise interventions in reducing or preventing anxiety or depression in children and young people up to 20 years of age. We searched the Cochrane Controlled Trials Register (latest issue available), MEDLINE, EMBASE, CINAHL, PsycINFO, ERIC and Sportdiscus up to August 2005. Randomised trials of vigorous exercise interventions for children and young people up to the age of 20, with outcome measures for depression and anxiety. Two authors independently selected trials for inclusion, assessed methodological quality and extracted data. The trials were combined using meta-analysis methods. A narrative synthesis was performed when the reported data did not allow statistical pooling. Sixteen studies with a total of 1191 participants between 11 and 19 years of age were included.Eleven trials compared vigourous exercise versus no intervention in a general population of children. Six studies reporting anxiety scores showed a non-significant trend in favour of the exercise group (standard mean difference (SMD) (random effects model) -0.48, 95% confidence interval (CI) -0.97 to 0.01). Five studies reporting depression scores showed a statistically significant difference in favour of the exercise group (SMD (random effects model) -0.66, 95% CI -1.25 to -0.08). However, all trials were generally of low methodological quality and they were highly heterogeneous with regard to the population, intervention and measurement instruments used. One small trial investigated children in treatment showed no statistically significant difference in depression scores in favour of the control group (SMD (fixed effects model) 0.78, 95% CI -0.47 to 2.04). No studies reported anxiety scores for children in treatment. Five trials comparing vigorous exercise to low intensity exercise show no statistically significant difference in depression and anxiety scores in the general population of children. Three trials reported anxiety scores (SMD (fixed effects model) -0.14, 95% CI -0.41 to 0.13). Two trials reported depression scores (SMD (fixed effects model) -0.15, 95% CI -0.44 to 0.14). Two small trials found no difference in depression scores for children in treatment (SMD (fixed effects model) -0.31, 95% CI -0.78 to 0.16). No studies reported anxiety scores for children in treatment. Four trials comparing exercise with psychosocial interventions showed no statistically significant difference in depression and anxiety scores in the general population of children. Two trials reported anxiety scores (SMD (fixed effects model) -0.13, 95% CI -0.43 to 0.17). Two trials reported depression scores (SMD (fixed effects model) 0.10, 95% CI-0.21 to 0.41). One trial found no difference in depression scores for children in treatment (SMD (fixed effects model) -0.31, 95% CI -0.97 to 0.35). No studies reported anxiety scores for children in treatment. Whilst there appears to be a small effect in favour of exercise in reducing depression and anxiety scores in the general population of children and adolescents, the small number of studies included and the clinical diversity of participants, interventions and methods of measurement limit the ability to draw conclusions. It makes little difference whether the exercise is of high or low intensity. The effect of exercise for children in treatment for anxiety and depression is unknown as the evidence base is scarce.

  19. Global Metabolic Stress of Isoeffort Continuous and High Intensity Interval Aerobic Exercise: A Comparative 1H NMR Metabonomic Study.

    PubMed

    Zafeiridis, Andreas; Chatziioannou, Anastasia Chrysovalantou; Sarivasiliou, Haralambos; Kyparos, Antonios; Nikolaidis, Michalis G; Vrabas, Ioannis S; Pechlivanis, Alexandros; Zoumpoulakis, Panagiotis; Baskakis, Constantinos; Dipla, Konstantina; Theodoridis, Georgios A

    2016-12-02

    The overall metabolic/energetic stress that occurs during an acute bout of exercise is proposed to be the main driving force for long-term training adaptations. Continuous and high-intensity interval exercise protocols (HIIE) are currently prescribed to acquire the muscular and metabolic benefits of aerobic training. We applied 1 H NMR-based metabonomics to compare the overall metabolic perturbation and activation of individual bioenergetic pathways of three popular aerobic exercises matched for effort/strain. Nine men performed continuous, long-interval (3 min), and short-interval (30 s) bouts of exercise under isoeffort conditions. Blood was collected before and after exercise. The multivariate PCA and OPLS-DA models showed a distinct separation of pre- and postexercise samples in three protocols. The two models did not discriminate the postexercise overall metabolic profiles of the three exercise types. Analysis focused on muscle bioenergetic pathways revealed an extensive upregulation of carbohydrate-lipid metabolism and the TCA cycle in all three protocols; there were only a few differences among protocols in the postexercise abundance of molecules when long-interval bouts were performed. In conclusion, continuous and HIIE exercise protocols, when performed with similar effort/strain, induce comparable global metabolic response/stress despite their marked differences in work-bout intensities. This study highlights the importance of NMR metabonomics in comprehensive monitoring of metabolic consequences of exercise training in the blood of athletes and exercising individuals.

  20. Exercise performance and peripheral vascular insufficiency improve with AMPK activation in high-fat diet-fed mice.

    PubMed

    Baltgalvis, Kristen A; White, Kathy; Li, Wei; Claypool, Mark D; Lang, Wayne; Alcantara, Raniel; Singh, Baljit K; Friera, Annabelle M; McLaughlin, John; Hansen, Derek; McCaughey, Kelly; Nguyen, Henry; Smith, Ira J; Godinez, Guillermo; Shaw, Simon J; Goff, Dane; Singh, Rajinder; Markovtsov, Vadim; Sun, Tian-Qiang; Jenkins, Yonchu; Uy, Gerald; Li, Yingwu; Pan, Alison; Gururaja, Tarikere; Lau, David; Park, Gary; Hitoshi, Yasumichi; Payan, Donald G; Kinsella, Todd M

    2014-04-15

    Intermittent claudication is a form of exercise intolerance characterized by muscle pain during walking in patients with peripheral artery disease (PAD). Endothelial cell and muscle dysfunction are thought to be important contributors to the etiology of this disease, but a lack of preclinical models that incorporate these elements and measure exercise performance as a primary end point has slowed progress in finding new treatment options for these patients. We sought to develop an animal model of peripheral vascular insufficiency in which microvascular dysfunction and exercise intolerance were defining features. We further set out to determine if pharmacological activation of 5'-AMP-activated protein kinase (AMPK) might counteract any of these functional deficits. Mice aged on a high-fat diet demonstrate many functional and molecular characteristics of PAD, including the sequential development of peripheral vascular insufficiency, increased muscle fatigability, and progressive exercise intolerance. These changes occur gradually and are associated with alterations in nitric oxide bioavailability. Treatment of animals with an AMPK activator, R118, increased voluntary wheel running activity, decreased muscle fatigability, and prevented the progressive decrease in treadmill exercise capacity. These functional performance benefits were accompanied by improved mitochondrial function, the normalization of perfusion in exercising muscle, increased nitric oxide bioavailability, and decreased circulating levels of the endogenous endothelial nitric oxide synthase inhibitor asymmetric dimethylarginine. These data suggest that aged, obese mice represent a novel model for studying exercise intolerance associated with peripheral vascular insufficiency, and pharmacological activation of AMPK may be a suitable treatment for intermittent claudication associated with PAD.

  1. Age-related changes in Mastication are not improved by Tongue Exercise in a Rat Model

    PubMed Central

    Krekeler, Brittany N.; Connor, Nadine P.

    2016-01-01

    Objective Aging results in progressive changes in deglutitive functions, which may be due in part to alterations in muscle morphology and physiology. Mastication is a critical component of bolus formation and swallowing, but aging effects on masticatory function have not been well studied. Study Design The purpose of this study was to: 1) quantify the effects of aging on mastication; 2) determine the effects of tongue exercise on mastication in young adult and old rats. We hypothesized that there would be significant differences in mastication characteristics (number of bites, interval between bites, time to eat) as a function of age and that tongue exercise would resolve pre-exercise differences between age groups. Methods We expanded the established model of progressive, 8-week tongue exercise training to include a mastication measurement: acoustic recordings of vermicelli pasta biting from 17 old and 17 young adult rats, randomized into training and control groups. Results We found that: 1) mastication characteristics were impacted by age; specifically in older rats, time to eat and number of bites were increased and intervals between bites were decreased, suggesting increased oral motor processing requirements for bolus formation; 2) tongue exercise did not impact mastication behaviors in young adult or old rats. Conclusion Tongue exercise may not have been specific enough to mastication to result in behavioral changes or exercise dose may not have been sufficient. Nevertheless, results were noteworthy in expanding the established rat model of aging and have relevant clinical implications for future translation to human populations. PMID:27260802

  2. Teaching emergency medical services management skills using a computer simulation exercise.

    PubMed

    Hubble, Michael W; Richards, Michael E; Wilfong, Denise

    2011-02-01

    Simulation exercises have long been used to teach management skills in business schools. However, this pedagogical approach has not been reported in emergency medical services (EMS) management education. We sought to develop, deploy, and evaluate a computerized simulation exercise for teaching EMS management skills. Using historical data, a computer simulation model of a regional EMS system was developed. After validation, the simulation was used in an EMS management course. Using historical operational and financial data of the EMS system under study, students designed an EMS system and prepared a budget based on their design. The design of each group was entered into the model that simulated the performance of the EMS system. Students were evaluated on operational and financial performance of their system design and budget accuracy and then surveyed about their experiences with the exercise. The model accurately simulated the performance of the real-world EMS system on which it was based. The exercise helped students identify operational inefficiencies in their system designs and highlighted budget inaccuracies. Most students rated the exercise as moderately or very realistic in ambulance deployment scheduling, budgeting, personnel cost calculations, demand forecasting, system design, and revenue projections. All students indicated the exercise was helpful in gaining a top management perspective, and 89% stated the exercise was helpful in bridging the gap between theory and reality. Preliminary experience with a computer simulator to teach EMS management skills was well received by students in a baccalaureate paramedic program and seems to be a valuable teaching tool. Copyright © 2011 Society for Simulation in Healthcare

  3. The invisible benefits of exercise.

    PubMed

    Ruby, Matthew B; Dunn, Elizabeth W; Perrino, Andrea; Gillis, Randall; Viel, Sasha

    2011-01-01

    To examine whether--and why--people underestimate how much they enjoy exercise. Across four studies, 279 adults predicted how much they would enjoy exercising, or reported their actual feelings after exercising. Main outcome measures were predicted and actual enjoyment ratings of exercise routines, as well as intention to exercise. Participants significantly underestimated how much they would enjoy exercising; this affective forecasting bias emerged consistently for group and individual exercise, and moderate and challenging workouts spanning a wide range of forms, from yoga and Pilates to aerobic exercise and weight training (Studies 1 and 2). We argue that this bias stems largely from forecasting myopia, whereby people place disproportionate weight on the beginning of a workout, which is typically unpleasant. We demonstrate that forecasting myopia can be harnessed (Study 3) or overcome (Study 4), thereby increasing expected enjoyment of exercise. Finally, Study 4 provides evidence for a mediational model, in which improving people's expected enjoyment of exercise leads to increased intention to exercise. People underestimate how much they enjoy exercise because of a myopic focus on the unpleasant beginning of exercise, but this tendency can be harnessed or overcome, potentially increasing intention to exercise. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  4. Self-Paced Exercise, Affective Response, and Exercise Adherence: A Preliminary Investigation Using Ecological Momentary Assessment.

    PubMed

    Williams, David M; Dunsiger, Shira; Emerson, Jessica A; Gwaltney, Chad J; Monti, Peter M; Miranda, Robert

    2016-06-01

    Affective response to exercise may mediate the effects of self-paced exercise on exercise adherence. Fiftynine low-active (exercise <60 min/week), overweight (body mass index: 25.0-39.9) adults (ages 18-65) were randomly assigned to self-paced (but not to exceed 76% maximum heart rate) or prescribed moderate intensity exercise (64-76% maximum heart rate) in the context of otherwise identical 6-month print-based exercise promotion programs. Frequency and duration of exercise sessions and affective responses (good/bad) to exercise were assessed via ecological momentary assessment throughout the 6-month program. A regression-based mediation model was used to estimate (a) effects of experimental condition on affective response to exercise (path a = 0.20, SE = 0.28, f 2 = 0.02); (b) effects of affective response on duration/latency of the next exercise session (path b = 0.47, SE = 0.25, f 2 = 0.04); and (c) indirect effects of experimental condition on exercise outcomes via affective response (path ab = 0.11, SE = 0.06, f 2 = 0.10). Results provide modest preliminary support for a mediational pathway linking self-paced exercise, affective response, and exercise adherence.

  5. Efforts in Preparation for Jack Validation.

    DTIC Science & Technology

    1997-12-01

    clothing, equipment attached to the body, age, or physical health. The skeleton’s size, structure, and proportions are affected by age, exercise ...things such as genetics, exercise , and dietary habit (Bailey, Malina, & Rasmussen, 1978). VIRTUAL HUMAN MODELS A virtual human models only a subset of...artistically modeled) surfaces. - Somatotype modeling is not considered. To understand what this implies, consider scaling the body using an average

  6. Measuring stroke patients' exercise preferences using a discrete choice experiment.

    PubMed

    Geidl, Wolfgang; Knocke, Katja; Schupp, Wilfried; Pfeifer, Klaus

    2018-03-30

    Physical activity post stroke improves health, yet physical inactivity is highly prevalent. Tailored exercise programs considering physical activity preferences are a promising approach to promote physical activity. Therefore, this study seeks to measure exercise preferences of stroke survivors. Stroke survivors conducted a discrete choice experiment (DCE). DCE was presented in a face-to-face interview where patients had to choose eight times between two different exercise programs. Exercise programs differed by characteristics, with the six attributes under consideration being social situation, location, type of exercise, intensity, frequency, and duration. Utilities of the exercise attributes were estimated with a logit choice model. Stroke survivors (n=103, mean age: 67, SD=13.0; 60% male) show significant differences in the rated utilities of the exercise attributes (P<0.001). Participants had strong preferences for light and moderate intense physical activity and favored shorter exercise sessions. Stroke survivors have remarkable exercise preferences especially for intensity and duration of exercise. Results contribute to the tailoring of physical activity programs after stroke thereby facilitating maintenance of physical activity.

  7. Overcoming barriers to exercise among parents: a social cognitive theory perspective.

    PubMed

    Mailey, Emily L; Phillips, Siobhan M; Dlugonski, Deirdre; Conroy, David E

    2016-08-01

    Parents face numerous barriers to exercise and exhibit high levels of inactivity. Examining theory-based determinants of exercise among parents may inform interventions for this population. The purpose of this study was to test a social-cognitive model of parental exercise participation over a 12-month period. Mothers (n = 226) and fathers (n = 70) of children <16 completed measures of exercise, barriers self-efficacy, perceived barriers, and exercise planning at baseline and 1 year later. Panel analyses were used to test the hypothesized relationships. Barriers self-efficacy was related to exercise directly and indirectly through perceived barriers and prioritization/planning. Prioritization and planning also mediated the relationship between perceived barriers and exercise. These paths remained significant at 12 months. These results suggest efforts to increase exercise in parents should focus on improving confidence to overcome exercise barriers, reducing perceptions of barriers, and helping parents make specific plans for prioritizing and engaging in exercise.

  8. Incorporating Exercise Into the Cancer Treatment Paradigm.

    PubMed

    Haas, Barbara K; Hermanns, Melinda; Kimmel, Gary

    2016-12-01

    The benefits of exercise for patients with cancer are well documented. However, exercise is still not a standard of care for this population. Several factors contribute to the lack of exercise prescriptions for patients with cancer, including challenges posed by treatment-related side effects, lack of knowledge among healthcare providers and the laypeople, and inadequate resources. This article reviews the benefits of exercise in general and specifically to patients with cancer, discusses the specific challenges and considerations required in recommending exercise to this population, and provides specific recommendations for healthcare providers to incorporate exercise into treatment plans. Using a case study exemplar, this article discusses the benefits and challenges to exercise while undergoing treatment for cancer and proposes specific solutions and recommendations. Oncology practitioners can provide the opportunity for patients to safely engage in exercise with the appropriate resources and trained personnel using a successful model of delivering exercise to patients undergoing treatment for cancer. Exercise improves quality of life in all patients, including those with advanced-stage cancers and those actively receiving treatment.

  9. Functional Reorganization of Motor and Limbic Circuits after Exercise Training in a Rat Model of Bilateral Parkinsonism

    PubMed Central

    Wang, Zhuo; Myers, Kalisa G.; Guo, Yumei; Ocampo, Marco A.; Pang, Raina D.; Jakowec, Michael W.; Holschneider, Daniel P.

    2013-01-01

    Exercise training is widely used for neurorehabilitation of Parkinson’s disease (PD). However, little is known about the functional reorganization of the injured brain after long-term aerobic exercise. We examined the effects of 4 weeks of forced running wheel exercise in a rat model of dopaminergic deafferentation (bilateral, dorsal striatal 6-hydroxydopamine lesions). One week after training, cerebral perfusion was mapped during treadmill walking or at rest using [14C]-iodoantipyrine autoradiography. Regional cerebral blood flow-related tissue radioactivity (rCBF) was analyzed in three-dimensionally reconstructed brains by statistical parametric mapping. In non-exercised rats, lesions resulted in persistent motor deficits. Compared to sham-lesioned rats, lesioned rats showed altered functional brain activation during walking, including: 1. hypoactivation of the striatum and motor cortex; 2. hyperactivation of non-lesioned areas in the basal ganglia-thalamocortical circuit; 3. functional recruitment of the red nucleus, superior colliculus and somatosensory cortex; 4. hyperactivation of the ventrolateral thalamus, cerebellar vermis and deep nuclei, suggesting recruitment of the cerebellar-thalamocortical circuit; 5. hyperactivation of limbic areas (amygdala, hippocampus, ventral striatum, septum, raphe, insula). These findings show remarkable similarities to imaging findings reported in PD patients. Exercise progressively improved motor deficits in lesioned rats, while increasing activation in dorsal striatum and rostral secondary motor cortex, attenuating a hyperemia of the zona incerta and eliciting a functional reorganization of regions participating in the cerebellar-thalamocortical circuit. Both lesions and exercise increased activation in mesolimbic areas (amygdala, hippocampus, ventral striatum, laterodorsal tegmental n., ventral pallidum), as well as in related paralimbic regions (septum, raphe, insula). Exercise, but not lesioning, resulted in decreases in rCBF in the medial prefrontal cortex (cingulate, prelimbic, infralimbic). Our results in this PD rat model uniquely highlight the breadth of functional reorganizations in motor and limbic circuits following lesion and long-term, aerobic exercise, and provide a framework for understanding the neural substrates underlying exercise-based neurorehabilitation. PMID:24278239

  10. A theoretical approach to excessive CO2 expiration due to lactate production in exercise.

    PubMed

    Yano, T

    1987-01-01

    Cerretelli et al. (1982) proposed a model to estimate pH changes due to lactate production in exercise. This model was modified in the present study so as to express the relationship between CO2 excess and lactate production. The modified model fitted to the data reported on endurance-trained men.

  11. Anatomical Knowledge Gain through a Clay-Modeling Exercise Compared to Live and Video Observations

    ERIC Educational Resources Information Center

    Kooloos, Jan G. M.; Schepens-Franke, Annelieke N.; Bergman, Esther M.; Donders, Rogier A. R. T.; Vorstenbosch, Marc A. T. M.

    2014-01-01

    Clay modeling is increasingly used as a teaching method other than dissection. The haptic experience during clay modeling is supposed to correspond to the learning effect of manipulations during exercises in the dissection room involving tissues and organs. We questioned this assumption in two pretest-post-test experiments. In these experiments,…

  12. Prescribing an Exercise Program and Motivating Older Adults To Comply.

    ERIC Educational Resources Information Center

    Resnick, Barbara

    2001-01-01

    To help motivate older adults to initiate and adhere to an exercise program, a seven-step approach was developed: education about benefits, screening, goal setting, exposure to exercise, exposure to role models, verbal encouragement from credible sources, and reinforcement and rewards. (Contains 65 references.) (SK)

  13. Motivational Antecedents of Preventive Proactivity in Late Life: Linking Future Orientation and Exercise1

    PubMed Central

    Kahana, Eva; Kahana, Boaz; Zhang, Jianping

    2007-01-01

    Future orientation is considered as a motivational antecedent of late-life proactivity. In a panel study of 453 old-old adults, we linked future orientation to exercise, a key component of late-life proactivity. Findings based on hierarchical linear modeling reveal that future orientation at baseline predicts changes in exercise during the subsequent four years. Whereas exercise behavior generally declined over time, future orientation and female gender were associated with smaller decline. These results suggest that future-oriented thinking has a lasting impact on health promotion behavior. Future orientation thus represents a dispositional antecedent of preventive proactivity as proposed in our successful aging model. PMID:18080009

  14. Dietary and exercise change following acute cardiac syndrome onset: A latent class growth modelling analysis.

    PubMed

    Bennett, Paul; Gruszczynska, Ewa; Marke, Victoria

    2016-10-01

    The present study aim determine sub-group trajectories of change on measures of diet and exercise following acute coronary syndrome. 150 participants were assessed in hospital, 1 month and 6 months subsequently on measures including physical activity, diet, illness beliefs, coping and mood. Change trajectories were measured using latent class growth modelling. Multinomial logistic regression was used to predict class membership. These analyses revealed changes in exercise were confined to a sub-group of participants already reporting relatively high exercise levels; those eating less healthily evidenced modest dietary improvements. Coping, gender, depression and perceived control predicted group membership to a modest degree. © The Author(s) 2015.

  15. Muscle activity and spine load during pulling exercises: influence of stable and labile contact surfaces and technique coaching.

    PubMed

    McGill, Stuart M; Cannon, Jordan; Andersen, Jordan T

    2014-10-01

    This study examined pulling exercises performed on stable surfaces and unstable suspension straps. Specific questions included: which exercises challenged particular muscles, what was the magnitude of resulting spine load, and did technique coaching influence results. Fourteen males performed pulling tasks while muscle activity, external force, and 3D body segment motion were recorded. These data were processed and input to a sophisticated and anatomically detailed 3D model that used muscle activity and body segment kinematics to estimate muscle force, in this way the model was sensitive to each individual's choice of motor control for each task. Muscle forces and linked segment joint loads were used to calculate spine loads. There were gradations of muscle activity and spine load characteristics to every task. It appears that suspension straps alter muscle activity less in pulling exercises, compared to studies reporting on pushing exercises. The chin-up and pull-up exercises created the highest spine load as they required the highest muscle activation, despite the body "hanging" under tractioning gravitational load. Coaching shoulder centration through retraction increased spine loading but undoubtedly adds proximal stiffness. An exercise atlas of spine compression was constructed to help with the decision making process of exercise choice for an individual. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. An International Capital Budgeting Experiential Exercise

    ERIC Educational Resources Information Center

    Manuel, Tim; Tangedahl, Lee

    2009-01-01

    This article describes an experiential exercise that uses a brief simulation model intended to introduce undergraduate international finance students to the complexities in corporate investments in foreign countries. Use of the model requires one or preferably two class periods. Student learning goals include: (a) understanding how different…

  17. Implementation and Integration of a Finite Element Model into the Bone Remodeling Model to Characterize Skeletal Loading

    NASA Technical Reports Server (NTRS)

    Werner, C. R.; Lewandowski, B.; Boppana, A.; Pennline, J. A.

    2017-01-01

    NASA's Digital Astronaut Project is developing a bone physiology model to predict changes in bone mineral density over the course of a space mission. The model intends to predict bone loss due to exposure in microgravity as well as predicting bone maintenance due to mechanical stimulus generated by exercise countermeasures. These predictions will be used to inform exercise device efficacy and to help design exercise protocols that will maintain bone mineral density during long exposures to microgravity during spaceflight. The mechanical stimulus and the stresses that are exhibited on the bone are important factors for bone remodeling. These stresses are dependent on the types of exercise that are performed and vary throughout the bone due to the geometry. A primary area of focus for bone health is the proximal femur. This location is critical in transmitting loads between the upper and lower body and have been known to be a critical failure point in older individuals with conditions like osteoporosis.

  18. The characterization of obese polycystic ovary syndrome rat model suitable for exercise intervention.

    PubMed

    Wu, Chuyan; Lin, Feng; Qiu, Shuwei; Jiang, Zhongli

    2014-01-01

    To develop a new polycystic ovary syndrome (PCOS) rat model suitable for exercise intervention. Thirty six rats were randomly divided into three experimental groups: PCOS rats with high-fat diet (PF, n = 24), PCOS rats with ordinary diet (PO, n = 6), and control rats with ordinary diet (CO, n = 6). Two kinds of PCOS rat model were made by adjustment diet structure and testosterone injection for 28 days. After a successful animal model, PF model rats were randomly assigned to three groups: exercise with a continuation of high-fat diet (PF-EF, n = 6), sedentary with a continuation of high-fat diet (PF-SF, n = 6), exercise with an ordinary diet (PF-EO, n = 6). Fasting blood glucose (FBG) and insulin (FINS), estrogen (E2), progesterone (P), and testosterone (T) in serum were determined by RIA, and ovarian morphology was evaluated by Image-Pro plus 6.0. Body weight, Lee index, FINS increased significantly in PF rat model. Serum levels of E2 and T were significantly higher in PF and PO than in CO. Ovary organ index and ovarian areas were significant lower in PF than in CO. After intervention for 2 weeks, the levels of 1 h postprandial blood glucose (PBG1), 2 h postprandial blood glucose (PBG2), FINS and the serum levels of T decreased significantly in PF-EF rats and PF-EO rats. The ratio of FBG/FINS was significant higher in PF-EO rats than in PF-SF rats. Ovarian morphology showed that the numbers of preantral follicles and atretic follicles decreased significantly, and the numbers of antral follicles and corpora lutea increased significantly in the rats of PF-EF and PF-EO. By combination of high-fat diet and testosterone injection, the obese PCOS rat model is conformable with the lifestyle habits of fatty foods and insufficient exercise, and has metabolic and reproductive characteristics of human PCOS. This model can be applied to study exercise intervention.

  19. Development of an Advanced Respirator Fit-Test Headform

    PubMed Central

    Bergman, Michael S.; Zhuang, Ziqing; Hanson, David; Heimbuch, Brian K.; McDonald, Michael J.; Palmiero, Andrew J.; Shaffer, Ronald E.; Harnish, Delbert; Husband, Michael; Wander, Joseph D.

    2015-01-01

    Improved respirator test headforms are needed to measure the fit of N95 filtering facepiece respirators (FFRs) for protection studies against viable airborne particles. A Static (i.e., non-moving, non-speaking) Advanced Headform (StAH) was developed for evaluating the fit of N95 FFRs. The StAH was developed based on the anthropometric dimensions of a digital headform reported by the National Institute for Occupational Safety and Health (NIOSH) and has a silicone polymer skin with defined local tissue thicknesses. Quantitative fit factor evaluations were performed on seven N95 FFR models of various sizes and designs. Donnings were performed with and without a pre-test leak checking method. For each method, four replicate FFR samples of each of the seven models were tested with two donnings per replicate, resulting in a total of 56 tests per donning method. Each fit factor evaluation was comprised of three 86-sec exercises: “Normal Breathing” (NB, 11.2 liters per min (lpm)), “Deep Breathing” (DB, 20.4 lpm), then NB again. A fit factor for each exercise and an overall test fit factor were obtained. Analysis of variance methods were used to identify statistical differences among fit factors (analyzed as logarithms) for different FFR models, exercises, and testing methods. For each FFR model and for each testing method, the NB and DB fit factor data were not significantly different (P > 0.05). Significant differences were seen in the overall exercise fit factor data for the two donning methods among all FFR models (pooled data) and in the overall exercise fit factor data for the two testing methods within certain models. Utilization of the leak checking method improved the rate of obtaining overall exercise fit factors ≥100. The FFR models, which are expected to achieve overall fit factors ≥ 100 on human subjects, achieved overall exercise fit factors ≥ 100 on the StAH. Further research is needed to evaluate the correlation of FFRs fitted on the StAH to FFRs fitted on people. PMID:24369934

  20. Kangaroo rat bone compared to white rat bone after short-term disuse and exercise

    USGS Publications Warehouse

    Muths, E.; Reichman, O. J.

    1996-01-01

    Kangaroo rats (Dipodomys ordii) were used to study the effects of confinement on mechanical properties of bone with a long range objective of proposing an alternative to the white rat model for the study of disuse osteoporosis. Kangaroo rats exhibit bipedal locomotion, which subjects their limbs to substantial accelerative forces in addition to the normal stress of weight bearing. We subjected groups of kangaroo rats and white rats (Rattus norvegicus) to one of two confinement treatments or to an exercise regime; animals were exercised at a rate calculated to replicate their (respective) daily exercise patterns. White laboratory rats were used as the comparison because they are currently the accepted model used in the study of disuse osteoporosis. After 6 weeks of treatment, rats were killed and the long bones of their hind limbs were tested mechanically and examined for histomorphometric changes. We found that kangaroo rats held in confinement had less ash content in their hind limbs than exercised kangaroo rats. In general, treated kangaroo rats showed morphometric and mechanical bone deterioration compared to controls and exercised kangaroo rats appeared to have slightly “stronger” bones than confined animals. White rats exhibited no significant differences between treatments. These preliminary results suggest that kangaroo rats may be an effective model in the study of disuse osteoporosis.

  1. Clinical Model of Exercise-Related Dyspnea in Adult Patients With Cystic Fibrosis.

    PubMed

    Stevens, Daniel; Neyedli, Heather F

    2018-05-01

    Dyspnea is a highly distressing symptom of pulmonary disease that can make performing physical activities challenging. However, little is known regarding the strongest predictors of exercise-related dyspnea in adult cystic fibrosis (CF). Therefore, the purpose of the present study was to determine the best clinical model of exercise-related dyspnea in this patient group. A retrospective analysis of pulmonary function and cardiopulmonary exercise testing data from patients with CF being followed up at the Adult CF Program at St Michael's Hospital, Toronto, Canada, from 2002 to 2008 were used for the analysis. Patients (n = 88) were male 66%; aged 30.4 ± 9.4 years; body mass index (BMI) 23.1 ± 3.3 kg/m; forced expiratory volume in 1 second (FEV1) 70% ± 19% predicted; and peak oxygen uptake 74% ± 20% predicted. A multivariate linear regression model assessing the effects of age, sex, BMI, airway obstruction (FEV1), perceived muscular leg fatigue, and dynamic hyperinflation explained 54% of the variance in dyspnea severity at peak exercise (P < .01). Relative importance analysis showed that the presence of dynamic hyperinflation and perceived muscular leg fatigue were the largest contributors. Pulmonary rehabilitation programs may consider strategies to reduce dynamic hyperinflation and promote muscular function to best improve exercise-related dyspnea in this patient group.

  2. Origami: An Active Learning Exercise for Scrum Project Management

    ERIC Educational Resources Information Center

    Sibona, Christopher; Pourreza, Saba; Hill, Stephen

    2018-01-01

    Scrum is a popular project management model for iterative delivery of software that subscribes to Agile principles. This paper describes an origami active learning exercise to teach the principles of Scrum in management information systems courses. The exercise shows students how Agile methods respond to changes in requirements during project…

  3. SRNL PARTICIPATION IN THE MULTI-SCALE ENSEMBLE EXERCISES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, R

    2007-10-29

    Consequence assessment during emergency response often requires atmospheric transport and dispersion modeling to guide decision making. A statistical analysis of the ensemble of results from several models is a useful way of estimating the uncertainty for a given forecast. ENSEMBLE is a European Union program that utilizes an internet-based system to ingest transport results from numerous modeling agencies. A recent set of exercises required output on three distinct spatial and temporal scales. The Savannah River National Laboratory (SRNL) uses a regional prognostic model nested within a larger-scale synoptic model to generate the meteorological conditions which are in turn used inmore » a Lagrangian particle dispersion model. A discussion of SRNL participation in these exercises is given, with particular emphasis on requirements for provision of results in a timely manner with regard to the various spatial scales.« less

  4. A Model-Based Prioritisation Exercise for the European Water Framework Directive

    PubMed Central

    Daginnus, Klaus; Gottardo, Stefania; Payá-Pérez, Ana; Whitehouse, Paul; Wilkinson, Helen; Zaldívar, José-Manuel

    2011-01-01

    A model-based prioritisation exercise has been carried out for the Water Framework Directive (WFD) implementation. The approach considers two aspects: the hazard of a certain chemical and its exposure levels, and focuses on aquatic ecosystems, but also takes into account hazards due to secondary poisoning, bioaccumulation through the food chain and potential human health effects. A list provided by EU Member States, Stakeholders and Non-Governmental Organizations comprising 2,034 substances was evaluated according to hazard and exposure criteria. Then 78 substances classified as “of high concern” where analysed and ranked in terms of risk ratio (Predicted Environmental Concentration/Predicted No-Effect Concentration). This exercise has been complemented by a monitoring-based prioritization exercise using data provided by Member States. The proposed approach constitutes the first step in setting the basis for an open modular screening tool that could be used for the next prioritization exercises foreseen by the WFD. PMID:21556195

  5. The Digital Astronaut Project Bone Remodeling Model

    NASA Technical Reports Server (NTRS)

    Pennline, James A.; Mulugeta, Lealem; Lewandowski, Beth E.; Thompson, William K.; Sibonga, Jean D.

    2014-01-01

    Under the conditions of microgravity, astronauts lose bone mass at a rate of 1% to 2% a month, particularly in the lower extremities such as the proximal femur: (1) The most commonly used countermeasure against bone loss has been prescribed exercise, (2) However, current exercise countermeasures do not completely eliminate bone loss in long duration, 4 to 6 months, spaceflight, (3,4) leaving the astronaut susceptible to early onset osteoporosis and a greater risk of fracture later in their lives. The introduction of the Advanced Resistive Exercise Device, coupled with improved nutrition, has further minimized the 4 to 6 month bone loss. But further work is needed to implement optimal exercise prescriptions, and (5) In this light, NASA's Digital Astronaut Project (DAP) is working with NASA physiologists to implement well-validated computational models that can help understand the mechanisms of bone demineralization in microgravity, and enhance exercise countermeasure development.

  6. Using exercise to treat patients with severe mental illness: how and why?

    PubMed

    Tetlie, Trine; Heimsnes, Maria Charlotte; Almvik, Roger

    2009-02-01

    In this study, one focus group and five individual semi-structured interviews were conducted to investigate nursing staff's ways of using exercise as part of the routine treatment for patients with severe mental illness (SMI). The study also explored the patients' experiences and views of the exercise program given in this secure hospital. The organization and delivery of the exercise program are also discussed. The findings indicate that successful outcomes and adherence to exercise programs for patients with SMI in a secure setting rely on therapeutic relationships, having exercise as a mandatory part of the treatment, positive reinforcement, and experienced instructors. More research is needed to identify effective exercise interventions and feasible delivery models for individuals with SMI in secure settings.

  7. Older adults' exercise behavior: roles of selected constructs of social-cognitive theory.

    PubMed

    Umstattd, M Renée; Hallam, Jeffrey

    2007-04-01

    Exercise is consistently related to physical and psychological health benefits in older adults. Bandura's social-cognitive theory (SCT) is one theoretical perspective on understanding and predicting exercise behavior. Thus, the authors examined whether three SCT variables-self-efficacy, self-regulation, and outcome-expectancy value-predicted older adults' (N = 98) exercise behavior. Bivariate analyses revealed that regular exercise was associated with being male, White, and married; having higher income, education, and self-efficacy; using self-regulation skills; and having favorable outcome-expectancy values (p < .05). In a simultaneous multivariate model, however, self-regulation (p = .0097) was the only variable independently associated with regular exercise. Thus, exercise interventions targeting older adults should include components aimed at increasing the use of self-regulation strategies.

  8. Patients' mental models and adherence to outpatient physical therapy home exercise programs.

    PubMed

    Rizzo, Jon

    2015-05-01

    Within physical therapy, patient adherence usually relates to attending appointments, following advice, and/or undertaking prescribed exercise. Similar to findings for general medical adherence, patient adherence to physical therapy home exercise programs (HEP) is estimated between 35 and 72%. Adherence to HEPs is a multifactorial and poorly understood phenomenon, with no consensus regarding a common theoretical framework that best guides empirical or clinical efforts. Mental models, a construct used to explain behavior and decision-making in the social sciences, may serve as this framework. Mental models comprise an individual's tacit thoughts about how the world works. They include assumptions about new experiences and expectations for the future based on implicit comparisons between current and past experiences. Mental models play an important role in decision-making and guiding actions. This professional theoretical article discusses empirical research demonstrating relationships among mental models, prior experience, and adherence decisions in medical and physical therapy contexts. Specific issues related to mental models and physical therapy patient adherence are discussed, including the importance of articulation of patients' mental models, assessment of patients' mental models that relate to exercise program adherence, discrepancy between patient and provider mental models, and revision of patients' mental models in ways that enhance adherence. The article concludes with practical implications for physical therapists and recommendations for further research to better understand the role of mental models in physical therapy patient adherence behavior.

  9. Meditative Movement, Energetic, and Physical Analyses of Three Qigong Exercises: Unification of Eastern and Western Mechanistic Exercise Theory.

    PubMed

    Klein, Penelope; Picard, George; Baumgarden, Joseph; Schneider, Roger

    2017-09-23

    Abstract : Qigong is the meditative movement and therapeutic exercise of Eastern medicine. A growing body of evidence is validating its health benefits leading to mechanistic questions of how it works. The purpose of this article is to explore mechanisms of action related to Qigong, with the intent of unifying Eastern and Western exercise theory and to present a model for Qigong exercise analysis. Three exercises from a standardized Qigong form: 'Plucking the Stars', 'Lotus Leaves Rustle in the Wind', and 'Pacing Forwards and Backwards' were selected for meditative, energetic, and physical analyses. Meditative aspects include relaxation response, interoception and exteroception. Energetic aspects include stimulation of meridians through mental intent, acupressure, and self-massage. Physical aspects include flexibility, strength, articular stimulation, neuro-integration, respiratory effect, fascial stretch, visceral massage, balance challenge CranioSacral pump, lymphatic and venous return and glandular stimulation, and physiologic response to relaxation. Knowledge of mechanisms of action for specific Qigong exercises can guide operational definition of Qigong, selection of outcomes assessment in future research, inform prescriptive practice addressing clinical health issues, and advance adoption of Qigong practice within integrative health care. The model of analysis demonstrated in this discussion may assist in these endeavors.

  10. Tumor vessel normalization after aerobic exercise enhances chemotherapeutic efficacy.

    PubMed

    Schadler, Keri L; Thomas, Nicholas J; Galie, Peter A; Bhang, Dong Ha; Roby, Kerry C; Addai, Prince; Till, Jacob E; Sturgeon, Kathleen; Zaslavsky, Alexander; Chen, Christopher S; Ryeom, Sandra

    2016-10-04

    Targeted therapies aimed at tumor vasculature are utilized in combination with chemotherapy to improve drug delivery and efficacy after tumor vascular normalization. Tumor vessels are highly disorganized with disrupted blood flow impeding drug delivery to cancer cells. Although pharmacologic anti-angiogenic therapy can remodel and normalize tumor vessels, there is a limited window of efficacy and these drugs are associated with severe side effects necessitating alternatives for vascular normalization. Recently, moderate aerobic exercise has been shown to induce vascular normalization in mouse models. Here, we provide a mechanistic explanation for the tumor vascular normalization induced by exercise. Shear stress, the mechanical stimuli exerted on endothelial cells by blood flow, modulates vascular integrity. Increasing vascular shear stress through aerobic exercise can alter and remodel blood vessels in normal tissues. Our data in mouse models indicate that activation of calcineurin-NFAT-TSP1 signaling in endothelial cells plays a critical role in exercise-induced shear stress mediated tumor vessel remodeling. We show that moderate aerobic exercise with chemotherapy caused a significantly greater decrease in tumor growth than chemotherapy alone through improved chemotherapy delivery after tumor vascular normalization. Our work suggests that the vascular normalizing effects of aerobic exercise can be an effective chemotherapy adjuvant.

  11. Exercise training attenuated chronic cigarette smoking-induced up-regulation of FIZZ1/RELMα in lung of rats.

    PubMed

    Ma, Wan-li; Cai, Peng-cheng; Xiong, Xian-zhi; Ye, Hong

    2013-02-01

    FIZZ/RELM is a new gene family named "found in inflammatory zone" (FIZZ) or "resistin-like molecule" (RELM). FIZZ1/RELMα is specifically expressed in lung tissue and associated with pulmonary inflammation. Chronic cigarette smoking up-regulates FIZZ1/RELMα expression in rat lung tissues, the mechanism of which is related to cigarette smoking-induced airway hyperresponsiveness. To investigate the effect of exercise training on chronic cigarette smoking-induced airway hyperresponsiveness and up-regulation of FIZZ1/RELMα, rat chronic cigarette smoking model was established. The rats were treated with regular exercise training and their airway responsiveness was measured. Hematoxylin and eosin (HE) staining, immunohistochemistry and in situ hybridization of lung tissues were performed to detect the expression of FIZZ1/RELMα. Results revealed that proper exercise training decreased airway hyperresponsiveness and pulmonary inflammation in rat chronic cigarette smoking model. Cigarette smoking increased the mRNA and protein levels of FIZZ1/RELMα, which were reversed by the proper exercise. It is concluded that proper exercise training prevents up-regulation of FIZZ1/RELMα induced by cigarette smoking, which may be involved in the mechanism of proper exercise training modulating airway hyperresponsiveness.

  12. Can Exercise Positively Influence the Intervertebral Disc?

    PubMed

    Belavý, Daniel L; Albracht, Kirsten; Bruggemann, Gert-Peter; Vergroesen, Pieter-Paul A; van Dieën, Jaap H

    2016-04-01

    To better understand what kinds of sports and exercise could be beneficial for the intervertebral disc (IVD), we performed a review to synthesise the literature on IVD adaptation with loading and exercise. The state of the literature did not permit a systematic review; therefore, we performed a narrative review. The majority of the available data come from cell or whole-disc loading models and animal exercise models. However, some studies have examined the impact of specific sports on IVD degeneration in humans and acute exercise on disc size. Based on the data available in the literature, loading types that are likely beneficial to the IVD are dynamic, axial, at slow to moderate movement speeds, and of a magnitude experienced in walking and jogging. Static loading, torsional loading, flexion with compression, rapid loading, high-impact loading and explosive tasks are likely detrimental for the IVD. Reduced physical activity and disuse appear to be detrimental for the IVD. We also consider the impact of genetics and the likelihood of a 'critical period' for the effect of exercise in IVD development. The current review summarises the literature to increase awareness amongst exercise, rehabilitation and ergonomic professionals regarding IVD health and provides recommendations on future directions in research.

  13. Potential Fifty Percent Reduction in Saturation Diving Decompression Time Using a Combination of Intermittent Recompression and Exercise

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael I.; Abercromby, Andrew; Conklin, Johnny

    2007-01-01

    Conventional saturation decompression protocols use linear decompression rates that become progressively slower at shallower depths, consistent with free gas phase control vs. dissolved gas elimination kinetics. If decompression is limited by control of free gas phase, linear decompression is an inefficient strategy. The NASA prebreathe reduction program demonstrated that exercise during O2 prebreathe resulted in a 50% reduction (2 h vs. 4 h) in the saturation decompression time from 14.7 to 4.3 psi and a significant reduction in decompression sickness (DCS: 0 vs. 23.7%). Combining exercise with intermittent recompression, which controls gas phase growth and eliminates supersaturation before exercising, may enable more efficient saturation decompression schedules. A tissue bubble dynamics model (TBDM) was used in conjunction with a NASA exercise prebreathe model (NEPM) that relates tissue inert gas exchange rate constants to exercise (ml O2/kg-min), to develop a schedule for decompression from helium saturation at 400 fsw. The models provide significant prediction (p < 0.001) and goodness of fit with 430 cases of DCS in 6437 laboratory dives for TBDM (p = 0.77) and with 22 cases of DCS in 159 altitude exposures for NEPM (p = 0.70). The models have also been used operationally in over 25,000 dives (TBDM) and 40 spacewalks (NEPM). The standard U.S. Navy (USN) linear saturation decompression schedule from saturation at 400 fsw required 114.5 h with a maximum Bubble Growth Index (BGI(sub max)) of 17.5. Decompression using intermittent recompression combined with two 10 min exercise periods (75% VO2 (sub peak)) per day required 54.25 h (BGI(sub max): 14.7). Combined intermittent recompression and exercise resulted in a theoretical 53% (2.5 day) reduction in decompression time and theoretically lower DCS risk compared to the standard USN decompression schedule. These results warrant future decompression trials to evaluate the efficacy of this approach.

  14. Non-invasive measurement of tibialis anterior muscle temperature during rest, cycling exercise and post-exercise recovery.

    PubMed

    Flouris, Andreas D; Dinas, Petros C; Tsitoglou, Kiriakos; Patramani, Ioanna; Koutedakis, Yiannis; Kenny, Glen P

    2015-07-01

    We introduce a non-invasive and accurate method to assess tibialis anterior muscle temperature (Tm) during rest, cycling exercise, and post-exercise recovery using the insulation disk (INDISK) technique. Twenty-six healthy males (23.6  ±  6.2 years; 24.1  ±  3.1 body mass index) were randomly allocated into the 'model' (n = 16) and the 'validation' (n = 10) groups. Participants underwent 20 min supine rest, 20 min cycling exercise at 60% of age-predicted maximum heart rate, and 20 min supine post-exercise recovery. In the model group, Tm (34.55  ±  1.02 °C) was greater than INDISK temperature (Tid; 32.44  ±  1.23 °C; p < 0.001) and skin surface temperature (Tsk; 29.84  ±  1.47 °C; p < 0.001) throughout the experimental protocol. The strongest prediction model (R(2) = 0.646) incorporated Tid and the difference between the current Tid temperature and that recorded four minutes before. No mean difference (p > 0.05) and a strong correlation (r = 0.804; p < 0.001) were observed between Tm and predicted Tm (predTm) in the model group. Cross-validation analyses in the validation group demonstrated no mean difference (p > 0.05), a strong correlation (r = 0.644; p < 0.001), narrow 95% limits of agreement (-0.06  ±  1.51), and low percent coefficient of variation (2.24%) between Tm (34.39  ±  1.00 °C) and predTm (34.45  ±  0.73 °C). We conclude that the novel technique accurately predicts Tm during rest, cycling exercise, and post-exercise recovery, providing a valid and cost-efficient alternative when direct Tm measurement is not feasible.

  15. Exercising alone versus with others and associations with subjective health status in older Japanese: The JAGES Cohort Study

    PubMed Central

    Kanamori, Satoru; Takamiya, Tomoko; Inoue, Shigeru; Kai, Yuko; Kawachi, Ichiro; Kondo, Katsunori

    2016-01-01

    Although exercising with others may have extra health benefits compared to exercising alone, few studies have examined the differences. We sought to examine whether the association of regular exercise to subjective health status differs according to whether people exercise alone and/or with others, adjusting for frequency of exercise. The study was based on the Japan Gerontological Evaluation Study (JAGES) Cohort Study data. Participants were 21,684 subjects aged 65 or older. Multivariable logistic regression models were used to examine the association. The adjusted odds ratios (ORs) for poor self-rated health were significantly lower for people who exercised compared to non-exercisers. In analyses restricted to regular exercisers the ORs for poor health were 0.69 (95% confidence intervals: 0.60–0.79) for individuals exercising alone more often than with others, 0.74 (0.64–0.84) for people who were equally likely to exercise alone as with others, 0.57 (0.43–0.75) for individuals exercising with others more frequently than alone, and 0.79 (0.64–0.97) for individuals only exercising with others compared to individuals only exercising alone. Although exercising alone and exercising with others both seem to have health benefits, increased frequency of exercise with others has important health benefits regardless of the total frequency of exercise. PMID:27974855

  16. Exercising alone versus with others and associations with subjective health status in older Japanese: The JAGES Cohort Study.

    PubMed

    Kanamori, Satoru; Takamiya, Tomoko; Inoue, Shigeru; Kai, Yuko; Kawachi, Ichiro; Kondo, Katsunori

    2016-12-15

    Although exercising with others may have extra health benefits compared to exercising alone, few studies have examined the differences. We sought to examine whether the association of regular exercise to subjective health status differs according to whether people exercise alone and/or with others, adjusting for frequency of exercise. The study was based on the Japan Gerontological Evaluation Study (JAGES) Cohort Study data. Participants were 21,684 subjects aged 65 or older. Multivariable logistic regression models were used to examine the association. The adjusted odds ratios (ORs) for poor self-rated health were significantly lower for people who exercised compared to non-exercisers. In analyses restricted to regular exercisers the ORs for poor health were 0.69 (95% confidence intervals: 0.60-0.79) for individuals exercising alone more often than with others, 0.74 (0.64-0.84) for people who were equally likely to exercise alone as with others, 0.57 (0.43-0.75) for individuals exercising with others more frequently than alone, and 0.79 (0.64-0.97) for individuals only exercising with others compared to individuals only exercising alone. Although exercising alone and exercising with others both seem to have health benefits, increased frequency of exercise with others has important health benefits regardless of the total frequency of exercise.

  17. Voluntary exercise enhances activity rhythms and ameliorates anxiety- and depression-like behaviors in the sand rat model of circadian rhythm-related mood changes.

    PubMed

    Tal-Krivisky, Katy; Kronfeld-Schor, Noga; Einat, Haim

    2015-11-01

    Physical exercise is a non-pharmacological treatment for affective disorders. The mechanisms of its effects are unknown although some suggest a relationship to synchronization of circadian rhythms. One way to explore mechanisms is to utilize animal models. We previously demonstrated that the diurnal fat sand rat is an advantageous model for studying the interactions between photoperiods and mood. The current study was designed to evaluate the effects of voluntary exercise on activity rhythms and anxiety and depression-like behaviors in sand rats as a step towards better understanding of the underlying mechanisms. Male sand rats were housed in short photoperiod (SP; 5h light/19 h dark) or neutral light (NP; 12h light/12h dark) regimens for 3 weeks and divided into subgroups with or without running wheels. Activity was monitored for 3 additional weeks and then animals were tested in the elevated plus-maze, the forced swim test and the social interaction test. Activity rhythms were enhanced by the running wheels. As hypothesized, voluntary exercise had significant effects on SP animals' anxiety- and depression-like behaviors but not on NP animals. Results are discussed in the context of interactions between physical exercise, circadian rhythms and mood. We suggest that the sand rat model can be used to explore the underlying mechanism of the effects of physical exercise for mood disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Raoult's Law: A General Chemistry Experiment.

    ERIC Educational Resources Information Center

    Steffel, Margaret J.

    1983-01-01

    To make material on Raoult's law more meaningful, students complete exercises on paper, in the laboratory, and with molecular models. Paper exercises give practice using the law; laboratory work illustrates behavior of real solutions; and models show relationships between properties of individual molecules and of matter in bulk. (JN)

  19. Network Analysis to Risk Stratify Patients With Exercise Intolerance.

    PubMed

    Oldham, William M; Oliveira, Rudolf K F; Wang, Rui-Sheng; Opotowsky, Alexander R; Rubins, David M; Hainer, Jon; Wertheim, Bradley M; Alba, George A; Choudhary, Gaurav; Tornyos, Adrienn; MacRae, Calum A; Loscalzo, Joseph; Leopold, Jane A; Waxman, Aaron B; Olschewski, Horst; Kovacs, Gabor; Systrom, David M; Maron, Bradley A

    2018-03-16

    Current methods assessing clinical risk because of exercise intolerance in patients with cardiopulmonary disease rely on a small subset of traditional variables. Alternative strategies incorporating the spectrum of factors underlying prognosis in at-risk patients may be useful clinically, but are lacking. Use unbiased analyses to identify variables that correspond to clinical risk in patients with exercise intolerance. Data from 738 consecutive patients referred for invasive cardiopulmonary exercise testing at a single center (2011-2015) were analyzed retrospectively (derivation cohort). A correlation network of invasive cardiopulmonary exercise testing parameters was assembled using |r|>0.5. From an exercise network of 39 variables (ie, nodes) and 98 correlations (ie, edges) corresponding to P <9.5e -46 for each correlation, we focused on a subnetwork containing peak volume of oxygen consumption (pVo 2 ) and 9 linked nodes. K-mean clustering based on these 10 variables identified 4 novel patient clusters characterized by significant differences in 44 of 45 exercise measurements ( P <0.01). Compared with a probabilistic model, including 23 independent predictors of pVo 2 and pVo 2 itself, the network model was less redundant and identified clusters that were more distinct. Cluster assignment from the network model was predictive of subsequent clinical events. For example, a 4.3-fold ( P <0.0001; 95% CI, 2.2-8.1) and 2.8-fold ( P =0.0018; 95% CI, 1.5-5.2) increase in hazard for age- and pVo 2 -adjusted all-cause 3-year hospitalization, respectively, were observed between the highest versus lowest risk clusters. Using these data, we developed the first risk-stratification calculator for patients with exercise intolerance. When applying the risk calculator to patients in 2 independent invasive cardiopulmonary exercise testing cohorts (Boston and Graz, Austria), we observed a clinical risk profile that paralleled the derivation cohort. Network analyses were used to identify novel exercise groups and develop a point-of-care risk calculator. These data expand the range of useful clinical variables beyond pVo 2 that predict hospitalization in patients with exercise intolerance. © 2018 American Heart Association, Inc.

  20. Basic models modeling resistance training: an update for basic scientists interested in study skeletal muscle hypertrophy.

    PubMed

    Cholewa, Jason; Guimarães-Ferreira, Lucas; da Silva Teixeira, Tamiris; Naimo, Marshall Alan; Zhi, Xia; de Sá, Rafaele Bis Dal Ponte; Lodetti, Alice; Cardozo, Mayara Quadros; Zanchi, Nelo Eidy

    2014-09-01

    Human muscle hypertrophy brought about by voluntary exercise in laboratorial conditions is the most common way to study resistance exercise training, especially because of its reliability, stimulus control and easy application to resistance training exercise sessions at fitness centers. However, because of the complexity of blood factors and organs involved, invasive data is difficult to obtain in human exercise training studies due to the integration of several organs, including adipose tissue, liver, brain and skeletal muscle. In contrast, studying skeletal muscle remodeling in animal models are easier to perform as the organs can be easily obtained after euthanasia; however, not all models of resistance training in animals displays a robust capacity to hypertrophy the desired muscle. Moreover, some models of resistance training rely on voluntary effort, which complicates the results observed when animal models are employed since voluntary capacity is something theoretically impossible to measure in rodents. With this information in mind, we will review the modalities used to simulate resistance training in animals in order to present to investigators the benefits and risks of different animal models capable to provoke skeletal muscle hypertrophy. Our second objective is to help investigators analyze and select the experimental resistance training model that best promotes the research question and desired endpoints. © 2013 Wiley Periodicals, Inc.

  1. The Effects of a Self-Efficacy Intervention on Exercise Behavior of Fitness Club Members in 52 Weeks and Long-Term Relationships of Transtheoretical Model Constructs

    PubMed Central

    Middelkamp, Jan; van Rooijen, Maaike; Wolfhagen, Peter; Steenbergen, Bert

    2017-01-01

    The transtheoretical model of behavior change (TTM) is often used to understand changes in health-related behavior, like exercise. Exercise behavior in fitness clubs is an understudied topic, but preliminary studies showed low frequencies and large numbers of drop-out. An initial 12-week self-efficacy intervention reported significant effects on exercise behavior. The objective of this follow up study is testing effects on exercise behavior over 52 weeks and the long-term relationships of all TTM constructs. In total 122 participants (Mage 42.02 yr.; SD 12.29; 67% females) were recruited and randomly assigned to group 1 (control), group 2 (self-set activities) and group 3 (self-set goals coaching). All participants were monitored 52-weeks. Measurements at baseline, 4, 8, 12, 26 and 52 weeks, using validated scales for stages of change, self-efficacy, decisional balance and processes of change. Exercise behavior and drop-outs were registered. An ANOVA revealed that group 3 significantly (p < 0.05) differed in exercise sessions from group 1 and 2 during the 12 weeks. A chi-square test indicated significant differences for continuing exercising after the intervention: 7 of group 1; 6 of group 2; 19 of group 3. In total 5 demonstrated regular exercise behavior at 26 weeks, and 3 at 52 weeks. Self-efficacy, decisional balance, and processes of change showed limited long-term changes over the later stages of change. At all measurements, participants reported more pros than cons and used more behavioral than cognitive processes. Exercise behavior of members in fitness clubs demonstrated dramatic developments in 52 weeks. The frequencies of sessions were so low that health effects will be minimal. The integrative character of the TTM appears to be weak; the data indicated limited relationships. More research is needed to understand exercise behavior and define optimal strategies to increase exercise attendance and decrease drop-outs in the long term. Key points Approximately 151 million individuals exercise in 187.000 fitness clubs worldwide, mainly for health benefits. The transtheoretical model of behavior change is often used to understand changes in health-related behavior, like exercise, but was never applied to this understudied population. An initial 12-week self-efficacy intervention reported significant effects on (increased) exercise behavior. The effects of this intervention were diminished at 26 and 52 weeks, with respectively only five and three participants maintaining regular exercise behavior in fitness clubs. The integrative character of the TTM in this population appears to be weak; the data indicated limited relationships. PMID:28630568

  2. Modeling of breath methane concentration profiles during exercise on an ergometer*

    PubMed Central

    Szabó, Anna; Unterkofler, Karl; Mochalski, Pawel; Jandacka, Martin; Ruzsanyi, Vera; Szabó, Gábor; Mohácsi, Árpád; Teschl, Susanne; Teschl, Gerald; King, Julian

    2016-01-01

    We develop a simple three compartment model based on mass balance equations which quantitatively describes the dynamics of breath methane concentration profiles during exercise on an ergometer. With the help of this model it is possible to estimate the endogenous production rate of methane in the large intestine by measuring breath gas concentrations of methane. PMID:26828421

  3. The concept and use of elasticity in population viability models [Exercise 13

    Treesearch

    Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke

    2003-01-01

    As you have seen in exercise 12, plants, such as the western prairie fringed orchid, typically have distinct life stages and complex life cycles that require the matrix analyses associated with a stage-based population model. Some statistics that can be generated from such matrix analyses can be very informative in determining which variables in the model have the...

  4. Effective groundwater model calibration: With analysis of data, sensitivities, predictions, and uncertainty

    USGS Publications Warehouse

    Hill, Mary C.; Tiedeman, Claire

    2007-01-01

    Methods and guidelines for developing and using mathematical modelsTurn to Effective Groundwater Model Calibration for a set of methods and guidelines that can help produce more accurate and transparent mathematical models. The models can represent groundwater flow and transport and other natural and engineered systems. Use this book and its extensive exercises to learn methods to fully exploit the data on hand, maximize the model's potential, and troubleshoot any problems that arise. Use the methods to perform:Sensitivity analysis to evaluate the information content of dataData assessment to identify (a) existing measurements that dominate model development and predictions and (b) potential measurements likely to improve the reliability of predictionsCalibration to develop models that are consistent with the data in an optimal mannerUncertainty evaluation to quantify and communicate errors in simulated results that are often used to make important societal decisionsMost of the methods are based on linear and nonlinear regression theory.Fourteen guidelines show the reader how to use the methods advantageously in practical situations.Exercises focus on a groundwater flow system and management problem, enabling readers to apply all the methods presented in the text. The exercises can be completed using the material provided in the book, or as hands-on computer exercises using instructions and files available on the text's accompanying Web site.Throughout the book, the authors stress the need for valid statistical concepts and easily understood presentation methods required to achieve well-tested, transparent models. Most of the examples and all of the exercises focus on simulating groundwater systems; other examples come from surface-water hydrology and geophysics.The methods and guidelines in the text are broadly applicable and can be used by students, researchers, and engineers to simulate many kinds systems.

  5. Cost-effectiveness of supervised exercise therapy in heart failure patients.

    PubMed

    Kühr, Eduardo M; Ribeiro, Rodrigo A; Rohde, Luis Eduardo P; Polanczyk, Carisi A

    2011-01-01

    Exercise therapy in heart failure (HF) patients is considered safe and has demonstrated modest reduction in hospitalization rates and death in recent trials. Previous cost-effectiveness analysis described favorable results considering long-term supervised exercise intervention and significant effectiveness of exercise therapy; however, these evidences are now no longer supported. To evaluate the cost-effectiveness of supervised exercise therapy in HF patients under the perspective of the Brazilian Public Healthcare System. We developed a Markov model to evaluate the incremental cost-effectiveness ratio of supervised exercise therapy compared to standard treatment in patients with New York Heart Association HF class II and III. Effectiveness was evaluated in quality-adjusted life years in a 10-year time horizon. We searched PUBMED for published clinical trials to estimate effectiveness, mortality, hospitalization, and utilities data. Treatment costs were obtained from published cohort updated to 2008 values. Exercise therapy intervention costs were obtained from a rehabilitation center. Model robustness was assessed through Monte Carlo simulation and sensitivity analysis. Cost were expressed as international dollars, applying the purchasing-power-parity conversion rate. Exercise therapy showed small reduction in hospitalization and mortality at a low cost, an incremental cost-effectiveness ratio of Int$26,462/quality-adjusted life year. Results were more sensitive to exercise therapy costs, standard treatment total costs, exercise therapy effectiveness, and medications costs. Considering a willingness-to-pay of Int$27,500, 55% of the trials fell below this value in the Monte Carlo simulation. In a Brazilian scenario, exercise therapy shows reasonable cost-effectiveness ratio, despite current evidence of limited benefit of this intervention. Copyright © 2011 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  6. Phototherapy on Management of Creatine Kinase Activity in General Versus Localized Exercise: A Systematic Review and Meta-Analysis.

    PubMed

    Machado, Aryane Flauzino; Micheletti, Jéssica Kirsch; Lopes, Jaqueline Santos Silva; Vanderlei, Franciele Marques; Leal-Junior, Ernesto Cesar Pinto; Netto Junior, Jayme; Pastre, Carlos Marcelo

    2018-06-21

    The main focus of this systematic review was to determine the efficacy of phototherapy in the management of creatine kinase (CK) activity after exercise and furthermore to identify for which exercise model protocol phototherapy provides the best results. Meta-analysis comparing phototherapy with a control condition. The MEDLINE, EMBASE, SPORTDiscus, PEDro, and CENTRAL databases were searched from their earliest records to October 03, 2016. Data were pooled in a meta-analysis and described as standardized mean difference (SMD) with 95% confidence intervals (CIs) using a random effects model. Healthy subjects (no restrictions were applied, eg, age, sex, and exercise level). Phototherapy (low-level laser therapy and/or light-emitting diode therapy) before or after exercise and a placebo or control condition. Creatine kinase activity (no restriction to any analysis, eg, serum, plasma, or capillary blood). Fourteen studies were included for review. The results revealed that phototherapy has a more positive effect than control condition in management of CK activity [SMD = 0.77, 95% CI (0.32 to 1.22); P = 0.0007; I = 72%]. In exploratory analysis, the results showed that phototherapy was effective only in the exercise protocol with localized exercise with large effect size [localized exercise: SMD = 0.89, 95% CI (0.26 to 1.51); P = 0.0002; I = 76%; general exercise: SMD = 0.61, 95% CI (-0.05 to 1.26); P = 0.07; I = 67%]. The available evidence suggest that phototherapy has beneficial effects on the management of CK activity and demonstrate a possible relationship based on damage caused by exercise, providing a greater effect in studies that used localized exercise.

  7. Short-term exercise worsens cardiac oxidative stress and fibrosis in 8-month-old db/db mice by depleting cardiac glutathione.

    PubMed

    Laher, Ismail; Beam, Julianne; Botta, Amy; Barendregt, Rebekah; Sulistyoningrum, Dian; Devlin, Angela; Rheault, Mark; Ghosh, Sanjoy

    2013-01-01

    Moderate exercise improves cardiac antioxidant status in young humans and animals with Type-2 diabetes (T2D). Given that both diabetes and advancing age synergistically decrease antioxidant expression in most tissues, it is unclear whether exercise can upregulate cardiac antioxidants in chronic animal models of T2D. To this end, 8-month-old T2D and normoglycemic mice were exercised for 3 weeks, and cardiac redox status was evaluated. As expected, moderate exercise increased cardiac antioxidants and attenuated oxidative damage in normoglycemic mice. In contrast, similar exercise protocol in 8-month-old db/db mice worsened cardiac oxidative damage, which was associated with a specific dysregulation of glutathione (GSH) homeostasis. Expression of enzymes for GSH biosynthesis [γ-glutamylcysteine synthase, glutathione reductase] as well as for GSH-mediated detoxification (glutathione peroxidase, glutathione-S-transferase) was lower, while toxic metabolites dependent on GSH for clearance (4-hydroxynonenal) were increased in exercised diabetic mice hearts. To validate GSH loss as an important factor for such aggravated damage, daily administration of GSH restored cardiac GSH levels in exercised diabetic mice. Such supplementation attenuated both oxidative damage and fibrotic changes in the myocardium. Expression of transforming growth factor beta (TGF-β) and its regulated genes which are responsible for such profibrotic changes were also attenuated with GSH supplementation. These novel findings in a long-term T2D animal model demonstrate that short-term exercise by itself can deplete cardiac GSH and aggravate cardiac oxidative stress. As GSH administration conferred protection in 8-month-old diabetic mice undergoing exercise, supplementation with GSH-enhancing agents may be beneficial in elderly diabetic patients undergoing exercise.

  8. Reliability and validity of the self-efficacy for exercise and outcome expectations for exercise scales with minority older adults.

    PubMed

    Resnick, Barbara; Luisi, Daria; Vogel, Amanda; Junaleepa, Piyatida

    2004-01-01

    Older African Americans and Latinos tend to exercise less than older Whites and are more likely to have chronic diseases that could benefit from exercise. Measurement of self-efficacy of exercise and exercise outcome expectations in this older population is required if exercise is to be monitored carefully and enhanced in this population. The purpose of this study was to test the reliability and validity of the Self-Efficacy for Exercise Scale (SEE) and Outcome Expectations for Exercise Scale (OEE) in a sample of African American and Latino older adults. A total of 166 individuals, 32 males (19%) and 134 females (81%) with an average age of 72.8 +/- 8.4 years participated in the study. The SEE and OEE scales were completed using face-to-face interviews. There was evidence of internal consistency for both scales with alphas of .89 and .90 for the SEE scale and .72 and .88 for the OEE scale. There was some evidence of validity for both scales based on confirmatory factor analysis and hypothesis testing, because factor loadings were greater than .50 in all but two items in the OEE, and there were significant relationships between self-efficacy and outcome expectations and exercise behavior at all testing time-points. The measurement models showed a fair fit of the data to the models. The study provided some evidence for the reliability and validity of the SEE and OEE when used with minority older adults, and it provides some guidelines for future scale revisions and use.

  9. Mobile Exercise Apps and Increased Leisure Time Exercise Activity: A Moderated Mediation Analysis of the Role of Self-Efficacy and Barriers

    PubMed Central

    Rosen, Zohn; Spierer, David; Weinberger-Litman, Sarah; Goldschein, Akiva; Robinson, Jonathan

    2015-01-01

    Background There are currently over 1000 exercise apps for mobile devices on the market. These apps employ a range of features, from tracking exercise activity to providing motivational messages. However, virtually nothing is known about whether exercise apps improve exercise levels and health outcomes and, if so, the mechanisms of these effects. Objective Our aim was to examine whether the use of exercise apps is associated with increased levels of exercise and improved health outcomes. We also develop a framework within which to understand how exercise apps may affect health and test multiple models of possible mechanisms of action and boundary conditions of these relationships. Within this framework, app use may increase physical activity by influencing variables such as self-efficacy and may help to overcome exercise barriers, leading to improved health outcomes such as lower body mass index (BMI). Methods In this study, 726 participants with one of three backgrounds were surveyed about their use of exercise apps and health: (1) those who never used exercise apps, (2) those who used exercise apps but discontinued use, and (3) those who are currently using exercise apps. Participants were asked about their long-term levels of exercise and about their levels of exercise during the previous week with the International Physical Activity Questionnaire (IPAQ). Results Nearly three-quarters of current app users reported being more active compared to under half of non-users and past users. The IPAQ showed that current users had higher total leisure time metabolic equivalent of task (MET) expenditures (1169 METs), including walking and vigorous exercise, compared to those who stopped using their apps (612 METs) or who never used apps (577 METs). Importantly, physical activity levels in domains other than leisure time activity were similar across the groups. The results also showed that current users had lower BMI (25.16) than past users (26.8) and non-users (26.9) and that this association was mediated by exercise levels and self-efficacy. That relationship was also moderated by perceived barriers to exercise. Multiple serial mediation models were tested, which revealed that the association between app use and BMI is mediated by increased self-efficacy and increased exercise. Conclusions Exercise app users are more likely to exercise during their leisure time, compared to those who do not use exercise apps, essentially fulfilling the role that many of these apps were designed to accomplish. Data also suggest that one way that exercise apps may increase exercise levels and health outcomes such as BMI is by making it easier for users to overcome barriers to exercise, leading to increased self-efficacy. We discuss ways of improving the effectiveness of apps by incorporating theory-driven approaches. We conclude that exercise apps can be viewed as intervention delivery systems consisting of features that help users overcome specific barriers. PMID:26276227

  10. Mobile Exercise Apps and Increased Leisure Time Exercise Activity: A Moderated Mediation Analysis of the Role of Self-Efficacy and Barriers.

    PubMed

    Litman, Leib; Rosen, Zohn; Spierer, David; Weinberger-Litman, Sarah; Goldschein, Akiva; Robinson, Jonathan

    2015-08-14

    There are currently over 1000 exercise apps for mobile devices on the market. These apps employ a range of features, from tracking exercise activity to providing motivational messages. However, virtually nothing is known about whether exercise apps improve exercise levels and health outcomes and, if so, the mechanisms of these effects. Our aim was to examine whether the use of exercise apps is associated with increased levels of exercise and improved health outcomes. We also develop a framework within which to understand how exercise apps may affect health and test multiple models of possible mechanisms of action and boundary conditions of these relationships. Within this framework, app use may increase physical activity by influencing variables such as self-efficacy and may help to overcome exercise barriers, leading to improved health outcomes such as lower body mass index (BMI). In this study, 726 participants with one of three backgrounds were surveyed about their use of exercise apps and health: (1) those who never used exercise apps, (2) those who used exercise apps but discontinued use, and (3) those who are currently using exercise apps. Participants were asked about their long-term levels of exercise and about their levels of exercise during the previous week with the International Physical Activity Questionnaire (IPAQ). Nearly three-quarters of current app users reported being more active compared to under half of non-users and past users. The IPAQ showed that current users had higher total leisure time metabolic equivalent of task (MET) expenditures (1169 METs), including walking and vigorous exercise, compared to those who stopped using their apps (612 METs) or who never used apps (577 METs). Importantly, physical activity levels in domains other than leisure time activity were similar across the groups. The results also showed that current users had lower BMI (25.16) than past users (26.8) and non-users (26.9) and that this association was mediated by exercise levels and self-efficacy. That relationship was also moderated by perceived barriers to exercise. Multiple serial mediation models were tested, which revealed that the association between app use and BMI is mediated by increased self-efficacy and increased exercise. Exercise app users are more likely to exercise during their leisure time, compared to those who do not use exercise apps, essentially fulfilling the role that many of these apps were designed to accomplish. Data also suggest that one way that exercise apps may increase exercise levels and health outcomes such as BMI is by making it easier for users to overcome barriers to exercise, leading to increased self-efficacy. We discuss ways of improving the effectiveness of apps by incorporating theory-driven approaches. We conclude that exercise apps can be viewed as intervention delivery systems consisting of features that help users overcome specific barriers.

  11. Rationale and Resources for Teaching the Mathematical Modeling of Athletic Training and Performance

    ERIC Educational Resources Information Center

    Clarke, David C.; Skiba, Philip F.

    2013-01-01

    A number of professions rely on exercise prescription to improve health or athletic performance, including coaching, fitness/personal training, rehabilitation, and exercise physiology. It is therefore advisable that the professionals involved learn the various tools available for designing effective training programs. Mathematical modeling of…

  12. Early alterations in blood and brain RANTES and MCP-1 expression and the effect of exercise frequency in the 3xTg-AD mouse model of Alzheimer's disease.

    PubMed

    Haskins, Morgan; Jones, Terry E; Lu, Qun; Bareiss, Sonja K

    2016-01-01

    Exercise has been shown to protect against cognitive decline and Alzheimer's disease (AD) progression, however the dose of exercise required to protect against AD is unknown. Recent studies show that the pathological processes leading to AD cause characteristic alterations in blood and brain inflammatory proteins that are associated with the progression of AD, suggesting that these markers could be used to diagnosis and monitor disease progression. The purpose of this study was to determine the impact of exercise frequency on AD blood chemokine profiles, and correlate these findings with chemokine brain expression changes in the triple transgenic AD (3xTg-AD) mouse model. Three month old 3xTg-AD mice were subjected to 12 weeks of moderate intensity wheel running at a frequency of either 1×/week or 3×/week. Blood and cortical tissue were analyzed for expression of monocyte chemotactic protein-1 (MCP-1) and regulated and normal T cell expressed and secreted (RANTES). Alterations in blood RANTES and MCP-1 expression were evident at 3 and 6 month old animals compared to WT animals. Three times per week exercise but not 1×/week exercise was effective at reversing serum and brain RANTES and MCP-1 expression to the levels of WT controls, revealing a dose dependent response to exercise. Analysis of these chemokines showed a strong negative correlation between blood and brain expression of RANTES. The results indicate that alterations in serum and brain inflammatory chemokines are evident as early signs of Alzheimer's disease pathology and that higher frequency exercise was necessary to restore blood and brain inflammatory expression levels in this AD mouse model. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Voluntary exercise under a food restriction condition decreases blood branched-chain amino acid levels, in addition to improvement of glucose and lipid metabolism, in db mice, animal model of type 2 diabetes.

    PubMed

    Marchianti, Ancah Caesarina Novi; Arimura, Emi; Ushikai, Miharu; Horiuchi, Masahisa

    2014-09-01

    Exercise is effective for preventing the onset and development of type 2 diabetes mellitus (T2DM) in human cases; however, the effect of exercise on the pathophysiology using animal models of T2DM has not been fully evaluated. We applied voluntary exercise under pair-fed (P) conditions in db mice, an animal model of T2DM. Exercising (Ex) and sedentary (Se) mice were placed in a cage, equipped with a free or locked running wheel, for 4 weeks, respectively. The amount of food consumed by ad libitum-fed wild-type mice under the Se condition (ad-WT) was supplied to all mice, except ad libitum db mice (ad-db). Blood parameters and expression of the genes involved in nutrient metabolism were analyzed. PEx-db (pair-fed and exercising) mice showed significantly lower HbA1c, body weight and liver weight than PSe-db and ad-db mice. Decreased hepatic triglycerides in PEx-db mice corresponded to a lower expression of lipogenic enzyme genes in the liver. Moreover, PEx-db mice showed significantly lower plasma branched-chain amino acids (BCAA), arginine, proline, and tyrosine, in addition to increased skeletal muscle (SM) weight, than PSe-db and ad-db mice, in spite of little influence on the expression of the BCAA transaminase gene, in SM and WAT. We found that exercise under a food restriction condition decreases several amino acids, including BCAA, and may improve insulin sensitivity more than mere food restriction. We propose that the decreased concentration of blood amino acids may be a valuable marker evaluating the effects of exercise on diabetic conditions.

  14. Counseling middle-aged women about physical activity using the stages of change.

    PubMed

    Dearden, Jennifer S; Sheahan, Sharon L

    2002-11-01

    To discuss application of the Stages of Change theoretical framework and provide clinical tips on exercise adherence among midlife women. Included is a checklist to assist the nurse practitioner (NP) in effectively delivering the message. Review of the current scientific literature on exercise adherence and the Stages of Change model. Middle-aged women comprise a unique population. Determining the woman's readiness for change using the Stages of Change model, NPs can routinely include appropriate exercise recommendations in their practices. Nurse practitioners are in a unique position to promote healthy behaviors by counseling women in midlife about adopting an active lifestyle. Exercise counseling is an essential component of healthcare, especially among middle-aged women who are experiencing physical, emotional, and social changes.

  15. Aerobic Exercise Decreases Lung Inflammation by IgE Decrement in an OVA Mice Model.

    PubMed

    Camargo Hizume-Kunzler, Deborah; Greiffo, Flavia R; Fortkamp, Bárbara; Ribeiro Freitas, Gabriel; Keller Nascimento, Juliana; Regina Bruggemann, Thayse; Melo Avila, Leonardo; Perini, Adenir; Bobinski, Franciane; Duarte Silva, Morgana; Rocha Lapa, Fernanda; Paula Vieira, Rodolfo; Vargas Horewicz, Verônica; Soares Dos Santos, Adair Roberto; Cattelan Bonorino, Kelly

    2017-06-01

    Aerobic exercise (AE) reduces lung function decline and risk of exacerbations in asthmatic patients. However, the inflammatory lung response involved in exercise during the sensitization remains unclear. Therefore, we evaluated the effects of exercise for 2 weeks in an experimental model of sensitization and single ovalbumin-challenge. Mice were divided into 4 groups: mice non-sensitized and not submitted to exercise (Sedentary, n=10); mice non-sensitized and submitted to exercise (Exercise, n=10); mice sensitized and exposed to ovalbumin (OVA, n=10); and mice sensitized, submitted to exercise and exposed to OVA (OVA+Exercise, n=10). 24 h after the OVA/saline exposure, we counted inflammatory cells from bronchoalveolar fluid (BALF), lung levels of total IgE, IL-4, IL-5, IL-10 and IL-1ra, measurements of OVA-specific IgG1 and IgE, and VEGF and NOS-2 expression via western blotting. AE reduced cell counts from BALF in the OVA group (p<0.05), total IgE, IL-4 and IL-5 lung levels and OVA-specific IgE and IgG1 titers (p<0.05). There was an increase of NOS-2 expression, IL-10 and IL-1ra lung levels in the OVA groups (p<0.05). Our results showed that AE attenuated the acute lung inflammation, suggesting immunomodulatory properties on the sensitization process in the early phases of antigen presentation in asthma. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Effect of exercise training and food restriction on endothelium-dependent relaxation in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous NIDDM.

    PubMed

    Sakamoto, S; Minami, K; Niwa, Y; Ohnaka, M; Nakaya, Y; Mizuno, A; Kuwajima, M; Shima, K

    1998-01-01

    We investigated whether endothelial function may be impaired in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a model of spontaneous NIDDM. The effect of exercise training and food restriction on endothelial function was also studied. OLETF rats were divided into three groups at age 16 weeks: sedentary, exercise trained, and food restricted (70% of the food intake of sedentary rats). Otsuka Long-Evans Tokushima rats were used as the age-matched nondiabetic controls. Endothelium-dependent relaxation of the thoracic aorta induced by histamine was significantly attenuated in the sedentary or food-restricted rats, and exercise training improved endothelial function. Relaxation induced by sodium nitroprusside, a donor of nitric oxide, did not differ significantly among groups. Both exercise training and food restriction significantly suppressed plasma levels of glucose and insulin and serum levels of triacylglycerol and cholesterol and reduced the accumulation of abdominal fat. Insulin sensitivity, as measured by the hyperinsulinemic-euglycemic clamp technique, was significantly decreased in sedentary rats but was enhanced in exercise-trained and food-restricted rats. The urinary excretion of nitrite was significantly decreased in sedentary and food-restricted rats compared with nondiabetic rats and was significantly increased in exercise-trained rats. These results indicate that exercise training, but not food restriction, prevents endothelial dysfunction in NIDDM rats, presumably due to the exercise-induced increase in the production of nitric oxide.

  17. Exercise starts and ends in the brain.

    PubMed

    Kayser, Bengt

    2003-10-01

    Classically the limit to endurance of exercise is explained in terms of metabolic capacity. Cardio-respiratory capacity and muscle fatigue are thought to set the limit and the majority of studies on factors limiting endurance exercise discuss issues such as maximal oxygen uptake (VO2max), aerobic enzyme capacity, cardiac output, glycogen stores, etc. However, this paradigm does not explain the limitation to endurance exercise with large muscle groups at altitude, when at exhaustion exercise is ended without limb locomotor muscle fatigue and with sub-maximal cardiac output. A simple fact provides a basis for an explanation. Voluntary exercise starts and ends in the brain. It starts with spatial and temporal recruitment of motor units and ends with their de-recruitment. A conscious decision precedes a voluntary effort. The end of effort is again volitional and a forced conscious decision to stop precedes it, but it is unknown what forces the off-switch of recruitment at exhaustion although sensation of exertion certainly plays a role. An alternative model explaining the limitation of exercise endurance thus proposes that the central nervous system integrates input from various sources all related to the exercise and limits the intensity and duration of recruitment of limb skeletal muscle to prevent jeopardizing the integrity of the organism. This model acknowledges the cardio-respiratory and muscle metabolic capacities as prime actors on the performance scene, while crediting the central nervous system for its pivotal role as the ultimate site where exercise starts and ends.

  18. Factor Structure of the Exercise Self-Efficacy Scale

    ERIC Educational Resources Information Center

    Cornick, Jessica E.

    2015-01-01

    The current study utilized exercise self-efficacy ratings from undergraduate students to assess the factor structure of the Self-Efficacy to Regulate Exercise Scale (Bandura, 1997, 2006). An exploratory factor analysis (n = 759) indicated a two-factor model solution and three separate confirmatory factor analyses (n = 1,798) supported this…

  19. Pumping Insulin during Exercise: What Healthcare Providers and Diabetic Patients Need To Know.

    ERIC Educational Resources Information Center

    Colberg, Sheri R.; Walsh, John

    2002-01-01

    Exercise can decrease insulin resistance. Insulin pumps deliver precise insulin adjustments that improve fuel availability and provide glycemic control to help people with diabetes overcome obstacles to exercise. Physicians, patients, and healthcare providers should be familiar with the features and nuances of specific pump models and follow basic…

  20. Flow for Exercise Adherence: Testing an Intrinsic Model of Health Behavior

    ERIC Educational Resources Information Center

    Petosa, R. Lingyak; Holtz, Brian

    2013-01-01

    Background: Health behavior theory generally does not include intrinsic motivation as a determinate of health practices. Purpose: The purpose of this study was to test the flow theory of exercise adherence. Flow theory posits that exercise can be intrinsically rewarding if the experiences of self/time transcendence and control/mastery are achieved…

  1. Evaluating Exercise as a Therapeutic Intervention for Methamphetamine Addiction-Like Behavior1

    PubMed Central

    Somkuwar, Sucharita S.; Staples, Miranda C.; Fannon, McKenzie J.; Ghofranian, Atoosa; Mandyam, Chitra D.

    2015-01-01

    Abstract The need for effective treatments for addiction and dependence to the illicit stimulant methamphetamine in primary care settings is increasing, yet no effective medications have been FDA approved to reduce dependence [1]. This is partially attributed to the complex and dynamic neurobiology underlying the various stages of addiction [2]. Therapeutic strategies to treat methamphetamine addiction, particularly the relapse stage of addiction, could revolutionize methamphetamine addiction treatment. In this context, preclinical studies demonstrate that voluntary exercise (sustained physical activity) could be used as an intervention to reduce methamphetamine addiction. Therefore, it appears that methamphetamine disrupts normal functioning in the brain and this disruption is prevented or reduced by engaging in exercise. This review discusses animal models of methamphetamine addiction and sustained physical activity and the interactions between exercise and methamphetamine behaviors. The review highlights how methamphetamine and exercise affect neuronal plasticity and neurotoxicity in the adult mammalian striatum, hippocampus, and prefrontal cortex, and presents the emerging mechanisms of exercise in attenuating intake and in preventing relapse to methamphetamine seeking in preclinical models of methamphetamine addiction. PMID:29765835

  2. Exercise, learned helplessness, and the stress-resistant brain.

    PubMed

    Greenwood, Benjamin N; Fleshner, Monika

    2008-01-01

    Exercise can prevent the development of stress-related mood disorders, such as depression and anxiety. The underlying neurobiological mechanisms of this effect, however, remain unknown. Recently, researchers have used animal models to begin to elucidate the potential mechanisms underlying the protective effects of physical activity. Using the behavioral consequences of uncontrollable stress or "learned helplessness" as an animal analog of depression- and anxiety-like behaviors in rats, we are investigating factors that could be important for the antidepressant and anxiolytic properties of exercise (i.e., wheel running). The current review focuses on the following: (1) the effect of exercise on the behavioral consequences of uncontrollable stress and the implications of these effects on the specificity of the "learned helplessness" animal model; (2) the neurocircuitry of learned helplessness and the role of serotonin; and (3) exercise-associated neural adaptations and neural plasticity that may contribute to the stress-resistant brain. Identifying the mechanisms by which exercise prevents learned helplessness could shed light on the complex neurobiology of depression and anxiety and potentially lead to novel strategies for the prevention of stress-related mood disorders.

  3. Using social cognitive theory to explain discretionary, "leisure-time" physical exercise among high school students.

    PubMed

    Winters, Eric R; Petosa, Rick L; Charlton, Thomas E

    2003-06-01

    To examine whether knowledge of high school students' actions of self-regulation, and perceptions of self-efficacy to overcome exercise barriers, social situation, and outcome expectation will predict non-school related moderate and vigorous physical exercise. High school students enrolled in introductory Physical Education courses completed questionnaires that targeted selected Social Cognitive Theory variables. They also self-reported their typical "leisure-time" exercise participation using a standardized questionnaire. Bivariate correlation statistic and hierarchical regression were conducted on reports of moderate and vigorous exercise frequency. Each predictor variable was significantly associated with measures of moderate and vigorous exercise frequency. All predictor variables were significant in the final regression model used to explain vigorous exercise. After controlling for the effects of gender, the psychosocial variables explained 29% of variance in vigorous exercise frequency. Three of four predictor variables were significant in the final regression equation used to explain moderate exercise. The final regression equation accounted for 11% of variance in moderate exercise frequency. Professionals who attempt to increase the prevalence of physical exercise through educational methods should focus on the psychosocial variables utilized in this study.

  4. Complex network models reveal correlations among network metrics, exercise intensity and role of body changes in the fatigue process

    PubMed Central

    Pereira, Vanessa Helena; Gama, Maria Carolina Traina; Sousa, Filipe Antônio Barros; Lewis, Theodore Gyle; Gobatto, Claudio Alexandre; Manchado - Gobatto, Fúlvia Barros

    2015-01-01

    The aims of the present study were analyze the fatigue process at distinct intensity efforts and to investigate its occurrence as interactions at distinct body changes during exercise, using complex network models. For this, participants were submitted to four different running intensities until exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were selected according to critical power model. Mechanical (force, peak power, mean power, velocity and work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were obtained during exercises and it was used to construction of four complex network models. Such models have both, theoretical and mathematical value, and enables us to perceive new insights that go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue process. Our results shows that nodes, links and network metrics are sensibility according to increase of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables in the exhaustion occurrence and even training prescription applications. PMID:25994386

  5. Complex network models reveal correlations among network metrics, exercise intensity and role of body changes in the fatigue process

    NASA Astrophysics Data System (ADS)

    Pereira, Vanessa Helena; Gama, Maria Carolina Traina; Sousa, Filipe Antônio Barros; Lewis, Theodore Gyle; Gobatto, Claudio Alexandre; Manchado-Gobatto, Fúlvia Barros

    2015-05-01

    The aims of the present study were analyze the fatigue process at distinct intensity efforts and to investigate its occurrence as interactions at distinct body changes during exercise, using complex network models. For this, participants were submitted to four different running intensities until exhaustion, accomplished in a non-motorized treadmill using a tethered system. The intensities were selected according to critical power model. Mechanical (force, peak power, mean power, velocity and work) and physiological related parameters (heart rate, blood lactate, time until peak blood lactate concentration (lactate time), lean mass, anaerobic and aerobic capacities) and IPAQ score were obtained during exercises and it was used to construction of four complex network models. Such models have both, theoretical and mathematical value, and enables us to perceive new insights that go beyond conventional analysis. From these, we ranked the influences of each node at the fatigue process. Our results shows that nodes, links and network metrics are sensibility according to increase of efforts intensities, been the velocity a key factor to exercise maintenance at models/intensities 1 and 2 (higher time efforts) and force and power at models 3 and 4, highlighting mechanical variables in the exhaustion occurrence and even training prescription applications.

  6. Effectiveness of photobiomodulation therapy and aerobic exercise training on articular cartilage in an experimental model of osteoarthritis in rats

    NASA Astrophysics Data System (ADS)

    Assis, Lívia; Tim, Carla; Martignago, Cintia; Gonçalves, Silma Rodrigues; Renno, Ana Claudia Muniz

    2018-02-01

    Osteoarthritis (OA) is the most common disease of the knee joints in adults throughout the world. Photobiomodulation (PBM) and physical exercise have been studied for clinical treatment of OA, even though the effects and action mechanisms have not yet been clarified. The aim of this study was to evaluate the effects of PBM and aerobic exercise (associated or not) on degenerative modifications and inflammatory mediators in articular cartilage using an experimental model of knee OA. Forty male Wistar rats were randomly divided into 4 groups: OA animals without treatment (OAC); OA plus aerobic exercise training (OAT); OA animals plus PBM treatment (OAP); OA plus aerobic exercise training and PBM treatment (OATP). The exercise training (treadmill; 16m/min; 50 min/day) and the PBM treatment started 4 weeks after the surgery, 3 days/week for 8 weeks. The results showed that all treated groups showed a lower degenerative process measured by OARSI system and higher thickness values. Moreover, aerobic exercise and PBM (associated or not) decreased iNOS expression and increased IL-10 expression in OAT and OATL compared to OAC. Furthermore, a lower TGF-β expression was observed in associated therapies. These results suggest that PBM and aerobic exercise training were effective in modulating inflammatory process and preventing cartilage degeneration in knees in OA rats.

  7. Modeling heat exchange characteristics of long term space operations: Role of skin wettedness and exercise

    NASA Technical Reports Server (NTRS)

    Gonzalez, Richard R.

    1994-01-01

    The problems of heat exchange during rest and exercise during long term space operations are covered in this report. Particular attention is given to the modeling and description of the consequences of requirement to exercise in a zero-g atmosphere during Space Shuttle flights, especially long term ones. In space environments, there exists no free convection therefore only forced convection occurring by movement, such as pedalling on a cycle ergometer, augments required heat dissipation necessary to regulate body temperature. The requirement to exercise at discrete periods of the day is good practice in order to resist the deleterious consequences of zero-gravity problems and improve distribution of body fluids. However, during exercise (ca. 180 to 250W), in zero-g environments, the mass of eccrine sweating rests as sheets on the skin surface and the sweat cannot evaporate readily. The use of exercise suits with fabrics that have hydrophobic or outwicking properties somewhat distributes the mass of sweat to a larger surface from which to evaporate. However, with no free convection, increased skin wettedness throughout the body surface induces increasing thermal discomfort, particularly during continuous exercise. This report presents several alternatives to aid in this problem: use of intermittent exercise, methods to quantify local skin wettedness, and introduction of a new effective temperature that integrates thermal stress and heat exchange avenues in a zero-g atmosphere.

  8. Physical exercise prevents motor disorders and striatal oxidative imbalance after cerebral ischemia-reperfusion.

    PubMed

    Sosa, P M; Schimidt, H L; Altermann, C; Vieira, A S; Cibin, F W S; Carpes, F P; Mello-Carpes, P B

    2015-09-01

    Stroke is the third most common cause of death worldwide, and most stroke survivors present some functional impairment. We assessed the striatal oxidative balance and motor alterations resulting from stroke in a rat model to investigate the neuroprotective role of physical exercise. Forty male Wistar rats were assigned to 4 groups: a) control, b) ischemia, c) physical exercise, and d) physical exercise and ischemia. Physical exercise was conducted using a treadmill for 8 weeks. Ischemia-reperfusion surgery involved transient bilateral occlusion of the common carotid arteries for 30 min. Neuromotor performance (open-field and rotarod performance tests) and pain sensitivity were evaluated beginning at 24 h after the surgery. Rats were euthanized and the corpora striata was removed for assay of reactive oxygen species, lipoperoxidation activity, and antioxidant markers. Ischemia-reperfusion caused changes in motor activity. The ischemia-induced alterations observed in the open-field test were fully reversed, and those observed in the rotarod test were partially reversed, by physical exercise. Pain sensitivity was similar among all groups. Levels of reactive oxygen species and lipoperoxidation increased after ischemia; physical exercise decreased reactive oxygen species levels. None of the treatments altered the levels of antioxidant markers. In summary, ischemia-reperfusion resulted in motor impairment and altered striatal oxidative balance in this animal model, but those changes were moderated by physical exercise.

  9. Visual portrayals of obesity in health media: promoting exercise without perpetuating weight bias.

    PubMed

    Pearl, R L; Dovidio, J F; Puhl, R M

    2015-08-01

    Health education campaigns for preventing and reducing obesity often contain weight-stigmatizing visual content, which may have unintended negative health consequences. The goal of the present research was to identify non-stigmatizing visual content for health education materials that can promote exercise among people of diverse weight statuses. An online sample of 483 US women viewed: (i) a woman with obesity portrayed stereotypically; (ii) a woman with obesity exercising; (iii) a woman with obesity portrayed neutrally; or (iv) a lean woman exercising. Race of the models pictured was randomized (White or Black). Participants completed measures of weight bias and exercise behavior and attitudes, and provided information about their weight status. Analysis of covariance revealed that responses to stereotypical and exercise images varied by participant weight status. Across participants, neutral obesity portrayals elicited lower expressions of weight-biased attitudes and higher reports of exercise liking/comfort. Among non-overweight participants, images portraying women with obesity stereotypically or counter-stereotypically produced greater endorsement of negative stereotypes than control, lean images. No effects of model race were found. These findings suggest that the public responds differently to visual portrayals of obesity depending on weight status, and neutral portrayals may be an effective route toward promoting exercise without perpetuating stigma. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Hemodynamic response to exercise and head-up tilt of patients implanted with a rotary blood pump: a computational modeling study.

    PubMed

    Lim, Einly; Salamonsen, Robert Francis; Mansouri, Mahdi; Gaddum, Nicholas; Mason, David Glen; Timms, Daniel L; Stevens, Michael Charles; Fraser, John; Akmeliawati, Rini; Lovell, Nigel Hamilton

    2015-02-01

    The present study investigates the response of implantable rotary blood pump (IRBP)-assisted patients to exercise and head-up tilt (HUT), as well as the effect of alterations in the model parameter values on this response, using validated numerical models. Furthermore, we comparatively evaluate the performance of a number of previously proposed physiologically responsive controllers, including constant speed, constant flow pulsatility index (PI), constant average pressure difference between the aorta and the left atrium, constant average differential pump pressure, constant ratio between mean pump flow and pump flow pulsatility (ratioP I or linear Starling-like control), as well as constant left atrial pressure ( P l a ¯ ) control, with regard to their ability to increase cardiac output during exercise while maintaining circulatory stability upon HUT. Although native cardiac output increases automatically during exercise, increasing pump speed was able to further improve total cardiac output and reduce elevated filling pressures. At the same time, reduced venous return associated with upright posture was not shown to induce left ventricular (LV) suction. Although P l a ¯ control outperformed other control modes in its ability to increase cardiac output during exercise, it caused a fall in the mean arterial pressure upon HUT, which may cause postural hypotension or patient discomfort. To the contrary, maintaining constant average pressure difference between the aorta and the left atrium demonstrated superior performance in both exercise and HUT scenarios. Due to their strong dependence on the pump operating point, PI and ratioPI control performed poorly during exercise and HUT. Our simulation results also highlighted the importance of the baroreflex mechanism in determining the response of the IRBP-assisted patients to exercise and postural changes, where desensitized reflex response attenuated the percentage increase in cardiac output during exercise and substantially reduced the arterial pressure upon HUT. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  11. Predictive Ability of Pender's Health Promotion Model for Physical Activity and Exercise in People with Spinal Cord Injuries: A Hierarchical Regression Analysis

    ERIC Educational Resources Information Center

    Keegan, John P.; Chan, Fong; Ditchman, Nicole; Chiu, Chung-Yi

    2012-01-01

    The main objective of this study was to validate Pender's Health Promotion Model (HPM) as a motivational model for exercise/physical activity self-management for people with spinal cord injuries (SCIs). Quantitative descriptive research design using hierarchical regression analysis (HRA) was used. A total of 126 individuals with SCI were recruited…

  12. Measuring novices' field mapping abilities using an in-class exercise based on expert task analysis

    NASA Astrophysics Data System (ADS)

    Caulkins, J. L.

    2010-12-01

    We are interested in developing a model of expert-like behavior for improving the teaching methods of undergraduate field geology. Our aim is to assist students in mastering the process of field mapping more efficiently and effectively and to improve their ability to think creatively in the field. To examine expert-mapping behavior, a cognitive task analysis was conducted with expert geologic mappers in an attempt to define the process of geologic mapping (i.e. to understand how experts carry out geological mapping). The task analysis indicates that expert mappers have a wealth of geologic scenarios at their disposal that they compare against examples seen in the field, experiences that most undergraduate mappers will not have had. While presenting students with many geological examples in class may increase their understanding of geologic processes, novices still struggle when presented with a novel field situation. Based on the task analysis, a short (45-minute) paper-map-based exercise was designed and tested with 14 pairs of 3rd year geology students. The exercise asks students to generate probable geologic models based on a series of four (4) data sets. Each data set represents a day’s worth of data; after the first “day,” new sheets simply include current and previously collected data (e.g. “Day 2” data set includes data from “Day 1” plus the new “Day 2” data). As the geologic complexity increases, students must adapt, reject or generate new geologic models in order to fit the growing data set. Preliminary results of the exercise indicate that students who produced more probable geologic models, and produced higher ratios of probable to improbable models, tended to go on to do better on the mapping exercises at the 3rd year field school. These results suggest that those students with more cognitively available geologic models may be more able to use these models in field settings than those who are unable to draw on these models for whatever reason. Giving students practice at generating geologic models to explain data may be useful in preparing our students for field mapping exercises.

  13. Exercise Sensing and Pose Recovery Inference Tool (ESPRIT) - A Compact Stereo-based Motion Capture Solution For Exercise Monitoring

    NASA Technical Reports Server (NTRS)

    Lee, Mun Wai

    2015-01-01

    Crew exercise is important during long-duration space flight not only for maintaining health and fitness but also for preventing adverse health problems, such as losses in muscle strength and bone density. Monitoring crew exercise via motion capture and kinematic analysis aids understanding of the effects of microgravity on exercise and helps ensure that exercise prescriptions are effective. Intelligent Automation, Inc., has developed ESPRIT to monitor exercise activities, detect body markers, extract image features, and recover three-dimensional (3D) kinematic body poses. The system relies on prior knowledge and modeling of the human body and on advanced statistical inference techniques to achieve robust and accurate motion capture. In Phase I, the company demonstrated motion capture of several exercises, including walking, curling, and dead lifting. Phase II efforts focused on enhancing algorithms and delivering an ESPRIT prototype for testing and demonstration.

  14. Examining intrinsic versus extrinsic exercise goals: cognitive, affective, and behavioral outcomes.

    PubMed

    Sebire, Simon J; Standage, Martyn; Vansteenkiste, Maarten

    2009-04-01

    Grounded in self-determination theory (SDT), this study had two purposes: (a) examine the associations between intrinsic (relative to extrinsic) exercise goal content and cognitive, affective, and behavioral outcomes; and (b) test the mediating role of psychological need satisfaction in the Exercise Goal Content --> Outcomes relationship. Using a sample of 410 adults, hierarchical regression analysis showed relative intrinsic goal content to positively predict physical self-worth, self-reported exercise behavior, psychological well-being, and psychological need satisfaction and negatively predict exercise anxiety. Except for exercise behavior, the predictive utility of relative intrinsic goal content on the dependent variables of interest remained significant after controlling for participants' relative self-determined exercise motivation. Structural equation modeling analyses showed psychological need satisfaction to partially mediate the effect of relative intrinsic goal content on the outcome variables. Our findings support further investigation of exercise goals commensurate with the goal content perspective advanced in SDT.

  15. Abnormal cardiac response to exercise in a murine model of familial hypertrophic cardiomyopathy.

    PubMed

    Nguyen, Lan; Chung, Jessica; Lam, Lien; Tsoutsman, Tatiana; Semsarian, Christopher

    2007-07-10

    Clinical outcome in familial hypertrophic cardiomyopathy (FHC) may be influenced by modifying factors such as exercise. Transgenic mice which overexpress the human disease-causing cTnI gene mutation, Gly203Ser (designated cTnI-G203S), develop all the characteristic phenotypic features of FHC. To study the modifying effect of exercise in early disease, mice underwent swimming exercise at an early age prior to the development of the FHC phenotype. In non-transgenic and cTnI-wt mice, swimming resulted in a significant increase in left ventricular wall thickness and contractility on echocardiography, consistent with a physiological hypertrophic response to exercise. In contrast, cTnI-G203S mice showed no increase in these parameters, indicating an abnormal response to exercise. The lack of a physiological response to exercise may indicate an important novel mechanistic insight into the role of exercise in triggering adverse events in FHC.

  16. What Predicts Exercise Maintenance and Well-Being? Examining The Influence of Health-Related Psychographic Factors and Social Media Communication.

    PubMed

    Zhou, Xin; Krishnan, Archana

    2018-01-26

    Habitual exercising is an important precursor to both physical and psychological well-being. There is, thus, a strong interest in identifying key factors that can best motivate individuals to sustain regular exercise regimen. In addition to the importance of psychographic factors, social media use may act as external motivator by allowing users to interact and communicate about exercise. In this study, we examined the influence of health consciousness, health-oriented beliefs, intrinsic motivation, as willingness to communicate about health on social media, social media activity on exercise, and online social support on exercise maintenance and well-being on a sample of 532 American adults. Employing structural equation modeling, we found that health-oriented beliefs mediated the effect of health consciousness on intrinsic motivation which in turn was a significant predictor of exercise maintenance. Exercise maintenance significantly predicted both physical and psychological well-being. Extrinsic motivators, as measured by willingness to communicate about health on social media, social media activity on exercise, and online social support did not however significantly influence exercise maintenance. These findings have implications for the design and implementation of exercise-promoting interventions by identifying underlying factors that influence exercise maintenance.

  17. THE POTENTIAL OF USING EXERCISE IN NATURE AS AN INTERVENTION TO ENHANCE EXERCISE BEHAVIOR: RESULTS FROM A PILOT STUDY.

    PubMed

    Calogiuri, Giovanna; Nordtug, Hildegunn; Weydahl, Andi

    2015-10-01

    According to attention-restoration theory (ART), natural environments can provide restorative experiences. In this pilot study, a mixed-methods approach was used to examine the potential of using exercise in a natural environment to enhance exercise behaviors. The study included an assessment study and an intervention study (overall n = 19). The participants underwent a standardized exercise program including biking and circuit strength training, either indoors or outdoors in nature. Measurements included connectedness to nature, perceived exertion, perceived environmental restorativeness, enjoyment, affect, future exercise intention, and self-reported exercise behavior. The participants also wrote a brief text describing the way in which the environment influenced their feelings while exercising. Quantitative data were analyzed using the Spearman rank correlation and linear mixed-effects modeling. The qualitative information was analyzed thematically. The integrated results indicated that, in accordance with ART, exercising in nature was associated with a greater potential for restoration and affective responses, which in some participants led to enhanced intention to exercise and increased exercise behavior. However, some perceived that the indoor exercise provided a more effective workout. Further studies on larger samples are needed.

  18. Aerobic Exercise for Reducing Migraine Burden: Mechanisms, Markers, and Models of Change Processes

    PubMed Central

    Irby, Megan B.; Bond, Dale S.; Lipton, Richard B.; Nicklas, Barbara; Houle, Timothy T.; Penzien, Donald B.

    2016-01-01

    Background Engagement in regular exercise routinely is recommended as an intervention for managing and preventing migraine, and yet empirical support is far from definitive. We possess at best a weak understanding of how aerobic exercise and resulting change in aerobic capacity influence migraine, let alone the optimal parameters for exercise regimens as migraine therapy (eg, who will benefit, when to prescribe, optimal types, and doses/intensities of exercise, level of anticipated benefit). These fundamental knowledge gaps critically limit our capacity to deploy exercise as an intervention for migraine. Overview Clear articulation of the markers and mechanisms through which aerobic exercise confers benefits for migraine would prove invaluable and could yield insights on migraine pathophysiology. Neurovascular and neuroinflammatory pathways, including an effect on obesity or adiposity, are obvious candidates for study given their role both in migraine as well as the changes known to accrue with regular exercise. In addition to these biological pathways, improvements in aerobic fitness and migraine alike also are mediated by changes in psychological and sociocognitive factors. Indeed a number of specific mechanisms and pathways likely are operational in the relationship between exercise and migraine improvement, and it remains to be established whether these pathways operate in parallel or synergistically. As heuristics that might conceptually benefit our research programs here forward, we: (1) provide an extensive listing of potential mechanisms and markers that could account for the effects of aerobic exercise on migraine and are worthy of empirical exploration and (2) present two exemplar conceptual models depicting pathways through which exercise may serve to reduce the burden of migraine. Conclusion Should the promise of aerobic exercise as a feasible and effective migraine therapy be realized, this line of endeavor stands to benefit migraineurs (including the many who presently remain suboptimally treated) by providing a new therapeutic avenue as an alternative or augmentative compliment to established interventions for migraine. PMID:26643584

  19. Aerobic Exercise for Reducing Migraine Burden: Mechanisms, Markers, and Models of Change Processes.

    PubMed

    Irby, Megan B; Bond, Dale S; Lipton, Richard B; Nicklas, Barbara; Houle, Timothy T; Penzien, Donald B

    2016-02-01

    Engagement in regular exercise routinely is recommended as an intervention for managing and preventing migraine, and yet empirical support is far from definitive. We possess at best a weak understanding of how aerobic exercise and resulting change in aerobic capacity influence migraine, let alone the optimal parameters for exercise regimens as migraine therapy (eg, who will benefit, when to prescribe, optimal types, and doses/intensities of exercise, level of anticipated benefit). These fundamental knowledge gaps critically limit our capacity to deploy exercise as an intervention for migraine. Clear articulation of the markers and mechanisms through which aerobic exercise confers benefits for migraine would prove invaluable and could yield insights on migraine pathophysiology. Neurovascular and neuroinflammatory pathways, including an effect on obesity or adiposity, are obvious candidates for study given their role both in migraine as well as the changes known to accrue with regular exercise. In addition to these biological pathways, improvements in aerobic fitness and migraine alike also are mediated by changes in psychological and sociocognitive factors. Indeed a number of specific mechanisms and pathways likely are operational in the relationship between exercise and migraine improvement, and it remains to be established whether these pathways operate in parallel or synergistically. As heuristics that might conceptually benefit our research programs here forward, we: (1) provide an extensive listing of potential mechanisms and markers that could account for the effects of aerobic exercise on migraine and are worthy of empirical exploration and (2) present two exemplar conceptual models depicting pathways through which exercise may serve to reduce the burden of migraine. Should the promise of aerobic exercise as a feasible and effective migraine therapy be realized, this line of endeavor stands to benefit migraineurs (including the many who presently remain suboptimally treated) by providing a new therapeutic avenue as an alternative or augmentative compliment to established interventions for migraine. © 2015 American Headache Society.

  20. Achilles Tendon Loading During Heel-Raising and -Lowering Exercises

    PubMed Central

    Revak, Andrew; Diers, Keith; Kernozek, Thomas W.; Gheidi, Naghmeh; Olbrantz, Christina

    2017-01-01

    Context: Achilles tendinopathies are common injuries during sport participation, although men are more prone to Achilles tendon injuries than women. Heel-raising and -lowering exercises are typically suggested for Achilles tendon rehabilitation. Objective: To compare the estimated Achilles tendon loading variables and the ankle range of motion (ROM) using a musculoskeletal model during commonly performed heel-raising and -lowering exercises. Design: Controlled laboratory study. Setting: University biomechanics laboratory. Patients or Other Participants: Twenty-one healthy men (age = 21.59 ± 1.92 years, height = 178.22 ± 8.02 cm, mass = 75.81 ± 11.24 kg). Intervention(s): Each participant completed 4 exercises: seated heel raising and lowering, bilateral standing heel raising and lowering, bilateral heel raising and unilateral lowering, and unilateral heel raising and lowering. Main Outcome Measure(s): A repeated-measures multivariate analysis of variance (α = .05) was used to compare Achilles tendon stress, force, and strain and ankle ROM for each exercise. Kinematic data were recorded at 180 Hz with 15 motion-analysis cameras synchronized with kinetic data collected from a force platform sampled at 1800 Hz. These data were then entered in a musculoskeletal model to estimate force in the triceps surae. For each participant, we determined Achilles tendon stress by measuring cross-sectional images using ultrasound. Results: Peak Achilles tendon loading was lowest when performing the seated heel-raising and -lowering exercise and highest when performing the unilateral heel-raising and -lowering exercise. Loading was greater for the unilateral exercise or portions of the exercise that were performed unilaterally. Conclusions: Bilateral and seated exercises with less weight-bearing force resulted in less Achilles tendon loading. These exercises may serve as progressions during the rehabilitation process before full-body weight-bearing, unilateral exercises are allowed. Ankle ROM did not follow the same order as loading and may need additional monitoring or instruction during rehabilitation. PMID:28145739

  1. Structural Biology of Tumor Necrosis Factor Demonstrated for Undergraduates Instruction by Computer Simulation

    ERIC Educational Resources Information Center

    Roy, Urmi

    2016-01-01

    This work presents a three-dimensional (3D) modeling exercise for undergraduate students in chemistry and health sciences disciplines, focusing on a protein-group linked to immune system regulation. Specifically, the exercise involves molecular modeling and structural analysis of tumor necrosis factor (TNF) proteins, both wild type and mutant. The…

  2. A Laboratory Exercise Using a Physical Model for Demonstrating Countercurrent Heat Exchange

    ERIC Educational Resources Information Center

    Loudon, Catherine; Davis-Berg, Elizabeth C.; Botz, Jason T.

    2012-01-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of…

  3. Promoting Active Learning by Practicing the "Self-Assembly" of Model Analytical Instruments

    ERIC Educational Resources Information Center

    Algar, W. Russ; Krull, Ulrich J.

    2010-01-01

    In our upper-year instrumental analytical chemistry course, we have developed "cut-and-paste" exercises where students "build" models of analytical instruments from individual schematic images of components. These exercises encourage active learning by students. Instead of trying to memorize diagrams, students are required to think deeply about…

  4. Fischer and Schrock Carbene Complexes: A Molecular Modeling Exercise

    ERIC Educational Resources Information Center

    Montgomery, Craig D.

    2015-01-01

    An exercise in molecular modeling that demonstrates the distinctive features of Fischer and Schrock carbene complexes is presented. Semi-empirical calculations (PM3) demonstrate the singlet ground electronic state, restricted rotation about the C-Y bond, the positive charge on the carbon atom, and hence, the electrophilic nature of the Fischer…

  5. Using Scatterplots to Teach the Critical Power Concept

    ERIC Educational Resources Information Center

    Pettitt, Robert W.

    2012-01-01

    The critical power (CP) concept has received renewed attention and excitement in the academic community. The CP concept was originally conceived as a model derived from a series of exhaustive, constant-load, exercise bouts. All-out exercise testing has made quantification of the parameters for the two-component model easier to arrive at, which may…

  6. Coupling Molecular Modeling to the Traditional "IR-ID" Exercise in the Introductory Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Stokes-Huby, Heather; Vitale, Dale E.

    2007-01-01

    This exercise integrates the infrared unknown identification ("IR-ID") experiment common to most organic laboratory syllabi with computer molecular modeling. In this modification students are still required to identify unknown compounds from their IR spectra, but must additionally match some of the absorptions with computed frequencies they…

  7. Spreadsheet Modeling of Electron Distributions in Solids

    ERIC Educational Resources Information Center

    Glassy, Wingfield V.

    2006-01-01

    A series of spreadsheet modeling exercises constructed as part of a new upper-level elective course on solid state materials and surface chemistry is described. The spreadsheet exercises are developed to provide students with the opportunity to interact with the conceptual framework where the role of the density of states and the Fermi-Dirac…

  8. Predicting students' physical activity and health-related well-being: a prospective cross-domain investigation of motivation across school physical education and exercise settings.

    PubMed

    Standage, Martyn; Gillison, Fiona B; Ntoumanis, Nikos; Treasure, Darren C

    2012-02-01

    A three-wave prospective design was used to assess a model of motivation guided by self-determination theory (Ryan & Deci, 2008) spanning the contexts of school physical education (PE) and exercise. The outcome variables examined were health-related quality of life (HRQoL), physical self-concept (PSC), and 4 days of objectively assessed estimates of activity. Secondary school students (n = 494) completed questionnaires at three separate time points and were familiarized with how to use a sealed pedometer. Results of structural equation modeling supported a model in which perceptions of autonomy support from a PE teacher positively predicted PE-related need satisfaction (autonomy, competence, and relatedness). Competence predicted PSC, whereas relatedness predicted HRQoL. Autonomy and competence positively predicted autonomous motivation toward PE, which in turn positively predicted autonomous motivation toward exercise (i.e., 4-day pedometer step count). Autonomous motivation toward exercise positively predicted step count, HRQoL, and PSC. Results of multisample structural equation modeling supported gender invariance. Suggestions for future work are discussed.

  9. Fitting a single-phase model to the post-exercise changes in heart rate and oxygen uptake.

    PubMed

    Stupnicki, R; Gabryś, T; Szmatlan-Gabryś, U; Tomaszewski, P

    2010-01-01

    The kinetics of post-exercise heart rate (HR) and oxygen consumption (EPOC) was studied in 10 elite cyclists subjected to four laboratory cycle ergometer maximal exercises lasting 30, 90, 180 or 360 s. Heart rate and oxygen uptake (VO2) were recorded over a period of 6 min after the exercise. By applying the logit transformation to the recorded variables and relating them to the decimal logarithm of the recovery time, uniform single-phase courses of changes were shown for both variables in all subjects and exercises. This enabled computing half-recovery times (t(1/2)) for both variables. Half-time for VO2 negatively correlated with square root of exercise duration (within-subject r = -0.629, p < 0.001), the total post-exercise oxygen uptake till t(1/2) was thus constant irrespectively of exercise intensity. The method is simple and enables reliable comparisons of various modes of exercise with respect to the rate of recovery.

  10. Effect of work and recovery durations on W' reconstitution during intermittent exercise.

    PubMed

    Skiba, Philip F; Jackman, Sarah; Clarke, David; Vanhatalo, Anni; Jones, Andrew M

    2014-07-01

    We recently presented an integrating model of the curvature constant of the hyperbolic power-time relationship (W') that permits the calculation of the W' balance (W'BAL) remaining at any time during intermittent exercise. Although a relationship between recovery power and the rate of W' recovery was demonstrated, the effect of the length of work or recovery intervals remains unclear. After determining VO2max, critical power, and W', 11 subjects completed six separate exercise tests on a cycle ergometer on different days, and in random order. Tests consisted of a period of intermittent severe-intensity exercise until the subject depleted approximately 50% of their predicted W'BAL, followed by a constant work rate (CWR) exercise bout until exhaustion. Work rates were kept constant between trials; however, either work or recovery durations during intermittent exercise were varied. The actual W' measured during the CWR (W'ACT) was compared with the amount of W' predicted to be available by the W'BAL model. Although some differences between W'BAL and W'ACT were noted, these amounted to only -1.6 ± 1.1 kJ when averaged across all conditions. The W'ACT was linearly correlated with the difference between VO2 at the start of CWR and VO2max (r = 0.79, P < 0.01). The W'BAL model provided a generally robust prediction of CWR W'. There may exist a physiological optimum formulation of work and recovery intervals such that baseline VO2 can be minimized, leading to an enhancement of subsequent exercise tolerance. These results may have important implications for athletic training and racing.

  11. Applying the transtheoretical model to promote functional fitness of community older adults participating in elastic band exercises.

    PubMed

    Yang, Hui-Ju; Chen, Kuei-Min; Chen, Ming-De; Wu, Hui-Chuan; Chang, Wen-Jane; Wang, Yueh-Chin; Huang, Hsin-Ting

    2015-10-01

    The transtheoretical model was applied to promote behavioural change and test the effects of a group senior elastic band exercise programme on the functional fitness of community older adults in the contemplation and preparation stages of behavioural change. Forming regular exercise habits is challenging for older adults. The transtheoretical model emphasizes using different strategies in various stages to facilitate behavioural changes. Quasi-experimental design with pre-test and post-tests on two groups. Six senior activity centres were randomly assigned to either the experimental or control group. The data were collected during 2011. A total of 199 participants were recruited and 169 participants completed the study (experimental group n = 84, control group n = 85). The elastic band exercises were performed for 40 minutes, three times per week for 6 months. The functional fitness of the participants was evaluated at baseline and at the third and sixth month of the intervention. Statistical analyses included a two-way mixed design analysis of variance, one-way repeated measures analysis of variance and an analysis of covariance. All of the functional fitness indicators had significant changes at post-tests from pre-test in the experimental group. The experimental group had better performances than the control group in all of the functional fitness indicators after three months and 6 months of the senior elastic band exercises. The exercise programme provided older adults with appropriate strategies for maintaining functional fitness, which improved significantly after the participants exercising regularly for 6 months. © 2015 John Wiley & Sons Ltd.

  12. Further Refinements in the Measurement of Exercise Imagery: The Exercise Imagery Inventory

    ERIC Educational Resources Information Center

    Giacobbi, Peter R., Jr.; Hausenblas, Heather A.; Penfield, Randall D.

    2005-01-01

    The factorial and construct validity of the Exercise Imagery Inventory (EII) were assessed with 3 separate samples of participants. In Phase 1, a 41-item measure was administered to 504 undergraduate students. Exploratory factor analysis supported a 4-factor model that explained 65% of the variance. In Phase 2, a 19-item measure was administered…

  13. Psychometric Properties of the Abbreviated Perceived Motivational Climate in Exercise Questionnaire

    ERIC Educational Resources Information Center

    Moore, E. Whitney G.; Brown, Theresa C.; Fry, Mary D.

    2015-01-01

    The purpose of this study was to develop an abbreviated version of the Perceived Motivational Climate in Exercise Questionnaire (PMCEQ-A) to provide a more practical instrument for use in applied exercise settings. In the calibration step, two shortened versions' measurement and latent model values were compared to each other and the original…

  14. Bengt Saltin and exercise physiology: a perspective.

    PubMed

    Joyner, Michael J

    2017-01-01

    This perspective highlights some of the key contributions of Professor Bengt Saltin (1935-2014) to exercise physiology. The emergence of exercise physiology from work physiology as his career began is discussed as are his contributions in a number of areas. Saltin's open and question-based style of leadership is a model for the future of our field.

  15. Effect of Acute Exercise on Fatigue in People with ME/CFS/SEID: A Meta-analysis.

    PubMed

    Loy, Bryan D; O'Connor, Patrick J; Dishman, Rodney K

    2016-10-01

    A prominent symptom of myalgic encephalomyelitis, chronic fatigue syndrome, or systemic exertion intolerance disease (ME/CFS/SEID) is persistent fatigue that is worsened by physical exertion. Here the population effect of a single bout of exercise on fatigue symptoms in people with ME/CFS/SEID was estimated and effect moderators were identified. Google Scholar was systematically searched for peer-reviewed articles published between February 1991 and May 2015. Studies were included where people diagnosed with ME/CFS/SEID and matched control participants completed a single bout of exercise and fatigue self-reports were obtained before and after exercise. Fatigue means, standard deviations, and sample sizes were extracted to calculate effect sizes and the 95% confidence interval. Effects were pooled using a random-effects model and corrected for small sample bias to generate mean Δ. Multilevel regression modeling adjusted for nesting of effects within studies. Moderators identified a priori were diagnostic criteria, fibromyalgia comorbidity, exercise factors (intensity, duration, and type), and measurement factors. Seven studies examining 159 people with ME/CFS/SEID met inclusion criteria, and 47 fatigue effects were derived. The mean fatigue effect was Δ = 0.73 (95% confidence interval = 0.24-1.23). Fatigue increases were larger for people with ME/CFS/SEID when fatigue was measured 4 h or more after exercise ended rather than during or immediately after exercise ceased. This preliminary evidence indicates that acute exercise increases fatigue in people with ME/CFS/SEID more than that in control groups, but effects were heterogeneous between studies. Future studies with no-exercise control groups of people with ME/CFS/SEID are needed to obtain a more precise estimate of the effect of exercise on fatigue in this population.

  16. TrkB signalling pathway mediates the protective effects of exercise in the diabetic rat retina.

    PubMed

    Allen, Rachael S; Hanif, Adam M; Gogniat, Marissa A; Prall, Brian C; Haider, Raza; Aung, Moe H; Prunty, Megan C; Mees, Lukas M; Coulter, Monica M; Motz, Cara T; Boatright, Jeffrey H; Pardue, Machelle T

    2018-05-01

    Diabetic retinopathy is a leading cause of vision loss. Treatment options for early retinopathy are sparse. Exercise protects dying photoreceptors in models of retinal degeneration, thereby preserving vision. We tested the protective effects of exercise on retinal and cognitive deficits in a type 1 diabetes model and determined whether the TrkB pathway mediates this effect. Hyperglycaemia was induced in Long Evans rats via streptozotocin injection (STZ; 100 mg/kg). Following confirmed hyperglycaemia, both control and diabetic rats underwent treadmill exercise for 30 min, 5 days/week at 0 m/min (inactive groups) or 15 m/min (active groups) for 8 weeks. A TrkB receptor antagonist (ANA-12), or vehicle, was injected 2.5 h before exercise training. We measured spatial frequency and contrast sensitivity using optokinetic tracking biweekly post-STZ; retinal function using electroretinography at 4 and 8 weeks; and cognitive function and exploratory behaviour using Y-maze at 8 weeks. Retinal neurotrophin-4 was measured using ELISA. Compared with non-diabetic controls, diabetic rats showed significantly reduced spatial frequency and contrast sensitivity, delayed electroretinogram oscillatory potential and flicker implicit times and reduced cognitive function and exploratory behaviour. Exercise interventions significantly delayed the appearance of all deficits, except for exploratory behaviour. Treatment with ANA-12 significantly reduced this protection, suggesting a TrkB-mediated mechanism. Despite this, no changes in retinal neurotrohin-4 were observed with diabetes or exercise. Exercise protected against early visual and cognitive dysfunction in diabetic rats, suggesting that exercise interventions started after hyperglycaemia diagnosis may be a beneficial treatment. The translational potential is high, given that exercise treatment is non-invasive, patient controlled and inexpensive. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Transtheoretical Model Based Exercise Counseling Combined with Music Skipping Rope Exercise on Childhood Obesity.

    PubMed

    Ham, Ok Kyung; Sung, Kyung Mi; Lee, Bo Gyeong; Choi, Hee Won; Im, Eun-Ok

    2016-06-01

    The purpose was to evaluate the effects of a transtheoretical model (TTM) based exercise counseling offered with music skipping rope exercise on components of the TTM (stages of change, decisional balance, and self-efficacy), body mass index, glucose, and lipid profile of overweight/obese children in Korea. This study used a nonequivalent pretest and posttest experimental study design. A total of 75 overweight/obese children participated in the study. Eight sessions of exercise counseling combined with music skipping rope exercise for 12 weeks were offered for children in the experimental group, while one session of exercise counseling with music skipping rope exercise for 12 weeks was offered for children in the control group. Outcomes were measured at baseline, and 6 months after the intervention. After the intervention, self-efficacy significantly improved among children in the experimental group (p = .049), while these children maintained their baseline BMI at 6-month follow-up (p > .05). Among children in the control group, BMI significantly increased (p < .05). Fasting blood sugar significantly increased for both groups after the intervention (p < .05). However, a greater increase was observed for the control group. Our study partially supports the hypothesis that a TTM-based exercise intervention is effective in maintaining BMI and improving self-efficacy of overweight/obese children. The TTM-based counseling combined with exercise classes has potential to control weight among overweight/obese children, while involvement of parents and children in the development of the theory-based intervention may generate further benefits regarding health and well-being of overweight/obese children. Copyright © 2016. Published by Elsevier B.V.

  18. A prognostic scoring system for arm exercise stress testing.

    PubMed

    Xie, Yan; Xian, Hong; Chandiramani, Pooja; Bainter, Emily; Wan, Leping; Martin, Wade H

    2016-01-01

    Arm exercise stress testing may be an equivalent or better predictor of mortality outcome than pharmacological stress imaging for the ≥50% for patients unable to perform leg exercise. Thus, our objective was to develop an arm exercise ECG stress test scoring system, analogous to the Duke Treadmill Score, for predicting outcome in these individuals. In this retrospective observational cohort study, arm exercise ECG stress tests were performed in 443 consecutive veterans aged 64.1 (11.1) years. (mean (SD)) between 1997 and 2002. From multivariate Cox models, arm exercise scores were developed for prediction of 5-year and 12-year all-cause and cardiovascular mortality and 5-year cardiovascular mortality or myocardial infarction (MI). Arm exercise capacity in resting metabolic equivalents (METs), 1 min heart rate recovery (HRR) and ST segment depression ≥1 mm were the stress test variables independently associated with all-cause and cardiovascular mortality by step-wise Cox analysis (all p<0.01). A score based on the relation HRR (bpm)+7.3×METs-10.5×ST depression (0=no; 1=yes) prognosticated 5-year cardiovascular mortality with a C-statistic of 0.81 before and 0.88 after adjustment for significant demographic and clinical covariates. Arm exercise scores for the other outcome end points yielded C-statistic values of 0.77-0.79 before and 0.82-0.86 after adjustment for significant covariates versus 0.64-0.72 for best fit pharmacological myocardial perfusion imaging models in a cohort of 1730 veterans who were evaluated over the same time period. Arm exercise scores, analogous to the Duke Treadmill Score, have good power for prediction of mortality or MI in patients who cannot perform leg exercise.

  19. Quantifying the placebo effect in psychological outcomes of exercise training: a meta-analysis of randomized trials.

    PubMed

    Lindheimer, Jacob B; O'Connor, Patrick J; Dishman, Rod K

    2015-05-01

    The placebo effect could account for some or all of the psychological benefits attributed to exercise training. The magnitude of the placebo effect in psychological outcomes of randomized controlled exercise training trials has not been quantified. The aim of this investigation was to estimate the magnitude of the population placebo effect in psychological outcomes from placebo conditions used in exercise training studies and compare it to the observed effect of exercise training. Articles published before 1 July 2013 were located using Google Scholar, MEDLINE, PsycINFO, and The Cochrane Library. To be included in the analysis, studies were required to have (1) a design that randomly assigned participants to exercise training, placebo, and control conditions and (2) an assessment of a subjective (i.e., anxiety, depression, energy, fatigue) or an objective (i.e., cognitive) psychological outcome. Meta-analytic and multi-level modeling techniques were used to analyze effects from nine studies involving 661 participants. Hedges' d effect sizes were calculated, and random effects models were used to estimate the overall magnitude of the placebo and exercise training effects. After adjusting for nesting effects, the placebo mean effect size was 0.20 (95% confidence interval [CI] -0.02, 0.41) and the observed effect of exercise training was 0.37 (95% CI 0.11, 0.63). A small body of research suggests both that (1) the placebo effect is approximately half of the observed psychological benefits of exercise training and (2) there is an urgent need for creative research specifically aimed at better understanding the role of the placebo effect in the mental health consequences of exercise training.

  20. Exercise Capacity and the Obesity Paradox in Heart Failure: The FIT (Henry Ford Exercise Testing) Project.

    PubMed

    McAuley, Paul A; Keteyian, Steven J; Brawner, Clinton A; Dardari, Zeina A; Al Rifai, Mahmoud; Ehrman, Jonathan K; Al-Mallah, Mouaz H; Whelton, Seamus P; Blaha, Michael J

    2018-05-03

    To assess the influence of exercise capacity and body mass index (BMI) on 10-year mortality in patients with heart failure (HF) and to synthesize these results with those of previous studies. This large biracial sample included 774 men and women (mean age, 60±13 years; 372 [48%] black) with a baseline diagnosis of HF from the Henry Ford Exercise Testing (FIT) Project. All patients completed a symptom-limited maximal treadmill stress test from January 1, 1991, through May 31, 2009. Patients were grouped by World Health Organization BMI categories for Kaplan-Meier survival analyses and stratified by exercise capacity (<4 and ≥4 metabolic equivalents [METs] of task). Associations of BMI and exercise capacity with all-cause mortality were assessed using multivariable-adjusted Cox proportional hazards models. During a mean follow-up of 10.1±4.6 years, 380 patients (49%) died. Kaplan-Meier survival plots revealed a significant positive association between BMI category and survival for exercise capacity less than 4 METs (log-rank, P=.05), but not greater than or equal to 4 METs (P=.76). In the multivariable-adjusted models, exercise capacity (per 1 MET) was inversely associated, but BMI was not associated, with all-cause mortality (hazard ratio, 0.89; 95% CI, 0.85-0.94; P<.001 and hazard ratio, 0.99; 95% CI, 0.97-1.01; P=.16, respectively). Maximal exercise capacity modified the relationship between BMI and long-term survival in patients with HF, upholding the presence of an exercise capacity-obesity paradox dichotomy as observed over the short-term in previous studies. Copyright © 2018 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  1. Effects of different aerobic exercise frequencies on streptozotocin-nicotinamide-induced type 2 diabetic rats: Continuous versus short bouts and weekend warrior exercises.

    PubMed

    Alaca, Nuray; Uslu, Serap; Gulec Suyen, Guldal; Ince, Umit; Serteser, Mustafa; Kurtel, Hızır

    2018-01-01

    Exercise training is known to have multiple beneficial effects on type 2 diabetes mellitus (T2DM). The aim of this study was to explore the effects of aerobic exercise frequency on diabetic parameters, the histopathological structure of skeletal muscle, diabetic myopathy, and mitochondrial enzyme activity in an experimental model of T2DM. Sprague-Dawley rats (n = 35) were rendered diabetic by injection of nicotinamide (110 mg/kg) and streptozotocin (65 mg/kg). Rats with blood glucose concentrations between 7 and 17 mmol/L were used. Diabetic rats were randomly allocated to one of the following groups: (i) control sedentary; (ii) diabetic sedentary; (iii) diabetic with continuous exercise (30 min/day, 5 days/week); (iv) diabetic with short bouts of exercise (3 × 10 min/day, 5 days/week); and (v) diabetic rats as "weekend warriors" (35 + 40 min/day, 2 days/week). After 6 weeks swimming exercise (total duration 150 min/week), biochemical tests were performed to measure insulin, glucose, cytokines, serum and muscle myeloperoxidase (MPO), and malondialdehyde (MDA) levels. Histologic analysis (histomorphometric and mitochondrial enzyme analysis) was also performed. Compared with diabetic sedentary rats, significant improvements were observed in all exercise groups in terms of glucose levels, weight loss, tissue MPO and MDA levels, muscular connective tissue, muscle atrophy, mitochondrial enzyme, and all histomorphometric analyses. The results of the study emphasize the effects of training on inflammation, increased oxidative stress, myopathy, and mitochondrial damage in a rat model of T2DM, and demonstrate that there is no major difference between exercise modalities provided that the total duration of exercise remains the same. © 2017 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  2. Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer’s Disease

    PubMed Central

    Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang

    2017-01-01

    Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer’s disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment. PMID:28157094

  3. Application of the Transtheoretical Model to Exercise Behavior and Physical Activity in Patients after Open Heart Surgery.

    PubMed

    Huang, Hsin-Yi; Lin, Yu-Shan; Chuang, Yi-Cheng; Lin, Wei-Hsuan; Kuo, Li Ying; Chen, Jui Chun; Hsu, Ching Ling; Chen, Bo Yan; Tsai, Hui Yu; Cheng, Fei Hsin; Tsai, Mei-Wun

    2015-05-01

    To assess exercise behavior and physical activity levels after open heart surgery. This prospective cohort study included 130 patients (70.8% male, aged 61.0 ± 12.2 years, 53.8% coronary bypass grafting) who underwent open heart surgery. The exercise behavior and physical activity of these patients were assessed at the 3- and 6-month follow-up appointments. Additional interviews were also conducted to further assess exercise behavior. Physical activity duration and metabolic equivalents were calculated from self-reported questionnaire responses. Moreover, possible related demographic factors, clinical features, participation in cardiac rehabilitation programs, and physical activity levels were additionally evaluated. Six months after hospital discharge, most patients were in the action (39.2%) and maintenance (37.7%) stages. Other subjects were in the precontemplation (11.5%), contemplation (5.4%), and preparation (6.2%) stages. The average physical activity level was 332.6 ± 377.1 min/week and 1198.1 ± 1396.9 KJ/week. Subjects in the action and maintenance stages exercised an average of 399.4 ± 397.6 min/week, significantly longer than those in other stages (116.2 ± 176.2 min/week, p = 0.02). Subjects that participated in outpatient cardiac rehabilitation programs after discharge may have the better exercise habit. Gender had no significant effect on exercise behavior 6 months after hospital discharge. Most subjects following open heart surgery may maintain regular exercise behavior at 6 months after hospital discharge. Physical activity levels sufficient for cardiac health were achieved by subjects in the active and maintenance stages. Outpatient cardiac rehabilitation programs are valuable for encouraging exercise behavior after heart surgery. Exercise behavior; Open heart surgery; Physical activity; Transtheoretical model.

  4. Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer's Disease.

    PubMed

    Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang

    2017-01-01

    Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer's disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment.

  5. Adaptive Capacity: An Evolutionary Neuroscience Model Linking Exercise, Cognition, and Brain Health.

    PubMed

    Raichlen, David A; Alexander, Gene E

    2017-07-01

    The field of cognitive neuroscience was transformed by the discovery that exercise induces neurogenesis in the adult brain, with the potential to improve brain health and stave off the effects of neurodegenerative disease. However, the basic mechanisms underlying exercise-brain connections are not well understood. We use an evolutionary neuroscience approach to develop the adaptive capacity model (ACM), detailing how and why physical activity improves brain function based on an energy-minimizing strategy. Building on studies showing a combined benefit of exercise and cognitive challenge to enhance neuroplasticity, our ACM addresses two fundamental questions: (i) what are the proximate and ultimate mechanisms underlying age-related brain atrophy, and (ii) how do lifestyle changes influence the trajectory of healthy and pathological aging? Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. An acute exercise session increases self-efficacy in sedentary endometrial cancer survivors and controls.

    PubMed

    Hughes, Daniel; Baum, George; Jovanovic, Jennifer; Carmack, Cindy; Greisinger, Anthony; Basen-Engquist, Karen

    2010-11-01

    Self-efficacy can be affected by mastery experiences and somatic sensations. A novel exercise experience and associated sensations may impact self-efficacy and subsequent behaviors. We investigated the effect of a single exercise session on self-efficacy for sedentary endometrial cancer survivors compared with sedentary women of a similar age, but with no cancer history. Twenty survivors and 19 controls completed an exercise session performed as a submaximal cycle ergometry test. Sensations and efficacy were measured before and after exercise. Repeated measures analysis of variance (ANOVA) was performed. Regression models were used to determine predictors of self-efficacy and subsequent exercise. Self-efficacy increased for both survivors and controls, but survivors had a higher rate of increase, and the change predicted subsequent exercise. The association between exercise-related somatic sensations and self-efficacy differed between the 2 groups. A novel exercise experience had a larger effect on self-efficacy and subsequent exercise activity for endometrial cancer survivors than controls. Somatic sensations experienced during exercise may differ for survivors, which may be related to the experience of having cancer. Understanding factors affecting confidence in novel exercise experiences for populations with specific cancer histories is of the utmost importance in the adoption of exercise behaviors.

  7. The effectiveness of Cognitive Behavioral Therapy (CBT) with general exercises versus general exercises alone in the management of chronic low back pain.

    PubMed

    Khan, Muhammad; Akhter, Saeed; Soomro, Rabail Rani; Ali, Syed Shahzad

    2014-07-01

    To evaluate the effectiveness of Cognitive Behavioural Therapy (CBT) along with General exercises and General exercises alone in chronic low back pain. Total 54 patients with chronic low back pain who fulfilled inclusion criteria were recruited from Physiotherapy, Department of Alain Poly Clinic Karachi and Institute of Physical Medicine & Rehabilitation Dow University of Health Sciences Karachi. Selected patients were equally divided and randomly assigned into two groups with simple randomisation method. The Cognitive Behavioural Therapy (CBT) and General exercises group received Operant model of CBT and General Exercises whereas General exercises group received General exercises only. Both groups received a home exercise program as well. Patients in both groups received 3 treatment sessions per week for 12 consecutive weeks. Clinical assessment was performed using Visual Analogue Scale (VAS) and Ronald Morris Disability Questionnaire at baseline and after 12 weeks. Both study groups showed statistically significant improvements in both outcomes measures p=0.000. However, mean improvements in post intervention VAS score and Ronald Morris score was better in CBT and exercises group as compared to General exercise group. In conclusion, both interventions are effective in treating chronic low back pain however; CBT & General exercises are clinically more effective than General exercises alone.

  8. Pathological motivations for exercise and eating disorder specific health-related quality of life.

    PubMed

    Cook, Brian; Engel, Scott; Crosby, Ross; Hausenblas, Heather; Wonderlich, Stephen; Mitchell, James

    2014-04-01

    To examine associations among pathological motivations for exercise with eating disorder (ED) specific health-related quality of life (HRQOL). Survey data assessing ED severity (i.e., Eating Disorder Diagnostic Survey), ED specific HRQOL (i.e., Eating Disorders Quality of Life Instrument), and pathological motivations for exercise (i.e., Exercise Dependence Scale) were collected from female students (N = 387) at seven universities throughout the United States. Regression analyses were conducted to examine the associations among exercise dependence, ED-specific HRQOL and ED severity, and the interaction of exercise dependence and ED severity on HRQOL scores. The overall model examining the impact of ED severity and exercise dependence (independent variables) on HRQOL (dependent variable) was significant and explained 16.1% of the variance in HRQOL scores. Additionally, the main effects for ED severity and exercise dependence and the interaction among ED severity and exercise dependence were significant, suggesting that the combined effects of ED severity and exercise dependence significantly impacts HRQOL. Our results suggest that pathological motivations for exercise may exacerbate ED's detrimental impact on HRQOL. Our results offer one possible insight into why exercise may be associated with deleterious effects on ED HRQOL. Future research is needed to elucidate the relationship among psychological aspects of exercise, ED, and HRQOL. Copyright © 2013 Wiley Periodicals, Inc.

  9. Factors predicting barriers to exercise in midlife Australian women.

    PubMed

    McGuire, Amanda; Seib, Charrlotte; Anderson, Debra

    2016-05-01

    Chronic diseases are the leading cause of death and disability worldwide. They are, though, largely attributable to modifiable lifestyle risk factors, including lack of exercise. This study aims to investigate what factors predict perceptions of barriers to exercise in midlife women. This cross-sectional descriptive study collected data from midlife Australian women by online questionnaire. Volunteers aged between 40 and 65 years were recruited following media publicity about the study. The primary outcome measure was perceived exercise barriers (EBBS Barriers sub-scale). Other self-report data included: exercise, smoking, alcohol, fruit and vegetable consumption, body mass index, physical and mental health and well-being (MOS SF-12v2) and exercise self-efficacy. On average, the 225 participants were aged 50.9 years (SD=5.9). The significant predictors of perceived barriers to exercise were perceived benefits of exercise, exercise self-efficacy, physical well-being and mental well-being. These variables explained 41% of the variance in the final model (F (8219)=20.1, p<.01) CONCLUSIONS: In midlife women, perceptions of barriers to exercise correlate with beliefs about the health benefits of exercise, exercise self-efficacy, physical and mental well-being. These findings have application to health promotion interventions targeting exercise behaviour change in midlife women. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Comparison of the PHISICS/RELAP5-3D Ring and Block Model Results for Phase I of the OECD MHTGR-350 Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom

    2014-04-01

    The INL PHISICS code system consists of three modules providing improved core simulation capability: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. Coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been finalized, and as part of the code verification and validation program the exercises defined for Phase I of the OECD/NEA MHTGR 350 MW Benchmark were completed. This paper provides an overview of the MHTGR Benchmark, and presents selected results of the three steady state exercises 1-3 defined for Phase I. For Exercise 1,more » a stand-alone steady-state neutronics solution for an End of Equilibrium Cycle Modular High Temperature Reactor (MHTGR) was calculated with INSTANT, using the provided geometry, material descriptions, and detailed cross-section libraries. Exercise 2 required the modeling of a stand-alone thermal fluids solution. The RELAP5-3D results of four sub-cases are discussed, consisting of various combinations of coolant bypass flows and material thermophysical properties. Exercise 3 combined the first two exercises in a coupled neutronics and thermal fluids solution, and the coupled code suite PHISICS/RELAP5-3D was used to calculate the results of two sub-cases. The main focus of the paper is a comparison of the traditional RELAP5-3D “ring” model approach vs. a much more detailed model that include kinetics feedback on individual block level and thermal feedbacks on a triangular sub-mesh. The higher fidelity of the block model is illustrated with comparison results on the temperature, power density and flux distributions, and the typical under-predictions produced by the ring model approach are highlighted.« less

  11. The Characterization of Obese Polycystic Ovary Syndrome Rat Model Suitable for Exercise Intervention

    PubMed Central

    Qiu, Shuwei; Jiang, Zhongli

    2014-01-01

    Objective To develop a new polycystic ovary syndrome (PCOS) rat model suitable for exercise intervention. Method Thirty six rats were randomly divided into three experimental groups: PCOS rats with high-fat diet (PF, n = 24), PCOS rats with ordinary diet (PO, n = 6), and control rats with ordinary diet (CO, n = 6). Two kinds of PCOS rat model were made by adjustment diet structure and testosterone injection for 28 days. After a successful animal model, PF model rats were randomly assigned to three groups: exercise with a continuation of high-fat diet (PF-EF, n = 6), sedentary with a continuation of high-fat diet (PF-SF, n = 6), exercise with an ordinary diet (PF-EO, n = 6). Fasting blood glucose (FBG) and insulin (FINS), estrogen (E2), progesterone (P), and testosterone (T) in serum were determined by RIA, and ovarian morphology was evaluated by Image-Pro plus 6.0. Results Body weight, Lee index, FINS increased significantly in PF rat model. Serum levels of E2 and T were significantly higher in PF and PO than in CO. Ovary organ index and ovarian areas were significant lower in PF than in CO. After intervention for 2 weeks, the levels of 1 h postprandial blood glucose (PBG1), 2 h postprandial blood glucose (PBG2), FINS and the serum levels of T decreased significantly in PF-EF rats and PF-EO rats. The ratio of FBG/FINS was significant higher in PF-EO rats than in PF-SF rats. Ovarian morphology showed that the numbers of preantral follicles and atretic follicles decreased significantly, and the numbers of antral follicles and corpora lutea increased significantly in the rats of PF-EF and PF-EO. Conclusion By combination of high-fat diet and testosterone injection, the obese PCOS rat model is conformable with the lifestyle habits of fatty foods and insufficient exercise, and has metabolic and reproductive characteristics of human PCOS. This model can be applied to study exercise intervention. PMID:24905232

  12. An integrated physiology model to study regional lung damage effects and the physiologic response

    PubMed Central

    2014-01-01

    Background This work expands upon a previously developed exercise dynamic physiology model (DPM) with the addition of an anatomic pulmonary system in order to quantify the impact of lung damage on oxygen transport and physical performance decrement. Methods A pulmonary model is derived with an anatomic structure based on morphometric measurements, accounting for heterogeneous ventilation and perfusion observed experimentally. The model is incorporated into an existing exercise physiology model; the combined system is validated using human exercise data. Pulmonary damage from blast, blunt trauma, and chemical injury is quantified in the model based on lung fluid infiltration (edema) which reduces oxygen delivery to the blood. The pulmonary damage component is derived and calibrated based on published animal experiments; scaling laws are used to predict the human response to lung injury in terms of physical performance decrement. Results The augmented dynamic physiology model (DPM) accurately predicted the human response to hypoxia, altitude, and exercise observed experimentally. The pulmonary damage parameters (shunt and diffusing capacity reduction) were fit to experimental animal data obtained in blast, blunt trauma, and chemical damage studies which link lung damage to lung weight change; the model is able to predict the reduced oxygen delivery in damage conditions. The model accurately estimates physical performance reduction with pulmonary damage. Conclusions We have developed a physiologically-based mathematical model to predict performance decrement endpoints in the presence of thoracic damage; simulations can be extended to estimate human performance and escape in extreme situations. PMID:25044032

  13. Parallel Robot for Lower Limb Rehabilitation Exercises.

    PubMed

    Rastegarpanah, Alireza; Saadat, Mozafar; Borboni, Alberto

    2016-01-01

    The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises.

  14. Parallel Robot for Lower Limb Rehabilitation Exercises

    PubMed Central

    Saadat, Mozafar; Borboni, Alberto

    2016-01-01

    The aim of this study is to investigate the capability of a 6-DoF parallel robot to perform various rehabilitation exercises. The foot trajectories of twenty healthy participants have been measured by a Vicon system during the performing of four different exercises. Based on the kinematics and dynamics of a parallel robot, a MATLAB program was developed in order to calculate the length of the actuators, the actuators' forces, workspace, and singularity locus of the robot during the performing of the exercises. The calculated length of the actuators and the actuators' forces were used by motion analysis in SolidWorks in order to simulate different foot trajectories by the CAD model of the robot. A physical parallel robot prototype was built in order to simulate and execute the foot trajectories of the participants. Kinect camera was used to track the motion of the leg's model placed on the robot. The results demonstrate the robot's capability to perform a full range of various rehabilitation exercises. PMID:27799727

  15. Simulation of General Physics laboratory exercise

    NASA Astrophysics Data System (ADS)

    Aceituno, P.; Hernández-Aceituno, J.; Hernández-Cabrera, A.

    2015-01-01

    Laboratory exercises are an important part of general Physics teaching, both during the last years of high school and the first year of college education. Due to the need to acquire enough laboratory equipment for all the students, and the widespread access to computers rooms in teaching, we propose the development of computer simulated laboratory exercises. A representative exercise in general Physics is the calculation of the gravity acceleration value, through the free fall motion of a metal ball. Using a model of the real exercise, we have developed an interactive system which allows students to alter the starting height of the ball to obtain different fall times. The simulation was programmed in ActionScript 3, so that it can be freely executed in any operative system; to ensure the accuracy of the calculations, all the input parameters of the simulations were modelled using digital measurement units, and to allow a statistical management of the resulting data, measurement errors are simulated through limited randomization.

  16. Sharing a Personal Trainer: Personal and Social Benefits of Individualized, Small-Group Training.

    PubMed

    Wayment, Heidi A; McDonald, Rachael L

    2017-11-01

    Wayment, HA and McDonald, RL. Sharing a personal trainer: personal and social benefits of individualized, small-group training. J Strength Cond Res 31(11): 3137-3145, 2017-We examined a novel personal fitness training program that combines personal training principles in a small-group training environment. In a typical training session, exercisers warm-up together but receive individualized training for 50 minutes with 1-5 other adults who range in age, exercise experience, and goals for participation. Study participants were 98 regularly exercising adult members of a fitness studio in the southwestern United States (64 women and 32 men), aged 19-78 years (mean, 46.52 years; SD = 14.15). Average membership time was 2 years (range, 1-75 months; mean, 23.54 months; SD = 20.10). In collaboration with the program directors, we developed a scale to assess satisfaction with key features of this unique training program. Participants completed an online survey in Fall 2015. Hypotheses were tested with a serial mediator model (model 6) using the SPSS PROCESS module. In support of the basic tenets of self-determination theory, satisfaction with small-group, individualized training supported basic psychological needs, which in turn were associated with greater autonomous exercise motivation and life satisfaction. Satisfaction with this unique training method was also associated with greater exercise self-efficacy. Autonomous exercise motivation was associated with both exercise self-efficacy and greater self-reported health and energy. Discussion focuses on why exercise programs that foster a sense of social belonging (in addition to motivation and efficacy) may be helpful for successful adherence to an exercise program.

  17. USE IT OR LOSE IT: EAT AND EXERCISE DURING RADIOTHERAPY OR CHEMORADIOTHERAPY FOR PHARYNGEAL CANCERS

    PubMed Central

    Hutcheson, Katherine A.; Bhayani, Mihir K.; Beadle, Beth M.; Gold, Kathryn A.; Shinn, Eileen H.; Lai, Stephen Y.; Lewin, Jan

    2014-01-01

    Objective Proactive swallowing therapy promotes ongoing use of the swallowing mechanism during radiotherapy through 2 goals: eat and exercise. The purpose of this study was to evaluate the independent effects of maintaining oral intake throughout treatment and preventive swallowing exercise. Design Retrospective observational study. Setting The University of Texas MD Anderson Cancer Center, Houston. Patients The study included 497 patients treated with definitive radiotherapy (RT) or chemoradiation (CRT) for pharyngeal cancer (458 oropharynx, 39 hypopharynx) between 2002 and 2008. Main Outcome Measures Swallowing-related endpoints were: final diet after RT/CRT and length of gastrostomy-dependence. Primary independent variables included per oral (PO) status at the end of RT/CRT (nothing per oral [NPO], partial PO, 100% PO) and swallowing exercise adherence. Multiple linear regression and ordered logistic regression models were analyzed. Results At the conclusion of RT/CRT, 131 (26%) were NPO, 74% were PO (167 [34%] partial, 199 [40%] full). Fifty-eight percent (286/497) reported adherence to swallowing exercises. Maintenance of PO intake during RT/CRT and swallowing exercise adherence were independently associated (p<0.05) with better long-term diet after RT/CRT and shorter length of gastrostomy dependence in models adjusted for tumor and treatment burden. Conclusions Data indicate independent, positive associations between maintenance of PO intake throughout RT/CRT and swallowing exercise adherence with long-term swallowing outcomes. Patients who either eat or exercise fare better than those who do neither. Patients who both eat and exercise have the highest return to a regular diet and shortest gastrostomy dependence. PMID:24051544

  18. Exercise training prevents endometrial hyperplasia and biomarkers for endometrial cancer in rat model of type 1 diabetes.

    PubMed

    Al-Jarrah, Muhammed; Matalka, Ismail; Aseri, Hasan Al; Mohtaseb, Alia; Smirnova, Irina V; Novikova, Lesya; Stehno-Bittel, Lisa; Alkhateeb, Ahed

    2010-10-11

    Endometrial cancer is one of the most common types of gynecologic cancers. The ability of exercise to reduce the risk of endometrial cancer in women with type 2 diabetes has been established, but no studies have examined this link in type 1 diabetes.A randomized, controlled animal study was designed using a standard rat model of type 1 diabetes. The goal of this study was to investigate the ability of exercise to prevent increased levels of endometrial cancer biomarkers, estrogen receptor (ERα) and p16, and endometrial hyperplasia associated with diabetes. FORTY FEMALE RATS WERE RANDOMIZED INTO FOUR GROUPS: sedentary control, exercise control, sedentary or exercised diabetic. Diabetes was induced by alloxan injection. A 4-week treadmill training program was initiated with the development of diabetes. Endometrial tissues were evaluated for hyperplasia and ERα and p16 levels and subcellular localization using microscopy. Severe diabetes lead to hyperplasia in the endometrial tissue in 70% of sedentary diabetic rats. Exercise-trained diabetic rats and the non-diabetic rats displayed no hyperplasia. The expression of ERα increased significantly (p < 0.02) while the expression level of p16 decreased significantly (p < 0.04) in the diabetic sedentary group compared to the non-diabetic groups. Exercise training led to a reversal in the percentage of p16 and ERα positive cells in diabetic rats. Severe diabetes leads to hyperplasia of the endometrial tissue and increased ERα levels and decreased p16 levels in rats, which can be prevented with aerobic exercise. Diabetes; Estrogen receptor alpha; P16; Endometrial hyperplasia; Endometrial cancer; Exercise.

  19. Melatonin supplementation plus exercise behavior ameliorate insulin resistance, hypertension and fatigue in a rat model of type 2 diabetes mellitus.

    PubMed

    Rahman, Md Mahbubur; Kwon, Han-Sol; Kim, Myung-Jin; Go, Hyeon-Kyu; Oak, Min-Ho; Kim, Do-Hyung

    2017-08-01

    The objective was to investigate the effects of melatonin and exercise on insulin resistance (IR), hypertension and fatigue syndrome in a rat model of type 2 diabetes mellitus (T2DM). Rats were divided into 5 groups namely normal control (NC), T2DM control group (DC), diabetes plus exercise (DE), diabetes plus oral melatonin supplement (DM) and diabetes plus melatonin and exercise (DME) groups. Melatonin was administered orally 5mg/kg twice daily and 40min swimming/day 5days/week were regimented after diabetes induction. Blood pressure, fasting blood glucose, insulin, IR, serum leptin, lipid profiles, inflammatory cytokines, lipid peroxidation increased significantly (P<0.01) while serum adiponectin, antioxidant activities (superoxide dismutase, glutathione), exercise performance significantly decreased (P<0.001) in the DC group compared with the control group. Combined effects of exercise and melatonin ameliorated markedly hypertension, IR, biochemical alteration induced by diabetes and significantly increased exercise performance (P<0.01). The expression glucose transporter type 4 (GLUT4) mitochondrial biogenesis related proteins such as peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1 α), nuclear respiratory factor (NRFs) and mitochondrial transcription factor-A were up-regulated skeletal and cardiac muscle in the DME group. Melatonin supplementation in combination with exercise behavior may ameliorate IR, hypertension and exercise performance or fatigue possibly by improving antioxidative activities, hyperlipidemia, inflammatory cytokines via up-regulation of GLUT4, PGC-1 α and mitochondrial biogenesis in T2DM rats. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Exercise protects myelinated fibers of white matter in a rat model of depression.

    PubMed

    Xiao, Qian; Wang, Feifei; Luo, Yanmin; Chen, Linmu; Chao, Fenglei; Tan, Chuanxue; Gao, Yuan; Huang, Chunxia; Zhang, Lei; Liang, Xin; Tang, Jing; Qi, Yingqing; Jiang, Lin; Zhang, Yi; Zhou, Chunni; Tang, Yong

    2018-02-15

    The antidepressive effects of exercise have been a focus of research and are hypothesized to remodel the brain networks constructed by myelinated fibers. However, whether the antidepressant effects of exercise are dependent on changes in white matter myelination are unknown. Therefore, we chose chronic unpredictable stress (CUS) as a model of depression and designed an experiment. After a 4-week CUS period, 40 animals were tested using the sucrose preference test (SPT) and the open field test (OFT). The depressed rats then underwent 4-week running exercise. Next, electron microscopy and unbiased stereological methods were used to investigate white matter changes in the rats. After the 4-week CUS stimulation, body weight, sucrose preference and scores on the OFT were significantly lower in the depression rats than in the unstressed rats (p < .05). After undergoing a 4-week running exercise, the depression rats showed a significantly greater sucrose preference than the depression control rats without running exercise (p < .05). Furthermore, the white matter parameters of the depression rats (including the white matter volumes, the length and volumes of myelinated fibers, and the volumes and thickness of the myelin sheaths) were significantly reduced after the CUS period (p < .05). However, these white matter parameters were significantly increased after running exercise (p < .05). The present study is the first to provide evidence that running exercise has positive effects on white matter and the myelinated fibers of white matter in depressed rats, and this evidence might provide an important theoretical basis for the exercise-mediated treatment of depression. © 2017 Wiley Periodicals, Inc.

  1. Evaluation of a standard provision versus an autonomy promotive exercise referral programme: rationale and study design.

    PubMed

    Jolly, Kate; Duda, Joan L; Daley, Amanda; Eves, Frank F; Mutrie, Nanette; Ntoumanis, Nikos; Rouse, Peter C; Lodhia, Rekha; Williams, Geoffrey C

    2009-06-08

    The National Institute of Clinical Excellence in the UK has recommended that the effectiveness of ongoing exercise referral schemes to promote physical activity should be examined in research trials. Recent empirical evidence in health care and physical activity promotion contexts provides a foundation for testing the utility of a Self Determination Theory (SDT)-based exercise referral consultation. An exploratory cluster randomised controlled trial comparing standard provision exercise on prescription with a Self Determination Theory-based (SDT) exercise on prescription intervention. 347 people referred to the Birmingham Exercise on Prescription scheme between November 2007 and July 2008. The 13 exercise on prescription sites in Birmingham were randomised to current practice (n = 7) or to the SDT-based intervention (n = 6).Outcomes measured at 3 and 6-months: Minutes of moderate or vigorous physical activity per week assessed using the 7-day Physical Activity Recall; physical health: blood pressure and weight; health status measured using the Dartmouth CO-OP charts; anxiety and depression measured by the Hospital Anxiety and Depression Scale and vitality measured by the subjective vitality score; motivation and processes of change: perceptions of autonomy support from the advisor, satisfaction of the needs for competence, autonomy, and relatedness via physical activity, and motivational regulations for exercise. This trial will determine whether an exercise referral programme based on Self Determination Theory increases physical activity and other health outcomes compared to a standard programme and will test the underlying SDT-based process model (perceived autonomy support, need satisfaction, motivation regulations, outcomes) via structural equation modelling. The trial is registered as Current Controlled trials ISRCTN07682833.

  2. Exercise capacity in the Bidirectional Glenn physiology: Coupling cardiac index, ventricular function and oxygen extraction ratio.

    PubMed

    Vallecilla, Carolina; Khiabani, Reza H; Trusty, Phillip; Sandoval, Néstor; Fogel, Mark; Briceño, Juan Carlos; Yoganathan, Ajit P

    2015-07-16

    In Bi-directional Glenn (BDG) physiology, the superior systemic circulation and pulmonary circulation are in series. Consequently, only blood from the superior vena cava is oxygenated in the lungs. Oxygenated blood then travels to the ventricle where it is mixed with blood returning from the lower body. Therefore, incremental changes in oxygen extraction ratio (OER) could compromise exercise tolerance. In this study, the effect of exercise on the hemodynamic and ventricular performance of BDG physiology was investigated using clinical patient data as inputs for a lumped parameter model coupled with oxygenation equations. Changes in cardiac index, Qp/Qs, systemic pressure, oxygen extraction ratio and ventricular/vascular coupling ratio were calculated for three different exercise levels. The patient cohort (n=29) was sub-grouped by age and pulmonary vascular resistance (PVR) at rest. It was observed that the changes in exercise tolerance are significant in both comparisons, but most significant when sub-grouped by PVR at rest. Results showed that patients over 2 years old with high PVR are above or close to the upper tolerable limit of OER (0.32) at baseline. Patients with high PVR at rest had very poor exercise tolerance while patients with low PVR at rest could tolerate low exercise conditions. In general, ventricular function of SV patients is too poor to increase CI and fulfill exercise requirements. The presented mathematical model provides a framework to estimate the hemodynamic performance of BDG patients at different exercise levels according to patient specific data. Published by Elsevier Ltd.

  3. Bayesian structural equation modeling in sport and exercise psychology.

    PubMed

    Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus

    2015-08-01

    Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.

  4. Common Dyadic Coping Is Indirectly Related to Dietary and Exercise Adherence via Patient and Partner Diabetes Efficacy

    PubMed Central

    Johnson, Matthew D.; Anderson, Jared R.; Walker, Ann; Wilcox, Allison; Lewis, Virginia L.; Robbins, David C.

    2014-01-01

    Using cross-sectional data from 117 married couples in which one member is diagnosed with type 2 diabetes, the current study sought to explore a possible indirect association between common dyadic coping and dietary and exercise adherence via the mechanism of patient and spouse reports of diabetes efficacy. Results from the structural equation model analysis indicated common dyadic coping was associated with higher levels of diabetes efficacy for both patients and spouses which, in turn, was then associated with better dietary and exercise adherence for the patient. This model proved a better fit to the data than three plausible alternative models. The bootstrap test of mediation revealed common dyadic coping was indirectly associated with dietary adherence via both patient and spouse diabetes efficacy, but spouse diabetes efficacy was the only mechanism linking common dyadic coping and exercise adherence. This study highlights the importance of exploring the indirect pathways through which general intimate relationship functioning might be associated with type 2 diabetes outcomes. PMID:24015707

  5. Blood flow and oxygen uptake during exercise

    NASA Technical Reports Server (NTRS)

    Mitchell, J. W.; Stolwijk, J. A. J.; Nadel, E. R.

    1973-01-01

    A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.

  6. The effects of exercise program on burnout and metabolic syndrome components in banking and insurance workers.

    PubMed

    Tsai, Han Hui; Yeh, Ching Ying; Su, Chien Tien; Chen, Chiou Jong; Peng, Shu Mei; Chen, Ruey Yu

    2013-01-01

    To explore the effectiveness of exercise program for banking and insurance workers and clarify the association between exercise, burnout, and metabolic syndrome components. In the process of the study, a practicable worksite exercise program was developed for bank and insurance enterprises. A three-month (12-wk) exercise course was conducted, and its benefits evaluated. Levels of burnout and metabolic syndrome components were analyzed after exercise intervention. After intervention, the indicators of burnout and metabolic syndrome components were significantly improved in both low and high intensity groups, and the improvement were expressed in reduction of waist circumference, systolic blood pressure, person burnout and work-related burnout. A dose-response of burnouts and metabolic syndrome components with exercise intensity are shown (p<0.05). Metabolic syndrome components were independently associated with burnout and exercise intensity in the crude model. After adjustment for potential confounders, waist circumference and systolic blood pressure differences showed significant associations with exercise intensity (p<0.05). This study demonstrated an effective approach to worksite exercise intervention and exercise intensity played an important role to alleviate damage between burnouts and metabolic syndrome components.

  7. Matrix metalloproteinases in exercise and obesity.

    PubMed

    Jaoude, Jonathan; Koh, Yunsuk

    2016-01-01

    Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs' functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic) on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease.

  8. A pilot study examining diagnostic differences among exercise and weight suppression in bulimia nervosa and binge eating disorder.

    PubMed

    Cook, Brian J; Steffen, Kristine J; Mitchell, James E; Otto, Maxwell; Crosby, Ross D; Cao, Li; Wonderlich, Stephen A; Crow, Scott; Hill, Laura; Le Grange, Daniel; Powers, Pauline

    2015-05-01

    The objective of this study was to investigate diagnostic differences in weight suppression (e.g., the difference between one's current body weight and highest non-pregnancy adult body weight) and exercise among Bulimia Nervosa (BN) and Binge Eating Disorder (BED). Because exercise may be a key contributor to weight suppression in BN, we were interested in examining the potential moderating effect of exercise on weight suppression in BN or BED. Participants with BN (n = 774) and BED (n = 285) completed self-report surveys of weight history, exercise and eating disorder symptoms. Generalised linear model analyses were used to examine the associations among diagnosis, exercise frequency and their interaction on weight suppression. Exercise frequency and BN/BED diagnosis were both associated with weight suppression. Additionally, exercise frequency moderated the relationship between diagnosis and weight suppression. Specifically, weight suppression was higher in BN than in BED among those with low exercise frequency but comparable in BN and BED among those with high exercise frequency. Our results suggest that exercise frequency may contribute to different weight suppression outcomes among BN and BED. This may inform clinical implications of exercise in these disorders. Specifically, much understanding of the differences among exercise frequency and the compensatory use of exercise in BN and BED is needed. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  9. Practical Session: Multiple Linear Regression

    NASA Astrophysics Data System (ADS)

    Clausel, M.; Grégoire, G.

    2014-12-01

    Three exercises are proposed to illustrate the simple linear regression. In the first one investigates the influence of several factors on atmospheric pollution. It has been proposed by D. Chessel and A.B. Dufour in Lyon 1 (see Sect. 6 of http://pbil.univ-lyon1.fr/R/pdf/tdr33.pdf) and is based on data coming from 20 cities of U.S. Exercise 2 is an introduction to model selection whereas Exercise 3 provides a first example of analysis of variance. Exercises 2 and 3 have been proposed by A. Dalalyan at ENPC (see Exercises 2 and 3 of http://certis.enpc.fr/~dalalyan/Download/TP_ENPC_5.pdf).

  10. Individual Differences in Exercise Behavior: Stability and Change in Genetic and Environmental Determinants From Age 7 to 18.

    PubMed

    Huppertz, Charlotte; Bartels, Meike; de Zeeuw, Eveline L; van Beijsterveldt, Catharina E M; Hudziak, James J; Willemsen, Gonneke; Boomsma, Dorret I; de Geus, Eco J C

    2016-09-01

    Exercise behavior during leisure time is a major source of health-promoting physical activity and moderately tracks across childhood and adolescence. This study aims to investigate the absolute and relative contribution of genes and the environment to variance in exercise behavior from age 7 to 18, and to elucidate the stability and change of genetic and shared environmental factors that underlie this behavior. The Netherlands Twin Register collected data on exercise behavior in twins aged approximately 7, 10, 12, 14, 16 and 18 years (N = 27,332 twins; 48 % males; 47 % with longitudinal assessments). Three exercise categories (low, middle, high) were analyzed by means of liability threshold models. First, a univariate model was fitted using the largest available cross-sectional dataset with linear and quadratic effects of age as modifiers on the means and variance components. Second, a simplex model was fitted on the longitudinal dataset. Heritability was low in 7-year-olds (14 % in males and 12 % in females), but gradually increased up to age 18 (79 % in males and 49 % in females), whereas the initially substantial relative influence of the shared environment decreased with age (from 80 to 4 % in males and from 80 to 19 % in females). This decrease was due to a large increase in the genetic variance. The longitudinal model showed the genetic effects in males to be largely stable and to accumulate from childhood to late adolescence, whereas in females, they were marked by both transmission and innovation at all ages. The shared environmental effects tended to be less stable in both males and females. In sum, the clear age-moderation of exercise behavior implies that family-based interventions might be useful to increase this behavior in children, whereas individual-based interventions might be better suited for adolescents. We showed that some determinants of individual differences in exercise behavior are stable across childhood and youth, whereas others come into play at specific ages. In view of the many benefits of regular exercise, identifying these determinants at specific ages should be a public health priority.

  11. An Introductory Classroom Exercise on Protein Molecular Model Visualization and Detailed Analysis of Protein-Ligand Binding

    ERIC Educational Resources Information Center

    Poeylaut-Palena, Andres, A.; de los Angeles Laborde, Maria

    2013-01-01

    A learning module for molecular level analysis of protein structure and ligand/drug interaction through the visualization of X-ray diffraction is presented. Using DeepView as molecular model visualization software, students learn about the general concepts of protein structure. This Biochemistry classroom exercise is designed to be carried out by…

  12. Comparing Classical Water Models Using Molecular Dynamics to Find Bulk Properties

    ERIC Educational Resources Information Center

    Kinnaman, Laura J.; Roller, Rachel M.; Miller, Carrie S.

    2018-01-01

    A computational chemistry exercise for the undergraduate physical chemistry laboratory is described. In this exercise, students use the molecular dynamics package Amber to generate trajectories of bulk liquid water for 4 different water models (TIP3P, OPC, SPC/E, and TIP4Pew). Students then process the trajectory to calculate structural (radial…

  13. Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction

    ERIC Educational Resources Information Center

    Kitabayashi, Suguru; Nakano, Masayoshi; Nishikawa, Kazuyuki; Koga, Nobuyoshi

    2016-01-01

    A laboratory exercise for the education of students about thermal runaway reactions based on the reaction between aluminum and hydrochloric acid as a model reaction is proposed. In the introductory part of the exercise, the induction period and subsequent thermal runaway behavior are evaluated via a simple observation of hydrogen gas evolution and…

  14. A Learner-Centered Molecular Modeling Exercise for Allied Health Majors in a Biochemistry Class

    ERIC Educational Resources Information Center

    Fletcher, Terace M.; Ershler, Jeff

    2014-01-01

    Learner-centered molecular modeling exercises in college science courses can be especially challenging for nonchemistry majors as students typically have a higher degree of anxiety and may not appreciate the relevance of the work. This article describes a learner-centered project given to allied health majors in a Biochemistry course. The project…

  15. Governance of Higher Education in Britain: The Significance of the Research Assessment Exercises for the Funding Council Model

    ERIC Educational Resources Information Center

    Tapper, Ted; Salter, Brian

    2004-01-01

    This article uses the political struggles that have enveloped the research assessment exercises (RAEs) to interpret the UK's current funding council model of governance. Ironically, the apparently widespread improvement in the research performance of British universities, as demonstrated by RAE 2001, has made it more difficult to distribute…

  16. Treadmill Exercise Prevents Increase of Neuroinflammation Markers Involved in the Dopaminergic Damage of the 6-OHDA Parkinson's Disease Model.

    PubMed

    Real, Caroline Cristiano; Garcia, Priscila Crespo; Britto, Luiz R G

    2017-09-01

    Parkinson's disease (PD) involves loss of dopaminergic neurons in the substantia nigra (SN), which can be correlated to neuroinflammatory changes with the aging of the nervous system. On the other hand, exercise can reduce the deleterious effects promoted by age, but the mechanism involved is still unclear. This study investigated the preventive exercise-induced changes on neuroinflammatory processes in a rat model of PD induced by unilateral striatal injections of 6-hydroxydopamine (6-OHDA). Adult male Wistar rats were divided into two groups: (1) sedentary (SED) or (2) exercised (EX), animals that did treadmill exercise three times per week, every other day, for 4 weeks prior to 6-OHDA or saline injection. The rats were then divided into four sub-groups: (1) sedentary saline (SED), (2) sedentary 6-OHDA (SED + 6-OHDA), (3) exercised saline (EX), and (4) exercised 6-OHDA (EX + 6-OHDA). Seven and 30 days after surgery, brains were collected for immunohistochemistry and immunoblotting for dopaminergic and neuroinflammatory markers into SN and striatum. The SED + 6-OHDA animals presented an increase in the astrocyte, microglial, and oxidative species activation. On the other hand, EX + 6-OHDA animals did not present neuroinflammatory responses and performed better apormorphine test. Our data suggest that treadmill exercise throughout life can markedly reduce the chances of dopamine decrease, reinforcing studies that showed a lower incidence of Parkinson's disease in patients who were active during life.

  17. Exercise as an intervention to improve metabolic outcomes after intrauterine growth restriction.

    PubMed

    Gatford, Kathryn L; Kaur, Gunveen; Falcão-Tebas, Filippe; Wadley, Glenn D; Wlodek, Mary E; Laker, Rhianna C; Ebeling, Peter R; McConell, Glenn K

    2014-05-01

    Individuals born after intrauterine growth restriction (IUGR) are at an increased risk of developing diabetes in their adult life. IUGR impairs β-cell function and reduces β-cell mass, thereby diminishing insulin secretion. IUGR also induces insulin resistance, with impaired insulin signaling in muscle in adult humans who were small for gestational age (SGA) and in rodent models of IUGR. There is epidemiological evidence in humans that exercise in adults can reduce the risk of metabolic disease following IUGR. However, it is not clear whether adult IUGR individuals benefit to the same extent from exercise as do normal-birth-weight individuals, as our rat studies suggest less of a benefit in those born IUGR. Importantly, however, there is some evidence from studies in rats that exercise in early life might be able to reverse or reprogram the long-term metabolic effects of IUGR. Studies are needed to address gaps in current knowledge, including determining the mechanisms involved in the reprogramming effects of early exercise in rats, whether exercise early in life or in adulthood has similar beneficial metabolic effects in larger animal models in which insulin resistance develops after IUGR. Human studies are also needed to determine whether exercise training improves insulin secretion and insulin sensitivity to the same extent in IUGR adults as in control populations. Such investigations will have implications for customizing the recommended level and timing of exercise to improve metabolic health after IUGR.

  18. Impact of metformin treatment and swimming exercise on visfatin levels in high-fat-induced obesity rats.

    PubMed

    Gao, Ya; Wang, Changjiang; Pan, Tianrong; Luo, Li

    2014-02-01

    Visfatin is a recently discovered adipocytokine that contributes to glucose and obesity-related conditions. Until now, its responses to the insulin-sensitizing agent metformin and to exercise are largely unknown. We aim to investigate the impact of metformin treatment and/or swimming exercise on serum visfatin and visfatin levels in subcutaneous adipose tissue (SAT), peri-renal adipose tissue (PAT) and skeletal muscle (SM) of high-fat-induced obesity rats. Sprague-Dawley rats were fed a normal diet or a high-fat diet for 16 weeks to develop obesity model. The high-fat-induced obesity model rats were then randomized to metformin (MET), swimming exercise (SWI), or adjunctive therapy of metformin and swimming exercise (MAS), besides high-fat obesity control group and a normal control group, all with 10 rats per group. Zoometric and glycemic parameters, lipid profile, and serum visfatin levels were assessed at baseline and after 6 weeks of therapy. Visfatin levels in SAT, PAT and SM were determined by Western Blot. Metformin and swimming exercise improved lipid profile, and increased insulin sensitivity and body weight reduction were observed. Both metformin and swimming exercise down-regulated visfatin levels in SAT and PAT, while the adjunctive therapy conferred greater benefits, but no changes of visfatin levels were observed in SM. Our results indicate that visfatin down-regulation in SAT and PAT may be one of the mechanisms by which metformin and swimming exercise inhibit obesity.

  19. Mice from lines selectively bred for high voluntary wheel running exhibit lower blood pressure during withdrawal from wheel access.

    PubMed

    Kolb, Erik M; Kelly, Scott A; Garland, Theodore

    2013-03-15

    Exercise is known to be rewarding and have positive effects on mental and physical health. Excessive exercise, however, can be the result of an underlying behavioral/physiological addiction. Both humans who exercise regularly and rodent models of exercise addiction sometimes display behavioral withdrawal symptoms, including depression and anxiety, when exercise is denied. However, few studies have examined the physiological state that occurs during this withdrawal period. Alterations in blood pressure (BP) are common physiological indicators of withdrawal in a variety of addictions. In this study, we examined exercise withdrawal in four replicate lines of mice selectively bred for high voluntary wheel running (HR lines). Mice from the HR lines run almost 3-fold greater distances on wheels than those from non-selected control lines, and have altered brain activity as well as increased behavioral despair when wheel access is removed. We tested the hypothesis that male HR mice have an altered cardiovascular response (heart rate, systolic, diastolic, and mean arterial pressure [MAP]) during exercise withdrawal. Measurements using an occlusion tail-cuff system were taken during 8 days of baseline, 6 days of wheel access, and 2 days of withdrawal (wheel access blocked). During withdrawal, HR mice had significantly lower systolic BP, diastolic BP, and MAP than controls, potentially indicating a differential dependence on voluntary wheel running in HR mice. This is the first characterization of a cardiovascular withdrawal response in an animal model of high voluntary exercise. Copyright © 2013. Published by Elsevier Inc.

  20. Effects of a 12-Week Resistance Exercise Program on Physical Self-Perceptions in College Students

    ERIC Educational Resources Information Center

    Moore, Justin B.; Mitchell, Nathanael G.; Bibeau, Wendy S.; Bartholomew, John B.

    2011-01-01

    There is an increase in literature suggesting exercise can promote positive changes in physical self-perceptions that can manifest as an increase in global self-esteem. In the present study, we assessed self-esteem using the hierarchical framework of the Exercise and Self-Esteem Model (EXSEM) along with cognitive facets at the subdomain level…

  1. Two Exercise Programs for People with Diabetes and Visual Impairment.

    ERIC Educational Resources Information Center

    Dods, J.

    1993-01-01

    This article describes two programs, one in Australia and one in the United States, that teach people with diabetes and visual impairment to incorporate proper diets and exercise into their daily lives and thus to gain better control of their blood glucose levels. It also presents a basic model of an exercise regimen that clients can perform at…

  2. Effect of Certified Personal Trainer Services on Stage of Exercise Behavior and Exercise Mediators in Female College Students

    ERIC Educational Resources Information Center

    Fischer, Donald V.; Bryant, Jennifer

    2008-01-01

    Objective: The authors examined the effect of certified personal trainer services on exercise behavior by using the transtheoretical model of behavioral change. Participants: Female college students (n = 449) completed surveys during the first week (T1) and last week (T2) of the fall semester. Methods: Students receiving personal trainer services…

  3. Impaired neurogenesis and neurite outgrowth in an HIV-gp120 transgenic model is reversed by exercise via BDNF production and Cdk5 regulation

    PubMed Central

    Lee, Myoung-Hwa; Amin, Niranjana D.; Venkatesan, Arun; Wang, Tongguang; Tyagi, Richa; Pant, Harish C.; Nath, Avindra

    2013-01-01

    Human immunodeficiency virus (HIV) infection associated neurocognitive disorders (HAND) is accompanied with brain atrophy. In these patients, impairment of adult neurogenesis and neurite outgrowth in the hippocampus may contribute to the cognitive dysfunction. Although running exercises can enhance neurogenesis and normalize neurite outgrowth, the underlying molecular mechanisms are not well understood. The HIV envelope protein, gp120, has been shown to impair neurogenesis. Using a gp120 transgenic mouse model, we demonstrate that exercise stimulated neural progenitor cell (NPC) proliferation in the hippocampal dentate gyrus and increased the survival rate and generation of newborn cells. However sustained exercise activity was necessary since the effects were reversed by detraining. Exercise also normalized dendritic outgrowth of neurons. Furthermore, it also increased the expression of hippocampal brainderived neurotrophic factor (BDNF) and normalized hyperactivation of cyclin-dependent kinase 5 (Cdk5). Hyper-activated Cdk5 or gp120 treatment led to aberrant neurite outgrowth and BDNF treatment normalized the neurite outgrowth in NPC cultures. These results suggest that sustained exercise has trophic activity on the neuronal lineage which is mediated by Cdk5 modulation of the BDNF pathway. PMID:23982957

  4. Hyper-hippocampal glycogen induced by glycogen loading with exhaustive exercise.

    PubMed

    Soya, Mariko; Matsui, Takashi; Shima, Takeru; Jesmin, Subrina; Omi, Naomi; Soya, Hideaki

    2018-01-19

    Glycogen loading (GL), a well-known type of sports conditioning, in combination with exercise and a high carbohydrate diet (HCD) for 1 week enhances individual endurance capacity through muscle glycogen supercompensation. This exercise-diet combination is necessary for successful GL. Glycogen in the brain contributes to hippocampus-related memory functions and endurance capacity. Although the effect of HCD on the brain remains unknown, brain supercompensation occurs following exhaustive exercise (EE), a component of GL. We thus employed a rat model of GL and examined whether GL increases glycogen levels in the brain as well as in muscle, and found that GL increased glycogen levels in the hippocampus and hypothalamus, as well as in muscle. We further explored the essential components of GL (exercise and/or diet conditions) to establish a minimal model of GL focusing on the brain. Exercise, rather than a HCD, was found to be crucial for GL-induced hyper-glycogen in muscle, the hippocampus and the hypothalamus. Moreover, EE was essential for hyper-glycogen only in the hippocampus even without HCD. Here we propose the EE component of GL without HCD as a condition that enhances brain glycogen stores especially in the hippocampus, implicating a physiological strategy to enhance hippocampal functions.

  5. Psychobiological mechanisms of exercise dependence.

    PubMed

    Hamer, Mark; Karageorghis, Costas I

    2007-01-01

    Exercise dependence (ED) is characterised by an obsessive and unhealthy preoccupation with exercise. Previous research has focused largely on identifying behavioural aspects of ED, although the biological mechanisms remain unknown and are under researched. We review various ED hypotheses including affect regulation, anorexia analogue, sympathetic arousal and beta-endorphin. We also present a novel hypothesis pertaining to ED and interleukin (IL)-6, which combines previous hypotheses with literature from the field of psycho-neuroimmunology. We explore the notion that IL-6 provides a link from the periphery to the brain, which may mediate the underlying features of ED. We propose a conceptual model indicating that, in individuals prone to ED, exercise results in a transient reduction in negative affect, but concurrently results in excessive production of IL-6 and the activation of neuroendocrine pathways, which are associated with behavioural and psychological disturbances of exercise withdrawal. Our intention is for this model to serve as a basis for further research in the area of ED, which may eventually lead to the development of successful treatment strategies. Recent developments in methods to reliably assess these biological markers from blood and saliva samples should encourage such research to be undertaken in exercise settings.

  6. Parameter estimation and order selection for an empirical model of VO2 on-kinetics.

    PubMed

    Alata, O; Bernard, O

    2007-04-27

    In humans, VO2 on-kinetics are noisy numerical signals that reflect the pulmonary oxygen exchange kinetics at the onset of exercise. They are empirically modelled as a sum of an offset and delayed exponentials. The number of delayed exponentials; i.e. the order of the model, is commonly supposed to be 1 for low-intensity exercises and 2 for high-intensity exercises. As no ground truth has ever been provided to validate these postulates, physiologists still need statistical methods to verify their hypothesis about the number of exponentials of the VO2 on-kinetics especially in the case of high-intensity exercises. Our objectives are first to develop accurate methods for estimating the parameters of the model at a fixed order, and then, to propose statistical tests for selecting the appropriate order. In this paper, we provide, on simulated Data, performances of Simulated Annealing for estimating model parameters and performances of Information Criteria for selecting the order. These simulated Data are generated with both single-exponential and double-exponential models, and noised by white and Gaussian noise. The performances are given at various Signal to Noise Ratio (SNR). Considering parameter estimation, results show that the confidences of estimated parameters are improved by increasing the SNR of the response to be fitted. Considering model selection, results show that Information Criteria are adapted statistical criteria to select the number of exponentials.

  7. Examining the moderating effect of depressive symptoms on the relation between exercise and self-efficacy during the initiation of regular exercise.

    PubMed

    Kangas, Julie L; Baldwin, Austin S; Rosenfield, David; Smits, Jasper A J; Rethorst, Chad D

    2015-05-01

    People with depressive symptoms report lower levels of exercise self-efficacy and are more likely to discontinue regular exercise than others, but it is unclear how depressive symptoms affect the relation between exercise and self-efficacy. We sought to clarify whether depressive symptoms moderate the relations between exercise and same-day self-efficacy, and between self-efficacy and next-day exercise. Participants (n = 116) were physically inactive adults (35% reported clinically significant depressive symptoms) who initiated regular exercise and completed daily assessments for 4 weeks. Mixed linear models were used to test whether (a) self-efficacy differed on days when exercise did and did not occur, (b) self-efficacy predicted next-day exercise, and (c) these relations were moderated by depressive symptoms. First, self-efficacy was lower on days when no exercise occurred, but this difference was larger for people with high depressive symptoms (p < .001). They had lower self-efficacy than people with low depressive symptoms on days when no exercise occurred (p = .03), but self-efficacy did not differ on days when exercise occurred (p = .34). Second, self-efficacy predicted greater odds of next-day exercise, OR = 1.12, 95% [1.04, 1.21], but depressive symptoms did not moderate this relation, OR = 1.00, 95% CI [.99, 1.01]. During exercise initiation, daily self-efficacy is more strongly related to exercise occurrence for people with high depressive symptoms than those with low depressive symptoms, but self-efficacy predicts next-day exercise regardless of depressive symptoms. The findings specify how depressive symptoms affect the relations between exercise and self-efficacy and underscore the importance of targeting self-efficacy in exercise interventions, particularly among people with depressive symptoms. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  8. Are Nomothetic or Ideographic Approaches Superior in Predicting Daily Exercise Behaviors?

    PubMed

    Cheung, Ying Kuen; Hsueh, Pei-Yun Sabrina; Qian, Min; Yoon, Sunmoo; Meli, Laura; Diaz, Keith M; Schwartz, Joseph E; Kronish, Ian M; Davidson, Karina W

    2017-01-01

    The understanding of how stress influences health behavior can provide insights into developing healthy lifestyle interventions. This understanding is traditionally attained through observational studies that examine associations at a population level. This nomothetic approach, however, is fundamentally limited by the fact that the environment- person milieu that constitutes stress exposure and experience can vary substantially between individuals, and the modifiable elements of these exposures and experiences are individual-specific. With recent advances in smartphone and sensing technologies, it is now possible to conduct idiographic assessment in users' own environment, leveraging the full-range observations of actions and experiences that result in differential response to naturally occurring events. The aim of this paper is to explore the hypothesis that an ideographic N-of-1 model can better capture an individual's stress- behavior pathway (or the lack thereof) and provide useful person-specific predictors of exercise behavior. This paper used the data collected in an observational study in 79 participants who were followed for up to a 1-year period, wherein their physical activity was continuously and objectively monitored by actigraphy and their stress experience was recorded via ecological momentary assessment on a mobile app. In addition, our analyses considered exogenous and environmental variables retrieved from public archive such as day in a week, daylight time, temperature and precipitation. Leveraging the multiple data sources, we developed prediction algorithms for exercise behavior using random forest and classification tree techniques using a nomothetic approach and an N-of-1 approach. The two approaches were compared based on classification errors in predicting personalized exercise behavior. Eight factors were selected by random forest for the nomothetic decision model, which was used to predict whether a participant would exercise on a particular day. The predictors included previous exercise behavior, emotional factors (e.g., midday stress), external factors such as weather (e.g., temperature), and self-determination factors (e.g., expectation of exercise). The nomothetic model yielded an average classification error of 36%. The ideographic N-of-1 models used on average about two predictors for each individual, and had an average classification error of 25%, which represented an improvement of 11 percentage points. Compared to the traditional one-size-fits-all, nomothetic model that generalizes population-evidence for individuals, the proposed N-of-1 model can better capture the individual difference in their stressbehavior pathways. In this paper, we demonstrate it is feasible to perform personalized exercise behavior prediction, mainly made possible by mobile health technology and machine learning analytics. Schattauer GmbH.

  9. Individual and environmental factors related to stage of change in exercise behavior: a cross-sectional study of female Japanese undergraduate students.

    PubMed

    Yasunaga, Akitomo; Kawano, Yukari; Kamahori, Yumiko; Noguchi, Kyoko

    2014-01-01

    The purpose of the current study was to examine the association between the level of exercise behavior and individual and environmental factors related to exercise behavior among female Japanese undergraduate students. The participants were 2482 female Japanese undergraduate students. Participants' level of exercise behavior was measured by the stage of change to exercise in the transtheoretical model. Individual and environmental factors related to exercise behavior were assessed using body mass index, self-efficacy, social support, perceived positive and negative aspects of exercise, perceived neighborhood environment, attitude toward physical education lessons in childhood and puberty, and depression. Scores for self-efficacy, social support, positive aspects of exercise, and perceived neighborhood environment were significantly higher among women who were more active compared with those who were inactive. On the other hand, scores for negative aspects of exercise and depression were greater among inactive women compared with those who were insufficiently active and/or active. In addition, past attitude toward exercise in primary school, junior high school, and high school was associated with current level of exercise behavior. This cross-sectional study confirmed that psychosocial and environmental factors were closely associated with level of exercise behavior among female Japanese undergraduate students.

  10. Acute moderate exercise improves mnemonic discrimination in young adults.

    PubMed

    Suwabe, Kazuya; Hyodo, Kazuki; Byun, Kyeongho; Ochi, Genta; Yassa, Michael A; Soya, Hideaki

    2017-03-01

    Increasing evidence suggests that regular moderate exercise increases neurogenesis in the dentate gyrus (DG) of the hippocampus and improves memory functions in both humans and animals. The DG is known to play a role in pattern separation, which is the ability to discriminate among similar experiences, a fundamental component of episodic memory. While long-term voluntary exercise improves pattern separation, there is little evidence of alterations in DG function after an acute exercise session. Our previous studies showing acute moderate exercise-enhanced DG activation in rats, and acute moderate exercise-enhanced prefrontal activation and executive function in humans, led us to postulate that acute moderate exercise may also activate the hippocampus, including more specifically the DG, thus improving pattern separation. We thus investigated the effects of a 10-min moderate exercise (50% V̇O 2peak ) session, the recommended intensity for health promotion, on mnemonic discrimination (a behavioral index of pattern separation) in young adults. An acute bout of moderate exercise improved mnemonic discrimination performance in high similarity lures. These results support our hypothesis that acute moderate exercise improves DG-mediated pattern separation in humans, proposing a useful human acute-exercise model for analyzing the neuronal substrate underlying acute and regular exercise-enhanced episodic memory based on the hippocampus. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Exercisers' perceptions of their fitness instructor's interacting style, perceived competence, and autonomy as a function of self-determined regulation to exercise, enjoyment, affect, and exercise frequency.

    PubMed

    Puente, Rogelio; Anshel, Mark H

    2010-02-01

    The primary purpose of the present investigation was to test the hypothesis, derived from Self-Determination Theory (SDT), that an individual's perceived competence and autonomy mediate the relationship between the exercisers' perception of their instructor's interaction style and the exercisers' motivation to exercise. A secondary purpose was to identify the affective and behavioral outcomes derived from self-determined regulation. It was hypothesized that SDT would significantly explain and predict exercise behavior. Participants consisted of 238 college students, 103 males and 135 females (M age = 20.4 years, SD = 2.16), who volunteered to participate in the study. They were asked to complete a battery of questionnaires measuring instructor's interacting style, self-regulation to exercise, perceived autonomy and competence, enjoyment, positive and negative affect, and exercise frequency. Using structural equation modeling with observed variables, the results showed that perceived competence and autonomy mediated the relationship between perceived instructor's interacting style and self-determined regulation. It was also found that self-determined regulation was significantly related to exercise enjoyment, positive affect, and exercise frequency. It was concluded that understanding the motivational factors and emotional and behavioral consequences of physical activity will partially explain an individual's motives to engage regularly in exercise.

  12. Factors associated with exercise adherence among older adults. An individual perspective.

    PubMed

    Rhodes, R E; Martin, A D; Taunton, J E; Rhodes, E C; Donnelly, M; Elliot, J

    1999-12-01

    This paper reviews the literature concerning factors at the individual level associated with regular exercise among older adults. Twenty-seven cross-sectional and 14 prospective/longitudinal studies met the inclusion criteria of a mean participant age of 65 years or older. The findings are summarised by demographics, exercise experience, exercise knowledge, physiological factors, psychological factors, activity preferences and perceived social influences. In general, education and exercise history correlate positively with regular exercise, while perceived physical frailty and poor health may provide the greatest barrier to exercise adoption and adherence in the elderly. Social-cognitive theories identify several constructs that correlate with the regular exercise behaviour of older adults, such as exercise attitude, perceived behavioural control/self-efficacy, perceived social support and perceived benefits/barriers to continued activity. As well, stage modelling may provide additional information about the readiness for regular exercise behaviour among older adults. However, relatively few studies among older adults exist compared with middle-aged and younger adults. Further, the majority of current research consists of cross-sectional designs or short prospective exercise trials among motivated volunteers that may lack external validity. Future research utilising longitudinal and prospective designs with representative samples of older adults will provide a better understanding of significant causal associations between individual factors and regular exercise behaviour.

  13. Acute Moderate Exercise Improves Mnemonic Discrimination in Young Adults

    PubMed Central

    Suwabe, Kazuya; Hyodo, Kazuki; Byun, Kyeongho; Ochi, Genta; Yassa, Michael A.; Soya, Hideaki

    2018-01-01

    Increasing evidence suggests that regular moderate exercise increases neurogenesis in the dentate gyrus (DG) of the hippocampus and improves memory functions in both humans and animals. The DG is known to play a role in pattern separation, which is the ability to discriminate among similar experiences, a fundamental component of episodic memory. While long-term voluntary exercise improves pattern separation, there is little evidence of alterations in DG function after an acute exercise session. Our previous studies showing acute moderate exercise-enhanced DG activation in rats, and acute moderate exercise-enhanced prefrontal activation and executive function in humans, led us to postulate that acute moderate exercise may also activate the hippocampus, including more specifically the DG, thus improving pattern separation. We thus investigated the effects of a 10-min moderate exercise (50% V̇O2peak) session, the recommended intensity for health promotion, on mnemonic discrimination (a behavioral index of pattern separation) in young adults. An acute bout of moderate exercise improved mnemonic discrimination performance in high similarity lures. These results support our hypothesis that acute moderate exercise improves DG-mediated pattern separation in humans, proposing a useful human acute-exercise model for analyzing the neuronal substrate underlying acute and regular exercise-enhanced episodic memory based on the hippocampus. PMID:27997992

  14. Aerobic exercise deconditioning and countermeasures during bed rest.

    PubMed

    Lee, Stuart M C; Moore, Alan D; Everett, Meghan E; Stenger, Michael B; Platts, Steven H

    2010-01-01

    Bed rest is a well-accepted model for spaceflight in which the physiologic adaptations, particularly in the cardiovascular system, are studied and potential countermeasures can be tested. Bed rest without countermeasures results in reduced aerobic capacity and altered submaximal exercise responses. Aerobic endurance and factors which may impact prolonged exercise, however, have not been well studied. The initial loss of aerobic capacity is rapid, occurring in parallel with the loss of plasma volume. Thereafter, the reduction in maximal aerobic capacity proceeds more slowly and is influenced by central and peripheral adaptation. Exercise capacity can be maintained during bed rest and may be improved during recovery with appropriate countermeasures. Plasma volume restoration, resistive exercise, orthostatic stress, aerobic exercise, and aerobic exercise plus orthostatic stress all have been tested with varying levels of success. However, the optimal combination of elements-exercise modality, intensity, duration, muscle groups exercised and frequency of aerobic exercise, orthostatic stress, and supplementary resistive or anaerobic exercise training-has not been systematically evaluated. Currently, frequent (at least 3 days per week) bouts of intense exercise (interval-style and near maximal) with orthostatic stress appears to be the most efficacious method to protect aerobic capacity during bed rest. Further refinement of protocols and countermeasure hardware may be necessary to insure the success of countermeasures in the unique environment of space.

  15. The effect of supine exercise on the distribution of regional pulmonary blood flow measured using proton MRI

    PubMed Central

    Hall, E. T.; Sá, R. C.; Holverda, S.; Arai, T. J.; Dubowitz, D. J.; Theilmann, R. J.; Prisk, G. K.

    2013-01-01

    The Zone model of pulmonary perfusion predicts that exercise reduces perfusion heterogeneity because increased vascular pressure redistributes flow to gravitationally nondependent lung, and causes dilation and recruitment of blood vessels. However, during exercise in animals, perfusion heterogeneity as measured by the relative dispersion (RD, SD/mean) is not significantly decreased. We evaluated the effect of exercise on pulmonary perfusion in six healthy supine humans using magnetic resonance imaging (MRI). Data were acquired at rest, while exercising (∼27% of maximal oxygen consumption) using a MRI-compatible ergometer, and in recovery. Images were acquired in most of the right lung in the sagittal plane at functional residual capacity, using a 1.5-T MR scanner equipped with a torso coil. Perfusion was measured using arterial spin labeling (ASL-FAIRER) and regional proton density using a fast multiecho gradient-echo sequence. Perfusion images were corrected for coil-based signal heterogeneity, large conduit vessels removed and quantified (in ml·min−1·ml−1) (perfusion), and also normalized for density and quantified (in ml·min−1·g−1) (density-normalized perfusion, DNP) accounting for tissue redistribution. DNP increased during exercise (11.1 ± 3.5 rest, 18.8 ± 2.3 exercise, 13.2 ± 2.2 recovery, ml·min−1·g−1, P < 0.0001), and the increase was largest in nondependent lung (110 ± 61% increase in nondependent, 63 ± 35% in mid, 70 ± 33% in dependent, P < 0.005). The RD of perfusion decreased with exercise (0.93 ± 0.21 rest, 0.73 ± 0.13 exercise, 0.94 ± 0.18 recovery, P < 0.005). The RD of DNP showed a similar trend (0.82 ± 0.14 rest, 0.75 ± 0.09 exercise, 0.81 ± 0.10 recovery, P = 0.13). In conclusion, in contrast to animal studies, in supine humans, mild exercise decreased perfusion heterogeneity, consistent with Zone model predictions. PMID:24356515

  16. Ibuprofen Differentially Affects Supraspinatus Muscle and Tendon Adaptations to Exercise in a Rat Model.

    PubMed

    Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J; Vafa, Rameen P; Khandekar, Pooja S; Kuntz, Andrew F; Soslowsky, Louis J

    2016-09-01

    Previous studies have shown that ibuprofen is detrimental to tissue healing after acute injury; however, the effects of ibuprofen when combined with noninjurious exercise are debated. Administration of ibuprofen to rats undergoing a noninjurious treadmill exercise protocol will abolish the beneficial adaptations found with exercise but will have no effect on sedentary muscle and tendon properties. Controlled laboratory study. A total of 167 male Sprague-Dawley rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) response times. Half of the rats were administered ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histologic assessment (organization, cell shape, cellularity), and supraspinatus muscles were used for morphologic (fiber cross-sectional area, centrally nucleated fibers) and fiber type analysis. Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, maximum load, maximum stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic response times, and some fiber type-specific changes were detected. Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. This fundamental study adds to the growing literature on the effects of ibuprofen on musculoskeletal tissues and provides a solid foundation on which future work can build. The study findings suggest that ibuprofen does not detrimentally affect regulation of supraspinatus tendon adaptations to exercise but does decrease muscle growth. Individuals should be advised on the risk of decreased muscle hypertrophy when consuming ibuprofen. © 2016 The Author(s).

  17. Long History of IAM Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.

    2015-04-23

    Correspondence to editor: We agree with the editors that the assumptions behind models of all types, including integrated assessment models (IAMs), should be as transparent as possible. The editors were in error, however, when they implied that the IAM community is just “now emulating the efforts of climate researchers by instigating their own model inter-comparison projects (MIPs).” In fact, model comparisons for integrated assessment and climate models followed a remarkably similar trajectory. Early General Circulation Model (GCM) comparison efforts, evolved to the first Atmospheric Model Inter-comparison Project (AMIP), which was initiated in the early 1990s. Atmospheric models evolved to coupledmore » atmosphere-ocean models (AOGCMs) and results from the first Coupled Model Inter-Comparison Project (CMIP1) become available about a decade later. Results of first energy model comparison exercise, conducted under the auspices of the Stanford Energy Modeling Forum, were published in 1977. A summary of the first comparison focused on climate change was published in 1993. As energy models were coupled to simple economic and climate models to form IAMs, the first comparison exercise for IAMs (EMF-14) was initiated in 1994, and IAM comparison exercises have been on-going since this time.« less

  18. Predictors of exercise frequency in breast cancer survivors in Taiwan.

    PubMed

    Hsu, Hsin-Tien; Dodd, Marylin J; Guo, Su-Er; Lee, Kathryn A; Hwang, Shiow-Li; Lai, Yu-Hung

    2011-07-01

    To apply social cognitive theory to elucidate factors that motivate change in exercise frequency in breast cancer survivors during the six months after completing cancer treatment. Exercise is now a well-recognised quality-of-life intervention in breast cancer survivors. However, only regular exercise yields long-term benefits. Motivations for exercise have not been analysed in Taiwan patients with cancer. A prospective, longitudinal and repeated measures design was used. A convenience sample of 196 breast cancer survivors was recruited from hospitals in metropolitan areas of north and south Taiwan. Study participants were allowed to select their preferred exercised activities. Exercise behaviour and other factors were then recorded using various standardised instruments. Medical charts were also reviewed. Data were analysed by a linear mixed model and by hierarchical multiple regression equations. Exercise frequency significantly changed over time. Explained variance in exercise frequency change was modest. Baseline exercise frequency was the best significant predictor of exercise frequency during the six-month study. The study also identified possible age-related differences in the effect of social support on exercise. The effect of social support for exercise on exercise frequency was apparently larger in older subjects, especially those over 40 years old, than in younger subjects. Mental health, exercise barriers and exercise outcome expectancy significantly contributed to change in exercise frequency during the six-month study. The analytical results revealed several ways to increase exercise frequency in breast cancer survivors: (1) encourage exercise as early as possible; (2) improve health status and provide social support for exercise, especially in women aged 40 years or older; (3) reduce exercise barriers and promote mental health; (4) reinforce self-efficacy and positive expectations of exercise outcomes and (5) provide strategies for minimising fatigue in early stages of rehabilitation. Relevance to clinical practice.  Social cognitive theory provides a useful framework for understanding the motivation to exercise in breast cancer survivors. © 2011 Blackwell Publishing Ltd.

  19. The Effects of Fortetropin Supplementation on Body Composition, Strength, and Power in Humans and Mechanism of Action in a Rodent Model.

    PubMed

    Sharp, Matthew H; Lowery, Ryan P; Mobley, C Brooks; Fox, Carlton D; de Souza, Eduardo O; Shields, Kevin A; Healy, James C; Arick, Ned Q; Thompson, Richard M; Roberts, Michael D; Wilson, Jacob M

    2016-01-01

    The purpose of this study was to investigate the effects of Fortetropin on skeletal muscle growth and strength in resistance-trained individuals and to investigate the anabolic and catabolic signaling effects using human and rodent models. In the rodent model, male Wistar rats (250 g) were gavage fed with either 1.2 ml of tap water control (CTL) or 0.26 g Fortetropin for 8 days. Then rats participated in a unilateral plantarflexion exercise bout. Nonexercised and exercised limbs were harvested at 180 minutes following and analyzed for gene and protein expression relative to mammalian target of rapamycin (mTOR) and ubiquitin signaling. For the human model, 45 (of whom 37 completed the study), resistance-trained college-aged males were divided equally into 3 groups receiving a placebo macronutrient matched control, 6.6 or 19.8 g of Fortetropin supplementation during 12 weeks of resistance training. Lean mass, muscle thickness, and lower and upper body strength were measured before and after 12 weeks of training. The human study results indicated a Group × Time effect (p ≤ 0.05) for lean mass in which the 6.6 g (+1.7 kg) and 19.8 g (+1.68 kg) but not placebo (+0.6 kg) groups increased lean mass. Similarly, there was a Group × Time effect for muscle thickness (p ≤ 0.05), which increased in the experimental groups only. All groups increased equally in bench press and leg press strength. In the rodent model, a main effect for exercise (p ≤ 0.05) in which the control plus exercise but not Fortetropin plus exercise increased both ubiquitin monomer protein expression and polyubiquitination. mTOR signaling was elevated to a greater extent in the Fortetropin exercising conditions as indicated by greater phosphorylation status of 4EBP1, rp6, and p70S6K for both exercising conditions. Fortetropin supplementation increases lean body mass (LBM) and decreases markers of protein breakdown while simultaneously increasing mTOR signaling.

  20. Acute effects of exercise and active video games on adults' reaction time and perceived exertion.

    PubMed

    Guzmán, José F; López-García, Jesús

    2016-11-01

    The purpose of the present study was to examine the acute effects of resting, aerobic exercise practised alone, and aerobic exercise with active video games (AVG), on complex reaction time (CRT) and the post-exercise acute rate of perceived exertion (RPE) in young healthy adults. The experimental group was composed of 92 healthy young adults, 78 males and 13 females (age M = 21.9 ± 2.7 years) who completed two sessions, A and B. In session A, participants rode 30 min on an ergometer, while in session B they exercised for 30 min on an ergometer while playing an AVG on a Wii. The control group was composed of 30 young adults, 26 males and 4 females (age M = 21.4 ± 2.9 years) who rested for 30 min. In each session, a CRT task was performed before and after exercising or resting, and post-exercise global RPE was noted. Repeated measures general linear model (GLM) and Wilcoxon tests were performed. (1) Both aerobic exercise alone and aerobic exercise combined with AVG improved CRT, while resting did not; (2) aerobic exercise combined with AVG did not improve CRT more than aerobic exercise only; and (3) RPE was lower after aerobic exercise combined with AVG compared with aerobic exercise only. In young adults, exercise produces acute benefits on CRT, and practising exercise with AVG helps to decrease RPE.

  1. Does body fat percentage predict post-exercise heart rate response in non-obese children and adolescents?

    PubMed

    Jezdimirovic, Tatjana; Stajer, Valdemar; Semeredi, Sasa; Calleja-Gonzalez, Julio; Ostojic, Sergej M

    2017-05-24

    A correlation between adiposity and post-exercise autonomic regulation has been established in overweight and obese children. However, little information exists about this link in non-obese youth. The main purpose of this cross-sectional study was to describe the relationship between body fat percentage (BFP) and heart rate recovery after exercise [post-exercise heart rate (PEHR)], a marker of autonomic regulation, in normal-weight children and adolescents. We evaluated the body composition of 183 children and adolescents (age 15.0±2.3 years; 132 boys and 51 girls) who performed a maximal graded exercise test on a treadmill, with the heart rate monitored during and immediately after exercise. A strong positive trend was observed in the association between BFP and PEHR (r=0.14; p=0.06). Hierarchical multiple regression revealed that our model explained 18.3% of the variance in PEHR (p=0.00), yet BFP accounted for only 0.9% of the variability in PEHR (p=0.16). The evaluation of the contribution of each independent variable revealed that only two variables made a unique statistically significant contribution to our model (p<0.01), with age contributing 38.7% to our model (p=0.00) while gender accounted for an additional 25.5% (p=0.01). Neither BFP (14.4%; p=0.16) nor cardiorespiratory endurance (5.0%, p=0.60) made a significant unique contribution to the model. Body fatness seems to poorly predict PEHR in our sample of non-obese children and adolescents, while non-modifiable variables (age and gender) were demonstrated as strong predictors of heart rate recovery. The low amount of body fat reported in non-obese young participants was perhaps too small to cause disturbances in autonomic nervous system regulation.

  2. Safety and feasibility of an exercise prescription approach to rehabilitation across the continuum of care for survivors of critical illness.

    PubMed

    Berney, Sue; Haines, Kimberley; Skinner, Elizabeth H; Denehy, Linda

    2012-12-01

    Survivors of critical illness can experience long-standing functional limitations that negatively affect their health-related quality of life. To date, no model of rehabilitation has demonstrated sustained improvements in physical function for survivors of critical illness beyond hospital discharge. The aims of this study were: (1) to describe a model of rehabilitation for survivors of critical illness, (2) to compare the model to local standard care, and (3) to report the safety and feasibility of the program. This was a cohort study. As part of a larger randomized controlled trial, 74 participants were randomly assigned, 5 days following admission to the intensive care unit (ICU), to a protocolized rehabilitation program that commenced in the ICU and continued on the acute care ward and for a further 8 weeks following hospital discharge as an outpatient program. Exercise training was prescribed based on quantitative outcome measures to achieve a physiological training response. During acute hospitalization, 60% of exercise sessions were able to be delivered. The most frequently occurring barriers to exercise were patient safety and patient refusal due to fatigue. Point prevalence data showed patients were mobilized more often and for longer periods compared with standard care. Outpatient classes were poorly attended, with only 41% of the patients completing more than 70% of outpatient classes. No adverse events occurred. Limitations included patient heterogeneity and delayed commencement of exercise in the ICU due to issues of consent and recruitment. Exercise training that commences in the ICU and continues through to an outpatient program is safe and feasible for survivors of critical illness. Models of care that maximize patient participation across the continuum of care warrant further investigation.

  3. Pricing Models Using Real Data

    ERIC Educational Resources Information Center

    Obremski, Tom

    2008-01-01

    A practical hands-on classroom exercise is described and illustrated using the price of an item as dependent variable throughout. The exercise is well-tested and affords the instructor a variety of approaches and levels.

  4. Estimated Muscle Loads During Squat Exercise in Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Fregly, Christopher D.; Kim, Brandon T.; Li, Zhao; DeWitt, John K.; Fregly, Benjamin J.

    2012-01-01

    Loss of muscle mass in microgravity is one of the primary factors limiting long-term space flight. NASA researchers have developed a number of exercise devices to address this problem. The most recent is the Advanced Resistive Exercise Device (ARED), which is currently used by astronauts on the International Space Station (ISS) to emulate typical free-weight exercises in microgravity. ARED exercise on the ISS is intended to reproduce Earth-level muscle loads, but the actual muscle loads produced remain unknown as they cannot currently be measured directly. In this study we estimated muscle loads experienced during squat exercise on ARED in microgravity conditions representative of Mars, the moon, and the ISS. The estimates were generated using a subject-specific musculoskeletal computer model and ARED exercise data collected on Earth. The results provide insight into the capabilities and limitations of the ARED machine.

  5. Psychological need satisfaction, intrinsic motivation and affective response to exercise in adolescents

    PubMed Central

    Schneider, Margaret L.; Kwan, Bethany M.

    2013-01-01

    Objectives To further understanding of the factors influencing adolescents’ motivations for physical activity, the relationship of variables derived from Self-Determination Theory to adolescents’ affective response to exercise was examined. Design Correlational. Method Adolescents (N = 182) self-reported psychological needs satisfaction (perceived competence, relatedness, and autonomy) and intrinsic motivation related to exercise. In two clinic visits, adolescents reported their affect before, during, and after a moderate-intensity and a hard-intensity exercise task. Results Affective response to exercise and psychological needs satisfaction independently contributed to the prediction of intrinsic motivation in hierarchical linear regression models. The association between affective response to exercise and intrinsic motivation was partially mediated by psychological needs satisfaction. Conclusions Intrinsic motivation for exercise among adolescents may be enhanced when the environment supports perceived competence, relatedness, and autonomy, and when adolescents participate in activities that they find enjoyable. PMID:24015110

  6. Exercise-enhanced Neuroplasticity Targeting Motor and Cognitive Circuitry in Parkinson’s Disease

    PubMed Central

    Petzinger, G. M.; Fisher, B. E.; McEwen, S.; Beeler, J. A.; Walsh, J. P.; Jakowec, M. W.

    2013-01-01

    The purpose of this review is to highlight the potential role of exercise in promoting neuroplasticity and repair in Parkinson’s disease (PD). Exercise interventions in individuals with PD incorporate goal-based motor skill training in order to engage cognitive circuitry important in motor learning. Using this exercise approach, physical therapy facilitates learning through instruction and feedback (reinforcement), and encouragement to perform beyond self-perceived capability. Individuals with PD become more cognitively engaged with the practice and learning of movements and skills that were previously automatic and unconscious. Studies that have incorporated both goal-based training and aerobic exercise have supported the potential for improving both cognitive and automatic components of motor control. Utilizing animal models, basic research is beginning to reveal exercise-induced effects on neuroplasticity. Since neuroplasticity occurs at the level of circuits and synaptic connections, we examine the effects of exercise from this perspective. PMID:23769598

  7. Motivational climate, staff and members' behaviors, and members' psychological well-being at a national fitness franchise.

    PubMed

    Brown, Theresa C; Fry, Mary D

    2014-06-01

    The purpose of this study was to examine the association between members' perceptions of staffs behaviors, motivational climate, their own behaviors, commitment to future exercise, and life satisfaction in a group-fitness setting. The theory-driven hypothesized mediating role of perceptions of the climate was also tested. Members (N = 5,541) of a national group-fitness studio franchise completed a survey regarding their class experiences. The survey included questions that measured participants' perceptions of the motivational climate (caring, task-involving, ego-involving), perceptions of staff's behaviors, their own behaviors, commitment to exercise, and life satisfaction. Structural equation modeling was used to assess both the association between variables and the theoretically driven predictive relationships. The participants perceived the environment as highly caring and task-involving and low ego-involving. They reported high exercise commitment and moderately high life satisfaction and perceived that the staffs and their own behaviors reflected caring, task-involving characteristics. Structural equation modeling demonstrated that those who perceived a higher caring, task-involving climate and lower ego-involving climate were more likely to report more task-involving, caring behaviors among the staff and themselves as well as greater commitment to exercise. In addition, a theory-driven mediational model suggested that staff behaviors may be an antecedent to members' exercise experiences by impacting their perceptions of the climate. The results of this study give direction to specific behaviors in which staff of group-fitness programs might engage to positively influence members' exercise experiences.

  8. Exercise ameliorates neurocognitive impairments in a translational model of pediatric radiotherapy.

    PubMed

    Sahnoune, Iman; Inoue, Taeko; Kesler, Shelli R; Rodgers, Shaefali P; Sabek, Omaima M; Pedersen, Steen E; Zawaski, Janice A; Nelson, Katharine H; Ris, M Douglas; Leasure, J Leigh; Gaber, M Waleed

    2018-04-09

    While cranial radiation therapy (CRT) is an effective treatment, healthy areas surrounding irradiation sites are negatively affected. Frontal lobe functions involving attention, processing speed, and inhibition control are impaired. These deficits appear months to years after CRT and impair quality of life. Exercise has been shown to rejuvenate the brain and aid in recovery post-injury through its effects on neurogenesis and cognition. We developed a juvenile rodent CRT model that reproduces neurocognitive deficits. Next, we utilized the model to test whether exercise ameliorates these deficits. Fischer rats (31 days old) were irradiated with a fractionated dose of 4 Gy × 5 days, trained and tested at 6, 9, and 12 months post-CRT using 5-choice serial reaction time task. After testing, fixed rat brains were imaged using diffusion tensor imaging and immunohistochemistry. CRT caused early and lasting impairments in task acquisition, accuracy, and latency to correct response, as well as causing stunting of growth and changes in brain volume and diffusion. Exercising after irradiation improved acquisition, behavioral control, and processing speed, mitigated the stunting of brain size, and increased brain fiber numbers compared with sedentary CRT values. Further, exercise partially restored global connectome organization, including assortativity and characteristic path length, and while it did not improve the specific regional connections that were lowered by CRT, it appeared to remodel these connections by increasing connectivity between alternate regional pairs. Our data strongly suggest that exercise may be useful in combination with interventions aimed at improving cognitive outcome following pediatric CRT.

  9. Why do individuals not lose more weight from an exercise intervention at a defined dose? An energy balance analysis

    PubMed Central

    Thomas, D. M.; Bouchard, C.; Church, T.; Slentz, C.; Kraus, W. E.; Redman, L. M.; Martin, C. K.; Silva, A. M.; Vossen, M.; Westerterp, K.; Heymsfield, S. B.

    2013-01-01

    Summary Weight loss resulting from an exercise intervention tends to be lower than predicted. Modest weight loss can arise from an increase in energy intake, physiological reductions in resting energy expenditure, an increase in lean tissue or a decrease in non-exercise activity. Lower than expected, weight loss could also arise from weak and invalidated assumptions within predictive models. To investigate these causes, we systematically reviewed studies that monitored compliance to exercise prescriptions and measured exercise-induced change in body composition. Changed body energy stores were calculated to determine the deficit between total daily energy intake and energy expenditures. This information combined with available measurements was used to critically evaluate explanations for low exercise-induced weight loss. We conclude that the small magnitude of weight loss observed from the majority of evaluated exercise interventions is primarily due to low doses of prescribed exercise energy expenditures compounded by a concomitant increase in caloric intake. PMID:22681398

  10. PHISICS/RELAP5-3D RESULTS FOR EXERCISES II-1 AND II-2 OF THE OECD/NEA MHTGR-350 BENCHMARK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strydom, Gerhard

    2016-03-01

    The Idaho National Laboratory (INL) Advanced Reactor Technologies (ART) High-Temperature Gas-Cooled Reactor (HTGR) Methods group currently leads the Modular High-Temperature Gas-Cooled Reactor (MHTGR) 350 benchmark. The benchmark consists of a set of lattice-depletion, steady-state, and transient problems that can be used by HTGR simulation groups to assess the performance of their code suites. The paper summarizes the results obtained for the first two transient exercises defined for Phase II of the benchmark. The Parallel and Highly Innovative Simulation for INL Code System (PHISICS), coupled with the INL system code RELAP5-3D, was used to generate the results for the Depressurized Conductionmore » Cooldown (DCC) (exercise II-1a) and Pressurized Conduction Cooldown (PCC) (exercise II-2) transients. These exercises require the time-dependent simulation of coupled neutronics and thermal-hydraulics phenomena, and utilize the steady-state solution previously obtained for exercise I-3 of Phase I. This paper also includes a comparison of the benchmark results obtained with a traditional system code “ring” model against a more detailed “block” model that include kinetics feedback on an individual block level and thermal feedbacks on a triangular sub-mesh. The higher spatial fidelity that can be obtained by the block model is illustrated with comparisons of the maximum fuel temperatures, especially in the case of natural convection conditions that dominate the DCC and PCC events. Differences up to 125 K (or 10%) were observed between the ring and block model predictions of the DCC transient, mostly due to the block model’s capability of tracking individual block decay powers and more detailed helium flow distributions. In general, the block model only required DCC and PCC calculation times twice as long as the ring models, and it therefore seems that the additional development and calculation time required for the block model could be worth the gain that can be obtained in the spatial resolution« less

  11. Getting to compliance in forced exercise in rodents: a critical standard to evaluate exercise impact in aging-related disorders and disease.

    PubMed

    Arnold, Jennifer C; Salvatore, Michael F

    2014-08-22

    There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson's disease.

  12. Real-Time Classification of Exercise Exertion Levels Using Discriminant Analysis of HRV Data.

    PubMed

    Jeong, In Cheol; Finkelstein, Joseph

    2015-01-01

    Heart rate variability (HRV) was shown to reflect activation of sympathetic nervous system however it is not clear which set of HRV parameters is optimal for real-time classification of exercise exertion levels. There is no studies that compared potential of two types of HRV parameters (time-domain and frequency-domain) in predicting exercise exertion level using discriminant analysis. The main goal of this study was to compare potential of HRV time-domain parameters versus HRV frequency-domain parameters in classifying exercise exertion level. Rest, exercise, and recovery categories were used in classification models. Overall 79.5% classification agreement by the time-domain parameters as compared to overall 52.8% classification agreement by frequency-domain parameters demonstrated that the time-domain parameters had higher potential in classifying exercise exertion levels.

  13. McArdle Disease and Exercise Physiology.

    PubMed

    Kitaoka, Yu

    2014-02-25

    McArdle disease (glycogen storage disease Type V; MD) is a metabolic myopathy caused by a deficiency in muscle glycogen phosphorylase. Since muscle glycogen is an important fuel for muscle during exercise, this inborn error of metabolism provides a model for understanding the role of glycogen in muscle function and the compensatory adaptations that occur in response to impaired glycogenolysis. Patients with MD have exercise intolerance with symptoms including premature fatigue, myalgia, and/or muscle cramps. Despite this, MD patients are able to perform prolonged exercise as a result of the "second wind" phenomenon, owing to the improved delivery of extra-muscular fuels during exercise. The present review will cover what this disease can teach us about exercise physiology, and particularly focuses on the compensatory pathways for energy delivery to muscle in the absence of glycogenolysis.

  14. Using theory to develop an exercise intervention for patients post stroke.

    PubMed

    Shaughnessy, Marianne; Resnick, Barbara M

    2009-01-01

    Stroke remains a leading cause of disability for older adults. While is it well established in the literature that exercise programs can have significant benefit, many stroke survivors do not receive specific recommendations for exercise or lack the motivation to continue exercising following discharge from rehabilitation. This article describes an exercise intervention developed for subacute stroke survivors that utilizes the self-efficacy theory framework. The rationale for selection of this theoretical framework and specific examples of interventions linked to components of the model are provided. The article describes the motivational/educational program and the sequential follow-up designed to prepare stroke survivors to increase exercise behavior. Theoretical frameworks are useful tools for guiding and organizing research investigations from literature review through development and implementation of the intervention to interpretation of findings.

  15. Noninvasive Intracranial Pressure and Tissue Oxygen Measurements for Space and Earth

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Ballard, R. E.; Murthy, G.; Watenpaugh, D. E.

    1994-01-01

    The paper discusses the following: Increasing intracranial pressure in humans during simulated microgravity. and near-infrared monitoring of model chronic compartment syndrome in exercising skeletal muscle. Compared to upright-seated posture, 0 deg. supine, 6 deg. HDT, and 15 deg. HDT produced TMD changes of 317 +/- 112, 403 +/- 114, and 474 +/- 112 n1 (means +/- S.E.), respectively. Furthermore, postural transitions from 0 deg. supine to 6 deg. HDT and from 6 deg. to 15 deg. HDT generated significant TMD changes (p less than 0.05). There was no hysteresis when postural transitions to HDT were compared to reciprocal transitions toward upright seated posture. Currently, diagnosis of chronic compartment syndrome (CCS) depends on measurement of intramuscular pressure by invasive catheterization. We hypothesized that this syndrome can be detected noninvasively by near-infrared (NIR) spectroscopy, which tracks variations in muscle hemoglobin/myoglobin oxygen saturation. CCS was simulated in the tibialis anterior muscle of 7 male and 3 female subjects by gradual inflation of a cuff placed around the leg to 40 mmHg during 14 minutes of cyclic isokinetic dorsiflexion exercise. On a separate day, subjects underwent the identical exercise protocol with no external compression. In both cases, tissue oxygenation (T(sub O2) was measured in the tibialis anterior by NIR spectroscopy and normalized to a percentage scale between baseline and a T(sub O2) nadir reached during exercise to ischemic exhaustion. Over the course of exercise, T(sub O2) declined at a rate of 1.4 +/- 0.3% per minute with model CCS, yet did not decrease during control exercise. Post-exercise recovery of T(sub O2) was slower with model CCS (2.5 +/- 0.6 min) than in control (1.3 +/- 0.2 min). These results demonstrate that NIR spectroscopy can detect muscle deoxygenation caused by pathologically elevated intramuscular pressure in exercising skeletal muscle. Consequently, this technique shows promise as a noninvasive diagnostic tool for CCS.

  16. Effects of exercise dependence on psychological health of Chinese college students.

    PubMed

    Li, Menglong; Nie, Jingsong; Ren, Yujia

    2015-12-01

    The aim of this study was to investigate the effects of exercise dependence on the psychological health of Chinese college students. A total of 1601 college students from three universities in Hunan, China, were selected as research subjects. Several measurement scales, including the Exercise Addiction Inventory, the State-Trait Anxiety Inventory, the Center for Epidemiologic Studies Depression Scale, and the Subjective Well-being Scale, were used to survey the psychological health problem of these students and to analyze the effects of exercise dependence on their psychological health. Exercise dependence, based on the structural equation model analysis, can positively influence state anxiety (P<0.05), depression (P<0.05), and subjective well-being (P<0.05) of Chinese students. By contrast, exercise dependence negatively influences students' self-satisfaction (P<0.05), social behavior (P<0.05), and vigor (P<0.05). Exercise dependence adversely affects the psychological health of college students. Further research using multi-dimensional exercise addiction scales should be conducted to identify all the negative effects of exercise addiction factors on psychological health.

  17. Acute nutritional ketosis: implications for exercise performance and metabolism

    PubMed Central

    2014-01-01

    Ketone bodies acetoacetate (AcAc) and D-β-hydroxybutyrate (βHB) may provide an alternative carbon source to fuel exercise when delivered acutely in nutritional form. The metabolic actions of ketone bodies are based on sound evolutionary principles to prolong survival during caloric deprivation. By harnessing the potential of these metabolic actions during exercise, athletic performance could be influenced, providing a useful model for the application of ketosis in therapeutic conditions. This article examines the energetic implications of ketone body utilisation with particular reference to exercise metabolism and substrate energetics. PMID:25379174

  18. Stereological Study on the Positive Effect of Running Exercise on the Capillaries in the Hippocampus in a Depression Model.

    PubMed

    Chen, Linmu; Zhou, Chunni; Tan, Chuanxue; Wang, Feifei; Gao, Yuan; Huang, Chunxia; Zhang, Yi; Jiang, Lin; Tang, Yong

    2017-01-01

    Running exercise is an effective method to improve depressive symptoms when combined with drugs. However, the underlying mechanisms are not fully clear. Cerebral blood flow perfusion in depressed patients is significantly lower in the hippocampus. Physical activity can achieve cerebrovascular benefits. The purpose of this study was to evaluate the impacts of running exercise on capillaries in the hippocampal CA1 and dentate gyrus (DG) regions. The chronic unpredictable stress (CUS) depression model was used in this study. CUS rats were given 4 weeks of running exercise from the fifth week to the eighth week (20 min every day from Monday to Friday each week). The sucrose consumption test was used to measure anhedonia. Furthermore, stereological methods were used to investigate the capillary changes among the control group, CUS/Standard group and CUS/Running group. Sucrose consumption significantly increased in the CUS/Running group. Running exercise has positive effects on the capillaries parameters in the hippocampal CA1 and DG regions, such as the total volume, total length and total surface area. These results demonstrated that capillaries are protected by running exercise in the hippocampal CA1 and DG might be one of the structural bases for the exercise-induced treatment of depression-like behavior. These results suggest that drugs and behavior influence capillaries and may be considered as a new means for depression treatment in the future.

  19. Summary of comparison and analysis of results from exercises 1 and 2 of the OECD PBMR coupled neutronics/thermal hydraulics transient benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkhabela, P.; Han, J.; Tyobeka, B.

    2006-07-01

    The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has accepted, through the Nuclear Science Committee (NSC), the inclusion of the Pebble-Bed Modular Reactor 400 MW design (PBMR-400) coupled neutronics/thermal hydraulics transient benchmark problem as part of their official activities. The scope of the benchmark is to establish a well-defined problem, based on a common given library of cross sections, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events through a set of multi-dimensional computational test problems. The benchmark includes three steady state exercises andmore » six transient exercises. This paper describes the first two steady state exercises, their objectives and the international participation in terms of organization, country and computer code utilized. This description is followed by a comparison and analysis of the participants' results submitted for these two exercises. The comparison of results from different codes allows for an assessment of the sensitivity of a result to the method employed and can thus help to focus the development efforts on the most critical areas. The two first exercises also allow for removing of user-related modeling errors and prepare core neutronics and thermal-hydraulics models of the different codes for the rest of the exercises in the benchmark. (authors)« less

  20. Exercise addiction in CrossFit: Prevalence and psychometric properties of the Exercise Addiction Inventory.

    PubMed

    Lichtenstein, Mia Beck; Jensen, Tanja Tang

    2016-06-01

    CrossFit is a mix of aerobic and anaerobic exercise regimes with the stated goal of improving fitness and physical performance. It is growing in popularity and has a strong community known to motivate and push the participants to maximal performance. The negative consequences of these extreme exercise patterns have rarely been described. The prevalence of injuries in CrossFit is high but exercise addiction and harmful exercise attitudes have not yet been assessed. The aim of this study was to measure the prevalence of exercise addiction in CrossFit and to evaluate the reliability and validity of the Exercise Addiction Inventory (EAI) in a CrossFit population. We invited crossfitters to participate in an online survey using Facebook groups. A total of 603 regular crossfitters completed the EAI and additional questions concerning exercise amounts and negative exercise attitudes and beliefs. We used principal component analyses and structural equation models to test the psychometric properties of the EAI and to describe the characteristics of the addicted crossfitters. We found that 5% of the crossfitters were addicted to exercise and that young males had a higher risk. The EAI had good internal reliability (0.73) and construct validity. Thus we found significant positive associations between exercise addiction and the tendency to exercise in spite of injury, feelings of guilt when unable to exercise, passion turning into obsession and taking medication to be able to exercise. Exercise addiction is prevalent in CrossFit and needs further exploration. The EAI is recommended for research in CrossFit communities and applied settings.

  1. Development of the NASA Digital Astronaut Project Muscle Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Pennline, James A.; Thompson, W. K.; Humphreys, B. T.; Ryder, J. W.; Ploutz-Snyder, L. L.; Mulugeta, L.

    2015-01-01

    This abstract describes development work performed on the NASA Digital Astronaut Project Muscle Model. Muscle atrophy is a known physiological response to exposure to a low gravity environment. The DAP muscle model computationally predicts the change in muscle structure and function vs. time in a reduced gravity environment. The spaceflight muscle model can then be used in biomechanical models of exercise countermeasures and spaceflight tasks to: 1) develop site specific bone loading input to the DAP bone adaptation model over the course of a mission; 2) predict astronaut performance of spaceflight tasks; 3) inform effectiveness of new exercise countermeasures concepts.

  2. The Earthquake Source Inversion Validation (SIV) - Project: Summary, Status, Outlook

    NASA Astrophysics Data System (ADS)

    Mai, P. M.

    2017-12-01

    Finite-fault earthquake source inversions infer the (time-dependent) displacement on the rupture surface from geophysical data. The resulting earthquake source models document the complexity of the rupture process. However, this kinematic source inversion is ill-posed and returns non-unique solutions, as seen for instance in multiple source models for the same earthquake, obtained by different research teams, that often exhibit remarkable dissimilarities. To address the uncertainties in earthquake-source inversions and to understand strengths and weaknesses of various methods, the Source Inversion Validation (SIV) project developed a set of forward-modeling exercises and inversion benchmarks. Several research teams then use these validation exercises to test their codes and methods, but also to develop and benchmark new approaches. In this presentation I will summarize the SIV strategy, the existing benchmark exercises and corresponding results. Using various waveform-misfit criteria and newly developed statistical comparison tools to quantify source-model (dis)similarities, the SIV platforms is able to rank solutions and identify particularly promising source inversion approaches. Existing SIV exercises (with related data and descriptions) and all computational tools remain available via the open online collaboration platform; additional exercises and benchmark tests will be uploaded once they are fully developed. I encourage source modelers to use the SIV benchmarks for developing and testing new methods. The SIV efforts have already led to several promising new techniques for tackling the earthquake-source imaging problem. I expect that future SIV benchmarks will provide further innovations and insights into earthquake source kinematics that will ultimately help to better understand the dynamics of the rupture process.

  3. Review of Modelling Techniques for In Vivo Muscle Force Estimation in the Lower Extremities during Strength Training

    PubMed Central

    Schellenberg, Florian; Oberhofer, Katja; Taylor, William R.

    2015-01-01

    Background. Knowledge of the musculoskeletal loading conditions during strength training is essential for performance monitoring, injury prevention, rehabilitation, and training design. However, measuring muscle forces during exercise performance as a primary determinant of training efficacy and safety has remained challenging. Methods. In this paper we review existing computational techniques to determine muscle forces in the lower limbs during strength exercises in vivo and discuss their potential for uptake into sports training and rehabilitation. Results. Muscle forces during exercise performance have almost exclusively been analysed using so-called forward dynamics simulations, inverse dynamics techniques, or alternative methods. Musculoskeletal models based on forward dynamics analyses have led to considerable new insights into muscular coordination, strength, and power during dynamic ballistic movement activities, resulting in, for example, improved techniques for optimal performance of the squat jump, while quasi-static inverse dynamics optimisation and EMG-driven modelling have helped to provide an understanding of low-speed exercises. Conclusion. The present review introduces the different computational techniques and outlines their advantages and disadvantages for the informed usage by nonexperts. With sufficient validation and widespread application, muscle force calculations during strength exercises in vivo are expected to provide biomechanically based evidence for clinicians and therapists to evaluate and improve training guidelines. PMID:26417378

  4. Heart Rate Monitors

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Under a NASA grant, Dr. Robert M. Davis and Dr. William M. Portnoy came up with a new type of electrocardiographic electrode that would enable long term use on astronauts. Their invention was an insulated capacitive electrode constructed of a thin dielectric film. NASA subsequently licensed the electrode technology to Richard Charnitski, inventor of the VersaClimber, who founded Heart Rate, Inc., to further develop and manufacture personal heart monitors and to produce exercise machines using the technology for the physical fitness, medical and home markets. Same technology is on both the Home and Institutional Model VersaClimbers. On the Home Model an infrared heart beat transmitter is worn under exercise clothing. Transmitted heart rate is used to control the work intensity on the VersaClimber using the heart rate as the speedometer of the exercise. This offers advantages to a full range of users from the cardiac rehab patient to the high level physical conditioning of elite athletes. The company manufactures and markets five models of the 1*2*3 HEART RATE monitors that are used wherever people exercise to accurately monitor their heart rate. Company is developing a talking heart rate monitor that works with portable headset radios. A version of the heart beat transmitter will be available to the manufacturers of other aerobic exercise machines.

  5. Endurance exercise in a rat model of metabolic syndrome.

    PubMed

    Cameron, Isabelle; Alam, Mohammad Ashraful; Wang, Jianxiong; Brown, Lindsay

    2012-11-01

    We have measured the responses to endurance exercise training on body composition and glucose regulation, as well as cardiovascular and liver structure and function in rats fed a high carbohydrate and high fat (HCHF) diet as a model of human metabolic syndrome. Male Wistar rats (9-10 weeks old) were randomly allocated into corn starch (CS) or HCHF diet groups for 16 weeks; half of each group were exercised on a treadmill for 20, 25, and then 30 min/day, 5 days/week, during the last 8 weeks of the protocol. Metabolic, cardiovascular, and liver parameters were monitored. The HCHF diet induced symptoms of metabolic syndrome, including obesity, dyslipidemia, impaired glucose tolerance, and increased systolic blood pressure associated with the development of cardiovascular remodeling and nonalcoholic steatohepatitis. Exercise in HCHF rats decreased body mass, abdominal fat pads and circumference, blood glucose concentrations, plasma lipid profiles, systolic blood pressure, left ventricular diastolic stiffness, collagen deposition and inflammatory cell infiltration in the left ventricle, improved aortic contractile and relaxation responses, and decreased liver mass and hepatic fat accumulation. This study demonstrates that endurance exercise is effective in this rat model of diet-induced metabolic syndrome in improving body composition and glucose regulation, as well as cardiovascular and liver structure and function.

  6. Review of Modelling Techniques for In Vivo Muscle Force Estimation in the Lower Extremities during Strength Training.

    PubMed

    Schellenberg, Florian; Oberhofer, Katja; Taylor, William R; Lorenzetti, Silvio

    2015-01-01

    Knowledge of the musculoskeletal loading conditions during strength training is essential for performance monitoring, injury prevention, rehabilitation, and training design. However, measuring muscle forces during exercise performance as a primary determinant of training efficacy and safety has remained challenging. In this paper we review existing computational techniques to determine muscle forces in the lower limbs during strength exercises in vivo and discuss their potential for uptake into sports training and rehabilitation. Muscle forces during exercise performance have almost exclusively been analysed using so-called forward dynamics simulations, inverse dynamics techniques, or alternative methods. Musculoskeletal models based on forward dynamics analyses have led to considerable new insights into muscular coordination, strength, and power during dynamic ballistic movement activities, resulting in, for example, improved techniques for optimal performance of the squat jump, while quasi-static inverse dynamics optimisation and EMG-driven modelling have helped to provide an understanding of low-speed exercises. The present review introduces the different computational techniques and outlines their advantages and disadvantages for the informed usage by nonexperts. With sufficient validation and widespread application, muscle force calculations during strength exercises in vivo are expected to provide biomechanically based evidence for clinicians and therapists to evaluate and improve training guidelines.

  7. Can exercise affect the course of inflammatory bowel disease? Experimental and clinical evidence.

    PubMed

    Bilski, Jan; Mazur-Bialy, Agnieszka; Brzozowski, Bartosz; Magierowski, Marcin; Zahradnik-Bilska, Janina; Wójcik, Dagmara; Magierowska, Katarzyna; Kwiecien, Slawomir; Mach, Tomasz; Brzozowski, Tomasz

    2016-08-01

    The inflammatory bowel disease (IBD) consisting of Crohn's disease (CD) and ulcerative colitis (UC) are defined as idiopathic, chronic and relapsing intestinal disorders occurring in genetically predisposed individuals exposed to environmental risk factors such as diet and microbiome changes. Since conventional drug therapy is expensive and not fully efficient, there is a need for alternative remedies that can improve the outcome in patients suffering from IBD. Whether exercise, which has been proposed as adjunct therapy in IBD, can be beneficial in patients with IBD remains an intriguing question. In this review, we provide an overview of the effects of exercise on human IBD and experimental colitis in animal models that mimic human disease, although the information on exercise in human IBD are sparse and poorly understood. Moderate exercise can exert a beneficial ameliorating effect on IBD and improve the healing of experimental animal colitis due to the activity of protective myokines such as irisin released from working skeletal muscles. CD patients with higher levels of exercise were significantly less likely to develop active disease at six months. Moreover, voluntary exercise has been shown to exert a positive effect on IBD patients' mood, weight maintenance and osteoporosis. On the other hand, depending on its intensity and duration, exercise can evoke transient mild systemic inflammation and enhances pro-inflammatory cytokine release, thereby exacerbating the gastrointestinal symptoms. We discuss recent advances in the mechanism of voluntary and strenuous exercise affecting the outcome of IBD in patients and experimental animal models. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Exercise attenuates neuropathology and has greater benefit on cognitive than motor deficits in the R6/1 Huntington's disease mouse model.

    PubMed

    Harrison, David J; Busse, Monica; Openshaw, Rebecca; Rosser, Anne E; Dunnett, Stephen B; Brooks, Simon P

    2013-10-01

    Huntington's disease (HD) is a neurodegenerative disease caused by a mutation within the huntingtin gene that induces degeneration within the striatal nuclei, progressing to widespread brain atrophy and death. The neurodegeneration produces symptoms that reflect a corticostriatal disconnection syndrome involving motor, cognitive and psychiatric disturbance. Environmental enrichment has been demonstrated to be beneficial to patients with neurological disorders, with exercise being central to this effect. Rodent studies have confirmed exercise-induced neurogenesis and increased growth factor levels in the brain and improved behavioural function. The present study sought to determine whether an extended regime of exercise could retard disease progression in the R6/1 mouse model of HD. The study was designed specifically with a translational focus, selecting behavioural assessments with high clinical predictive validity. We found that exercise improved gait function in both control and HD mice and selectively improved performance in the R6/1 mice on a motor coordination aspect of the balance beam task. Exercise also retarded the progression of cognitive dysfunction on water T-maze procedural and reversal learning probes presented serially to probe cognitive flexibility. In addition, exercise reduced striatal neuron loss in the R6/1 mice but increased striatal neuronal intra-nuclear inclusion size and number relative to non-exercised R6/1 mice which demonstrated increased numbers of extra-neuronal inclusions, suggesting that the functional effects were striatally mediated. These results confirm and extend those from previous studies that demonstrate that HD may be amenable to exercise-mediated therapeutics, but suggest that the impact of such interventions may be primarily cognitive. © 2013.

  9. Post-exercise heart rate recovery independently predicts mortality risk in patients with chronic heart failure.

    PubMed

    Tang, Yi-Da; Dewland, Thomas A; Wencker, Detlef; Katz, Stuart D

    2009-12-01

    Post-exercise heart rate recovery (HRR) is an index of parasympathetic function associated with clinical outcomes in populations with and without documented coronary heart disease. Decreased parasympathetic activity is thought to be associated with disease progression in chronic heart failure (HF), but an independent association between post-exercise HRR and clinical outcomes among such patients has not been established. We measured HRR (calculated as the difference between heart rate at peak exercise and after 1 minute of recovery) in 202 HF subjects and recorded 17 mortality and 15 urgent transplantation outcome events over 624 days of follow-up. Reduced post-exercise HRR was independently associated with increased event risk after adjusting for other exercise-derived variables (peak oxygen uptake and change in minute ventilation per change in carbon dioxide production slope), for the Heart Failure Survival Score (adjusted HR 1.09 for 1 beat/min reduction, 95% CI 1.05-1.13, P < .0001), and the Seattle Heart Failure Model score (adjusted HR 1.08 for one beat/min reduction, 95% CI 1.05-1.12, P < .0001). Subjects in the lowest risk tertile based on post-exercise HRR (>or=30 beats/min) had low risk of events irrespective of the risk predicted by the survival scores. In a subgroup of 15 subjects, reduced post-exercise HRR was associated with increased serum markers of inflammation (interleukin-6, r = 0.58, P = .024; high-sensitivity C-reactive protein, r = 0.66, P = .007). Post-exercise HRR predicts mortality risk in patients with HF and provides prognostic information independent of previously described survival models. Pathophysiologic links between autonomic function and inflammation may be mediators of this association.

  10. Evaluation of a standard provision versus an autonomy promotive exercise referral programme: rationale and study design

    PubMed Central

    Jolly, Kate; Duda, Joan L; Daley, Amanda; Eves, Frank F; Mutrie, Nanette; Ntoumanis, Nikos; Rouse, Peter C; Lodhia, Rekha; Williams, Geoffrey C

    2009-01-01

    Background The National Institute of Clinical Excellence in the UK has recommended that the effectiveness of ongoing exercise referral schemes to promote physical activity should be examined in research trials. Recent empirical evidence in health care and physical activity promotion contexts provides a foundation for testing the utility of a Self Determination Theory (SDT)-based exercise referral consultation. Methods/Design Design: An exploratory cluster randomised controlled trial comparing standard provision exercise on prescription with a Self Determination Theory-based (SDT) exercise on prescription intervention. Participants: 347 people referred to the Birmingham Exercise on Prescription scheme between November 2007 and July 2008. The 13 exercise on prescription sites in Birmingham were randomised to current practice (n = 7) or to the SDT-based intervention (n = 6). Outcomes measured at 3 and 6-months: Minutes of moderate or vigorous physical activity per week assessed using the 7-day Physical Activity Recall; physical health: blood pressure and weight; health status measured using the Dartmouth CO-OP charts; anxiety and depression measured by the Hospital Anxiety and Depression Scale and vitality measured by the subjective vitality score; motivation and processes of change: perceptions of autonomy support from the advisor, satisfaction of the needs for competence, autonomy, and relatedness via physical activity, and motivational regulations for exercise. Discussion This trial will determine whether an exercise referral programme based on Self Determination Theory increases physical activity and other health outcomes compared to a standard programme and will test the underlying SDT-based process model (perceived autonomy support, need satisfaction, motivation regulations, outcomes) via structural equation modelling. Trial registration The trial is registered as Current Controlled trials ISRCTN07682833. PMID:19505293

  11. Limb Stress-Rest Perfusion Imaging With Contrast Ultrasound For The Assessment Of Peripheral Arterial Disease Severity

    PubMed Central

    Lindner, Jonathan R.; Womack, Lisa; Barrett, Eugene J.; Feltman, Judy; Price, Wendy; Harthun, Nancy L.; Kaul, Sanjiv; Patrie, James T.

    2009-01-01

    Objectives We hypothesized that lower extremity stress-rest perfusion imaging with contrast-enhanced ultrasound (CEU) could evaluate the severity of peripheral arterial disease (PAD). Background Perfusion imaging may provide valuable quantitative information on PAD, particularly in patients with diabetes in whom microvascular functional abnormalities are common. Methods Twenty-six control subjects and 39 patients with symptomatic PAD, 19 with type-2 diabetes mellitus, were studied. Claudication threshold was determined by a modified treadmill exercise test. Bilateral pulse-volume recordings, ankle-brachial index (ABI), and post-exercise ABI were performed. CEU perfusion imaging of the gastrocnemius and soleus was performed at rest and after 2 min of plantar-flexion exercise. Results During exercise, claudication occurred earlier in PAD patients with diabetes than without. Muscle blood flow during plantar-flexion exercise was lower (p<0.05) in patients with PAD (10.4±6.7) and PAD with diabetes (7.9±5.9) compared to control subjects (20.0±9.5). After adjusting for diabetes, the only diagnostic tests that predicted severity of disease defined by claudication threshold were CEU exercise blood flow (odds ratios: 0.67 [95% CI (0.51 to 0.88); p=0.003], and flow reserve (odds ratio: 0.64 [95% CI (0.46 to 0.89), p=0.008]). A multivariate model incorporating all non-invasive diagnostic tests indicated that the best models for predicting severity of disease were the combination of presence of diabetes and either exercise blood flow or flow reserve. Conclusions Limb microvascular perfusion imaging during exercise can be evaluated by CEU. Skeletal muscle blood flow during exercise and flow reserve are impaired in patients with PAD and correlate with the severity of symptoms. PMID:19356447

  12. Building a pantheoretical model of dehumanization with transgender men: Integrating objectification and minority stress theories.

    PubMed

    Velez, Brandon L; Breslow, Aaron S; Brewster, Melanie E; Cox, Robert; Foster, Aasha B

    2016-10-01

    With a national sample of 304 transgender men, the present study tested a pantheoretical model of dehumanization (Moradi, 2013) with hypotheses derived from objectification theory (Fredrickson & Roberts, 1997), minority stress theory (Meyer, 2003), and prior research regarding men's body image concerns. Specifically, we tested common objectification theory constructs (internalization of sociocultural standards of attractiveness [SSA], body surveillance, body satisfaction) as direct and indirect predictors of compulsive exercise. We also examined the roles of transgender-specific minority stress variables-antitransgender discrimination and transgender identity congruence-in the model. Results of a latent variable structural equation model yielded mixed support for the posited relations. The direct and indirect interrelations of internalization of SSA, body surveillance, and body satisfaction were consistent with prior objectification theory research, but only internalization of SSA yielded a significant direct relation with compulsive exercise. In addition, neither internalization of SSA nor body surveillance yielded significant indirect relations with compulsive exercise. However, antitransgender discrimination yielded predicted indirect relations with body surveillance, body satisfaction, and compulsive exercise, with transgender congruence playing a key mediating role in most of these relations. The implications of this pantheoretical model for research and practice with transgender men are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Challenging Students' Intuitions—the Influence of a Tangible Model of Virus Assembly on Students' Conceptual Reasoning About the Process of Self-Assembly

    NASA Astrophysics Data System (ADS)

    Larsson, Caroline; Tibell, Lena A. E.

    2015-10-01

    A well-ordered biological complex can be formed by the random motion of its components, i.e. self-assemble. This is a concept that incorporates issues that may contradict students' everyday experiences and intuitions. In previous studies, we have shown that a tangible model of virus self-assembly, used in a group exercise, helps students to grasp the process of self-assembly and in particular the facet "random molecular collision". The present study investigates how and why the model and the group exercise facilitate students' learning of this particular facet. The data analysed consist of audio recordings of six group exercises ( n = 35 university students) and individual semi-structured interviews ( n = 5 university students). The analysis is based on constructivist perspectives of learning, a combination of conceptual change theory and learning with external representations. Qualitative analysis indicates that perceived counterintuitive aspects of the process created a cognitive conflict within learners. The tangible model used in the group exercises facilitated a conceptual change in their understanding of the process. In particular, the tangible model appeared to provide cues and possible explanations and functioned as an "eye-opener" and a "thinking tool". Lastly, the results show signs of emotions also being important elements for successful accommodation.

  14. Beliefs about excessive exercise in eating disorders: the role of obsessions and compulsions.

    PubMed

    Naylor, Heather; Mountford, Victoria; Brown, Gary

    2011-01-01

    This study aimed to develop an understanding of excessive exercise in eating disorders by exploring the role of exercise beliefs, obsessive beliefs and obsessive-compulsive behaviours. Sixty-four women were recruited from eating disorder services and 75 non-clinical women were recruited from a university. Exercise beliefs and behaviours, obsessive beliefs and behaviours and eating disorder psychopathology were assessed using self-report questionnaires. There was an association between exercise beliefs, obsessive beliefs and obsessive-compulsive behaviours in the eating-disordered group, but not in the non-eating-disordered group. In the eating-disordered group obsessive beliefs and obsessive-compulsive behaviours were associated with a significant proportion of variance in exercise beliefs after controlling for eating disorder psychopathology and BMI. In the non-eating-disordered group obsessive beliefs and behaviours were associated with beliefs about exercise as a method of affect regulation after controlling for BMI. The results are compatible with a model in which obsessive beliefs and exercise beliefs could maintain exercise in eating disorders. This has implications for the assessment and treatment of excessive exercise. Further research is necessary to determine the causality of these relationships. Copyright © 2011 John Wiley & Sons, Ltd and Eating Disorders Association.

  15. [Exercise addiction: an emergent behavioral disorder].

    PubMed

    Márquez, Sara; de la Vega, Ricardo

    2015-06-01

    Regular physical activity plays a relevant role in health maintenance and disease prevention. However, excess exercise may generate adverse effects both on physical and mental activity. To provide a state-of-the-art overview on exercise addiction, considering its concept, symptoms, diagnosis, epidemiological aspects, etiological factors, and potential interventions. Articles related to the topic were reviewed through Pubmed, Sportdiscus, PsycINFO, Scopus and Web of Science databases, using combinations of the following keywords: "exercise", "addiction" and "dependence". Regular exercise taken into excess may result in adverse health consequences and quality of life impairment. Diagnosis of exercise addiction requires the employment of questionnaires such as the Exercise Dependence Scale (EDS) and the Exercise Addiction Inventory (EAI). These instruments have allowed the estimation of a 3% prevalence among exercise practitioners. Proposed hypotheses to explain the etiology of this disorder include both physiological and psychological mechanisms. Treatment is based on the cognitive-behavioral approach, but effectiveness needs to be evaluated. Although different hypotheses have been proposed to explain exercise dependence, integrative models are still necessary. A clinical validation of diagnostic instruments and a deepening into the relationship with behavioral eating disorders are also required. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. Predicting VO[subscript 2max] in College-Aged Participants Using Cycle Ergometry and Perceived Functional Ability

    ERIC Educational Resources Information Center

    Nielson, David E.; George, James D.; Vehrs, Pat R.; Hager, Ron L.; Webb, Carrie V.

    2010-01-01

    The purpose of this study was to develop a multiple linear regression model to predict treadmill VO[subscript 2max] scores using both exercise and non-exercise data. One hundred five college-aged participants (53 male, 52 female) successfully completed a submaximal cycle ergometer test and a maximal graded exercise test on a motorized treadmill.…

  17. Computational Prediction of Muscle Moments During ARED Squat Exercise on the International Space Station.

    PubMed

    Fregly, Benjamin J; Fregly, Christopher D; Kim, Brandon T

    2015-12-01

    Prevention of muscle atrophy caused by reduced mechanical loading in microgravity conditions remains a challenge for long-duration spaceflight. To combat leg muscle atrophy, astronauts on the International Space Station (ISS) often perform squat exercise using the Advanced Resistive Exercise Device (ARED). While the ARED is effective at building muscle strength and volume on Earth, NASA researchers do not know how closely ARED squat exercise on the ISS replicates Earth-level squat muscle moments, or how small variations in exercise form affect muscle loading. This study used dynamic simulations of ARED squat exercise on the ISS to address these two questions. A multibody dynamic model of the complete astronaut-ARED system was constructed in OpenSim. With the ARED base locked to ground and gravity set to 9.81 m/s², we validated the model by reproducing muscle moments, ground reaction forces, and foot center of pressure (CoP) positions for ARED squat exercise on Earth. With the ARED base free to move relative to the ISS and gravity set to zero, we then used the validated model to simulate ARED squat exercise on the ISS for a reference squat motion and eight altered squat motions involving changes in anterior-posterior (AP) foot or CoP position on the ARED footplate. The reference squat motion closely reproduced Earth-level muscle moments for all joints except the ankle. For the altered squat motions, changing the foot position was more effective at altering muscle moments than was changing the CoP position. All CoP adjustments introduced an undesirable shear foot reaction force that could cause the feet to slip on the ARED footplate, while some foot and CoP adjustments introduced an undesirable sagittal plane foot reaction moment that would cause the astronaut to rotate off the ARED footplate without the use of some type of foot fixation. Our results provide potentially useful information for achieving desired increases or decreases in specific muscle moments during ARED squat exercise performed on the ISS.

  18. Research Assessment Exercise Results and Research Funding in the United Kingdom: A Comparative Analysis

    ERIC Educational Resources Information Center

    Chatterji, Monojit; Seaman, Paul

    2006-01-01

    A considerable sum of money is allocated to UK universities on the basis of Research Assessment Exercise performance. In this paper we analyse the two main funding models used in the United Kingdom and discuss their strengths and weaknesses. We suggest that the benchmarking used by the two main models have significant weaknesses, and propose an…

  19. In der fachsprachlichen Didaktik ist der "fachneutrale" Vorkurs ein Umweg (In Teaching Technical Language, a "Neutral Area" Course is an Evasion)

    ERIC Educational Resources Information Center

    Becker, Norbert

    1974-01-01

    In learning to read technical language, texts in specialized technical fields are preferable to "neutral area" or popular science texts. Assorted textbooks are suggested, along with suitable types of exercises and their use. Model preparatory exercises and model drills are included. (Text is in German.) (IFS/WGA)

  20. How Does an Activity Theory Model Help to Know Better about Teaching with Electronic-Exercise-Bases?

    ERIC Educational Resources Information Center

    Abboud-Blanchard, Maha; Cazes, Claire

    2012-01-01

    The research presented in this paper relies on Activity Theory and particularly on Engestrom's model, to better understand the use of Electronic-Exercise-Bases (EEB) by mathematics teachers. This theory provides a holistic approach to illustrate the complexity of the EEB integration. The results highlight reasons and ways of using EEB and show…

  1. Exercise-Induced Hypertrophic and Oxidative Signaling Pathways and Myokine Expression in Fast Muscle of Adult Zebrafish

    PubMed Central

    Rovira, Mireia; Arrey, Gerard; Planas, Josep V.

    2017-01-01

    Skeletal muscle is a plastic tissue that undergoes cellular and metabolic adaptations under conditions of increased contractile activity such as exercise. Using adult zebrafish as an exercise model, we previously demonstrated that swimming training stimulates hypertrophy and vascularization of fast muscle fibers, consistent with the known muscle growth-promoting effects of exercise and with the resulting increased aerobic capacity of this tissue. Here we investigated the potential involvement of factors and signaling mechanisms that could be responsible for exercise-induced fast muscle remodeling in adult zebrafish. By subjecting zebrafish to swimming-induced exercise, we observed an increase in the activity of mammalian target of rapamycin (mTOR) and Mef2 protein levels in fast muscle. We also observed an increase in the protein levels of the mitotic marker phosphorylated histone H3 that correlated with an increase in the protein expression levels of Pax7, a satellite-like cell marker. Furthermore, the activity of AMP-activated protein kinase (AMPK) was also increased by exercise, in parallel with an increase in the mRNA expression levels of pgc1α and also of pparda, a β-oxidation marker. Changes in the mRNA expression levels of slow and fast myosin markers further supported the notion of an exercise-induced aerobic phenotype in zebrafish fast muscle. The mRNA expression levels of il6, il6r, apln, aplnra and aplnrb, sparc, decorin and igf1, myokines known in mammals to be produced in response to exercise and to signal through mTOR/AMPK pathways, among others, were increased in fast muscle of exercised zebrafish. These results support the notion that exercise increases skeletal muscle growth and myogenesis in adult zebrafish through the coordinated activation of the mTOR-MEF2 and AMPK-PGC1α signaling pathways. These results, coupled with altered expression of markers for oxidative metabolism and fast-to-slow fiber-type switch, also suggest improved aerobic capacity as a result of swimming-induced exercise. Finally, the induction of myokine expression by swimming-induced exercise support the hypothesis that these myokines may have been produced and secreted by the exercised zebrafish muscle and acted on fast muscle cells to promote metabolic remodeling. These results support the use of zebrafish as a suitable model for studies on muscle remodeling in vertebrates, including humans. PMID:29326600

  2. A study on nonlinear estimation of submaximal effort tolerance based on the generalized MET concept and the 6MWT in pulmonary rehabilitation

    PubMed Central

    Szczegielniak, Jan; Łuniewski, Jacek; Stanisławski, Rafał; Bogacz, Katarzyna; Krajczy, Marcin; Rydel, Marek

    2018-01-01

    Background The six-minute walk test (6MWT) is considered to be a simple and inexpensive tool for the assessment of functional tolerance of submaximal effort. The aim of this work was 1) to background the nonlinear nature of the energy expenditure process due to physical activity, 2) to compare the results/scores of the submaximal treadmill exercise test and those of 6MWT in pulmonary patients and 3) to develop nonlinear mathematical models relating the two. Methods The study group included patients with the COPD. All patients were subjected to a submaximal exercise test and a 6MWT. To develop an optimal mathematical solution and compare the results of the exercise test and the 6MWT, the least squares and genetic algorithms were employed to estimate parameters of polynomial expansion and piecewise linear models. Results Mathematical analysis enabled to construct nonlinear models for estimating the MET result of submaximal exercise test based on average walk velocity (or distance) in the 6MWT. Conclusions Submaximal effort tolerance in COPD patients can be effectively estimated from new, rehabilitation-oriented, nonlinear models based on the generalized MET concept and the 6MWT. PMID:29425213

  3. Evaluation of exercise-respiratory system modifications and integration schemes for physiological systems

    NASA Technical Reports Server (NTRS)

    Gallagher, R. R.

    1974-01-01

    Exercise subroutine modifications are implemented in an exercise-respiratory system model yielding improvement of system response to exercise forcings. A more physiologically desirable respiratory ventilation rate in addition to an improved regulation of arterial gas tensions and cerebral blood flow is observed. A respiratory frequency expression is proposed which would be appropriate as an interfacing element of the respiratory-pulsatile cardiovascular system. Presentation of a circulatory-respiratory system integration scheme along with its computer program listing is given. The integrated system responds to exercise stimulation for both nonstressed and stressed physiological states. Other integration possibilities are discussed with respect to the respiratory, pulsatile cardiovascular, thermoregulatory, and the long-term circulatory systems.

  4. Time-course effects of aerobic physical training in the prevention of cigarette smoke-induced COPD.

    PubMed

    Toledo-Arruda, Alessandra C; Vieira, Rodolfo P; Guarnier, Flávia A; Suehiro, Camila L; Caleman-Neto, Agostinho; Olivo, Clarice R; Arantes, Petra M M; Almeida, Francine M; Lopes, Fernanda D T Q S; Ramos, Ercy M C; Cecchini, Rubens; Lin, Chin Jia; Martins, Milton Arruda

    2017-09-01

    A previous study by our group showed that regular exercise training (ET) attenuated pulmonary injury in an experimental model of chronic exposure to cigarette smoke (CS) in mice, but the time-course effects of the mechanisms involved in this protection remain poorly understood. We evaluated the temporal effects of regular ET in an experimental model of chronic CS exposure. Male C57BL/6 mice were divided into four groups: Control (sedentary + air), Exercise (aerobic training + air), Smoke (sedentary + smoke), and Smoke + Exercise (aerobic training + smoke). Mice were exposed to CS and ET for 4, 8, or 12 wk. Exercise protected mice exposed to CS from emphysema and reductions in tissue damping and tissue elastance after 12 wk ( P < 0.01). The total number of inflammatory cells in the bronchoalveolar lavage increased in the Smoke group, mainly due to the recruitment of macrophages after 4 wk, neutrophils and lymphocytes after 8 wk, and lymphocytes and macrophages after 12 wk ( P < 0.01). Exercise attenuated this increase in mice exposed to CS. The protection conferred by exercise was mainly observed after exercise adaptation. Exercise increased IL-6 and IL-10 in the quadriceps and lungs ( P < 0.05) after 12 wk. Total antioxidant capacity and SOD was increased and TNF-α and oxidants decreased in lungs of mice exposed to CS after 12 wk ( P < 0.05). The protective effects of exercise against lung injury induced by cigarette smoke exposure suggests that anti-inflammatory mediators and antioxidant enzymes play important roles in chronic obstructive pulmonary disease development mainly after the exercise adaptation. NEW & NOTEWORTHY These experiments investigated for the first time the temporal effects of regular moderate exercise training in cigarette smoke-induced chronic obstructive pulmonary disease. We demonstrate that aerobic conditioning had a protective effect in emphysema development induced by cigarette smoke exposure. This effect was most likely secondary to an effect of exercise on oxidant-antioxidant balance and anti-inflammatory mediators. Copyright © 2017 the American Physiological Society.

  5. Effect of exercise on hemodynamic conditions in the abdominal aorta.

    PubMed

    Taylor, C A; Hughes, T J; Zarins, C K

    1999-06-01

    The beneficial effect of exercise in the retardation of the progression of cardiovascular disease is hypothesized to be caused, at least in part, by the elimination of adverse hemodynamic conditions, including flow recirculation and low wall shear stress. In vitro and in vivo investigations have provided qualitative and limited quantitative information on flow patterns in the abdominal aorta and on the effect of exercise on the elimination of adverse hemodynamic conditions. We used computational fluid mechanics methods to examine the effects of simulated exercise on hemodynamic conditions in an idealized model of the human abdominal aorta. A three-dimensional computer model of a healthy human abdominal aorta was created to simulate pulsatile aortic blood flow under conditions of rest and graded exercise. Flow velocity patterns and wall shear stress were computed in the lesion-prone infrarenal aorta, and the effects of exercise were determined. A recirculation zone was observed to form along the posterior wall of the aorta immediately distal to the renal vessels under resting conditions. Low time-averaged wall shear stress was present in this location, along the posterior wall opposite the superior mesenteric artery and along the anterior wall between the superior and inferior mesenteric arteries. Shear stress temporal oscillations, as measured with an oscillatory shear index, were elevated in these regions. Under simulated light exercise conditions, a region of low wall shear stress and high oscillatory shear index remained along the posterior wall immediately distal to the renal arteries. Under simulated moderate exercise conditions, all the regions of low wall shear stress and high oscillatory shear index were eliminated. This numeric investigation provided detailed quantitative data on the effect of exercise on hemodynamic conditions in the abdominal aorta. Our results indicated that moderate levels of lower limb exercise are necessary to eliminate the flow reversal and regions of low wall shear stress in the abdominal aorta that exist under resting conditions. The lack of flow reversal and increased wall shear stress during exercise suggest a mechanism by which exercise may promote arterial health, namely with the elimination of adverse hemodynamic conditions.

  6. Effects of Exercise on AMPK Signaling and Downstream Components to PI3K in Rat with Type 2 Diabetes

    PubMed Central

    Cao, Shicheng; Li, Bowen; Yi, Xuejie; Chang, Bo; Zhu, Beibei; Lian, Zhenzhen; Zhang, Zhaoran; Zhao, Gang; Liu, Huili; Zhang, He

    2012-01-01

    Exercise can increase skeletal muscle sensitivity to insulin, improve insulin resistance and regulate glucose homeostasis in rat models of type 2 diabetes. However, the potential mechanism remains poorly understood. In this study, we established a male Sprague–Dawley rat model of type 2 diabetes, with insulin resistance and β cell dysfunction, which was induced by a high-fat diet and low-dose streptozotocin to replicate the pathogenesis and metabolic characteristics of type 2 diabetes in humans. We also investigated the possible mechanism by which chronic and acute exercise improves metabolism, and the phosphorylation and expression of components of AMP-activated protein kinase (AMPK) and downstream components of phosphatidylinositol 3-kinase (PI3K) signaling pathways in the soleus. As a result, blood glucose, triglyceride, total cholesterol, and free fatty acid were significantly increased, whereas insulin level progressively declined in diabetic rats. Interestingly, chronic and acute exercise reduced blood glucose, increased phosphorylation and expression of AMPKα1/2 and the isoforms AMPKα1 and AMPKα2, and decreased phosphorylation and expression of AMPK substrate, acetyl CoA carboxylase (ACC). Chronic exercise upregulated phosphorylation and expression of AMPK upstream kinase, LKB1. But acute exercise only increased LKB1 expression. In particular, exercise reversed the changes in protein kinase C (PKC)ζ/λ phosphorylation, and PKCζ phosphorylation and expression. Additionally, exercise also increased protein kinase B (PKB)/Akt1, Akt2 and GLUT4 expression, but AS160 protein expression was unchanged. Chronic exercise elevated Akt (Thr308) and (Ser473) and AS160 phosphorylation. Finally, we found that exercise increased peroxisome proliferator-activated receptor-γ coactivator 1 (PGC1) mRNA expression in the soleus of diabetic rats. These results indicate that both chronic and acute exercise influence the phosphorylation and expression of components of the AMPK and downstream to PIK3 (aPKC, Akt), and improve GLUT4 trafficking in skeletal muscle. These data help explain the mechanism how exercise regulates glucose homeostasis in diabetic rats. PMID:23272147

  7. The effect of exercise frequency on neuropathic pain and pain-related cellular reactions in the spinal cord and midbrain in a rat sciatic nerve injury model

    PubMed Central

    Sumizono, Megumi; Otsuka, Shotaro; Terashi, Takuto; Nakanishi, Kazuki; Ueda, Koki; Takada, Seiya; Kikuchi, Kiyoshi

    2018-01-01

    Background Exercise regimens are established methods that can relieve neuropathic pain. However, the relationship between frequency and intensity of exercise and multiple cellular responses of exercise-induced alleviation of neuropathic pain is still unclear. We examined the influence of exercise frequency on neuropathic pain and the intracellular responses in a sciatic nerve chronic constriction injury (CCI) model. Materials and methods Rats were assigned to four groups as follows: CCI and high-frequency exercise (HFE group), CCI and low-frequency exercise (LFE group), CCI and no exercise (No-Ex group), and naive animals (control group). Rats ran on a treadmill, at a speed of 20 m/min, for 30 min, for 5 (HFE) or 3 (LFE) days a week, for a total of 5 weeks. The 50% withdrawal threshold was evaluated for mechanical sensitivity. The activation of glial cells (microglia and astrocytes), expression of brain-derived neurotrophic factor (BDNF) and μ-opioid receptor in the spinal dorsal horn and endogenous opioid in the midbrain were examined using immunohistochemistry. Opioid receptor antagonists (naloxone) were administered using intraperitoneal injection. Results The development of neuropathic pain was related to the activation of glial cells, increased BDNF expression, and downregulation of the μ-opioid receptor in the ipsilateral spinal dorsal horn. In the No-Ex group, neuropathic pain showed the highest level of mechanical hypersensitivity at 2 weeks, which improved slightly until 5 weeks after CCI. In both exercise groups, the alleviation of neuropathic pain was accelerated through the regulation of glial activation, BDNF expression, and the endogenous opioid system. The expression of BDNF and endogenous opioid in relation to exercise-induced alleviation of neuropathic pain differed in the HFE and LFE groups. The effects of exercise-induced alleviation of mechanical hypersensitivity were reversed by the administration of naloxone. Conclusion The LFE and HFE program reduced neuropathic pain. Our findings indicated that aerobic exercise-induced alleviated neuropathic pain through the regulation of glial cell activation, expression of BDNF in the ipsilateral spinal dorsal horn, and the endogenous opioid system. PMID:29445295

  8. Examining the Moderating Effect of Depressive Symptoms on the Relation Between Exercise and Self-Efficacy During the Initiation of Regular Exercise

    PubMed Central

    Kangas, Julie L.; Baldwin, Austin S.; Rosenfield, David; Smits, Jasper A. J.; Rethorst, Chad D.

    2016-01-01

    Objective People with depressive symptoms typically report lower levels of exercise self-efficacy and are more likely to discontinue regular exercise than others, but it is unclear how depressive symptoms affect people’s exercise self-efficacy. Among potential sources of self-efficacy, engaging in the relevant behavior is the strongest (Bandura, 1997). Thus, we sought to clarify how depressive symptoms affect the same-day relation between engaging in exercise and self-efficacy during the initiation of regular exercise. Methods Participants (N=116) were physically inactive adults (35% reported clinically significant depressive symptoms at baseline) who initiated regular exercise and completed daily assessments of exercise minutes and self-efficacy for four weeks. We tested whether (a) self-efficacy differed on days when exercise did and did not occur, and (b) the difference was moderated by depressive symptoms. Mixed linear models were used to examine these relations. Results An interaction between exercise occurrence and depressive symptoms (p<.001) indicated that self-efficacy was lower on days when no exercise occurred, but this difference was significantly larger for people with high depressive symptoms. People with high depressive symptoms had lower self-efficacy than those with low depressive symptoms on days when no exercise occurred (p=.03), but self-efficacy did not differ on days when exercise occurred (p=.34). Conclusions During the critical period of initiating regular exercise, daily self-efficacy for people with high depressive symptoms is more sensitive to whether they exercised than for people with low depressive symptoms. This may partially explain why people with depression tend to have difficulty maintaining regular exercise. PMID:25110850

  9. The acute effect of exercise modality and nutrition manipulations on post-exercise resting energy expenditure and respiratory exchange ratio in women: a randomized trial.

    PubMed

    Wingfield, Hailee L; Smith-Ryan, Abbie E; Melvin, Malia N; Roelofs, Erica J; Trexler, Eric T; Hackney, Anthony C; Weaver, Mark A; Ryan, Eric D

    2015-06-01

    The purpose of this study was to examine the effect of exercise modality and pre-exercise carbohydrate (CHO) or protein (PRO) ingestion on post-exercise resting energy expenditure (REE) and respiratory exchange ratio (RER) in women. Twenty recreationally active women (mean ± SD; age 24.6 ± 3.9 years; height 164.4 ± 6.6 cm; weight 62.7 ± 6.6 kg) participated in this randomized, crossover, double-blind study. Each participant completed six exercise sessions, consisting of three exercise modalities: aerobic endurance exercise (AEE), high-intensity interval running (HIIT), and high-intensity resistance training (HIRT); and two acute nutritional interventions: CHO and PRO. Salivary samples were collected before each exercise session to determine estradiol-β-17 and before and after to quantify cortisol. Post-exercise REE and RER were analyzed via indirect calorimetry at the following: baseline, immediately post (IP), 30 minutes (30 min) post, and 60 minutes (60 min) post exercise. A mixed effects linear regression model, controlling for estradiol, was used to compare mean longitudinal changes in REE and RER. On average, HIIT produced a greater REE than AEE and HIRT ( p < 0.001) post exercise. Effects of AEE and HIRT were not significantly different for post-exercise REE ( p = 0.1331). On average, HIIT produced lower RER compared to either AEE or HIRT after 30 min ( p < 0.001 and p = 0.0169, respectively) and compared to AEE after 60 min ( p = 0.0020). On average, pre-exercise PRO ingestion increased post-exercise REE ( p = 0.0076) and decreased post-exercise RER ( p < 0.0001) compared to pre-exercise CHO ingestion. HIIT resulted in the largest increase in REE and largest reduction in RER.

  10. Clinical significance of exercise pulmonary hypertension in secondary mitral regurgitation.

    PubMed

    Lancellotti, Patrizio; Magne, Julien; Dulgheru, Raluca; Ancion, Arnaud; Martinez, Christophe; Piérard, Luc A

    2015-05-15

    In patients with heart failure, exercise echocardiography can help in risk stratification and decision making. The prognostic significance of exercise pulmonary hypertension (PH) in patients with secondary mitral regurgitation (MR) remains unknown. The aim of the present study was to assess the prognostic value of exercise PH in patients with secondary MR and narrow QRS intervals. From 2005 to 2012, 159 consecutive patients with secondary MR, narrow QRS intervals, left ventricular dysfunction (mean ejection fraction 36 ± 7%), and measurable systolic pulmonary arterial pressure (SPAP) during exercise echocardiography were included. Resting and exercise PH were defined as SPAP >50 and >60 mm Hg, respectively. Exercise PH was more frequent than resting PH (40% vs 13%, p <0.0001). On multivariate logistic regression, the independent determinants of exercise PH were resting SPAP (p <0.0001), exercise MR severity (p <0.0001), and e'-wave velocity (p = 0.004). The incidence of cardiac events during follow-up was significantly higher in patients with exercise PH compared with those without exercise PH (4 years: 40 ± 7% vs 20 ± 5%, p <0.0001). Patients with exercise PH exhibited higher rates of cardiac events and death than those with resting PH. In a multivariate Cox proportional hazards model, exercise PH was independently associated with the occurrence of cardiac events (p <0.0001). In conclusion, in patients with secondary MR, exercise PH is determined mainly by resting SPAP, left ventricular diastolic burden, and exercise MR severity. Exercise PH is a powerful predictor of poor outcomes, with a 5.3-fold increased risk for cardiac-related death during follow-up. These results highlight the added value of exercise echocardiography in secondary MR. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Motivational "spill-over" during weight control: increased self-determination and exercise intrinsic motivation predict eating self-regulation.

    PubMed

    Mata, Jutta; Silva, Marlene N; Vieira, Paulo N; Carraça, Eliana V; Andrade, Ana M; Coutinho, Sílvia R; Sardinha, Luis B; Teixeira, Pedro J

    2009-11-01

    Successful weight management relies on at least two health behaviors, eating and exercise. However, little is known about their interaction on a motivational and behavioral level. Based on the Hierarchical Model of Motivation the authors examined whether exercise-specific motivation can transfer to eating regulation during a lifestyle weight control program. The authors further investigated whether general, treatment-related, and exercise motivation underlie the relation between increased exercise and improved eating regulation. Overweight/obese women participated in a 1-year randomized controlled trial (N = 239). The intervention focused on promoting physical activity and internal motivation for exercise and weight loss, following Self-Determination Theory. The control group received general health education. General and exercise specific self-determination, eating self-regulation variables, and physical activity behavior. General self-determination and more autonomous exercise motivation predicted eating self-regulation over 12 months. Additionally, general and exercise self-determination fully mediated the relation between physical activity and eating self-regulation. Increased general self-determination and exercise motivation seem to facilitate improvements in eating self-regulation during weight control in women. These motivational mechanisms also underlie the relationship between improvements in exercise behavior and eating regulation. PsycINFO Database Record (c) 2009 APA, all rights reserved.

  12. Exercise and end-stage kidney disease: functional exercise capacity and cardiovascular outcomes.

    PubMed

    Parsons, Trisha L; King-Vanvlack, Cheryl E

    2009-11-01

    This review examined published reports of the impact of extradialytic and intradialytic exercise programs on physiologic aerobic exercise capacity, functional exercise endurance, and cardiovascular outcomes in individuals with ESKD. Studies spanning 30 years from the first published report of exercise in the ESKD population were reviewed. Studies conducted in the first half of the publication record focused on the efficacy of exercise training programs performed "off"-dialysis with respect to the modification of traditional cardiovascular risk factors, aerobic capacity, and its underlying determinants. In the latter half of the record, there had been a shift to include other client-centered goals such as physical function and quality of life. There is evidence that both intra- and extradialytic programs can significantly enhance aerobic exercise capacity, but moderate-intensity extradialytic programs may result in greater gains in those individuals who initially have extremely poor aerobic capacity. Functionally, substantive improvements in exercise endurance in excess of the minimum clinical significant difference can occur following either low- or moderate-intensity exercise regardless of the initial level of performance. Reductions in blood pressure and enhanced vascular functioning reported after predominantly intradialytic exercise programs suggest that either low- or moderate-intensity exercise programs can confer cardiovascular benefit. Regardless of prescription model, there was an overall lack of evidence regarding the impact of exercise-induced changes in exercise capacity, endurance, and cardiovascular function on a number of relevant health outcomes (survival, morbidity, and cardiovascular risk), and, more importantly, there is no evidence on the long-term impact of exercise and/or physical activity interventions on these health outcomes.

  13. Exercise quantity-dependent muscle hypertrophy in adult zebrafish (Danio rerio).

    PubMed

    Hasumura, Takahiro; Meguro, Shinichi

    2016-07-01

    Exercise is very important for maintaining and increasing skeletal muscle mass, and is particularly important to prevent and care for sarcopenia and muscle disuse atrophy. However, the dose-response relationship between exercise quantity, duration/day, and overall duration and muscle mass is poorly understood. Therefore, we investigated the effect of exercise duration on skeletal muscle to reveal the relationship between exercise quantity and muscle hypertrophy in zebrafish forced to exercise. Adult male zebrafish were exercised 6 h/day for 4 weeks, 6 h/day for 2 weeks, or 3 h/day for 2 weeks. Flow velocity was adjusted to maximum velocity during continual swimming (initial 43 cm/s). High-speed consecutive photographs revealed that zebrafish mainly drove the caudal part. Additionally, X-ray micro computed tomography measurements indicated muscle hypertrophy of the mid-caudal half compared with the mid-cranial half part. The cross-sectional analysis of the mid-caudal half muscle revealed that skeletal muscle (red, white, or total) mass increased with increasing exercise quantity, whereas that of white muscle and total muscle increased only under the maximum exercise load condition of 6 h/day for 4 weeks. Additionally, the muscle fiver size distributions of exercised fish were larger than those from non-exercised fish. We revealed that exercise quantity, duration/day, and overall duration were correlated with skeletal muscle hypertrophy. The forced exercise model enabled us to investigate the relationship between exercise quantity and skeletal muscle mass. These results open up the possibility for further investigations on the effects of exercise on skeletal muscle in adult zebrafish.

  14. Updating ACSM's Recommendations for Exercise Preparticipation Health Screening.

    PubMed

    Riebe, Deborah; Franklin, Barry A; Thompson, Paul D; Garber, Carol Ewing; Whitfield, Geoffrey P; Magal, Meir; Pescatello, Linda S

    2015-11-01

    The purpose of the American College of Sports Medicine's (ACSM) exercise preparticipation health screening process is to identify individuals who may be at elevated risk for exercise-related sudden cardiac death and/or acute myocardial infarction. Recent studies have suggested that using the current ACSM exercise preparticipation health screening guidelines can result in excessive physician referrals, possibly creating a barrier to exercise participation. In addition, there is considerable evidence that exercise is safe for most people and has many associated health and fitness benefits; exercise-related cardiovascular events are often preceded by warning signs/symptoms; and the cardiovascular risks associated with exercise lessen as individuals become more physically active/fit. Consequently, a scientific roundtable was convened by the ACSM in June 2014 to evaluate the current exercise preparticipation health screening recommendations. The roundtable proposed a new evidence-informed model for exercise preparticipation health screening on the basis of three factors: 1) the individual's current level of physical activity, 2) presence of signs or symptoms and/or known cardiovascular, metabolic, or renal disease, and 3) desired exercise intensity, as these variables have been identified as risk modulators of exercise-related cardiovascular events. Identifying cardiovascular disease risk factors remains an important objective of overall disease prevention and management, but risk factor profiling is no longer included in the exercise preparticipation health screening process. The new ACSM exercise preparticipation health screening recommendations reduce possible unnecessary barriers to adopting and maintaining a regular exercise program, a lifestyle of habitual physical activity, or both, and thereby emphasize the important public health message that regular physical activity is important for all individuals.

  15. Moderate Treadmill Exercise Protects Synaptic Plasticity of the Dentate Gyrus and Related Signaling Cascade in a Rat Model of Alzheimer's Disease.

    PubMed

    Dao, An T; Zagaar, Munder A; Alkadhi, Karim A

    2015-12-01

    The dentate gyrus (DG) of the hippocampus is known to be more resistant to the effects of various external factors than other hippocampal areas. This study investigated the neuroprotective effects of moderate treadmill exercise on early-phase long-term potentiation (E-LTP) and its molecular signaling pathways in the DG of amyloid β rat model of sporadic Alzheimer's disease (AD). Animals were preconditioned to run on treadmill for 4 weeks and concurrently received ICV infusion of Aβ₁₋₄₂ peptides (250 pmol/day) during the third and fourth weeks of exercise training. We utilized in vivo electrophysiological recordings to assess the effect of exercise and/or AD pathology on basal synaptic transmission and E-LTP magnitude of the perforant pathway synapses in urethane-anesthetized rats. Immunoblotting analysis was used to quantify changes in the levels of learning and memory-related key signaling molecules. The AD-impaired basal synaptic transmission and suppression of E-LTP in the DG were prevented by prior moderate treadmill exercise. In addition, exercise normalized the basal levels of memory and E-LTP-related signaling molecules including Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), calcineurin (PP2B), and brain-derived neurotrophic factor (BDNF). Exercise also prevented the reduction of phosphorylated CaMKII and aberrant increase of PP2B seen after E-LTP induction in amyloid-infused rats. Our data suggests that by restoring the balance of kinase-phosphatase, 4 weeks of moderate treadmill exercise prevents DG synaptic deficits and deleterious alterations in signaling pathways associated with AD.

  16. Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise.

    PubMed

    Pillon Barcelos, Rômulo; Freire Royes, Luiz Fernando; Gonzalez-Gallego, Javier; Bresciani, Guilherme

    2017-02-01

    The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.

  17. Effects of Laminaria japonica polysaccharides on exercise endurance and oxidative stress in forced swimming mouse model.

    PubMed

    Yan, Feiwei; Hao, Haitao

    2016-12-01

    Polysaccharides are the major active ingredients responsible for the bioactivities of Laminaria japonica. However, the effects of L. japonica polysaccharides (LJP) on exercise endurance and oxidative stress have never been investigated. Therefore, this study was conducted to investigate the effects of LJP on exercise endurance and oxidative stress in a forced swimming mouse model. The animals were divided into four groups, namely the control (C), LJP-75, LJP-150, and LJP-300 groups, which received physiological saline and 75, 150, and 300 mg kg(-1) LJP, respectively, by gavage once a day for 28 days. This was followed by a forced swimming test and measurements of various biochemical parameters. LJP increased swimming time to exhaustion, the liver and muscle glycogen content, and levels of superoxide dismutase, glutathione peroxidase, and catalase in the serum, liver, and muscle, which were accompanied by corresponding decreases in the malondialdehyde (MDA) content of the same tissues. Furthermore, decreases in blood lactic acid and serum myeloperoxidase (MPO) levels were observed. LJP enhanced exercise endurance and protected mice against exhaustive exercise-induced oxidative stress.

  18. Shadow Bowl 2003: a collaborative exercise in community readiness, agency cooperation, and medical response.

    PubMed

    Balch, David; Taylor, Carl; Rosenthal, David; Bausch, Chris; Warner, Dave; Morris, Ray

    2004-01-01

    This paper describes a model for homeland security, community readiness, and medical response that was applied during an operational exercise around Super Bowl XXXVII. In addition, it describes the products provided by private companies involved in the exercise and how they would have contributed to a medical disaster had one occurred. The purpose of Shadow Bowl was to demonstrate community readiness and medical response to a mass casualty event. The goals of the project were to: (1) provide enhanced public safety using an advanced communication network and sensor grid; (2) develop mass casualty surge capabilities through medical reach-back; and (3) build a collaboration model between civilian, military, public, and private partners. The results of the Shadow Bowl Exercise accentuated the value of new telehealth and disaster medicine tools in treating large numbers of patients when infrastructure overload occurs.

  19. The Development of Three Questionnaires to Assess Beliefs about Green Exercise

    PubMed Central

    2017-01-01

    Green exercise is physical activity that takes place in the presence of natural environments. Despite the promising evidence of the benefits, little is known about how individuals’ thoughts and feelings influence participation in green exercise and subsequent outcomes. The aim of the current research was to develop questionnaires using the Theory of Planned Behaviour as a framework that could both directly and indirectly assess attitudes, subjective norms and perceived behaviour control, along with intention toward green exercise. Confirmatory factor analyses confirmed that the indirect, direct, and intention measures all had good overall model fits when tested on a refinement (n = 253) and validation (n = 230) sample. The questionnaires will contribute towards helping to better understanding individuals’ beliefs about green exercise, how these influence behaviour, and ultimately to enable the development of effective interventions promoting green exercise. PMID:28976924

  20. The Development of Three Questionnaires to Assess Beliefs about Green Exercise.

    PubMed

    Flowers, Elliott P; Freeman, Paul; Gladwell, Valerie F

    2017-10-04

    Green exercise is physical activity that takes place in the presence of natural environments. Despite the promising evidence of the benefits, little is known about how individuals' thoughts and feelings influence participation in green exercise and subsequent outcomes. The aim of the current research was to develop questionnaires using the Theory of Planned Behaviour as a framework that could both directly and indirectly assess attitudes, subjective norms and perceived behaviour control, along with intention toward green exercise. Confirmatory factor analyses confirmed that the indirect, direct, and intention measures all had good overall model fits when tested on a refinement (n = 253) and validation (n = 230) sample. The questionnaires will contribute towards helping to better understanding individuals' beliefs about green exercise, how these influence behaviour, and ultimately to enable the development of effective interventions promoting green exercise.

  1. Stochastic optimization for modeling physiological time series: application to the heart rate response to exercise

    NASA Astrophysics Data System (ADS)

    Zakynthinaki, M. S.; Stirling, J. R.

    2007-01-01

    Stochastic optimization is applied to the problem of optimizing the fit of a model to the time series of raw physiological (heart rate) data. The physiological response to exercise has been recently modeled as a dynamical system. Fitting the model to a set of raw physiological time series data is, however, not a trivial task. For this reason and in order to calculate the optimal values of the parameters of the model, the present study implements the powerful stochastic optimization method ALOPEX IV, an algorithm that has been proven to be fast, effective and easy to implement. The optimal parameters of the model, calculated by the optimization method for the particular athlete, are very important as they characterize the athlete's current condition. The present study applies the ALOPEX IV stochastic optimization to the modeling of a set of heart rate time series data corresponding to different exercises of constant intensity. An analysis of the optimization algorithm, together with an analytic proof of its convergence (in the absence of noise), is also presented.

  2. Non-exercise physical activity attenuates motor symptoms in Parkinson disease independent from nigrostriatal degeneration.

    PubMed

    Snider, Jonathan; Müller, Martijn L T M; Kotagal, Vikas; Koeppe, Robert A; Scott, Peter J H; Frey, Kirk A; Albin, Roger L; Bohnen, Nicolaas I

    2015-10-01

    To investigate the relationship between time spent in non-exercise and exercise physical activity and severity of motor functions in Parkinson disease (PD). Increasing motor impairments of PD incline many patients to a sedentary lifestyle. We investigated the relationship between duration of both non-exercise and exercise physical activity over a 4-week period using the Community Health Activities Model Program for Seniors (CHAMPS) questionnaire and severity of clinical motor symptoms in PD. We accounted for the magnitude of nigrostriatal degeneration. Cross-sectional study. PD subjects, n = 48 (40 M); 69.4 ± 7.4 (56-84) years old; 8.4 ± 4.2 (2.5-20) years motor disease duration, mean UPDRS motor score 27.5 ± 10.3 (7-53) and mean MMSE score 28.4 ± 1.9 (22-30) underwent [(11)C]dihydrotetrabenazine (DTBZ) PET imaging to assess nigrostriatal denervation and completed the CHAMPS questionnaire and clinical assessment. Bivariate correlations showed an inverse relationship between motor UPDRS severity scores and duration of non-exercise physical activity (R = -0.37, P = 0.0099) but not with duration of exercise physical activity (R = -0.05, P = 0.76) over 4 weeks. Multiple regression analysis using UPDRS motor score as outcome variable demonstrated a significant regressor effect for duration of non-exercise physical activity (F = 6.15, P = 0.017) while accounting for effects of nigrostriatal degeneration (F = 4.93, P = 0.032), levodopa-equivalent dose (LED; F = 1.07, P = 0.31), age (F = 4.37, P = 0.043) and duration of disease (F = 1.46, P = 0.23; total model (F = 5.76, P = 0.0004). Non-exercise physical activity is a correlate of motor symptom severity in PD independent of the magnitude of nigrostriatal degeneration. Non-exercise physical activity may have positive effects on functional performance in PD. Published by Elsevier Ltd.

  3. Hindlimb Skeletal Muscle Function and Skeletal Quality and Strength in +/G610C Mice With and Without Weight-Bearing Exercise.

    PubMed

    Jeong, Youngjae; Carleton, Stephanie M; Gentry, Bettina A; Yao, Xiaomei; Ferreira, J Andries; Salamango, Daniel J; Weis, MaryAnn; Oestreich, Arin K; Williams, Ashlee M; McCray, Marcus G; Eyre, David R; Brown, Marybeth; Wang, Yong; Phillips, Charlotte L

    2015-10-01

    Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder associated with reduced bone mineral density and skeletal fragility. Bone is inherently mechanosensitive, with bone strength being proportional to muscle mass and strength. Physically active healthy children accrue more bone than inactive children. Children with type I OI exhibit decreased exercise capacity and muscle strength compared with healthy peers. It is unknown whether this muscle weakness reflects decreased physical activity or a muscle pathology. In this study, we used heterozygous G610C OI model mice (+/G610C), which model both the genotype and phenotype of a large Amish OI kindred, to evaluate hindlimb muscle function and physical activity levels before evaluating the ability of +/G610C mice to undergo a treadmill exercise regimen. We found +/G610C mice hindlimb muscles do not exhibit compromised muscle function, and their activity levels were not reduced relative to wild-type mice. The +/G610C mice were also able to complete an 8-week treadmill regimen. Biomechanical integrity of control and exercised wild-type and +/G610C femora were analyzed by torsional loading to failure. The greatest skeletal gains in response to exercise were observed in stiffness and the shear modulus of elasticity with alterations in collagen content. Analysis of tibial cortical bone by Raman spectroscopy demonstrated similar crystallinity and mineral/matrix ratios regardless of sex, exercise, and genotype. Together, these findings demonstrate +/G610C OI mice have equivalent muscle function, activity levels, and ability to complete a weight-bearing exercise regimen as wild-type mice. The +/G610C mice exhibited increased femoral stiffness and decreased hydroxyproline with exercise, whereas other biomechanical parameters remain unaffected, suggesting a more rigorous exercise regimen or another exercise modality may be required to improve bone quality of OI mice. © 2015 American Society for Bone and Mineral Research.

  4. Non-exercise physical activity attenuates motor symptoms in Parkinson disease independent from nigrostriatal degeneration

    PubMed Central

    Snider, Jon; Müller, Martijn L.T.M; Kotagal, Vikas; Koeppe, Robert A; Scott, Peter J.H.; Frey, Kirk A; Albin, Roger L.; Bohnen, Nicolaas I.

    2015-01-01

    Objective To investigate the relationship between time spent in non-exercise and exercise physical activity and severity of motor functions in Parkinson disease (PD). Background Increasing motor impairments of PD incline many patients to a sedentary lifestyle. We investigated the relationship between duration of both non-exercise and exercise physical activity over a 4-week period using the Community Health Activities Model Program for Seniors (CHAMPS) questionnaire and severity of clinical motor symptoms in PD. We accounted for the magnitude of nigrostriatal degeneration. Methods Cross-sectional study. PD subjects, n=48 (40M); 69.4±7.4 (56–84) years old; 8.4±4.2 (2.5–20) years motor disease duration, mean UPDRS motor score 27.5 ± 10.3 (7–53) and mean MMSE score 28.4 ± 1.9 (22–30) underwent [11C]dihydrotetrabenazine (DTBZ) PET imaging to assess nigrostriatal denervation and completed the CHAMPS questionnaire and clinical assessment. Results Bivariate correlations showed an inverse relationship between motor UPDRS severity scores and duration of non-exercise physical activity (R= −0.37, P=0.0099) but not with duration of exercise physical activity (R= −0.05, P= 0.76) over 4 weeks. Multiple regression analysis using UPDRS motor score as outcome variable demonstrated a significant regressor effect for duration of non-exercise physical activity (F=6.15, P=0.017) while accounting for effects of nigrostriatal degeneration (F=4.93, P=0.032), levodopa-equivalent dose (LED; F=1.07, P=0.31), age (F=4.37, P=0.043) and duration of disease (F=1.46, P=0.23; total model (F=5.76, P=0.0004). Conclusions Non-exercise physical activity is a correlate of motor symptom severity in PD independent of the magnitude of nigrostriatal degeneration. Non-exercise physical activity may have positive effects on functional performance in PD. PMID:26330028

  5. Exercise differentially affects metabolic functions and white adipose tissue in female letrozole- and dihydrotestosterone-induced mouse models of polycystic ovary syndrome.

    PubMed

    Marcondes, Rodrigo R; Maliqueo, Manuel; Fornes, Romina; Benrick, Anna; Hu, Min; Ivarsson, Niklas; Carlström, Mattias; Cushman, Samuel W; Stenkula, Karin G; Maciel, Gustavo A R; Stener-Victorin, Elisabet

    2017-06-15

    Here we hypothesized that exercise in dihydrotestosterone (DHT) or letrozole (LET)-induced polycystic ovary syndrome mouse models improves impaired insulin and glucose metabolism, adipose tissue morphology, and expression of genes related to adipogenesis, lipid metabolism, Notch pathway and browning in inguinal and mesenteric fat. DHT-exposed mice had increased body weight, increased number of large mesenteric adipocytes. LET-exposed mice displayed increased body weight and fat mass, decreased insulin sensitivity, increased frequency of small adipocytes and increased expression of genes related to lipolysis in mesenteric fat. In both models, exercise decreased fat mass and inguinal and mesenteric adipose tissue expression of Notch pathway genes, and restored altered mesenteric adipocytes morphology. In conclusion, exercise restored mesenteric adipocytes morphology in DHT- and LET-exposed mice, and insulin sensitivity and mesenteric expression of lipolysis-related genes in LET-exposed mice. Benefits could be explained by downregulation of Notch, and modulation of browning and lipolysis pathways in the adipose tissue. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Regular Exercise, Quality of Life, and Mobility in Parkinson's Disease: A Longitudinal Analysis of National Parkinson Foundation Quality Improvement Initiative Data.

    PubMed

    Rafferty, Miriam R; Schmidt, Peter N; Luo, Sheng T; Li, Kan; Marras, Connie; Davis, Thomas L; Guttman, Mark; Cubillos, Fernando; Simuni, Tanya

    2017-01-01

    Research-based exercise interventions improve health-related quality of life (HRQL) and mobility in people with Parkinson's disease (PD). To examine whether exercise habits were associated with changes in HRQL and mobility over two years. We identified a cohort of National Parkinson Foundation Quality Improvement Initiative (NPF-QII) participants with three visits. HRQL and mobility were measured with the Parkinson's Disease Questionnaire (PDQ-39) and Timed Up and Go (TUG). We compared self-reported regular exercisers (≥2.5 hours/week) with people who did not exercise 2.5 hours/week. Then we quantified changes in HRQL and mobility associated with 30-minute increases in exercise, across PD severity, using mixed effects regression models. Participants with three observational study visits (n = 3408) were younger, with milder PD, than participants with fewer visits. After 2 years, consistent exercisers and people who started to exercise regularly after their baseline visit had smaller declines in HRQL and mobility than non-exercisers (p < 0.05). Non-exercisers worsened by 1.37 points on the PDQ-39 and a 0.47 seconds on the TUG per year. Increasing exercise by 30 minutes/week was associated with slower declines in HRQL (-0.16 points) and mobility (-0.04 sec). The benefit of exercise on HRQL was greater in advanced PD (-0.41 points) than mild PD (-0.14 points; p < 0.02). Consistently exercising and starting regular exercise after baseline were associated with small but significant positive effects on HRQL and mobility changes over two years. The greater association of exercise with HRQL in advanced PD supports improving encouragement and facilitation of exercise in advanced PD.

  7. Regular Exercise, Quality of Life, and Mobility in Parkinson’s Disease: A Longitudinal Analysis of National Parkinson Foundation Quality Improvement Initiative Data

    PubMed Central

    Rafferty, Miriam R.; Schmidt, Peter N.; Luo, Sheng T.; Li, Kan; Marras, Connie; Davis, Thomas L.; Guttman, Mark; Cubillos, Fernando; Simuni, Tanya

    2017-01-01

    Background Research-based exercise interventions improve health-related quality of life (HRQL) and mobility in people with Parkinson’s disease (PD). Objective To examine whether exercise habits were associated with changes in HRQL and mobility over two years. Methods We identified a cohort of National Parkinson Foundation Quality Improvement Initiative (NPF-QII) participants with three visits. HRQL and mobility were measured with the Parkinson’s Disease Questionnaire (PDQ-39) and Timed Up and Go (TUG). We compared self-reported regular exercisers (≥2.5 hours/week) with people who did not exercise 2.5 hours/week. Then we quantified changes in HRQL and mobility associated with 30-minute increases in exercise, across PD severity, using mixed effects regression models. Results Participants with three observational study visits (n = 3408) were younger, with milder PD, than participants with fewer visits. After 2 years, consistent exercisers and people who started to exercise regularly after their baseline visit had smaller declines in HRQL and mobility than non-exercisers (p < 0.05). Non-exercisers worsened by 1.37 points on the PDQ-39 and a 0.47 seconds on the TUG per year. Increasing exercise by 30 minutes/week was associated with slower declines in HRQL (−0.16 points) and mobility (−0.04 sec). The benefit of exercise on HRQL was greater in advanced PD (−0.41 points) than mild PD (−0.14 points; p < 0.02). Conclusions Consistently exercising and starting regular exercise after baseline were associated with small but significant positive effects on HRQL and mobility changes over two years. The greater association of exercise with HRQL in advanced PD supports improving encouragement and facilitation of exercise in advanced PD. PMID:27858719

  8. Effectiveness of an Intensive Handwriting Program for First Grade Students Using the Application Letterschool: A Pilot Study

    ERIC Educational Resources Information Center

    Jordan, Géraldine; Michaud, Fanny; Kaiser, Marie-Laure

    2016-01-01

    The purpose of this pilot study is to analyze the efficacy of a program that combines fine motor activities, animated models, exercises on a digital tablet and paper-pencil exercises. The 10-week program with a 45-minute session and daily exercises was implemented in a class of 16 students of first grade (mean age = 6.9 years old), with another…

  9. RELAP5-3D Results for Phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom

    2012-06-01

    The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2.« less

  10. RELAP5-3D results for phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strydom, G.; Epiney, A. S.

    2012-07-01

    The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2. (authors)« less

  11. Psychological stress impairs short-term muscular recovery from resistance exercise.

    PubMed

    Stults-Kolehmainen, Matthew A; Bartholomew, John B

    2012-11-01

    The primary aim of this study was to determine whether chronic mental stress moderates recovery of muscular function, perceived energy, fatigue, and soreness in the first hour after a bout of strenuous resistance exercise. Thirty-one undergraduate resistance training students (age = 20.26 ± 1.34 yr) completed the Perceived Stress Scale and Undergraduate Stress Questionnaire (USQ; a measure of life event stress) and completed fitness testing. After 5 to 14 d of recovery, they performed an acute heavy-resistance exercise protocol (10-repetition maximum (RM) leg press test plus six sets: 80%-100% of 10 RM). Maximal isometric force (MIF) was assessed before exercise, after exercise, and at 20, 40, and 60 min postexercise. Participants also reported their levels of perceived energy, fatigue, and soreness. Recovery data were analyzed with hierarchical linear modeling growth curve analysis. Life event stress significantly moderated linear (P = 0.013) and squared (P = 0.05) recovery of MIF. This relationship held even when the model was adjusted for fitness, workload, and training experience. Likewise, perceived stress moderated linear recovery of MIF (P = 0.023). Neither USQ nor Perceived Stress Scale significantly moderated changes in energy, fatigue, or soreness. Life event stress and perceived stress both moderated the recovery of muscular function, but not psychological responses, in the first hour after strenuous resistance exercise.

  12. Four birds with one stone? Reparative, neuroplastic, cardiorespiratory, and metabolic benefits of aerobic exercise poststroke.

    PubMed

    Ploughman, Michelle; Kelly, Liam P

    2016-12-01

    Converging evidence from animal models of stroke and clinical trials suggests that aerobic exercise has effects across multiple targets. The subacute phase is characterized by a period of heightened neuroplasticity when aerobic exercise has the potential to optimize recovery. In animals, low intensity aerobic exercise shrinks lesion size and reduces cell death and inflammation, beginning 24 h poststroke. Also in animals, aerobic exercise upregulates brain-derived neurotrophic factor near the lesion and improves learning. In terms of neuroplastic effects, clinical trial results are less convincing and have only examined effects in chronic stroke. Stroke patients demonstrate cardiorespiratory fitness levels below the threshold required to carry out daily activities. This may contribute to a 'neurorehabilitation ceiling' that limits capacity to practice at a high enough frequency and intensity to promote recovery. Aerobic exercise when delivered 2-5 days per week at moderate to high intensity beginning as early as 5 days poststroke improves cardiorespiratory fitness, dyslipidemia, and glucose tolerance. Based on the evidence discussed and applying principles of periodization commonly used to prepare athletes for competition, we have created a model of aerobic training in subacute stroke in which training is delivered in density blocks (duration × intensity) matched to recovery phases.

  13. Distractive Auditory Stimuli in the Form of Music in Individuals With COPD: A Systematic Review.

    PubMed

    Lee, Annemarie L; Desveaux, Laura; Goldstein, Roger S; Brooks, Dina

    2015-08-01

    Music has been used as a distractive auditory stimulus (DAS) in patients with COPD, but its effects are unclear. This systematic review aimed to establish the effect of DAS on exercise capacity, symptoms, and health-related quality of life (HRQOL) under three conditions: (1) during exercise training, (2) during exercise testing, and (3) for symptom management at rest. Randomized controlled or crossover trials as well as cohort studies of DAS during exercise training, during formal exercise testing, and for symptom management among individuals with COPD were identified from a search of seven databases. Two reviewers independently assessed study quality. Weighted mean differences (WMDs) with 95% CIs were calculated using a random-effects model. Thirteen studies (12 of which were randomized controlled or crossover trials) in 415 participants were included. DAS increased exercise capacity when applied over at least 2 months of exercise training (WMD, 98 m; 95% CI, 47-150 m). HRQOL improved only after a training duration of 3 months. Less dyspnea was noted with DAS during exercise training, but this was not consistently observed in short-term exercise testing or as a symptom management strategy at rest. DAS appears to reduce symptoms of dyspnea and fatigue when used during exercise training, with benefits observed in exercise capacity and HRQOL. When applied during exercise testing, the effects on exercise capacity and symptoms and as a strategy for symptom management at rest are inconsistent.

  14. The kinetics of lactate production and removal during whole-body exercise

    PubMed Central

    2012-01-01

    Background Based on a literature review, the current study aimed to construct mathematical models of lactate production and removal in both muscles and blood during steady state and at varying intensities during whole-body exercise. In order to experimentally test the models in dynamic situations, a cross-country skier performed laboratory tests while treadmill roller skiing, from where work rate, aerobic power and blood lactate concentration were measured. A two-compartment simulation model for blood lactate production and removal was constructed. Results The simulated and experimental data differed less than 0.5 mmol/L both during steady state and varying sub-maximal intensities. However, the simulation model for lactate removal after high exercise intensities seems to require further examination. Conclusions Overall, the simulation models of lactate production and removal provide useful insight into the parameters that affect blood lactate response, and specifically how blood lactate concentration during practical training and testing in dynamical situations should be interpreted. PMID:22413898

  15. The Strength Model of Self-Control in Sport and Exercise Psychology

    PubMed Central

    Englert, Chris

    2016-01-01

    The strength model of self-control assumes that all acts of self-control (e.g., emotion regulation, persistence) are empowered by a single global metaphorical strength that has limited capacity. This strength can become temporarily depleted after a primary self-control act, which, in turn, can impair performance in subsequent acts of self-control. Recently, the assumptions of the strength model of self-control also have been adopted and tested in the field of sport and exercise psychology. The present review paper aims to give an overview of recent developments in self-control research based on the strength model of self-control. Furthermore, recent research on interventions on how to improve and revitalize self-control strength will be presented. Finally, the strength model of self-control has been criticized lately, as well as expanded in scope, so the present paper will also discuss alternative explanations of why previous acts of self-control can lead to impaired performance in sport and exercise. PMID:26973590

  16. Case Study of Apple, Inc. for Business Law Students: How Apple's Business Model Controls Digital Content through Legal and Technological Means

    ERIC Educational Resources Information Center

    Reder, Margo E. K.

    2009-01-01

    This article describes a six-week long exercise that incorporates a dynamic learning approach into an e-commerce or Internet technology business law elective course; the exercise pursues an entrepreneurial approach to the use of an appropriate business model by emphasizing the interaction between technology, business, and law. This active learning…

  17. Predictors of exercise participation in ambulatory and non-ambulatory older people with multiple sclerosis

    PubMed Central

    Harris, Chelsea; Wallack, Elizabeth M.; Drodge, Olivia; Beaulieu, Serge; Mayo, Nancy

    2015-01-01

    Background. Exercise at moderate intensity may confer neuroprotective benefits in multiple sclerosis (MS), however it has been reported that people with MS (PwMS) exercise less than national guideline recommendations. We aimed to determine predictors of moderate to vigorous exercise among a sample of older Canadians with MS who were divided into ambulatory (less disabled) and non-ambulatory (more disabled) groups. Methods. We analysed data collected as part of a national survey of health, lifestyle and aging with MS. Participants (n = 743) were Canadians over 55 years of age with MS for 20 or more years. We identified ‘a priori’ variables (demographic, personal, socioeconomic, physical health, exercise history and health care support) that may predict exercise at moderate to vigorous intensity (>6.75 metabolic equivalent hours/week). Predictive variables were entered into stepwise logistic regression until best fit was achieved. Results. There was no difference in explanatory models between ambulatory and non-ambulatory groups. The model predicting exercise included the ability to walk independently (OR 1.90, 95% CI [1.24–2.91]); low disability (OR 1.50, 95% CI [1.34–1.68] for each 10 point difference in Barthel Index score), perseverance (OR 1.17, 95% CI [1.08–1.26] for each additional point on the scale of 0–14), less fatigue (OR 2.01, 95% CI [1.32–3.07] for those in the lowest quartile), fewer years since MS diagnosis (OR 1.58, 95% CI [1.11–2.23] below the median of 23 years) and fewer cardiovascular comorbidities (OR 1.55 95% CI [1.02–2.35] one or no comorbidities). It was also notable that the factors, age, gender, social support, health care support and financial status were not predictive of exercise. Conclusions. This is the first examination of exercise and exercise predictors among older, more disabled PwMS. Disability is a major predictor of exercise participation (at moderate to vigorous levels) in both ambulatory and non-ambulatory groups suggesting that more exercise options must be developed for people with greater disability. Perseverance, fatigue, and cardiovascular comorbidities are predictors that are modifiable and potential targets for exercise adherence interventions. PMID:26339540

  18. Eight weeks of exercise training increases aerobic capacity and muscle mass and reduces fatigue in patients with cirrhosis.

    PubMed

    Zenith, Laura; Meena, Neha; Ramadi, Ailar; Yavari, Milad; Harvey, Andrea; Carbonneau, Michelle; Ma, Mang; Abraldes, Juan G; Paterson, Ian; Haykowsky, Mark J; Tandon, Puneeta

    2014-11-01

    Patients with cirrhosis have reduced exercise tolerance, measured objectively as decreased peak exercise oxygen uptake (peak VO2). Reduced peak VO2 is associated with decreased survival time. The effect of aerobic exercise training on peak VO2 has not been well studied in patients with cirrhosis. We evaluated the safety and efficacy of 8 weeks of supervised exercise on peak VO2, quadriceps muscle thickness, and quality of life. In a prospective pilot study, stable patients (79% male, 57.6 ± 6.7 years old) with Child-Pugh class A or B cirrhosis (mean Model for End-Stage Liver Disease score, 10 ± 2.2) were randomly assigned to groups that received exercise training (n = 9) or usual care (controls, n = 10) at the University of Alberta Hospital in Canada from February through June 2013. Supervised exercise was performed on a cycle ergometer 3 days/week for 8 weeks at 60%-80% of baseline peak VO2. Peak VO2, quadriceps muscle thickness (measured by ultrasound), thigh circumference, answers from Chronic Liver Disease Questionnaires, EQ-visual analogue scales, 6-minute walk distance, and Model for End-Stage Liver Disease scores were evaluated at baseline and at week 8. Analysis of covariance was used to compare variables. At week 8, peak VO2 was 5.3 mL/kg/min higher in the exercise group compared with controls (95% confidence interval, 2.9-7.8; P = .001). Thigh circumference (P = .001), thigh muscle thickness (P = .01), and EQ-visual analogue scale determined self-perceived health status (P = .01) was also significantly higher in the exercise group compared with controls at week 8; fatigue subscores of the Chronic Liver Disease Questionnaires were lower in the exercise group compared with controls (P = .01). No adverse events occurred during cardiopulmonary exercise testing or training. In a controlled prospective pilot trial, 8 weeks of supervised aerobic exercise training increased peak VO2 and muscle mass and reduced fatigue in patients with cirrhosis. No relevant adverse effects were observed. Larger trials are needed to evaluate the effects of exercise in patients with cirrhosis. ClinicalTrials.gov number: NCT01799785. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. Third Exposure to a Reduced Carbohydrate Meal Lowers Evening Postprandial Insulin and GIP Responses and HOMA-IR Estimate of Insulin Resistance.

    PubMed

    Lin, Po-Ju; Borer, Katarina T

    2016-01-01

    Postprandial hyperinsulinemia, hyperglycemia, and insulin resistance increase the risk of type 2 diabetes (T2D) and cardiovascular disease mortality. Postprandial hyperinsulinemia and hyperglycemia also occur in metabolically healthy subjects consuming high-carbohydrate diets particularly after evening meals and when carbohydrate loads follow acute exercise. We hypothesized the involvement of dietary carbohydrate load, especially when timed after exercise, and mediation by the glucose-dependent insulinotropic peptide (GIP) in this phenomenon, as this incretin promotes insulin secretion after carbohydrate intake in insulin-sensitive, but not in insulin-resistant states. Four groups of eight metabolically healthy weight-matched postmenopausal women were provided with three isocaloric meals (a pre-trial meal and two meals during the trial day) containing either 30% or 60% carbohydrate, with and without two-hours of moderate-intensity exercise before the last two meals. Plasma glucose, insulin, glucagon, GIP, glucagon-like peptide 1 (GLP-1), free fatty acids (FFAs), and D-3-hydroxybutyrate concentrations were measured during 4-h postprandial periods and 3-h exercise periods, and their areas under the curve (AUCs) were analyzed by mixed-model ANOVA, and insulin resistance during fasting and meal tolerance tests within each diet was estimated using homeostasis-model assessment (HOMA-IR). The third low-carbohydrate meal, but not the high-carbohydrate meal, reduced: (1) evening insulin AUC by 39% without exercise and by 31% after exercise; (2) GIP AUC by 48% without exercise and by 45% after exercise, and (3) evening insulin resistance by 37% without exercise and by 24% after exercise. Pre-meal exercise did not alter insulin-, GIP- and HOMA-IR- lowering effects of low-carbohydrate diet, but exacerbated evening hyperglycemia. Evening postprandial insulin and GIP responses and insulin resistance declined by over 30% after three meals that limited daily carbohydrate intake to 30% compared to no such changes after three 60%-carbohydrate meals, an effect that was independent of pre-meal exercise. The parallel timing and magnitude of postprandial insulin and GIP changes suggest their dependence on a delayed intestinal adaptation to a low-carbohydrate diet. Pre-meal exercise exacerbated glucose intolerance with both diets most likely due to impairment of insulin signaling by pre-meal elevation of FFAs.

  20. β-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis.

    PubMed

    Saunders, Bryan; Elliott-Sale, Kirsty; Artioli, Guilherme G; Swinton, Paul A; Dolan, Eimear; Roschel, Hamilton; Sale, Craig; Gualano, Bruno

    2017-04-01

    To conduct a systematic review and meta-analysis of the evidence on the effects of β-alanine supplementation on exercise capacity and performance. This study was designed in accordance with PRISMA guidelines. A 3-level mixed effects model was employed to model effect sizes and account for dependencies within data. 3 databases (PubMed, Google Scholar, Web of Science) were searched using a number of terms ('β-alanine' and 'Beta-alanine' combined with 'supplementation', 'exercise', 'training', 'athlete', 'performance' and 'carnosine'). Inclusion/exclusion criteria limited articles to double-blinded, placebo-controlled studies investigating the effects of β-alanine supplementation on an exercise measure. All healthy participant populations were considered, while supplementation protocols were restricted to chronic ingestion. Cross-over designs were excluded due to the long washout period for skeletal muscle carnosine following supplementation. A single outcome measure was extracted for each exercise protocol and converted to effect sizes for meta-analyses. 40 individual studies employing 65 different exercise protocols and totalling 70 exercise measures in 1461 participants were included in the analyses. A significant overall effect size of 0.18 (95% CI 0.08 to 0.28) was shown. Meta-regression demonstrated that exercise duration significantly (p=0.004) moderated effect sizes. Subgroup analyses also identified the type of exercise as a significant (p=0.013) moderator of effect sizes within an exercise time frame of 0.5-10 min with greater effect sizes for exercise capacity (0.4998 (95% CI 0.246 to 0.753)) versus performance (0.1078 (95% CI -0.201 to 0.416)). There was no moderating effect of training status (p=0.559), intermittent or continuous exercise (p=0.436) or total amount of β-alanine ingested (p=0.438). Co-supplementation with sodium bicarbonate resulted in the largest effect size when compared with placebo (0.43 (95% CI 0.22 to 0.64)). β-alanine had a significant overall effect while subgroup analyses revealed a number of modifying factors. These data allow individuals to make informed decisions as to the likelihood of an ergogenic effect with β-alanine supplementation based on their chosen exercise modality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

Top