Shafie, Suraiya M.; Barria von-Bischhoffshausen, Fernando R.; Bateman, J. Bronwyn
2006-01-01
PURPOSE To document intrafamilial and interocular phenotypic variability of autosomal dominant cataract (ADC). DESIGN Prospective observational case series. METHODS We performed ophthalmologic examination in four Chilean ADC families. RESULTS The families exhibited variability with respect to morphology, location with the lens, color and density of cataracts among affected members. We documented asymmetry between eyes in the morphology, location within the lens, color and density of cataracts, and a variable rate of progression. CONCLUSIONS The cataracts in these families exhibit wide intrafamilial and interocular phenotypic variability, supporting the premise that the mutated genes are expressed differentially in individuals and between eyes; other genes or environmental factors may be the bases for this variability. Marked progression among some family members underscores the variable clinical course of a common mutation within a family. Like retinitis pigmentosa, classification of ADC will be most useful if based on the gene and specific mutation. PMID:16564818
Kimball T. Harper; John D. Shane; John R. Jones
1985-01-01
Quaking aspen, or trembling aspen (Populus tremuloides), was named and described by Michaux in 1803. It exhibits marked phenotypic variability throughout its transcontinental range. Numerous authors, especially the early ones, tried to give order to the variability by subdividing it taxonomically. Quahng aspen has been subdivided by various...
Phenotypic variability in patients with Fanconi anemia and biallelic FANCF mutations.
Tryon, Rebecca; Zierhut, Heather; MacMillan, Margaret L; Wagner, John E
2017-01-01
Fanconi anemia is a heterogeneous genetic disorder that is characterized by progressive bone marrow failure, congenital anomalies, and markedly increased risk for malignancies. Mutations in the FANCF (FA-F) gene represent approximately 2% of affected patients. Currently, information on the phenotypic findings of patients with Fanconi anemia from biallelic mutations in FANCF is limited. Here, we report three patients who illustrate the clinical variability within the FA-F group. This analysis suggests a more severe phenotype for those with the common c.484_485delCT mutation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Alexandrou, Angelos; Papaevripidou, Ioannis; Tsangaras, Kyriakos; Alexandrou, Ioanna; Tryfonidis, Marios; Christophidou-Anastasiadou, Violetta; Zamba-Papanicolaou, Eleni; Koumbaris, George; Neocleous, Vassos; Phylactou, Leonidas A; Skordis, Nicos; Tanteles, George A; Sismani, Carolina
2016-12-01
Haploinsufficiency of the short stature homeobox contaning SHOX gene has been shown to result in a spectrum of phenotypes ranging from Leri-Weill dyschondrosteosis (LWD) at the more severe end to SHOX-related short stature at the milder end of the spectrum. Most alterations are whole gene deletions, point mutations within the coding region, or microdeletions in its flanking sequences. Here, we present the clinical and molecular data as well as the potential molecular mechanism underlying a novel microdeletion, causing a variable SHOX-related haploinsufficiency disorder in a three-generation family. The phenotype resembles that of LWD in females, in males, however, the phenotypic expression is milder. The 15523-bp SHOX intragenic deletion, encompassing exons 3-6, was initially detected by array-CGH, followed by MLPA analysis. Sequencing of the breakpoints indicated an Alu recombination-mediated deletion (ARMD) as the potential causative mechanism.
Hypertelorism in Charcot-Marie-Tooth disease 1A from the common PMP22 duplication: A Case Report
Finsterer, Josef
2012-01-01
The 1.4Mb tandem-duplication in the PMP22 gene at 17p11.2 usually manifests as hereditary sensorimotor polyneuropathy with foot deformity, sensorineural hearing-loss, moderate developmental delay, and gait disturbance. Hypertelorism and marked phenotypic variability within a single family has not been reported. In a single family, the PMP22 tandem-duplication manifested as short stature, sensorimotor polyneuropathy, tremor, ataxia, sensorineural hearing-loss, and hypothyroidism in the 27 years-old index case, as mild facial dysmorphism, muscle cramps, tinnitus, intention tremor, bradydiadochokinesia, and sensorimotor polyneuropathy in the 31 year-old half-brother of the index-patient, and as sensorimotor polyneuropathy and foot-deformity in the father of the two. The half-brother additionally presented with hypertelorism, not previously reported in PMP22 tandem-duplication carriers. The presented cases show that the tandem-duplication 17p11.2 may present with marked intra-familial phenotype variability and that mild facial dysmorphism with stuck-out ears and hypertelorism may be a rare phenotypic feature of this mutation. The causal relation between facial dysmorphism and the PMP22 tandem-duplication, however, remains speculative. PMID:22496945
High phenotypic variability in Gerstmann-Sträussler-Scheinker disease.
Smid, Jerusa; Studart, Adalberto; Landemberger, Michele Christine; Machado, Cleiton Fagundes; Nóbrega, Paulo Ribeiro; Canedo, Nathalie Henriques Silva; Schultz, Rodrigo Rizek; Naslavsky, Michel Satya; Rosemberg, Sérgio; Kok, Fernando; Chimelli, Leila; Martins, Vilma Regina; Nitrini, Ricardo
2017-06-01
Gerstmann-Sträussler-Scheinker is a genetic prion disease and the most common mutation is p.Pro102Leu. We report clinical, molecular and neuropathological data of seven individuals, belonging to two unrelated Brazilian kindreds, carrying the p.Pro102Leu. Marked differences among patients were observed regarding age at onset, disease duration and clinical presentation. In the first kindred, two patients had rapidly progressive dementia and three exhibited predominantly ataxic phenotypes with variable ages of onset and disease duration. In this family, age at disease onset in the mother and daughter differed by 39 years. In the second kindred, different phenotypes were also reported and earlier ages of onset were associated with 129 heterozygosis. No differences were associated with apoE genotype. In these kindreds, the codon 129 polymorphism could not explain the clinical variability and 129 heterozygosis was associated with earlier disease onset. Neuropathological examination in two patients confirmed the presence of typical plaques and PrPsc immunopositivity.
Mosaicism for dominant collagen 6 mutations as a cause for intrafamilial phenotypic variability.
Donkervoort, Sandra; Hu, Ying; Stojkovic, Tanya; Voermans, Nicol C; Foley, A Reghan; Leach, Meganne E; Dastgir, Jahannaz; Bolduc, Véronique; Cullup, Thomas; de Becdelièvre, Alix; Yang, Lin; Su, Hai; Meilleur, Katherine; Schindler, Alice B; Kamsteeg, Erik-Jan; Richard, Pascale; Butterfield, Russell J; Winder, Thomas L; Crawford, Thomas O; Weiss, Robert B; Muntoni, Francesco; Allamand, Valérie; Bönnemann, Carsten G
2015-01-01
Collagen 6-related dystrophies and myopathies (COL6-RD) are a group of disorders that form a wide phenotypic spectrum, ranging from severe Ullrich congenital muscular dystrophy, intermediate phenotypes, to the milder Bethlem myopathy. Both inter- and intrafamilial variable expressivity are commonly observed. We present clinical, immunohistochemical, and genetic data on four COL6-RD families with marked intergenerational phenotypic heterogeneity. This variable expression seemingly masquerades as anticipation is due to parental mosaicism for a dominant mutation, with subsequent full inheritance and penetrance of the mutation in the heterozygous offspring. We also present an additional fifth simplex patient identified as a mosaic carrier. Parental mosaicism was confirmed in the four families through quantitative analysis of the ratio of mutant versus wild-type allele (COL6A1, COL6A2, and COL6A3) in genomic DNA from various tissues, including blood, dermal fibroblasts, and saliva. Consistent with somatic mosaicism, parental samples had lower ratios of mutant versus wild-type allele compared with the fully heterozygote offspring. However, there was notable variability of the mutant allele levels between tissues tested, ranging from 16% (saliva) to 43% (fibroblasts) in one mosaic father. This is the first report demonstrating mosaicism as a cause of intrafamilial/intergenerational variability of COL6-RD, and suggests that sporadic and parental mosaicism may be more common than previously suspected. © 2014 WILEY PERIODICALS, INC.
Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes.
Martinelli, Simone; Krumbach, Oliver H F; Pantaleoni, Francesca; Coppola, Simona; Amin, Ehsan; Pannone, Luca; Nouri, Kazem; Farina, Luciapia; Dvorsky, Radovan; Lepri, Francesca; Buchholzer, Marcel; Konopatzki, Raphael; Walsh, Laurence; Payne, Katelyn; Pierpont, Mary Ella; Vergano, Samantha Schrier; Langley, Katherine G; Larsen, Douglas; Farwell, Kelly D; Tang, Sha; Mroske, Cameron; Gallotta, Ivan; Di Schiavi, Elia; Della Monica, Matteo; Lugli, Licia; Rossi, Cesare; Seri, Marco; Cocchi, Guido; Henderson, Lindsay; Baskin, Berivan; Alders, Mariëlle; Mendoza-Londono, Roberto; Dupuis, Lucie; Nickerson, Deborah A; Chong, Jessica X; Meeks, Naomi; Brown, Kathleen; Causey, Tahnee; Cho, Megan T; Demuth, Stephanie; Digilio, Maria Cristina; Gelb, Bruce D; Bamshad, Michael J; Zenker, Martin; Ahmadian, Mohammad Reza; Hennekam, Raoul C; Tartaglia, Marco; Mirzaa, Ghayda M
2018-01-17
Exome sequencing has markedly enhanced the discovery of genes implicated in Mendelian disorders, particularly for individuals in whom a known clinical entity could not be assigned. This has led to the recognition that phenotypic heterogeneity resulting from allelic mutations occurs more commonly than previously appreciated. Here, we report that missense variants in CDC42, a gene encoding a small GTPase functioning as an intracellular signaling node, underlie a clinically heterogeneous group of phenotypes characterized by variable growth dysregulation, facial dysmorphism, and neurodevelopmental, immunological, and hematological anomalies, including a phenotype resembling Noonan syndrome, a developmental disorder caused by dysregulated RAS signaling. In silico, in vitro, and in vivo analyses demonstrate that mutations variably perturb CDC42 function by altering the switch between the active and inactive states of the GTPase and/or affecting CDC42 interaction with effectors, and differentially disturb cellular and developmental processes. These findings reveal the remarkably variable impact that dominantly acting CDC42 mutations have on cell function and development, creating challenges in syndrome definition, and exemplify the importance of functional profiling for syndrome recognition and delineation. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Coffin-Siris syndrome and the BAF complex: genotype-phenotype study in 63 patients.
Santen, Gijs W E; Aten, Emmelien; Vulto-van Silfhout, Anneke T; Pottinger, Caroline; van Bon, Bregje W M; van Minderhout, Ivonne J H M; Snowdowne, Ronelle; van der Lans, Christian A C; Boogaard, Merel; Linssen, Margot M L; Vijfhuizen, Linda; van der Wielen, Michiel J R; Vollebregt, M J Ellen; Breuning, Martijn H; Kriek, Marjolein; van Haeringen, Arie; den Dunnen, Johan T; Hoischen, Alexander; Clayton-Smith, Jill; de Vries, Bert B A; Hennekam, Raoul C M; van Belzen, Martine J
2013-11-01
De novo germline variants in several components of the SWI/SNF-like BAF complex can cause Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. We screened 63 patients with a clinical diagnosis of CSS for these genes (ARID1A, ARID1B, SMARCA2, SMARCA4, SMARCB1, and SMARCE1) and identified pathogenic variants in 45 (71%) patients. We found a high proportion of variants in ARID1B (68%). All four pathogenic variants in ARID1A appeared to be mosaic. By using all variants from the Exome Variant Server as test data, we were able to classify variants in ARID1A, ARID1B, and SMARCB1 reliably as being pathogenic or nonpathogenic. For SMARCA2, SMARCA4, and SMARCE1 several variants in the EVS remained unclassified, underlining the importance of parental testing. We have entered all variant and clinical information in LOVD-powered databases to facilitate further genotype-phenotype correlations, as these will become increasingly important because of the uptake of targeted and untargeted next generation sequencing in diagnostics. The emerging phenotype-genotype correlation is that SMARCB1 patients have the most marked physical phenotype and severe cognitive and growth delay. The variability in phenotype seems most marked in ARID1A and ARID1B patients. Distal limbs anomalies are most marked in ARID1A patients and least in SMARCB1 patients. Numbers are small however, and larger series are needed to confirm this correlation. © 2013 WILEY PERIODICALS, INC.
Khan, Arif O.; Aldahmesh, Mohammed A.; Alkuraya, Fowzan S.
2015-01-01
Purpose: To assess for phenotype-genotype correlations in families with recessive pediatric cataract and identified gene mutations. Methods: Retrospective review (2004 through 2013) of 26 Saudi Arabian apparently nonsyndromic pediatric cataract families referred to one of the authors (A.O.K.) and for which recessive gene mutations were identified. Results: Fifteen different homozygous recessive gene mutations were identified in the 26 consanguineous families; two genes and five families are novel to this study. Ten families had a founder CRYBB1 deletion (all with bilateral central pulverulent cataract), two had the same missense mutation in CRYAB (both with bilateral juvenile cataract with marked variable expressivity), and two had different mutations in FYCO1 (both with bilateral posterior capsular abnormality). The remaining 12 families each had mutations in 12 different genes (CRYAA, CRYBA1, AKR1E2, AGK, BFSP2, CYP27A1, CYP51A1, EPHA2, GCNT2, LONP1, RNLS, WDR87) with unique phenotypes noted for CYP27A1 (bilateral juvenile fleck with anterior and/or posterior capsular cataract and later cerebrotendinous xanthomatosis), EPHA2 (bilateral anterior persistent fetal vasculature), and BFSP2 (bilateral flecklike with cloudy cortex). Potential carrier signs were documented for several families. Conclusions: In this recessive pediatric cataract case series most identified genes are noncrystallin. Recessive pediatric cataract phenotypes are generally nonspecific, but some notable phenotypes are distinct and associated with specific gene mutations. Marked variable expressivity can occur from a recessive missense CRYAB mutation. Genetic analysis of apparently isolated pediatric cataract can sometimes uncover mutations in a syndromic gene. Some gene mutations seem to be associated with apparent heterozygous carrier signs. PMID:26622071
Gliem, Martin; Holz, Frank G; Stöhr, Heidi; Weber, Bernhard H F; Charbel Issa, Peter
2014-12-01
To describe the phenotypic variability in a consanguineous family with genetically confirmed X-linked retinoschisis. Five patients, including one homozygous female, were characterized by clinical examination, optical coherence tomography, fundus autofluorescence, mapping of macular pigment optical density, electroretinography, and DNA testing. The 36-year-old male index patient showed a ring of enhanced autofluorescence and outer retinal atrophy on optical coherence tomography. Electroretinography testing revealed a reduced a/b ratio. His mother presented with a central atrophic retina with markedly reduced autofluorescence signal and a surrounding ring of enhanced autofluorescence. The 40-year-old brother of the index patient and his 2 sons showed characteristic signs for X-linked retinoschisis, including retinal schisis and a reduced a/b ratio. Genetic testing revealed a c.293C>A mutation in the RS1 gene in all affected family members while the mother of the index patient was homozygous for this mutation. X-linked retinoschisis can present with a wide phenotypic variability. Here, detailed family history and genetic testing established the diagnosis of X-linked retinoschisis despite striking differences in phenotypic presentation in affected subjects, homozygosity of one affected female, and seemingly dominant inheritance in three subsequent generations because of multiple consanguinity.
Genetic, Phenotypic, and Interferon Biomarker Status in ADAR1-Related Neurological Disease.
Rice, Gillian I; Kitabayashi, Naoki; Barth, Magalie; Briggs, Tracy A; Burton, Annabel C E; Carpanelli, Maria Luisa; Cerisola, Alfredo M; Colson, Cindy; Dale, Russell C; Danti, Federica Rachele; Darin, Niklas; De Azua, Begoña; De Giorgis, Valentina; De Goede, Christian G L; Desguerre, Isabelle; De Laet, Corinne; Eslahi, Atieh; Fahey, Michael C; Fallon, Penny; Fay, Alex; Fazzi, Elisa; Gorman, Mark P; Gowrinathan, Nirmala Rani; Hully, Marie; Kurian, Manju A; Leboucq, Nicolas; Lin, Jean-Pierre S-M; Lines, Matthew A; Mar, Soe S; Maroofian, Reza; Martí-Sanchez, Laura; McCullagh, Gary; Mojarrad, Majid; Narayanan, Vinodh; Orcesi, Simona; Ortigoza-Escobar, Juan Dario; Pérez-Dueñas, Belén; Petit, Florence; Ramsey, Keri M; Rasmussen, Magnhild; Rivier, François; Rodríguez-Pombo, Pilar; Roubertie, Agathe; Stödberg, Tommy I; Toosi, Mehran Beiraghi; Toutain, Annick; Uettwiller, Florence; Ulrick, Nicole; Vanderver, Adeline; Waldman, Amy; Livingston, John H; Crow, Yanick J
2017-06-01
We investigated the genetic, phenotypic, and interferon status of 46 patients from 37 families with neurological disease due to mutations in ADAR1 . The clinicoradiological phenotype encompassed a spectrum of Aicardi-Goutières syndrome, isolated bilateral striatal necrosis, spastic paraparesis with normal neuroimaging, a progressive spastic dystonic motor disorder, and adult-onset psychological difficulties with intracranial calcification. Homozygous missense mutations were recorded in five families. We observed a p.Pro193Ala variant in the heterozygous state in 22 of 23 families with compound heterozygous mutations. We also ascertained 11 cases from nine families with a p.Gly1007Arg dominant-negative mutation, which occurred de novo in four patients, and was inherited in three families in association with marked phenotypic variability. In 50 of 52 samples from 34 patients, we identified a marked upregulation of type I interferon-stimulated gene transcripts in peripheral blood, with a median interferon score of 16.99 (interquartile range [IQR]: 10.64-25.71) compared with controls (median: 0.93, IQR: 0.57-1.30). Thus, mutations in ADAR1 are associated with a variety of clinically distinct neurological phenotypes presenting from early infancy to adulthood, inherited either as an autosomal recessive or dominant trait. Testing for an interferon signature in blood represents a useful biomarker in this context. Georg Thieme Verlag KG Stuttgart · New York.
Castori, Marco; Pascolini, Giulia; Parisi, Valentina; Sana, Maria Elena; Novelli, Antonio; Nürnberg, Peter; Iascone, Maria; Grammatico, Paola
2015-04-01
In 1980, a novel multiple malformation syndrome has been described in a 17-year-old woman with micro- and turricephaly, intellectual disability, distinctive facial appearance, congenital atrichia, and multiple skeletal anomalies mainly affecting the limbs. Four further sporadic patients and a couple of affected sibs are also reported with a broad clinical variability. Here, we describe a 4-year-old girl strikingly resembling the original report. Phenotype comparison identified a recurrent pattern of multisystem features involving the central nervous system, and skin and bones in five sporadic patients (including ours), while the two sibs and a further sporadic case show significant phenotypic divergence. Marked clinical variability within the same entity versus syndrome splitting is discussed and the term "cerebro-dermato-osseous dysplasia" is introduced to define this condition. © 2015 Wiley Periodicals, Inc.
Konno, Satoshi; Taniguchi, Natsuko; Makita, Hironi; Nakamaru, Yuji; Shimizu, Kaoruko; Shijubo, Noriharu; Fuke, Satoshi; Takeyabu, Kimihiro; Oguri, Mitsuru; Kimura, Hirokazu; Maeda, Yukiko; Suzuki, Masaru; Nagai, Katsura; Ito, Yoichi M; Wenzel, Sally E; Nishimura, Masaharu
2015-12-01
Smoking may have multifactorial effects on asthma phenotypes, particularly in severe asthma. Cluster analysis has been applied to explore novel phenotypes, which are not based on any a priori hypotheses. To explore novel severe asthma phenotypes by cluster analysis when including cigarette smokers. We recruited a total of 127 subjects with severe asthma, including 59 current or ex-smokers, from our university hospital and its 29 affiliated hospitals/pulmonary clinics. Twelve clinical variables obtained during a 2-day hospital stay were used for cluster analysis. After clustering using clinical variables, the sputum levels of 14 molecules were measured to biologically characterize the clinical clusters. Five clinical clusters were identified, including two characterized by high pack-year exposure to cigarette smoking and low FEV1/FVC. There were marked differences between the two clusters of cigarette smokers. One had high levels of circulating eosinophils, high IgE levels, and a high sinus disease score. The other was characterized by low levels of the same parameters. Sputum analysis revealed increased levels of IL-5 in the former cluster and increased levels of IL-6 and osteopontin in the latter. The other three clusters were similar to those previously reported: young onset/atopic, nonsmoker/less eosinophilic, and female/obese. Key clinical variables were confirmed to be stable and consistent 1 year later. This study reveals two distinct phenotypes of severe asthma in current and former cigarette smokers with potentially different biological pathways contributing to fixed airflow limitation. Clinical trial registered with www.umin.ac.jp (000003254).
Evolutionary patterns and processes in the radiation of phyllostomid bats
2011-01-01
Background The phyllostomid bats present the most extensive ecological and phenotypic radiation known among mammal families. This group is an important model system for studies of cranial ecomorphology and functional optimisation because of the constraints imposed by the requirements of flight. A number of studies supporting phyllostomid adaptation have focused on qualitative descriptions or correlating functional variables and diet, but explicit tests of possible evolutionary mechanisms and scenarios for phenotypic diversification have not been performed. We used a combination of morphometric and comparative methods to test hypotheses regarding the evolutionary processes behind the diversification of phenotype (mandible shape and size) and diet during the phyllostomid radiation. Results The different phyllostomid lineages radiate in mandible shape space, with each feeding specialisation evolving towards different axes. Size and shape evolve quite independently, as the main directions of shape variation are associated with mandible elongation (nectarivores) or the relative size of tooth rows and mandibular processes (sanguivores and frugivores), which are not associated with size changes in the mandible. The early period of phyllostomid diversification is marked by a burst of shape, size, and diet disparity (before 20 Mya), larger than expected by neutral evolution models, settling later to a period of relative phenotypic and ecological stasis. The best fitting evolutionary model for both mandible shape and size divergence was an Ornstein-Uhlenbeck process with five adaptive peaks (insectivory, carnivory, sanguivory, nectarivory and frugivory). Conclusions The radiation of phyllostomid bats presented adaptive and non-adaptive components nested together through the time frame of the family's evolution. The first 10 My of the radiation were marked by strong phenotypic and ecological divergence among ancestors of modern lineages, whereas the remaining 20 My were marked by stasis around a number of probable adaptive peaks. A considerable amount of cladogenesis and speciation in this period is likely to be the result of non-adaptive allopatric divergence or adaptations to peaks within major dietary categories. PMID:21605452
Evolutionary patterns and processes in the radiation of phyllostomid bats.
Monteiro, Leandro R; Nogueira, Marcelo R
2011-05-23
The phyllostomid bats present the most extensive ecological and phenotypic radiation known among mammal families. This group is an important model system for studies of cranial ecomorphology and functional optimisation because of the constraints imposed by the requirements of flight. A number of studies supporting phyllostomid adaptation have focused on qualitative descriptions or correlating functional variables and diet, but explicit tests of possible evolutionary mechanisms and scenarios for phenotypic diversification have not been performed. We used a combination of morphometric and comparative methods to test hypotheses regarding the evolutionary processes behind the diversification of phenotype (mandible shape and size) and diet during the phyllostomid radiation. The different phyllostomid lineages radiate in mandible shape space, with each feeding specialisation evolving towards different axes. Size and shape evolve quite independently, as the main directions of shape variation are associated with mandible elongation (nectarivores) or the relative size of tooth rows and mandibular processes (sanguivores and frugivores), which are not associated with size changes in the mandible. The early period of phyllostomid diversification is marked by a burst of shape, size, and diet disparity (before 20 Mya), larger than expected by neutral evolution models, settling later to a period of relative phenotypic and ecological stasis. The best fitting evolutionary model for both mandible shape and size divergence was an Ornstein-Uhlenbeck process with five adaptive peaks (insectivory, carnivory, sanguivory, nectarivory and frugivory). The radiation of phyllostomid bats presented adaptive and non-adaptive components nested together through the time frame of the family's evolution. The first 10 My of the radiation were marked by strong phenotypic and ecological divergence among ancestors of modern lineages, whereas the remaining 20 My were marked by stasis around a number of probable adaptive peaks. A considerable amount of cladogenesis and speciation in this period is likely to be the result of non-adaptive allopatric divergence or adaptations to peaks within major dietary categories.
Reid, Emma S; Papandreou, Apostolos; Drury, Suzanne; Boustred, Christopher; Yue, Wyatt W; Wedatilake, Yehani; Beesley, Clare; Jacques, Thomas S; Anderson, Glenn; Abulhoul, Lara; Broomfield, Alex; Cleary, Maureen; Grunewald, Stephanie; Varadkar, Sophia M; Lench, Nick; Rahman, Shamima; Gissen, Paul; Clayton, Peter T; Mills, Philippa B
2016-11-01
Neurometabolic disorders are markedly heterogeneous, both clinically and genetically, and are characterized by variable neurological dysfunction accompanied by suggestive neuroimaging or biochemical abnormalities. Despite early specialist input, delays in diagnosis and appropriate treatment initiation are common. Next-generation sequencing approaches still have limitations but are already enabling earlier and more efficient diagnoses in these patients. We designed a gene panel targeting 614 genes causing inborn errors of metabolism and tested its diagnostic efficacy in a paediatric cohort of 30 undiagnosed patients presenting with variable neurometabolic phenotypes. Genetic defects that could, at least partially, explain observed phenotypes were identified in 53% of cases. Where biochemical abnormalities pointing towards a particular gene defect were present, our panel identified diagnoses in 89% of patients. Phenotypes attributable to defects in more than one gene were seen in 13% of cases. The ability of in silico tools, including structure-guided prediction programmes to characterize novel missense variants were also interrogated. Our study expands the genetic, clinical and biochemical phenotypes of well-characterized (POMGNT1, TPP1) and recently identified disorders (PGAP2, ACSF3, SERAC1, AFG3L2, DPYS). Overall, our panel was accurate and efficient, demonstrating good potential for applying similar approaches to clinically and biochemically diverse neurometabolic disease cohorts. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Phenotype and genotype in 52 patients with Rubinstein-Taybi syndrome caused by EP300 mutations.
Fergelot, Patricia; Van Belzen, Martine; Van Gils, Julien; Afenjar, Alexandra; Armour, Christine M; Arveiler, Benoit; Beets, Lex; Burglen, Lydie; Busa, Tiffany; Collet, Marie; Deforges, Julie; de Vries, Bert B A; Dominguez Garrido, Elena; Dorison, Nathalie; Dupont, Juliette; Francannet, Christine; Garciá-Minaúr, Sixto; Gabau Vila, Elisabeth; Gebre-Medhin, Samuel; Gener Querol, Blanca; Geneviève, David; Gérard, Marion; Gervasini, Cristina Giovanna; Goldenberg, Alice; Josifova, Dragana; Lachlan, Katherine; Maas, Saskia; Maranda, Bruno; Moilanen, Jukka S; Nordgren, Ann; Parent, Philippe; Rankin, Julia; Reardon, Willie; Rio, Marlène; Roume, Joëlle; Shaw, Adam; Smigiel, Robert; Sojo, Amaia; Solomon, Benjamin; Stembalska, Agnieszka; Stumpel, Constance; Suarez, Francisco; Terhal, Paulien; Thomas, Simon; Touraine, Renaud; Verloes, Alain; Vincent-Delorme, Catherine; Wincent, Josephine; Peters, Dorien J M; Bartsch, Oliver; Larizza, Lidia; Lacombe, Didier; Hennekam, Raoul C
2016-12-01
Rubinstein-Taybi syndrome (RSTS) is a developmental disorder characterized by a typical face and distal limbs abnormalities, intellectual disability, and a vast number of other features. Two genes are known to cause RSTS, CREBBP in 60% and EP300 in 8-10% of clinically diagnosed cases. Both paralogs act in chromatin remodeling and encode for transcriptional co-activators interacting with >400 proteins. Up to now 26 individuals with an EP300 mutation have been published. Here, we describe the phenotype and genotype of 42 unpublished RSTS patients carrying EP300 mutations and intragenic deletions and offer an update on another 10 patients. We compare the data to 308 individuals with CREBBP mutations. We demonstrate that EP300 mutations cause a phenotype that typically resembles the classical RSTS phenotype due to CREBBP mutations to a great extent, although most facial signs are less marked with the exception of a low-hanging columella. The limb anomalies are more similar to those in CREBBP mutated individuals except for angulation of thumbs and halluces which is very uncommon in EP300 mutated individuals. The intellectual disability is variable but typically less marked whereas the microcephaly is more common. All types of mutations occur but truncating mutations and small rearrangements are most common (86%). Missense mutations in the HAT domain are associated with a classical RSTS phenotype but otherwise no genotype-phenotype correlation is detected. Pre-eclampsia occurs in 12/52 mothers of EP300 mutated individuals versus in 2/59 mothers of CREBBP mutated individuals, making pregnancy with an EP300 mutated fetus the strongest known predictor for pre-eclampsia. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Surfing parameter hyperspaces under climate change scenarios to design future rice ideotypes.
Paleari, Livia; Movedi, Ermes; Cappelli, Giovanni; Wilson, Lloyd T; Confalonieri, Roberto
2017-11-01
Growing food crops to meet global demand and the search for more sustainable cropping systems are increasing the need for new cultivars in key production areas. This study presents the identification of rice traits putatively producing the largest yield benefits in five areas that markedly differ in terms of environmental conditions in the Philippines, India, China, Japan and Italy. The ecophysiological model WARM and sensitivity analysis techniques were used to evaluate phenotypic traits involved with light interception, photosynthetic efficiency, tolerance to abiotic stressors, resistance to fungal pathogens and grain quality. The analysis involved only model parameters that have a close relationship with phenotypic traits breeders are working on, to increase the in vivo feasibility of selected ideotypes. Current climate and future projections were considered, in the light of the resources required by breeding programs and of the role of weather variables in the identification of promising traits. Results suggest that breeding for traits involved with disease resistance, and tolerance to cold- and heat-induced spikelet sterility could provide benefits similar to those obtained from the improvement of traits involved with canopy structure and photosynthetic efficiency. In contrast, potential benefits deriving from improved grain quality traits are restricted by weather variability and markedly affected by G × E interactions. For this reason, district-specific ideotypes were identified using a new index accounting for both their productivity and feasibility. © 2017 John Wiley & Sons Ltd.
Zimmermann, Matthias; Escrig, Stéphane; Hübschmann, Thomas; Kirf, Mathias K.; Brand, Andreas; Inglis, R. Fredrik; Musat, Niculina; Müller, Susann; Meibom, Anders; Ackermann, Martin; Schreiber, Frank
2015-01-01
Populations of genetically identical microorganisms residing in the same environment can display marked variability in their phenotypic traits; this phenomenon is termed phenotypic heterogeneity. The relevance of such heterogeneity in natural habitats is unknown, because phenotypic characterization of a sufficient number of single cells of the same species in complex microbial communities is technically difficult. We report a procedure that allows to measure phenotypic heterogeneity in bacterial populations from natural environments, and use it to analyze N2 and CO2 fixation of single cells of the green sulfur bacterium Chlorobium phaeobacteroides from the meromictic lake Lago di Cadagno. We incubated lake water with 15N2 and 13CO2 under in situ conditions with and without NH4+. Subsequently, we used flow cell sorting with auto-fluorescence gating based on a pure culture isolate to concentrate C. phaeobacteroides from its natural abundance of 0.2% to now 26.5% of total bacteria. C. phaeobacteroides cells were identified using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting the 16S rRNA in the sorted population with a species-specific probe. In a last step, we used nanometer-scale secondary ion mass spectrometry to measure the incorporation 15N and 13C stable isotopes in more than 252 cells. We found that C. phaeobacteroides fixes N2 in the absence of NH4+, but not in the presence of NH4+ as has previously been suggested. N2 and CO2 fixation were heterogeneous among cells and positively correlated indicating that N2 and CO2 fixation activity interact and positively facilitate each other in individual cells. However, because CARD-FISH identification cannot detect genetic variability among cells of the same species, we cannot exclude genetic variability as a source for phenotypic heterogeneity in this natural population. Our study demonstrates the technical feasibility of measuring phenotypic heterogeneity in a rare bacterial species in its natural habitat, thus opening the door to study the occurrence and relevance of phenotypic heterogeneity in nature. PMID:25932020
Mutations in riboflavin transporter present with severe sensory loss and deafness in childhood.
Srour, Myriam; Putorti, Maria Lisa; Schwartzentruber, Jeremy; Bolduc, Véronique; Shevell, Michael Israel; Poulin, Chantal; O'ferrall, Erin; Buhas, Daniela; Majewski, Jacek; Brais, Bernard
2014-11-01
We have identified a large consanguineous Lebanese family with 5 individuals with severe childhood-onset recessive sensory loss associated with deafness and variable optic atrophy. Autozygosity mapping was performed in all affected individuals, followed by whole-exome sequencing (WES) in 2 individuals. WES identified a homozygous missense mutation (c.916G>A, p.G306R) in the cerebral riboflavin transporter SLC52A2, recently shown to cause Brown-Vialetto-Van-Laere syndrome (BVVLS), which is considered primarily a motor neuronopathy. Our patients have a phenotype distinct from BVVLS, characterized by severe progressive sensory loss mainly affecting vibration and proprioception that evolves to include sensorineural hearing loss in childhood, variable degrees of optic atrophy, and marked upper extremity weakness and atrophy. Treatment of 3 patients with 400 mg/day riboflavin over 3 months produced definite clinical improvement. Mutations in SLC52A2 result in a recognizable phenotype distinct from BVVLS. Early recognition of this disorder is critical, given its potential treatability. © 2014 Wiley Periodicals, Inc.
Associations between speech features and phenotypic severity in Treacher Collins syndrome
2014-01-01
Background Treacher Collins syndrome (TCS, OMIM 154500) is a rare congenital disorder of craniofacial development. Characteristic hypoplastic malformations of the ears, zygomatic arch, mandible and pharynx have been described in detail. However, reports on the impact of these malformations on speech are few. Exploring speech features and investigating if speech function is related to phenotypic severity are essential for optimizing follow-up and treatment. Methods Articulation, nasal resonance, voice and intelligibility were examined in 19 individuals (5–74 years, median 34 years) divided into three groups comprising children 5–10 years (n = 4), adolescents 11–18 years (n = 4) and adults 29 years and older (n = 11). A speech composite score (0–6) was calculated to reflect the variability of speech deviations. TCS severity scores of phenotypic expression and total scores of Nordic Orofacial Test-Screening (NOT-S) measuring orofacial dysfunction were used in analyses of correlation with speech characteristics (speech composite scores). Results Children and adolescents presented with significantly higher speech composite scores (median 4, range 1–6) than adults (median 1, range 0–5). Nearly all children and adolescents (6/8) displayed speech deviations of articulation, nasal resonance and voice, while only three adults were identified with multiple speech aberrations. The variability of speech dysfunction in TCS was exhibited by individual combinations of speech deviations in 13/19 participants. The speech composite scores correlated with TCS severity scores and NOT-S total scores. Speech composite scores higher than 4 were associated with cleft palate. The percent of intelligible words in connected speech was significantly lower in children and adolescents (median 77%, range 31–99) than in adults (98%, range 93–100). Intelligibility of speech among the children was markedly inconsistent and clearly affecting the understandability. Conclusions Multiple speech deviations were identified in children, adolescents and a subgroup of adults with TCS. Only children displayed markedly reduced intelligibility. Speech was significantly correlated with phenotypic severity of TCS and orofacial dysfunction. Follow-up and treatment of speech should still be focused on young patients, but some adults with TCS seem to require continuing speech and language pathology services. PMID:24775909
Associations between speech features and phenotypic severity in Treacher Collins syndrome.
Asten, Pamela; Akre, Harriet; Persson, Christina
2014-04-28
Treacher Collins syndrome (TCS, OMIM 154500) is a rare congenital disorder of craniofacial development. Characteristic hypoplastic malformations of the ears, zygomatic arch, mandible and pharynx have been described in detail. However, reports on the impact of these malformations on speech are few. Exploring speech features and investigating if speech function is related to phenotypic severity are essential for optimizing follow-up and treatment. Articulation, nasal resonance, voice and intelligibility were examined in 19 individuals (5-74 years, median 34 years) divided into three groups comprising children 5-10 years (n = 4), adolescents 11-18 years (n = 4) and adults 29 years and older (n = 11). A speech composite score (0-6) was calculated to reflect the variability of speech deviations. TCS severity scores of phenotypic expression and total scores of Nordic Orofacial Test-Screening (NOT-S) measuring orofacial dysfunction were used in analyses of correlation with speech characteristics (speech composite scores). Children and adolescents presented with significantly higher speech composite scores (median 4, range 1-6) than adults (median 1, range 0-5). Nearly all children and adolescents (6/8) displayed speech deviations of articulation, nasal resonance and voice, while only three adults were identified with multiple speech aberrations. The variability of speech dysfunction in TCS was exhibited by individual combinations of speech deviations in 13/19 participants. The speech composite scores correlated with TCS severity scores and NOT-S total scores. Speech composite scores higher than 4 were associated with cleft palate. The percent of intelligible words in connected speech was significantly lower in children and adolescents (median 77%, range 31-99) than in adults (98%, range 93-100). Intelligibility of speech among the children was markedly inconsistent and clearly affecting the understandability. Multiple speech deviations were identified in children, adolescents and a subgroup of adults with TCS. Only children displayed markedly reduced intelligibility. Speech was significantly correlated with phenotypic severity of TCS and orofacial dysfunction. Follow-up and treatment of speech should still be focused on young patients, but some adults with TCS seem to require continuing speech and language pathology services.
Xin, Frances; Susiarjo, Martha; Bartolomei, Marisa S.
2015-01-01
Increasing evidence has highlighted the critical role of early life environment in shaping the future health outcomes of an individual. Moreover, recent studies have revealed that early life perturbations can affect the health of subsequent generations. Hypothesized mechanisms of multi- and transgenerational inheritance of abnormal developmental phenotypes include epigenetic misregulation in germ cells. In this review, we will focus on the available data demonstrating the ability of endocrine disrupting chemicals (EDCs), including bisphenol A (BPA), phthalates, and parabens, to alter epigenetic marks in rodents and humans. These epigenetic marks include DNA methylation, histone post-translational modifications, and non-coding RNAs. We also review the current evidence for multi- and transgenerational inheritance of abnormal developmental changes in the offspring following EDC exposure. Based on published results, we conclude that EDC exposure can alter the mouse and human epigenome, with variable tissue susceptibilities. Although increasing data suggest that exposure to EDCs is linked to transgenerational inheritance of reproductive, metabolic, or neurological phenotypes, more studies are needed to validate these observations and to elucidate further whether these developmental changes are directly associated with the relevant epigenetic alterations. PMID:26026600
X-linked adrenoleukodystrophy in heterozygous female patients: women are not just carriers.
Lourenço, Charles Marques; Simão, Gustavo Novelino; Santos, Antonio Carlos; Marques, Wilson
2012-07-01
X-linked adrenoleukodystrophy (X-ALD) is a recessive X-linked disorder associated with marked phenotypic variability. Female carriers are commonly thought to be normal or only mildly affected, but their disease still needs to be better described and systematized. To review and systematize the clinical features of heterozygous women followed in a Neurogenetics Clinic. We reviewed the clinical, biochemical, and neuroradiological data of all women known to have X-ADL. The nine women identified were classified into three groups: with severe and aggressive diseases; with slowly progressive, spastic paraplegia; and with mildly decreased vibratory sensation, brisk reflexes, and no complaints. Many of these women did not have a known family history of X-ALD. Heterozygous women with X-ADL have a wide spectrum of clinical manifestations, ranging from mild to severe phenotypes.
Wittke, Kacie; Mastergeorge, Ann M.; Ozonoff, Sally; Rogers, Sally J.; Naigles, Letitia R.
2017-01-01
Linguistic and cognitive abilities manifest huge heterogeneity in children with autism spectrum disorder (ASD). Some children present with commensurate language and cognitive abilities, while others show more variable patterns of development. Using spontaneous language samples, we investigate the presence and extent of grammatical language impairment in a heterogeneous sample of children with ASD. Findings from our sample suggest that children with ASD can be categorized into three meaningful subgroups: those with normal language, those with marked difficulty in grammatical production but relatively intact vocabulary, and those with more globally low language abilities. These findings support the use of sensitive assessment measures to evaluate language in autism, as well as the utility of within-disorder comparisons, in order to comprehensively define the various cognitive and linguistic phenotypes in this heterogeneous disorder. PMID:28458643
APC gene mutations in individuals with possible attenuated familial adenomatous polyposis coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frayling, J.M.; Talbot, J.; Harocopos, C.A.
Spirio et al. have described an attenuated form of familial adenomatous polyposis (FAP) termed AAPC, where affected individuals have been found to have mutations in exons 3 & 4 of the APC gene. AAPC expression within a family appears to be extremely variable and can overlap clinically with FAP, giving rise to between zero and a few hundred adenomas. The phenotypic range associated with AAPC mutations is undefined and the frequency in the population of such alleles of the APC gene is unknown. In addition, it is as yet unclear how many cases of sporadic colorectal adenomas might have AAPC.more » In order to address this we have identified 110 individuals having a phenotype compatible with a diagnosis of AAPC, in three groups: (1) 30 individuals (15m, 15f; median age = 55y, range 8-71y) with some or all of the following: colonic adenomas (28 cases); colorectal cancer (12 cases); extra-colonic features of FAP, either desmoid tumours (4 cases, including 2 without colonic adenomas) or sebaceous cysts (2 cases). Sixteen cases had a family history of adenomas/colorectal cancer/extra-colonic features of FAP. (2) 16 individuals (10m, 6f) from the St. Mark`s Polyposis Registry, diagnosed with FAP (including a family history), who had unusually few adenomas (median = 200) at colectomy (median age = 43y, range 17-62y). (3) 64 individuals (43m, 21f) from the St. Mark`s Hospital Adenoma Follow-up Study who either had >4 adenomas at presentation (median total adenomas = 9), or >4 adenomas detected during follow-up (median total adenomas = 9). Genomic DNA was obtained from these individuals and exons 1-4 of the APC gene were amplified by PCR. Chemical cleavage of mismatch was used to screen for mutations, followed by sequencing if variant bands were found. Germ-line mutations have been identified in exons 3 and 4 in a proportion of these individuals, thus extending the clinical spectrum of phenotypes associated with mutations in this region of the APC gene.« less
Phenotype/genotype correlations in Gaucher disease type 1: Clinical and therapeutic implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sibille, A.; Eng, C.M.; Kim, S.J.
1993-06-01
Gaucher disease is the most frequent lysosomal storage disease and the most prevalent genetic disease among Ashkenazi Jews. Gaucher disease type 1 is characterized by marked variability of the phenotype and by the absence of neuronopathic involvement. To test the hypothesis that this phenotypic variability was due to genetic compounds of several different mutant alleles, 161 symptomatic patients with Gaucher disease type 1 (> 90% Ashkenazi Jewish) were analyzed for clinical involvement, and their genotypes were determined. Qualitative and quantitative measures of disease involvement included age at onset of the disease manifestations, hepatic and splenic volumes, age at splenectomy, andmore » severity of bony disease. High statistically significant differences (P < .005) were found in each clinical parameter in patients with the N370S/N370S genotype compared with those patients with the N370S/84GG, N370S/L444P, and N370/ genotypes. The symptomatic N370S homozygotes had onset of their disease two to three decades later than patients with the other genotypes. In addition, patients with the latter genotypes have much more severely involved livers, spleens, and bones and had a higher incidence of splenectomy at an earlier age. These predictive genotype analyses provide the basis for genetic care delivery and therapeutic recommendations in patients affected with Gaucher disease type 1. 38 refs., 1 fig., 4 tabs.« less
Embryonic environment and transgenerational effects in quail.
Leroux, Sophie; Gourichon, David; Leterrier, Christine; Labrune, Yann; Coustham, Vincent; Rivière, Sandrine; Zerjal, Tatiana; Coville, Jean-Luc; Morisson, Mireille; Minvielle, Francis; Pitel, Frédérique
2017-01-26
Environmental exposures, for instance to chemicals, are known to impact plant and animal phenotypes on the long term, sometimes across several generations. Such transgenerational phenotypes were shown to be promoted by epigenetic alterations such as DNA methylation, an epigenetic mark involved in the regulation of gene expression. However, it is yet unknown whether transgenerational epigenetic inheritance of altered phenotypes exists in birds. The purpose of this study was to develop an avian model to investigate whether changes to the embryonic environment had a transgenerational effect that could alter the phenotypes of third-generation offspring. Given its impact on the mammalian epigenome and the reproductive system in birds, genistein was used as an environment stressor. We compared several third-generation phenotypes of two quail "epilines", which were obtained from genistein-injected eggs (Epi+) or from untreated eggs (Epi-) from the same founders. A "mirrored" crossing strategy was used to minimize between-line genetic variability by maintaining similar ancestor contributions across generations in each line. Three generations after genistein treatment, a significant difference in the sexual maturity of the females, which, after three generations, could not be attributed to direct maternal effects, was observed between the lines, with Epi+ females starting to lay eggs later. Adult body weight was significantly affected by genistein treatment applied in a previous generation, and a significant interaction between line and sex was observed for body weight at 3 weeks. Behavioral traits, such as evaluating the birds' reaction to social isolation, were also significantly affected by genistein treatment. Yet, global methylation analyses revealed no significant difference between the epilines. These findings demonstrate that embryonic environment affects the phenotype of offspring three generations later in quail. While one cannot rule out the existence of some initial genetic variability between the lines, the mirrored animal design should have minimized its effects, and thus, the observed differences in animals of the third generation may be attributed, at least partly, to transgenerational epigenetic phenomena.
Murphy, D L; Sims, K; Eisenhofer, G; Greenberg, B D; George, T; Berlin, F; Zametkin, A; Ernst, M; Breakefield, X O
1998-01-01
Lack of monoamine oxidase A (MAO-A) due to either Xp chromosomal deletions or alterations in the coding sequence of the gene for this enzyme are associated with marked changes in monoamine metabolism and appear to be associated with variable cognitive deficits and behavioral changes in humans and in transgenic mice. In mice, some of the most marked behavioral changes are ameliorated by pharmacologically-induced reductions in serotonin synthesis during early development, raising the question of possible therapeutic interventions in humans with MAO deficiency states. At the present time, only one multi-generational family and a few other individuals with marked MAO-A deficiency states have been identified and studied in detail. Although MAO deficiency states associated with Xp chromosomal deletions were identified by distinct symptoms (including blindness in infancy) produced by the contiguous Norrie disease gene, the primarily behavioral phenotype of individuals with the MAO mutation is less obvious. This paper reports a sequential research design and preliminary results from screening several hundred volunteers in the general population and from putative high-risk groups for possible MAO deficiency states. These preliminary results suggest that marked MAO deficiency states are very rare.
Neuropathology and Animal Models of Autism: Genetic and Environmental Factors
Gadad, Bharathi S.; Young, Keith A.; German, Dwight C.
2013-01-01
Autism is a heterogeneous behaviorally defined neurodevelopmental disorder. It is defined by the presence of marked social deficits, specific language abnormalities, and stereotyped repetitive patterns of behavior. Because of the variability in the behavioral phenotype of the disorder among patients, the term autism spectrum disorder has been established. In the first part of this review, we provide an overview of neuropathological findings from studies of autism postmortem brains and identify the cerebellum as one of the key brain regions that can play a role in the autism phenotype. We review research findings that indicate possible links between the environment and autism including the role of mercury and immune-related factors. Because both genes and environment can alter the structure of the developing brain in different ways, it is not surprising that there is heterogeneity in the behavioral and neuropathological phenotypes of autism spectrum disorders. Finally, we describe animal models of autism that occur following insertion of different autism-related genes and exposure to environmental factors, highlighting those models which exhibit both autism-like behavior and neuropathology. PMID:24151553
Duplication 16p13.3 and the CREBBP gene: confirmation of the phenotype.
Demeer, Bénédicte; Andrieux, Joris; Receveur, Aline; Morin, Gilles; Petit, Florence; Julia, Sophie; Plessis, Ghislaine; Martin-Coignard, Dominique; Delobel, Bruno; Firth, Helen V; Thuresson, Ann C; Lanco Dosen, Sandrine; Sjörs, Kerstin; Le Caignec, Cedric; Devriendt, Koenraad; Mathieu-Dramard, Michèle
2013-01-01
The introduction of molecular karyotyping technologies into the diagnostic work-up of patients with congenital disorders permitted the identification and delineation of novel microdeletion and microduplication syndromes. Interstitial 16p13.3 duplication, encompassing the CREBBP gene, which is mutated or deleted in the Rubinstein-Taybi syndrome, have been proposed to cause a recognisable syndrome with variable intellectual disability, normal growth, mild facial dysmorphism, mild anomalies of the extremities, and occasional findings such as developmental defects of the heart, genitalia, palate or the eyes. We here report the phenotypic and genotypic delineation of 9 patients carrying a submicroscopic 16p13.3 duplication, including the smallest 16p13.3 duplication reported so far. Careful clinical assessment confirms the distinctive clinical phenotype and also defines frequent associated features : marked speech problems, frequent ocular region involvement with upslanting of the eyes, narrow palpebral fissures, ptosis and strabismus, frequent proximal implantation of thumbs, cleft palate/bifid uvula and inguinal hernia. It also confirms that CREBBP is the critical gene involved in the duplication 16p13.3 syndrome. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Developmental mechanisms underlying variable, invariant and plastic phenotypes
Abley, Katie; Locke, James C. W.; Leyser, H. M. Ottoline
2016-01-01
Background Discussions of phenotypic robustness often consider scenarios where invariant phenotypes are optimal and assume that developmental mechanisms have evolved to buffer the phenotypes of specific traits against stochastic and environmental perturbations. However, plastic plant phenotypes that vary between environments or variable phenotypes that vary stochastically within an environment may also be advantageous in some scenarios. Scope Here the conditions under which invariant, plastic and variable phenotypes of specific traits may confer a selective advantage in plants are examined. Drawing on work from microbes and multicellular organisms, the mechanisms that may give rise to each type of phenotype are discussed. Conclusion In contrast to the view of robustness as being the ability of a genotype to produce a single, invariant phenotype, changes in a phenotype in response to the environment, or phenotypic variability within an environment, may also be delivered consistently (i.e. robustly). Thus, for some plant traits, mechanisms have probably evolved to produce plasticity or variability in a reliable manner. PMID:27072645
Metzger, David C H; Schulte, Patricia M
2016-12-01
Epigenetic mechanisms are an underappreciated and often ignored component of an organism's response to environmental change and may underlie many types of phenotypic plasticity. Recent technological advances in methods for detecting epigenetic marks at a whole-genome scale have launched new opportunities for studying epigenomics in ecologically relevant non-model systems. The study of ecological epigenomics holds great promise to better understand the linkages between genotype, phenotype, and the environment and to explore mechanisms of phenotypic plasticity. The many attributes of marine fish species, including their high diversity, variable life histories, high fecundity, impressive plasticity, and economic value provide unique opportunities for studying epigenetic mechanisms in an environmental context. To provide a primer on epigenomic research for fish biologists, we start by describing fundamental aspects of epigenetics, focusing on the most widely studied and most well understood of the epigenetic marks: DNA methylation. We then describe the techniques that have been used to investigate DNA methylation in marine fishes to date and highlight some new techniques that hold great promise for future studies. Epigenomic research in marine fishes is in its early stages, so we first briefly discuss what has been learned about the establishment, maintenance, and function of DNA methylation in fishes from studies in zebrafish and then summarize the studies demonstrating the pervasive effects of the environment on the epigenomes of marine fishes. We conclude by highlighting the potential for ongoing research on the epigenomics of marine fishes to reveal critical aspects of the interaction between organisms and their environments. Copyright © 2016 Elsevier B.V. All rights reserved.
A new case of a severe clinical phenotype of the cat-eye syndrome.
Denavit, T Martin; Malan, V; Grillon, C; Sanlaville, D; Ardalan, A; Jacquemont, M L; Burglen, L; Taillemite, J L; Portnoi, M F
2004-01-01
A new case of severe clinical phenotype of the cat-eye syndrome: We report on a female infant with severe clinical phenotype of Cat-Eye Syndrome (CES). At birth, she had respiratory distress and marked hypotonia. Physical examination showed major craniofacial anomalies including microcephaly, bilateral total absence of the external ears, hypertelorism, bilateral ocular coloboma of iris and micrognathia. In addition, she had anal stenosis, a patent ductus arteriosus and intra- and extra- hepatic biliary atresia. She deteriorated with the development of bradycardia. She died at age one month of cardiac failure. Cytogenetic analysis of the proband showed an extra de novo small bisatelllited marker chromosome in all cells examined. Molecular cytogenetic analysis with fluorescence in situ hybridization (FISH) identified the marker as a CES chromosome. Thus, the patient's karyotype was: 47, XX, +idic(22)(pter-->q11.2 ::q11.2-->pter). The duplication breakpoints giving rise to the CES chromosome were distal to the DiGeorge Syndrome (DGS) locus 22q11.2. The marker could be classed as a type 11 symmetrical (10). According to a recent review of CES literature (1) only 41 % of the CES patients have the combination of iris coloboma, anal anomalies and preauricular anomalies. Almost 60% are hard to recognize by their phenotype alone. Only twelve patients showed a severe clinical phenotype leading to the death of the child. This phenotypic variability increases the difficulties of genetic counseling.
Sarcoidosis extent relates to molecular variability.
Monast, C S; Li, K; Judson, M A; Baughman, R P; Wadman, E; Watt, R; Silkoff, P E; Barnathan, E S; Brodmerkel, C
2017-06-01
The molecular basis of sarcoidosis phenotype heterogeneity and its relationship to effective treatment of sarcoidosis have not been elucidated. Peripheral samples from sarcoidosis subjects who participated in a Phase II study of golimumab [anti-tumour necrosis factor (TNF)-α] and ustekinumab [anti-interleukin (IL)-12p40] were used to measure the whole blood transcriptome and levels of serum proteins. Differential gene and protein expression analyses were used to explore the molecular differences between sarcoidosis phenotypes as defined by extent of organ involvement. The same data were also used in conjunction with an enrichment algorithm to identify gene expression changes associated with treatment with study drugs compared to placebo. Our analyses revealed marked heterogeneity among the three sarcoidosis phenotypes included in the study cohort, including striking differences in enrichment of the interferon pathway. Conversely, enrichments of multiple pathways, including T cell receptor signalling, were similar among phenotypes. We also identify differences between treatment with golimumab and ustekinumab that may explain the differences in trends for clinical efficacy observed in the trial. We find that molecular heterogeneity is associated with sarcoidosis in a manner that may be related to the extent of organ involvement. These findings may help to explain the difficulty in identifying clinically efficacious sarcoidosis treatments and suggest hypotheses for improved therapeutic strategies. © 2017 British Society for Immunology.
Big data in sleep medicine: prospects and pitfalls in phenotyping
Bianchi, Matt T; Russo, Kathryn; Gabbidon, Harriett; Smith, Tiaundra; Goparaju, Balaji; Westover, M Brandon
2017-01-01
Clinical polysomnography (PSG) databases are a rich resource in the era of “big data” analytics. We explore the uses and potential pitfalls of clinical data mining of PSG using statistical principles and analysis of clinical data from our sleep center. We performed retrospective analysis of self-reported and objective PSG data from adults who underwent overnight PSG (diagnostic tests, n=1835). Self-reported symptoms overlapped markedly between the two most common categories, insomnia and sleep apnea, with the majority reporting symptoms of both disorders. Standard clinical metrics routinely reported on objective data were analyzed for basic properties (missing values, distributions), pairwise correlations, and descriptive phenotyping. Of 41 continuous variables, including clinical and PSG derived, none passed testing for normality. Objective findings of sleep apnea and periodic limb movements were common, with 51% having an apnea–hypopnea index (AHI) >5 per hour and 25% having a leg movement index >15 per hour. Different visualization methods are shown for common variables to explore population distributions. Phenotyping methods based on clinical databases are discussed for sleep architecture, sleep apnea, and insomnia. Inferential pitfalls are discussed using the current dataset and case examples from the literature. The increasing availability of clinical databases for large-scale analytics holds important promise in sleep medicine, especially as it becomes increasingly important to demonstrate the utility of clinical testing methods in management of sleep disorders. Awareness of the strengths, as well as caution regarding the limitations, will maximize the productive use of big data analytics in sleep medicine. PMID:28243157
Doran, Mark; du Plessis, Daniel G; Ghadiali, Eric J; Mann, David M A; Pickering-Brown, Stuart; Larner, Andrew J
2007-10-01
Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) owing to the tau intron 10 + 16 mutation usually occurs with a prototypical frontotemporal dementia phenotype with prominent disinhibition and affective disturbances. To report a new FTDP-17 pedigree with the tau intron 10 + 16 mutation demonstrating a clinical phenotype suggestive of Alzheimer disease. Case reports. Regional neuroscience centers in northwest England. Patients We examined 4 members of a kindred in which 8 individuals were affected in 3 generations. All 4 patients reported memory difficulty. Marked anomia was also present, but behavioral disturbances were conspicuously absent in the early stages of disease. All patients had an initial clinical diagnosis of Alzheimer disease. No mutations were found in the presenilin or amyloid precursor protein genes. Pathologic examination of the proband showed features typical of FTDP-17, and tau gene analysis showed the intron 10 + 16 mutation. This pedigree illustrates the phenotypic variability of tau intron 10 + 16 mutations. In pedigrees with a clinical diagnosis of Alzheimer disease but without presenilin or amyloid precursor protein gene mutations, tau gene mutations may be found.
Multivariate Analysis of Genotype-Phenotype Association.
Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela
2016-04-01
With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms. Copyright © 2016 by the Genetics Society of America.
Dixon, Jill; Dixon, Michael James
2004-04-01
Treacher Collins syndrome (TCS) is a craniofacial disorder that results from mutations in TCOF1, which encodes the nucleolar protein Treacle. The severity of the clinical features exhibits wide variation and includes hypoplasia of the mandible and maxilla, abnormalities of the external ears and middle ear ossicles, and cleft palate. To determine the in vivo function of Treacle, we previously generated Tcof1 heterozygous mice on a mixed C57BL/6 and 129 background. These mice exhibited a lethal phenotype, which included abnormal development of the maxilla, absence of the eyes and nasal passages, and neural tube defects. Here, we show that placing the mutation onto different genetic backgrounds has a major effect on the penetrance and severity of the craniofacial and other defects. The offspring exhibit markedly variable strain-dependent phenotypes that range from extremely severe and lethal in a mixed CBA/Ca and 129 background, to apparently normal and viable in a mixed BALB/c and 129 background. In the former case, in addition to a profoundly severe craniofacial phenotype, CBA-derived heterozygous mice also exhibited delayed ossification of the long bones, rib fusions, and digit anomalies. The results of our studies indicate that factors in the different genetic backgrounds contribute extensively to the Tcof1 phenotype. Copyright 2004 Wiley-Liss, Inc.
H syndrome: the first 79 patients.
Molho-Pessach, Vered; Ramot, Yuval; Camille, Frances; Doviner, Victoria; Babay, Sofia; Luis, Siekavizza Juan; Broshtilova, Valentina; Zlotogorski, Abraham
2014-01-01
H syndrome is an autosomal recessive genodermatosis with multisystem involvement caused by mutations in SLC29A3. We sought to investigate the clinical and molecular findings in 79 patients with this disorder. A total of 79 patients were included, of which 13 are newly reported cases. Because of the phenotypic similarity and molecular overlap with H syndrome, we included 18 patients with allelic disorders. For 31 patients described by others, data were gathered from the medical literature. The most common clinical features (>45% of patients) were hyperpigmentation, phalangeal flexion contractures, hearing loss, and short stature. Insulin-dependent diabetes mellitus and lymphadenopathy mimicking Rosai-Dorfman disease were each found in approximately 20%. Additional systemic features were described in less than 15% of cases. Marked interfamilial and intrafamilial clinical variability exists. Twenty mutations have been identified in SLC29A3, with no genotype-phenotype correlation. In the 31 patients described by others, data were collected from the medical literature. H syndrome is a multisystemic disease with clinical variability. Consequently, all SLC29A3-related diseases should be considered a single entity. Recognition of the pleomorphic nature of H syndrome is important for diagnosis of additional patients. Copyright © 2013 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Wiley, Christopher D; Flynn, James M; Morrissey, Christapher; Lebofsky, Ronald; Shuga, Joe; Dong, Xiao; Unger, Marc A; Vijg, Jan; Melov, Simon; Campisi, Judith
2017-10-01
Senescent cells play important roles in both physiological and pathological processes, including cancer and aging. In all cases, however, senescent cells comprise only a small fraction of tissues. Senescent phenotypes have been studied largely in relatively homogeneous populations of cultured cells. In vivo, senescent cells are generally identified by a small number of markers, but whether and how these markers vary among individual cells is unknown. We therefore utilized a combination of single-cell isolation and a nanofluidic PCR platform to determine the contributions of individual cells to the overall gene expression profile of senescent human fibroblast populations. Individual senescent cells were surprisingly heterogeneous in their gene expression signatures. This cell-to-cell variability resulted in a loss of correlation among the expression of several senescence-associated genes. Many genes encoding senescence-associated secretory phenotype (SASP) factors, a major contributor to the effects of senescent cells in vivo, showed marked variability with a subset of highly induced genes accounting for the increases observed at the population level. Inflammatory genes in clustered genomic loci showed a greater correlation with senescence compared to nonclustered loci, suggesting that these genes are coregulated by genomic location. Together, these data offer new insights into how genes are regulated in senescent cells and suggest that single markers are inadequate to identify senescent cells in vivo. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Fitzpatrick, Christopher J; Gopalakrishnan, Shyam; Cogan, Elizabeth S; Yager, Lindsay M; Meyer, Paul J; Lovic, Vedran; Saunders, Benjamin T; Parker, Clarissa C; Gonzales, Natalia M; Aryee, Emmanuel; Flagel, Shelly B; Palmer, Abraham A; Robinson, Terry E; Morrow, Jonathan D
2013-01-01
Even when trained under exactly the same conditions outbred male Sprague-Dawley (SD) rats vary in the form of the Pavlovian conditioned approach response (CR) they acquire. The form of the CR (i.e. sign-tracking vs. goal-tracking) predicts to what degree individuals attribute incentive salience to cues associated with food or drugs. However, we have noticed variation in the incidence of these two phenotypes in rats obtained from different vendors. In this study, we quantified sign- and goal-tracking behavior in a reasonably large sample of SD rats obtained from two vendors (Harlan or Charles River), as well as from individual colonies operated by both vendors. Our sample of rats acquired from Harlan had, on average, more sign-trackers than goal-trackers, and vice versa for our sample of rats acquired from Charles River. Furthermore, there were significant differences among colonies of the same vendor. Although it is impossible to rule out environmental variables, SD rats at different vendors and barriers may have reduced phenotypic heterogeneity as a result of genetic variables, such as random genetic drift or population bottlenecks. Consistent with this hypothesis, we identified marked population structure among colonies from Harlan. Therefore, despite sharing the same name, investigators should be aware that important genetic and phenotypic differences exist among SD rats from different vendors or even from different colonies of the same vendor. If used judiciously this can be an asset to experimental design, but it can also be a pitfall for those unaware of the issue.
Vikram, Naval K; Misra, Anoop; Pandey, Ravindra M; Luthra, Kalpana; Wasir, Jasjeet S; Dhingra, Vibha
2006-05-01
To assess the phenotypic correlations of insulin resistance with obesity and its relationship with the metabolic syndrome in Asian Indian adolescents. We analyzed clinical, anthropometric (body mass index [BMI], waist circumference [WC]) and laboratory (fasting blood glucose [FBG], lipids and fasting serum insulin) data from 793 subjects (401 males and 392 females) aged 14-19 years randomly selected from Epidemiological Study of Adolescents and Young (ESAY) adults (n=1447). The percentile cut-offs for 14-19 years age from ESAY cohort were used for defining abnormal values of variables. We devised three sets of definitions of metabolic syndrome by including BMI and fasting insulin levels with other defining variables. Nearly 28.9% of adolescents had fasting hyperinsulinemia despite normal values of BMI, WC, FBG, lipids, and blood pressure. Remarkably, NCEP criteria with appropriate percentile cut-off points for Asian Indian adolescents identified metabolic syndrome in only six (0.8%) subjects. Inclusion of both BMI and WC in the definition resulted in increase in the prevalence of metabolic syndrome to 4.3%. With inclusion of hyperinsulinemia, the prevalence of metabolic syndrome increased to 4.2% (from 0.8%) in the modified NCEP definition, 5.2% (from 0.9%) when BMI was substituted for WC, and 10.2 (from 4.3%) when both BMI and WC were included. Our data show marked heterogeneity of phenotypes of insulin resistance and poor value of NCEP definition to identify metabolic syndrome. We propose that BMI and fasting insulin should be evaluated in candidate definitions of metabolic syndrome in Asian Indian adolescents.
Geographical variation in neonatal phenotype
Leary, Sam; Fall, Caroline; Osmond, Clive; Lovel, Hermione; Campbell, Doris; Eriksson, Johan; Forrester, Terrence; Godfrey, Keith; Hill, Jacqui; Jie, Mi; Law, Catherine; Newby, Rachel; Robinson, Sian; Yajnik, Chittaranjan
2009-01-01
Background Recent studies have shown associations between size and body proportions at birth and health outcomes throughout the life cycle, but there are few data on how neonatal phenotype varies in different populations around the world. Methods Data from the UK, Finland, India, Sri Lanka, China, DR Congo, Nigeria and Jamaica (N=22 067) were used to characterise geographical differences in phenotype in singleton, liveborn newborns. Measurements included birthweight, placental weight, length, head, chest, abdominal and arm circumferences and skinfolds. Results Neonates in Europe were the largest, followed by Jamaica, East Asia (China), then Africa and South Asia. Birthweight varied widely (mean values 2730g to 3570g), but in contrast, head circumference was similar in all except China (markedly smaller). The main difference in body proportions between populations was the head to length ratio, with small heads relative to length in China and large heads relative to length in South Asia and Africa. Conclusions These marked geographical differences in neonatal phenotype need to be considered when investigating determinants of fetal growth, and optimal phenotype for short-term and long-term outcomes. PMID:16929412
A simple algorithm for the identification of clinical COPD phenotypes.
Burgel, Pierre-Régis; Paillasseur, Jean-Louis; Janssens, Wim; Piquet, Jacques; Ter Riet, Gerben; Garcia-Aymerich, Judith; Cosio, Borja; Bakke, Per; Puhan, Milo A; Langhammer, Arnulf; Alfageme, Inmaculada; Almagro, Pere; Ancochea, Julio; Celli, Bartolome R; Casanova, Ciro; de-Torres, Juan P; Decramer, Marc; Echazarreta, Andrés; Esteban, Cristobal; Gomez Punter, Rosa Mar; Han, MeiLan K; Johannessen, Ane; Kaiser, Bernhard; Lamprecht, Bernd; Lange, Peter; Leivseth, Linda; Marin, Jose M; Martin, Francis; Martinez-Camblor, Pablo; Miravitlles, Marc; Oga, Toru; Sofia Ramírez, Ana; Sin, Don D; Sobradillo, Patricia; Soler-Cataluña, Juan J; Turner, Alice M; Verdu Rivera, Francisco Javier; Soriano, Joan B; Roche, Nicolas
2017-11-01
This study aimed to identify simple rules for allocating chronic obstructive pulmonary disease (COPD) patients to clinical phenotypes identified by cluster analyses.Data from 2409 COPD patients of French/Belgian COPD cohorts were analysed using cluster analysis resulting in the identification of subgroups, for which clinical relevance was determined by comparing 3-year all-cause mortality. Classification and regression trees (CARTs) were used to develop an algorithm for allocating patients to these subgroups. This algorithm was tested in 3651 patients from the COPD Cohorts Collaborative International Assessment (3CIA) initiative.Cluster analysis identified five subgroups of COPD patients with different clinical characteristics (especially regarding severity of respiratory disease and the presence of cardiovascular comorbidities and diabetes). The CART-based algorithm indicated that the variables relevant for patient grouping differed markedly between patients with isolated respiratory disease (FEV 1 , dyspnoea grade) and those with multi-morbidity (dyspnoea grade, age, FEV 1 and body mass index). Application of this algorithm to the 3CIA cohorts confirmed that it identified subgroups of patients with different clinical characteristics, mortality rates (median, from 4% to 27%) and age at death (median, from 68 to 76 years).A simple algorithm, integrating respiratory characteristics and comorbidities, allowed the identification of clinically relevant COPD phenotypes. Copyright ©ERS 2017.
2011-10-01
the hypothesis that SJL mice would have impaired neuronal dendrite generation, as has been observed in autism . This was our prediction due to the...phenotype for Autism and related alterations in CNS development PRINCIPAL INVESTIGATOR: Mark D. Noble, Ph.D. CONTRACTING...SUBTITLE Redox abnormalities as a vulnerability phenotype for Autism 5a. CONTRACT NUMBER And related alterations in CNS development 5b. GRANT
Spondyloenchondrodysplasia Due to Mutations in ACP5: A Comprehensive Survey.
Briggs, Tracy A; Rice, Gillian I; Adib, Navid; Ades, Lesley; Barete, Stephane; Baskar, Kannan; Baudouin, Veronique; Cebeci, Ayse N; Clapuyt, Philippe; Coman, David; De Somer, Lien; Finezilber, Yael; Frydman, Moshe; Guven, Ayla; Heritier, Sébastien; Karall, Daniela; Kulkarni, Muralidhar L; Lebon, Pierre; Levitt, David; Le Merrer, Martine; Linglart, Agnes; Livingston, John H; Navarro, Vincent; Okenfuss, Ericka; Puel, Anne; Revencu, Nicole; Scholl-Bürgi, Sabine; Vivarelli, Marina; Wouters, Carine; Bader-Meunier, Brigitte; Crow, Yanick J
2016-04-01
Spondyloenchondrodysplasia is a rare immuno-osseous dysplasia caused by biallelic mutations in ACP5. We aimed to provide a survey of the skeletal, neurological and immune manifestations of this disease in a cohort of molecularly confirmed cases. We compiled clinical, genetic and serological data from a total of 26 patients from 18 pedigrees, all with biallelic ACP5 mutations. We observed a variability in skeletal, neurological and immune phenotypes, which was sometimes marked even between affected siblings. In total, 22 of 26 patients manifested autoimmune disease, most frequently autoimmune thrombocytopenia and systemic lupus erythematosus. Four patients were considered to demonstrate no clinical autoimmune disease, although two were positive for autoantibodies. In the majority of patients tested we detected upregulated expression of interferon-stimulated genes (ISGs), in keeping with the autoimmune phenotype and the likely immune-regulatory function of the deficient protein tartrate resistant acid phosphatase (TRAP). Two mutation positive patients did not demonstrate an upregulation of ISGs, including one patient with significant autoimmune disease controlled by immunosuppressive therapy. Our data expand the known phenotype of SPENCD. We propose that the OMIM differentiation between spondyloenchondrodysplasia and spondyloenchondrodysplasia with immune dysregulation is no longer appropriate, since the molecular evidence that we provide suggests that these phenotypes represent a continuum of the same disorder. In addition, the absence of an interferon signature following immunomodulatory treatments in a patient with significant autoimmune disease may indicate a therapeutic response important for the immune manifestations of spondyloenchondrodysplasia.
Tavano, Alessandro; Gagliardi, Chiara; Martelli, Sara; Borgatti, Renato
2010-09-01
The neurocognitive profile of Williams-Beuren syndrome (WBS) is characterized by visuospatial deficits, apparently fluent language, motor soft signs, and hypersociability. We investigated the association between neuromotor soft signs and visuospatial, executive-attentive, mnestic and linguistic functions in a group of 26 children and young adults with WBS. We hypothesized that neurological soft signs could be an index of subtle neurofunctional deficits and thus provide a behavioural window into the processes underlying neurocognition in Williams-Beuren syndrome. Dysmetria and dystonic movements were selected as grouping neurological variables, indexing cerebellar and basal ganglia dysfunction, respectively. No detrimental effects on visuospatial/visuoconstructive skills were evident following the presence of either neurological variable. As for language skills, participants with dysmetria showed markedly reduced expressive syntactic and lexico-semantic skills as compared to non-affected individuals, while no difference in chronological age was evident. Participants with dystonic movements showed reduced receptive syntax and increased lexical comprehension skills as compared to non-affected individuals, the age factor being significant. In both instances, the effect size was greater for syntactic measures. We take these novel findings as suggestive of a double dissociation between expressive and receptive skills at sentence level within the WBS linguistic phenotype. The investigation of neuromotor soft signs and neuropsychological functions may provide a key to new non-cortico-centric genotype/phenotype relationships. Copyright 2010 Elsevier Ltd. All rights reserved.
[Epigenetics 2.0: The multiple faces of the genome].
Rubinstein, Marcelo
2016-09-01
Epigenetics is the branch of genetics that studies the dynamic relationship between stable genotypes and varying phenotypes. To this end, epigenetics aims to discover the molecular mechanisms that explain how different nutrients and hormones, environmental changes, and emotional, social and cognitive experiences modify gene expression and behaviors, even permanently so. Psychiatry has learned that diseases with strong genetic predisposition, such as schizophrenia, show a concordance of around 50% between monozygotic twins, thus evidencing the importance of the genetic background and the presence of environmental variables that stimulate or block phenotypic development. The interest in epigenetics has increased during the last few years due to fundamental discoveries made in molecular and behavioral genetics, although within this framework factual knowledge coexists with fictional expectations and wrong concepts. Is it possible that epigenetic variants modify temperament and human behavior? May abused or neglected children develop long-lasting epigenetic marks in their DNA? May bipolar states correlate with different epigenetic signatures? Studying these subjects in not an easy task, but experiments performed in lab animals suggest that these conjectures are reasonable, although there is still a long distance between hypotheses and scientifically proven facts.
McParland, D; Phillips, C M; Brennan, L; Roche, H M; Gormley, I C
2017-12-10
The LIPGENE-SU.VI.MAX study, like many others, recorded high-dimensional continuous phenotypic data and categorical genotypic data. LIPGENE-SU.VI.MAX focuses on the need to account for both phenotypic and genetic factors when studying the metabolic syndrome (MetS), a complex disorder that can lead to higher risk of type 2 diabetes and cardiovascular disease. Interest lies in clustering the LIPGENE-SU.VI.MAX participants into homogeneous groups or sub-phenotypes, by jointly considering their phenotypic and genotypic data, and in determining which variables are discriminatory. A novel latent variable model that elegantly accommodates high dimensional, mixed data is developed to cluster LIPGENE-SU.VI.MAX participants using a Bayesian finite mixture model. A computationally efficient variable selection algorithm is incorporated, estimation is via a Gibbs sampling algorithm and an approximate BIC-MCMC criterion is developed to select the optimal model. Two clusters or sub-phenotypes ('healthy' and 'at risk') are uncovered. A small subset of variables is deemed discriminatory, which notably includes phenotypic and genotypic variables, highlighting the need to jointly consider both factors. Further, 7 years after the LIPGENE-SU.VI.MAX data were collected, participants underwent further analysis to diagnose presence or absence of the MetS. The two uncovered sub-phenotypes strongly correspond to the 7-year follow-up disease classification, highlighting the role of phenotypic and genotypic factors in the MetS and emphasising the potential utility of the clustering approach in early screening. Additionally, the ability of the proposed approach to define the uncertainty in sub-phenotype membership at the participant level is synonymous with the concepts of precision medicine and nutrition. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Cadier, Mathilde; Sourisseau, Marc; Gorgues, Thomas; Edwards, Christopher A.; Memery, Laurent
2017-05-01
Tidal front ecosystems are especially dynamic environments usually characterized by high phytoplankton biomass and high primary production. However, the description of functional microbial diversity occurring in these regions remains only partially documented. In this article, we use a numerical model, simulating a large number of phytoplankton phenotypes to explore the three-dimensional spatial patterns of phytoplankton abundance and diversity in the Iroise Sea (western Brittany). Our results suggest that, in boreal summer, a seasonally marked tidal front shapes the phytoplankton species richness. A diversity maximum is found in the surface mixed layer located slightly west of the tidal front (i.e., not strictly co-localized with high biomass concentrations) which separates tidally mixed from stratified waters. Differences in phenotypic composition between sub-regions with distinct hydrodynamic regimes (defined by vertical mixing, nutrients gradients and light penetration) are discussed. Local growth and/or physical transport of phytoplankton phenotypes are shown to explain our simulated diversity distribution. We find that a large fraction (64%) of phenotypes present during the considered period of September are ubiquitous, found in the frontal area and on both sides of the front (i.e., over the full simulated domain). The frontal area does not exhibit significant differences between its community composition and that of either the well-mixed region or an offshore Deep Chlorophyll Maximum (DCM). Only three phenotypes (out of 77) specifically grow locally and are found at substantial concentration only in the surface diversity maximum. Thus, this diversity maximum is composed of a combination of ubiquitous phenotypes with specific picoplankton deriving from offshore, stratified waters (including specific phenotypes from both the surface and the DCM) and imported through physical transport, completed by a few local phenotypes. These results are discussed in light of the three-dimensional general circulation at frontal interfaces. Processes identified by this study are likely to be common in tidal front environments and may be generalized to other shallow, tidally mixed environments worldwide.
Variable Phenotype in Murine Transverse Aortic Constriction (TAC)
Mohammed, Selma F.; Storlie, Jimmy R.; Oehler, Elise A.; Bowen, Lorna A.; Korinek, Josef; Lam, Carolyn SP; Simari, Robert D.; Burnett, John C.; Redfield, Margaret M.
2012-01-01
Background In mice, transverse aortic constriction (TAC) is variably characterized as a model of pressure overload induced hypertrophy (LVH) or heart failure (HF). While commonly used, variability in the TAC model is poorly defined. The objectives of this study were to characterize the variability in the TAC model and to define a simple, non-invasive method of prospectively identifying mice with HF versus compensated LVH after TAC. Methods Eight week old, male C57BL/6J mice underwent TAC or SHAM and then echo at three weeks post-TAC. A group of SHAM and TAC mice were sacrificed after the three week echocardiogram, while the remainder underwent repeat echo and sacrifice at nine weeks post-TAC. The presence of TAC was assessed with 2 dimensional echo, anatomic aortic m-mode and color flow and pulsed-wave Doppler examination of the transverse aorta (TA) and by LV systolic pressure (LVP). Trans-TAC pressure gradient was assessed invasively in a subset. HF was defined as lung/body weight > upper limit in SHAM operated mice. Results As compared to SHAM, TAC mice had higher TA velocity, LVP and LV weight and lower ejection fraction (EF) at three or nine weeks post-TAC. Only a subset of TAC mice (28%) developed HF. As compared to compensated LVH, HF mice were characterized by similar TA velocity and higher percent TA stenosis, but lower LVP, higher LV weight, larger LV cavity, lower EF and stress-corrected midwall fiber shortening and more fibrosis. Both EF and LV mass measured by echo at three weeks post-TAC were predictive of the presence of HF at three or nine weeks post-TAC. Conclusions In wild type mice, TAC produces a variable cardiac phenotype. Marked abnormalities in LV mass and EF at echo three weeks post-TAC identify mice with HF at autopsy. These data are relevant to appropriate design and interpretation of murine studies. PMID:21764606
Variable phenotype in murine transverse aortic constriction.
Mohammed, Selma F; Storlie, Jimmy R; Oehler, Elise A; Bowen, Lorna A; Korinek, Josef; Lam, Carolyn S P; Simari, Robert D; Burnett, John C; Redfield, Margaret M
2012-01-01
In mice, transverse aortic constriction (TAC) is variably characterized as a model of pressure overload-induced hypertrophy (left ventricular [LV] hypertrophy, or LVH) or heart failure (HF). While commonly used, variability in the TAC model is poorly defined. The objectives of this study were to characterize the variability in the TAC model and to define a simple, noninvasive method of prospectively identifying mice with HF versus compensated LVH after TAC. Eight-week-old male C57BL/6J mice underwent TAC or sham and then echocardiography at 3 weeks post-TAC. A group of sham and TAC mice were euthanized after the 3-week echocardiogram, while the remainder underwent repeat echocardiography and were euthanized at 9 weeks post-TAC. The presence of TAC was assessed with two-dimensional echocardiography, anatomic aortic m-mode and color flow, and pulsed-wave Doppler examination of the transverse aorta (TA) and by LV systolic pressure (LVP). Trans-TAC pressure gradient was assessed invasively in a subset of mice. HF was defined as lung/body weight>upper limit in sham-operated mice. As compared with sham, TAC mice had higher TA velocity, LVP and LV weight, and lower ejection fraction (EF) at 3 or 9 weeks post-TAC. Only a subset of TAC mice (28%) developed HF. As compared with compensated LVH, HF mice were characterized by similar TA velocity and higher percent TA stenosis, but lower LVP, higher LV weight, larger LV cavity, lower EF and stress-corrected midwall fiber shortening, and more fibrosis. Both EF and LV mass measured by echocardiography at 3 weeks post-TAC were predictive of the presence of HF at 3 or 9 weeks post-TAC. In wild-type mice, TAC produces a variable cardiac phenotype. Marked abnormalities in LV mass and EF at echocardiography 3 weeks post-TAC identify mice with HF at autopsy. These data are relevant to appropriate design and interpretation of murine studies. Copyright © 2012 Elsevier Inc. All rights reserved.
García-Alzate, Roberto; Lozano-Arias, Daisy; Reyes-Lugo, Rafael Matías; Morocoima, Antonio; Herrera, Leidi; Mendoza-León, Alexis
2014-01-01
Triatoma maculata is a wild vector of Trypanosoma cruzi, the causative agent of Chagas disease; its incursion in the domestic habitat is scant. In order to establish the possible domestic habitat of T. maculata, we evaluated wing variability and polymorphism of genotypic markers in subpopulations of T. maculata that live in different habitats in Venezuela. As markers, we used the mtCyt b gene, previously apply to evaluate population genetic structure in triatomine species, and the β-tubulin gene region, a marker employed to study genetic variability in Leishmania subgenera. Adults of T. maculata were captured in the period 2012–2013 at domestic, peridomestic (PD), and wild areas of towns in the Venezuelan states of Anzoátegui, Bolívar, Portuguesa, Monagas, Nueva Esparta, and Sucre. The phenotypic analysis was conducted through the determination of the isometric size and conformation of the left wing of each insect (492 individuals), using the MorphoJ program. Results reveal that insects of the domestic habitat showed significant reductions in wing size and variations in anatomical characteristics associated with flying, in relation to the PD and wild habitats. The largest variability was found in Anzoátegui and Monagas. The genotypic variability was assessed by in silico sequence comparison of the molecular markers and PCR-RFLP assays, demonstrating a marked polymorphism for the markers in insects of the domestic habitat in comparison with the other habitats. The highest polymorphism was found for the β-tubulin marker with enzymes BamHI and KpnI. Additionally, the infection rate by T. cruzi was higher in Monagas and Sucre (26.8 and 37.0%, respectively), while in domestic habitats the infestation rate was highest in Anzoátegui (22.3%). Results suggest domestic habitat colonization by T. maculata that in epidemiological terms, coupled with the presence in this habitat of nymphs of the vector, represents a high risk of transmission of Chagas disease. PMID:25325053
Katsanos, Dimitris; Koneru, Sneha L.; Mestek Boukhibar, Lamia; Gritti, Nicola; Ghose, Ritobrata; Appleford, Peter J.; Doitsidou, Maria; Woollard, Alison; van Zon, Jeroen S.; Poole, Richard J.
2017-01-01
Biological systems are subject to inherent stochasticity. Nevertheless, development is remarkably robust, ensuring the consistency of key phenotypic traits such as correct cell numbers in a certain tissue. It is currently unclear which genes modulate phenotypic variability, what their relationship is to core components of developmental gene networks, and what is the developmental basis of variable phenotypes. Here, we start addressing these questions using the robust number of Caenorhabditis elegans epidermal stem cells, known as seam cells, as a readout. We employ genetics, cell lineage tracing, and single molecule imaging to show that mutations in lin-22, a Hes-related basic helix-loop-helix (bHLH) transcription factor, increase seam cell number variability. We show that the increase in phenotypic variability is due to stochastic conversion of normally symmetric cell divisions to asymmetric and vice versa during development, which affect the terminal seam cell number in opposing directions. We demonstrate that LIN-22 acts within the epidermal gene network to antagonise the Wnt signalling pathway. However, lin-22 mutants exhibit cell-to-cell variability in Wnt pathway activation, which correlates with and may drive phenotypic variability. Our study demonstrates the feasibility to study phenotypic trait variance in tractable model organisms using unbiased mutagenesis screens. PMID:29108019
BOOT-HANDFORD, R. P.; MICHAELIDIS, T. M.; HILLARBY, M. C.; ZAMBELLI, A.; DENTON, J.; HOYLAND, J. A.; FREEMONT, A. J.; GRANT, M. E.; WALLIS, G. A.
1998-01-01
Histological examination of long bones from 1-day-old bcl-2 knockout and age-matched control mice revealed no obvious differences in length of bone, growth plate architecture or stage of endochondral ossification. In 35-day-old bcl-2 knockout mice that are growth retarded or ‘dwarfed’, the proliferative zone of the growth plate appeared slightly thinner and the secondary centres of ossification less well developed than their age-matched wild-type controls. The most marked histological effects of bcl-2 ablation were on osteoblasts and bone. 35-day-old knockout mouse bones exhibited far greater numbers of osteoblasts than controls and the osteoblasts had a cuboidal phenotype in comparison with the normal flattened cell appearance. In addition, the collagen deposited by the osteoblasts in the bcl-2 knockout mouse bone was disorganized in comparison with control tissue and had a pseudo-woven appearance. The results suggest an important role for Bcl-2 in controlling osteoblast phenotype and bone deposition in vivo. PMID:10193316
Eisenkraft, Arik; Pode-Shakked, Ben; Goldstein, Nurit; Shpirer, Zvi; van Bokhoven, Hans; Anikster, Yair
2015-01-01
Mutations in the TP63 gene have been associated with a variety of ectodermal dysplasia syndromes, among which the clinically overlapping Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) and the Rapp-Hodgkin syndromes. We report a multiplex nonconsanguineous family of Ashkenazi-Jewish descent, in which the index patient presented with a persistent scalp skin lesion, dystrophic nails and light thin hair. Further evaluation revealed over 10 affected individuals in the kindred, over four generations, exhibiting varying degrees of ectodermal involvement. Analysis of the TP63 gene from four of the patients and from two healthy individuals of the same family was performed. Gene sequencing of the patients revealed a nonsense mutation leading to a premature termination codon (PTC) (p.Gln16X). The same mutation was found in all tested affected individuals in the family, but gave rise to marked phenotypic variability with minor clinical manifestations in some individuals, underscoring the clinical heterogeneity associated with the recently described PTC-causing mutations.
Joubert syndrome: congenital cerebellar ataxia with the “molar tooth”
Romani, Marta; Micalizzi, Alessia; Valente, Enza Maria
2013-01-01
Joubert syndrome (JS) is a congenital cerebellar ataxia with autosomal recessive or X-linked inheritance, which diagnostic hallmark is a unique cerebellar and brainstem malformation recognizable on brain imaging, the “molar tooth sign”. Neurological signs are present from neonatal age and include hypotonia evolving into ataxia, global developmental delay, ocular motor apraxia and breathing dysregulation. These are variably associated with multiorgan involvement, mainly of the retina, kidneys, skeleton and liver. To date, 21 causative genes have been identified, all encoding for proteins of the primary cilium or its apparatus. This is a subcellular organelle that plays key roles in development and in many cellular functions, making JS part of the expanding family of ciliopathies. There is marked clinical and genetic overlap among distinct ciliopathies, which may co-occur even within families. Such variability is likely explained by an oligogenic model of inheritance, in which mutations, rare variants and polymorphisms at distinct loci interplay to modulate the expressivity of the ciliary phenotype. PMID:23870701
Lennerz, Jochen K; Hurov, Jonathan B; White, Lynn S; Lewandowski, Katherine T; Prior, Julie L; Planer, G James; Gereau, Robert W; Piwnica-Worms, David; Schmidt, Robert E; Piwnica-Worms, Helen
2010-11-01
Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a(-/-) but not in control or Par-1b(-/-) mice. The intercrossing of Par-1a(-/-) with Par-1b(-/-) mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a(-/-) mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b(-/-) mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice.
Vieira, Natassia M; Guo, Ling T; Estrela, Elicia; Kunkel, Louis M; Zatz, Mayana; Shelton, G Diane
2015-05-01
Animal models of dystrophin deficient muscular dystrophy, most notably canine X-linked muscular dystrophy, play an important role in developing new therapies for human Duchenne muscular dystrophy. Although the canine disease is a model of the human disease, the variable severity of clinical presentations in the canine may be problematic for pre-clinical trials, but also informative. Here we describe a family of Labrador Retrievers with three generations of male dogs having markedly increased serum creatine kinase activity, absence of membrane dystrophin, but with undetectable clinical signs of muscle weakness. Clinically normal young male Labrador Retriever puppies were evaluated prior to surgical neuter by screening laboratory blood work, including serum creatine kinase activity. Serum creatine kinase activities were markedly increased in the absence of clinical signs of muscle weakness. Evaluation of muscle biopsies confirmed a dystrophic phenotype with both degeneration and regeneration. Further evaluations by immunofluorescence and western blot analysis confirmed the absence of muscle dystrophin. Although dystrophin was not identified in the muscles, we did not find any detectable deletions or duplications in the dystrophin gene. Sequencing is now ongoing to search for point mutations. Our findings in this family of Labrador Retriever dogs lend support to the hypothesis that, in exceptional situations, muscle with no dystrophin may be functional. Unlocking the secrets that protect these dogs from a severe clinical myopathy is a great challenge which may have important implications for future treatment of human muscular dystrophies. Copyright © 2015 Elsevier B.V. All rights reserved.
Life at the extreme limit: phenotypic characteristics of supercentenarians in Okinawa.
Willcox, D Craig; Willcox, Bradley J; Wang, Nien-Chiang; He, Qimei; Rosenbaum, Matthew; Suzuki, Makoto
2008-11-01
As elite representatives of the rapidly increasing "oldest-old" population, centenarians have become an important model population for understanding human aging. However, as we are beginning to understand more about this important phenotype, another demographic group of even more elite survivors is emerging-so-called "supercentenarians" or those who survive 110-plus years. Little is known about these exceptional survivors. We assessed the Okinawa Centenarian Study (OCS) database for all information on supercentenarians. The database includes dates of birth and year of death for all residents of Okinawa 99 years old or older and a yearly geriatric assessment of all centenarians who consented, enabling prospective study of age-related traits. Of 20 potential supercentenarians identified, 15 had agreed to participate in the OCS interview, physical examination, and blood draw. Of these 15, 12 (3 men and 9 women) met our age validation criteria and were accepted as supercentenarians. Phenotypic variables studied include medical and social history, activities of daily living (ADLs), and clinical phenotypes (physiology, hematology, biochemistry, and immunology). Age at death ranged from 110 to 112 years. The majority of supercentenarians had minimal clinically apparent disease until late in life, with cataracts (42%) and fractures (33%) being common and coronary heart disease (8%), stroke (8%), cancer (0%), and diabetes (0%) rare or not evident on clinical examination. Functionally, most supercentenarians were independent in ADLs at age 100 years, and few were institutionalized before the age of 105 years. Most had normal clinical parameters at age 100 years, but by age 105 exhibited multiple clinical markers of frailty coincident with a rapid ADL decline. Supercentenarians displayed an exceptionally healthy aging phenotype where clinically apparent major chronic diseases and disabilities were markedly delayed, often beyond age 100. They had little clinical history of cardiovascular disease and reported no history of cancer or diabetes. This phenotype is consistent with a more elite phenotype than has been observed in prior studies of centenarians. The genetic and environmental antecedents of this exceptionally healthy aging phenotype deserve further study.
Renvall, Hanna; Salmela, Elina; Vihla, Minna; Illman, Mia; Leinonen, Eira; Kere, Juha; Salmelin, Riitta
2012-10-17
Neural processes are explored through macroscopic neuroimaging and microscopic molecular measures, but the two levels remain primarily detached. The identification of direct links between the levels would facilitate use of imaging signals as probes of genetic function and, vice versa, access to molecular correlates of imaging measures. Neuroimaging patterns have been mapped for a few isolated genes, chosen based on their connection with a clinical disorder. Here we propose an approach that allows an unrestricted discovery of the genetic basis of a neuroimaging phenotype in the normal human brain. The essential components are a subject population that is composed of relatives and selection of a neuroimaging phenotype that is reproducible within an individual and similar between relatives but markedly variable across a population. Our present combined magnetoencephalography and genome-wide linkage study in 212 healthy siblings demonstrates that auditory cortical activation strength is highly heritable and, specifically in the right hemisphere, regulated oligogenically with linkages to chromosomes 2q37, 3p12, and 8q24. The identified regions delimit as candidate genes TRAPPC9, operating in neuronal differentiation, and ROBO1, regulating projections of thalamocortical axons. Identification of normal genetic variation underlying neurophysiological phenotypes offers a non-invasive platform for an in-depth, concerted capitalization of molecular and neuroimaging levels in exploring neural function.
Spinocerebellar Ataxia 27: A Review and Characterization of an Evolving Phenotype
Groth, Christopher L.; Berman, Brian D.
2018-01-01
Background Spinocerebellar ataxia (SCA) is an uncommon form of progressive cerebellar ataxia with multiple genetic causes and marked variability in phenotypic expression even across patients with identical genetic abnormalities. SCA27 is a recently identified SCA caused by mutations in the Fibroblast Growth Factor 14 gene, with a phenotypic expression that is only beginning to be fully appreciated. We report here a case of a 70-year-old male who presented with slowly worsening tremor and gait instability that began in his early adulthood along with additional features of parkinsonism on examination. Work-up revealed a novel pathogenic mutation in the Fibroblast Growth Factor 14 gene, and symptoms improved with amantadine and levodopa. We also provide a review of the literature in order to better characterize the phenotypic expression of this uncommon condition. Methods Case report and review of the literature. Results Review of the literature revealed a total of 32 previously reported clinical cases of SCA27. Including our case, we found that early-onset tremor (12.1 ± 10.5 years) was present in 95.8%, while gait ataxia tended to present later in life (23.7 ± 16.7 years) and was accompanied by limb ataxia, dysarthria, and nystagmus. Other features of SCA27 that may distinguish it from other SCAs include the potential for episodic ataxia, accompanying psychiatric symptoms, and cognitive impairment. Discussion Testing for SCA27 should be considered in individuals with ataxia who report tremor as an initial or early symptom, as well as those with additional findings of episodic ataxia, neuropsychiatric symptoms, or parkinsonism. PMID:29416937
Alves, Alexandre Alonso; Bhering, Leonardo Lopes; Rosado, Tatiana Barbosa; Laviola, Bruno Galvêas; Formighieri, Eduardo Fernandes; Cruz, Cosme Damião
2013-01-01
The genetic variability of the Brazilian physic nut (Jatropha curcas) germplasm bank (117 accessions) was assessed using a combination of phenotypic and molecular data. The joint dissimilarity matrix showed moderate correlation with the original matrices of phenotypic and molecular data. However, the correlation between the phenotypic dissimilarity matrix and the genotypic dissimilarity matrix was low. This finding indicated that molecular markers (RAPD and SSR) did not adequately sample the genomic regions that were relevant for phenotypic differentiation of the accessions. The dissimilarity values of the joint dissimilarity matrix were used to measure phenotypic + molecular diversity. This diversity varied from 0 to 1.29 among the 117 accessions, with an average dissimilarity among genotypes of 0.51. Joint analysis of phenotypic and molecular diversity indicated that the genetic diversity of the physic nut germplasm was 156% and 64% higher than the diversity estimated from phenotypic and molecular data, respectively. These results show that Jatropha genetic variability in Brazil is not as limited as previously thought. PMID:24130445
Alves, Alexandre Alonso; Bhering, Leonardo Lopes; Rosado, Tatiana Barbosa; Laviola, Bruno Galvêas; Formighieri, Eduardo Fernandes; Cruz, Cosme Damião
2013-09-01
The genetic variability of the Brazilian physic nut (Jatropha curcas) germplasm bank (117 accessions) was assessed using a combination of phenotypic and molecular data. The joint dissimilarity matrix showed moderate correlation with the original matrices of phenotypic and molecular data. However, the correlation between the phenotypic dissimilarity matrix and the genotypic dissimilarity matrix was low. This finding indicated that molecular markers (RAPD and SSR) did not adequately sample the genomic regions that were relevant for phenotypic differentiation of the accessions. The dissimilarity values of the joint dissimilarity matrix were used to measure phenotypic + molecular diversity. This diversity varied from 0 to 1.29 among the 117 accessions, with an average dissimilarity among genotypes of 0.51. Joint analysis of phenotypic and molecular diversity indicated that the genetic diversity of the physic nut germplasm was 156% and 64% higher than the diversity estimated from phenotypic and molecular data, respectively. These results show that Jatropha genetic variability in Brazil is not as limited as previously thought.
Phenotypic variability and selection of lipid-producing microalgae in a microfluidic centrifuge
NASA Astrophysics Data System (ADS)
Estévez-Torres, André.; Mestler, Troy; Austin, Robert H.
2010-03-01
Isogenic cells are known to display various expression levels that may result in different phenotypes within a population. Here we focus on the phenotypic variability of a species of unicellular algae that produce neutral lipids. Lipid-producing algae are one of the most promising sources of biofuel. We have implemented a simple microfluidic method to assess lipid-production variability in a population of algae that relays on density differences. We will discuss the reasons of this variability and address the promising avenues of this technique for directing the evolution of algae towards high lipid productivity.
Jørgensen, Agnete; Fagerheim, Toril; Rand-Hendriksen, Svend; Lunde, Per I; Vorren, Torgrim O; Pepin, Melanie G; Leistritz, Dru F; Byers, Peter H
2015-01-01
Vascular Ehlers–Danlos Syndrome (vEDS), also known as EDS type IV, is considered to be an autosomal dominant disorder caused by sequence variants in COL3A1, which encodes the chains of type III procollagen. We identified a family in which there was marked clinical variation with the earliest death due to extensive aortic dissection at age 15 years and other family members in their eighties with no complications. The proband was born with right-sided clubfoot but was otherwise healthy until he died unexpectedly at 15 years. His sister, in addition to signs consistent with vascular EDS, had bilateral frontal and parietal polymicrogyria. The proband and his sister each had two COL3A1 sequence variants, c.1786C>T, p.(Arg596*) in exon 26 and c.3851G>A, p.(Gly1284Glu) in exon 50 on different alleles. Cells from the compound heterozygote produced a reduced amount of type III procollagen, all the chains of which had abnormal electrophoretic mobility. Biallelic sequence variants have a significantly worse outcome than heterozygous variants for either null mutations or missense mutations, and frontoparietal polymicrogyria may be an added phenotype feature. This genetic constellation provides a very rare explanation for marked intrafamilial clinical variation due to sequence variants in COL3A1. PMID:25205403
Floyd, Michael D; Gervasini, Guillermo; Masica, Andrew L; Mayo, Gail; George, Alfred L; Bhat, Kolari; Kim, Richard B; Wilkinson, Grant R
2003-10-01
CYP3A activity in adults varies between individuals and it has been suggested that this has a genetic basis, possibly related to variant alleles in CYP3A4 and CYP3A5 genes. Accordingly, genotype-phenotype associations were investigated under constitutive and induced conditions. Midazolam's systemic and oral clearances, and the erythromycin breath test (ERBT) were determined in 57 healthy subjects: 23 (11 men, 12 women) European- and 34 (14 men, 20 women) African-Americans. Studies were undertaken in the basal state and after 14-15 days pretreatment with rifampin. DNA was characterized for the common polymorphisms CYP3A4*1B, CYP3A5*3, CYP3A5*6 and CYP3A5*7 by direct sequencing, and for exon 21 and exon 26 variants of MDR1 by allele-specific, real-time polymerase chain reaction. In 95% of subjects, the basal systemic clearance of midazolam was unimodally distributed and variability was less than four-fold whereas, in 98% of the study population, oral clearance varied five-fold. No population or sex-related differences were apparent. Similar findings were observed with the ERBT. Rifampin pretreatment markedly increased the systemic (two-fold) and oral clearance (16-fold) of midazolam, and the ERBT (two-fold) but the variabilities were unchanged. No associations were noted between these phenotypic measures and any of the studied genotypes, except for oral clearance and its fold-increase after rifampin. These were related to the presence of CYP3A4*1B and the inversely linked CYP3A5*3 polymorphism, with the extent of induction being approximately 50% greater in CYP3A5*3 homozygotes compared to wild-type subjects. In most healthy subjects, variability in intestinal and hepatic CYP3A activity, using midazolam as an in-vivo probe, is modest and common polymorphisms in CYP3A4 and CYP3A5 do not appear to have important functional significance.
Lennerz, Jochen K.; Hurov, Jonathan B.; White, Lynn S.; Lewandowski, Katherine T.; Prior, Julie L.; Planer, G. James; Gereau, Robert W.; Piwnica-Worms, David; Schmidt, Robert E.; Piwnica-Worms, Helen
2010-01-01
Par-1 is an evolutionarily conserved protein kinase required for polarity in worms, flies, frogs, and mammals. The mammalian Par-1 family consists of four members. Knockout studies of mice implicate Par-1b/MARK2/EMK in regulating fertility, immune homeostasis, learning, and memory as well as adiposity, insulin hypersensitivity, and glucose metabolism. Here, we report phenotypes of mice null for a second family member (Par-1a/MARK3/C-TAK1) that exhibit increased energy expenditure, reduced adiposity with unaltered glucose handling, and normal insulin sensitivity. Knockout mice were protected against high-fat diet-induced obesity and displayed attenuated weight gain, complete resistance to hepatic steatosis, and improved glucose handling with decreased insulin secretion. Overnight starvation led to complete hepatic glycogen depletion, associated hypoketotic hypoglycemia, increased hepatocellular autophagy, and increased glycogen synthase levels in Par-1a−/− but not in control or Par-1b−/− mice. The intercrossing of Par-1a−/− with Par-1b−/− mice revealed that at least one of the four alleles is necessary for embryonic survival. The severity of phenotypes followed a rank order, whereby the loss of one Par-1b allele in Par-1a−/− mice conveyed milder phenotypes than the loss of one Par-1a allele in Par-1b−/− mice. Thus, although Par-1a and Par-1b can compensate for one another during embryogenesis, their individual disruption gives rise to distinct metabolic phenotypes in adult mice. PMID:20733003
Pomaranski, E K; Reichley, S R; Yanong, R; Shelley, J; Pouder, D B; Wolf, J C; Kenelty, K V; Van Bonn, B; Oliaro, F; Byrne, B; Clothier, K A; Griffin, M J; Camus, A C; Soto, E
2018-01-01
Since 2012, low-to-moderate mortality associated with an Erysipelothrix sp. bacterium has been reported in ornamental fish. Histological findings have included facial cellulitis, necrotizing dermatitis and myositis, and disseminated coelomitis with abundant intralesional Gram-positive bacterial colonies. Sixteen Erysipelothrix sp. isolates identified phenotypically as E. rhusiopathiae were recovered from diseased cyprinid and characid fish. Similar clinical and histological changes were also observed in zebrafish, Danio rerio, challenged by intracoelomic injection. The Erysipelothrix sp. isolates from ornamental fish were compared phenotypically and genetically to E. rhusiopathiae and E. tonsillarum isolates recovered from aquatic and terrestrial animals from multiple facilities. Results demonstrated that isolates from diseased fish were largely clonal and divergent from E. rhusiopathiae and E. tonsillarum isolates from normal fish skin, marine mammals and terrestrial animals. All ornamental fish isolates were PCR positive for spaC, with marked genetic divergence (<92% similarity at gyrB, <60% similarity by rep-PCR) between the ornamental fish isolates and other Erysipelothrix spp. isolates. This study supports previous work citing the genetic variability of Erysipelothrix spp. spa types and suggests isolates from diseased ornamental fish may represent a genetically distinct species. © 2017 John Wiley & Sons Ltd.
No population genetic structure in a widespread aquatic songbird from the Neotropics
Cadena, Carlos Daniel; Gutierrez-Pinto, Natalia; Davila, Nicolas; Chesser, R. Terry
2011-01-01
Neotropical lowland organisms often show marked population genetic structure, suggesting restricted migration among populations. However, most phylogeographic studies have focused on species inhabiting humid forest interior. Little attention has been devoted to the study of species with ecologies conducive to dispersal, such as those of more open and variable environments associated with watercourses. Using mtDNA sequences, we examined patterns of genetic variation in a widely distributed Neotropical songbird of aquatic environments, the Yellow-hooded Blackbird (Icteridae, Chrysomus icterocephalus). In contrast to many forest species, Yellow-hooded Blackbirds showed no detectable genetic structure across their range, which includes lowland populations on both sides of the Andes, much of northeastern South America, Amazonia, as well as a phenotypically distinct highland population in Colombia. A coalescent-based analysis of the species indicated that its effective population size has increased considerably, suggesting a range expansion. Our results support the hypothesis that species occurring in open habitats and tracking temporally dynamic environments should show increased dispersal propensities (hence gene flow) relative to species from closed and more stable environments. The phenotypic and behavioral variation among populations of our study species appears to have arisen recently and perhaps in the face of gene flow.
Phenotypic Variability in the Coccolithophore Emiliania huxleyi.
Blanco-Ameijeiras, Sonia; Lebrato, Mario; Stoll, Heather M; Iglesias-Rodriguez, Debora; Müller, Marius N; Méndez-Vicente, Ana; Oschlies, Andreas
2016-01-01
Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean.
Phenotypic similarities and differences in patients with a p.Met112Ile mutation in SOX10.
Pingault, Veronique; Pierre-Louis, Laurence; Chaoui, Asma; Verloes, Alain; Sarrazin, Elisabeth; Brandberg, Goran; Bondurand, Nadege; Uldall, Peter; Manouvrier-Hanu, Sylvie
2014-09-01
Waardenburg syndrome (WS) is characterized by an association of pigmentation abnormalities and sensorineural hearing loss. Four types, defined on clinical grounds, have been delineated, but this phenotypic classification correlates imperfectly with known molecular anomalies. SOX10 mutations have been found in patients with type II and type IV WS (i.e., with Hirschsprung disease), more complex syndromes, and partial forms of the disease. The phenotype induced by SOX10 mutations is highly variable and, except for the neurological forms of the disease, no genotype-phenotype correlation has been characterized to date. There is no mutation hotspot in SOX10 and most cases are sporadic, making it particularly difficult to correlate the phenotypic and genetic variability. This study reports on three independent families with SOX10 mutations predicted to result in the same missense mutation at the protein level (p.Met112Ile), offering a rare opportunity to improve our understanding of the mechanisms underlying phenotypic variability. The pigmentation defects of these patients are very similar, and the neurological symptoms showed a somewhat similar evolution over time, indicating a potential partial genotype-phenotype correlation. However, variability in gastrointestinal symptoms suggests that other genetic factors contribute to the expression of these phenotypes. No correlation between the rs2435357 polymorphism of RET and the expression of Hirschsprung disease was found. In addition, one of the patients has esophageal achalasia, which has rarely been described in WS. © 2014 Wiley Periodicals, Inc.
Phenotypic similarities and differences in patients with a p.Met112Ile mutation in SOX10
Pingault, Veronique; Pierre-Louis, Laurence; Chaoui, Asma; Verloes, Alain; Sarrazin, Elisabeth; Brandberg, Goran; Bondurand, Nadege; Uldall, Peter; Manouvrier-Hanu, Sylvie
2014-01-01
Waardenburg syndrome (WS) is characterized by an association of pigmentation abnormalities and sensorineural hearing loss. Four types, defined on clinical grounds, have been delineated, but this phenotypic classification correlates imperfectly with known molecular anomalies. SOX10 mutations have been found in patients with type II and type IV WS (i.e., with Hirschsprung disease), more complex syndromes, and partial forms of the disease. The phenotype induced by SOX10 mutations is highly variable and, except for the neurological forms of the disease, no genotype-phenotype correlation has been characterized to date. There is no mutation hotspot in SOX10 and most cases are sporadic, making it particularly difficult to correlate the phenotypic and genetic variability. This study reports on three independent families with SOX10 mutations predicted to result in the same missense mutation at the protein level (p.Met112Ile), offering a rare opportunity to improve our understanding of the mechanisms underlying phenotypic variability. The pigmentation defects of these patients are very similar, and the neurological symptoms showed a somewhat similar evolution over time, indicating a potential partial genotype-phenotype correlation. However, variability in gastrointestinal symptoms suggests that other genetic factors contribute to the expression of these phenotypes. No correlation between the rs2435357 polymorphism of RET and the expression of Hirschsprung disease was found. In addition, one of the patients has esophageal achalasia, which has rarely been described in WS. PMID:24845202
Kannenberg, Frank; Gorzelniak, Kerstin; Jäger, Kathrin; Fobker, Manfred; Rust, Stephan; Repa, Joyce; Roth, Mike; Björkhem, Ingemar; Walter, Michael
2013-01-01
We compared the consequences of an ABCA1 mutation that produced an apparent lack of atherosclerosis (Tangier family 1, N935S) with an ABCA1 mutation with functional ABCA1 knockout that was associated with severe atherosclerosis (Tangier family 2, Leu548:Leu575-End), using primary and telomerase-immortalized fibroblasts. Telomerase-immortalized Tangier fibroblasts of family 1 (TT1) showed 30% residual cholesterol efflux capacity in response to apolipoprotein A-I, whereas telomerase-immortalized Tangier fibroblasts of family 2 (TT2) showed only 20%. However, there were a number of secondary differences that were often stronger and may help to explain the more rapid development of atherosclerosis in family 2. First, the total cellular cholesterol content increase was 2–3-fold and 3–5-fold in TT1 and TT2 cells, respectively. The corresponding increase in esterified cholesterol concentration was 10- and 40-fold, respectively. Second, 24-, 25-, and 27-hydroxycholesterol concentrations were moderately increased in TT1 cells, but were increased as much as 200-fold in TT2 cells. Third, cholesterol biosynthesis was moderately decreased in TT1 cells, but was markedly decreased in TT2 cells. Fourth, potentially atheroprotective LXR-dependent SREBP1c signaling was normal in TT1, but was rather suppressed in TT2 cells. Cultivated primary Tangier fibroblasts were characterized by premature aging in culture and were associated with less obvious biochemical differences. In summary, these results may help to understand the differential atherosclerotic susceptibility in Tangier disease and further demonstrate the usefulness of telomerase-immortalized cells in studying this cellular phenotype. The data support the contention that side chain-oxidized oxysterols are strong suppressors of cholesterol biosynthesis under specific pathological conditions in humans. PMID:24196952
Kannenberg, Frank; Gorzelniak, Kerstin; Jäger, Kathrin; Fobker, Manfred; Rust, Stephan; Repa, Joyce; Roth, Mike; Björkhem, Ingemar; Walter, Michael
2013-12-27
We compared the consequences of an ABCA1 mutation that produced an apparent lack of atherosclerosis (Tangier family 1, N935S) with an ABCA1 mutation with functional ABCA1 knockout that was associated with severe atherosclerosis (Tangier family 2, Leu(548):Leu(575)-End), using primary and telomerase-immortalized fibroblasts. Telomerase-immortalized Tangier fibroblasts of family 1 (TT1) showed 30% residual cholesterol efflux capacity in response to apolipoprotein A-I, whereas telomerase-immortalized Tangier fibroblasts of family 2 (TT2) showed only 20%. However, there were a number of secondary differences that were often stronger and may help to explain the more rapid development of atherosclerosis in family 2. First, the total cellular cholesterol content increase was 2-3-fold and 3-5-fold in TT1 and TT2 cells, respectively. The corresponding increase in esterified cholesterol concentration was 10- and 40-fold, respectively. Second, 24-, 25-, and 27-hydroxycholesterol concentrations were moderately increased in TT1 cells, but were increased as much as 200-fold in TT2 cells. Third, cholesterol biosynthesis was moderately decreased in TT1 cells, but was markedly decreased in TT2 cells. Fourth, potentially atheroprotective LXR-dependent SREBP1c signaling was normal in TT1, but was rather suppressed in TT2 cells. Cultivated primary Tangier fibroblasts were characterized by premature aging in culture and were associated with less obvious biochemical differences. In summary, these results may help to understand the differential atherosclerotic susceptibility in Tangier disease and further demonstrate the usefulness of telomerase-immortalized cells in studying this cellular phenotype. The data support the contention that side chain-oxidized oxysterols are strong suppressors of cholesterol biosynthesis under specific pathological conditions in humans.
DOT National Transportation Integrated Search
2010-11-01
Previous research on pavement markings from a safety perspective tackled various issues such as pavement marking retroreflectivity : variability, relationship between pavement marking retroreflectivity and driver visibility, or pavement marking impro...
Kirwan, Laura; Walsh, Marianne C; Celis-Morales, Carlos; Marsaux, Cyril F M; Livingstone, Katherine M; Navas-Carretero, Santiago; Fallaize, Rosalind; O'Donovan, Clare B; Woolhead, Clara; Forster, Hannah; Kolossa, Silvia; Daniel, Hannelore; Moschonis, George; Manios, Yannis; Surwillo, Agnieszka; Godlewska, Magdalena; Traczyk, Iwona; Drevon, Christian A; Gibney, Mike J; Lovegrove, Julie A; Martinez, J Alfredo; Saris, Wim H M; Mathers, John C; Gibney, Eileen R; Brennan, Lorraine
2016-12-01
Individual response to dietary interventions can be highly variable. The phenotypic characteristics of those who will respond positively to personalised dietary advice are largely unknown. The objective of this study was to compare the phenotypic profiles of differential responders to personalised dietary intervention, with a focus on total circulating cholesterol. Subjects from the Food4Me multi-centre study were classified as responders or non-responders to dietary advice on the basis of the change in cholesterol level from baseline to month 6, with lower and upper quartiles defined as responder and non-responder groups, respectively. There were no significant differences between demographic and anthropometric profiles of the groups. Furthermore, with the exception of alcohol, there was no significant difference in reported dietary intake, at baseline. However, there were marked differences in baseline fatty acid profiles. The responder group had significantly higher levels of stearic acid (18 : 0, P=0·034) and lower levels of palmitic acid (16 : 0, P=0·009). Total MUFA (P=0·016) and total PUFA (P=0·008) also differed between the groups. In a step-wise logistic regression model, age, baseline total cholesterol, glucose, five fatty acids and alcohol intakes were selected as factors that successfully discriminated responders from non-responders, with sensitivity of 82 % and specificity of 83 %. The successful delivery of personalised dietary advice may depend on our ability to identify phenotypes that are responsive. The results demonstrate the potential use of metabolic profiles in identifying response to an intervention and could play an important role in the development of precision nutrition.
Pennisi, Elena Maria; Arca, Marcello; Bertini, Enrico; Bruno, Claudio; Cassandrini, Denise; D'amico, Adele; Garibaldi, Matteo; Gragnani, Francesca; Maggi, Lorenzo; Massa, Roberto; Missaglia, Sara; Morandi, Lucia; Musumeci, Olimpia; Pegoraro, Elena; Rastelli, Emanuele; Santorelli, Filippo Maria; Tasca, Elisabetta; Tavian, Daniela; Toscano, Antonio; Angelini, Corrado
2017-05-12
A small number of patients affected by Neutral Lipid Storage Diseases (NLSDs: NLSD type M with Myopathy and NLSD type I with Ichthyosis) have been described in various ethnic groups worldwide. However, relatively little is known about the progression and phenotypic variability of the disease in large specific populations. The aim of our study was to assess the natural history, disability and genotype-phenotype correlations in Italian patients with NLSDs. Twenty-one patients who satisfied the criteria for NLSDs were enrolled in a retrospective cross-sectional study to evaluate the genetic aspects, clinical signs at onset, disability progression and comorbidities associated with this group of diseases. During the clinical follow-up (range: 2-44 years, median: 17.8 years), two patients (9.5%, both with NLSD-I) died of hepatic failure, and a further five (24%) lost their ability to walk or needed help when walking after a mean period of 30.6 years of disease. None of the patients required mechanical ventilation. No patient required a heart transplant, one patient with NLSD-M was implanted with a cardioverter defibrillator for severe arrhythmias. The genotype/phenotype correlation analysis in our population showed that the same gene mutations were associated with a varying clinical onset and course. This study highlights peculiar aspects of Italian NLSD patients that differ from those observed in Japanese patients, who were found to be affected by a marked hypertrophic cardiopathy. Owing to the varying phenotypic expression of the same mutations, it is conceivable that some additional genetic or epigenetic factors affect the symptoms and progression in this group of diseases.
Whelton, Seamus P; Silverman, Michael G; McEvoy, John W; Budoff, Matthew J; Blankstein, Ron; Eng, John; Blumenthal, Roger S; Szklo, Moyses; Nasir, Khurram; Blaha, Michael J
2015-12-01
This study sought to determine the predictors of healthy arterial aging. Long-term nondevelopment of coronary artery calcification (persistent CAC = 0) is a marker of healthy arterial aging. The predictors of this phenotype are not known. We analyzed 1,850 participants from MESA (Multi-Ethnic Study of Atherosclerosis) with baseline CAC = 0 who underwent a follow-up CAC scan at visit 5 (median 9.6 years after baseline). We examined the proportion with persistent CAC = 0 and calculated multivariable relative risks and area under the receiver operating characteristic curve for prediction of this healthy arterial aging phenotype. We found that 55% of participants (n = 1,000) had persistent CAC = 0, and these individuals were significantly more likely to be younger, female, and have fewer traditional risk factors (RF). Participants with an ASCVD (Atherosclerotic Cardiovascular Disease Risk Score) risk score <2.5% were 53% more likely to have healthy arterial aging than were participants with an ASCVD score ≥7.5%. There was no significant association between the Healthy Lifestyle variables (body mass index, physical activity, Mediterranean diet, and never smoking) and persistent CAC = 0. The area under the receiver operating characteristic curve incorporating age, sex, and ethnicity was 0.65, indicating fair to poor discrimination. No single traditional RF or combination of other risk factors increased the area under the receiver operating characteristic curve by more than 0.05. Whereas participants free of traditional cardiovascular disease RF were significantly more likely to have persistent CAC = 0, there was no single RF or specific low-risk RF phenotype that markedly improved the discrimination of persistent CAC = 0 over demographic variables. Therefore, we conclude that healthy arterial aging may be predominantly influenced by the long-term maintenance of a low cardiovascular disease risk profile or yet to be determined genetic factors rather than the absence of any specific RF cluster identified in late adulthood. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Kumar, Shivendra; Ambreen, Heena; Variath, Murali T.; Rao, Atmakuri R.; Agarwal, Manu; Kumar, Amar; Goel, Shailendra; Jagannath, Arun
2016-01-01
Safflower (Carthamus tinctorius L.) is a dryland oilseed crop yielding high quality edible oil. Previous studies have described significant phenotypic variability in the crop and used geographical distribution and phenotypic trait values to develop core collections. However, the molecular diversity component was lacking in the earlier collections thereby limiting their utility in breeding programs. The present study evaluated the phenotypic variability for 12 agronomically important traits during two growing seasons (2011–12 and 2012–13) in a global reference collection of 531 safflower accessions, assessed earlier by our group for genetic diversity and population structure using AFLP markers. Significant phenotypic variation was observed for all the agronomic traits in the representative collection. Cluster analysis of phenotypic data grouped the accessions into five major clusters. Accessions from the Indian Subcontinent and America harbored maximal phenotypic variability with unique characters for a few traits. MANOVA analysis indicated significant interaction between genotypes and environment for both the seasons. Initially, six independent core collections (CC1–CC6) were developed using molecular marker and phenotypic data for two seasons through POWERCORE and MSTRAT. These collections captured the entire range of trait variability but failed to include complete genetic diversity represented in 19 clusters reported earlier through Bayesian analysis of population structure (BAPS). Therefore, we merged the three POWERCORE core collections (CC1–CC3) to generate a composite core collection, CartC1 and three MSTRAT core collections (CC4–CC6) to generate another composite core collection, CartC2. The mean difference percentage, variance difference percentage, variable rate of coefficient of variance percentage, coincidence rate of range percentage, Shannon's diversity index, and Nei's gene diversity for CartC1 were 11.2, 43.7, 132.4, 93.4, 0.47, and 0.306, respectively while the corresponding values for CartC2 were 9.3, 58.8, 124.6, 95.8, 0.46, and 0.301. Each composite core collection represented the complete range of phenotypic and genetic variability of the crop including 19 BAPS clusters. This is the first report describing development of core collections in safflower using molecular marker data with phenotypic values and geographical distribution. These core collections will facilitate identification of genetic determinants of trait variability and effective utilization of the prevalent diversity in crop improvement programs. PMID:27807441
Vig, Navin; Mackenzie, Ian C; Biddle, Adrian
2015-10-01
It is increasingly recognised that phenotypic plasticity, apparently driven by epigenetic mechanisms, plays a key role in tumour behaviour and markedly influences the important processes of therapeutic survival and metastasis. An important source of plasticity in malignancy is epithelial-to-mesenchymal transition (EMT), a common epigenetically controlled event that results in transition of malignant cells between different phenotypic states that confer motility and enhance survival. In this review, we discuss the importance of phenotypic plasticity and its contribution to cellular heterogeneity in oral squamous cell carcinoma with emphasis on aspects of drug resistance and EMT. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Epigenetic regulation of adaptive responses of forest tree species to the environment
Bräutigam, Katharina; Vining, Kelly J; Lafon-Placette, Clément; Fossdal, Carl G; Mirouze, Marie; Marcos, José Gutiérrez; Fluch, Silvia; Fraga, Mario Fernández; Guevara, M Ángeles; Abarca, Dolores; Johnsen, Øystein; Maury, Stéphane; Strauss, Steven H; Campbell, Malcolm M; Rohde, Antje; Díaz-Sala, Carmen; Cervera, María-Teresa
2013-01-01
Epigenetic variation is likely to contribute to the phenotypic plasticity and adaptative capacity of plant species, and may be especially important for long-lived organisms with complex life cycles, including forest trees. Diverse environmental stresses and hybridization/polyploidization events can create reversible heritable epigenetic marks that can be transmitted to subsequent generations as a form of molecular “memory”. Epigenetic changes might also contribute to the ability of plants to colonize or persist in variable environments. In this review, we provide an overview of recent data on epigenetic mechanisms involved in developmental processes and responses to environmental cues in plant, with a focus on forest tree species. We consider the possible role of forest tree epigenetics as a new source of adaptive traits in plant breeding, biotechnology, and ecosystem conservation under rapid climate change. PMID:23467802
Mariani, Laura H; Kretzler, Matthias
2015-06-01
The diagnosis and treatment decisions in glomerular disease are principally based on renal pathology and nonspecific clinical laboratory measurements such as serum creatinine and urine protein. Using these classification approaches, patients have marked variability in rate of progression and response to therapy, exposing a significant number of patients to toxicity without benefit. Additionally, clinical trials are at risk of not being able to detect an efficacious therapy in relevant subgroups as patients with shared clinical-pathologic diagnoses have heterogeneous underlying pathobiology. To change this treatment paradigm, biomarkers that reflect the molecular mechanisms underlying the clinical-pathologic diagnoses are needed. Recent progress to identify such biomarkers has been aided by advances in molecular profiling, large-scale data generation and multi-scalar data integration, including prospectively collected clinical data. This article reviews the evolving success stories in glomerular disease biomarkers across the genotype-phenotype continuum and highlights opportunities to transition to precision medicine in glomerular disease. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Phenotypic Variability in the Coccolithophore Emiliania huxleyi
Lebrato, Mario; Stoll, Heather M.; Iglesias-Rodriguez, Debora; Müller, Marius N.; Méndez-Vicente, Ana; Oschlies, Andreas
2016-01-01
Coccolithophores are a vital part of oceanic phytoplankton assemblages that produce organic matter and calcium carbonate (CaCO3) containing traces of other elements (i.e. Sr and Mg). Their associated carbon export from the euphotic zone to the oceans' interior plays a crucial role in CO2 feedback mechanisms and biogeochemical cycles. The coccolithophore Emiliania huxleyi has been widely studied as a model organism to understand physiological, biogeochemical, and ecological processes in marine sciences. Here, we show the inter-strain variability in physiological and biogeochemical traits in 13 strains of E. huxleyi from various biogeographical provinces obtained from culture collections commonly used in the literature. Our results demonstrate that inter-strain genetic variability has greater potential to induce larger phenotypic differences than the phenotypic plasticity of single strains cultured under a broad range of variable environmental conditions. The range of variation found in physiological parameters and calcite Sr:Ca highlights the need to reconsider phenotypic variability in paleoproxy calibrations and model parameterizations to adequately translate findings from single strain laboratory experiments to the real ocean. PMID:27348427
Recent advances in understanding idiopathic pulmonary fibrosis
Daccord, Cécile; Maher, Toby M.
2016-01-01
Despite major research efforts leading to the recent approval of pirfenidone and nintedanib, the dismal prognosis of idiopathic pulmonary fibrosis (IPF) remains unchanged. The elaboration of international diagnostic criteria and disease stratification models based on clinical, physiological, radiological, and histopathological features has improved the accuracy of IPF diagnosis and prediction of mortality risk. Nevertheless, given the marked heterogeneity in clinical phenotype and the considerable overlap of IPF with other fibrotic interstitial lung diseases (ILDs), about 10% of cases of pulmonary fibrosis remain unclassifiable. Moreover, currently available tools fail to detect early IPF, predict the highly variable course of the disease, and assess response to antifibrotic drugs. Recent advances in understanding the multiple interrelated pathogenic pathways underlying IPF have identified various molecular phenotypes resulting from complex interactions among genetic, epigenetic, transcriptional, post-transcriptional, metabolic, and environmental factors. These different disease endotypes appear to confer variable susceptibility to the condition, differing risks of rapid progression, and, possibly, altered responses to therapy. The development and validation of diagnostic and prognostic biomarkers are necessary to enable a more precise and earlier diagnosis of IPF and to improve prediction of future disease behaviour. The availability of approved antifibrotic therapies together with potential new drugs currently under evaluation also highlights the need for biomarkers able to predict and assess treatment responsiveness, thereby allowing individualised treatment based on risk of progression and drug response. This approach of disease stratification and personalised medicine is already used in the routine management of many cancers and provides a potential road map for guiding clinical care in IPF. PMID:27303645
Candidate gene analysis for Alzheimer's disease in adults with Down syndrome.
Lee, Joseph H; Lee, Annie J; Dang, Lam-Ha; Pang, Deborah; Kisselev, Sergey; Krinsky-McHale, Sharon J; Zigman, Warren B; Luchsinger, José A; Silverman, Wayne; Tycko, Benjamin; Clark, Lorraine N; Schupf, Nicole
2017-08-01
Individuals with Down syndrome (DS) overexpress many genes on chromosome 21 due to trisomy and have high risk of dementia due to the Alzheimer's disease (AD) neuropathology. However, there is a wide range of phenotypic differences (e.g., age at onset of AD, amyloid β levels) among adults with DS, suggesting the importance of factors that modify risk within this particularly vulnerable population, including genotypic variability. Previous genetic studies in the general population have identified multiple genes that are associated with AD. This study examined the contribution of polymorphisms in these genes to the risk of AD in adults with DS ranging from 30 to 78 years of age at study entry (N = 320). We used multiple logistic regressions to estimate the likelihood of AD using single-nucleotide polymorphisms (SNPs) in candidate genes, adjusting for age, sex, race/ethnicity, level of intellectual disability and APOE genotype. This study identified multiple SNPs in APP and CST3 that were associated with AD at a gene-wise level empirical p-value of 0.05, with odds ratios in the range of 1.5-2. SNPs in MARK4 were marginally associated with AD. CST3 and MARK4 may contribute to our understanding of potential mechanisms where CST3 may contribute to the amyloid pathway by inhibiting plaque formation, and MARK4 may contribute to the regulation of the transition between stable and dynamic microtubules. Copyright © 2017 Elsevier Inc. All rights reserved.
Phenotypic variability of Cat-Eye syndrome.
Berends, M J; Tan-Sindhunata, G; Leegte, B; van Essen, A J
2001-01-01
Cat-Eye syndrome (CES) is a disorder with a variable pattern of multiple congenital anomalies of which coloboma of the iris and anal atresia are the best known. CES is cytogenetically characterised by the presence of an extra bisatellited marker chromosome, which represents an inverted dicentric duplication of a part of chromosome 22 (inv dup(22)). We report on three CES-patients who carry an inv dup(22) diagnosed with FISH studies. They show remarkable phenotypic variability. The cause of this variability is unknown. Furthermore, we review clinical features of 71 reported patients. Only 41% of the CES-patients have the combination of iris coloboma, anal anomalies and pre-auricular anomalies. Therefore, almost 60% of the CES-patients are hard to recognize by their phenotype alone. Mild to moderate mental retardation was found in 32% (16/50) of the cases. Mental retardation occurs more frequently in male CES-patients. There is no apparent phenotypic difference between mentally retarded and mentally normal CES-patients.
Potter, Huntington
2017-01-01
Phenotypic variability is a fundamental feature of the human population and is particularly evident among people with Down syndrome and/or Alzheimer’s disease. Herein, we review current theories of the potential origins of this phenotypic variability and propose a novel mechanism based on our finding that the Alzheimer’s disease-associated Aβ peptide, encoded on chromosome 21, disrupts the mitotic spindle, induces abnormal chromosome segregation, and produces mosaic populations of aneuploid cells in all tissues of people with Alzheimer’s disease and in mouse and cell models thereof. Thus, individuals exposed to increased levels of the Aβ peptide should accumulate mosaic populations of aneuploid cells, with different chromosomes affected in different tissues and in different individuals. Specifically, people with Down syndrome, who express elevated levels of Aβ peptide throughout their lifetimes, would be predicted to accumulate additional types of aneuploidy, beyond trisomy 21 and including changes in their trisomy 21 status, in mosaic cell populations. Such mosaic aneuploidy would introduce a novel form of genetic variability that could potentially underlie much of the observed phenotypic variability among people with Down syndrome, and possibly also among people with Alzheimer’s disease. This mosaic aneuploidy theory of phenotypic variability in Down syndrome is supported by several observations, makes several testable predictions, and identifies a potential approach to reducing the frequency of some of the most debilitating features of Down syndrome, including Alzheimer’s disease. PMID:29516054
Elston, Guy N.; Benavides-Piccione, Ruth; Elston, Alejandra; Manger, Paul R.; DeFelipe, Javier
2010-01-01
The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates. PMID:21347276
Combining Genotype, Phenotype, and Environment to Infer Potential Candidate Genes.
Talbot, Benoit; Chen, Ting-Wen; Zimmerman, Shawna; Joost, Stéphane; Eckert, Andrew J; Crow, Taylor M; Semizer-Cuming, Devrim; Seshadri, Chitra; Manel, Stéphanie
2017-03-01
Population genomic analysis can be an important tool in understanding local adaptation. Identification of potential adaptive loci in such analyses is usually based on the survey of a large genomic dataset in combination with environmental variables. Phenotypic data are less commonly incorporated into such studies, although combining a genome scan analysis with a phenotypic trait analysis can greatly improve the insights obtained from each analysis individually. Here, we aimed to identify loci potentially involved in adaptation to climate in 283 Loblolly pine (Pinus taeda) samples from throughout the species' range in the southeastern United States. We analyzed associations between phenotypic, molecular, and environmental variables from datasets of 3082 single nucleotide polymorphism (SNP) loci and 3 categories of phenotypic traits (gene expression, metabolites, and whole-plant traits). We found only 6 SNP loci that displayed potential signals of local adaptation. Five of the 6 identified SNPs are linked to gene expression traits for lignin development, and 1 is linked with whole-plant traits. We subsequently compared the 6 candidate genes with environmental variables and found a high correlation in only 3 of them (R2 > 0.2). Our study highlights the need for a combination of genotypes, phenotypes, and environmental variables, and for an appropriate sampling scheme and study design, to improve confidence in the identification of potential candidate genes. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Liccardo, Raffaella; De Rosa, Marina; Duraturo, Francesca
2018-01-01
Lynch syndrome is an autosomal dominant syndrome that can be subdivided into Lynch syndrome I, or site-specific colonic cancer, and Lynch syndrome II, or extracolonic cancers, particularly carcinomas of the stomach, endometrium, biliary and pancreatic systems, and urinary tract. Lynch syndrome is associated with point mutations and large rearrangements in DNA MisMatch Repair ( MMR ) genes. This syndrome shows a variable phenotypic expression in people who carry pathogenetic mutations. So far, a correlation in genotype-phenotype has not been definitely established. In this study, we describe 2 Lynch syndrome cases presenting with the same genotype but different phenotypes and discuss possible reasons for this.
Schertel, Claus; Albarca, Monica; Rockel-Bauer, Claudia; Kelley, Nicholas W.; Bischof, Johannes; Hens, Korneel
2015-01-01
Transcription factors (TFs) are key regulators of cell fate. The estimated 755 genes that encode DNA binding domain-containing proteins comprise ∼5% of all Drosophila genes. However, the majority has remained uncharacterized so far due to the lack of proper genetic tools. We generated 594 site-directed transgenic Drosophila lines that contain integrations of individual UAS-TF constructs to facilitate spatiotemporally controlled misexpression in vivo. All transgenes were expressed in the developing wing, and two-thirds induced specific phenotypic defects. In vivo knockdown of the same genes yielded a phenotype for 50%, with both methods indicating a great potential for misexpression to characterize novel functions in wing growth, patterning, and development. Thus, our UAS-TF library provides an important addition to the genetic toolbox of Drosophila research, enabling the identification of several novel wing development-related TFs. In parallel, we established the chromatin landscape of wing imaginal discs by ChIP-seq analyses of five chromatin marks and RNA Pol II. Subsequent clustering revealed six distinct chromatin states, with two clusters showing enrichment for both active and repressive marks. TFs that carry such “bivalent” chromatin are highly enriched for causing misexpression phenotypes in the wing, and analysis of existing expression data shows that these TFs tend to be differentially expressed across the wing disc. Thus, bivalently marked chromatin can be used as a marker for spatially regulated TFs that are functionally relevant in a developing tissue. PMID:25568052
Feinberg, Andrew P; Irizarry, Rafael A
2010-01-26
Neo-Darwinian evolutionary theory is based on exquisite selection of phenotypes caused by small genetic variations, which is the basis of quantitative trait contribution to phenotype and disease. Epigenetics is the study of nonsequence-based changes, such as DNA methylation, heritable during cell division. Previous attempts to incorporate epigenetics into evolutionary thinking have focused on Lamarckian inheritance, that is, environmentally directed epigenetic changes. Here, we propose a new non-Lamarckian theory for a role of epigenetics in evolution. We suggest that genetic variants that do not change the mean phenotype could change the variability of phenotype; and this could be mediated epigenetically. This inherited stochastic variation model would provide a mechanism to explain an epigenetic role of developmental biology in selectable phenotypic variation, as well as the largely unexplained heritable genetic variation underlying common complex disease. We provide two experimental results as proof of principle. The first result is direct evidence for stochastic epigenetic variation, identifying highly variably DNA-methylated regions in mouse and human liver and mouse brain, associated with development and morphogenesis. The second is a heritable genetic mechanism for variable methylation, namely the loss or gain of CpG dinucleotides over evolutionary time. Finally, we model genetically inherited stochastic variation in evolution, showing that it provides a powerful mechanism for evolutionary adaptation in changing environments that can be mediated epigenetically. These data suggest that genetically inherited propensity to phenotypic variability, even with no change in the mean phenotype, substantially increases fitness while increasing the disease susceptibility of a population with a changing environment.
Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour
Vogel, David; Nicolis, Stamatios C.; Perez-Escudero, Alfonso; Nanjundiah, Vidyanand; Sumpter, David J. T.; Dussutour, Audrey
2015-01-01
Historically, research has focused on the mean and often neglected the variance. However, variability in nature is observable at all scales: among cells within an individual, among individuals within a population and among populations within a species. A fundamental quest in biology now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined experiments and models to show that variability in cell signalling contributes to major differences in behaviour underpinning some aspects of social interactions. First, following thousands of cells under various contexts, we identified distinct behavioural phenotypes: ‘slow–regular–social’, ‘fast–regular–social’ and ‘fast–irregular–asocial’. Second, coupling chemical analysis and behavioural assays we found that calcium signalling is responsible for these behavioural phenotypes. Finally, we show that differences in signalling and behaviour led to alternative social strategies. Our results have considerable implications for our understanding of the emergence of variability in living organisms. PMID:26609088
Phenotypic variability in unicellular organisms: from calcium signalling to social behaviour.
Vogel, David; Nicolis, Stamatios C; Perez-Escudero, Alfonso; Nanjundiah, Vidyanand; Sumpter, David J T; Dussutour, Audrey
2015-11-22
Historically, research has focused on the mean and often neglected the variance. However, variability in nature is observable at all scales: among cells within an individual, among individuals within a population and among populations within a species. A fundamental quest in biology now is to find the mechanisms that underlie variability. Here, we investigated behavioural variability in a unique unicellular organism, Physarum polycephalum. We combined experiments and models to show that variability in cell signalling contributes to major differences in behaviour underpinning some aspects of social interactions. First, following thousands of cells under various contexts, we identified distinct behavioural phenotypes: 'slow-regular-social', 'fast-regular-social' and 'fast-irregular-asocial'. Second, coupling chemical analysis and behavioural assays we found that calcium signalling is responsible for these behavioural phenotypes. Finally, we show that differences in signalling and behaviour led to alternative social strategies. Our results have considerable implications for our understanding of the emergence of variability in living organisms. © 2015 The Author(s).
Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice
2011-01-01
Background The expanding set of genomics tools available for inbred mouse strains has renewed interest in phenotyping larger sets of strains. The present study aims to explore phenotypic variability among six commonly-used inbred mouse strains to both the rewarding and locomotor stimulating effects of cocaine in a place conditioning task, including several strains or substrains that have not yet been characterized for some or all of these behaviors. Methods C57BL/6J (B6), BALB/cJ (BALB), C3H/HeJ (C3H), DBA/2J (D2), FVB/NJ (FVB) and 129S1/SvImJ (129) mice were tested for conditioned place preference to 20 mg/kg cocaine. Results Place preference was observed in most strains with the exception of D2 and 129. All strains showed a marked increase in locomotor activity in response to cocaine. In BALB mice, however, locomotor activation was context-dependent. Locomotor sensitization to repeated exposure to cocaine was most significant in 129 and D2 mice but was absent in FVB mice. Conclusions Genetic correlations suggest that no significant correlation between conditioned place preference, acute locomotor activation, and locomotor sensitization exists among these strains indicating that separate mechanisms underlie the psychomotor and rewarding effects of cocaine. PMID:21806802
Clarke, Nigel F; Andrews, Ian; Carpenter, Kevin; Jakobs, Cornelis; van der Knaap, Marjo S; Kirk, Edwin P
2003-08-01
D-2-hydroxyglutaric aciduria (D2HGA) is a rare autosomal recessive disorder with variable clinical expression. The biochemical defect is unknown at present. Previously reported cases have either followed a severe clinical course characterized by neonatal epileptic encephalopathy, cortical blindness, and profound developmental delay, or a mild course characterized by mild developmental delay, manageable epilepsy, and mild hypotonia. To date there has been a clear distinction between these two groups. We report the second case of a child with D2HGA who has followed an intermediate course. She presented in infancy with hypotonia, manageable epilepsy and developed moderate to severe developmental delay, and cortical visual impairment. The proposita had a coarse facial appearance, flat face, broad nasal bridge, up-turned nose, and simple, anteverted ears. These facial anomalies have been noted in other children with D2HGA and this case strengthens the proposed association between this facial phenotype and D2HGA. We also report the third and fourth instances of prenatal diagnosis for D2HGA. At each prenatal diagnosis, an affected fetus was diagnosed on the basis of markedly increased levels of D-2-hydroxyglutaric acid in amniotic fluid. Copyright 2003 Wiley-Liss, Inc.
Brioude, Frédéric; Kalish, Jennifer M; Mussa, Alessandro; Foster, Alison C; Bliek, Jet; Ferrero, Giovanni Battista; Boonen, Susanne E; Cole, Trevor; Baker, Robert; Bertoletti, Monica; Cocchi, Guido; Coze, Carole; De Pellegrin, Maurizio; Hussain, Khalid; Ibrahim, Abdulla; Kilby, Mark D; Krajewska-Walasek, Malgorzata; Kratz, Christian P; Ladusans, Edmund J; Lapunzina, Pablo; Le Bouc, Yves; Maas, Saskia M; Macdonald, Fiona; Õunap, Katrin; Peruzzi, Licia; Rossignol, Sylvie; Russo, Silvia; Shipster, Caroleen; Skórka, Agata; Tatton-Brown, Katrina; Tenorio, Jair; Tortora, Chiara; Grønskov, Karen; Netchine, Irène; Hennekam, Raoul C; Prawitt, Dirk; Tümer, Zeynep; Eggermann, Thomas; Mackay, Deborah J G; Riccio, Andrea; Maher, Eamonn R
2018-04-01
Beckwith-Wiedemann syndrome (BWS), a human genomic imprinting disorder, is characterized by phenotypic variability that might include overgrowth, macroglossia, abdominal wall defects, neonatal hypoglycaemia, lateralized overgrowth and predisposition to embryonal tumours. Delineation of the molecular defects within the imprinted 11p15.5 region can predict familial recurrence risks and the risk (and type) of embryonal tumour. Despite recent advances in knowledge, there is marked heterogeneity in clinical diagnostic criteria and care. As detailed in this Consensus Statement, an international consensus group agreed upon 72 recommendations for the clinical and molecular diagnosis and management of BWS, including comprehensive protocols for the molecular investigation, care and treatment of patients from the prenatal period to adulthood. The consensus recommendations apply to patients with Beckwith-Wiedemann spectrum (BWSp), covering classical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly. Although the consensus group recommends a tumour surveillance programme targeted by molecular subgroups, surveillance might differ according to the local health-care system (for example, in the United States), and the results of targeted and universal surveillance should be evaluated prospectively. International collaboration, including a prospective audit of the results of implementing these consensus recommendations, is required to expand the evidence base for the design of optimum care pathways.
Day and night: diurnal phase influences the response to chronic mild stress
Aslani, Shilan; Harb, Mazen R.; Costa, Patricio S.; Almeida, Osborne F. X.; Sousa, Nuno; Palha, Joana A.
2014-01-01
Chronic mild stress (CMS) protocols are widely used to create animal models of depression. Despite this, the inconsistencies in the reported effects may be indicative of crucial differences in methodology. Here, we considered the time of the diurnal cycle in which stressors are applied as a possible relevant temporal variable underlying the association between stress and behavior. Most laboratories test behavior during the light phase of the diurnal cycle, which corresponds to the animal's resting period. Here, rats stressed either in their resting (light phase) or active (dark phase) periods were behaviorally characterized in the light phase. When exposure to CMS occurred during the light phase of the day cycle, rats displayed signs of depressive and anxiety-related behaviors. This phenotype was not observed when CMS was applied during the dark (active) period. Interestingly, although no differences in spatial and reference memory were detected (Morris water maze) in animals in either stress period, those stressed in the light phase showed marked impairments in the probe test. These animals also showed significant dendritic atrophy in the hippocampal dentate granule neurons, with a decrease in the number of spines. Taken together, the observations reported demonstrate that the time in which stress is applied has differential effects on behavioral and neurostructural phenotypes. PMID:24672446
Variable features on Mars. VII - Dark filamentary markings on Mars
NASA Technical Reports Server (NTRS)
Veverka, J.
1976-01-01
The paper discusses the location, variability, and possible nature of well-developed patterns of dark filamentary markings in the Mariner 9 photographic records. Although not common on Mars, the markings are concentrated in at least two areas: Depressio Hellespontica and Cerberus/Trivium Charontis. In certain localities, strong winds are required to bring these markings into prominence. The dark filamentary markings seem to be true albedo features controlled by local topography, it being unlikely that they are free linear dunes. The distinctive criss-cross pattern seen in many of the pictures suggests that jointing provides the controlling topographic grid. At this stage it cannot be inferred whether the markings are erosional or depositional in character.
Barton, Chris; Kausar, Sabiha; Kerr, Deborah; Bitetti, Stefania; Wynn, Rob
2018-03-01
SIFD describes a heritable, syndromic condition characterised principally by sideroblastic anaemia (SA) with immunodeficiency, fevers and developmental delay, arising in mutations within the TRNT1 gene. Other clinical manifestations of SIFD include cardiomyopathy, seizures, sensorineural hearing loss, renal dysfunction, metabolic abnormalities, hepatosplenomegaly and retinitis pigmentosa.Presentation of SIFD is variable but typically in early childhood with SA or with fever. In this report, we extend the described SIFD phenotype. We describe a kindred in which the index case presented with fetal hydrops, and early neonatal death, and the second child had severe anaemia at delivery. Both cases had prominent extramedullary erythropoiesis and numerous circulating nucleated red blood cells. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Phenotypic and genotypic heterogeneity of Lynch syndrome: a complex diagnostic challenge.
Lynch, Henry T; Lanspa, Stephen; Shaw, Trudy; Casey, Murray Joseph; Rendell, Marc; Stacey, Mark; Townley, Theresa; Snyder, Carrie; Hitchins, Megan; Bailey-Wilson, Joan
2018-07-01
Lynch syndrome is the hereditary disorder that most frequently predisposes to colorectal cancer as well as predisposing to a number of extracolonic cancers, most prominently endometrial cancer. It is caused by germline mutations in the mismatch repair genes. Both its phenotype and genotype show marked heterogeneity. This review gives a historical overview of the syndrome, its heterogeneity, its genomic landscape, and its implications for complex diagnosis, genetic counseling and putative implications for immunotherapy.
The mitochondrial and kidney disease phenotypes of kd/kd mice under germfree conditions
Hallman, Troy M.; Peng, Min; Meade, Ray; Hancock, Wayne W.; Madaio, Michael P.; Gasser, David L.
2008-01-01
Interstitial nephritis occurs spontaneously in kd/kd mice, but the mechanisms leading to this disease have not been fully elucidated. The earliest manifestation of a phenotype is the appearance of ultrastructural defects in the mitochondria of mice as young as 42 days of age. To examine the influence of the environment on the phenotype, homozygous B6.kd/kd mice were transferred from specific pathogen-free (SPF) conditions to a germfree (GF) environment, and the development of the disease was observed. The GF state resulted in a highly significant reduction in the frequency of tubulointerstitial nephritis. In addition, GF conditions markedly reduced the appearance of the mitochondrial phenotype, with no sign of mitochondrial abnormalities in GF mice of up to 155 days of age. These results suggest that environmental factors are involved in the progression of all known manifestations of this disease phenotype. PMID:16337774
Cho, S; Son, J H; Park, D H; Aoki, C; Song, X; Smith, G P; Joh, T H
1996-01-01
Neurotransmitters play a variety of important roles during nervous system development. In the present study, we hypothesized that neurotransmitter phenotype of both projecting and target cells is an important factor for the final synaptic linkage and its specificity. To test this hypothesis, we used transgenic techniques to convert serotonin/melatonin-producing cells of the pineal gland into cells that also produce dopamine and investigated the innervation of the phenotypically altered target cells. This phenotypic alteration markedly reduced the noradrenergic innervation originating from the superior cervical ganglia. Although the mechanism by which the reduction occurs is presently unknown, quantitative enzyme-linked immunoassay showed the presence of the equivalent amounts of nerve growth factor (NGF) in the control and transgenic pineal glands, suggesting that it occurred in a NGF-independent manner. The results suggest that target neurotransmitter phenotype influences the formation of afferent connections during development. Images Fig. 3 Fig. 4 PMID:8610132
Fedrigo, Olivier; Babbitt, Courtney C.; Wortham, Matthew; Tewari, Alok K.; London, Darin; Song, Lingyun; Lee, Bum-Kyu; Iyer, Vishwanath R.; Parker, Stephen C. J.; Margulies, Elliott H.; Wray, Gregory A.; Furey, Terrence S.; Crawford, Gregory E.
2012-01-01
Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS) sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species. PMID:22761590
Assessment of metabolic phenotypic variability in children’s urine using 1H NMR spectroscopy
NASA Astrophysics Data System (ADS)
Maitre, Léa; Lau, Chung-Ho E.; Vizcaino, Esther; Robinson, Oliver; Casas, Maribel; Siskos, Alexandros P.; Want, Elizabeth J.; Athersuch, Toby; Slama, Remy; Vrijheid, Martine; Keun, Hector C.; Coen, Muireann
2017-04-01
The application of metabolic phenotyping in clinical and epidemiological studies is limited by a poor understanding of inter-individual, intra-individual and temporal variability in metabolic phenotypes. Using 1H NMR spectroscopy we characterised short-term variability in urinary metabolites measured from 20 children aged 8-9 years old. Daily spot morning, night-time and pooled (50:50 morning and night-time) urine samples across six days (18 samples per child) were analysed, and 44 metabolites quantified. Intraclass correlation coefficients (ICC) and mixed effect models were applied to assess the reproducibility and biological variance of metabolic phenotypes. Excellent analytical reproducibility and precision was demonstrated for the 1H NMR spectroscopic platform (median CV 7.2%). Pooled samples captured the best inter-individual variability with an ICC of 0.40 (median). Trimethylamine, N-acetyl neuraminic acid, 3-hydroxyisobutyrate, 3-hydroxybutyrate/3-aminoisobutyrate, tyrosine, valine and 3-hydroxyisovalerate exhibited the highest stability with over 50% of variance specific to the child. The pooled sample was shown to capture the most inter-individual variance in the metabolic phenotype, which is of importance for molecular epidemiology study design. A substantial proportion of the variation in the urinary metabolome of children is specific to the individual, underlining the potential of such data to inform clinical and exposome studies conducted early in life.
Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore
2008-03-01
Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.
Nghiem, Peter P.; Bello, Luca; Stoughton, William B.; López, Sara Mata; Vidal, Alexander H.; Hernandez, Briana V.; Hulbert, Katherine N.; Gourley, Taylor R.; Bettis, Amanda K.; Balog-Alvarez, Cynthia J.; Heath-Barnett, Heather; Kornegay, Joe N.
2017-01-01
Duchenne muscular dystrophy (DMD) is an X-chromosome-linked disorder and the most common monogenic disease in people. Affected boys are diagnosed at a young age, become non-ambulatory by their early teens, and succumb to cardiorespiratory failure by their thirties. Despite being a monogenic condition resulting from mutations in the DMD gene, affected boys have noteworthy phenotypic variability. Efforts have identified genetic modifiers that could modify disease progression and be pharmacologic targets. Dogs affected with golden retriever muscular dystrophy (GRMD) have absent dystrophin and demonstrate phenotypic variability at the functional, histopathological, and molecular level. Our laboratory is particularly interested in muscle metabolism changes in dystrophin-deficient muscle. We identified several metabolic alterations, including myofiber type switching from fast (type II) to slow (type I), reduced glycolytic enzyme expression, reduced and morphologically abnormal mitochondria, and differential AMP-kinase phosphorylation (activation) between hypertrophied and wasted muscle. We hypothesize that muscle metabolism changes are, in part, responsible for phenotypic variability in GRMD. Pharmacological therapies aimed at modulating muscle metabolism can be tested in GRMD dogs for efficacy. PMID:28955176
Crean, Angela J.; Dwyer, John M.; Marshall, Dustin J.
2012-01-01
Sperm are the most diverse cell type known: varying not only among- and within- species, but also among- and within-ejaculates of a single male. Recently, the causes and consequences of variability in sperm phenotypes have received much attention, but the importance of within-ejaculate variability remains largely unknown. Correlative evidence suggests that reduced within-ejaculate variation in sperm phenotype increases a male’s fertilization success in competitive conditions; but the transgenerational consequences of within-ejaculate variation in sperm phenotype remain relatively unexplored. Here we examine the relationship between sperm longevity and offspring performance in a marine invertebrate with external fertilization, Styela plicata. Offspring sired by longer-lived sperm had higher performance compared to offspring sired by freshly-extracted sperm of the same ejaculate, both in the laboratory and the field. This indicates that within-ejaculate differences in sperm longevity can influence offspring fitness – a source of variability in offspring phenotypes that has not previously been considered. Links between sperm phenotype and offspring performance may constrain responses to selection on either sperm or offspring traits, with broad ecological and evolutionary implications. PMID:23155458
Interexaminer variation of minutia markup on latent fingerprints.
Ulery, Bradford T; Hicklin, R Austin; Roberts, Maria Antonia; Buscaglia, JoAnn
2016-07-01
Latent print examiners often differ in the number of minutiae they mark during analysis of a latent, and also during comparison of a latent with an exemplar. Differences in minutia counts understate interexaminer variability: examiners' markups may have similar minutia counts but differ greatly in which specific minutiae were marked. We assessed variability in minutia markup among 170 volunteer latent print examiners. Each provided detailed markup documenting their examinations of 22 latent-exemplar pairs of prints randomly assigned from a pool of 320 pairs. An average of 12 examiners marked each latent. The primary factors associated with minutia reproducibility were clarity, which regions of the prints examiners chose to mark, and agreement on value or comparison determinations. In clear areas (where the examiner was "certain of the location, presence, and absence of all minutiae"), median reproducibility was 82%; in unclear areas, median reproducibility was 46%. Differing interpretations regarding which regions should be marked (e.g., when there is ambiguity in the continuity of a print) contributed to variability in minutia markup: especially in unclear areas, marked minutiae were often far from the nearest minutia marked by a majority of examiners. Low reproducibility was also associated with differences in value or comparison determinations. Lack of standardization in minutia markup and unfamiliarity with test procedures presumably contribute to the variability we observed. We have identified factors accounting for interexaminer variability; implementing standards for detailed markup as part of documentation and focusing future training efforts on these factors may help to facilitate transparency and reduce subjectivity in the examination process. Published by Elsevier Ireland Ltd.
The role of sex and body weight on the metabolic effects of high-fat diet in C57BL/6N mice.
Ingvorsen, C; Karp, N A; Lelliott, C J
2017-04-10
Metabolic disorders are commonly investigated using knockout and transgenic mouse models on the C57BL/6N genetic background due to its genetic susceptibility to the deleterious metabolic effects of high-fat diet (HFD). There is growing awareness of the need to consider sex in disease progression, but limited attention has been paid to sexual dimorphism in mouse models and its impact in metabolic phenotypes. We assessed the effect of HFD and the impact of sex on metabolic variables in this strain. We generated a reference data set encompassing glucose tolerance, body composition and plasma chemistry data from 586 C57BL/6N mice fed a standard chow and 733 fed a HFD collected as part of a high-throughput phenotyping pipeline. Linear mixed model regression analysis was used in a dual analysis to assess the effect of HFD as an absolute change in phenotype, but also as a relative change accounting for the potential confounding effect of body weight. HFD had a significant impact on all variables tested with an average absolute effect size of 29%. For the majority of variables (78%), the treatment effect was modified by sex and this was dominated by male-specific or a male stronger effect. On average, there was a 13.2% difference in the effect size between the male and female mice for sexually dimorphic variables. HFD led to a significant body weight phenotype (24% increase), which acts as a confounding effect on the other analysed variables. For 79% of the variables, body weight was found to be a significant source of variation, but even after accounting for this confounding effect, similar HFD-induced phenotypic changes were found to when not accounting for weight. HFD and sex are powerful modifiers of metabolic parameters in C57BL/6N mice. We also demonstrate the value of considering body size as a covariate to obtain a richer understanding of metabolic phenotypes.
Parental effects and the evolution of phenotypic memory.
Kuijper, B; Johnstone, R A
2016-02-01
Despite growing evidence for nongenetic inheritance, the ecological conditions that favour the evolution of heritable parental or grandparental effects remain poorly understood. Here, we systematically explore the evolution of parental effects in a patch-structured population with locally changing environments. When selection favours the production of a mix of offspring types, this mix differs according to the parental phenotype, implying that parental effects are favoured over selection for bet-hedging in which the mixture of offspring phenotypes produced does not depend on the parental phenotype. Positive parental effects (generating a positive correlation between parental and offspring phenotype) are favoured in relatively stable habitats and when different types of local environment are roughly equally abundant, and can give rise to long-term parental inheritance of phenotypes. By contrast, unstable habitats can favour negative parental effects (generating a negative correlation between parental and offspring phenotype), and under these circumstances, even slight asymmetries in the abundance of local environmental states select for marked asymmetries in transmission fidelity. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Santos, Ana Paula; Ferreira, Liliana J.; Oliveira, M. Margarida
2017-01-01
The spatial organization of chromosome structure within the interphase nucleus, as well as the patterns of methylome and histone modifications, represent intersecting layers that influence genome accessibility and function. This review is focused on the plastic nature of chromatin structure and epigenetic marks in association to stress situations. The use of chemical compounds (epigenetic drugs) or T-DNA-mediated mutagenesis affecting epigenetic regulators (epi-mutants) are discussed as being important tools for studying the impact of deregulated epigenetic backgrounds on gene function and phenotype. The inheritability of epigenetic marks and chromatin configurations along successive generations are interpreted as a way for plants to “communicate” past experiences of stress sensing. A mechanistic understanding of chromatin and epigenetics plasticity in plant response to stress, including tissue- and genotype-specific epigenetic patterns, may help to reveal the epigenetics contributions for genome and phenotype regulation. PMID:28275209
Maffé, A; Toschi, B; Circo, G; Giachino, D; Giglio, S; Rizzo, A; Carloni, A; Poletti, V; Tomassetti, S; Ginardi, C; Ungari, S; Genuardi, M
2011-04-01
Birt-Hogg-Dubé syndrome (BHDS) is characterized by a clinical triad including cutaneous hamartomas originating from hair follicles, lung cysts/pneumothorax, and kidney tumors. Inactivating mutations of the tumor suppressor gene FLCN are identified in most families with BHDS. Usually, patients are referred for genetic examination by dermatologists because of the presence of typical multiple skin tumors with or without additional symptoms. However, because of phenotypic variability and incomplete penetrance, the clinical presentation of BHDS is not yet fully defined. Criteria for genetic testing and diagnosis that take into account variable manifestations have recently been proposed by the European BHD Consortium. We sequenced the FLCN gene coding region in a series of 19 patients selected for kidney and/or lung manifestations. Overall, FLCN mutations were found in 9 of 19 (47%) families and were detected only in probands who had either >2 components of the clinical triad or a single component (renal or pulmonary) along with a family history of another main BHDS manifestation. Typical cutaneous lesions were present only in 8 of 21 FLCN mutation carriers aged >20 years identified in the mutation-positive families. In addition, we provide clinical and molecular evidence that parotid oncocytoma, so far reported in six BHDS cases, is associated with this condition, based on the observation of a patient with bilateral parotid involvement and marked reduction of the wild-type FLCN allele signal in tumor DNA. Overall, the results obtained in this study contribute to the definition of the phenotypic characteristics that should be considered for BHDS diagnosis and FLCN mutation testing. © 2010 John Wiley & Sons A/S.
Reish, Orit; Huber, Céline; Altarescu, Gheona; Chapman-Shimshoni, Daphne; Levy-Lahad, Ephrat; Renbaum, Paul; Mashevich, Maya; Munnich, Arnold; Cormier-Daire, Valérie
2010-09-01
Mutations or deletions in the SHOX gene cause Leri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD) when present in heterozygous or homozygous form, respectively. A new class of enhancer deletions was identified 30-250 kb downstream of SHOX. We identified a female patient with marked short stature, mosaic for monosomy X in 31% of her lymphocytes, and findings consistent with LWD. Additional molecular studies demonstrated segregation of 17 polymorphic markers flanking and including the SHOX locus, spanning 328 kb of pseudoautosomal region 1 (PAR1) region. A deletion up to 10 kb residing 197 kb downstream of SHOX gene was detected, which was germinally transmitted from her clinically unaffected father. This was associated with post-zygotic mosaic loss of the normal maternal X-chromosome, evidenced by fluorescent fragment analysis. Since most patients with LMD with deletions downstream of SHOX gene also have SHOX mutations in trans, it may suggest these deletions are associated with a milder phenotype. Further studies are required to elucidate the role of the former region in disease etiology. Mutations should be sought in clinically non-affected family members because of the variable expressivity in hemizygous carriers, and cytogenetic evaluation should be considered to detect possible X-chromosome rearrangements underlying the haploinsufficiency for the PAR1 when deletion is detected by molecular analysis. Similarly, when LWD and marked short stature occur in a patient with mosaic Turner syndrome, the possibility of mutations in SHOX and the downstream of SHOX gene should be considered. Copyright 2010 Wiley-Liss, Inc.
Identification of clinical phenotypes in knee osteoarthritis: a systematic review of the literature.
Dell'Isola, A; Allan, R; Smith, S L; Marreiros, S S P; Steultjens, M
2016-10-12
Knee Osteoarthritis (KOA) is a heterogeneous pathology characterized by a complex and multifactorial nature. It has been hypothesised that these differences are due to the existence of underlying phenotypes representing different mechanisms of the disease. The aim of this study is to identify the current evidence for the existence of groups of variables which point towards the existence of distinct clinical phenotypes in the KOA population. A systematic literature search in PubMed was conducted. Only original articles were selected if they aimed to identify phenotypes of patients aged 18 years or older with KOA. The methodological quality of the studies was independently assessed by two reviewers and qualitative synthesis of the evidence was performed. Strong evidence for existence of specific phenotypes was considered present if the phenotype was supported by at least two high-quality studies. A total of 24 studies were included. Through qualitative synthesis of evidence, six main sets of variables proposing the existence of six phenotypes were identified: 1) chronic pain in which central mechanisms (e.g. central sensitisation) are prominent; 2) inflammatory (high levels of inflammatory biomarkers); 3) metabolic syndrome (high prevalence of obesity, diabetes and other metabolic disturbances); 4) Bone and cartilage metabolism (alteration in local tissue metabolism); 5) mechanical overload characterised primarily by varus malalignment and medial compartment disease; and 6) minimal joint disease characterised as minor clinical symptoms with slow progression over time. This study identified six distinct groups of variables which should be explored in attempts to better define clinical phenotypes in the KOA population.
Macadam, A J; Ferguson, G; Burlison, J; Stone, D; Skuce, R; Almond, J W; Minor, P D
1992-08-01
Part of the 5' noncoding regions of all three Sabin vaccine strains of poliovirus contains determinants of attenuation that are shown here to influence the ability of these strains to grow at elevated temperatures in BGM cells. The predicted RNA secondary structure of this region (nt 464-542 in P3/Sabin) suggests that both phenotypes are due to perturbation of base-paired stems. Ts phenotypes of site-directed mutants with defined changes in this region correlated well with predicted secondary structure stabilities. Reversal of base-pair orientation had little effect whereas stem disruption led to marked increases in temperature sensitivity. Phenotypic revertants of such viruses displayed mutations on either side of the stem. Mutations destabilizing stems led to intermediate phenotypes. These results provided evidence for the biological significance of the predicted RNA secondary structure.
Berg, Florian; Almeland, Oda W; Skadal, Julie; Slotte, Aril; Andersson, Leif; Folkvord, Arild
2018-01-01
Atlantic herring, Clupea harengus, have complex population structures. Mixing of populations is known, but the extent of connectivity is still unclear. Phenotypic plasticity results in divergent phenotypes in response to environmental factors. A marked salinity gradient occurs from Atlantic Ocean (salinity 35) into the Baltic Sea (salinity range 2-12). Herring from both habitats display phenotypic and genetic variability. To explore how genetic factors and salinity influence phenotypic traits like growth, number of vertebrae and otolith shape an experimental population consisting of Atlantic purebreds and Atlantic/Baltic F1 hybrids were incubated and co-reared at two different salinities, 16 and 35, for three years. The F1-generation was repeatedly sampled to evaluate temporal variation. A von Bertalanffy growth model indicated that reared Atlantic purebreds had a higher maximum length (26.2 cm) than Atlantic/Baltic hybrids (24.8 cm) at salinity 35, but not at salinity 16 (25.0 and 24.8 cm, respectively). In contrast, Atlantic/Baltic hybrids achieved larger size-at-age than the wild caught Baltic parental group. Mean vertebral counts and otolith aspect ratios were higher for reared Atlantic purebreds than Atlantic/Baltic hybrids, consistent with the differences between parental groups. There were no significant differences in vertebral counts and otolith aspect ratios between herring with the same genotype but raised in different salinities. A Canonical Analysis of Principal Coordinates was applied to analyze the variation in wavelet coefficients that described otolith shape. The first discriminating axis identified the differences between Atlantic purebreds and Atlantic/Baltic hybrids, while the second axis represented salinity differences. Assigning otoliths based on genetic groups (Atlantic purebreds vs. Atlantic/Baltic hybrids) yielded higher classification success (~90%) than based on salinities (16 vs. 35; ~60%). Our results demonstrate that otolith shape and vertebral counts have a significant genetic component and are therefore useful for studies on population dynamics and connectivity.
Severe combined immunodeficiency in Sting V154M/WT mice.
Bouis, Delphine; Kirstetter, Peggy; Arbogast, Florent; Lamon, Delphine; Delgado, Virginia; Jung, Sophie; Ebel, Claudine; Jacobs, Hugues; Knapp, Anne-Marie; Jeremiah, Nadia; Belot, Alexandre; Martin, Thierry; Crow, Yanick J; André-Schmutz, Isabelle; Korganow, Anne-Sophie; Rieux-Laucat, Frédéric; Soulas-Sprauel, Pauline
2018-05-23
Autosomal dominant gain-of-function (GOF) mutations in human STING (Stimulator of Interferon Genes) lead to a severe autoinflammatory disease called SAVI (STING Associated Vasculopathy with onset in Infancy), associated with enhanced expression of interferon (IFN) stimulated gene (ISG) transcripts. The goal of this study was to analyze the phenotype of a new mouse model of Sting hyperactivation, and the role of type I IFN in this system. We generated a knock-in model carrying an amino acid substitution (V154M) in mouse Sting, corresponding to a recurrent mutation seen in human patients with SAVI. Hematopoietic development and tissue histology were analyzed. Lymphocyte activation and proliferation were assessed in vitro. Sting V154M/WT mice were crossed to IFNAR (IFNα/β Receptor) knock-out mice in order to evaluate the type I IFN-dependence of the mutant Sting phenotype recorded. In Sting V154M/WT mice we detected variable expression of inflammatory infiltrates in the lungs and kidneys. These mice showed a marked decrease in survival and developed a severe combined immunodeficiency disease (SCID) affecting B, T and NK cells, with an almost complete lack of antibodies and a significant expansion of monocytes and granulocytes. The blockade in B and T cell development was present from early immature stages in bone marrow and thymus. In addition, in vitro experiments revealed an intrinsic proliferative defect of mature T cells. Whilst the V154M/WT mutant demonstrated increased expression of ISGs, the SCID phenotype was not reversed in Sting V154M/WT IFNAR knock-out mice. However, the anti-proliferative defect in T cells was partially rescued by IFNAR deficiency. Sting GOF mice developed an IFN-independent SCID phenotype with a T, B and NK cell developmental defect and hypogammaglobulinemia, associated with signs of inflammation in lungs and kidneys. Only the intrinsic proliferative defect of T cells was, partially, IFN-dependent. Copyright © 2018. Published by Elsevier Inc.
Gobin-Limballe, S; Djouadi, F; Aubey, F; Olpin, S; Andresen, B S; Yamaguchi, S; Mandel, H; Fukao, T; Ruiter, J P N; Wanders, R J A; McAndrew, R; Kim, J J; Bastin, J
2007-12-01
Very-long-chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency is an inborn mitochondrial fatty-acid beta-oxidation (FAO) defect associated with a broad mutational spectrum, with phenotypes ranging from fatal cardiopathy in infancy to adolescent-onset myopathy, and for which there is no established treatment. Recent data suggest that bezafibrate could improve the FAO capacities in beta-oxidation-deficient cells, by enhancing the residual level of mutant enzyme activity via gene-expression stimulation. Since VLCAD-deficient patients frequently harbor missense mutations with unpredictable effects on enzyme activity, we investigated the response to bezafibrate as a function of genotype in 33 VLCAD-deficient fibroblasts representing 45 different mutations. Treatment with bezafibrate (400 microM for 48 h) resulted in a marked increase in FAO capacities, often leading to restoration of normal values, for 21 genotypes that mainly corresponded to patients with the myopathic phenotype. In contrast, bezafibrate induced no changes in FAO for 11 genotypes corresponding to severe neonatal or infantile phenotypes. This pattern of response was not due to differential inductions of VLCAD messenger RNA, as shown by quantitative real-time polymerase chain reaction, but reflected variable increases in measured VLCAD residual enzyme activity in response to bezafibrate. Genotype cross-analysis allowed the identification of alleles carrying missense mutations, which could account for these different pharmacological profiles and, on this basis, led to the characterization of 9 mild and 11 severe missense mutations. Altogether, the responses to bezafibrate reflected the severity of the metabolic blockage in various genotypes, which appeared to be correlated with the phenotype, thus providing a new approach for analysis of genetic heterogeneity. Finally, this study emphasizes the potential of bezafibrate, a widely prescribed hypolipidemic drug, for the correction of VLCAD deficiency and exemplifies the integration of molecular information in a therapeutic strategy.
DNA hypomethylation at ALOX12 is associated with persistent wheezing in childhood.
Morales, Eva; Bustamante, Mariona; Vilahur, Nadia; Escaramis, Georgia; Montfort, Magda; de Cid, Rafael; Garcia-Esteban, Raquel; Torrent, Maties; Estivill, Xavier; Grimalt, Joan O; Sunyer, Jordi
2012-05-01
Epigenetic changes may play a role in the occurrence of asthma-related phenotypes. To identify epigenetic marks in terms of DNA methylation of asthma-related phenotypes in childhood, and to assess the effect of prenatal exposures and genetic variation on these epigenetic marks. Data came from two cohorts embedded in the Infancia y Medio Ambiente (INMA) PROJECT: Menorca (n = 122) and Sabadell (n = 236). Wheezing phenotypes were defined at age 4-6 years. Cytosine-guanine (CpG) dinucleotide site DNA methylation differences associated with wheezing phenotypes were screened in children of the Menorca study using the Illumina GoldenGate Panel I. Findings were validated and replicated using pyrosequencing. Information on maternal smoking and folate supplement use was obtained through questionnaires. Dichlorodiphenyldichloroethylene was measured in cord blood or maternal serum. Genotypes were extracted from genome-wide data. Screening identified lower DNA methylation at a CpG site in the arachidonate 12-lipoxygenase (ALOX12) gene in children having persistent wheezing compared with those never wheezed (P = 0.003). DNA hypomethylation at ALOX12 loci was associated with higher risk of persistent wheezing in the Menorca study (odds ratio per 1% methylation decrease, 1.13; 95% confidence interval, 0.99-1.29; P = 0.077) and in the Sabadell study (odds ratio, 1.16; 95% confidence interval, 1.03-1.37; P = 0.017). Higher levels of prenatal dichlorodiphenyldichloroethylene were associated with DNA hypomethylation of ALOX12 in the Menorca study (P = 0.033), but not in the Sabadell study (P = 0.377). ALOX12 DNA methylation was strongly determined by underlying genetic polymorphisms. DNA methylation of ALOX12 may be an epigenetic biomarker for the risk of asthma-related phenotypes.
Some Like It Hot, Some Like It Warm: Phenotyping to Explore Thermotolerance Diversity
Yeh, Ching-Hui; Kaplinsky, Nicholas J.; Hu, Catherine; Charng, Yee-yung
2012-01-01
Plants have evolved overlapping but distinct cellular responses to different aspects of high temperature stress. These responses include basal thermotolerance, short- and long-term acquired thermotolerance, and thermotolerance to moderately high temperatures. This thermotolerance diversity’ means that multiple phenotypic assays are essential for fully describing the functions of genes involved in heat stress responses. A large number of genes with potential roles in heat stress responses have been identified using genetic screens and genome wide expression studies. We examine the range of phenotypic assays that have been used to characterize thermotolerance phenotypes in both Arabidopsis and crop plants. Three major variables differentiate thermotolerance assays: 1) the heat stress regime used, 2) the developmental stage of the plants being studied, and 3) the actual phenotype which is scored. Consideration of these variables will be essential for deepening our understanding of the molecular genetics of plant thermotolerance. PMID:22920995
Maintenance of Genetic Variability under Strong Stabilizing Selection: A Two-Locus Model
Gavrilets, S.; Hastings, A.
1993-01-01
We study a two locus model with additive contributions to the phenotype to explore the relationship between stabilizing selection and recombination. We show that if the double heterozygote has the optimum phenotype and the contributions of the loci to the trait are different, then any symmetric stabilizing selection fitness function can maintain genetic variability provided selection is sufficiently strong relative to linkage. We present results of a detailed analysis of the quadratic fitness function which show that selection need not be extremely strong relative to recombination for the polymorphic equilibria to be stable. At these polymorphic equilibria the mean value of the trait, in general, is not equal to the optimum phenotype, there exists a large level of negative linkage disequilibrium which ``hides'' additive genetic variance, and different equilibria can be stable simultaneously. We analyze dependence of different characteristics of these equilibria on the location of optimum phenotype, on the difference in allelic effect, and on the strength of selection relative to recombination. Our overall result that stabilizing selection does not necessarily eliminate genetic variability is compatible with some experimental results where the lines subject to strong stabilizing selection did not have significant reductions in genetic variability. PMID:8514145
Identification of quantitative trait loci for fibrin clot phenotypes: The EuroCLOT study
Williams, Frances MK; Carter, Angela M; Kato, Bernet; Falchi, Mario; Bathum, Lise; Surdulescu, Gabriela; Kyvik, Kirsten Ohm; Palotie, Aarno; Spector, Tim D; Grant, Peter J
2012-01-01
Objectives Fibrin makes up the structural basis of an occlusive arterial thrombus and variability in fibrin phenotype relates to cardiovascular risk. The aims of the current study from the EU consortium EuroCLOT were to 1) determine the heritability of fibrin phenotypes and 2) identify QTLs associated with fibrin phenotypes. Methods 447 dizygotic (DZ) and 460 monozygotic (MZ) pairs of healthy UK Caucasian female twins and 199 DZ twin pairs from Denmark were studied. D-dimer, an indicator of fibrin turnover, was measured by ELISA and measures of clot formation, morphology and lysis were determined by turbidimetric assays. Heritability estimates and genome-wide linkage analysis were performed. Results Estimates of heritability for d-dimer and turbidometric variables were in the range 17 - 46%, with highest levels for maximal absorbance which provides an estimate of clot density. Genome-wide linkage analysis revealed 6 significant regions with LOD>3 on 5 chromosomes (5, 6, 9, 16 and 17). Conclusions The results indicate a significant genetic contribution to variability in fibrin phenotypes and highlight regions in the human genome which warrant further investigation in relation to ischaemic cardiovascular disorders and their therapy. PMID:19150881
Hu, Liyan; Pandey, Amit V; Eggimann, Sandra; Rüfenacht, Véronique; Möslinger, Dorothea; Nuoffer, Jean-Marc; Häberle, Johannes
2013-11-29
Argininosuccinic aciduria (ASA) is an autosomal recessive urea cycle disorder caused by deficiency of argininosuccinate lyase (ASL) with a wide clinical spectrum from asymptomatic to severe hyperammonemic neonatal onset life-threatening courses. We investigated the role of ASL transcript variants in the clinical and biochemical variability of ASA. Recombinant proteins for ASL wild type, mutant p.E189G, and the frequently occurring transcript variants with exon 2 or 7 deletions were (co-)expressed in human embryonic kidney 293T cells. We found that exon 2-deleted ASL forms a stable truncated protein with no relevant activity but a dose-dependent dominant negative effect on enzymatic activity after co-expression with wild type or mutant ASL, whereas exon 7-deleted ASL is unstable but seems to have, nevertheless, a dominant negative effect on mutant ASL. These findings were supported by structural modeling predictions for ASL heterotetramer/homotetramer formation. Illustrating the physiological relevance, the predominant occurrence of exon 7-deleted ASL was found in two patients who were both heterozygous for the ASL mutant p.E189G. Our results suggest that ASL transcripts can contribute to the highly variable phenotype in ASA patients if expressed at high levels. Especially, the exon 2-deleted ASL variant may form a heterotetramer with wild type or mutant ASL, causing markedly reduced ASL activity.
Drought tolerance in cacao is mediated by root phenotypic plasticity
USDA-ARS?s Scientific Manuscript database
This study aimed to evaluate phenotypic relationships and their direct and indirect effects through path analysis, and evaluate the use of the phenotypic plasticity index as criteria for the estimation of the basic and explanatory variables used to analysis several cacao progenies subjected to soil ...
Jung, A Ra; Yoo, Jeong Eun; Shim, Yhong-Hee; Choi, Ye-Na; Jeung, Hei-Cheul; Chung, Hyun Cheol; Rha, Sun Young; Oh, Bong-Kyeong
2013-03-01
Human immortal cells maintain their telomeres either by telomerase or by alternative lengthening of telomeres (ALT) that is based on homologous telomeric recombination. Previous studies showed that the ALT mechanism is activated in non-ALT cells when heterochromatic features are reduced. In this study, we examined the ALT phenotypes of ALT cells after treatment with trichostatin-A (TSA), which is an inhibitor of histone deacetylases and causes global chromatin decondensation. The ALT cells remained telomerase-negative after TSA treatment. ALT-associated promyelocytic leukemia (PML) nuclear bodies and telomere sister chromatid exchanges, typical ALT phenotypes, markedly increased in the TSA-treated cells, while the telomere length remained unchanged. In addition, telomerase expression in the ALT cells suppressed TSA-mediated ALT phenotype enhancement. Our results show that certain ALT phenotypes become more pronounced when chromatin is decondensed, and also suggest that the ALT mechanism may compete with telomerase for telomere maintenance in cells that lack heterochromatin.
USDA-ARS?s Scientific Manuscript database
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions such as through...
Biondi, Emanuele G.; Tatti, Enrico; Comparini, Diego; Giuntini, Elisa; Mocali, Stefano; Giovannetti, Luciana; Bazzicalupo, Marco; Mengoni, Alessio; Viti, Carlo
2009-01-01
Sinorhizobium meliloti is a soil bacterium that fixes atmospheric nitrogen in plant roots. The high genetic diversity of its natural populations has been the subject of extensive analysis. Recent genomic studies of several isolates revealed a high content of variable genes, suggesting a correspondingly large phenotypic differentiation among strains of S. meliloti. Here, using the Phenotype MicroArray (PM) system, hundreds of different growth conditions were tested in order to compare the metabolic capabilities of the laboratory reference strain Rm1021 with those of four natural S. meliloti isolates previously analyzed by comparative genomic hybridization (CGH). The results of PM analysis showed that most phenotypic differences involved carbon source utilization and tolerance to osmolytes and pH, while fewer differences were scored for nitrogen, phosphorus, and sulfur source utilization. Only the variability of the tested strain in tolerance to sodium nitrite and ammonium sulfate of pH 8 was hypothesized to be associated with the genetic polymorphisms detected by CGH analysis. Colony and cell morphologies and the ability to nodulate Medicago truncatula plants were also compared, revealing further phenotypic diversity. Overall, our results suggest that the study of functional (phenotypic) variability of S. meliloti populations is an important and complementary step in the investigation of genetic polymorphism of rhizobia and may help to elucidate rhizobial evolutionary dynamics, including adaptation to diverse environments. PMID:19561177
Wallin, Jeffrey J.; Guan, Jane; Edgar, Kyle A.; Zhou, Wei; Francis, Ross; Torres, Anthony C.; Haverty, Peter M.; Eastham-Anderson, Jeffrey; Arena, Sabrina; Bardelli, Alberto; Griffin, Sue; Goodall, John E.; Grimshaw, Kyla M.; Hoeflich, Klaus P.; Torrance, Christopher; Belvin, Marcia; Friedman, Lori S.
2012-01-01
The PTEN/PI3K pathway is commonly mutated in cancer and therefore represents an attractive target for therapeutic intervention. To investigate the primary phenotypes mediated by increased pathway signaling in a clean, patient-relevant context, an activating PIK3CA mutation (H1047R) was knocked-in to an endogenous allele of the MCF10A non-tumorigenic human breast epithelial cell line. Introduction of an endogenously mutated PIK3CA allele resulted in a marked epithelial-mesenchymal transition (EMT) and invasive phenotype, compared to isogenic wild-type cells. The invasive phenotype was linked to enhanced PIP3 production via a S6K-IRS positive feedback mechanism. Moreover, potent and selective inhibitors of PI3K were highly effective in reversing this phenotype, which is optimally revealed in 3-dimensional cell culture. In contrast, inhibition of Akt or mTOR exacerbated the invasive phenotype. Our results suggest that invasion is a core phenotype mediated by increased PTEN/PI3K pathway activity and that therapeutic agents targeting different nodes of the PI3K pathway may have dramatic differences in their ability to reverse or promote cancer metastasis. PMID:22570710
Yu, Meng; Jia, Hongmei; Zhou, Chao; Yang, Yong; Zhao, Yang; Yang, Maohua; Zou, Zhongmei
2017-05-10
As a prevalent, life-threatening and highly recurrent psychiatric illness, depression is characterized by a wide range of pathological changes; however, its etiology remains incompletely understood. Accumulating evidence supports that gut microbiota affects not only gastrointestinal physiology but also central nervous system (CNS) function and behavior through the microbiota-gut-brain axis. To assess the impact of gut microbiota on fecal metabolic phenotype in depressive conditions, an integrated approach of 16S rRNA gene sequencing combined with ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS) based metabolomics was performed in chronic variable stress (CVS)-induced depression rat model. Interestingly, depression led to significant gut microbiota changes, at the phylum and genus levels in rats treated with CVS compared to controls. The relative abundances of the bacterial genera Marvinbryantia, Corynebacterium, Psychrobacter, Christensenella, Lactobacillus, Peptostreptococcaceae incertae sedis, Anaerovorax, Clostridiales incertae sedis and Coprococcus were significantly decreased, whereas Candidatus Arthromitus and Oscillibacter were markedly increased in model rats compared with normal controls. Meanwhile, distinct changes in fecal metabolic phenotype of depressive rats were also found, including lower levels of amino acids, and fatty acids, and higher amounts of bile acids, hypoxanthine and stercobilins. Moreover, there were substantial associations of perturbed gut microbiota genera with the altered fecal metabolites, especially compounds involved in the metabolism of tryptophan and bile acids. These results showed that the gut microbiota was altered in association with fecal metabolism in depressive conditions. These findings suggest that the 16S rRNA gene sequencing and LC-MS based metabolomics approach can be further applied to assess pathogenesis of depression. Copyright © 2017 Elsevier B.V. All rights reserved.
NAT2, meat consumption and colorectal cancer incidence: an ecological study among 27 countries.
Ognjanovic, Simona; Yamamoto, Jennifer; Maskarinec, Gertraud; Le Marchand, Loïc
2006-11-01
The polymorphic gene NAT2 is a major determinant of N-acetyltransferase activity and, thus, may be responsible for differences in one's ability to bioactivate heterocyclic amines, a class of procarcinogens in cooked meat. An unusually marked geographic variation in enzyme activity has been described for NAT2. The present study re-examines the international direct correlation reported for meat intake and colorectal cancer (CRC) incidence, and evaluates the potential modifying effects of NAT2 phenotype and other lifestyle factors on this correlation. Country-specific CRC incidence data, per capita consumption data for meat and other dietary factors, prevalence of the rapid/intermediate NAT2 phenotype, and prevalence of smoking for 27 countries were used. Multiple linear regression models were fit and partial correlation coefficients (PCCs) were computed for men and women separately. Inclusion of the rapid/intermediate NAT2 phenotype with meat consumption improved the fit of the regression model for CRC incidence in both sexes (males-R (2) = 0.78, compared to 0.70 for meat alone; p for difference in model fit-0.009; females-R (2) = 0.76 compared to 0.69 for meat alone; p = 0.02). Vegetable consumption (inversely and in both sexes) and fish consumption (directly and in men only) were also weakly correlated with CRC, whereas smoking prevalence and alcohol consumption had no effects on the models. The PCC between NAT2 and CRC incidence was 0.46 in males and 0.48 in females when meat consumption was included in the model, compared to 0.14 and 0.15, respectively, when it was not. These data suggest that, in combination with meat intake, some proportion of the international variability in CRC incidence may be attributable to genetic susceptibility to heterocyclic amines, as determined by NAT2 genotype.
[Phenotypic variability in 47, XXX patients: Clinical report of four new cases].
Goldschmidt, Ernesto; Márquez, Marisa; Solari, Andrea; Ziembar, María I; Laudicina, Alejandro
2010-08-01
The 47, XXX karyotype has a frequency of 1 in 1000 female newborns. However, this karyotype is not usually suspected at birth or childhood. These patients are usually diagnosed during adulthood when they develop premature ovarian failure or infertility, because the early phenotype doesn t have any specific features. The study describes four cases and the clinical variability of the 47, XXX karyotype.
Genome-Wide Analysis Reveals the Unique Stem Cell Identity of Human Amniocytes
Maguire, Colin T.; Demarest, Bradley L.; Hill, Jonathon T.; Palmer, James D.; Brothman, Arthur R.; Yost, H. Joseph; Condic, Maureen L.
2013-01-01
Human amniotic fluid contains cells that potentially have important stem cell characteristics, yet the programs controlling their developmental potency are unclear. Here, we provide evidence that amniocytes derived from multiple patients are marked by heterogeneity and variability in expression levels of pluripotency markers. Clonal analysis from multiple patients indicates that amniocytes have large pools of self-renewing cells that have an inherent property to give rise to a distinct amniocyte phenotype with a heterogeneity of pluripotent markers. Significant to their therapeutic potential, genome-wide profiles are distinct at different gestational ages and times in culture, but do not differ between genders. Based on hierarchical clustering and differential expression analyses of the entire transcriptome, amniocytes express canonical regulators associated with pluripotency and stem cell repression. Their profiles are distinct from human embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs), and newborn foreskin fibroblasts. Amniocytes have a complex molecular signature, coexpressing trophoblastic, ectodermal, mesodermal, and endodermal cell-type-specific regulators. In contrast to the current view of the ground state of stem cells, ESCs and iPSCs also express high levels of a wide range of cell-type-specific regulators. The coexpression of multilineage differentiation markers combined with the strong expression of a subset of ES cell repressors in amniocytes suggests that these cells have a distinct phenotype that is unlike any other known cell-type or lineage. PMID:23326421
Epigenetics, epidemiology and mitochondrial DNA diseases
Chinnery, Patrick F; Elliott, Hannah R; Hudson, Gavin; Samuels, David C; Relton, Caroline L
2012-01-01
Over the last two decades, the mutation of mitochondrial DNA (mtDNA) has emerged as a major cause of inherited human disease. The disorders present clinically in at least 1 in 10 000 adults, but pathogenic mutations are found in approximately 1 in 200 of the background population. Mitochondrial DNA is maternally inherited and there can be marked phenotypic variability within the same family. Heteroplasmy is a significant factor and environmental toxins also appear to modulate the phenotype. Although genetic and biochemical studies have provided part of the explanation, a comprehensive understanding of the incomplete penetrance of these diseases is lacking—both at the population and family levels. Here, we review the potential role of epigenetic factors in the pathogenesis of mtDNA diseases and the contribution that epidemiological approaches can make to improve our understanding in this area. Despite being previously dismissed, there is an emerging evidence that mitochondria contain the machinery required to epigenetically modify mtDNA expression. In addition, the increased production of reactive oxygen species seen in several mtDNA diseases could lead to the epigenetic modification of the nuclear genome, including chromatin remodelling and alterations to DNA methylation and microRNA expression, thus contributing to the diverse pathophysiology observed in this group of diseases. These observations open the door to future studies investigating the role of mtDNA methylation in human disease. PMID:22287136
The role of sex and body weight on the metabolic effects of high-fat diet in C57BL/6N mice
Ingvorsen, C; Karp, N A; Lelliott, C J
2017-01-01
Background: Metabolic disorders are commonly investigated using knockout and transgenic mouse models on the C57BL/6N genetic background due to its genetic susceptibility to the deleterious metabolic effects of high-fat diet (HFD). There is growing awareness of the need to consider sex in disease progression, but limited attention has been paid to sexual dimorphism in mouse models and its impact in metabolic phenotypes. We assessed the effect of HFD and the impact of sex on metabolic variables in this strain. Methods: We generated a reference data set encompassing glucose tolerance, body composition and plasma chemistry data from 586 C57BL/6N mice fed a standard chow and 733 fed a HFD collected as part of a high-throughput phenotyping pipeline. Linear mixed model regression analysis was used in a dual analysis to assess the effect of HFD as an absolute change in phenotype, but also as a relative change accounting for the potential confounding effect of body weight. Results: HFD had a significant impact on all variables tested with an average absolute effect size of 29%. For the majority of variables (78%), the treatment effect was modified by sex and this was dominated by male-specific or a male stronger effect. On average, there was a 13.2% difference in the effect size between the male and female mice for sexually dimorphic variables. HFD led to a significant body weight phenotype (24% increase), which acts as a confounding effect on the other analysed variables. For 79% of the variables, body weight was found to be a significant source of variation, but even after accounting for this confounding effect, similar HFD-induced phenotypic changes were found to when not accounting for weight. Conclusion: HFD and sex are powerful modifiers of metabolic parameters in C57BL/6N mice. We also demonstrate the value of considering body size as a covariate to obtain a richer understanding of metabolic phenotypes. PMID:28394359
Hypogonadotropic Hypogonadism due to Novel FGFR1 Mutations.
Akkuş, Gamze; Kotan, Leman Damla; Durmaz, Erdem; Mengen, Eda; Turan, İhsan; Ulubay, Ayça; Gürbüz, Fatih; Yüksel, Bilgin; Tetiker, Tamer; Topaloğlu, A Kemal
2017-06-01
The underlying genetic etiology of hypogonadotropic hypogonadism (HH) is heterogeneous. Fibroblast growth factor signaling is pivotal in the ontogeny of gonadotropin-releasing hormone neurons. Loss-of-function mutations in FGFR1 gene cause variable HH phenotypes encompassing pubertal delay to idiopathic HH (IHH) or Kallmann syndrome (KS). As FGFR1 mutations are common, recognizing mutations and associated phenotypes may enhance clinical management. Using a candidate gene approach, we screened 52 IHH/KS patients. We identified three novel (IVS3-1G>C and p.W2X, p.R209C) FGFR1 gene mutations. Despite predictive null protein function, patients from the novel mutation families had normosmic IHH without non-reproductive phenotype. These findings further emphasize the great variability of FGFR1 mutation phenotypes in IHH/KS.
Imaging Prostate Cancer (Pca) Phenotype and Evolution
2014-10-01
Extracellular flux analysis experiments with the Seahorse system showed a marked decrease in OCR after inhibition of ATP synthase by oligomycin...measured in each well 34 h after seeding the cells, using the Seahorse extracellular flux analyzer, as also described in Methods section. OCR
Mouchel-Vielh, Emmanuèle; De Castro, Sandra; Peronnet, Frédérique
2016-01-01
Phenotypic plasticity is the ability of a given genotype to produce different phenotypes in response to distinct environmental conditions. Phenotypic plasticity can be adaptive. Furthermore, it is thought to facilitate evolution. Although phenotypic plasticity is a widespread phenomenon, its molecular mechanisms are only beginning to be unravelled. Environmental conditions can affect gene expression through modification of chromatin structure, mainly via histone modifications, nucleosome remodelling or DNA methylation, suggesting that phenotypic plasticity might partly be due to chromatin plasticity. As a model of phenotypic plasticity, we study abdominal pigmentation of Drosophila melanogaster females, which is temperature sensitive. Abdominal pigmentation is indeed darker in females grown at 18°C than at 29°C. This phenomenon is thought to be adaptive as the dark pigmentation produced at lower temperature increases body temperature. We show here that temperature modulates the expression of tan (t), a pigmentation gene involved in melanin production. t is expressed 7 times more at 18°C than at 29°C in female abdominal epidermis. Genetic experiments show that modulation of t expression by temperature is essential for female abdominal pigmentation plasticity. Temperature modulates the activity of an enhancer of t without modifying compaction of its chromatin or level of the active histone mark H3K27ac. By contrast, the active mark H3K4me3 on the t promoter is strongly modulated by temperature. The H3K4 methyl-transferase involved in this process is likely Trithorax, as we show that it regulates t expression and the H3K4me3 level on the t promoter and also participates in female pigmentation and its plasticity. Interestingly, t was previously shown to be involved in inter-individual variation of female abdominal pigmentation in Drosophila melanogaster, and in abdominal pigmentation divergence between Drosophila species. Sensitivity of t expression to environmental conditions might therefore give more substrate for selection, explaining why this gene has frequently been involved in evolution of pigmentation. PMID:27508387
Adult onset Niemann-Pick type C disease: A clinical, neuroimaging and molecular genetic study.
Battisti, Carla; Tarugi, Patrizla; Dotti, Maria Teresa; De Stefano, Nicola; Vattimo, Angelo; Chierichetti, Francesea; Calandra, Sebastiano; Federico, Antonio
2003-11-01
We report on a patient with adult-onset Niemann-Pick type C (NPC) disease, carrying the mutations P1007 and I1061T in the NPC1 gene, presenting with marked psychiatric changes followed by dystonia and cognitive impairment. Filipin staining, single photon emission computed tomography perfusional, positron emission tomography metabolic, conventional magnetic resonance imaging, and magnetic resonance spectroscopy findings suggested a pathophysiological correlation with phenotype expression. This case expands the clinical and genetic spectrum of the rare adult-onset NPC disease phenotype.
Obesity-Associated Hypertension: the Upcoming Phenotype in African-American Women.
Samson, Rohan; Qi, Andrea; Jaiswal, Abhishek; Le Jemtel, Thierry H; Oparil, Suzanne
2017-05-01
The present obesity epidemic particularly affects African-American women. Whether the obesity epidemic will alter the hypertension phenotype in African-American women is entertained. The prevalence of morbid obesity is steadily increasing in African-American women, who are prone to developing hypertension (HTN) even in the absence of obesity. The obesity-associated hypertension phenotype is characterized by marked sympathetic nervous system activation and resistance/refractoriness to antihypertensive therapy. Weight loss achieved through lifestyle interventions and pharmacotherapy has a modest and rarely sustained antihypertensive effect. In contrast, bariatric surgery has a sustained antihypertensive effect, as evidenced by normalization of hypertension or lessening of antihypertensive therapy. The prevalence of HTN and its obesity-associated phenotype is likely to increase in African-American women over the next decades. Obese African-American women may be increasingly referred for bariatric surgery when hypertension remains uncontrolled despite lifestyle interventions and pharmacological therapy for weight loss and blood pressure (BP) control.
Brancaleoni, V.; Balwani, M.; Granata, F.; Graziadei, G.; Missineo, P.; Fiorentino, V.; Fustinoni, S.; Cappellini, M.D.; Naik, H.; Desnick, R.J.; Di Pierro, E.
2015-01-01
X-linked protoporphyria (XLP), a rare erythropoietic porphyria, results from terminal exon gain-of-function mutations in the ALAS2 gene causing increased ALAS2 activity and markedly increased erythrocyte protoporphyrin levels. Patients present with severe cutaneous photosensitivity and may develop liver dysfunction. XLP was originally reported as X-linked dominant with 100% penetrance in males and females. We characterized 11 heterozygous females from six unrelated XLP families and show markedly varying phenotypic and biochemical heterogeneity, reflecting the degree of X-chromsomal inactivation of the mutant gene. ALAS2 sequencing identified the specific mutation and confirmed heterozygosity among the females. Clinical history, plasma and erythrocyte protoporphyrin levels were determined. Methylation assays of the androgen receptor and zinc-finger MYM type 3 short tandem repeat polymorphisms estimated each heterozygotes X-chromosomal inactivation pattern. Heterozygotes with equal or increased skewing, favoring expression of the wild-type allele had no clinical symptoms and only slightly increased erythrocyte protoporphyrin concentrations and/or frequency of protoporphyrin-containing peripheral blood fluorocytes. When the wild-type allele was preferentially inactivated, heterozygous females manifested the disease phenotype and had both higher erythrocyte protoporphyrin levels and circulating fluorocytes. These findings confirm that the previous dominant classification of XLP is inappropriate and genetically misleading, as the disorder is more appropriately designated XLP. PMID:25615817
Fitzgerald, Jamie; Holden, Paul; Wright, Hollis; Wilmot, Beth; Hata, Abigail; Steiner, Robert D.; Basel, Don
2016-01-01
Background Osteogenesis imperfecta (OI) type V is a dominantly inherited skeletal dysplasia characterized by fractures and progressive deformity of long bones. In addition, patients often present with radial head dislocation, hyperplastic callus, and calcification of the forearm interosseous membrane. Recently, a specific mutation in the IFITM5 gene was found to be responsible for OI type V. This mutation, a C to T transition 14 nucleotides upstream from the endogenous start codon, creates a new start methionine that appears to be preferentially used by the translational machinery. However, the mechanism by which the lengthened protein results in a dominant type of OI is unknown. Methods and Results We report 7 ethnically diverse (African-American, Caucasian, Hispanic, and African) individuals with OI type V from 2 families and 2 sporadic cases. Exome sequencing failed to identify a causative mutation. Using Sanger sequencing, we found that all affected individuals in our cohort possess the c.−14 IFITM5 variant, further supporting the notion that OI type V is caused by a single, discrete mutation. Our patient cohort demonstrated inter-and intrafamilial phenotypic variability, including a father with classic OI type V whose daughter had a phenotype similar to OI type I. This clinical variability suggests that modifier genes influence the OI type V phenotype. We also confirm that the mutation creates an aberrant IFITM5 protein containing an additional 5 amino acids at the N-terminus. Conclusions The variable clinical signs in these cases illustrate the significant variability of the OI type V phenotype caused by the c.−14 IFITM5 mutation. The affected individuals are more ethnically diverse than previously reported. PMID:28824928
Tiedt, Hannes O; Benjamin, Beate; Niedeggen, Michael; Lueschow, Andreas
2018-02-22
In rare cases, patients with Alzheimer disease (AD) present at an early age and with a family history suggestive of an autosomal dominant mode of inheritance. Mutations of the presenilin-1 (PSEN1) gene are the most common causes of dementia in these patients. Early-onset and particularly familial AD patients frequently present with variable non-amnestic cognitive symptoms such as visual, language or behavioural changes as well as non-cognitive, e.g. motor, symptoms. To investigate the phenotypic variability in carriers of the PSEN1 S170F mutation. We report a family with 4 patients carrying the S170F mutation of whom 2 underwent detailed clinical examinations. We discuss our current findings in the context of previously reported S170F cases. The clinical phenotype was consistent regarding initial memory impairment and early onset in the late twenties found in all S170F patients. There were frequent non-amnestic cognitive changes and, at early stages of the disease, indications of a more pronounced disturbance of visuospatial abilities as compared to face and object recognition. Non-cognitive symptoms most often included myoclonus and cerebellar ataxia. A review of the available case reports indicates some phenotypic variability associated with the S170F mutation including different constellations of symptoms such as parkinsonism and delusions. The variable clinical findings associated with the S170F mutation highlight the relevance of atypical phenotypes in the context of research and under a clinical perspective. CSF sampling and detection of Aβ species may be essential to indicate AD pathology in unclear cases presenting with cognitive and motor symptoms at a younger age. © 2018 S. Karger AG, Basel.
Granell, Raquel; Sterne, Jonathan A C; Henderson, John
2012-01-01
Asthma is a complex heterogeneous disease that has increased in prevalence in many industrialised countries. However, the causes of asthma inception remain elusive. Consideration of sub-phenotypes of wheezing may reveal important clues to aetiological risk factors. Longitudinal phenotypes capturing population heterogeneity in wheezing reports from birth to 7 years were derived using latent class analysis in the Avon Longitudinal Study of Parents and Children (ALSPAC). Probability of class membership was used to examine the association between five wheezing phenotypes (transient early, prolonged early, intermediate-onset, late-onset, persistent) and early life risk factors for asthma. Phenotypes had similar patterns and strengths of associations with early environmental factors. Comparing transient early with prolonged early wheezing showed a similar pattern of association with most exposure variables considered in terms of the direction of the effect estimates but with prolonged early wheezing tending to have stronger associations than transient early wheezing except for parity and day care attendance. Associations with early life risk factors suggested that prolonged early wheeze might be a severe form of transient early wheezing. Although differences were found in the associations of early life risk factors with individual phenotypes, these did not point to novel aetiological pathways. Persistent wheezing phenotype has features suggesting overlap of early and late-onset phenotypes.
Adaptation to local ultraviolet radiation conditions among neighbouring Daphnia populations
Miner, Brooks E.; Kerr, Benjamin
2011-01-01
Understanding the historical processes that generated current patterns of phenotypic diversity in nature is particularly challenging in subdivided populations. Populations often exhibit heritable genetic differences that correlate with environmental variables, but the non-independence among neighbouring populations complicates statistical inference of adaptation. To understand the relative influence of adaptive and non-adaptive processes in generating phenotypes requires joint evaluation of genetic and phenotypic divergence in an integrated and statistically appropriate analysis. We investigated phenotypic divergence, population-genetic structure and potential fitness trade-offs in populations of Daphnia melanica inhabiting neighbouring subalpine ponds of widely differing transparency to ultraviolet radiation (UVR). Using a combination of experimental, population-genetic and statistical techniques, we separated the effects of shared population ancestry and environmental variables in predicting phenotypic divergence among populations. We found that native water transparency significantly predicted divergence in phenotypes among populations even after accounting for significant population structure. This result demonstrates that environmental factors such as UVR can at least partially account for phenotypic divergence. However, a lack of evidence for a hypothesized trade-off between UVR tolerance and growth rates in the absence of UVR prevents us from ruling out the possibility that non-adaptive processes are partially responsible for phenotypic differentiation in this system. PMID:20943691
Barton, James C; Chen, Wen-Pin; Emond, Mary J; Phatak, Pradyumna D; Subramaniam, V Nathan; Adams, Paul C; Gurrin, Lyle C; Anderson, Gregory J; Ramm, Grant A; Powell, Lawrie W; Allen, Katrina J; Phillips, John D; Parker, Charles J; McLaren, Gordon D; McLaren, Christine E
2017-03-01
GNPAT p.D519G positivity is significantly increased in HFE p.C282Y homozygotes with markedly increased iron stores. We sought to determine associations of p.D519G and iron-related variables with iron stores in p.C282Y homozygotes. We defined markedly increased iron stores as serum ferritin >2247pmol/L (>1000μg/L) and either hepatic iron >236μmol/g dry weight or iron >10g by induction phlebotomy (men and women). We defined normal or mildly elevated iron stores as serum ferritin <674.1pmol/L (<300μg/L) or either age≥40y with iron ≤2.5g iron by induction phlebotomy or age≥50y with ≤3.0g iron by induction phlebotomy (men only). We compared participant subgroups using univariate methods. Using multivariable logistic regression, we evaluated associations of markedly increased iron stores with these variables: age; iron supplement use (dichotomous); whole blood units donated; erythrocyte units received as transfusion; daily alcohol consumption, g; and p.D519G positivity (heterozygosity or homozygosity). The mean age of 56 participants (94.6% men) was 55±10 (SD) y; 41 had markedly increased iron stores. Prevalences of swollen/tender 2nd/3rd metacarpophalangeal joints and elevated aspartate or alanine aminotransferase were significantly greater in participants with markedly increased iron stores. Only participants with markedly increased iron stores had cirrhosis. In multivariable analyses, p.D519G positivity was the only exposure variable significantly associated with markedly increased iron stores (odds ratio 9.9, 95% CI [1.6, 60.3], p=0.0126). GNPAT p.D519G is strongly associated with markedly increased iron stores in p.C282Y homozygotes after correction for age, iron-related variables, and alcohol consumption. Copyright © 2016 Elsevier Inc. All rights reserved.
The Neurocognitive Phenotype in Velo-Cardio-Facial Syndrome: A Developmental Perspective
ERIC Educational Resources Information Center
Antshel, Kevin M.; Fremont, Wanda; Kates, Wendy R.
2008-01-01
Although research has focused primarily on the wide range of variability in the cognitive phenotype between individuals with velo-cardio-facial syndrome (VCFS), we know relatively little about the extent to which within-individual expressions of the cognitive phenotype remain stable throughout development. General cognitive functioning in the low…
Iyadurai, Stanley; Arnold, W David; Kissel, John T; Ruhno, Corey; Mcgovern, Vicki L; Snyder, Pamela J; Prior, Thomas W; Roggenbuck, Jennifer; Burghes, Arthur H; Kolb, Stephen J
2017-08-01
Distal hereditary motor neuropathy (dHMN) causes distal-predominant weakness without prominent sensory loss. Myosin heavy chain disorders most commonly result in distal myopathy and cardiomyopathy with or without hearing loss, but a complex phenotype with dHMN, myopathy, hoarseness, and hearing loss was reported in a Korean family with a c.2822G>T mutation in MYH14. In this study we report phenotypic features in a North American family with the c.2822G>T in MYH14. Clinical and molecular characterization was performed in a large, 6-generation, Caucasian family with MYH14 dHMN. A total of 11 affected and 7 unaffected individuals were evaluated and showed varying age of onset and severity of weakness. Genotypic concordance was confirmed with molecular analysis. Electrophysiological studies demonstrated distal motor axonal degeneration without myopathy in all affected subjects tested. Mutation of MYH14 can result in a range of neuromuscular phenotypes that includes a dHMN and hearing loss phenotype with variable age of onset. Muscle Nerve 56: 341-345, 2017. © 2016 Wiley Periodicals, Inc.
Adenosine A3 receptors regulate heart rate, motor activity and body temperature
Yang, Jiangning; Wang, Yingqing; Garcia-Roves, Pablo; Björnholm, Marie; Fredholm, Bertil B.
2010-01-01
Aim We wanted to examine the phenotype of mice that lack the adenosine A3 receptor (A3R). Methods We examined the heart rate, body temperature and locomotion continuously by telemetry over several days. In addition the effect of the adenosine analogue R - N6- phenylisopropyl-adenosine (R-PIA) was examined. In addition, we examined heat production and food intake. Results We found that the marked diurnal variation in activity, heart rate and body temperature, with markedly higher values at night than during day time, was reduced in the A3R knockout mice. Surprisingly, the reduction in heart rate, activity and body temperature seen after injection of R-PIA in wild type mice was virtually eliminated in the A3R knock-out mice. The marked reduction in activity was associated with a decreased heat production, as expected. However, the A3R knock-out mice, surprisingly, had a higher food intake but no difference in body weight compared to wild type mice. Conclusions The mice lacking adenosine A3 receptors exhibit a surprisingly clear phenotype with changes in e.g. diurnal rhythm and temperature regulation. Whether these effects are due to a physiological role of A3 receptors in these processes or if they represent a role in development remains to be elucidated. PMID:20121716
Microscopic saw mark analysis: an empirical approach.
Love, Jennifer C; Derrick, Sharon M; Wiersema, Jason M; Peters, Charles
2015-01-01
Microscopic saw mark analysis is a well published and generally accepted qualitative analytical method. However, little research has focused on identifying and mitigating potential sources of error associated with the method. The presented study proposes the use of classification trees and random forest classifiers as an optimal, statistically sound approach to mitigate the potential for error of variability and outcome error in microscopic saw mark analysis. The statistical model was applied to 58 experimental saw marks created with four types of saws. The saw marks were made in fresh human femurs obtained through anatomical gift and were analyzed using a Keyence digital microscope. The statistical approach weighed the variables based on discriminatory value and produced decision trees with an associated outcome error rate of 8.62-17.82%. © 2014 American Academy of Forensic Sciences.
Xu, Man K.; Gaysina, Darya; Tsonaka, Roula; Morin, Alexandre J. S.; Croudace, Tim J.; Barnett, Jennifer H.; Houwing-Duistermaat, Jeanine; Richards, Marcus; Jones, Peter B.
2017-01-01
Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene (MAOA) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = −0.167; CI: −0.289, −0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits. PMID:29075213
Xu, Man K; Gaysina, Darya; Tsonaka, Roula; Morin, Alexandre J S; Croudace, Tim J; Barnett, Jennifer H; Houwing-Duistermaat, Jeanine; Richards, Marcus; Jones, Peter B
2017-01-01
Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene ( MAOA ) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = -0.167; CI: -0.289, -0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits.
[Erythrocytic enzymopathy in Uzbekistan].
Bakhramov, S M; Ashrabhodzhaeva, K K
2011-01-01
Erythrocyte enzymes participate in the main interactions promoting utilization of glucose-glycolytic, pentosophosphate cycles and glutation system. In this report we study on erythrocyte G6PD deficiency which is the impairment related to the gender and expressed with development of acute drug-associated hemolytic anemia. Out of 13187 studied subjects 122 showed carrying of deficiency of erythrocyte G6PD activity, from them 98 (80.3%) subjects were male, and 24 (19.7%) female. As a whole, among the revealed in the population studies, and also verified in clinic of the persons with deficiency of erythrocyte G6PD there were marked different pathological phenotypes: hereditary nonspherecytary hemolytic anemia, acute drug-induced hemolytic anemia, asymptomatic gene carrying and, selected by us disease with few symptoms. As a whole, among the revealed in the population studies, and also verified in clinic of the persons with deficiency of erythrocyte G6PD there were marked different pathological phenotypes: hereditary nonspherecytary hemolytic anemia, acute drug-induced hemolytic anemia, asymptomatic gene carrying and, selected by us disease with few symptoms.
ERIC Educational Resources Information Center
Schwartzman, Benjamin C.; Wood, Jeffrey J.; Kapp, Steven K.
2016-01-01
The present study aimed to: determine the extent to which the five factor model of personality (FFM) accounts for variability in autism spectrum disorder (ASD) symptomatology in adults, examine differences in average FFM personality traits of adults with and without ASD and identify distinct behavioral phenotypes within ASD. Adults (N = 828;…
Ma, Yuntao; Li, Baoguo; Zhan, Zhigang; Guo, Yan; Luquet, Delphine; de Reffye, Philippe; Dingkuhn, Michael
2007-01-01
Background and Aims It is increasingly accepted that crop models, if they are to simulate genotype-specific behaviour accurately, should simulate the morphogenetic process generating plant architecture. A functional–structural plant model, GREENLAB, was previously presented and validated for maize. The model is based on a recursive mathematical process, with parameters whose values cannot be measured directly and need to be optimized statistically. This study aims at evaluating the stability of GREENLAB parameters in response to three types of phenotype variability: (1) among individuals from a common population; (2) among populations subjected to different environments (seasons); and (3) among different development stages of the same plants. Methods Five field experiments were conducted in the course of 4 years on irrigated fields near Beijing, China. Detailed observations were conducted throughout the seasons on the dimensions and fresh biomass of all above-ground plant organs for each metamer. Growth stage-specific target files were assembled from the data for GREENLAB parameter optimization. Optimization was conducted for specific developmental stages or the entire growth cycle, for individual plants (replicates), and for different seasons. Parameter stability was evaluated by comparing their CV with that of phenotype observation for the different sources of variability. A reduced data set was developed for easier model parameterization using one season, and validated for the four other seasons. Key Results and Conclusions The analysis of parameter stability among plants sharing the same environment and among populations grown in different environments indicated that the model explains some of the inter-seasonal variability of phenotype (parameters varied less than the phenotype itself), but not inter-plant variability (parameter and phenotype variability were similar). Parameter variability among developmental stages was small, indicating that parameter values were largely development-stage independent. The authors suggest that the high level of parameter stability observed in GREENLAB can be used to conduct comparisons among genotypes and, ultimately, genetic analyses. PMID:17158141
Influences of Phonological Context on Tense Marking in Spanish-English Dual Language Learners
ERIC Educational Resources Information Center
Combiths, Philip N.; Barlow, Jessica A.; Potapova, Irina; Pruitt-Lord, Sonja
2017-01-01
Purpose: The emergence of tense-morpheme marking during language acquisition is highly variable, which confounds the use of tense marking as a diagnostic indicator of language impairment in linguistically diverse populations. In this study, we seek to better understand tense-marking patterns in young bilingual children by comparing phonological…
Gene expression analysis of microtubule affinity-regulating kinase 2 in non-small cell lung cancer.
Marshall, Erin A; Ng, Kevin W; Anderson, Christine; Hubaux, Roland; Thu, Kelsie L; Lam, Wan L; Martinez, Victor D
2015-12-01
Lung cancer is the leading cause of cancer death worldwide, and has a five-year survival rate of 18% [1]. MARK2 is a serine/threonine-protein kinase, and is a key component in the phosphorylation of microtubule-associated proteins [2], [3]. A recent study published by Hubaux et al. found that microtubule affinity-regulating kinase 2 (MARK2) showed highly frequent DNA and RNA level disruption in lung cancer cell lines and independent non-small cell lung cancer (NSCLC) cohorts [4]. These alterations result in the acquisition of oncogenic properties in cell lines, such as increased viability and anchorage-independent growth. Furthermore, a microarray-based transcriptome analysis of three short hairpin RNA (shRNA)-mediated MARK2 knockdown lung adenocarcinoma cell lines (GEO#: GSE57966) revealed an association between MARK2 gene expression and cell cycle activation and DNA damage response. Here, we present a detailed description of transcriptome analysis to support the described role of MARK2 in promoting a malignant phenotype.
Phenotypic analysis of a novel chordin mutant in medaka.
Takashima, Shigeo; Shimada, Atsuko; Kobayashi, Daisuke; Yokoi, Hayato; Narita, Takanori; Jindo, Tomoko; Kage, Takahiro; Kitagawa, Tadao; Kimura, Tetsuaki; Sekimizu, Koshin; Miyake, Akimitsu; Setiamarga, Davin H E; Murakami, Ryohei; Tsuda, Sachiko; Ooki, Shinya; Kakihara, Ken; Hojo, Motoki; Naruse, Kiyoshi; Mitani, Hiroshi; Shima, Akihiro; Ishikawa, Yuji; Araki, Kazuo; Saga, Yumiko; Takeda, Hiroyuki
2007-08-01
We have isolated and characterized a ventralized mutant in medaka (the Japanese killifish; Oryzias latipes), which turned out to have a mutation in the chordin gene. The mutant exhibits ventralization of the body axis, malformation of axial bones, over-bifurcation of yolk sac blood vessels, and laterality defects in internal organs. The mutant exhibits variability of phenotypes, depending on the culture temperature, from embryos with a slightly ventralized phenotype to those without any head and trunk structures. Taking advantages of these variable and severe phenotypes, we analyzed the role of Chordin-dependent tissues such as the notochord and Kupffer's vesicle (KV) in the establishment of left-right axis in fish. The results demonstrate that, in the absence of the notochord and KV, the medaka lateral plate mesoderm autonomously and bilaterally expresses spaw gene in a default state. (c) 2007 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, D.G.; Guertler, A.T.; Lagutchik, M.S.
1993-05-13
Benzocaine is a commonly used topical anesthetic that is structurally similar to current candidates for cyanide prophylaxis. Benzocaine induces profound methemoglobinemia in some sheep but not others. After topical benzocaine administration certain sheep respond to form MHb (elevated MHb 16-50% after a 56-280 mg dose, a 2-10 second spray with benzocine), while other phenotypically similar sheep fail to significantly form MHb (less than a 2% increase from baseline). Deficiencies in Glucose-6-phosphate dehydrogenase (G-6-PD), reduced glutathione (GSH), and MHb reductase increase the susceptibility to methemoglobinemia in man and animals. Sheep are used as a model for G-6-PD deficiency in man, andmore » differences in this enzyme level could cause the variable response seen in these sheep. Similarly, differences in GSH and MHb reductase could be responsible for the observed differences in MHb formation.« less
Parturition date for a given female is highly repeatable within five roe deer populations
Plard, Floriane; Gaillard, Jean-Michel; Bonenfant, Christophe; Hewison, A. J. Mark; Delorme, Daniel; Cargnelutti, Bruno; Kjellander, Petter; Nilsen, Erlend B.; Coulson, Tim
2013-01-01
Births are highly synchronized among females in many mammal populations in temperate areas. Although laying date for a given female is also repeatable within populations of birds, limited evidence suggests low repeatability of parturition date for individual females in mammals, and between-population variability in repeatability has never, to our knowledge, been assessed. We quantified the repeatability of parturition date for individual females in five populations of roe deer, which we found to vary between 0.54 and 0.93. Each year, some females gave birth consistently earlier in the year, whereas others gave birth consistently later. In addition, all females followed the same lifetime trajectory for parturition date, giving birth progressively earlier as they aged. Giving birth early should allow mothers to increase offspring survival, although few females managed to do so. The marked repeatability of parturition date in roe deer females is the highest ever reported for a mammal, suggesting low phenotypic plasticity in this trait. PMID:23234861
The severity of hereditary porphyria is modulated by the porphyrin exporter and Lan antigen ABCB6
Fukuda, Yu; Cheong, Pak Leng; Lynch, John; Brighton, Cheryl; Frase, Sharon; Kargas, Vasileios; Rampersaud, Evadnie; Wang, Yao; Sankaran, Vijay G.; Yu, Bing; Ney, Paul A.; Weiss, Mitchell J.; Vogel, Peter; Bond, Peter J.; Ford, Robert C.; Trent, Ronald J.; Schuetz, John D.
2016-01-01
Hereditary porphyrias are caused by mutations in genes that encode haem biosynthetic enzymes with resultant buildup of cytotoxic metabolic porphyrin intermediates. A long-standing open question is why the same causal porphyria mutations exhibit widely variable penetrance and expressivity in different individuals. Here we show that severely affected porphyria patients harbour variant alleles in the ABCB6 gene, also known as Lan, which encodes an ATP-binding cassette (ABC) transporter. Plasma membrane ABCB6 exports a variety of disease-related porphyrins. Functional studies show that most of these ABCB6 variants are expressed poorly and/or have impaired function. Accordingly, homozygous disruption of the Abcb6 gene in mice exacerbates porphyria phenotypes in the Fechm1Pas mouse model, as evidenced by increased porphyrin accumulation, and marked liver injury. Collectively, these studies support ABCB6 role as a genetic modifier of porphyria and suggest that porphyrin-inducing drugs may produce excessive toxicities in individuals with the rare Lan(−) blood type. PMID:27507172
Parturition date for a given female is highly repeatable within five roe deer populations.
Plard, Floriane; Gaillard, Jean-Michel; Bonenfant, Christophe; Hewison, A J Mark; Delorme, Daniel; Cargnelutti, Bruno; Kjellander, Petter; Nilsen, Erlend B; Coulson, Tim
2013-02-23
Births are highly synchronized among females in many mammal populations in temperate areas. Although laying date for a given female is also repeatable within populations of birds, limited evidence suggests low repeatability of parturition date for individual females in mammals, and between-population variability in repeatability has never, to our knowledge, been assessed. We quantified the repeatability of parturition date for individual females in five populations of roe deer, which we found to vary between 0.54 and 0.93. Each year, some females gave birth consistently earlier in the year, whereas others gave birth consistently later. In addition, all females followed the same lifetime trajectory for parturition date, giving birth progressively earlier as they aged. Giving birth early should allow mothers to increase offspring survival, although few females managed to do so. The marked repeatability of parturition date in roe deer females is the highest ever reported for a mammal, suggesting low phenotypic plasticity in this trait.
Session 2: Personalised nutrition. Epigenomics: a basis for understanding individual differences?
Mathers, John C
2008-11-01
Epigenetics encompasses changes to marks on the genome that are copied from one cell generation to the next, which may alter gene expression but which do not involve changes in the primary DNA sequence. These marks include DNA methylation (methylation of cytosines within CpG dinucleotides) and post-translational modifications (acetylation, methylation, phosphorylation and ubiquitination) of the histone tails protruding from nucleosome cores. The sum of genome-wide epigenetic patterns is known as the epigenome. It is hypothesised that altered epigenetic marking is a means through which evidence of environmental exposures (including nutritional status and dietary exposure) is received and recorded by the genome. At least some of these epigenetic marks are remembered through multiple cell generations and their effects may be revealed in altered gene expression and cell function. Altered epigenetic marking allows plasticity of phenotype in a fixed genotype. Despite their identical genotypes, monozygotic twins show increasing epigenetic diversity with age and with divergent lifestyles. Differences in epigenetic markings may explain some inter-individual variation in disease risk and in response to nutritional interventions.
Isermann, D.A.; Bettoli, P.W.; Sammons, S.M.; Churchill, T.N.
2002-01-01
Initial poststocking mortality, oxytetracycline mark persistence, and year-class contribution were evaluated for black-nosed crappies, a morphological variant of the black crappie Pomoxis nigromaculatus, stocked into Tennessee reservoirs during 1997-1999. Average initial poststocking mortality was low (x?? = 13%, N = 44). Lake temperature and the difference between lake and hauling tank water temperatures were significant in explaining variability in arcsine-transformed mortality estimates; however, the variability explained by these factors was low (R2 = 0.15). Oxytetracycline immersion was a highly effective marking tool; 97-100% of all crappies treated were marked, and 99% of the marks were visible 36-110 weeks after marking. All control otoliths were correctly scored as unmarked during the evaluation, and mortality rates did not differ between marked and unmarked crappies. Year-class contribution was variable across reservoirs and was highest in Normandy Reservoir (34-93% at ages 1-3). Contribution at ages 1 and 2 was 11-24% in Woods Reservoir. Stocking did not supplement the crappie population in Lake Graham. Black-nosed crappies made up a significant portion (>50%) of the crappies harvested by anglers in Center Hill Reservoir 3 years after stocking was initiated. Conversely, black-nosed crappies made up a relatively small percentage (???12%) of the crappies harvested in Cherokee Reservoir in the 4 years after initial stocking.
Variability in dentofacial phenotypes in four families with WNT10A mutations
Vink, Christian P; Ockeloen, Charlotte W; ten Kate, Sietske; Koolen, David A; Ploos van Amstel, Johannes Kristian; Kuijpers-Jagtman, Anne-Marie; van Heumen, Celeste C; Kleefstra, Tjitske; Carels, Carine E L
2014-01-01
This article describes the inter- and intra-familial phenotypic variability in four families with WNT10A mutations. Clinical characteristics of the patients range from mild to severe isolated tooth agenesis, over mild symptoms of ectodermal dysplasia, to more severe syndromic forms like odonto-onycho-dermal dysplasia (OODD) and Schöpf–Schulz–Passarge syndrome (SSPS). Recurrent WNT10A mutations were identified in all affected family members and the associated symptoms are presented with emphasis on the dentofacial phenotypes obtained with inter alia three-dimensional facial stereophotogrammetry. A comprehensive overview of the literature regarding WNT10A mutations, associated conditions and developmental defects is presented. We conclude that OODD and SSPS should be considered as variable expressions of the same WNT10A genotype. In all affected individuals, a dished-in facial appearance was observed which might be helpful in the clinical setting as a clue to the underlying genetic etiology. PMID:24398796
Gonzaga-Jauregui, Claudia; Harel, Tamar; Gambin, Tomasz; Kousi, Maria; Griffin, Laurie B.; Francescatto, Ludmila; Ozes, Burcak; Karaca, Ender; Jhangiani, Shalini; Bainbridge, Matthew N.; Lawson, Kim S.; Pehlivan, Davut; Okamoto, Yuji; Withers, Marjorie; Mancias, Pedro; Slavotinek, Anne; Reitnauer, Pamela J; Goksungur, Meryem T.; Shy, Michael; Crawford, Thomas O.; Koenig, Michel; Willer, Jason; Flores, Brittany N.; Pediaditrakis, Igor; Us, Onder; Wiszniewski, Wojciech; Parman, Yesim; Antonellis, Anthony; Muzny, Donna M.; Katsanis, Nicholas; Battaloglu, Esra; Boerwinkle, Eric; Gibbs, Richard A.; Lupski, James R.
2015-01-01
Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ~45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy associated genes in subjects versus controls; confirmed in a second ethnically discrete neuropathy cohort, suggesting mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HMPVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity. PMID:26257172
Riordan, Erin C; Gugger, Paul F; Ortego, Joaquín; Smith, Carrie; Gaddis, Keith; Thompson, Pam; Sork, Victoria L
2016-01-01
Geography and climate shape the distribution of organisms, their genotypes, and their phenotypes. To understand historical and future evolutionary and ecological responses to climate, we compared the association of geography and climate of three oak species (Quercus engelmannii, Quercus berberidifolia, and Quercus cornelius-mulleri) in an environmentally heterogeneous region of southern California at three organizational levels: regional species distributions, genetic variation, and phenotypic variation. We identified climatic variables influencing regional distribution patterns using species distribution models (SDMs), and then tested whether those individual variables are important in shaping genetic (microsatellite) and phenotypic (leaf morphology) variation. We estimated the relative contributions of geography and climate using multivariate redundancy analyses (RDA) with variance partitioning. The modeled distribution of each species was influenced by climate differently. Our analysis of genetic variation using RDA identified small but significant associations between genetic variation with climate and geography in Q. engelmannii and Q. cornelius-mulleri, but not in Q. berberidifolia, and climate explained more of the variation. Our analysis of phenotypic variation in Q. engelmannii indicated that climate had more impact than geography, but not in Q. berberidifolia. Throughout our analyses, we did not find a consistent pattern in effects of individual climatic variables. Our comparative analysis illustrates that climate influences tree response at all organizational levels, but the important climate factors vary depending on the level and on the species. Because of these species-specific and level-specific responses, today's sympatric species are unlikely to have similar distributions in the future. © 2016 Botanical Society of America.
Solovenchuk, L L; Arshavskiĭ, V V
1988-05-01
Clearly definable polymorphism of hemisphere interrelations represented by three phenotypes was established by the method of EEG cross-correlation analysis. Each phenotype of the three, representing polymorphism, is characterized by marked specificity of perception and the processing of information, which determines certain integral physiological characteristics of individuals. Phenotype frequencies in aboriginal and new-come populations of the North-East of the USSR differ significantly. In comparison with the inhabitants, Moscow Russians of Magadan are significantly closer to aboriginal population, judging by their frequency distribution, and this may be due to the strategy specificity in adaptation of populations to environmental conditions. Significant difference in phenotype frequencies is shown in representatives of both sexes, this being more pronounced in the aboriginal population. The establishment of interhemispheric reaction type by approx. 10th year of individual's life is confirmed. Phenotype frequency correlations, depending on parental phenotype, were analyzed in children. The role of genetic and environmental factors in manifestation of the hemisphere relationship type is discussed. Rationality of the population analysis of hemisphere asymmetry types is grounded, according to the study of behavioural genetics and population adaptation.
Scheid, Adam D; Van Keulen, Virginia P; Felts, Sara J; Neier, Steven C; Middha, Sumit; Nair, Asha A; Techentin, Robert W; Gilbert, Barry K; Jen, Jin; Neuhauser, Claudia; Zhang, Yuji; Pease, Larry R
2018-03-01
Human immunity exhibits remarkable heterogeneity among individuals, which engenders variable responses to immune perturbations in human populations. Population studies reveal that, in addition to interindividual heterogeneity, systemic immune signatures display longitudinal stability within individuals, and these signatures may reliably dictate how given individuals respond to immune perturbations. We hypothesize that analyzing relationships among these signatures at the population level may uncover baseline immune phenotypes that correspond with response outcomes to immune stimuli. To test this, we quantified global gene expression in peripheral blood CD4 + cells from healthy individuals at baseline and following CD3/CD28 stimulation at two time points 1 mo apart. Systemic CD4 + cell baseline and poststimulation molecular immune response signatures (MIRS) were defined by identifying genes expressed at levels that were stable between time points within individuals and differential among individuals in each state. Iterative differential gene expression analyses between all possible phenotypic groupings of at least three individuals using the baseline and stimulated MIRS gene sets revealed shared baseline and response phenotypic groupings, indicating the baseline MIRS contained determinants of immune responsiveness. Furthermore, significant numbers of shared phenotype-defining sets of determinants were identified in baseline data across independent healthy cohorts. Combining the cohorts and repeating the analyses resulted in identification of over 6000 baseline immune phenotypic groups, implying that the MIRS concept may be useful in many immune perturbation contexts. These findings demonstrate that patterns in complex gene expression variability can be used to define immune phenotypes and discover determinants of immune responsiveness. Copyright © 2018 by The American Association of Immunologists, Inc.
Children’s Marking of Verbal –s by Nonmainstream English Dialect and Clinical Status
Cleveland, Lesli H.; Oetting, Janna B.
2015-01-01
Purpose Children’s marking of verbal –s was examined by their dialect (African American English [AAE] vs. Southern White English [SWE]) and clinical status (specific language impairment [SLI] vs. typically developing [TD]) and as a function of 4 linguistic variables (verb regularity, negation, expression of a habitual activity, and expression of historical present tense). Method The data were language samples from 57 six-year-olds who varied by their dialect and clinical status (AAE: SLI = 14, TD = 12; SWE: SLI = 12, TD = 19). Results The AAE groups produced lower rates of marking than did the SWE groups, and the SWE SLI group produced lower rates of marking than did the SWE TD group. Although low numbers of verb contexts made it difficult to evaluate the linguistic variables, there was evidence of their influence, especially for verb regularity and negation. The direction and magnitude of the effects were often (but not always) consistent with what has been described in the adult dialect literature. Conclusion Verbal –s can be used to help distinguish children with and without SLI in SWE but not in AAE. Clinicians can apply these findings to other varieties of AAE and SWE and other dialects by considering rates of marking and the effects of linguistic variables on marking. PMID:23813205
Phenotype-limited distributions: short-billed birds move away during times that prey bury deeply
Duijns, Sjoerd; van Gils, Jan A.; Smart, Jennifer; Piersma, Theunis
2015-01-01
In our seasonal world, animals face a variety of environmental conditions in the course of the year. To cope with such seasonality, animals may be phenotypically flexible, but some phenotypic traits are fixed. If fixed phenotypic traits are functionally linked to resource use, then animals should redistribute in response to seasonally changing resources, leading to a ‘phenotype-limited’ distribution. Here, we examine this possibility for a shorebird, the bar-tailed godwit (Limosa lapponica; a long-billed and sexually dimorphic shorebird), that has to reach buried prey with a probing bill of fixed length. The main prey of female bar-tailed godwits is buried deeper in winter than in summer. Using sightings of individually marked females, we found that in winter only longer-billed individuals remained in the Dutch Wadden Sea, while the shorter-billed individuals moved away to an estuary with a more benign climate such as the Wash. Although longer-billed individuals have the widest range of options in winter and could therefore be selected for, counterselection may occur during the breeding season on the tundra, where surface-living prey may be captured more easily with shorter bills. Phenotype-limited distributions could be a widespread phenomenon and, when associated with assortative migration and mating, it may act as a precursor of phenotypic evolution. PMID:26543585
Phenotype-limited distributions: short-billed birds move away during times that prey bury deeply.
Duijns, Sjoerd; van Gils, Jan A; Smart, Jennifer; Piersma, Theunis
2015-06-01
In our seasonal world, animals face a variety of environmental conditions in the course of the year. To cope with such seasonality, animals may be phenotypically flexible, but some phenotypic traits are fixed. If fixed phenotypic traits are functionally linked to resource use, then animals should redistribute in response to seasonally changing resources, leading to a 'phenotype-limited' distribution. Here, we examine this possibility for a shorebird, the bar-tailed godwit (Limosa lapponica; a long-billed and sexually dimorphic shorebird), that has to reach buried prey with a probing bill of fixed length. The main prey of female bar-tailed godwits is buried deeper in winter than in summer. Using sightings of individually marked females, we found that in winter only longer-billed individuals remained in the Dutch Wadden Sea, while the shorter-billed individuals moved away to an estuary with a more benign climate such as the Wash. Although longer-billed individuals have the widest range of options in winter and could therefore be selected for, counterselection may occur during the breeding season on the tundra, where surface-living prey may be captured more easily with shorter bills. Phenotype-limited distributions could be a widespread phenomenon and, when associated with assortative migration and mating, it may act as a precursor of phenotypic evolution.
Charlton, Joanna J.; Tsoukatou, Debbie; Mamalaki, Clio; Chatzidakis, Ioannis
2015-01-01
Memory phenotype CD4 T cells are found in normal mice and arise through response to environmental antigens or homeostatic mechanisms. The factors that regulate the homeostasis of memory phenotype CD4 cells are not clear. In the present study we demonstrate that there is a marked accumulation of memory phenotype CD4 cells, specifically of the effector memory (TEM) phenotype, in lymphoid organs and tissues of mice deficient for the negative co-stimulatory receptor programmed death 1 (PD-1). This can be correlated with decreased apoptosis but not with enhanced homeostatic turnover potential of these cells. PD-1 ablation increased the frequency of memory phenotype CD4 IFN-γ producers but decreased the respective frequency of IL-17A-producing cells. In particular, IFN-γ producers were more abundant but IL-17A producing cells were more scarce among PD-1 KO TEM-phenotype cells relative to WT. Transfer of peripheral naïve CD4 T cells suggested that accumulated PD-1 KO TEM-phenotype cells are of peripheral and not of thymic origin. This accumulation effect was mediated by CD4 cell-intrinsic mechanisms as shown by mixed bone marrow chimera experiments. Naïve PD-1 KO CD4 T cells gave rise to higher numbers of TEM-phenotype lymphopenia-induced proliferation memory cells. In conclusion, we provide evidence that PD-1 has an important role in determining the composition and functional aspects of memory phenotype CD4 T cell pool. PMID:25803808
Fryar-Williams, Stephanie
2016-01-01
The Mental Health Biomarker Project (2010–2016) explored variables for psychosis in schizophrenia and schizoaffective disorder. Blood samples from 67, highly characterized symptomatic cases and 67 gender and age matched control participants were analyzed for methyl tetrahydrofolate reductase (MTHFR) 677C → T gene variants and for vitamin B6, B12 and D, folate, unbound copper, zinc cofactors for enzymes in the methylation cycle, and related catecholamine pathways. Urine samples were analyzed for indole-catecholamines, their metabolites, and oxidative-stress marker, hydroxylpyrolline-2-one (HPL). Rating scales were Brief Psychiatric Rating Scale, Positive and Negative Syndrome Scale, Global Assessment of Function scale, Clinical Global Impression (CGI) score, and Social and Occupational Functioning Assessment Scale (SOFAS). Analysis used Spearman’s correlates, receiver operating characteristics and structural equation modeling (SEM). The correlative pattern of variables in the overall participant sample strongly implicated monoamine oxidase (MAO) enzyme inactivity so the significant role of MAO’s cofactor flavin adenine nucleotide and its precursor flavin adenine mononucleotide (FMN) within the biochemical pathways was investigated and confirmed as 71% on SEM of the total sample. Splitting the data sets for MTHFR 677C → T polymorphism variants coding for the MTHFR enzyme, discovered that biochemistry variables relating to the wild-type enzyme differed markedly in pattern from those coded by the homozygous variant and that the hereozygous-variant pattern resembled the wild-type-coded pattern. The MTHFR 677C → T-wild and -heterozygous gene variants have a pattern of depleted vitamin cofactors characteristic of flavin insufficiency with under-methylation and severe oxidative stress. The second homozygous MTHFR 677TT pattern related to elevated copper:zinc ratio and a vitamin pattern related to flavin sufficiency and risk of over-methylation. The two gene variants and their different biochemical phenotypes govern findings in relationship to case-identification, illness severity, duration of illness, and functional disability in schizophrenia and schizoaffective psychosis, and establish a basis for trials of gene-guided precision treatment for the management of psychosis. PMID:27881965
Fryar-Williams, Stephanie
2016-01-01
The Mental Health Biomarker Project (2010-2016) explored variables for psychosis in schizophrenia and schizoaffective disorder. Blood samples from 67, highly characterized symptomatic cases and 67 gender and age matched control participants were analyzed for methyl tetrahydrofolate reductase (MTHFR) 677C → T gene variants and for vitamin B6, B12 and D, folate, unbound copper, zinc cofactors for enzymes in the methylation cycle, and related catecholamine pathways. Urine samples were analyzed for indole-catecholamines, their metabolites, and oxidative-stress marker, hydroxylpyrolline-2-one (HPL). Rating scales were Brief Psychiatric Rating Scale, Positive and Negative Syndrome Scale, Global Assessment of Function scale, Clinical Global Impression (CGI) score, and Social and Occupational Functioning Assessment Scale (SOFAS). Analysis used Spearman's correlates, receiver operating characteristics and structural equation modeling (SEM). The correlative pattern of variables in the overall participant sample strongly implicated monoamine oxidase (MAO) enzyme inactivity so the significant role of MAO's cofactor flavin adenine nucleotide and its precursor flavin adenine mononucleotide (FMN) within the biochemical pathways was investigated and confirmed as 71% on SEM of the total sample. Splitting the data sets for MTHFR 677C → T polymorphism variants coding for the MTHFR enzyme, discovered that biochemistry variables relating to the wild-type enzyme differed markedly in pattern from those coded by the homozygous variant and that the hereozygous-variant pattern resembled the wild-type-coded pattern. The MTHFR 677C → T-wild and -heterozygous gene variants have a pattern of depleted vitamin cofactors characteristic of flavin insufficiency with under-methylation and severe oxidative stress. The second homozygous MTHFR 677TT pattern related to elevated copper:zinc ratio and a vitamin pattern related to flavin sufficiency and risk of over-methylation. The two gene variants and their different biochemical phenotypes govern findings in relationship to case-identification, illness severity, duration of illness, and functional disability in schizophrenia and schizoaffective psychosis, and establish a basis for trials of gene-guided precision treatment for the management of psychosis.
Automatic marker for photographic film
NASA Technical Reports Server (NTRS)
Gabbard, N. M.; Surrency, W. M.
1974-01-01
Commercially-produced wire-marking machine is modified to title or mark film rolls automatically. Machine is used with film drive mechanism which is powered with variable-speed, 28-volt dc motor. Up to 40 frames per minute can be marked, reducing time and cost of process.
Breeding animals for quality products: not only genetics.
Chavatte-Palmer, Pascale; Tarrade, Anne; Kiefer, Hélène; Duranthon, Véronique; Jammes, Hélène
2016-01-01
The effect of the Developmental Origins of Health and Disease on the spread of non-communicable diseases is recognised by world agencies such as the United Nations and the World Health Organization. Early environmental effects on offspring phenotype also apply to domestic animals and their production traits. Herein, we show that maternal nutrition not only throughout pregnancy, but also in the periconception period can affect offspring phenotype through modifications of gametes, embryos and placental function. Because epigenetic mechanisms are key processes in mediating these effects, we propose that the study of epigenetic marks in gametes may provide additional information for domestic animal selection.
Thyrotoxicosis Presenting as Unilateral Drop Foot
Hara, Kenju; Miyata, Hajime; Motegi, Takahide; Shibano, Ken; Ishiguro, Hideaki
2017-01-01
Neuromuscular disorders associated with hyperthyroidism have several variations in their clinical phenotype, such as ophthalmopathy, periodic paralysis, and thyrotoxic myopathy. We herein report an unusual case of thyrotoxic myopathy presenting as unilateral drop foot. Histopathological examinations of the left tibialis anterior muscle showed marked variation in the fiber size, mild inflammatory cell infiltration, and necrotic and regenerated muscle fibers with predominantly type 1 fiber atrophy. Medical treatment with propylthiouracil resulted in complete improvement of the left drop foot. This case expands the phenotype of thyrotoxicosis and suggests that thyrotoxicosis be considered as a possible cause of unilateral drop foot. PMID:28768980
Thyrotoxicosis Presenting as Unilateral Drop Foot.
Hara, Kenju; Miyata, Hajime; Motegi, Takahide; Shibano, Ken; Ishiguro, Hideaki
2017-01-01
Neuromuscular disorders associated with hyperthyroidism have several variations in their clinical phenotype, such as ophthalmopathy, periodic paralysis, and thyrotoxic myopathy. We herein report an unusual case of thyrotoxic myopathy presenting as unilateral drop foot. Histopathological examinations of the left tibialis anterior muscle showed marked variation in the fiber size, mild inflammatory cell infiltration, and necrotic and regenerated muscle fibers with predominantly type 1 fiber atrophy. Medical treatment with propylthiouracil resulted in complete improvement of the left drop foot. This case expands the phenotype of thyrotoxicosis and suggests that thyrotoxicosis be considered as a possible cause of unilateral drop foot.
The influence of extracelluar matrix on intramuscular and extramuscular adipogenesis
USDA-ARS?s Scientific Manuscript database
The extracellular matrix (ECM) and specific ECM components can have a major influence on cell growth, development and phenotype. The influence of the ECM and ECM components on adipogenesis in vivo and in vitro will be reviewed. Engelbreth-Holm-Swarm (EHS) substratum and laminin per se markedly incre...
USDA-ARS?s Scientific Manuscript database
The innate immune cell populations that mediate metazoan parasite expulsion remain largely undefined. We examined the role of innate cells in the immune response to the nematode parasite Nippostrongylus brasiliensis hypothesizing that they may mediate the markedly accelerated CD4+ T cell-independen...
Skeletal muscle repair in a mouse model of nemaline myopathy
Sanoudou, Despina; Corbett, Mark A.; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T.; Vlahovich, Nicole; Hardeman, Edna C.; Beggs, Alan H.
2012-01-01
Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five different skeletal muscles from affected mice, which are representative of muscles with differing fiber-type compositions, different physiological specializations and variable degrees of pathology. Although these same muscles in non-affected mice showed marked variation in patterns of gene expression, with diaphragm being the most dissimilar, the presence of the mutant protein in nemaline muscles resulted in a more similar pattern of gene expression among the muscles. This result suggests a common process or mechanism operating in nemaline muscles independent of the variable degrees of pathology. Transcriptional and protein expression data indicate the presence of a repair process and possibly delayed maturation in nemaline muscles. Markers indicative of satellite cell number, activated satellite cells and immature fibers including M-Cadherin, MyoD, desmin, Pax7 and Myf6 were elevated by western-blot analysis or immunohistochemistry. Evidence suggesting elevated focal repair was observed in nemaline muscle in electron micrographs. This analysis reveals that NM is characterized by a novel repair feature operating in multiple different muscles. PMID:16877500
Skeletal muscle repair in a mouse model of nemaline myopathy.
Sanoudou, Despina; Corbett, Mark A; Han, Mei; Ghoddusi, Majid; Nguyen, Mai-Anh T; Vlahovich, Nicole; Hardeman, Edna C; Beggs, Alan H
2006-09-01
Nemaline myopathy (NM), the most common non-dystrophic congenital myopathy, is a variably severe neuromuscular disorder for which no effective treatment is available. Although a number of genes have been identified in which mutations can cause NM, the pathogenetic mechanisms leading to the phenotypes are poorly understood. To address this question, we examined gene expression patterns in an NM mouse model carrying the human Met9Arg mutation of alpha-tropomyosin slow (Tpm3). We assessed five different skeletal muscles from affected mice, which are representative of muscles with differing fiber-type compositions, different physiological specializations and variable degrees of pathology. Although these same muscles in non-affected mice showed marked variation in patterns of gene expression, with diaphragm being the most dissimilar, the presence of the mutant protein in nemaline muscles resulted in a more similar pattern of gene expression among the muscles. This result suggests a common process or mechanism operating in nemaline muscles independent of the variable degrees of pathology. Transcriptional and protein expression data indicate the presence of a repair process and possibly delayed maturation in nemaline muscles. Markers indicative of satellite cell number, activated satellite cells and immature fibers including M-Cadherin, MyoD, desmin, Pax7 and Myf6 were elevated by western-blot analysis or immunohistochemistry. Evidence suggesting elevated focal repair was observed in nemaline muscle in electron micrographs. This analysis reveals that NM is characterized by a novel repair feature operating in multiple different muscles.
[Waardenburg syndrome. A heterogenic disorder with variable penetrance].
Apaydin, F; Bereketoglu, M; Turan, O; Hribar, K; Maassen, M M; Günhan, O; Zenner, H-P; Pfister, M
2004-06-01
Waardenburg syndrome (WS) is an autosomal dominant disorder characterised by pigmentary anomalies of the skin, hairs, eyes and various defects of other neural crest derived tissues. It accounts for over 2% of congenital hearing impairment. At least four types are recognized on the basis of clinical and genetic criteria. Based on a screening of congenitally hearing impaired children, 12 families with WS type II were detected. Of special interest was the phenotype of these families, in particular the reduced penetrance of hearing impairment within the families. In all cases a high variability of the disease phenotype was detected and the penetrance of the clinical traits varied accordingly. Therefore, it is not possible to predict the clinical phenotype even in a single family. Based on these studies, we plan to identify the pathogenetic cause of the disease in order to perform a detailed genotype/phenotype analysis.
Clinical phenotype of ASD-associated DYRK1A haploinsufficiency.
Earl, Rachel K; Turner, Tychele N; Mefford, Heather C; Hudac, Caitlin M; Gerdts, Jennifer; Eichler, Evan E; Bernier, Raphael A
2017-01-01
DYRK1A is a gene recurrently disrupted in 0.1-0.5% of the ASD population. A growing number of case reports with DYRK1A haploinsufficiency exhibit common phenotypic features including microcephaly, intellectual disability, speech delay, and facial dysmorphisms. Phenotypic information from previously published DYRK1A cases ( n = 51) and participants in an ongoing study at the University of Washington (UW, n = 10) were compiled. Frequencies of recurrent phenotypic features in this population were compared to features observed in a large sample with idiopathic ASD from the Simons Simplex Collection ( n = 1981). UW DYRK1A cases were further characterized quantitatively and compared to a randomly subsampled set of idiopathic ASD cases matched on age and gender ( n = 10) and to cases with an ASD-associated disruptive mutation to CHD8 ( n = 12). Contribution of familial genetic background to clinical heterogeneity was assessed by comparing head circumference, IQ, and ASD-related symptoms of UW DYRK1A cases to their unaffected parents. DYRK1A haploinsufficiency results in a common phenotypic profile including intellectual disability, speech and motor difficulties, microcephaly, feeding difficulties, and vision abnormalities. Eighty-nine percent of DYRK1A cases ascertained for ASD presented with a constellation of five or more of these symptoms. When compared quantitatively, DYRK1A cases presented with significantly lower IQ and adaptive functioning compared to idiopathic cases and significantly smaller head size compared to both idiopathic and CHD8 cases. Phenotypic variability in parental head circumference, IQ, and ASD-related symptoms corresponded to observed variability in affected child phenotype. Results confirm a core clinical phenotype for DYRK1A disruptions, with a combination of features that is distinct from idiopathic ASD. Cases with DYRK1A mutations are also distinguishable from disruptive mutations to CHD8 by head size. Measurable, quantitative characterization of DYRK1A haploinsufficiency illuminates clinical variability, which may be, in part, due to familial genetic background.
Past Tense Marking by African American English–Speaking Children Reared in Poverty
Pruitt, Sonja; Oetting, Janna
2012-01-01
Purpose This study examined past tense marking by African American English (AAE)-speaking children from low- and middle-income backgrounds to determine if poverty affects children’s marking of past tense in ways that mirror the clinical condition of specific language impairment (SLI). Method Participants were 15 AAE-speaking 6-year-olds from low-income backgrounds, 15 AAE-speaking 6-year-olds from middle-income backgrounds who served as age-matched controls, and 15 AAE-speaking 5-year-olds from middle-income backgrounds who served as language-matched controls. Data were drawn from language samples and probes. Results Results revealed high rates of regular marking, variable rates of irregular marking, high rates of over-regularizations, and absence of dialect-inappropriate errors of commission. For some analyses, marking was affected by the phonological characteristics of the items and the children’s ages, but none of the analyses revealed effects for the children’s socioeconomic level. Conclusions Within AAE, poverty status as a variable affects past tense marking in ways that are different from the clinical condition of SLI. PMID:18695014
Tense Marking in Black English. A Linguistic and Social Analysis. Urban Language Series, No. 8.
ERIC Educational Resources Information Center
Fasold, Ralph W.
In recent years a considerable amount of interest has developed in language variability and in the educational problems connected with it. This volume is a report of linguistic research on the variable language behavior in a community of American English speakers, specifically on some aspects of tense marking in Black English. The following topics…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, G.P.; Athwal, R.S.
1993-01-01
Complementation of DNA excision repair defect in xeroderma pigmentosum cells of group C (XP-C) has been achieved by the transfer of human chromosome 5. Individual human chromosomes tagged with a selectable marker were transferred to XP-C cells by microcell fusion from mouse-human hybrid cell lines each bearing a single different human chromosome. Analysis of the chromosome transfer clones revealed that introduction of chromosome 5 into XP-C cells corrected the DNA repair defect as well as UV-sensitive phenotypes, while chromosomes 2, 6, 7, 9, 13, 15, 17, and 21 failed to complement. The introduced chromosome 5 in complemented UV[sup r] clonesmore » was distinguished from the parental XP-C chromosomes by polymorphism for dinucleotide (CA)[sub n] repeats at two loci, D5S117 and D5S209. In addition, an intact marked chromosome 5 was rescued into mouse cells from a complemented UV[sup r] clone by microcell fusion. Five subclones of a complemented clone that had lost the marked chromosome 5 exhibited UV-sensitive and repair-deficient phenotypes identical to parental XP-C cells. Concordant loss of the transferred chromosome and reappearance of XP-C phenotype further confirmed the presence of a DNA repair gene on human chromosome 5. 38 refs., 7 figs., 1 tab.« less
Schmidt, Heinrich; Kammer, Birgit; Grasser, Monika; Enders, Angelika; Rost, Imma; Kiess, Wieland
2007-08-15
We report on a 3-year-old male, born at 34 weeks of gestation, with marked pre- and postnatal overgrowth, birth weight of 6,600 g, length of 61 cm, and head circumference of 38.5 cm. A striking phenotype was recorded at birth, which became more evident during the follow-up period. He had macrobrachycephaly, facial abnormalities, small thoracic cage, long trunk, deformed spine, rhizomelia, large hands and feets, absent subcutaneous fat, small umbilical hernia, inguinal hernias, and large joints with mild contractures. Hypoglycemic episodes and obstructive apnea complicated the neonatal period. During follow-up, overgrowth continued with a height of 146 cm (+11.65 SDS) and a weight of 39 kg (BMI 18.3 kg/m(2)) at 3.5 years. Endocrinological work-up disclosed extremely low levels of growth hormone, insulin-like growth factors, and insulin. What makes our patient unique is the association of marked prenatal overgrowth; unusual phenotype; skeletal dysplasia caused by accelerated endochondral ossification resulting in cartilage hyperplasia of the skull base and spine, and postnatal gigantism; and complete absence of subcutaneous fat. Other well-known overgrowth syndromes were excluded. We hypothesize that autocrine/paracrine growth factors could be the cause of excessive endochondral ossification. Alternately, activating mutations in transcription factors involved in both growth and endocrine/metabolic homeostasis could be responsible for this unusual phenotype. (c) 2007 Wiley-Liss, Inc.
Sweatt, J David; Tamminga, Carol A
2016-09-01
This review concerns epigenetic mechanisms and their roles in conferring interindividual differences, especially as related to experientially acquired and genetically driven changes in central nervous system (CNS) function. In addition, the review contains commentary regarding the possible ways in which epigenomic changes may contribute to neuropsychiatric conditions and disorders and ways in which epigenotyping might be cross-correlated with clinical phenotyping in the context of precision medicine. The review begins with a basic description of epigenetic marking in the CNS and how these changes are powerful regulators of gene readout. Means for characterizing the individual epigenotype are briefly described, with a focus on DNA cytosine methylation as a readily measurable, stable epigenetic mark. This background enables a discussion of how "epigenotyping" might be integrated along with genotyping and deep phenotyping as a means of implementing advanced precision medicine. Finally, the commentary addresses two exemplars when considering how epigenotype may correlate with and modulate cognitive and behavioral phenotype: schizophrenia and Rett syndrome. These two disorders provide an interesting compare-and-contrast example regarding possible epigenotypic regulation of behavior: whereas Rett syndrome is clearly established as being caused by disruption of the function of an epigenetic "reader" of the DNA cytosine methylome-methyl-CpG-binding protein 2 (MeCP2)-the case for a role for epigenetic mechanisms in schizophrenia is still quite speculative.
Phenotypic Variability of Osteogenesis Imperfecta Type V Caused by an IFITM5 Mutation
Shapiro, Jay R; Lietman, Caressa; Grover, Monica; Lu, James T; Nagamani, Sandesh CS; Dawson, Brian C; Baldridge, Dustin M; Bainbridge, Matthew N; Cohn, Dan H; Blazo, Maria; Roberts, Timothy T; Brennen, Feng-Shu; Wu, Yimei; Gibbs, Richard A; Melvin, Pamela; Campeau, Philippe M; Lee, Brendan H
2013-01-01
In a large cohort of osteogenesis imperfecta type V (OI type V) patients (17 individuals from 12 families), we identified the same mutation in the 5′ untranslated region (5′UTR) of the interferon-induced transmembrane protein 5 (IFITM5) gene by whole exome and Sanger sequencing (IFITM5 c.–14C > T) and provide a detailed description of their phenotype. This mutation leads to the creation of a novel start codon adding five residues to IFITM5 and was recently reported in several other OI type V families. The variability of the phenotype was quite large even within families. Whereas some patients presented with the typical calcification of the forearm interosseous membrane, radial head dislocation and hyperplastic callus (HPC) formation following fractures, others had only some of the typical OI type V findings. Thirteen had calcification of interosseous membranes, 14 had radial head dislocations, 10 had HPC, 9 had long bone bowing, 11 could ambulate without assistance, and 1 had mild unilateral mixed hearing loss. The bone mineral density varied greatly, even within families. Our study thus highlights the phenotypic variability of OI type V caused by the IFITM5 mutation. PMID:23408678
Gregory, Michael D; Kolachana, Bhaskar; Yao, Yin; Nash, Tiffany; Dickinson, Dwight; Eisenberg, Daniel P; Mervis, Carolyn B; Berman, Karen F
2018-04-04
Williams syndrome ([WS], 7q11.23 hemideletion) and 7q11.23 duplication syndrome (Dup7) show contrasting syndromic symptoms. However, within each group there is considerable interindividual variability in the degree to which these phenotypes are expressed. Though software exists to identify areas of copy number variation (CNV) from commonly-available SNP-chip data, this software does not provide non-diploid genotypes in CNV regions. Here, we describe a method for identifying haploid and triploid genotypes in CNV regions, and then, as a proof-of-concept for applying this information to explain clinical variability, we test for genotype-phenotype associations. Blood samples for 25 individuals with WS and 13 individuals with Dup7 were genotyped with Illumina-HumanOmni5M SNP-chips. PennCNV and in-house code were used to make genotype calls for each SNP in the 7q11.23 locus. We tested for association between the presence of aortic arteriopathy and genotypes of the remaining (haploid in WS) or duplicated (triploid in Dup7) alleles. Haploid calls in the 7q11.23 region were made for 99.0% of SNPs in the WS group, and triploid calls for 98.8% of SNPs in those with Dup7. The G allele of SNP rs2528795 in the ELN gene was associated with aortic stenosis in WS participants (p < 0.0049) while the A allele of the same SNP was associated with aortic dilation in Dup7. Commonly available SNP-chip information can be used to make haploid and triploid calls in individuals with CNVs and then to relate variability in specific genes to variability in syndromic phenotypes, as demonstrated here using aortic arteriopathy. This work sets the stage for similar genotype-phenotype analyses in CNVs where phenotypes may be more complex and/or where there is less information about genetic mechanisms.
Wollenberg Valero, Katharina C.; Garcia-Porta, Joan; Rodríguez, Ariel; Arias, Mónica; Shah, Abhijeet; Randrianiaina, Roger Daniel; Brown, Jason L.; Glaw, Frank; Amat, Felix; Künzel, Sven; Metzler, Dirk; Isokpehi, Raphael D.; Vences, Miguel
2017-01-01
Anuran amphibians undergo major morphological transitions during development, but the contribution of their markedly different life-history phases to macroevolution has rarely been analysed. Here we generate testable predictions for coupling versus uncoupling of phenotypic evolution of tadpole and adult life-history phases, and for the underlying expression of genes related to morphological feature formation. We test these predictions by combining evidence from gene expression in two distantly related frogs, Xenopus laevis and Mantidactylus betsileanus, with patterns of morphological evolution in the entire radiation of Madagascan mantellid frogs. Genes linked to morphological structure formation are expressed in a highly phase-specific pattern, suggesting uncoupling of phenotypic evolution across life-history phases. This gene expression pattern agrees with uncoupled rates of trait evolution among life-history phases in the mantellids, which we show to have undergone an adaptive radiation. Our results validate a prevalence of uncoupling in the evolution of tadpole and adult phenotypes of frogs. PMID:28504275
Horita, Henrick; Wysoczynski, Christina L.; Walker, Lori A.; Moulton, Karen S.; Li, Marcella; Ostriker, Allison; Tucker, Rebecca; McKinsey, Timothy A.; Churchill, Mair E. A.; Nemenoff, Raphael A.; Weiser-Evans, Mary C. M.
2016-01-01
Vascular disease progression is associated with marked changes in vascular smooth muscle cell (SMC) phenotype and function. SMC contractile gene expression and, thus differentiation, is under direct transcriptional control by the transcription factor, serum response factor (SRF); however, the mechanisms dynamically regulating SMC phenotype are not fully defined. Here we report that the lipid and protein phosphatase, PTEN, has a novel role in the nucleus by functioning as an indispensible regulator with SRF to maintain the differentiated SM phenotype. PTEN interacts with the N-terminal domain of SRF and PTEN–SRF interaction promotes SRF binding to essential promoter elements in SM-specific genes. Factors inducing phenotypic switching promote loss of nuclear PTEN through nucleo-cytoplasmic translocation resulting in reduced myogenically active SRF, but enhanced SRF activity on target genes involved in proliferation. Overall decreased expression of PTEN was observed in intimal SMCs of human atherosclerotic lesions underlying the potential clinical importance of these findings. PMID:26940659
Horita, Henrick; Wysoczynski, Christina L; Walker, Lori A; Moulton, Karen S; Li, Marcella; Ostriker, Allison; Tucker, Rebecca; McKinsey, Timothy A; Churchill, Mair E A; Nemenoff, Raphael A; Weiser-Evans, Mary C M
2016-03-04
Vascular disease progression is associated with marked changes in vascular smooth muscle cell (SMC) phenotype and function. SMC contractile gene expression and, thus differentiation, is under direct transcriptional control by the transcription factor, serum response factor (SRF); however, the mechanisms dynamically regulating SMC phenotype are not fully defined. Here we report that the lipid and protein phosphatase, PTEN, has a novel role in the nucleus by functioning as an indispensible regulator with SRF to maintain the differentiated SM phenotype. PTEN interacts with the N-terminal domain of SRF and PTEN-SRF interaction promotes SRF binding to essential promoter elements in SM-specific genes. Factors inducing phenotypic switching promote loss of nuclear PTEN through nucleo-cytoplasmic translocation resulting in reduced myogenically active SRF, but enhanced SRF activity on target genes involved in proliferation. Overall decreased expression of PTEN was observed in intimal SMCs of human atherosclerotic lesions underlying the potential clinical importance of these findings.
Chapter 9: Marking and assessing forest heterogeneity
M. North; J. Sherlock
2012-01-01
Marking guidelines commonly use stocking level, crown class, and species preferences to meet management objectives. Traditionally, these guidelines were applied across the extent of the stand. Current marking guidelines are more flexible, responding to within-stand variability with different stocking level, crown class, and species preference guidelines in...
Jorge, Alexander A L; Souza, Silvia C; Nishi, Miriam Y; Billerbeck, Ana E; Libório, Débora C C; Kim, Chong A; Arnhold, Ivo J P; Mendonca, Berenice B
2007-01-01
The frequency of SHOX mutations in children with idiopathic short stature (ISS) has been found to be variable. We analysed the SHOX gene in children with ISS and Leri-Weill dyschondrosteosis (LWD) and evaluated the phenotypic variability in patients harbouring SHOX mutations. Sixty-three ISS, nine LWD children and 21 affected relatives. SHOX gene deletion was evaluated by fluorescence in situ hybridization (FISH), Southern blotting and segregation study of polymorphic marker. Point mutations were assessed by direct DNA sequencing. None of the ISS patients presented SHOX deletions, but two (3.2%) presented heterozygous point mutations, including the novel R147H mutation. However, when ISS patients were selected by sitting height : height ratio (SH/H) for age > 2 SD, mutation frequency detection increased to 22%. Eight (89%) LWD patients had SHOX deletions, but none had point mutations. Analysis of the other relatives in the families carrying SHOX mutations identified 14 children and 17 adult patients. A broad phenotypic variability was observed in all families regarding short stature severity and Madelung deformities. However, the presence of disproportional height, assessed by SH/H, was observed in all children and 82% of adult patients, being the most common feature in our patients with SHOX mutations. Patients with SHOX mutations present a broad phenotypic variability. SHOX mutations are very frequent in LWD (89%), in opposition to ISS (3.2%) in our cohort. The use of SH/H SDS as a selection criterion increases the frequency of SHOX mutation detection to 22% and should be used for selecting ISS children to undergo SHOX mutation molecular studies.
Burggren, Warren
2018-05-10
The slow, inexorable rise in annual average global temperatures and acidification of the oceans are often advanced as consequences of global change. However, many environmental changes, especially those involving weather (as opposed to climate), are often stochastic, variable and extreme, particularly in temperate terrestrial or freshwater habitats. Moreover, few studies of animal and plant phenotypic plasticity employ realistic (i.e. short-term, stochastic) environmental change in their protocols. Here, I posit that the frequently abrupt environmental changes (days, weeks, months) accompanying much longer-term general climate change (e.g. global warming over decades or centuries) require consideration of the true nature of environmental change (as opposed to statistical means) coupled with an expansion of focus to consider developmental phenotypic plasticity. Such plasticity can be in multiple forms - obligatory/facultative, beneficial/deleterious - depending upon the degree and rate of environmental variability at specific points in organismal development. Essentially, adult phenotypic plasticity, as important as it is, will be irrelevant if developing offspring lack sufficient plasticity to create modified phenotypes necessary for survival. © 2018. Published by The Company of Biologists Ltd.
Chuang, Shu-Lin; Chen, Sam Li-Sheng; Yu, Cheng-Ping; Chang, King-Jen; Yen, Amy Ming-Fang; Chiu, Sherry Yueh-Hsia; Fann, Jean Ching-Yuan; Tabár, László; Stephen, Duffy W; Smith, Robert A; Chen, Hsiu-Hsi
2014-08-01
In the era of mass screening for breast cancer with mammography, it has been noted that conventional tumor attributes and mammographic appearance are insufficient to account for the better prognosis of screen-detected tumors. Such prognostication may require additional updated pathological information regarding tumor phenotype (e.g., basal status) and histological tumor distribution (focality). We investigated this hypothesis using a Bayesian approach to analyze breast cancer data from Dalarna County, Sweden. We used data for tumors diagnosed in the Swedish Two-County Trial and early service screening period, 1977-1995, and from the mature service screening period, 1996-1998. In the early period of mammographic screening (1977-1995), the crude hazard ratio (HR) of breast cancer death for screen-detected cases compared with symptomatic ones was 0.22 (95% CI: 0.17-0.29) compared with 0.53 (95% CI: 0.34-0.76) when adjusted for conventional tumor attributes only. Using the data from the mature service screening period, 1996-1998, the HR was 0.23 (95% CI: 0.08-0.44) unadjusted and 0.71 (95% CI: 0.26-1.47) after adjustment for tumor phenotype, mammographic appearance, histological tumor distribution, and conventional tumor attributes. The area under the ROC curve (AUC) for the prediction of breast cancer deaths using these variables without the detection mode was 0.82, only slightly less than that observed when additionally including the detection mode (AUC=0.83). Using Freedman statistics, conventional tumor attributes and mammographic appearances explained 58% (95% CI: 57.5-58.6%) of the difference of breast cancer survival between the screen-detected and the clinically detected breast cancers, whereas the corresponding figure was increased to 77% (95% CI: 75.6-77.6%) when adding the two information on tumor phenotype and histological tumor distribution. The results indicated that conventional tumor attributes and mammographic appearance are not sufficient to be interim markers for explaining the survival difference between screen-detected and clinically detected cancers in the era marked by the widespread use of mammography. Additional information on tumor phenotype and histological distribution may be added as effective interim markers for explaining the benefit of the early detection of breast cancer with mammography. © 2014 APMIS. Published by John Wiley & Sons Ltd.
Bretscher, P A
2014-01-01
It is well recognized that the physiological/pathological consequences of an immune response, against a foreign or a self-antigen, are often critically dependent on the class of immunity generated. Here we focus on how antigen interacts with the cells of the immune system to determine whether antigen predominantly generates Th1 or Th2 cells. We refer to this mechanism as the ‘decision criterion’ controlling the Th1/Th2 phenotype of the immune response. A plausible decision criterion should account for the variables of immunization known to affect the Th1/Th2 phenotype of the ensuing immune response. Documented variables include the nature of the antigen, in terms of its degree of foreignness, the dose of antigen and the time after immunization at which the Th1/Th2 phenotype of the immune response is assessed. These are quantitative variables made at the level of the system. In addition, the route of immunization is also critical. I describe a quantitative hypothesis as to the nature of the decision criterion, referred to as the Threshold Hypothesis. This hypothesis accounts for the quantitative variables of immunization known to affect the Th1/Th2 phenotype of the immune response generated. I suggest and illustrate how this is not true of competing, contemporary hypotheses. I outline studies testing predictions of the hypothesis and illustrate its potential utility in designing strategies to prevent or treat medical situations where a predominant Th1 response is required to contain an infection, such as those caused by HIV-1 and by Mycobacterium tuberculosis, or to contain cancers. PMID:24684592
Mutations in MITF and PAX3 cause "splashed white" and other white spotting phenotypes in horses.
Hauswirth, Regula; Haase, Bianca; Blatter, Marlis; Brooks, Samantha A; Burger, Dominik; Drögemüller, Cord; Gerber, Vincent; Henke, Diana; Janda, Jozef; Jude, Rony; Magdesian, K Gary; Matthews, Jacqueline M; Poncet, Pierre-André; Svansson, Vilhjálmur; Tozaki, Teruaki; Wilkinson-White, Lorna; Penedo, M Cecilia T; Rieder, Stefan; Leeb, Tosso
2012-01-01
During fetal development neural-crest-derived melanoblasts migrate across the entire body surface and differentiate into melanocytes, the pigment-producing cells. Alterations in this precisely regulated process can lead to white spotting patterns. White spotting patterns in horses are a complex trait with a large phenotypic variance ranging from minimal white markings up to completely white horses. The "splashed white" pattern is primarily characterized by an extremely large blaze, often accompanied by extended white markings at the distal limbs and blue eyes. Some, but not all, splashed white horses are deaf. We analyzed a Quarter Horse family segregating for the splashed white coat color. Genome-wide linkage analysis in 31 horses gave a positive LOD score of 1.6 in a region on chromosome 6 containing the PAX3 gene. However, the linkage data were not in agreement with a monogenic inheritance of a single fully penetrant mutation. We sequenced the PAX3 gene and identified a missense mutation in some, but not all, splashed white Quarter Horses. Genome-wide association analysis indicated a potential second signal near MITF. We therefore sequenced the MITF gene and found a 10 bp insertion in the melanocyte-specific promoter. The MITF promoter variant was present in some splashed white Quarter Horses from the studied family, but also in splashed white horses from other horse breeds. Finally, we identified two additional non-synonymous mutations in the MITF gene in unrelated horses with white spotting phenotypes. Thus, several independent mutations in MITF and PAX3 together with known variants in the EDNRB and KIT genes explain a large proportion of horses with the more extreme white spotting phenotypes.
Mutations in MITF and PAX3 Cause “Splashed White” and Other White Spotting Phenotypes in Horses
Blatter, Marlis; Brooks, Samantha A.; Burger, Dominik; Drögemüller, Cord; Gerber, Vincent; Henke, Diana; Janda, Jozef; Jude, Rony; Magdesian, K. Gary; Matthews, Jacqueline M.; Poncet, Pierre-André; Svansson, Vilhjálmur; Tozaki, Teruaki; Wilkinson-White, Lorna; Penedo, M. Cecilia T.; Rieder, Stefan; Leeb, Tosso
2012-01-01
During fetal development neural-crest-derived melanoblasts migrate across the entire body surface and differentiate into melanocytes, the pigment-producing cells. Alterations in this precisely regulated process can lead to white spotting patterns. White spotting patterns in horses are a complex trait with a large phenotypic variance ranging from minimal white markings up to completely white horses. The “splashed white” pattern is primarily characterized by an extremely large blaze, often accompanied by extended white markings at the distal limbs and blue eyes. Some, but not all, splashed white horses are deaf. We analyzed a Quarter Horse family segregating for the splashed white coat color. Genome-wide linkage analysis in 31 horses gave a positive LOD score of 1.6 in a region on chromosome 6 containing the PAX3 gene. However, the linkage data were not in agreement with a monogenic inheritance of a single fully penetrant mutation. We sequenced the PAX3 gene and identified a missense mutation in some, but not all, splashed white Quarter Horses. Genome-wide association analysis indicated a potential second signal near MITF. We therefore sequenced the MITF gene and found a 10 bp insertion in the melanocyte-specific promoter. The MITF promoter variant was present in some splashed white Quarter Horses from the studied family, but also in splashed white horses from other horse breeds. Finally, we identified two additional non-synonymous mutations in the MITF gene in unrelated horses with white spotting phenotypes. Thus, several independent mutations in MITF and PAX3 together with known variants in the EDNRB and KIT genes explain a large proportion of horses with the more extreme white spotting phenotypes. PMID:22511888
ERIC Educational Resources Information Center
Wulffaert, J.; van Berckelaer-Onnes, I.; Kroonenberg, P.; Scholte, E.; Bhuiyan, Z.; Hennekam, R.
2009-01-01
Background: Studies into the phenotype of rare genetic syndromes largely rely on bivariate analysis. The aim of this study was to describe the phenotype of Cornelia de Lange syndrome (CdLS) in depth by examining a large number of variables with varying measurement levels. Virtually the only suitable multivariate technique for this is categorical…
Hahntow, Ines N; Mairuhu, Gideon; van Valkengoed, Irene Gm; Koopmans, Richard P; Michel, Martin C
2010-06-02
Genotype-phenotype association studies are typically based upon polymorphisms or haplotypes comprised of multiple polymorphisms within a single gene. It has been proposed that combinations of polymorphisms in distinct genes, which functionally impact the same phenotype, may have stronger phenotype associations than those within a single gene. We have tested this hypothesis using genes encoding components of the renin-angiotensin-aldosterone system and the high blood pressure phenotype. Our analysis is based on 1379 participants of the cross-sectional SUNSET study randomly selected from the population register of Amsterdam. Each subject was genotyped for the angiotensinogen M235T, the angiotensin-converting enzyme insertion/deletion and the angiotensin II type 1 receptor A1166C polymorphism. The phenotype high blood pressure was defined either as a categorical variable comparing hypertension versus normotension as in most previous studies or as a continuous variable using systolic, diastolic and mean blood pressure in a multiple regression analysis with gender, ethnicity, age, body-mass-index and antihypertensive medication as covariates. Genotype-phenotype relationships were explored for each polymorphism in isolation and for double and triple polymorphism combinations. At the single polymorphism level, only the A allele of the angiotensin II type 1 receptor was associated with a high blood pressure phenotype. Using combinations of polymorphisms of two or all three genes did not yield stronger/more consistent associations. We conclude that combinations of physiologically related polymorphisms of multiple genes, at least with regard to the renin-angiotensin-aldosterone system and the hypertensive phenotype, do not necessarily offer additional benefit in analyzing genotype/phenotype associations.
Deletions spanning the neurofibromatosis I gene: Identification and phenotype of five patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayes, L.M.; Burke, W.; Bennett, R.
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder characterized by marked variation in clinical severity. To investigate the contribution to variability by genes either contiguous to or contained within the NF1 gene, the authors screened six NF1 patients with mild facial dysmorphology, mental retardation, and/or learning disabilities, for DNA rearrangement of the NF1 region. Five of the six patients had NF1 gene deletions on the basis of quantitative densitometry, locus hemizygosity, and analysis of somatic cell hybrid lines. Analysis of hybrid lines carrying each of the patient's chromosomes 17, with 15 regional DNA markers, demonstrated that each of themore » five patients carried a deletion >700 kb in size. Minimally, each of the deletions involved the entire 350-kb NF1 gene; the three genes - EVI2A, EVI2B, and OMG-that are contained within an NF1 intron; and considerable flanking DNA. For four of the patients, the deletions mapped to the same interval; the deletion in the fifth patient was larger, extending farther in both directions. The remaining NF1 allele presumably produced functional neurofibromin; no gene rearrangements were detected, and RNA-PCR demonstrated that it was transcribed. These data provide compelling evidence that the NF1 disorder results from haploid insufficiency of neurofibromin. Of the three documented de novo deletion cases, two involved the paternal NF1 allele and one the maternal allele. The parental origin of the single remaining expresses NF1 allele had no dramatic effect on patient phenotype. The deletion patients exhibited a variable number of physical anomalies that were not correlated with the extent of their deletion. All five patients with deletions were remarkable for exhibiting a large number of neurfibromas for their age, suggesting that deletion of an unknown gene in the NF1 region may affect tumor initiation or development. 69 refs., 5 figs., 1 tab.« less
Basanta-Alario, María Luisa; Ferri, Jordi; Civera, Miguel; Martínez-Hervás, Sergio; Ascaso, Juan Francisco; Real, José Tomás
2016-02-01
Type 2 diabetes mellitus (T2DM) is a chronic, highly prevalent disease that increases with age. Because of this, and due to its chronic complications, T2DM causes high human, social, and financial costs. In addition, the elderly population with T2DM has a marked clinical heterogeneity. Therefore, our main objective was to analyze the relationship of age with the clinical and biological manifestations of the disease and the prevalence of chronic complications in patients with T2DM. A cross-sectional study of a large population with T2DM (n=405) randomly selected from a Diabetes Unit and 2 health care centers (60%). The clinical, anthropometric, and biochemical variables of the subjects were collected using standard methods to assess the effect of age on the clinical and biochemical phenotype of patients with T2DM. We have noted that patients with T2DM > 70 years old have a clinical and biochemical phenotype different from younger subjects (<60 years) including longer times since diabetes onset, higher diastolic blood pressure levels, and lower body mass index (BMI) values. As regards to biological variables, these patients have lower triglyceride levels, impaired kidney function, and lower HbA1c values. Prevalence of metabolic syndrome is lower in patients with T2DM > 70 years of age. Age was inversely related to parameters associated to metabolic syndrome (BMI, waist circumference, blood pressure, and triglyceride levels). We have defined the clinical and biochemical profile of patients with T2DM > 70 years attending health care centers. In addition, the prevalence of stroke, kidney disease, and distal symmetrical polyneuropathy is higher in patients with T2DM >70 years as compared to younger patients (<60 years). Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.
Derks, E. M.; Dolan, C. V.; Kahn, R. S.; Ophoff, R. A.
2010-01-01
There is increasing interest in methods to disentangle the relationship between genotype and (endo)phenotypes in human complex traits. We present a population-based method of increasing the power and cost-efficiency of studies by selecting random individuals with a particular genotype and then assessing the accompanying quantitative phenotypes. Using statistical derivations, power- and cost graphs we show that such a “forward genetics” approach can lead to a marked reduction in sample size and costs. This approach is particularly apt for implementing in epidemiological studies for which DNA is already available but the phenotyping costs are high. Electronic supplementary material The online version of this article (doi:10.1007/s10519-010-9348-y) contains supplementary material, which is available to authorized users. PMID:20232132
The queen's gut refines with age: longevity phenotypes in a social insect model.
Anderson, Kirk E; Ricigliano, Vincent A; Mott, Brendon M; Copeland, Duan C; Floyd, Amy S; Maes, Patrick
2018-06-18
In social insects, identical genotypes can show extreme lifespan variation providing a unique perspective on age-associated microbial succession. In honey bees, short- and long-lived host phenotypes are polarized by a suite of age-associated factors including hormones, nutrition, immune senescence, and oxidative stress. Similar to other model organisms, the aging gut microbiota of short-lived (worker) honey bees accrue Proteobacteria and are depleted of Lactobacillus and Bifidobacterium, consistent with a suite of host senescence markers. In contrast, long-lived (queen) honey bees maintain youthful cellular function with much lower expression of oxidative stress genes, suggesting a very different host environment for age-associated microbial succession. We sequenced the microbiota of 63 honey bee queens exploring two chronological ages and four alimentary tract niches. To control for genetic and environmental variation, we quantified carbonyl accumulation in queen fat body tissue as a proxy for biological aging. We compared our results to the age-specific microbial succession of worker guts. Accounting for queen source variation, two or more bacterial species per niche differed significantly by queen age. Biological aging in queens was correlated with microbiota composition highlighting the relationship of microbiota with oxidative stress. Queens and workers shared many major gut bacterial species, but differ markedly in community structure and age succession. In stark contrast to aging workers, carbonyl accumulation in queens was significantly associated with increased Lactobacillus and Bifidobacterium and depletion of various Proteobacteria. We present a model system linking changes in gut microbiota to diet and longevity, two of the most confounding variables in human microbiota research. The pattern of age-associated succession in the queen microbiota is largely the reverse of that demonstrated for workers. The guts of short-lived worker phenotypes are progressively dominated by three major Proteobacteria, but these same species were sparse or significantly depleted in long-lived queen phenotypes. More broadly, age-related changes in the honey bee microbiota reflect the regulatory anatomy of reproductive host metabolism. Our synthesis suggests that the evolution of colony-level reproductive physiology formed the context for host-microbial interactions and age-related succession of honey bee microbiota.
Gromov, V S
1997-01-01
Sex-age and seasonal variability of the ventral glands and different stereotypes of scent marking behaviour in four Meriones species (M. unguiculatus, M. meridianus, M. libycus, M. tamariscinus) have been studied in nature and under semi-natural conditions. Two major ways of olfactory marking are considered: by secretion of the ventral glands and by "signal heaps" with urine and feces. Intraspecific and inter-species variability of marking activity is investigated. The ventral glands start to function at the period of preparation of a generative system to reproduction. The peak of secretary activity of gland and maximum of two types of marking activity is observed in spring and early summer, i.e. the period of active reproduction. The maximum of two types of the marking activity is observed during this period. In M. tamariscinus and M. meridianus the marking by the ventral gland is prevailing mode of the territory scent marking, while Mongolian gerbils (M. unguiculatus) prefer to use "signal heaps" Libyan gerbils (M. libycus) in this relation take an intermediate position. At the non-productive period a level of marking activity is on 10-20 times lower than at the reproductive season. Besides hormonal, social factors were also important for regulation of marking activity. By influence of these factors the differences in the level of marking activity in high-rank and low-rank individuals and differences in patterns of a spatial distribution of scent marks in individuals of different hierarchical rank is explained. Functional significance of various ways of territory scent marking is discussed.
Mikobi, Tite M; Lukusa Tshilobo, Prosper; Aloni, Michel N; Akilimali, Pierre Z; Mvumbi-Lelo, Georges; Mbuyi-Muamba, Jean Marie
2017-11-01
The influence of phenotype on the clinical course and laboratory features of sickle cell anemia (SCA) is rarely described in sub-Saharan Africa. A cross-sectional study was conducted in Kinshasa. A clinical phenotype score was built up. The following definitions were applied: asymptomatic clinical phenotype (ACP; score≤5), moderate clinical phenotype (MCP; score between 6 and 15), and severe clinical phenotype (SCP; score≥16). ANOVA test were used to compare differences among categorical variables. We have studied 140 patients. The mean body mass index (BMI) value of three groups was lower (<25 kg/m 2 ) than the limit defining overweight. BMI of the subjects with ACP was significantly higher than those of other phenotypes (P<.05). Sickle cell patients with ACP have a high mean steady-state hemoglobin concentration compared to those with MCP and SCP (P<.001). A significant elevated baseline leukocyte count is associated with SCP (P<.001). Fetal Hemoglobin (HbF) was significantly higher in ACP. Significant elevation of alpha 1 and alpha 2 globulins in SCP were observed. In our study, fetal hemoglobin has an influence on the clinical severity and the biological parameters of SCA. The study provides data concerning the sickle cell anemia clinical and biological variability in our midst. © 2017 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
African swine fever virus (ASFV) is a highly pathogenic, double-stranded DNA virus with a marked tropism for cells of the monocyte-macrophage lineage, affecting swine species and provoking severe economic losses and health threats. In the present study, four established porcine cell lines, IPAM-WT, ...
Garcia-Vicente, Ana María; Pérez-Beteta, Julián; Pérez-García, Víctor Manuel; Molina, David; Jiménez-Londoño, German Andrés; Soriano-Castrejón, Angel; Martínez-González, Alicia
2017-08-01
The aim of the study was to investigate the influence of dual time point 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography/x-ray computed tomography (PET/CT) on the standard uptake value (SUV) and volume-based metabolic variables of breast lesions and their relation with biological characteristics and molecular phenotypes. Retrospective analysis including 67 patients with locally advanced breast cancer (LABC). All patients underwent a dual time point [ 18 F]FDG PET/CT, 1 h (PET-1) and 3 h (PET-2) after [ 18 F]FDG administration. Tumors were segmented following a three-dimensional methodology. Semiquantitative metabolic variables (SUV max , SUV mean , and SUV peak ) and volume-based variables (metabolic tumor volume, MTV, and total lesion glycolysis, TLG) were obtained. Biologic prognostic parameters, such as the hormone receptors status, p53, HER2 expression, proliferation rate (Ki-67), and grading were obtained. Molecular phenotypes and risk-classification [low: luminal A, intermediate: luminal B HER2 (-) or luminal B HER2 (+), and high: HER2 pure or triple negative] were established. Relations between clinical and biological variables with the metabolic parameters were studied. The relevance of each metabolic variable in the prediction of phenotype risk was assessed using a multivariate analysis. SUV-based variables and TLG obtained in the PET-1 and PET-2 showed high and significant correlations between them. MTV and SUV variables (SUV max , SUV mean , and SUV peak ) where only marginally correlated. Significant differences were found between mean SUV variables and TLG obtained in PET-1 and PET-2. High and significant associations were found between metabolic variables obtained in PET-1 and their homonymous in PET-2. Based on that, only relations of PET-1 variables with biological tumor characteristics were explored. SUV variables showed associations with hormone receptors status (p < 0.001 and p = 0.001 for estrogen and progesterone receptor, respectively) and risk-classification according to phenotype (SUV max , p = 0.003; SUV mean , p = 0.004; SUV peak , p = 0.003). As to volume-based variables, only TLG showed association with hormone receptors status (estrogen, p < 0.001; progesterone, p = 0.031), risk-classification (p = 0.007), and grade (p = 0.036). Hormone receptor negative tumors, high-grade tumors, and high-risk phenotypes showed higher TLG values. No association was found between the metabolic variables and Ki-67, HER2, or p53 expression. Statistical differences were found between mean SUV-based variables and TLG obtained in the dual time point PET/CT. Most of PET-derived parameters showed high association with molecular factors of breast cancer. However, dual time point PET/CT did not offer any added value to the single PET acquisition with respect to the relations with biological variables, based on PET-1 SUV, and volume-based variables were predictors of those obtained in PET-2.
Prevalence of deafness and association with coat variations in client-owned ferrets.
Piazza, Stéphanie; Abitbol, Marie; Gnirs, Kirsten; Huynh, Minh; Cauzinille, Laurent
2014-05-01
To evaluate the prevalence of congenital sensorineural deafness (CSD) and its association with phenotypic markers in client-owned ferrets. Epidemiological study. 152 healthy European pet ferrets. Brainstem auditory evoked response tests were recorded in ferrets during general anesthesia. Phenotypic markers such as sex, coat color and pattern, coat length (Angora or not), and premature graying trait were assessed. Overall, 44 of the 152 (29%) ferrets were affected by CSD; 10 (7%) were unilaterally deaf, and 34 (22%) were bilaterally deaf. There was no association between CSD and sex or Angora trait, but a strong association between CSD and white patterned coat or premature graying was identified. All panda, American panda, and blaze ferrets were deaf. The ferrets in this study had a high prevalence of CSD that was strictly associated with coat color patterns, specifically white markings and premature graying. This seemed to be an emerging congenital defect in pet ferrets because white-marked coats are a popular new coat color. Breeders should have a greater awareness and understanding of this defect to reduce its prevalence for the overall benefit of the species.
Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast.
Chan, C S; Botstein, D
1993-11-01
We have developed a colony papillation assay for monitoring the copy number of genetically marked chromosomes II and III in Saccharomyces cerevisiae. The unique feature of this assay is that it allows detection of a gain of the marked chromosomes even if there is a gain of the entire set of chromosomes (increase-in-ploidy). This assay was used to screen for chromosome-gain or increase-in-ploidy mutants. Five complementation groups have been defined for recessive mutations that confer an increase-in-ploidy (ipl) phenotype, which, in each case, cosegregates with a temperature-sensitive growth phenotype. Four new alleles of CDC31, which is required for spindle pole body duplication, were also recovered from this screen. Temperature-shift experiments with ipl1 cells show that they suffer severe nondisjunction at 37 degrees. Similar experiments with ipl2 cells show that they gain entire sets of chromosomes and become arrested as unbudded cells at 37 degrees. Molecular cloning and genetic mapping show that IPL1 is a newly identified gene, whereas IPL2 is allelic to BEM2, which is required for normal bud growth.
Lalucque, Hervé; Silar, Philippe
2004-01-01
We describe an example of incomplete penetrance and variable expressivity in the filamentous fungus Podospora anserina, two genetic properties classically associated with mutations in more complex organisms, such as green plants and animals. We show that the knockouts of two TRK-related K(+) transporters of this ascomycete present variability in their phenotype that cannot be attributed to fluctuations of the genetic background or the environment. Thalli of the knockout strains derived from independent monokaryotic ascospores or from a single monokaryotic ascospore and cultivated under standard growth conditions may or may not present impaired growth. When impaired, thalli exhibit a range of phenotypes. Environmental conditions control expressivity to a large extent and penetrance to a low extent. Restoration of functional potassium transport by heterologous expression of K(+) transporters from Neurospora crassa abolishes or strongly diminishes the growth impairment. These data show that incomplete penetrance and variable expressivity can be an intrinsic property of a single Mendelian loss-of-function mutation. They also show that such variability in the expression of a mutant phenotype can be promoted by a phenomenon not obviously related to the well-known chromatin structure modifications, i.e., potassium transport. They provide a framework to understand human channelopathies with similar properties. PMID:15020412
Lalucque, Hervé; Silar, Philippe
2004-01-01
We describe an example of incomplete penetrance and variable expressivity in the filamentous fungus Podospora anserina, two genetic properties classically associated with mutations in more complex organisms, such as green plants and animals. We show that the knockouts of two TRK-related K(+) transporters of this ascomycete present variability in their phenotype that cannot be attributed to fluctuations of the genetic background or the environment. Thalli of the knockout strains derived from independent monokaryotic ascospores or from a single monokaryotic ascospore and cultivated under standard growth conditions may or may not present impaired growth. When impaired, thalli exhibit a range of phenotypes. Environmental conditions control expressivity to a large extent and penetrance to a low extent. Restoration of functional potassium transport by heterologous expression of K(+) transporters from Neurospora crassa abolishes or strongly diminishes the growth impairment. These data show that incomplete penetrance and variable expressivity can be an intrinsic property of a single Mendelian loss-of-function mutation. They also show that such variability in the expression of a mutant phenotype can be promoted by a phenomenon not obviously related to the well-known chromatin structure modifications, i.e., potassium transport. They provide a framework to understand human channelopathies with similar properties.
Age Dependent Variability in Gene Expression in Fischer 344 ...
Recent evidence suggests older adults may be a sensitive population with regard to environmental exposure to toxic compounds. One source of this sensitivity could be an enhanced variability in response. Studies on phenotypic differences have suggested that variation in response does increase with age. However, few reports address the question of variation in gene expression as an underlying cause for increased variability of phenotypic response in the aged. In this study, we utilized global analysis to compare variation in constitutive gene expression in the retinae of young (4 mos), middle-aged (11 mos) and aged (23 mos) Fischer 344 rats. Three hundred and forty transcripts were identified in which variance in expression increased from 4 to 23 mos of age, while only twelve transcripts were found for which it decreased. Functional roles for identified genes were clustered in basic biological categories including cell communication, function, metabolism and response to stimuli. Our data suggest that population stochastically-induced variability should be considered in assessing sensitivity due to old age. Recent evidence suggests older adults may be a sensitive population with regard to environmental exposure to toxic compounds. One source of this sensitivity could be an enhanced variability in response. Studies on phenotypic differences have suggested that variation in response does increase with age. However, few reports address the question of variation in
Ellisor, Debra; Koveal, Dorothy; Hagan, Nellwyn; Brown, Ashly; Zervas, Mark
2009-10-01
A long-standing problem in development is understanding how progenitor cells transiently expressing genes contribute to complex anatomical and functional structures. In the developing nervous system an additional level of complexity arises when considering how cells of distinct lineages relate to newly established neural circuits. To address these problems, we used both cumulative marking with Cre/loxP and Genetic Inducible Fate Mapping (GIFM), which permanently and heritably marks small populations of progenitors and their descendants with fine temporal control using CreER/loxP. A key component used in both approaches is a conditional phenotyping allele that has the potential to be expressed in all cell types, but is quiescent because of a loxP flanked Stop sequence, which precedes a reporter allele. Upon recombination, the resulting phenotyping allele is 'turned on' and then constitutively expressed. Thus, the reporter functions as a high fidelity genetic lineage tracer in vivo. Currently there is an array of reporter alleles that can be used in marking strategies, but their recombination efficiency and applicability to a wide array of tissues has not been thoroughly described. To assess the recombination/marking potential of the reporters, we utilized CreER(T) under the control of a Wnt1 transgene (Wnt1-CreER(T)) as well as a cumulative, non-inducible En1(Cre) knock-in line in combination with three different reporters: R26R (LacZ reporter), Z/EG (EGFP reporter), and Tau-Lox-STOP-Lox-mGFP-IRES-NLS-LacZ (membrane-targeted GFP/nuclear LacZ reporter). We marked the Wnt1 lineage using each of the three reporters at embryonic day (E) 8.5 followed by analysis at E10.0, E12.5, and in the adult. We also compared cumulative marking of cells with a history of En1 expression at the same stages. We evaluated the reporters by whole-mount and section analysis and ascertained the strengths and weaknesses of each of the reporters. Comparative analysis with the reporters elucidated complexities of how the Wnt1 and En1 lineages contribute to developing embryos and to axonal projection patterns of neurons derived from these lineages.
Ogino, Shuji; Odze, Robert D; Kawasaki, Takako; Brahmandam, Mohan; Kirkner, Gregory J; Laird, Peter W; Loda, Massimo; Fuchs, Charles S
2006-09-01
Extensive gene promoter methylation in colorectal carcinoma has been termed the CpG island methylator phenotype (CIMP). Previous studies on CIMP used primarily methylation-specific polymerase chain reaction (PCR), which, unfortunately, may detect low levels of methylation that has little or no biological significance. Utilizing quantitative real-time PCR (MethyLight), we measured DNA methylation in a panel of 5 CIMP-specific gene promoters (CACNA1G, CDKN2A (p16), CRABP1, MLH1, and NEUROG1) in 459 colorectal carcinomas obtained from 2 large prospective cohort studies. CIMP was defined as tumors that showed methylation in >or=4/5 promoters. CIMP was significantly associated with the presence of mucinous or signet ring cell morphology, marked Crohn's-like lymphoid reaction, tumor infiltrating lymphocytes, marked peritumoral lymphocytic reaction, tumor necrosis, tumor cell sheeting, and poor differentiation. All these features have previously been associated with microsatellite instability (MSI). Therefore, we divided the 459 colorectal carcinomas into 6 subtypes, namely, MSI-high (MSI-H)/CIMP, MSI-H/non-CIMP, MSI-low (MSI-L)/CIMP, MSI-L/non-CIMP, microsatellite stable/CIMP, and micro satellite sstable/non-CIMP. Compared with MSI-H/non-CIMP, MSI-H/CIMP was associated with marked tumor infiltrating lymphocytes, tumor necrosis, sheeting, and poor differentiation (all P
X-linked juvenile retinoschisis (XLRS): a review of genotype-phenotype relationships.
Kim, David Y; Mukai, Shizuo
2013-01-01
X-linked juvenile retinoschisis (XLRS) is one of the most common genetic causes of juvenile progressive retinal-vitreal degeneration in males. To date, more than 196 different mutations of the RS1 gene have been associated with XLRS. The mutation spectrum is large and the phenotype variable. This review will focus on the clinical features of XLRS and examine the relationship between phenotype and genotype.
Gemenetzi, M; Lotery, A J
2013-11-01
To investigate phenotypic variability in terms of best-corrected visual acuity (BCVA) in patients with Stargardt disease (STGD) and confirmed ABCA4 mutations. Entire coding region analysis of the ABCA4 gene by direct sequencing of seven patients with clinical findings of STGD seen in the Retina Clinics of Southampton Eye Unit between 2002 and 2011.Phenotypic variables recorded were BCVA, fluorescein angiographic appearance, electrophysiology, and visual fields. All patients had heterozygous amino acid-changing variants (missense mutations) in the ABCA4 gene. A splice sequence change was found in a 30-year-old patient with severly affected vision. Two novel sequence changes were identified: a missense mutation in a mildly affected 44-year-old patient and a frameshift mutation in a severly affected 34-year-old patient. The identified ABCA4 mutations were compatible with the resulting phenotypes in terms of BCVA. Higher BCVAs were recorded in patients with missense mutations. Sequence changes, predicted to have more deleterious effect on protein function, resulted in a more severe phenotype. This case series of STGD patients demonstrates novel genotype/phenotype correlations, which may be useful to counselling of patients. This information may prove useful in selection of candidates for clinical trials in ABCA4 disease.
Tufto, Jarle
2015-08-01
Adaptive responses to autocorrelated environmental fluctuations through evolution in mean reaction norm elevation and slope and an independent component of the phenotypic variance are analyzed using a quantitative genetic model. Analytic approximations expressing the mutual dependencies between all three response modes are derived and solved for the joint evolutionary outcome. Both genetic evolution in reaction norm elevation and plasticity are favored by slow temporal fluctuations, with plasticity, in the absence of microenvironmental variability, being the dominant evolutionary outcome for reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype through genetic evolution and plasticity is limited. If residual fluctuations in the optimal phenotype are large and stabilizing selection is strong, selection then acts to increase the phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If the phenotypic variance increases with plasticity through the effect of microenvironmental variability, this shifts the joint evolutionary balance away from plasticity in favor of genetic evolution. If microenvironmental deviations experienced by each individual at the time of development and selection are correlated, however, more plasticity evolves. The adaptive significance of evolutionary fluctuations in plasticity and the phenotypic variance, transient evolution, and the validity of the analytic approximations are investigated using simulations. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Cervera-Acedo, C; Coloma, A; Huarte-Loza, E; Sierra-Carpio, M; Domínguez-Garrido, E
2017-10-31
Alport syndrome is an inherited renal disorder characterized by glomerular basement membrane lesions with hematuria, proteinuria and frequent hearing defects and ocular abnormalities. The disease is associated with mutations in genes encoding α3, α4, or α5 chains of type IV collagen, namely COL4A3 and COL4A4 in chromosome 2 and COL4A5 in chromosome X. In contrast to the well-known X-linked and autosomal recessive phenotypes, there is very little information about the autosomal dominant. In view of the wide spectrum of phenotypes, an exact diagnosis is sometimes difficult to achieve. We investigated a Spanish family with variable phenotype of autosomal dominant Alport syndrome using clinical, histological, and genetic analysis. Mutational analysis of COL4A3 and COL4A4 genes showed a novel heterozygous mutation (c. 998G > A; p.G333E) in exon 18 of the COL4A3 gene. Among relatives carrying the novel mutation, the clinical phenotype was variable. Two additional COL4A3 mutations were found, a Pro-Leu substitution in exon 48 (p.P1461L) and a Ser-Cys substitution in exon 49 (p.S1492C), non-pathogenics alone. Carriers of p.G333E and p.P1461L or p.S1492C mutations in COL4A3 gene appear to be more severely affected than carriers of only p.G333E mutation, and the clinical findings has an earlier onset. In this way, we could speculate on a synergistic effect of compound heterozygosity that could explain the different phenotype observed in this family.
Variable Bone Fragility Associated With an Amish COL1A2 Variant and a Knock-in Mouse Model
Daley, Ethan; Streeten, Elizabeth A; Sorkin, John D; Kuznetsova, Natalia; Shapses, Sue A; Carleton, Stephanie M; Shuldiner, Alan R; Marini, Joan C; Phillips, Charlotte L; Goldstein, Steven A; Leikin, Sergey; McBride, Daniel J
2010-01-01
Osteogenesis imperfecta (OI) is a heritable form of bone fragility typically associated with a dominant COL1A1 or COL1A2 mutation. Variable phenotype for OI patients with identical collagen mutations is well established, but phenotype variability is described using the qualitative Sillence classification. Patterning a new OI mouse model on a specific collagen mutation therefore has been hindered by the absence of an appropriate kindred with extensive quantitative phenotype data. We benefited from the large sibships of the Old Order Amish (OOA) to define a wide range of OI phenotypes in 64 individuals with the identical COL1A2 mutation. Stratification of carrier spine (L1–4) areal bone mineral density (aBMD) Z-scores demonstrated that 73% had moderate to severe disease (less than −2), 23% had mild disease (−1 to −2), and 4% were in the unaffected range (greater than −1). A line of knock-in mice was patterned on the OOA mutation. Bone phenotype was evaluated in four F1 lines of knock-in mice that each shared approximately 50% of their genetic background. Consistent with the human pedigree, these mice had reduced body mass, aBMD, and bone strength. Whole-bone fracture susceptibility was influenced by individual genomic factors that were reflected in size, shape, and possibly bone metabolic regulation. The results indicate that the G610C OI (Amish) knock-in mouse is a novel translational model to identify modifying genes that influence phenotype and for testing potential therapies for OI. © 2010 American Society for Bone and Mineral Research PMID:19594296
Autosomal dominant frontonasal dysplasia (atypical Greig syndrome): Lessons from the Xt mutant mouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunningham, M.L.; Nunes, M.E.
1994-09-01
Greig syndrome is the autosomal dominant association of mild hypertelorism, variable polysyndactyly, and normal intelligence. Several families have been found to have translocations or deletions of 7p13 interrupting the normal expression of GLI3 (a zinc finger, DNA binding, transcription repressor). Recently, a mutation in the mouse homologue of GLI3 was found in the extra-toes mutant mouse (Xt). The phenotypic features of this mouse model include mild hypertelorism, postaxial polydactyly of the forelimbs, preaxial polydactyly of the hindlimbs, and variable tibial hemimelia. The homozygous mutant Xt/Xt have severe frontonasal dysplasia (FND), polysyndactyly of fore-and hindlimbs and invariable tibial hemimelia. We havemore » recently evaluated a child with severe (type D) frontonasal dysplasia, fifth finger camptodactyly, preaxial polydactyly of one foot, and ispilateral tibial hemimelia. His father was born with a bifid nose, broad columnella, broad feet, and a two centimeter leg length discrepancy. The paternal grandmother of the proband is phenotypically normal; however, her fraternal twin died at birth with severe facial anomalies. The paternal great-grandmother of the proband is phenotypically normal however her niece was born with moderate ocular hypertelorism. This pedigree is suggestive of an autosomal dominant form of frontonasal dysplasia with variable expressivity. The phenotypic features of our case more closely resemble the Xt mouse than the previously defined features of Greig syndrome in humans. This suggests that a mutation in GLI3 may be responsible for FND in this family. We are currently using polymorphic dinucleotide repeat markers flanking GLI3 in a attempt to demonstrate linkage in this pedigree. Demonstration of a GLI3 mutation in this family would broaden our view of the spectrum of phenotypes possible in Greig syndrome and could provide insight into genotype/phenotype correlation in FND.« less
Microbiome Heterogeneity Characterizing Intestinal Tissue and Inflammatory Bowel Disease Phenotype.
Tyler, Andrea D; Kirsch, Richard; Milgrom, Raquel; Stempak, Joanne M; Kabakchiev, Boyko; Silverberg, Mark S
2016-04-01
Inflammatory bowel disease has been associated with differential abundance of numerous organisms when compared to healthy controls (HCs); however, few studies have investigated variability in the microbiome across intestinal locations and how this variability might be related to disease location and phenotype. In this study, we have analyzed the microbiome of a large cohort of individuals recruited at Mount Sinai Hospital in Toronto, Canada. Biopsies were taken from subjects with Crohn's disease, ulcerative colitis, and HC, and also individuals having undergone ileal pouch-anal anastomosis for treatment of ulcerative colitis or familial adenomatous polyposis. Microbial 16S rRNA was sequenced using the Illumina MiSeq platform. We observed a great deal of variability in the microbiome characterizing different sampling locations. Samples from pouch and afferent limb were comparable in microbial composition. When comparing sigmoid and terminal ileum samples, more differences were observed. The greatest number of differentially abundant microbes was observed when comparing either pouch or afferent limb samples to sigmoid or terminal ileum. Despite these differences, we were able to observe modest microbial variability between inflammatory bowel disease phenotypes and HCs, even when controlling for sampling location and additional experimental factors. Most detected associations were observed between HCs and Crohn's disease, with decreases in specific genera in the families Ruminococcaceae and Lachnospiraceae characterizing tissue samples from individuals with Crohn's disease. This study highlights important considerations when analyzing the composition of the microbiome and also provides useful insight into differences in the microbiome characterizing these seemingly related phenotypes.
Effects of Verb Familiarity on Finiteness Marking in Children With Specific Language Impairment
Rice, Mabel L.; Bontempo, Daniel E.
2015-01-01
Purpose Children with specific language impairment (SLI) have known deficits in the verb lexicon and finiteness marking. This study investigated a potential relationship between these 2 variables in children with SLI and 2 control groups considering predictions from 2 different theoretical perspectives, morphosyntactic versus morphophonological. Method Children with SLI, age-equivalent, and language-equivalent (LE) control children (n = 59) completed an experimental sentence imitation task that generated estimates of children's finiteness accuracy under 2 levels of verb familiarity—familiar real verbs versus unfamiliar real verbs—in clausal sites marked for finiteness. Imitations were coded and analyzed for overall accuracy as well as finiteness marking and verb root imitation accuracy. Results Statistical comparisons revealed that children with SLI did not differ from LE children and were less accurate than age-equivalent children on all dependent variables: overall imitation, finiteness marking imitation, and verb root imitation accuracy. A significant Group × Condition interaction for finiteness marking revealed lower levels of accuracy on unfamiliar verbs for the SLI and LE groups only. Conclusions Findings indicate a relationship between verb familiarity and finiteness marking in children with SLI and younger controls and help clarify the roles of morphosyntax, verb lexicon, and morphophonology. PMID:25611349
Newburger, Peter E; Pindyck, Talia N; Zhu, Zhiqing; Bolyard, Audrey Anna; Aprikyan, Andrew A G; Dale, David C; Smith, Gary D; Boxer, Laurence A
2010-08-01
Cyclic neutropenia (CN) and severe congenital neutropenia (SCN) are disorders of neutrophil production that differ markedly in disease severity. Mutations of the ELANE gene (the symbol recently replacing ELA2) are considered largely responsible for most cases of CN and SCN, but specific mutations are typically associated with one or the other. We performed ELANE genotyping on all individuals and paternal sperm in an SCN kindred with eight SCN progeny of a sperm donor and six different mothers. One patient with CN had the same S97L ELANE mutation as seven patients with the SCN phenotype. The mutant allele was detected in the donor's spermatozoa, representing 18% of the ELANE gene pool, but not in DNA from his lymphocytes, neutrophils, or buccal mucosa, indicating gonadal mosaicism. The coexistence of CN and SCN phenotypes in this kindred with a shared paternal haplotype strongly suggests both a role for modifying genes in determination of congenital neutropenia disease phenotypes, and the classification of CN and SCN within a spectrum of phenotypes expressing varying degrees of the same disease process. (c) 2010 Wiley-Liss, Inc.
Schelly, Robert C.; Smith, W. Leo; Davis, Matthew P.; Tchernov, Dan; Pieribone, Vincent A.
2014-01-01
The discovery of fluorescent proteins has revolutionized experimental biology. Whereas the majority of fluorescent proteins have been identified from cnidarians, recently several fluorescent proteins have been isolated across the animal tree of life. Here we show that biofluorescence is not only phylogenetically widespread, but is also phenotypically variable across both cartilaginous and bony fishes, highlighting its evolutionary history and the possibility for discovery of numerous novel fluorescent proteins. Fish biofluorescence is especially common and morphologically variable in cryptically patterned coral-reef lineages. We identified 16 orders, 50 families, 105 genera, and more than 180 species of biofluorescent fishes. We have also reconstructed our current understanding of the phylogenetic distribution of biofluorescence for ray-finned fishes. The presence of yellow long-pass intraocular filters in many biofluorescent fish lineages and the substantive color vision capabilities of coral-reef fishes suggest that they are capable of detecting fluoresced light. We present species-specific emission patterns among closely related species, indicating that biofluorescence potentially functions in intraspecific communication and evidence that fluorescence can be used for camouflage. This research provides insight into the distribution, evolution, and phenotypic variability of biofluorescence in marine lineages and examines the role this variation may play. PMID:24421880
Maternal source of variability in the embryo development of an annual killifish.
Polačik, M; Smith, C; Reichard, M
2017-04-01
Organisms inhabiting unpredictable environments often evolve diversified reproductive bet-hedging strategies, expressed as production of multiple offspring phenotypes, thereby avoiding complete reproductive failure. To cope with unpredictable rainfall, African annual killifish from temporary savannah pools lay drought-resistant eggs that vary widely in the duration of embryo development. We examined the sources of variability in the duration of individual embryo development, egg production and fertilization rate in Nothobranchius furzeri. Using a quantitative genetics approach (North Carolina type II design), we found support for maternal effects rather than polyandrous mating as the primary source of the variability in the duration of embryo development. The number of previously laid eggs appeared to serve as an internal physiological cue initiating a shift from rapid-to-slow embryo developmental mode. In annual killifish, extensive phenotypic variability in progeny traits is adaptive, as the conditions experienced by parents have limited relevance to the offspring generation. In contrast to genetic control, with high phenotypic expression and heritability, maternal control of traits under natural selection prevents standing genetic diversity from potentially detrimental effects of selection in fluctuating environments. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Sparks, John S; Schelly, Robert C; Smith, W Leo; Davis, Matthew P; Tchernov, Dan; Pieribone, Vincent A; Gruber, David F
2014-01-01
The discovery of fluorescent proteins has revolutionized experimental biology. Whereas the majority of fluorescent proteins have been identified from cnidarians, recently several fluorescent proteins have been isolated across the animal tree of life. Here we show that biofluorescence is not only phylogenetically widespread, but is also phenotypically variable across both cartilaginous and bony fishes, highlighting its evolutionary history and the possibility for discovery of numerous novel fluorescent proteins. Fish biofluorescence is especially common and morphologically variable in cryptically patterned coral-reef lineages. We identified 16 orders, 50 families, 105 genera, and more than 180 species of biofluorescent fishes. We have also reconstructed our current understanding of the phylogenetic distribution of biofluorescence for ray-finned fishes. The presence of yellow long-pass intraocular filters in many biofluorescent fish lineages and the substantive color vision capabilities of coral-reef fishes suggest that they are capable of detecting fluoresced light. We present species-specific emission patterns among closely related species, indicating that biofluorescence potentially functions in intraspecific communication and evidence that fluorescence can be used for camouflage. This research provides insight into the distribution, evolution, and phenotypic variability of biofluorescence in marine lineages and examines the role this variation may play.
A Unified Framework for Association Analysis with Multiple Related Phenotypes
Stephens, Matthew
2013-01-01
We consider the problem of assessing associations between multiple related outcome variables, and a single explanatory variable of interest. This problem arises in many settings, including genetic association studies, where the explanatory variable is genotype at a genetic variant. We outline a framework for conducting this type of analysis, based on Bayesian model comparison and model averaging for multivariate regressions. This framework unifies several common approaches to this problem, and includes both standard univariate and standard multivariate association tests as special cases. The framework also unifies the problems of testing for associations and explaining associations – that is, identifying which outcome variables are associated with genotype. This provides an alternative to the usual, but conceptually unsatisfying, approach of resorting to univariate tests when explaining and interpreting significant multivariate findings. The method is computationally tractable genome-wide for modest numbers of phenotypes (e.g. 5–10), and can be applied to summary data, without access to raw genotype and phenotype data. We illustrate the methods on both simulated examples, and to a genome-wide association study of blood lipid traits where we identify 18 potential novel genetic associations that were not identified by univariate analyses of the same data. PMID:23861737
Measuring the effect of inter-study variability on estimating prediction error.
Ma, Shuyi; Sung, Jaeyun; Magis, Andrew T; Wang, Yuliang; Geman, Donald; Price, Nathan D
2014-01-01
The biomarker discovery field is replete with molecular signatures that have not translated into the clinic despite ostensibly promising performance in predicting disease phenotypes. One widely cited reason is lack of classification consistency, largely due to failure to maintain performance from study to study. This failure is widely attributed to variability in data collected for the same phenotype among disparate studies, due to technical factors unrelated to phenotypes (e.g., laboratory settings resulting in "batch-effects") and non-phenotype-associated biological variation in the underlying populations. These sources of variability persist in new data collection technologies. Here we quantify the impact of these combined "study-effects" on a disease signature's predictive performance by comparing two types of validation methods: ordinary randomized cross-validation (RCV), which extracts random subsets of samples for testing, and inter-study validation (ISV), which excludes an entire study for testing. Whereas RCV hardwires an assumption of training and testing on identically distributed data, this key property is lost in ISV, yielding systematic decreases in performance estimates relative to RCV. Measuring the RCV-ISV difference as a function of number of studies quantifies influence of study-effects on performance. As a case study, we gathered publicly available gene expression data from 1,470 microarray samples of 6 lung phenotypes from 26 independent experimental studies and 769 RNA-seq samples of 2 lung phenotypes from 4 independent studies. We find that the RCV-ISV performance discrepancy is greater in phenotypes with few studies, and that the ISV performance converges toward RCV performance as data from additional studies are incorporated into classification. We show that by examining how fast ISV performance approaches RCV as the number of studies is increased, one can estimate when "sufficient" diversity has been achieved for learning a molecular signature likely to translate without significant loss of accuracy to new clinical settings.
The phenotypic variability in Rana temporaria decreases in response to drying habitats.
Miramontes-Sequeiros, Luz Calia; Palanca-Castán, Nicolás; Caamaño-Chinchilla, Laura; Palanca-Soler, Antonio
2018-01-15
In this study, we evaluated the diversity of skin coloration as a proxy for phenotypic diversity. The European common frog (Rana temporaria) populations from the Southern slope of central Pyrenees lie at the limit of the species distribution in latitude and altitude. We analysed the relationship of skin color typology with different environmental variables and found a large decrease in skin type variety in frogs developing in temporary water bodies when compared to those developing in permanent water bodies. Our results show that our method can be used as a non-invasive way to study phenotypic diversity and suggest that adaptation to an early metamorphosis in a rapidly-drying habitat can have negative effects on adult phenotypic diversity. In light of these results, we argue that access to permanent water bodies is important to prevent loss of diversity in anuran populations and reduce their vulnerability to environmental impacts as well as pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.
Dombrovsky, Aviv; Arthaud, Laury; Ledger, Terence N; Tares, Sophie; Robichon, Alain
2009-11-01
The aphid Acyrthosiphon pisum population is composed of different morphs, such as winged and wingless parthenogens, males, and sexual females. The combined effect of reduced photoperiodicity and cold in fall triggers the apparition of sexual morphs. In contrast they reproduce asexually in spring and summer. In our current study, we provide evidence that clonal individuals display phenotypic variability within asexual morph categories. We describe that clones sharing the same morphological features, which arose from the same founder mother, constitute a repertoire of variants with distinct behavioral and physiological traits. Our results suggest that the prevailing environmental conditions influence the recruitment of adaptive phenotypes from a cohort of clonal individuals exhibiting considerable molecular diversity. However, we observed that the variability might be reduced or enhanced by external factors, but is never abolished in accordance with a model of stochastically produced phenotypes. This overall mechanism allows the renewal of colonies from a few adapted individuals that survive drastic episodic changes in a fluctuating environment.
Okada, Hirokazu; Ebhardt, H Alexander; Vonesch, Sibylle Chantal; Aebersold, Ruedi; Hafen, Ernst
2016-09-01
The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype-phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using SWATH mass spectrometry. In spite of the very large genetic variation (1/36 bp) between the lines, proteome variability is surprisingly small, indicating strong molecular resilience of protein expression patterns. Proteins associated with adult wing size form tight co-variation clusters that are enriched in fundamental biochemical processes. Wing size correlates with some basic metabolic functions, positively with glucose metabolism but negatively with mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power of PWAS to filter functional variants from the large genetic variability in natural populations.
Dombrovsky, Aviv; Arthaud, Laury; Ledger, Terence N.; Tares, Sophie; Robichon, Alain
2009-01-01
The aphid Acyrthosiphon pisum population is composed of different morphs, such as winged and wingless parthenogens, males, and sexual females. The combined effect of reduced photoperiodicity and cold in fall triggers the apparition of sexual morphs. In contrast they reproduce asexually in spring and summer. In our current study, we provide evidence that clonal individuals display phenotypic variability within asexual morph categories. We describe that clones sharing the same morphological features, which arose from the same founder mother, constitute a repertoire of variants with distinct behavioral and physiological traits. Our results suggest that the prevailing environmental conditions influence the recruitment of adaptive phenotypes from a cohort of clonal individuals exhibiting considerable molecular diversity. However, we observed that the variability might be reduced or enhanced by external factors, but is never abolished in accordance with a model of stochastically produced phenotypes. This overall mechanism allows the renewal of colonies from a few adapted individuals that survive drastic episodic changes in a fluctuating environment. PMID:19635846
Trajectories of the healthy ageing phenotype among middle-aged and older Britons, 2004-2013.
Tampubolon, Gindo
2016-06-01
Since the ageing population demands a response to ensure older people remain healthy and active, we studied the dynamics of a recently proposed healthy ageing phenotype. We drew the phenotype's trajectories and tested whether their levels and rates of change are influenced by health behaviours, comorbidities and socioeconomic positions earlier in the life course. The English Longitudinal Ageing Study, a prospective, nationally representative sample of people aged ≥50 years, measured a set of eight biomarkers which make up the outcome of the healthy ageing phenotype three times over nearly a decade (N2004=5009, N2008=5301, N2013=4455). A cluster of health behaviours, comorbidities and socioeconomic positions were also measured repeatedly. We assessed the phenotype's distribution non-parametrically, then fitted linear mixed models to phenotypic change and further examined time interactions with gender and socioeconomic position. We ran additional analyses to test robustness. Women had a wider distribution of the healthy ageing phenotype than men had. The phenotype declined annually by -0.242 (95% confidence interval [CI]: -0.352, -0.131). However, there was considerable heterogeneity in the levels and rates of phenotypic change. Women started at higher levels, then declined more steeply by -0.293 (CI: -0.403, -0.183) annually, leading to crossover in the trajectories. Smoking and physical activity assessed on the Allied Dunbar scale were strongly associated with the trajectories. Though marked by secular decline, the trajectories of the healthy ageing phenotype showed distinct socioeconomic gradients. The trajectories were also susceptible to variations in health behaviours, strengthening the case for serial interventions to attain healthy and active ageing. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timraz, Sara B.H., E-mail: sara.timraz@kustar.ac.ae; Farhat, Ilyas A.H., E-mail: ilyas.farhat@outlook.com; Alhussein, Ghada, E-mail: ghada.alhussein@kustar.ac.ae
In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, andmore » reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro. - Highlights: • Ability of human smooth muscle cells to alter phenotype in culture is evaluated. • Examined the effect of passaging human smooth muscle cells on phenotype. • Phenotype is assessed based on morphology, proliferation, markers, and migration. • Multi-resolution assessment methodology, single-cell and cell-population. • Lower and higher passages than P7 adopted a contractile and synthetic phenotype respectively.« less
Allelic variation of the FRMD7 gene in congenital idiopathic nystagmus.
Self, James E; Shawkat, Fatima; Malpas, Crispin T; Thomas, N Simon; Harris, Christopher M; Hodgkins, Peter R; Chen, Xiaoli; Trump, Dorothy; Lotery, Andrew J
2007-09-01
To perform a genotype-phenotype correlation study in an X-linked congenital idiopathic nystagmus pedigree (pedigree 1) and to assess the allelic variance of the FRMD7 gene in congenital idiopathic nystagmus. Subjects from pedigree 1 underwent detailed clinical examination including nystagmology. Screening of FRMD7 was undertaken in pedigree 1 and in 37 other congenital idiopathic nystagmus probands and controls. Direct sequencing confirmed sequence changes. X-inactivation studies were performed in pedigree 1. The nystagmus phenotype was extremely variable in pedigree 1. We identified 2 FRMD7 mutations. However, 80% of X-linked families and 96% of simplex cases showed no mutations. X-inactivation studies demonstrated no clear causal link between skewing and variable penetrance. We confirm profound phenotypic variation in X-linked congenital idiopathic nystagmus pedigrees. We demonstrate that other congenital nystagmus genes exist besides FRMD7. We show that the role of X inactivation in variable penetrance is unclear in congenital idiopathic nystagmus. Clinical Relevance We demonstrate that phenotypic variation of nystagmus occurs in families with FRMD7 mutations. While FRMD7 mutations may be found in some cases of X-linked congenital idiopathic nystagmus, the diagnostic yield is low. X-inactivation assays are unhelpful as a test for carrier status for this disease.
Present status and perspective of pharmacogenetics in Mexico.
Cuautle-Rodríguez, Patricia; Llerena, Adrián; Molina-Guarneros, Juan
2014-01-01
Drug costs account for up to 24% of the country's health expenditure and there are 13,000 registered drugs being prescribed. Diabetes is the main cause of death in the country, with over 85% of diabetic patients currently under drug treatment. The importance of knowing interindividual variability in drug metabolism on Mexican populations is thus evident. The purpose of this article is to provide an overlook of the current situation of pharmacogenetic research in Mexico, focusing on drug-metabolizing enzymes, and the possibility of developing a phenotyping cocktail for Mexican populations. So far, 21 pharmacogenetic studies on Mexican population samples (Mestizos and Amerindian) have been published. These have reported interindividual variability through phenotyping and/or genotyping cytochromes: CYP2D6, 2C19, 2C9, 2E1, and phase II enzymes UGT and NAT2. Some cytochromes with important clinical implications have not yet been phenotyped in Mexican populations. The development of a cocktail adapted to them could be a significant contribution to a larger knowledge on drug response variability at a lower price and shorter time. There are validated phenotyping cocktails that present several practical advantages, being valuable, safe, and inexpensive tools in drug metabolism characterization, which require only a single experiment to provide information on several cytochrome activities.
Conrad, Douglas J; Bailey, Barbara A; Hardie, Jon A; Bakke, Per S; Eagan, Tomas M L; Aarli, Bernt B
2017-01-01
Clinical phenotyping, therapeutic investigations as well as genomic, airway secretion metabolomic and metagenomic investigations can benefit from robust, nonlinear modeling of FEV1 in individual subjects. We demonstrate the utility of measuring FEV1 dynamics in representative cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) populations. Individual FEV1 data from CF and COPD subjects were modeled by estimating median regression splines and their predicted first and second derivatives. Classes were created from variables that capture the dynamics of these curves in both cohorts. Nine FEV1 dynamic variables were identified from the splines and their predicted derivatives in individuals with CF (n = 177) and COPD (n = 374). Three FEV1 dynamic classes (i.e. stable, intermediate and hypervariable) were generated and described using these variables from both cohorts. In the CF cohort, the FEV1 hypervariable class (HV) was associated with a clinically unstable, female-dominated phenotypes while stable FEV1 class (S) individuals were highly associated with the male-dominated milder clinical phenotype. In the COPD cohort, associations were found between the FEV1 dynamic classes, the COPD GOLD grades, with exacerbation frequency and symptoms. Nonlinear modeling of FEV1 with splines provides new insights and is useful in characterizing CF and COPD clinical phenotypes.
High-throughput discovery of novel developmental phenotypes.
Dickinson, Mary E; Flenniken, Ann M; Ji, Xiao; Teboul, Lydia; Wong, Michael D; White, Jacqueline K; Meehan, Terrence F; Weninger, Wolfgang J; Westerberg, Henrik; Adissu, Hibret; Baker, Candice N; Bower, Lynette; Brown, James M; Caddle, L Brianna; Chiani, Francesco; Clary, Dave; Cleak, James; Daly, Mark J; Denegre, James M; Doe, Brendan; Dolan, Mary E; Edie, Sarah M; Fuchs, Helmut; Gailus-Durner, Valerie; Galli, Antonella; Gambadoro, Alessia; Gallegos, Juan; Guo, Shiying; Horner, Neil R; Hsu, Chih-Wei; Johnson, Sara J; Kalaga, Sowmya; Keith, Lance C; Lanoue, Louise; Lawson, Thomas N; Lek, Monkol; Mark, Manuel; Marschall, Susan; Mason, Jeremy; McElwee, Melissa L; Newbigging, Susan; Nutter, Lauryl M J; Peterson, Kevin A; Ramirez-Solis, Ramiro; Rowland, Douglas J; Ryder, Edward; Samocha, Kaitlin E; Seavitt, John R; Selloum, Mohammed; Szoke-Kovacs, Zsombor; Tamura, Masaru; Trainor, Amanda G; Tudose, Ilinca; Wakana, Shigeharu; Warren, Jonathan; Wendling, Olivia; West, David B; Wong, Leeyean; Yoshiki, Atsushi; MacArthur, Daniel G; Tocchini-Valentini, Glauco P; Gao, Xiang; Flicek, Paul; Bradley, Allan; Skarnes, William C; Justice, Monica J; Parkinson, Helen E; Moore, Mark; Wells, Sara; Braun, Robert E; Svenson, Karen L; de Angelis, Martin Hrabe; Herault, Yann; Mohun, Tim; Mallon, Ann-Marie; Henkelman, R Mark; Brown, Steve D M; Adams, David J; Lloyd, K C Kent; McKerlie, Colin; Beaudet, Arthur L; Bućan, Maja; Murray, Stephen A
2016-09-22
Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.
High-throughput discovery of novel developmental phenotypes
Dickinson, Mary E.; Flenniken, Ann M.; Ji, Xiao; Teboul, Lydia; Wong, Michael D.; White, Jacqueline K.; Meehan, Terrence F.; Weninger, Wolfgang J.; Westerberg, Henrik; Adissu, Hibret; Baker, Candice N.; Bower, Lynette; Brown, James M.; Caddle, L. Brianna; Chiani, Francesco; Clary, Dave; Cleak, James; Daly, Mark J.; Denegre, James M.; Doe, Brendan; Dolan, Mary E.; Edie, Sarah M.; Fuchs, Helmut; Gailus-Durner, Valerie; Galli, Antonella; Gambadoro, Alessia; Gallegos, Juan; Guo, Shiying; Horner, Neil R.; Hsu, Chih-wei; Johnson, Sara J.; Kalaga, Sowmya; Keith, Lance C.; Lanoue, Louise; Lawson, Thomas N.; Lek, Monkol; Mark, Manuel; Marschall, Susan; Mason, Jeremy; McElwee, Melissa L.; Newbigging, Susan; Nutter, Lauryl M.J.; Peterson, Kevin A.; Ramirez-Solis, Ramiro; Rowland, Douglas J.; Ryder, Edward; Samocha, Kaitlin E.; Seavitt, John R.; Selloum, Mohammed; Szoke-Kovacs, Zsombor; Tamura, Masaru; Trainor, Amanda G; Tudose, Ilinca; Wakana, Shigeharu; Warren, Jonathan; Wendling, Olivia; West, David B.; Wong, Leeyean; Yoshiki, Atsushi; MacArthur, Daniel G.; Tocchini-Valentini, Glauco P.; Gao, Xiang; Flicek, Paul; Bradley, Allan; Skarnes, William C.; Justice, Monica J.; Parkinson, Helen E.; Moore, Mark; Wells, Sara; Braun, Robert E.; Svenson, Karen L.; de Angelis, Martin Hrabe; Herault, Yann; Mohun, Tim; Mallon, Ann-Marie; Henkelman, R. Mark; Brown, Steve D.M.; Adams, David J.; Lloyd, K.C. Kent; McKerlie, Colin; Beaudet, Arthur L.; Bucan, Maja; Murray, Stephen A.
2016-01-01
Approximately one third of all mammalian genes are essential for life. Phenotypes resulting from mouse knockouts of these genes have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5000 knockout mouse lines, we have identified 410 lethal genes during the production of the first 1751 unique gene knockouts. Using a standardised phenotyping platform that incorporates high-resolution 3D imaging, we identified novel phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes identified in our screen, thus providing a novel dataset that facilitates prioritization and validation of mutations identified in clinical sequencing efforts. PMID:27626380
Neurobehavioral phenotype in Prader-Willi syndrome.
Whittington, Joyce; Holland, Anthony
2010-11-15
The focus of this article is on the lifetime development of people with Prader-Willi syndrome (PWS) and specifically on the neurobehavioral phenotype. We consider studies of this aspect of the phenotype (the "behavioral phenotype" of the syndrome) that have confirmed that there are specific behaviors and psychiatric disorders, the propensities to which are increased in those with PWS, and cannot be accounted for by other variables such as IQ or adaptive behavior. Beginning with a description of what is observed in people with PWS, we review the evolving PWS phenotype and consider how some aspects of the phenotype might be best explained, and how this complex phenotype may relate to the equally complex genotype. We then consider in more detail some of the neurobehavioral aspects of the phenotype listed above that raise the greatest management problems for parents and carers. © 2010 Wiley-Liss, Inc.
Mismatch Between Birth Date and Vegetation Phenology Slows the Demography of Roe Deer
Plard, Floriane; Gaillard, Jean-Michel; Coulson, Tim; Hewison, A. J. Mark; Delorme, Daniel; Warnant, Claude; Bonenfant, Christophe
2014-01-01
Marked impacts of climate change on biodiversity have frequently been demonstrated, including temperature-related shifts in phenology and life-history traits. One potential major impact of climate change is the modification of synchronization between the phenology of different trophic levels. High phenotypic plasticity in laying date has allowed many bird species to track the increasingly early springs resulting from recent environmental change, but although changes in the timing of reproduction have been well studied in birds, these questions have only recently been addressed in mammals. To track peak resource availability, large herbivores like roe deer, with a widespread distribution across Europe, should also modify their life-history schedule in response to changes in vegetation phenology over time. In this study, we analysed the influence of climate change on the timing of roe deer births and the consequences for population demography and individual fitness. Our study provides a rare quantification of the demographic costs associated with the failure of a species to modify its phenology in response to a changing world. Given these fitness costs, the lack of response of roe deer birth dates to match the increasingly earlier onset of spring is in stark contrast with the marked phenotypic responses to climate change reported in many other mammals. We suggest that the lack of phenotypic plasticity in birth timing in roe deer is linked to its inability to track environmental cues of variation in resource availability for the timing of parturition. PMID:24690936
Diagnostic Challenges in Retinitis Pigmentosa: Genotypic Multiplicity and Phenotypic Variability
Chang, Susie; Vaccarella, Leah; Olatunji, Sunday; Cebulla, Colleen; Christoforidis, John
2011-01-01
Retinitis pigmentosa (RP) is a heterogeneous group of inherited retinal disorders. Diagnosis can be challenging as more than 40 genes are known to cause non-syndromic RP and phenotypic expression can differ significantly resulting in variations in disease severity, age of onset, rate of progression, and clinical findings. We describe the clinical manifestations of RP, the more commonly known causative gene mutations, and the genotypic-phenotypic correlation of RP. PMID:22131872
[Characteristics of Bacillus cereus dissociants].
Doroshenko, E V; Loĭko, N G; Il'inskaia, O N; Kolpakov, A I; Gornova, I B; Klimanova, E V; El'-Registan, G I
2001-01-01
The autoregulation of the phenotypic (populational) variability of the Bacillus cereus strain 504 was studied. The isolated colonial morphotypes of this bacterium were found to differ in their growth characteristics and the synthesis of extracellular proteases. The phenotypic variabilities of vegetative proliferating cells and those germinated from endospores and cystlike refractory cells were different. Bacterial variants also differed in the production of the d1 and d2 factors (the autoinducers of dormancy and autolysis, respectively) and sensitivity to them. The possible role of these factors in the dissociation of microorganisms is discussed.
Intrafamilial and interfamilial variability of phenotype in familial velo-cardio-facial syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hajianpour, M.J.; Lamb, A.; Covle, M.
Two half-sisters and their mother from one family, and two full-brothers and their mother from another family presented with features of velo-cardio-facial syndrome (VCSF)/DiGeorge syndrome (DS) with intrafamilial and interfamilial variability of phenotypic expression. None of these patients had an apparent cleft palate. Cardiac anomaly, jejunal atresia and hypocalcemia were present only in the newborn patient. Fluorescence in situ hybridization for VCFS/DS with probe D22S75 showed a deletion in the 22q11.2 region in patients available for the study.
Phenotypic assortment in wild primate networks: implications for the dissemination of information.
Carter, Alecia J; Lee, Alexander E G; Marshall, Harry H; Ticó, Miquel Torrents; Cowlishaw, Guy
2015-05-01
Individuals' access to social information can depend on their social network. Homophily-a preference to associate with similar phenotypes-may cause assortment within social networks that could preclude information transfer from individuals who generate information to those who would benefit from acquiring it. Thus, understanding phenotypic assortment may lead to a greater understanding of the factors that could limit the transfer of information between individuals. We tested whether there was assortment in wild baboon (Papio ursinus) networks, using data collected from two troops over 6 years for six phenotypic traits-boldness, age, dominance rank, sex and the propensity to generate/exploit information-using two methods for defining a connection between individuals-time spent in proximity and grooming. Our analysis indicated that assortment was more common in grooming than proximity networks. In general, there was homophily for boldness, age, rank and the propensity to both generate and exploit information, but heterophily for sex. However, there was considerable variability both between troops and years. The patterns of homophily we observed for these phenotypes may impede information transfer between them. However, the inconsistency in the strength of assortment between troops and years suggests that the limitations to information flow may be quite variable.
Expressivity of hearing loss in cases with Usher syndrome type IIA.
Sadeghi, André M; Cohn, Edward S; Kimberling, William J; Halvarsson, Glenn; Möller, Claes
2013-12-01
The purpose of this study was to compare the genotype/phenotype relationship between siblings with identical USH2A pathologic mutations and the consequent audiologic phenotypes, in particular degree of hearing loss (HL). Decade audiograms were also compared among two groups of affected subjects with different mutations of USH2A. DNA samples from patients with Usher syndrome type II were analysed. The audiological features of patients and affected siblings with USH2A mutations were also examined to identify genotype-phenotype correlations. Genetic and audiometric examinations were performed in 18 subjects from nine families with Usher syndrome type IIA. Three different USH2A mutations were identified in the affected subjects. Both similarities and differences of the auditory phenotype were seen in families with several affected siblings. A variable degree of hearing loss, ranging from mild to profound, was observed among affected subjects. No significant differences in hearing thresholds were found the group of affected subjects with different pathological mutations. Our results indicate that mutations in the USH2A gene and the resulting phenotype are probably modulated by other variables, such as modifying genes, epigenetics or environmental factors which may be of importance for better understanding the etiology of Usher syndrome.
Dysarthria and broader motor speech deficits in Dravet syndrome.
Turner, Samantha J; Brown, Amy; Arpone, Marta; Anderson, Vicki; Morgan, Angela T; Scheffer, Ingrid E
2017-02-21
To analyze the oral motor, speech, and language phenotype in 20 children and adults with Dravet syndrome (DS) associated with mutations in SCN1A . Fifteen verbal and 5 minimally verbal DS patients with SCN1A mutations (aged 15 months-28 years) underwent a tailored assessment battery. Speech was characterized by imprecise articulation, abnormal nasal resonance, voice, and pitch, and prosody errors. Half of verbal patients had moderate to severely impaired conversational speech intelligibility. Oral motor impairment, motor planning/programming difficulties, and poor postural control were typical. Nonverbal individuals had intentional communication. Cognitive skills varied markedly, with intellectual functioning ranging from the low average range to severe intellectual disability. Language impairment was congruent with cognition. We describe a distinctive speech, language, and oral motor phenotype in children and adults with DS associated with mutations in SCN1A. Recognizing this phenotype will guide therapeutic intervention in patients with DS. © 2017 American Academy of Neurology.
Dysarthria and broader motor speech deficits in Dravet syndrome
Turner, Samantha J.; Brown, Amy; Arpone, Marta; Anderson, Vicki; Morgan, Angela T.
2017-01-01
Objective: To analyze the oral motor, speech, and language phenotype in 20 children and adults with Dravet syndrome (DS) associated with mutations in SCN1A. Methods: Fifteen verbal and 5 minimally verbal DS patients with SCN1A mutations (aged 15 months-28 years) underwent a tailored assessment battery. Results: Speech was characterized by imprecise articulation, abnormal nasal resonance, voice, and pitch, and prosody errors. Half of verbal patients had moderate to severely impaired conversational speech intelligibility. Oral motor impairment, motor planning/programming difficulties, and poor postural control were typical. Nonverbal individuals had intentional communication. Cognitive skills varied markedly, with intellectual functioning ranging from the low average range to severe intellectual disability. Language impairment was congruent with cognition. Conclusions: We describe a distinctive speech, language, and oral motor phenotype in children and adults with DS associated with mutations in SCN1A. Recognizing this phenotype will guide therapeutic intervention in patients with DS. PMID:28148630
ERIC Educational Resources Information Center
Thomas, Michael S. C.; Knowland, Victoria C. P.; Karmiloff-Smith, Annette
2011-01-01
Loss of previously established behaviors in early childhood constitutes a markedly atypical developmental trajectory. It is found almost uniquely in autism and its cause is currently unknown (Baird et al., 2008). We present an artificial neural network model of developmental regression, exploring the hypothesis that regression is caused by…
USDA-ARS?s Scientific Manuscript database
Myocarditis is often cited as the cause of fatalities associated with foot-and-mouth disease virus (FMDV) infection; however the pathogenesis of FMDV-associated myocarditis has not been described in detail. The current report describes substantial quantities of FMDV in association with a marked mono...
van Ooij, Pim; Markl, Michael; Collins, Jeremy D; Carr, James C; Rigsby, Cynthia; Bonow, Robert O; Malaisrie, S Chris; McCarthy, Patrick M; Fedak, Paul W M; Barker, Alex J
2017-09-13
Wall shear stress (WSS) is a stimulus for vessel wall remodeling. Differences in ascending aorta (AAo) hemodynamics have been reported between bicuspid aortic valve (BAV) and tricuspid aortic valve patients with aortic dilatation, but the confounding impact of aortic valve stenosis (AS) is unknown. Five hundred seventy-one subjects underwent 4-dimensional flow magnetic resonance imaging in the thoracic aorta (210 right-left BAV cusp fusions, 60 right-noncoronary BAV cusp fusions, 245 tricuspid aortic valve patients with aortic dilatation, and 56 healthy controls). There were 166 of 515 (32%) patients with AS. WSS atlases were created to quantify group-specific WSS patterns in the AAo as a function of AS severity. In BAV patients without AS, the different cusp fusion phenotypes resulted in distinct differences in eccentric WSS elevation: right-left BAV patients exhibited increased WSS by 9% to 34% ( P <0.001) at the aortic root and along the entire outer curvature of the AAo whereas right-noncoronary BAV patients showed 30% WSS increase ( P <0.001) at the distal portion of the AAo. WSS in tricuspid aortic valve patients with aortic dilatation patients with no AS was significantly reduced by 21% to 33% ( P <0.01) in 4 of 6 AAo regions. In all patient groups, mild, moderate, and severe AS resulted in a marked increase in regional WSS ( P <0.001). Moderate-to-severe AS further increased WSS magnitude and variability in the AAo. Differences between valve phenotypes were no longer apparent. AS significantly alters aortic hemodynamics and WSS independent of aortic valve phenotype and over-rides previously described flow patterns associated with BAV and tricuspid aortic valve with aortic dilatation. Severity of AS must be considered when investigating valve-mediated aortopathy. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Oberbach, Andreas; Schlichting, Nadine; Neuhaus, Jochen; Kullnick, Yvonne; Lehmann, Stefanie; Heinrich, Marco; Dietrich, Arne; Mohr, Friedrich Wilhelm; von Bergen, Martin; Baumann, Sven
2014-12-05
Multiple reaction monitoring (MRM)-based mass spectrometric quantification of peptides and their corresponding proteins has been successfully applied for biomarker validation in serum. The option of multiplexing offers the chance to analyze various proteins in parallel, which is especially important in obesity research. Here, biomarkers that reflect multiple comorbidities and allow monitoring of therapy outcomes are required. Besides the suitability of established MRM assays for serum protein quantification, it is also feasible for analysis of tissues secreting the markers of interest. Surprisingly, studies comparing MRM data sets with established methods are rare, and therefore the biological and clinical value of most analytes remains questionable. A MRM method using nano-UPLC-MS/MS for the quantification of obesity related surrogate markers for several comorbidities in serum, plasma, visceral and subcutaneous adipose tissue was established. Proteotypic peptides for complement C3, adiponectin, angiotensinogen, and plasma retinol binding protein (RBP4) were quantified using isotopic dilution analysis and compared to the standard ELISA method. MRM method variabilities were mainly below 10%. The comparison with other MS-based approaches showed a good correlation. However, large differences in absolute quantification for complement C3 and adiponectin were obtained compared to ELISA, while less marked differences were observed for angiotensinogen and RBP4. The verification of MRM in obesity was performed to discriminate first lean and obese phenotype and second to monitor excessive weight loss after gastric bypass surgery in a seven-month follow-up. The presented MRM assay was able to discriminate obese phenotype from lean and monitor weight loss related changes of surrogate markers. However, inclusion of additional biomarkers was necessary to interpret the MRM data on obesity phenotype properly. In summary, the development of disease-related MRMs should include a step of matching the MRM data with clinically approved standard methods and defining reference values in well-sized representative age, gender, and disease-matched cohorts.
Cluster Analysis Identifies 3 Phenotypes within Allergic Asthma.
Sendín-Hernández, María Paz; Ávila-Zarza, Carmelo; Sanz, Catalina; García-Sánchez, Asunción; Marcos-Vadillo, Elena; Muñoz-Bellido, Francisco J; Laffond, Elena; Domingo, Christian; Isidoro-García, María; Dávila, Ignacio
Asthma is a heterogeneous chronic disease with different clinical expressions and responses to treatment. In recent years, several unbiased approaches based on clinical, physiological, and molecular features have described several phenotypes of asthma. Some phenotypes are allergic, but little is known about whether these phenotypes can be further subdivided. We aimed to phenotype patients with allergic asthma using an unbiased approach based on multivariate classification techniques (unsupervised hierarchical cluster analysis). From a total of 54 variables of 225 patients with well-characterized allergic asthma diagnosed following American Thoracic Society (ATS) recommendation, positive skin prick test to aeroallergens, and concordant symptoms, we finally selected 19 variables by multiple correspondence analyses. Then a cluster analysis was performed. Three groups were identified. Cluster 1 was constituted by patients with intermittent or mild persistent asthma, without family antecedents of atopy, asthma, or rhinitis. This group showed the lowest total IgE levels. Cluster 2 was constituted by patients with mild asthma with a family history of atopy, asthma, or rhinitis. Total IgE levels were intermediate. Cluster 3 included patients with moderate or severe persistent asthma that needed treatment with corticosteroids and long-acting β-agonists. This group showed the highest total IgE levels. We identified 3 phenotypes of allergic asthma in our population. Furthermore, we described 2 phenotypes of mild atopic asthma mainly differentiated by a family history of allergy. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Investigating the Genetic Architecture of the PR Interval Using Clinical Phenotypes.
Mosley, Jonathan D; Shoemaker, M Benjamin; Wells, Quinn S; Darbar, Dawood; Shaffer, Christian M; Edwards, Todd L; Bastarache, Lisa; McCarty, Catherine A; Thompson, Will; Chute, Christopher G; Jarvik, Gail P; Crosslin, David R; Larson, Eric B; Kullo, Iftikhar J; Pacheco, Jennifer A; Peissig, Peggy L; Brilliant, Murray H; Linneman, James G; Witte, John S; Denny, Josh C; Roden, Dan M
2017-04-01
One potential use for the PR interval is as a biomarker of disease risk. We hypothesized that quantifying the shared genetic architectures of the PR interval and a set of clinical phenotypes would identify genetic mechanisms contributing to PR variability and identify diseases associated with a genetic predictor of PR variability. We used ECG measurements from the ARIC study (Atherosclerosis Risk in Communities; n=6731 subjects) and 63 genetically modulated diseases from the eMERGE network (Electronic Medical Records and Genomics; n=12 978). We measured pairwise genetic correlations (rG) between PR phenotypes (PR interval, PR segment, P-wave duration) and each of the 63 phenotypes. The PR segment was genetically correlated with atrial fibrillation (rG=-0.88; P =0.0009). An analysis of metabolic phenotypes in ARIC also showed that the P wave was genetically correlated with waist circumference (rG=0.47; P =0.02). A genetically predicted PR interval phenotype based on 645 714 single-nucleotide polymorphisms was associated with atrial fibrillation (odds ratio=0.89 per SD change; 95% confidence interval, 0.83-0.95; P =0.0006). The differing pattern of associations among the PR phenotypes is consistent with analyses that show that the genetic correlation between the P wave and PR segment was not significantly different from 0 (rG=-0.03 [0.16]). The genetic architecture of the PR interval comprises modulators of atrial fibrillation risk and obesity. © 2017 American Heart Association, Inc.
Kirillov, A A; Kirillova, N Yu
2015-01-01
Variability of the body size in females of the Cosmocerca ornata (Dujardin, 1845), a parasite of marsh frogs, is studied. The influence of both biotic (age, sex and a phenotype of the host, density of the parasite population) and abiotic (a season of the year, water temperature) factors on the formation of the body size structure in the C. ornata hemipopulation (infrapopulation) is demonstrated. The body size structure of the C. ornata hemipopulation is characterized by the low level of individual variability as within certain subpopulation groups of amphibians (sex, age and phenotype), so within the population of marsh frogs as a whole. The more distinct are the differences in biology and ecology of these host subpopulations, the more pronounced is the variability in the body size of C ornata.
Adu-Gyamfi, Raphael; Wetten, Andy; Marcelino Rodríguez López, Carlos
2016-01-01
While cocoa plants regenerated from cryopreserved somatic embryos can demonstrate high levels of phenotypic variability, little is known about the sources of the observed variability. Previous studies have shown that the encapsulation-dehydration cryopreservation methodology imposes no significant extra mutational load since embryos carrying high levels of genetic variability are selected against during protracted culture. Also, the use of secondary rather than primary somatic embryos has been shown to further reduce the incidence of genetic somaclonal variation. Here, the effect of in vitro conservation, cryopreservation and post-cryopreservation generation of somatic embryos on the appearance of epigenetic somaclonal variation were comparatively assessed. To achieve this we compared the epigenetic profiles, generated using Methylation Sensitive Amplified Polymorphisms, of leaves collected from the ortet tree and from cocoa somatic embryos derived from three in vitro conditions: somatic embryos, somatic embryos cryopreserved in liquid nitrogen and somatic embryos generated from cryoproserved somatic embryos. Somatic embryos accumulated epigenetic changes but these were less extensive than in those regenerated after storage in LN. Furthermore, the passage of cryopreserved embryos through another embryogenic stage led to further increase in variation. Interestingly, this detected variability appears to be in some measure reversible. The outcome of this study indicates that the cryopreservation induced phenotypic variability could be, at least partially, due to DNA methylation changes. Phenotypic variability observed in cryostored cocoa somatic-embryos is epigenetic in nature. This variability is partially reversible, not stochastic in nature but a directed response to the in-vitro culture and cryopreservation.
Adu-Gyamfi, Raphael; Wetten, Andy; Marcelino Rodríguez López, Carlos
2016-01-01
While cocoa plants regenerated from cryopreserved somatic embryos can demonstrate high levels of phenotypic variability, little is known about the sources of the observed variability. Previous studies have shown that the encapsulation-dehydration cryopreservation methodology imposes no significant extra mutational load since embryos carrying high levels of genetic variability are selected against during protracted culture. Also, the use of secondary rather than primary somatic embryos has been shown to further reduce the incidence of genetic somaclonal variation. Here, the effect of in vitro conservation, cryopreservation and post-cryopreservation generation of somatic embryos on the appearance of epigenetic somaclonal variation were comparatively assessed. To achieve this we compared the epigenetic profiles, generated using Methylation Sensitive Amplified Polymorphisms, of leaves collected from the ortet tree and from cocoa somatic embryos derived from three in vitro conditions: somatic embryos, somatic embryos cryopreserved in liquid nitrogen and somatic embryos generated from cryoproserved somatic embryos. Somatic embryos accumulated epigenetic changes but these were less extensive than in those regenerated after storage in LN. Furthermore, the passage of cryopreserved embryos through another embryogenic stage led to further increase in variation. Interestingly, this detected variability appears to be in some measure reversible. The outcome of this study indicates that the cryopreservation induced phenotypic variability could be, at least partially, due to DNA methylation changes. Key message: Phenotypic variability observed in cryostored cocoa somatic-embryos is epigenetic in nature. This variability is partially reversible, not stochastic in nature but a directed response to the in-vitro culture and cryopreservation. PMID:27403857
Rousseau, François; Labelle, Yves; Bussières, Johanne; Lindsay, Carmen
2011-01-01
The fragile X mental retardation (FXMR) syndrome is one of the most frequent causes of mental retardation. Affected individuals display a wide range of additional characteristic features including behavioural and physical phenotypes, and the extent to which individuals are affected is highly variable. For these reasons, elucidation of the pathophysiology of this disease has been an important challenge to the scientific community. 1991 marks the year of the discovery of both the FMR1 gene mutations involved in this disease, and of their dynamic nature. Although a mouse model for the disease has been available for 16 years and extensive research has been performed on the FMR1 protein (FMRP), we still understand little about how the disease develops, and no treatment has yet been shown to be effective. In this review, we summarise current knowledge on FXMR with an emphasis on the technical challenges of molecular diagnostics, on its prevalence and dynamics among populations, and on the potential of screening for FMR1 mutations. PMID:21912443
Jia, Xiaojian; Wang, Feng; Han, Ying; Geng, Xuewen; Li, Minghua; Shi, Yu; Lu, Lin; Chen, Yun
2016-12-01
The dopamine transporter (DAT) is involved in the regulation of extracellular dopamine levels. A 40-bp variable-number tandem repeat (VNTR) polymorphism in the 3'-untranslated region (3'UTR) of the DAT has been reported to be associated with various phenotypes that are involved in the aberrant regulation of dopaminergic neurotransmission. In the present study, we found that miR-137 and miR-491 caused a marked reduction of DAT expression, thereby influencing neuronal dopamine transport. Moreover, the regulation of miR-137 and miR-491 on this transport disappeared after the DAT was silenced. The miR-491 seed region that is located on the VNTR sequence in the 3'UTR of the DAT and the regulatory effect of miR-491 on the DAT depended on the VNTR copy-number. These data indicate that miR-137 and miR-491 regulate DAT expression and dopamine transport at the post-transcriptional level, suggesting that microRNA may be targeted for the treatment of diseases associated with DAT dysfunction.
Gonzalez-Bulnes, Antonio; Chavatte-Palmer, Pascale
2017-01-01
The awareness of factors causing obesity and associated disorders has grown up in the last years from genome to a more complicated concept (developmental programming) in which prenatal and early-postnatal conditions markedly modify the phenotype and homeostasis of the individuals and determine juvenile growth, life-time fitness/obesity and disease risks. Experimentation in human beings is impeded by ethical issues plus inherent high variability and confounding factors (genetics, lifestyle and socioeconomic heterogeneity) and preclinical studies in adequate translational animal models are therefore decisive. Most of the studies have been performed in rodents, whilst the use of large animals is scarce. Having in mind body-size, handlingeasiness and cost-efficiency, the main large animal species for use in biomedical research are rabbits, sheep and swine. The choice of the model depends on the research objectives. To outline the main features of the use of rabbits, sheep and swine and their contributions as translational models in prenatal programming of obesity and associated disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Rousseau, François; Labelle, Yves; Bussières, Johanne; Lindsay, Carmen
2011-08-01
The fragile X mental retardation (FXMR) syndrome is one of the most frequent causes of mental retardation. Affected individuals display a wide range of additional characteristic features including behavioural and physical phenotypes, and the extent to which individuals are affected is highly variable. For these reasons, elucidation of the pathophysiology of this disease has been an important challenge to the scientific community. 1991 marks the year of the discovery of both the FMR1 gene mutations involved in this disease, and of their dynamic nature. Although a mouse model for the disease has been available for 16 years and extensive research has been performed on the FMR1 protein (FMRP), we still understand little about how the disease develops, and no treatment has yet been shown to be effective. In this review, we summarise current knowledge on FXMR with an emphasis on the technical challenges of molecular diagnostics, on its prevalence and dynamics among populations, and on the potential of screening for FMR1 mutations.
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare is the etiologic agent of columnaris disease and severely affects various freshwater aquaculture fish species worldwide. The objectives of this study were to determine the phenotypic characteristics and genetic variability among F. columnare isolates isolated from red tilapi...
Replication and validation of genome-wide associations with feed efficiency of dairy cattle
USDA-ARS?s Scientific Manuscript database
Improving feed efficiency in dairy production is an important endeavor as it can reduce feed costs and mitigate negative impacts of production on the environment. Feed efficiency is a multivariate phenotype characterized by a variety of phenotypic variables such as dry matter intake, body weight gai...
Study of non-syndromic thumb aplasia in six independent cases
Riaz, Hafiza Fizzah; Lal, Karmoon; Ahmad, Bashir; Shuaib, Muhammad; Naqvi, Syeda Farwa; Malik, Sajid
2014-01-01
Objectives: To report on six independent and isolated cases demonstrating thumb aplasia as an essentially limb-specific phenotype. Methods: The subjects were ascertained during 2011-2013 from six different geographic regions of Pakistan, and underwent detailed clinical and phenotypic examination. Results: The affected arms of patients had complete absence of first digital rays, medial inclinations of second and fifth fingers, narrowing of palms, missing carpals, and shortening of zeugopod. All the subjects were presented with isolated and sporadic limb deficiencies, and five had no family history of limb or any other malformation. Parental consanguinity was denied in majority of the cases. We present detailed phenotypic manifestation of thumb apalsia in these subjects. Conclusion: Thumb aplasia markedly impairs the normal function of affected hand. Surgical procedures like pollicisation of the index finger should be employed to improve the quality of life of these subjects. There is so far no specific genetic factor known for isolated thumb aplasia, compromising an accurate genetic counseling. Collection of patients with similar phenotypic presentations could be useful in further molecular genetic investigations. PMID:24949004
Uike, Kiyoshi; Matsushita, Yuki; Sakai, Yasunari; Togao, Osamu; Nagao, Michinobu; Ishizaki, Yoshito; Nagata, Hazumu; Yamamura, Kenichiro; Torisu, Hiroyuki; Hara, Toshiro
2013-11-12
Loeys-Dietz syndrome, also known as Marfan syndrome type II, is a rare connective tissue disorder caused by dominant mutations in transforming growth factor-beta receptors (TGFBR1 and 2). We report a 7-year-old Japanese boy with Loeys-Dietz syndrome who carried a novel, de novo missense mutation in TGFBR2 (c.1142g > c, R381P). He showed dysmorphic faces and skeletal malformations that were typical in previous cases with Loeys-Dietz syndrome. The cardiac studies disclosed the presence of markedly dilated aortic root and patent ductus aorteriosus. The cranial magnetic resonance imaging (MRI) and angiography (MRA) detected the tortuous appearances of the bilateral middle cerebral and carotid arteries. This study depicts the systemic vascular phenotypes of a child with Loeys-Dietz syndrome that were caused by a novel heterozygous mutation of TGFR2. A large cohort with serial imaging studies for vascular phenotypes will be useful for delineating the genotype-phenotype correlations of Loeys-Dietz syndrome.
Carrigg, Bronwyn; Parry, Louise; Baker, Elise; Shriberg, Lawrence D; Ballard, Kirrie J
2016-10-05
This study describes the phenotype in a large family with a strong, multigenerational history of severe speech sound disorder (SSD) persisting into adolescence and adulthood in approximately half the cases. Aims were to determine whether a core phenotype, broader than speech, separated persistent from resolved SSD cases; and to ascertain the uniqueness of the phenotype relative to published cases. Eleven members of the PM family (9-55 years) were assessed across cognitive, language, literacy, speech, phonological processing, numeracy, and motor domains. Between group comparisons were made using the Mann-Whitney U-test (p < 0.01). Participant performances were compared to normative data using standardized tests and to the limited published data on persistent SSD phenotypes. Significant group differences were evident on multiple speech, language, literacy, phonological processing, and verbal intellect measures without any overlapping scores. Persistent cases performed within the impaired range on multiple measures. Phonological memory impairment and subtle literacy weakness were present in resolved SSD cases. A core phenotype distinguished persistent from resolved SSD cases that was characterized by a multiple verbal trait disorder, including Childhood Apraxia of Speech. Several phenotypic differences differentiated the persistent SSD phenotype in the PM family from the few previously reported studies of large families with SSD, including the absence of comorbid dysarthria and marked orofacial apraxia. This study highlights how comprehensive phenotyping can advance the behavioral study of disorders, in addition to forming a solid basis for future genetic and neural studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A custom multi-modal sensor suite and data analysis pipeline for aerial field phenotyping
NASA Astrophysics Data System (ADS)
Bartlett, Paul W.; Coblenz, Lauren; Sherwin, Gary; Stambler, Adam; van der Meer, Andries
2017-05-01
Our group has developed a custom, multi-modal sensor suite and data analysis pipeline to phenotype crops in the field using unpiloted aircraft systems (UAS). This approach to high-throughput field phenotyping is part of a research initiative intending to markedly accelerate the breeding process for refined energy sorghum varieties. To date, single rotor and multirotor helicopters, roughly 14 kg in total weight, are being employed to provide sensor coverage over multiple hectaresized fields in tens of minutes. The quick, autonomous operations allow for complete field coverage at consistent plant and lighting conditions, with low operating costs. The sensor suite collects data simultaneously from six sensors and registers it for fusion and analysis. High resolution color imagery targets color and geometric phenotypes, along with lidar measurements. Long-wave infrared imagery targets temperature phenomena and plant stress. Hyperspectral visible and near-infrared imagery targets phenotypes such as biomass and chlorophyll content, as well as novel, predictive spectral signatures. Onboard spectrometers and careful laboratory and in-field calibration techniques aim to increase the physical validity of the sensor data throughout and across growing seasons. Off-line processing of data creates basic products such as image maps and digital elevation models. Derived data products include phenotype charts, statistics, and trends. The outcome of this work is a set of commercially available phenotyping technologies, including sensor suites, a fully integrated phenotyping UAS, and data analysis software. Effort is also underway to transition these technologies to farm management users by way of streamlined, lower cost sensor packages and intuitive software interfaces.
The ecology of an adaptive radiation of three-spined stickleback from North Uist, Scotland.
Magalhaes, Isabel S; D'Agostino, Daniele; Hohenlohe, Paul A; MacColl, Andrew D C
2016-09-01
There has been a large focus on the genetics of traits involved in adaptation, but knowledge of the environmental variables leading to adaptive changes is surprisingly poor. Combined use of environmental data with morphological and genomic data should allow us to understand the extent to which patterns of phenotypic and genetic diversity within a species can be explained by the structure of the environment. Here, we analyse the variation of populations of three-spined stickleback from 27 freshwater lakes on North Uist, Scotland, that vary greatly in their environment, to understand how environmental and genetic constraints contribute to phenotypic divergence. We collected 35 individuals per population and 30 abiotic and biotic environmental parameters to characterize variation across lakes and analyse phenotype-environment associations. Additionally, we used RAD sequencing to estimate the genetic relationships among a subset of these populations. We found a large amount of phenotypic variation among populations, most prominently in armour and spine traits. Despite large variation in the abiotic environment, namely in ion composition, depth and dissolved organic Carbon, more phenotypic variation was explained by the biotic variables (presence of predators and density of predator and competitors), than by associated abiotic variables. Genetic structure among populations was partly geographic, with closer populations being more similar. Altogether, our results suggest that differences in body shape among stickleback populations are the result of both canalized genetic and plastic responses to environmental factors, which shape fish morphology in a predictable direction regardless of their genetic starting point. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Huang, Guomin; Rymer, Paul D; Duan, Honglang; Smith, Renee A; Tissue, David T
2015-10-01
Intraspecific variation in phenotypic plasticity is a critical determinant of plant species capacity to cope with climate change. A long-standing hypothesis states that greater levels of environmental variability will select for genotypes with greater phenotypic plasticity. However, few studies have examined how genotypes of woody species originating from contrasting environments respond to multiple climate change factors. Here, we investigated the main and interactive effects of elevated [CO2 ] (CE ) and elevated temperature (TE ) on growth and physiology of Coastal (warmer, less variable temperature environment) and Upland (cooler, more variable temperature environment) genotypes of an Australian woody species Telopea speciosissima. Both genotypes were positively responsive to CE (35% and 29% increase in whole-plant dry mass and leaf area, respectively), but only the Coastal genotype exhibited positive growth responses to TE . We found that the Coastal genotype exhibited greater growth response to TE (47% and 85% increase in whole-plant dry mass and leaf area, respectively) when compared with the Upland genotype (no change in dry mass or leaf area). No intraspecific variation in physiological plasticity was detected under CE or TE , and the interactive effects of CE and TE on intraspecific variation in phenotypic plasticity were also largely absent. Overall, TE was a more effective climate factor than CE in exposing genotypic variation in our woody species. Our results contradict the paradigm that genotypes from more variable climates will exhibit greater phenotypic plasticity in future climate regimes. © 2015 John Wiley & Sons Ltd.
Phenotypic variability in monozygotic twins with neurofibromatosis 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baser, M.E.; Ragge, N.K.; Riccardi, V.M.
Mutations in the neurofibromatosis 2 (NF2) tumor suppressor gene on chromosome 22q12 cause a clinically variable autosomal dominant syndrome characterized by bilateral vestibular schwannomas (VSs), other nervous system tumors, and early onset lenticular cataracts. We studied three pairs of monozygotic (MZ) twins with NF2, all with bilateral VSs, to separate genetic from nongenetic causes of clinical variability. The evaluation included gadolinium-enhanced high-resolution magnetic resonance imaging of the head and spine, neuro-ophthalmic examination with slit lamp, physical examination, and zygosity testing with microsatellite markers. Each MZ pair was concordant for general phenotypic subtype (mild or severe) and often for the affectedmore » organ systems. However, the MZ pairs were discordant for some features of disease presentation or progression. For example, all three pairs were discordant for presence or type of associated cranial tumors. We hypothesize that phenotypic differences between NF2 MZ twins are at least partly due to stochastic processes, such as the loss of the second NF2 allele or alleles of other genes. 42 refs., 1 tab.« less
Moussy, Alice; Cosette, Jérémie; Parmentier, Romuald; da Silva, Cindy; Corre, Guillaume; Richard, Angélique; Gandrillon, Olivier; Stockholm, Daniel
2017-01-01
Individual cells take lineage commitment decisions in a way that is not necessarily uniform. We address this issue by characterising transcriptional changes in cord blood-derived CD34+ cells at the single-cell level and integrating data with cell division history and morphological changes determined by time-lapse microscopy. We show that major transcriptional changes leading to a multilineage-primed gene expression state occur very rapidly during the first cell cycle. One of the 2 stable lineage-primed patterns emerges gradually in each cell with variable timing. Some cells reach a stable morphology and molecular phenotype by the end of the first cell cycle and transmit it clonally. Others fluctuate between the 2 phenotypes over several cell cycles. Our analysis highlights the dynamic nature and variable timing of cell fate commitment in hematopoietic cells, links the gene expression pattern to cell morphology, and identifies a new category of cells with fluctuating phenotypic characteristics, demonstrating the complexity of the fate decision process (which is different from a simple binary switch between 2 options, as it is usually envisioned). PMID:28749943
Phenotypic Variations in the Foliar Chemical Profile of Persea americana Mill. cv. Hass.
García-Rodríguez, Yolanda Magdalena; Torres-Gurrola, Guadalupe; Meléndez-González, Claudio; Espinosa-García, Francisco J
2016-12-01
The Hass avocado tree Persea americana cv. Hass was derived from a single hybrid tree of P. americana var. drymifolia and P. americana var. guatemalensis, and it is propagated clonally by grafting. This cultivar is the most widely planted in the world but its profile of secondary metabolites has been studied rarely despite of its importance in plant protection. We illustrate the variability of the volatilome of mature leaves by describing the average chemical composition and the phenotypic variability found in 70 trees. Contrary to the uniformity expected in the Hass cultivar, high variability coefficients were found for most of the 36 detected foliar volatile compounds; furthermore we found six chemotypes grouping the foliar phenotypes of the sampled trees using hierarchical cluster analysis. About 48% of trees were grouped in one chemotype; five chemotypes grouped the remaining trees. The compounds that determined these chemotypes were: estragole, α-farnesene, β-caryophyllene, germacrene D, α-cubebene and eugenol. This striking variation in a cultivar propagated clonally is discussed in terms of somatic mutation. © 2016 Wiley-VHCA AG, Zurich, Switzerland.
The Variability of Neural Responses to Naturalistic Videos Change with Age and Sex.
Petroni, Agustin; Cohen, Samantha S; Ai, Lei; Langer, Nicolas; Henin, Simon; Vanderwal, Tamara; Milham, Michael P; Parra, Lucas C
2018-01-01
Neural development is generally marked by an increase in the efficiency and diversity of neural processes. In a large sample ( n = 114) of human children and adults with ages ranging from 5 to 44 yr, we investigated the neural responses to naturalistic video stimuli. Videos from both real-life classroom settings and Hollywood feature films were used to probe different aspects of attention and engagement. For all stimuli, older ages were marked by more variable neural responses. Variability was assessed by the intersubject correlation of evoked electroencephalographic responses. Young males also had less-variable responses than young females. These results were replicated in an independent cohort ( n = 303). When interpreted in the context of neural maturation, we conclude that neural function becomes more variable with maturity, at least during the passive viewing of real-world stimuli.
Shimada, Aya; Takagi, Masaki; Nagashima, Yuka; Miyai, Kentaro; Hasegawa, Yukihiro
2016-01-01
Mutations in OTX2 cause hypopituitarism, ranging from isolated growth hormone deficiency to combined pituitary hormone deficiency (CPHD), which are commonly detected in association with severe eye abnormalities, including anophthalmia or microphthalmia. Pituitary phenotypes of OTX2 mutation carriers are highly variable; however, ACTH deficiency during the neonatal period is not common in previous reports. We report a novel missense OTX2 (R89P) mutation in a CPHD patient with severe hypoglycemia in the neonatal period due to ACTH deficiency, bilateral microphthalmia, and agenesis of the left internal carotid artery (ICA). We identified a novel heterozygous mutation in OTX2 (c.266G>C, p.R89P). R89P OTX2 showed markedly reduced transcriptional activity of HESX1 and POU1F1 reporters compared with wild-type OTX2. A dominant negative effect was noted only in the transcription analysis with POU1F1 promoter. Electrophoretic mobility shift assay experiments showed that R89P OTX2 abrogated DNA-binding ability. OTX2 mutations can cause ACTH deficiency in the neonatal period. Our study also shows that OTX2 mutations are associated with agenesis of the ICA. To the best of our knowledge, this is the first report of a transcription factor gene mutation, which was identified due to agenesis of the ICA of a patient with CPHD. This study extends our understanding of the phenotypic features, molecular mechanism, and developmental course associated with mutations in OTX2. © 2016 S. Karger AG, Basel.
Interleukin-6 Mediates Myocardial Fibrosis, Concentric Hypertrophy and Diastolic Dysfunction in Rats
Meléndez, Giselle C.; McLarty, Jennifer L.; Levick, Scott P.; Du, Yan; Janicki, Joseph S.; Brower, Gregory L.
2010-01-01
While there is a correlation between hypertension and levels of IL-6, the exact role of this cytokine in myocardial remodeling is unknown. This is complicated by the variable tissue and circulating levels of IL-6 reported in numerous experimental models of hypertension. Accordingly, we explored the hypothesis that elevated levels of IL-6 mediate adverse myocardial remodeling. To this end, adult male Sprague Dawley rats were infused with IL-6 (2.5 μg·kg-1·hr-1, IP) for 7 days via osmotic minipump and compared to vehicle infused aged-matched controls. Left ventricular function was evaluated using a blood-perfused isolated heart preparation. In addition, myocardial interstitial collagen volume fraction and isolated cardiomyocyte size were also assessed. Isolated adult cardiac fibroblast experiments were performed to determine the importance of the soluble IL-6 receptor in mediating cardiac fibrosis. IL-6 infusions in vivo resulted in concentric left ventricular hypertrophy, increased ventricular stiffness, a marked increase in collagen volume fraction (6.2 vs. 1.7%; p < 0.001), and proportional increases in cardiomyocyte width and length; all independent of blood pressure. The soluble IL-6 receptor in combination with IL-6 was found to be essential in increasing collagen content regulated by isolated cardiac fibroblasts, and also played a role in mediating a phenotypic conversion to myofibroblasts. These novel observations demonstrate that IL-6 induces a myocardial phenotype almost identical to that of the hypertensive heart, identifying IL-6 as potentially important in this remodeling process. PMID:20606113
Shaw, Richard J; Hall, Gillian L; Lowe, Derek; Bowers, Naomi L; Liloglou, Triantafillos; Field, John K; Woolgar, Julia A; Risk, Janet M
2007-10-01
Studies in several tumour sites highlight the significance of the CpG island methylation phenotype (CIMP), with distinct features of histology, biological aggression and outcome. We utilise pyrosequencing techniques of quantitative methylation analysis to investigate the presence of CIMP in oral squamous cell carcinoma (OSCC) for the first time, and evaluate its correlation with allelic imbalance, pathology and clinical behaviour. Tumour tissue, control tissue and PBLs were obtained from 74 patients with oral squamous cell carcinoma. Pyrosequencing was used to analyse methylation patterns in 75-200 bp regions of the CpG rich gene promoters of 10 genes with a broad range of cellular functions. Allelic imbalance was investigated using a multiplexed panel of 11 microsatellite markers. Corresponding variables, histopathological staging and grading were correlated with these genetic and epigenetic aberrations. A cluster of tumours with a greater degree of promoter methylation than would be predicted by chance alone (P=0.001) were designated CIMP+ve. This group had less aggressive tumour biology in terms of tumour thickness (p=0.015) and nodal metastasis (P=0.012), this being apparently independent of tumour diameter. Further, it seems that these CIMP+ve tumours excited a greater host inflammatory response (P=0.019). The exact mechanisms underlying CIMP remain obscure but the association with a greater inflammatory host response supports existing theories relating these features in other tumour sites. As CIMP has significant associations with other well documented prognostic indicators, it may prove beneficial to include methylation analyses in molecular risk modelling of tumours.
Hattori, Miki; Miyamoto, Mai; Hosoda, Kazutaka; Umesono, Yoshihiko
2018-01-01
Planarians have become widely recognized as one of the major animal models for regeneration studies in invertebrates. To induce RNA interference (RNAi) by feeding in planarians, the widely accepted protocol is one in which animals undergo two or three feedings of food containing double-stranded RNA (dsRNA) plus visible food coloring (e.g., blood) for confirmation of feeding by individual animals. However, one possible problem is that incorporated food coloring is often retained within the gut for several days, which makes it difficult to confirm the success of each round of dsRNA feeding based on the difference of the color density within the gut before and after feeding. As a consequence, the difference of appetite levels among individuals undergoing dsRNA feeding leads to phenotypic variability among them due to insufficient knockdown. In our attempts to overcome this problem, we have developed a novel method for achieving robust confirmation of the success of dsRNA feeding in individuals fed multiple times by means of including a combination of three different colored chalks (pink, yellow and blue) as food coloring. Notably, we found that this method is superior to the conventional method for positively marking individuals that actively consumed the dsRNA-containing food during four times of once-daily feeding. Using these selected animals, we obtained stable and sufficiently strong RNAi-induced phenotypes. We termed this improved multi-colored chalk-spiked method of feeding RNAi "Candi" and propose its benefits for gene function analysis in planarians. © 2017 Japanese Society of Developmental Biologists.
Selection of a Bifidobacterium strain to complement resistant starch in a synbiotic yoghurt.
Crittenden, R G; Morris, L F; Harvey, M L; Tran, L T; Mitchell, H L; Playne, M J
2001-02-01
To employ an in vitro screening regime to select a probiotic Bifidobacterium strain to complement resistant starch (Hi-maizetrade mark) in a synbiotic yoghurt. Of 40 Bifidobacterium isolates examined, only B. lactis Laftitrade mark B94 possessed all of the required characteristics. This isolate hydrolysed Hi-maizetrade mark, survived well in conditions simulating passage through the gastrointestinal tract and possessed technological properties suitable for yoghurt manufacture. It grew well at temperatures up to 45 degrees C, and grew to a high cell yield in an industrial growth medium. In addition to resistant starch, the organism was able to utilize a range of prebiotics including inulin, and fructo-, galacto-, soybean- and xylo-oligosaccharides. Pulse field gel electrophoresis of restriction enzyme cut chromosomal DNA revealed that B. lactis Laftitrade mark B94 was very closely related to the B. lactis Type Strain (DSM 10140), and to the commercial strains B. lactis Bb-12 and B. lactis DS 920. However, B. lactis Laftitrade mark B94 was the only one of these isolates that could hydrolyse Hi-maizetrade mark. This phenotypic difference did not appear to be due to the presence of plasmid encoded amylase. Bifidobacterium lactis Laftitrade mark B94 survived without substantial loss of viability in synbiotic yoghurt containing Hi-maizetrade mark during storage at 4 degrees C for six weeks. Bifidobacterium lactis Laftitrade mark B94 is a promising new yoghurt culture that warrants further investigation to assess its probiotic potential. In vitro screening procedures can be used to integrate complementary probiotic and prebiotic ingredients for new synbiotic functional food products.
Karalunas, Sarah L.; Geurts, Hilde M.; Konrad, Kerstin; Bender, Stephan; Nigg, Joel T.
2014-01-01
Background Intraindividual variability in reaction time (RT) has received extensive discussion as an indicator of cognitive performance, a putative intermediate phenotype of many clinical disorders, and a possible trans-diagnostic phenotype that may elucidate shared risk factors for mechanisms of psychiatric illnesses. Scope and Methodology Using the examples of attention deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD), we discuss RT variability. We first present a new meta-analysis of RT variability in ASD with and without comorbid ADHD. We then discuss potential mechanisms that may account for RT variability and statistical models that disentangle the cognitive processes affecting RTs. We then report a second meta-analysis comparing ADHD and non-ADHD children on diffusion model parameters. We consider how findings inform the search for neural correlates of RT variability. Findings Results suggest that RT variability is increased in ASD only when children with comorbid ADHD are included in the sample. Furthermore, RT variability in ADHD is explained by moderate to large increases (d = 0.63–0.99) in the ex-Gaussian parameter τ and the diffusion parameter drift rate, as well as by smaller differences (d = 0.32) in the diffusion parameter of nondecision time. The former may suggest problems in state regulation or arousal and difficulty detecting signal from noise, whereas the latter may reflect contributions from deficits in motor organization or output. The neuroimaging literature converges with this multicomponent interpretation and also highlights the role of top-down control circuits. Conclusion We underscore the importance of considering the interactions between top-down control, state regulation (e.g. arousal), and motor preparation when interpreting RT variability and conclude that decomposition of the RT signal provides superior interpretive power and suggests mechanisms convergent with those implicated using other cognitive paradigms. We conclude with specific recommendations for the field for next steps in the study of RT variability in neurodevelopmental disorders. PMID:24628425
Advergence in Müllerian mimicry: the case of the poison dart frogs of Northern Peru revisited
Chouteau, Mathieu; Summers, Kyle; Morales, Victor; Angers, Bernard
2011-01-01
Whether the evolution of similar aposematic signals in different unpalatable species (i.e. Müllerian mimicry) is because of phenotypic convergence or advergence continues to puzzle scientists. The poison dart frog Ranitomeya imitator provides a rare example in support of the hypothesis of advergence: this species was believed to mimic numerous distinct model species because of high phenotypic variability and low genetic divergence among populations. In this study, we test the evidence in support of advergence using a population genetic framework in two localities where R. imitator is sympatric with different model species, Ranitomeya ventrimaculata and Ranitomeya variabilis. Genetic analyses revealed incomplete sorting of mitochondrial haplotypes between the two model species. These two species are also less genetically differentiated than R. imitator populations on the basis of both mitochondrial and nuclear DNA comparisons. The genetic similarity between the model species suggests that they have either diverged more recently than R. imitator populations or that they are still connected by gene flow and were misidentified as different species. An analysis of phenotypic variability indicates that the model species are as variable as R. imitator. These results do not support the hypothesis of advergence by R. imitator. Although we cannot rule out phenotypic advergence in the evolution of Müllerian mimicry, this study reopens the discussion regarding the direction of the evolution of mimicry in the R. imitator system. PMID:21411452
Lesch-Nyhan variant syndrome: variable presentation in 3 affected family members.
Sarafoglou, Kyriakie; Grosse-Redlinger, Krista; Boys, Christopher J; Charnas, Laurence; Otten, Noelle; Broock, Robyn; Nyhan, William L
2010-06-01
Lesch-Nyhan disease is an inborn error of purine metabolism that results from deficiency of the activity of hypoxanthine phosphoribosyltransferase (HPRT). The heterogeneity of clinical phenotypes seen in HPRT deficiency corresponds to an inverse relationship between HPRT enzyme activity and clinical severity. With rare exception, each mutation produces a stereotypical pattern of clinical disease; onset of neurologic symptoms occurs during infancy and is thought to be nonprogressive. To document a family in which a single HPRT gene mutation has led to 3 different clinical and enzymatic phenotypes. Case report. Settings A university-based outpatient metabolic clinic and a biochemical genetics laboratory. Patients Three males (2 infants and their grandfather) from the same family with Lesch-Nyhan variant, including one of the oldest patients with Lesch-Nyhan variant at diagnosis (65 years). Clinical and biochemical observations. Sequencing of 5 family members revealed a novel mutation c.550G>T in exon 7 of the HPRT gene. The considerably variable clinical phenotype corresponded with the variable enzymatic activity in the 3 males, with the grandfather being the most severely affected. The different phenotypes encountered in the enzymatic analysis of cultured fibroblasts from a single mutation in the same family is unprecedented. The significant decrease in the grandfather's HPRT enzymatic activity compared with that of his grandchildren could be a function of the Hayflick Limit Theory of cell senescence.
Burgermaster, Marissa; Contento, Isobel; Koch, Pamela; Mamykina, Lena
2018-01-17
Variability in individuals' responses to interventions may contribute to small average treatment effects of childhood obesity prevention interventions. But, neither the causes of this individual variability nor the mechanism by which it influences behavior are clear. We used qualitative methods to characterize variability in students' responses to participating in a childhood obesity prevention intervention and psychosocial characteristics related to the behavior change process. We interviewed 18 students participating in a school-based curriculum and policy behavior change intervention. Descriptive coding, summary, and case-ordered descriptive meta-matrices were used to group participants by their psychosocial responses to the intervention and associated behavior changes. Four psychosocial phenotypes of responses emerged: (a) Activated-successful behavior-changers with strong internal supports; (b) Inspired-motivated, but not fully successful behavior-changers with some internal supports, whose taste preferences and food environment overwhelmed their motivation; (c) Reinforced-already practiced target behaviors, were motivated, and had strong family support; and (d) Indifferent-uninterested in behavior change and only did target behaviors if family insisted. Our findings contribute to the field of behavioral medicine by suggesting the presence of specific subgroups of participants who respond differently to behavior change interventions and salient psychosocial characteristics that differentiate among these phenotypes. Future research should examine the utility of prospectively identifying psychosocial phenotypes for improving the tailoring of nutrition behavior change interventions. © Society of Behavioral Medicine 2018.
ERIC Educational Resources Information Center
Haebig, Eileen; Sterling, Audra; Hoover, Jill
2016-01-01
Purpose: One aspect of morphosyntax, finiteness marking, was compared in children with fragile X syndrome (FXS), specific language impairment (SLI), and typical development matched on mean length of utterance (MLU). Method: Nineteen children with typical development (mean age = 3.3 years), 20 children with SLI (mean age = 4.9 years), and 17 boys…
Isolation and Characterization of Chromosome-Gain and Increase-in-Ploidy Mutants in Yeast
Chan, CSM.; Botstein, D.
1993-01-01
We have developed a colony papillation assay for monitoring the copy number of genetically marked chromosomes II and III in Saccharomyces cerevisiae. The unique feature of this assay is that it allows detection of a gain of the marked chromosomes even if there is a gain of the entire set of chromosomes (increase-in-ploidy). This assay was used to screen for chromosome-gain or increase-in-ploidy mutants. Five complementation groups have been defined for recessive mutations that confer an increase-in-ploidy (ipl) phenotype, which, in each case, cosegregates with a temperature-sensitive growth phenotype. Four new alleles of CDC31, which is required for spindle pole body duplication, were also recovered from this screen. Temperature-shift experiments with ipl1 cells show that they suffer severe nondisjunction at 37°. Similar experiments with ipl2 cells show that they gain entire sets of chromosomes and become arrested as unbudded cells at 37°. Molecular cloning and genetic mapping show that IPL1 is a newly identified gene, whereas IPL2 is allelic to BEM2, which is required for normal bud growth. PMID:8293973
Fortes, Ana M.; Gallusci, Philippe
2017-01-01
Epigenetic marks include Histone Post-Translational Modifications and DNA methylation which are known to participate in the programming of gene expression in plants and animals. These epigenetic marks may be subjected to dynamic changes in response to endogenous and/or external stimuli and can have an impact on phenotypic plasticity. Studying how plant genomes can be epigenetically shaped under stressed conditions has become an essential issue in order to better understand the molecular mechanisms underlying plant stress responses and enabling epigenetic in addition to genetic factors to be considered when breeding crop plants. In this perspective, we discuss the contribution of epigenetic mechanisms to our understanding of plant responses to biotic and abiotic stresses. This regulation of gene expression in response to environment raises important biological questions for perennial species such as grapevine which is asexually propagated and grown worldwide in contrasting terroirs and environmental conditions. However, most species used for epigenomic studies are annual herbaceous plants, and epigenome dynamics has been poorly investigated in perennial woody plants, including grapevine. In this context, we propose grape as an essential model for epigenetic and epigenomic studies in perennial woody plants of agricultural importance. PMID:28220131
Analysis of Genome-Wide Association Studies with Multiple Outcomes Using Penalization
Liu, Jin; Huang, Jian; Ma, Shuangge
2012-01-01
Genome-wide association studies have been extensively conducted, searching for markers for biologically meaningful outcomes and phenotypes. Penalization methods have been adopted in the analysis of the joint effects of a large number of SNPs (single nucleotide polymorphisms) and marker identification. This study is partly motivated by the analysis of heterogeneous stock mice dataset, in which multiple correlated phenotypes and a large number of SNPs are available. Existing penalization methods designed to analyze a single response variable cannot accommodate the correlation among multiple response variables. With multiple response variables sharing the same set of markers, joint modeling is first employed to accommodate the correlation. The group Lasso approach is adopted to select markers associated with all the outcome variables. An efficient computational algorithm is developed. Simulation study and analysis of the heterogeneous stock mice dataset show that the proposed method can outperform existing penalization methods. PMID:23272092
The Evolution of Phenotypic Switching in Subdivided Populations
Carja, Oana; Liberman, Uri; Feldman, Marcus W.
2014-01-01
Stochastic switching is an example of phenotypic bet hedging, where offspring can express a phenotype different from that of their parents. Phenotypic switching is well documented in viruses, yeast, and bacteria and has been extensively studied when the selection pressures vary through time. However, there has been little work on the evolution of phenotypic switching under both spatially and temporally fluctuating selection pressures. Here we use a population genetic model to explore the interaction of temporal and spatial variation in determining the evolutionary dynamics of phenotypic switching. We find that the stable switching rate is mainly determined by the rate of environmental change and the migration rate. This stable rate is also a decreasing function of the recombination rate, although this is a weaker effect than those of either the period of environmental change or the migration rate. This study highlights the interplay of spatial and temporal environmental variability, offering new insights into how migration can influence the evolution of phenotypic switching rates, mutation rates, or other sources of phenotypic variation. PMID:24496012
Phenotypic plasticity in a population of odonates.
Bowman, Randi M; Schmidt, Sharol; Weeks, Chelsea; Clark, Hunter; Brown, Christopher; Latta, Leigh C; Edgehouse, Michael
2018-05-31
The maintenance of phenotypic plasticity within a species ensures survival through environmental flux. Plastic strategies are increasingly important given the number and magnitude of modern anthropogenic threats to the environment. We tested for phenotypic plasticity in the odonate Argia vivida in response to resource limitation. By limiting food availability, effectively inducing hunger, we were able to quantify shifts in agonistic behavior during intraspecific interactions. Scoring behavior in one-on-one combat trials after 1 and 4 days without food revealed phenotypic plasticity. Three classes of genotypes were identified, genotypes exhibiting either increased aggression, decreased aggression, or no phenotypic plasticity, in response to resource limitation. The variable plastic strategies in this population of odonates likely aids in maintaining fitness in fluctuating environments.
Phenotypic variability in a panel of strawberry cultivars from North America and the European Union
USDA-ARS?s Scientific Manuscript database
The phenotypic diversity in 96 antique and modern cultivars from the European Union and North America was evaluated in Michigan and Oregon, in 2011 and 2012. A total of thirty-five fruit and developmental characteristics were measured. Significant differences (p < 0.05) were observed among cultivars...
Spectrum of phenotypic anomalies in four families with deletion of the SHOX enhancer region.
Gatta, Valentina; Palka, Chiara; Chiavaroli, Valentina; Franchi, Sara; Cannataro, Giovanni; Savastano, Massimo; Cotroneo, Antonio Raffaele; Chiarelli, Francesco; Mohn, Angelika; Stuppia, Liborio
2014-07-23
SHOX alterations have been reported in 67% of patients affected by Léri-Weill dyschondrosteosis (LWD), with a larger prevalence of gene deletions than point mutations. It has been recently demonstrated that these deletions can involve the SHOX enhancer region, rather that the coding region, with variable phenotype of the affected patients.Here, we report a SHOX gene analysis carried out by MLPA in 14 LWD patients from 4 families with variable phenotype. All patients presented a SHOX enhancer deletion. In particular, a patient with a severe bilateral Madelung deformity without short stature showed a homozygous alteration identical to the recently described 47.5 kb PAR1 deletion. Moreover, we identified, for the first time, in three related patients with a severe bilateral Madelung deformity, a smaller deletion than the 47.5 kb PAR1 deletion encompassing the same enhancer region (ECR1/CNE7). Data reported in this study provide new information about the spectrum of phenotypic alterations showed by LWD patients with different deletions of the SHOX enhancer region.
Spectrum of phenotypic anomalies in four families with deletion of the SHOX enhancer region
2014-01-01
Background SHOX alterations have been reported in 67% of patients affected by Léri-Weill dyschondrosteosis (LWD), with a larger prevalence of gene deletions than point mutations. It has been recently demonstrated that these deletions can involve the SHOX enhancer region, rather that the coding region, with variable phenotype of the affected patients. Here, we report a SHOX gene analysis carried out by MLPA in 14 LWD patients from 4 families with variable phenotype. Case presentation All patients presented a SHOX enhancer deletion. In particular, a patient with a severe bilateral Madelung deformity without short stature showed a homozygous alteration identical to the recently described 47.5 kb PAR1 deletion. Moreover, we identified, for the first time, in three related patients with a severe bilateral Madelung deformity, a smaller deletion than the 47.5 kb PAR1 deletion encompassing the same enhancer region (ECR1/CNE7). Conclusions Data reported in this study provide new information about the spectrum of phenotypic alterations showed by LWD patients with different deletions of the SHOX enhancer region. PMID:25056248
Li, Jingyun; Zhang, Yuan; Zhang, Luo
2015-02-01
Allergic rhinitis and allergy are complex conditions, in which both genetic and environmental factors contribute to the pathogenesis. Genome-wide association studies (GWASs) employing common single-nucleotide polymorphisms have accelerated the search for novel and interesting genes, and also confirmed the role of some previously described genes which may be involved in the cause of allergic rhinitis and allergy. The aim of this review is to provide an overview of the genetic basis of allergic rhinitis and the associated allergic phenotypes, with particular focus on GWASs. The last decade has been marked by the publication of more than 20 GWASs of allergic rhinitis and the associated allergic phenotypes. Allergic diseases and traits have been shown to share a large number of genetic susceptibility loci, of which IL33/IL1RL1, IL-13-RAD50 and C11orf30/LRRC32 appear to be important for more than two allergic phenotypes. GWASs have further reflected the genetic heterogeneity underlying allergic phenotypes. Large-scale genome-wide association strategies are underway to discover new susceptibility variants for allergic rhinitis and allergic phenotypes. Characterization of the underlying genetics provides us with an insight into the potential targets for future studies and the corresponding interventions.
Canafoglia, Laura; Gennaro, Elena; Capovilla, Giuseppe; Gobbi, Giuseppe; Boni, Antonella; Beccaria, Francesca; Viri, Maurizio; Michelucci, Roberto; Agazzi, Pamela; Assereto, Stefania; Coviello, Domenico A; Di Stefano, Maria; Rossi Sebastiano, Davide; Franceschetti, Silvana; Zara, Federico
2012-12-01
Unverricht-Lundborg disease (EPM1A) is frequently due to an unstable expansion of a dodecamer repeat in the CSTB gene, whereas other types of mutations are rare. EPM1A due to homozygous expansion has a rather stereotyped presentation with prominent action myoclonus. We describe eight patients with five different compound heterozygous CSTB point or indel mutations in order to highlight their particular phenotypical presentations and evaluate their genotype-phenotype relationships. We screened CSTB mutations by means of Southern blotting and the sequencing of the genomic DNA of each proband. CSTB messenger RNA (mRNA) aberrations were characterized by sequencing the complementary DNA (cDNA) of lymphoblastoid cells, and assessing the protein concentrations in the lymphoblasts. The patient evaluations included the use of a simplified myoclonus severity rating scale, multiple neurophysiologic tests, and electroencephalography (EEG)-polygraphic recordings. To highlight the particular clinical features and disease time-course in compound heterozygous patients, we compared some of their characteristics with those observed in a series of 40 patients carrying the common homozygous expansion mutation observed at the C. Besta Foundation, Milan, Italy. The eight compound heterozygous patients belong to six EPM1A families (out of 52; 11.5%) diagnosed at the Laboratory of Genetics of the Galliera Hospitals in Genoa, Italy. They segregated five different heterozygous point or indel mutations in association with the common dodecamer expansion. Four patients from three families had previously reported CSTB mutations (c.67-1G>C and c.168+1_18del); one had a novel nonsense mutation at the first exon (c.133C>T) leading to a premature stop codon predicting a short peptide; the other three patients from two families had a complex novel indel mutation involving the donor splice site of intron 2 (c.168+2_169+21delinsAA) and leading to an aberrant transcript with a partially retained intron. The protein dose (cystatin B/β-actin) in our heterozygous patients was 0.24 ± 0.02, which is not different from that assessed in patients bearing the homozygous dodecamer expansion. The compound heterozygous patients had a significantly earlier disease onset (7.4 ± 1.7 years) than the homozygous patients, and their disease presentations included frequent myoclonic seizures and absences, often occurring in clusters throughout the course of the disease. The seizures were resistant to the pharmacologic treatments that usually lead to complete seizure control in homozygous patients. EEG-polygraphy allowed repeated seizures to be recorded. Action myoclonus progressively worsened and all of the heterozygous patients older than 30 years were in wheelchairs. Most of the patients showed moderate to severe cognitive impairment, and six had psychiatric symptoms. EPM1A due to compound heterozygous CSTB mutations presents with variable but often markedly severe and particular phenotypes. Most of our patients presented with the electroclinical features of severe epilepsy, which is unexpected in homozygous patients, and showed frequent seizures resistant to pharmacologic treatment. The presence of variable phenotypes (even in siblings) suggests interactions with other genetic factors influencing the final disease presentation. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
Cohen, Mark; Appleby, Brian; Safar, Jiri G
2016-01-01
Vast evidence on human prions demonstrates that variable disease phenotypes, rates of propagation, and targeting of distinct brain structures are determined by unique conformers (strains) of pathogenic prion protein (PrP(Sc)). Recent progress in the development of advanced biophysical tools that inventory structural characteristics of amyloid beta (Aβ) in the brain cortex of phenotypically diverse Alzheimer's disease (AD) patients, revealed unique spectrum of oligomeric particles in the cortex of rapidly progressive cases, implicating these structures in variable rates of propagation in the brain, and in distict disease manifestation. Since only ∼30% of phenotypic diversity of AD can be explained by polymorphisms in risk genes, these and transgenic bioassay data argue that structurally distinct Aβ particles play a major role in the diverse pathogenesis of AD, and may behave as distinct prion-like strains encoding diverse phenotypes. From these observations and our growing understanding of prions, there is a critical need for new strain-specific diagnostic strategies for misfolded proteins causing these elusive disorders. Since targeted drug therapy can induce mutation and evolution of prions into new strains, effective treatments of AD will require drugs that enhance clearance of pathogenic conformers, reduce the precursor protein, or inhibit the conversion of precursors into prion-like states.
Kulshreshtha, Bindu; Singh, Seerat; Arora, Arpita
2013-12-01
The phenotypic variability among PCOS could be due to differences in insulin patterns. Hyperinsulinemia commonly accompanies Diabetes Mellitus (DM), obesity, hypertension and CAD, though, to a variable degree. We speculate that a family history of these diseases could differentially affect the phenotype of PCOS. To study the effect of DM/CAD/HT and obesity on the phenotype of PCOS. PCOS patients and age matched controls were enquired for a family background of DM, hypertension, CAD and obesity among parents and grandparents. Regression modelling was employed to examine predictors of obesity and first symptom in PCOS patients. There were 88 PCOS women and 77 age-matched controls (46 lean, 31 obese). A high prevalence of DM, CAD, obesity and hypertension was observed among parents and grandparents of women with PCOS compared to controls. Hypertension and CAD manifested more in father's side of family. BMI of PCOS subjects was significantly related to parental DM and obesity after correcting for age. First symptom of weight gain was significantly associated with number of parents with DM (p = 0.02) and first symptom of irregular periods was associated with number of parents with hypertension (p = 0.06). A family background of DM/HT and obesity diseases affects the phenotype of PCOS.
Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice
Wilson, Robert; Geyer, Stefan H.; Reissig, Lukas; Rose, Julia; Szumska, Dorota; Hardman, Emily; Prin, Fabrice; McGuire, Christina; Ramirez-Solis, Ramiro; White, Jacqui; Galli, Antonella; Tudor, Catherine; Tuck, Elizabeth; Mazzeo, Cecilia Icoresi; Smith, James C.; Robertson, Elizabeth; Adams, David J.; Mohun, Timothy; Weninger, Wolfgang J.
2017-01-01
Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060
Front acceleration by dynamic selection in Fisher population waves
NASA Astrophysics Data System (ADS)
Bénichou, O.; Calvez, V.; Meunier, N.; Voituriez, R.
2012-10-01
We introduce a minimal model of population range expansion in which the phenotypes of individuals present no selective advantage and differ only in their diffusion rate. We show that such neutral phenotypic variability (i.e., that does not modify the growth rate) alone can yield phenotype segregation at the front edge, even in absence of genetic noise, and significantly impact the dynamical properties of the expansion wave. We present an exact asymptotic traveling wave solution and show analytically that phenotype segregation accelerates the front propagation. The results are compatible with field observations such as invasions of cane toads in Australia or bush crickets in Britain.
Fiévet, Julie B; Nidelet, Thibault; Dillmann, Christine; de Vienne, Dominique
2018-01-01
Heterosis, the superiority of hybrids over their parents for quantitative traits, represents a crucial issue in plant and animal breeding as well as evolutionary biology. Heterosis has given rise to countless genetic, genomic and molecular studies, but has rarely been investigated from the point of view of systems biology. We hypothesized that heterosis is an emergent property of living systems resulting from frequent concave relationships between genotypic variables and phenotypes, or between different phenotypic levels. We chose the enzyme-flux relationship as a model of the concave genotype-phenotype (GP) relationship, and showed that heterosis can be easily created in the laboratory. First, we reconstituted in vitro the upper part of glycolysis. We simulated genetic variability of enzyme activity by varying enzyme concentrations in test tubes. Mixing the content of "parental" tubes resulted in "hybrids," whose fluxes were compared to the parental fluxes. Frequent heterotic fluxes were observed, under conditions that were determined analytically and confirmed by computer simulation. Second, to test this model in a more realistic situation, we modeled the glycolysis/fermentation network in yeast by considering one input flux, glucose, and two output fluxes, glycerol and acetaldehyde. We simulated genetic variability by randomly drawing parental enzyme concentrations under various conditions, and computed the parental and hybrid fluxes using a system of differential equations. Again we found that a majority of hybrids exhibited positive heterosis for metabolic fluxes. Cases of negative heterosis were due to local convexity between certain enzyme concentrations and fluxes. In both approaches, heterosis was maximized when the parents were phenotypically close and when the distributions of parental enzyme concentrations were contrasted and constrained. These conclusions are not restricted to metabolic systems: they only depend on the concavity of the GP relationship, which is commonly observed at various levels of the phenotypic hierarchy, and could account for the pervasiveness of heterosis.
Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity.
Saleheen, Danish; Natarajan, Pradeep; Armean, Irina M; Zhao, Wei; Rasheed, Asif; Khetarpal, Sumeet A; Won, Hong-Hee; Karczewski, Konrad J; O'Donnell-Luria, Anne H; Samocha, Kaitlin E; Weisburd, Benjamin; Gupta, Namrata; Zaidi, Mozzam; Samuel, Maria; Imran, Atif; Abbas, Shahid; Majeed, Faisal; Ishaq, Madiha; Akhtar, Saba; Trindade, Kevin; Mucksavage, Megan; Qamar, Nadeem; Zaman, Khan Shah; Yaqoob, Zia; Saghir, Tahir; Rizvi, Syed Nadeem Hasan; Memon, Anis; Hayyat Mallick, Nadeem; Ishaq, Mohammad; Rasheed, Syed Zahed; Memon, Fazal-Ur-Rehman; Mahmood, Khalid; Ahmed, Naveeduddin; Do, Ron; Krauss, Ronald M; MacArthur, Daniel G; Gabriel, Stacey; Lander, Eric S; Daly, Mark J; Frossard, Philippe; Danesh, John; Rader, Daniel J; Kathiresan, Sekar
2017-04-12
A major goal of biomedicine is to understand the function of every gene in the human genome. Loss-of-function mutations can disrupt both copies of a given gene in humans and phenotypic analysis of such 'human knockouts' can provide insight into gene function. Consanguineous unions are more likely to result in offspring carrying homozygous loss-of-function mutations. In Pakistan, consanguinity rates are notably high. Here we sequence the protein-coding regions of 10,503 adult participants in the Pakistan Risk of Myocardial Infarction Study (PROMIS), designed to understand the determinants of cardiometabolic diseases in individuals from South Asia. We identified individuals carrying homozygous predicted loss-of-function (pLoF) mutations, and performed phenotypic analysis involving more than 200 biochemical and disease traits. We enumerated 49,138 rare (<1% minor allele frequency) pLoF mutations. These pLoF mutations are estimated to knock out 1,317 genes, each in at least one participant. Homozygosity for pLoF mutations at PLA2G7 was associated with absent enzymatic activity of soluble lipoprotein-associated phospholipase A2; at CYP2F1, with higher plasma interleukin-8 concentrations; at TREH, with lower concentrations of apoB-containing lipoprotein subfractions; at either A3GALT2 or NRG4, with markedly reduced plasma insulin C-peptide concentrations; and at SLC9A3R1, with mediators of calcium and phosphate signalling. Heterozygous deficiency of APOC3 has been shown to protect against coronary heart disease; we identified APOC3 homozygous pLoF carriers in our cohort. We recruited these human knockouts and challenged them with an oral fat load. Compared with family members lacking the mutation, individuals with APOC3 knocked out displayed marked blunting of the usual post-prandial rise in plasma triglycerides. Overall, these observations provide a roadmap for a 'human knockout project', a systematic effort to understand the phenotypic consequences of complete disruption of genes in humans.
NASA Astrophysics Data System (ADS)
Abdelhady, Ahmed Awad
2016-03-01
The negative impacts of degradation in the coastal zone of the Red Sea are becoming well known in upper portions of the trophic web (e.g., humans and fish), but are less well known among the benthic primary consumers. In addition, the degree to which heavy metals are entering the trophic web can be better-quantified using macrobenthos. Two-gastropod genera encompassing Echinolittorina subnodosa and Planaxis sulcatus from three different localities on the Egyptian coast of the Red Sea were examined in order to deduce the impact of environmental deterioration on the morphology of shells. The examined sites include clean pristine, slightly polluted, and markedly polluted rocky shores. Phosphate/lead industry is the main source of pollution in this zone. Because landmarks on the rugose Echinolittorina are difficult to define and to ensure finer resolution of the analyses, a newly 'grid-based' landmarks was implemented. Both Canonical Variate Analysis (CVA) and Thin Plate Spline (TPS) were particularly capable to capture and terrace the minor morphological variations accurately. Two phenotypes portioned among the environmentally different populations were recognized and interpreted as ecotypes with many intermediate forms. The first ecotype has a higher spire and smaller aperture and dominating the pristine site North of Marsa Alam, whereas the second ecotype has a globular shell shape with big aperture and dominating the markedly polluted site. The intermediate forms dominating the slightly polluted site. The shape differences are interpreted as an adaptive differentiation to different metal concentrations. As the morphological variation between the two-ecotypes of both taxa is still minors, and both ecotypes occur together with many intermediate forms, the phenotypic divergence stage has not yet accomplished. The gradational shape change among the investigated populations was positively correlated with index of Pollution (IP). As the human activities were the main driver of the phenotypic changes, hence anthropogenic impact may shift the evolution and/or the extinction rates.
The differential view of genotype–phenotype relationships
Orgogozo, Virginie; Morizot, Baptiste; Martin, Arnaud
2015-01-01
An integrative view of diversity and singularity in the living world requires a better understanding of the intricate link between genotypes and phenotypes. Here we re-emphasize the old standpoint that the genotype–phenotype (GP) relationship is best viewed as a connection between two differences, one at the genetic level and one at the phenotypic level. As of today, predominant thinking in biology research is that multiple genes interact with multiple environmental variables (such as abiotic factors, culture, or symbionts) to produce the phenotype. Often, the problem of linking genotypes and phenotypes is framed in terms of genotype and phenotype maps, and such graphical representations implicitly bring us away from the differential view of GP relationships. Here we show that the differential view of GP relationships is a useful explanatory framework in the context of pervasive pleiotropy, epistasis, and environmental effects. In such cases, it is relevant to view GP relationships as differences embedded into differences. Thinking in terms of differences clarifies the comparison between environmental and genetic effects on phenotypes and helps to further understand the connection between genotypes and phenotypes. PMID:26042146
Prenatal cadmium exposure alters postnatal immune cell development and function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal
2012-06-01
Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspringmore » were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can result in long term detrimental effects on the immune system of the offspring and these effects are to some extent sex-specific. -- Highlights: ► Prenatal exposure to Cd causes no thymocyte phenotype changes in the offspring ► Analysis of the splenocyte phenotype demonstrates a macrophage-specific effect only in male offspring ► The cytokine profiles suggest an effect on peripheral Th1 cells in female and to a lesser degree in male offspring ► There was a marked increase in serum anti-streptococcal antibody levels after immunization in both sexes ► There was a marked decrease in the numbers of splenic CD8{sup +}CD223{sup +} cells in both sexes.« less
5p13 microduplication syndrome: a new case and better clinical definition of the syndrome.
Novara, Francesca; Alfei, Enrico; D'Arrigo, Stefano; Pantaleoni, Chiara; Beri, Silvana; Achille, Valentina; Sciacca, Francesca L; Giorda, Roberto; Zuffardi, Orsetta; Ciccone, Roberto
2013-01-01
Chromosome 5p13 duplication syndrome (OMIM #613174), a contiguous gene syndrome involving duplication of several genes on chromosome 5p13 including NIPBL (OMIM 608667), has been described in rare patients with developmental delay and learning disability, behavioral problems and peculiar facial dysmorphisms. 5p13 duplications described so far present with variable sizes, from 0.25 to 13.6 Mb, and contain a variable number of genes. Here we report another patient with 5p13 duplication syndrome including NIPBL gene only. Proband's phenotype overlapped that reported in patients with 5p13 microduplication syndrome and especially that of subjects with smaller duplications. Moreover, we better define genotype-phenotype relationship associated with this duplication and confirmed that NIPBL was likely the major dosage sensitive gene for the 5p13 microduplication phenotype. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Phenotypic variability of the cat eye syndrome. Case report and review of the literature.
Rosias, P R; Sijstermans, J M; Theunissen, P M; Pulles-Heintzberger, C F; De Die-Smulders, C E; Engelen, J J; Van Der Meer, S B
2001-01-01
We present a male infant with preauricular skin tags and pits, downslanting palpebral fissures, hypertelorism, ectopic anus, hypospadias, and hypoplastic left heart syndrome. The clinical features in our patient show phenotypic overlap with the cat eye syndrome, as illustrated by the review of 105 reported cases. Cytogenetic analysis revealed a supernumerary marker chromosome, which was identified by microdissection and fluorescence in situ hybridization as an isodicentric chromosome 22(pter --> q11.2::q11.2 --> pter). It was proved with probes specific for the cat eye syndrome critical region that this region was present in quadruplicate in the propositus. We conclude that CES is characterized by large phenotypic variability, ranging from near normal to severe malformations, as reflected in the neurodevelopmental outcome. Preauricular skin tags and/or pits are the most consistent features, and suggest the presence of a supernumerary bisatellited marker chromosome 22 derived from duplication of the CES critical region.
ACE Phenotyping as a Guide Toward Personalized Therapy With ACE Inhibitors.
Danilov, Sergei M; Tovsky, Stan I; Schwartz, David E; Dull, Randal O
2017-07-01
Angiotensin-converting enzyme (ACE) inhibitors (ACEI) are widely used in the management of cardiovascular diseases but with significant interindividual variability in the patient's response. To investigate whether interindividual variability in the response to ACE inhibitors is explained by the "ACE phenotype"-for example, variability in plasma ACE concentration, activity, and conformation and/or the degree of ACE inhibition in each individual. The ACE phenotype was determined in plasma of 14 patients with hypertension treated chronically for 4 weeks with 40 mg enalapril (E) or 20 mg E + 16 mg candesartan (EC) and in 20 patients with hypertension treated acutely with a single dose (20 mg) of E with or without pretreatment with hydrochlorothiazide. The ACE phenotyping included (1) plasma ACE concentration; (2) ACE activity (with 2 substrates: Hip-His-Leu and Z-Phe-His-Leu and calculation of their ratio); (3) detection of ACE inhibitors in patient's blood (indicator of patient compliance) and the degree of ACE inhibition (ie, adherence); and (4) ACE conformation. Enalapril reduced systolic and diastolic blood pressure in most patients; however, 20% of patients were considered nonresponders. Chronic treatment results in 40% increase in serum ACE concentrations, with the exception of 1 patient. There was a trend toward better response to ACEI among patients who had a higher plasma ACE concentration. Due to the fact that "20% of patients do not respond to ACEI by blood pressure drop," the initial blood ACE level could not be a predictor of blood pressure reduction in an individual patient. However, ACE phenotyping provides important information about conformational and kinetic changes in ACE of individual patients, and this could be a reason for resistance to ACE inhibitors in some nonresponders.
ter Heine, Rob; Binkhorst, Lisette; de Graan, Anne Joy M; de Bruijn, Peter; Beijnen, Jos H; Mathijssen, Ron H J; Huitema, Alwin D R
2014-01-01
Aims Tamoxifen is considered a pro-drug of its active metabolite endoxifen. The major metabolic enzymes involved in endoxifen formation are CYP2D6 and CYP3A. There is considerable evidence that variability in activity of these enzymes influences endoxifen exposure and thereby may influence the clinical outcome of tamoxifen treatment. We aimed to quantify the impact of metabolic phenotype on the pharmacokinetics of tamoxifen and endoxifen. Methods We assessed the CYP2D6 and CYP3A metabolic phenotypes in 40 breast cancer patients on tamoxifen treatment with a single dose of dextromethorphan as a dual phenotypic probe for CYP2D6 and CYP3A. The pharmacokinetics of dextromethorphan, tamoxifen and their relevant metabolites were analyzed using non-linear mixed effects modelling. Results Population pharmacokinetic models were developed for dextromethorphan, tamoxifen and their metabolites. In the final model for tamoxifen, the dextromethorphan derived metabolic phenotypes for CYP2D6 as well as CYP3A significantly (P < 0.0001) explained 54% of the observed variability in endoxifen formation (inter-individual variability reduced from 55% to 25%). Conclusions We have shown that not only CYP2D6, but also CYP3A enzyme activity influences the tamoxifen to endoxifen conversion in breast cancer patients. Our developed model may be used to assess separately the impact of CYP2D6 and CYP3A mediated drug–drug interactions with tamoxifen without the necessity of administering this anti-oestrogenic drug and to support Bayesian guided therapeutic drug monitoring of tamoxifen in routine clinical practice. PMID:24697814
Phenotypes determined by cluster analysis in severe or difficult-to-treat asthma.
Schatz, Michael; Hsu, Jin-Wen Y; Zeiger, Robert S; Chen, Wansu; Dorenbaum, Alejandro; Chipps, Bradley E; Haselkorn, Tmirah
2014-06-01
Asthma phenotyping can facilitate understanding of disease pathogenesis and potential targeted therapies. To further characterize the distinguishing features of phenotypic groups in difficult-to-treat asthma. Children ages 6-11 years (n = 518) and adolescents and adults ages ≥12 years (n = 3612) with severe or difficult-to-treat asthma from The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study were evaluated in this post hoc cluster analysis. Analyzed variables included sex, race, atopy, age of asthma onset, smoking (adolescents and adults), passive smoke exposure (children), obesity, and aspirin sensitivity. Cluster analysis used the hierarchical clustering algorithm with the Ward minimum variance method. The results were compared among clusters by χ(2) analysis; variables with significant (P < .05) differences among clusters were considered as distinguishing feature candidates. Associations among clusters and asthma-related health outcomes were assessed in multivariable analyses by adjusting for socioeconomic status, environmental exposures, and intensity of therapy. Five clusters were identified in each age stratum. Sex, atopic status, and nonwhite race were distinguishing variables in both strata; passive smoke exposure was distinguishing in children and aspirin sensitivity in adolescents and adults. Clusters were not related to outcomes in children, but 2 adult and adolescent clusters distinguished by nonwhite race and aspirin sensitivity manifested poorer quality of life (P < .0001), and the aspirin-sensitive cluster experienced more frequent asthma exacerbations (P < .0001). Distinct phenotypes appear to exist in patients with severe or difficult-to-treat asthma, which is related to outcomes in adolescents and adults but not in children. The study of the therapeutic implications of these phenotypes is warranted. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Bianchi, Laura; Gagliardi, Assunta; Maruelli, Silvia; Besio, Roberta; Landi, Claudia; Gioia, Roberta; Kozloff, Kenneth M.; Khoury, Basma M.; Coucke, Paul J.; Symoens, Sofie; Marini, Joan C.; Rossi, Antonio; Bini, Luca; Forlino, Antonella
2015-01-01
Osteogenesis imperfecta (OI) is a heritable bone disease with dominant and recessive transmission. It is characterized by a wide spectrum of clinical outcomes ranging from very mild to lethal in the perinatal period. The intra- and inter-familiar OI phenotypic variability in the presence of an identical molecular defect is still puzzling to the research field. We used the OI murine model Brtl+/− to investigate the molecular basis of OI phenotypic variability. Brtl+/− resembles classical dominant OI and shows either a moderately severe or a lethal outcome associated with the same Gly349Cys substitution in the α1 chain of type I collagen. A systems biology approach was used. We took advantage of proteomic pathway analysis to functionally link proteins differentially expressed in bone and skin of Brtl+/− mice with different outcomes to define possible phenotype modulators. The skin/bone and bone/skin hybrid networks highlighted three focal proteins: vimentin, stathmin and cofilin-1, belonging to or involved in cytoskeletal organization. Abnormal cytoskeleton was indeed demonstrated by immunohistochemistry to occur only in tissues from Brtl+/− lethal mice. The aberrant cytoskeleton affected osteoblast proliferation, collagen deposition, integrin and TGF-β signaling with impairment of bone structural properties. Finally, aberrant cytoskeletal assembly was detected in fibroblasts obtained from lethal, but not from non-lethal, OI patients carrying an identical glycine substitution. Our data demonstrated that compromised cytoskeletal assembly impaired both cell signaling and cellular trafficking in mutant lethal mice, altering bone properties. These results point to the cytoskeleton as a phenotypic modulator and potential novel target for OI treatment. PMID:26264579
Ecosensitivity and genetic polymorphism of somatic traits in the perinatal development of twins.
Waszak, Małgorzata; Cieślik, Krystyna; Skrzypczak-Zielińska, Marzena; Szalata, Marlena; Wielgus, Karolina; Kempiak, Joanna; Bręborowicz, Grzegorz; Słomski, Ryszard
2016-04-01
In view of criticism regarding the usefulness of heritability coefficients, the aim of this study was to analyze separately the information on genetic and environmental variability. Such an approach, based on the normalization of trait's variability for its value, is determined by the coefficients of genetic polymorphism (Pg) and ecosensitivity (De). The studied material included 1263 twin pairs of both sexes (among them 424 pairs of monozygotic twins and 839 pairs of dizygotic twins) born between the 22nd and 41st week of gestation. Variability of six somatic traits was analyzed. The zygosity of same-sex twins was determined based on the polymorphism of DNA from lymphocytes of the umbilical cord blood, obtained at birth. The coefficients of genetic polymorphism and ecosensitivity for analyzed traits of male and female twins born at various months of gestation were calculated. Our study revealed that a contribution of the genetic component predominated over that of the environmental component in determining the phenotypic variability of somatic traits of newborns from twin pregnancies. The genetically determined phenotypic variability in male twins was greater than in the females. The genetic polymorphism and ecosensitivity of somatic traits were relatively stable during the period of fetal ontogeny analyzed in this study. Only in the case of body weight, a slight increase in the genetic contribution of polygenes to the phenotypic variance could be observed with gestational age, along with a slight decrease in the influence of environmental factors. Copyright © 2015 Elsevier GmbH. All rights reserved.
The Variability of Neural Responses to Naturalistic Videos Change with Age and Sex
Petroni, Agustin; Langer, Nicolas; Milham, Michael P.
2018-01-01
Abstract Neural development is generally marked by an increase in the efficiency and diversity of neural processes. In a large sample (n = 114) of human children and adults with ages ranging from 5 to 44 yr, we investigated the neural responses to naturalistic video stimuli. Videos from both real-life classroom settings and Hollywood feature films were used to probe different aspects of attention and engagement. For all stimuli, older ages were marked by more variable neural responses. Variability was assessed by the intersubject correlation of evoked electroencephalographic responses. Young males also had less-variable responses than young females. These results were replicated in an independent cohort (n = 303). When interpreted in the context of neural maturation, we conclude that neural function becomes more variable with maturity, at least during the passive viewing of real-world stimuli. PMID:29379880
Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.
2014-01-01
Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability. The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods were unable to predict phenotypic values when the underlying genetic architecture was based entirely on epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architectures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability, i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE. PMID:24727289
Ravits, John; Appel, Stanley; Baloh, Robert H; Barohn, Richard; Brooks, Benjamin Rix; Elman, Lauren; Floeter, Mary Kay; Henderson, Christopher; Lomen-Hoerth, Catherine; Macklis, Jeffrey D; McCluskey, Leo; Mitsumoto, Hiroshi; Przedborski, Serge; Rothstein, Jeffrey; Trojanowski, John Q; van den Berg, Leonard H; Ringel, Steven
2013-05-01
Amyotrophic lateral sclerosis (ALS) is characterized phenotypically by progressive weakness and neuropathologically by loss of motor neurons. Phenotypically, there is marked heterogeneity. Typical ALS has mixed upper motor neuron (UMN) and lower motor neuron (LMN) involvement. Primary lateral sclerosis has predominant UMN involvement. Progressive muscular atrophy has predominant LMN involvement. Bulbar and limb ALS have predominant regional involvement. Frontotemporal dementia has significant cognitive and behavioral involvement. These phenotypes can be so distinctive that they would seem to have differing biology. However, they cannot be distinguished, at least neuropathologically or genetically. In sporadic ALS (SALS), they are mostly characterized by ubiquitinated cytoplasmic inclusions of TDP-43. In familial ALS (FALS), where phenotypes are indistinguishable from SALS and similarly heterogeneous, each mutated gene has its own genetic and molecular signature. Overall, since the same phenotypes can have multiple causes including different gene mutations, there must be multiple molecular mechanisms causing ALS - and ALS is a syndrome. Since, however, multiple phenotypes can be caused by one single gene mutation, a single molecular mechanism can cause heterogeneity. What the mechanisms are remain unknown, but active propagation of the pathology neuroanatomically seems to be a principal component. Leading candidate mechanisms include RNA processing, cell-cell interactions between neurons and non-neuronal neighbors, focal seeding from a misfolded protein that has prion-like propagation, and fatal errors introduced during neurodevelopment of the motor system. If fundamental mechanisms could be identified and understood, ALS therapy could rationally target progression and stop the disease - a goal that seems increasingly achievable.
Modelling the co-evolution of indirect genetic effects and inherited variability.
Marjanovic, Jovana; Mulder, Han A; Rönnegård, Lars; Bijma, Piter
2018-03-28
When individuals interact, their phenotypes may be affected not only by their own genes but also by genes in their social partners. This phenomenon is known as Indirect Genetic Effects (IGEs). In aquaculture species and some plants, however, competition not only affects trait levels of individuals, but also inflates variability of trait values among individuals. In the field of quantitative genetics, the variability of trait values has been studied as a quantitative trait in itself, and is often referred to as inherited variability. Such studies, however, consider only the genetic effect of the focal individual on trait variability and do not make a connection to competition. Although the observed phenotypic relationship between competition and variability suggests an underlying genetic relationship, the current quantitative genetic models of IGE and inherited variability do not allow for such a relationship. The lack of quantitative genetic models that connect IGEs to inherited variability limits our understanding of the potential of variability to respond to selection, both in nature and agriculture. Models of trait levels, for example, show that IGEs may considerably change heritable variation in trait values. Currently, we lack the tools to investigate whether this result extends to variability of trait values. Here we present a model that integrates IGEs and inherited variability. In this model, the target phenotype, say growth rate, is a function of the genetic and environmental effects of the focal individual and of the difference in trait value between the social partner and the focal individual, multiplied by a regression coefficient. The regression coefficient is a genetic trait, which is a measure of cooperation; a negative value indicates competition, a positive value cooperation, and an increasing value due to selection indicates the evolution of cooperation. In contrast to the existing quantitative genetic models, our model allows for co-evolution of IGEs and variability, as the regression coefficient can respond to selection. Our simulations show that the model results in increased variability of body weight with increasing competition. When competition decreases, i.e., cooperation evolves, variability becomes significantly smaller. Hence, our model facilitates quantitative genetic studies on the relationship between IGEs and inherited variability. Moreover, our findings suggest that we may have been overlooking an entire level of genetic variation in variability, the one due to IGEs.
Subtypes in 22q11.2 Deletion Syndrome Associated with Behaviour and Neurofacial Morphology
ERIC Educational Resources Information Center
Sinderberry, Brooke; Brown, Scott; Hammond, Peter; Stevens, Angela F.; Schall, Ulrich; Murphy, Declan G. M.; Murphy, Kieran C.; Campbell, Linda E.
2013-01-01
22q11.2 deletion syndrome (22q11DS) has a complex phenotype with more than 180 characteristics, including cardiac anomalies, cleft palate, intellectual disabilities, a typical facial morphology, and mental health problems. However, the variable phenotype makes it difficult to predict clinical outcome, such as the high prevalence of psychosis among…
Enhancer of zeste acts as a major developmental regulator of Ciona intestinalis embryogenesis
Le Goff, Emilie; Martinand-Mari, Camille; Martin, Marianne; Feuillard, Jérôme; Boublik, Yvan; Godefroy, Nelly; Mangeat, Paul; Baghdiguian, Stephen; Cavalli, Giacomo
2015-01-01
ABSTRACT The paradigm of developmental regulation by Polycomb group (PcG) proteins posits that they maintain silencing outside the spatial expression domains of their target genes, particularly of Hox genes, starting from mid embryogenesis. The Enhancer of zeste [E(z)] PcG protein is the catalytic subunit of the PRC2 complex, which silences its targets via deposition of the H3K27me3 mark. Here, we studied the ascidian Ciona intestinalis counterpart of E(z). Ci-E(z) is detected by immunohistochemistry as soon as the 2- and 4-cell stages as a cytoplasmic form and becomes exclusively nuclear thereafter, whereas the H3K27me3 mark is detected starting from the gastrula stage and later. Morpholino invalidation of Ci-E(z) leads to the total disappearance of both Ci-E(z) protein and its H3K27me3 mark. Ci-E(z) morphants display a severe phenotype. Strikingly, the earliest defects occur at the 4-cell stage with the dysregulation of cell positioning and mitotic impairment. At later stages, Ci-E(z)-deficient embryos are affected by terminal differentiation defects of neural, epidermal and muscle tissues, by the failure to form a notochord and by the absence of caudal nerve. These major phenotypic defects are specifically rescued by injection of a morpholino-resistant Ci-E(z) mRNA, which restores expression of Ci-E(z) protein and re-deposition of the H3K27me3 mark. As observed by qPCR analyses, Ci-E(z) invalidation leads to the early derepression of tissue-specific developmental genes, whereas late-acting developmental genes are generally down-regulated. Altogether, our results suggest that Ci-E(z) plays a major role during embryonic development in Ciona intestinalis by silencing early-acting developmental genes in a Hox-independent manner. PMID:26276097
Gene Variants Associated with Antisocial Behaviour: A Latent Variable Approach
ERIC Educational Resources Information Center
Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.
2013-01-01
Objective: The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods: Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a…
Friis, Guillermo; Aleixandre, Pau; Rodríguez-Estrella, Ricardo; Navarro-Sigüenza, Adolfo G; Milá, Borja
2016-12-01
Natural systems composed of closely related taxa that vary in the degree of phenotypic divergence and geographic isolation provide an opportunity to investigate the rate of phenotypic diversification and the relative roles of selection and drift in driving lineage formation. The genus Junco (Aves: Emberizidae) of North America includes parapatric northern forms that are markedly divergent in plumage pattern and colour, in contrast to geographically isolated southern populations in remote areas that show moderate phenotypic divergence. Here, we quantify patterns of phenotypic divergence in morphology and plumage colour and use mitochondrial DNA genes, a nuclear intron, and genomewide SNPs to reconstruct the demographic and evolutionary history of the genus to infer relative rates of evolutionary divergence among lineages. We found that geographically isolated populations have evolved independently for hundreds of thousands of years despite little differentiation in phenotype, in sharp contrast to phenotypically diverse northern forms, which have diversified within the last few thousand years as a result of the rapid postglacial recolonization of North America. SNP data resolved young northern lineages into reciprocally monophyletic lineages, indicating low rates of gene flow even among closely related parapatric forms, and suggesting a role for strong genetic drift or multifarious selection acting on multiple loci in driving lineage divergence. Juncos represent a compelling example of speciation in action, where the combined effects of historical and selective factors have produced one of the fastest cases of speciation known in vertebrates. © 2016 John Wiley & Sons Ltd.
Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation
Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J.; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L.; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D.; Weninger, Wolfgang
2015-01-01
The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8+ T cells. During influenza virus infection in vivo, naive T cells enter a CD62Lintermediate state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62Lhi central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62Lhi memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways. PMID:25709008
Retinal dystrophies, genomic applications in diagnosis and prospects for therapy
Nash, Benjamin M.; Wright, Dale C.; Grigg, John R.; Bennetts, Bruce
2015-01-01
Retinal dystrophies (RDs) are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. This review aims to demonstrate the high degree of genetic complexity in both the causative disease genes and their associated phenotypes, highlighting the more common clinical manifestation of retinitis pigmentosa (RP). The review also provides insight to recent advances in genomic molecular diagnosis and gene and cell-based therapies for the RDs. PMID:26835369
Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation
Wong, Wai T.
2013-01-01
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and age-related macular degeneration (AMD), share two characteristics in common: (1) a disease prevalence that increases markedly with advancing age, and (2) neuroinflammatory changes in which microglia, the primary resident immune cell of the CNS, feature prominently. These characteristics have led to the hypothesis that pathogenic mechanisms underlying age-related neurodegenerative disease involve aging changes in microglia. If correct, targeting features of microglial senescence may constitute a feasible therapeutic strategy. This review explores this hypothesis and its implications by considering the current knowledge on how microglia undergo change during aging and how the emergence of these aging phenotypes relate to significant alterations in microglial function. Evidence and theories on cellular mechanisms implicated in driving senescence in microglia are reviewed, as are “rejuvenative” measures and strategies that aim to reverse or ameliorate the aging microglial phenotype. Understanding and controlling microglial aging may represent an opportunity for elucidating disease mechanisms and for formulating novel therapies. PMID:23493481
Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation.
Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D; Weninger, Wolfgang
2015-02-24
The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8(+) T cells. During influenza virus infection in vivo, naive T cells enter a CD62L(intermediate) state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62L(hi) central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62L(hi) memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways.
Group a streptococcus antibiotic resistance in southern Brazil: a 17-year surveillance study.
Torres, Rosângela Stadnick Lauth de Almeida; Torres, Renato Pedro de Almeida; Smeesters, Pierre Robert; Palmeiro, Jussara Kasuko; de Messias-Reason, Iara José; Dalla-Costa, Libera M
2011-06-01
Scarce data are available about the antimicrobial resistance of Group A Streptococcus in South America. This study evaluated the antimicrobial susceptibility profile of 1,112 isolates of Group A Streptococcus during the period from 1993 to 2009 in Curitiba city, Brazil. Macrolide-resistant isolates were characterized by emm typing and pulsed-field gel electrophoresis. All isolates were susceptible to penicillin, vancomycin, and tigecycline. On the contrary, 18.6% of the isolates were resistant to tetracycline, presenting a minimum inhibitory concentration (MIC)(50)/MIC(90) of 32/64 mg/L. Erythromycin resistance rose from 1.9% before 2000 to 4% after 2000 and was associated with a marked increased of MIC levels. Simultaneously, both the phenotype and genotype of macrolide resistance were modified as the M phenotypes (mef(A) genotype) were replaced by the cMLS(B) phenotypes (erm(B) genotype). This polyclonal spreading of cMLS(B) macrolide resistance has not been previously observed in South America and should stimulate further epidemiological surveillance in this part of the world.
Delpoux, Arnaud; Lai, Chen-Yen; Hedrick, Stephen M; Doedens, Andrew L
2017-10-17
The factors and steps controlling postinfection CD8 + T cell terminal effector versus memory differentiation are incompletely understood. Whereas we found that naive TCF7 (alias "Tcf-1") expression is FOXO1 independent, early postinfection we report bimodal, FOXO1-dependent expression of the memory-essential transcription factor TCF7 in pathogen-specific CD8 + T cells. We determined the early postinfection TCF7 high population is marked by low TIM3 expression and bears memory signature hallmarks before the appearance of established memory precursor marker CD127 (IL-7R). These cells exhibit diminished TBET, GZMB, mTOR signaling, and cell cycle progression. Day 5 postinfection, TCF7 high cells express higher memory-associated BCL2 and EOMES, as well as increased accumulation potential and capacity to differentiate into memory phenotype cells. TCF7 retroviral transduction opposes GZMB expression and the formation of KLRG1 pos phenotype cells, demonstrating an active role for TCF7 in extinguishing the effector program and forestalling terminal differentiation. Past the peak of the cellular immune response, we report a gradient of FOXO1 and TCF7 expression, which functions to oppose TBET and orchestrate a continuum of effector-to-memory phenotypes.
Spatial and temporal drivers of phenotypic diversity in polymorphic snakes.
Cox, Christian L; Davis Rabosky, Alison R
2013-08-01
Color polymorphism in natural populations presents an ideal opportunity to study the evolutionary drivers of phenotypic diversity. Systems with striking spatial, temporal, and qualitative variation in color can be leveraged to study the mechanisms promoting the distribution of different types of variation in nature. We used the highly polymorphic ground snake (Sonora semiannulata), a putative coral snake mimic with both cryptic and conspicuous morphs, to compare patterns of neutral genetic variation and variation over space and time in color polymorphism to investigate the mechanistic drivers of phenotypic variation across scales. We found that strong selection promotes color polymorphism across spatial and temporal scales, with morph frequencies differing markedly between juvenile and adult age classes within a single population, oscillating over time within multiple populations, and varying drastically over the landscape despite minimal population genetic structure. However, we found no evidence that conspicuousness of morphs was related to which color pattern was favored by selection or to any geographic factors, including sympatry with coral snakes. We suggest that complex patterns of phenotypic variation in polymorphic systems may be a fundamental outcome of the conspicuousness of morphs and that explicit tests of temporal and geographic variation are critical to the interpretation of conspicuousness and mimicry.
Transcriptome analysis of a wild bird reveals physiological responses to the urban environment
Watson, Hannah; Videvall, Elin; Andersson, Martin N.; Isaksson, Caroline
2017-01-01
Identifying the molecular basis of environmentally induced phenotypic variation presents exciting opportunities for furthering our understanding of how ecological processes and the environment can shape the phenotype. Urban and rural environments present free-living organisms with different challenges and opportunities, which have marked consequences for the phenotype, yet little is known about responses at the molecular level. We characterised transcriptomes from an urban and a rural population of great tits Parus major, demonstrating striking differences in gene expression profiles in both blood and liver tissues. Differentially expressed genes had functions related to immune and inflammatory responses, detoxification, protection against oxidative stress, lipid metabolism, and regulation of gene expression. Many genes linked to stress responses were expressed at higher levels in the urban birds, in accordance with our prediction that urban animals are exposed to greater environmental stress. This is one of the first studies to reveal transcriptional differences between urban- and rural-dwelling animals and suggests an important role for epigenetics in mediating environmentally induced physiological variation. The study provides valuable resources for developing further in-depth studies of the mechanisms driving phenotypic variation in the urban context at larger spatial and temporal scales. PMID:28290496
Coupled dynamics of body mass and population growth in response to environmental change.
Ozgul, Arpat; Childs, Dylan Z; Oli, Madan K; Armitage, Kenneth B; Blumstein, Daniel T; Olson, Lucretia E; Tuljapurkar, Shripad; Coulson, Tim
2010-07-22
Environmental change has altered the phenology, morphological traits and population dynamics of many species. However, the links underlying these joint responses remain largely unknown owing to a paucity of long-term data and the lack of an appropriate analytical framework. Here we investigate the link between phenotypic and demographic responses to environmental change using a new methodology and a long-term (1976-2008) data set from a hibernating mammal (the yellow-bellied marmot) inhabiting a dynamic subalpine habitat. We demonstrate how earlier emergence from hibernation and earlier weaning of young has led to a longer growing season and larger body masses before hibernation. The resulting shift in both the phenotype and the relationship between phenotype and fitness components led to a decline in adult mortality, which in turn triggered an abrupt increase in population size in recent years. Direct and trait-mediated effects of environmental change made comparable contributions to the observed marked increase in population growth. Our results help explain how a shift in phenology can cause simultaneous phenotypic and demographic changes, and highlight the need for a theory integrating ecological and evolutionary dynamics in stochastic environments.
Surface laser marking optimization using an experimental design approach
NASA Astrophysics Data System (ADS)
Brihmat-Hamadi, F.; Amara, E. H.; Lavisse, L.; Jouvard, J. M.; Cicala, E.; Kellou, H.
2017-04-01
Laser surface marking is performed on a titanium substrate using a pulsed frequency doubled Nd:YAG laser ( λ= 532 nm, τ pulse=5 ns) to process the substrate surface under normal atmospheric conditions. The aim of the work is to investigate, following experimental and statistical approaches, the correlation between the process parameters and the response variables (output), using a Design of Experiment method (DOE): Taguchi methodology and a response surface methodology (RSM). A design is first created using MINTAB program, and then the laser marking process is performed according to the planned design. The response variables; surface roughness and surface reflectance were measured for each sample, and incorporated into the design matrix. The results are then analyzed and the RSM model is developed and verified for predicting the process output for the given set of process parameters values. The analysis shows that the laser beam scanning speed is the most influential operating factor followed by the laser pumping intensity during marking, while the other factors show complex influences on the objective functions.
Stevenson, David A.; Viskochil, David H.; Rope, Alan F.; Carey, John C.
2011-01-01
NF-Noonan syndrome (NFNS) has been described as a unique phenotype, combining manifestations of neurofibromatosis type 1 (NF1) and Noonan syndromes, which are separate syndromes. Potential etiologies of NF-Noonan syndrome include a discrete syndrome of distinct etiology, co-segregation of two mutated common genes, variable clinical expressivity of NF1, and/or allelic heterogeneity. We present an informative family with an unusual NF1 mutation with variable features of NF1 and Noonan syndrome. We hypothesize that an NF1 mutant allele can lead to diagnostic manifestations of Noonan syndrome, supporting the hypothesis that NF1 allelic heterogeneity causes NFNS. PMID:16542390
Heussinger, Nicole; Saake, Marc; Mennecke, Angelika; Dörr, Helmuth-Günther; Trollmann, Regina
2017-02-01
The X-linked creatine transporter deficiency (CRTD) caused by an SLC6A8 mutation represents the second most common cause of X-linked intellectual disability. The clinical phenotype ranges from mild to severe intellectual disability, epilepsy, short stature, poor language skills, and autism spectrum disorders. The objective of this study was to investigate phenotypic variability in the context of genotype, cerebral creatine concentration, and volumetric analysis in a family with CRTD. The clinical phenotype and manifestations of epilepsy were assessed in a Caucasian family with CRTD. DNA sequencing and creatine metabolism analysis confirmed the diagnosis. Cerebral magnetic resonance imaging (cMRI) with voxel-based morphometry and magnetic resonance spectroscopy was performed in all family members. An SLC6A8 missense mutation (c.1169C>T; p.Pro390Leu, exon 8) was detected in four of five individuals. Both male siblings were hemizygous, the mother and the affected sister heterozygous for the mutation. Structural cMRI was normal, whereas voxel-based morphometry analysis showed reduced white matter volume below the first percentile of the reference population of 290 subjects in the more severely affected boy compared with family members and controls. Normalized creatine concentration differed significantly between the individuals (P < 0.005). There is a broad phenotypic variability in CRTD even in family members with the same mutation. Differences in mental development could be related to atrophy of the subcortical white matter. Copyright © 2016 Elsevier Inc. All rights reserved.
Qin, Xinghu; Hao, Kun; Ma, Jingchuan; Huang, Xunbing; Tu, Xiongbing; Ali, Md. Panna; Pittendrigh, Barry R.; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Whitman, Douglas W.; Zhang, Zehua
2017-01-01
While ecological adaptation in insects can be reflected by plasticity of phenotype, determining the causes and molecular mechanisms for phenotypic plasticity (PP) remains a crucial and still difficult question in ecology, especially where control of insect pests is involved. Oedaleus asiaticus is one of the most dominant pests in the Inner Mongolia steppe and represents an excellent system to study phenotypic plasticity. To better understand ecological factors affecting grasshopper phenotypic plasticity and its molecular control, we conducted a full transcriptional screening of O. asiaticus grasshoppers reared in four different grassland patches in Inner Mongolia. Grasshoppers showed different degrees of PP associated with unique gene expressions and different habitat plant community compositions. Grasshopper performance variables were susceptible to habitat environment conditions and closely associated with plant architectures. Intriguingly, eco-transcriptome analysis revealed five potential candidate genes playing important roles in grasshopper performance, with gene expression closely relating to PP and plant community factors. By linking the grasshopper performances to gene profiles and ecological factors using canonical regression, we first demonstrated the eco-transcriptomic architecture (ETA) of grasshopper phenotypic traits (ETAGPTs). ETAGPTs revealed plant food type, plant density, coverage, and height were the main ecological factors influencing PP, while insect cuticle protein (ICP), negative elongation factor A (NELFA), and lactase-phlorizin hydrolase (LCT) were the key genes associated with PP. Our study gives a clear picture of gene-environment interaction in the formation and maintenance of PP and enriches our understanding of the transcriptional events underlying molecular control of rapid phenotypic plasticity associated with environmental variability. The findings of this study may also provide new targets for pest control and highlight the significance of ecological management practice on grassland conservation. PMID:29066978
de Goede, Christian; Yue, Wyatt W; Yan, Guanhua; Ariyaratnam, Shyamala; Chandler, Kate E; Downes, Laura; Khan, Nasaim; Mohan, Meyyammai; Lowe, Martin; Banka, Siddharth
2016-03-01
Next Generation Sequencing (NGS) is a useful tool in diagnosis of rare disorders but the interpretation of data can be challenging in clinical settings. We present results of extended studies on a family of multiple members with global developmental delay and learning disability, where another research group postulated the underlying cause to be a homozygous RABL6 missense variant. Using data from the Exome Variant Server, we show that missense RABL6 variants are unlikely to cause early onset rare developmental disorder. Protein structural analysis, cellular functional studies and reverse phenotyping proved that the condition in this family is due to a homozygous INPP5E mutation. An in-depth review of mutational and phenotypic spectrum associated with INPP5E demonstrated that mutations in this gene lead to a range of cilliopathy-phenotypes. We use this study as an example to demonstrate the importance of careful clinical evaluation of multiple family members, reverse phenotyping, considering the unknown phenotypic variability of rare diseases, utilizing publically available genomic databases and conducting appropriate bioinformatics and functional studies while interpreting results from NGS in uncertain cases. We emphasize that interpretation of NGS data is an iterative process and its dynamic nature should be explained to patients and families. Our study shows that developmental delay, intellectual disability, hypotonia and ocular motor apraxia are common in INPP5E-related disorders and considerable intra-familial phenotypic variability is possible. We have compiled the INPP5E mutational spectrum and provided novel insights into their molecular mechanisms. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Gurgel-Giannetti, Juliana; Senkevics, Adriano S; Zilbersztajn-Gotlieb, Dinorah; Yamamoto, Lydia U; Muniz, Viviane P; Pavanello, Rita C M; Oliveira, Acary B; Zatz, Mayana; Vainzof, Mariz
2012-02-01
We describe a large Brazilian consanguineous kindred with 3 clinically affected patients with a Thomsen myotonia phenotype. They carry a novel homozygous nonsense mutation in the CLCN1 gene (K248X). None of the 6 heterozygote carriers show any sign of myotonia on clinical evaluation or electromyography. These findings confirm the autosomal recessive inheritance of the novel mutation in this family, as well as the occurrence of phenotypic variability in the autosomal recessive forms of myotonia. Copyright © 2011 Wiley Periodicals, Inc.
Phenotypic models of evolution and development: geometry as destiny.
François, Paul; Siggia, Eric D
2012-12-01
Quantitative models of development that consider all relevant genes typically are difficult to fit to embryonic data alone and have many redundant parameters. Computational evolution supplies models of phenotype with relatively few variables and parameters that allows the patterning dynamics to be reduced to a geometrical picture for how the state of a cell moves. The clock and wavefront model, that defines the phenotype of somitogenesis, can be represented as a sequence of two discrete dynamical transitions (bifurcations). The expression-time to space map for Hox genes and the posterior dominance rule are phenotypes that naturally follow from computational evolution without considering the genetics of Hox regulation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Axelrod, Kevin; Sanchez, Alvaro; Gore, Jeff
2015-08-24
Microorganisms often exhibit a history-dependent phenotypic response after exposure to a stimulus which can be imperative for proper function. However, cells frequently experience unexpected environmental perturbations that might induce phenotypic switching. How cells maintain phenotypic states in the face of environmental fluctuations remains an open question. Here, we use environmental perturbations to characterize the resilience of phenotypic states in a synthetic gene network near a critical transition. We find that far from the critical transition an environmental perturbation may induce little to no phenotypic switching, whereas close to the critical transition the same perturbation can cause many cells to switch phenotypic states. This loss of resilience was observed for perturbations that interact directly with the gene circuit as well as for a variety of generic perturbations-such as salt, ethanol, or temperature shocks-that alter the state of the cell more broadly. We obtain qualitatively similar findings in natural gene circuits, such as the yeast GAL network. Our findings illustrate how phenotypic memory can become destabilized by environmental variability near a critical transition.
Gene variants associated with antisocial behaviour: A latent variable approach
Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.
2013-01-01
Objective The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a 15-year follow-up of a randomized trial of a prenatal and infancy nurse-home visitation program in Elmira, New York. We then investigated, via a novel latent variable approach, 450 informative genetic polymorphisms in 71 genes previously associated with antisocial behaviour, drug use, affiliative behaviours, and stress response in 241 consenting individuals for whom DNA was available. Haplotype and Pathway analyses were also performed. Results Eight single-nucleotide polymorphisms (SNPs) from 8 genes contributed to the latent genetic variable that in turn accounted for 16.0% of the variance within the latent antisocial phenotype. The number of risk alleles was linearly related to the latent antisocial variable scores. Haplotypes that included the putative risk alleles for all 8 genes were also associated with higher latent antisocial variable scores. In addition, 33 SNPs from 63 of the remaining genes were also significant when added to the final model. Many of these genes interact on a molecular level, forming molecular networks. The results support a role for genes related to dopamine, norepinephrine, serotonin, glutamate, opioid, and cholinergic signaling as well as stress response pathways in mediating susceptibility to antisocial behaviour. Conclusions This preliminary study supports use of relevant behavioural indicators and latent variable approaches to study the potential “co-action” of gene variants associated with antisocial behaviour. It also underscores the cumulative relevance of common genetic variants for understanding the etiology of complex behaviour. If replicated in future studies, this approach may allow the identification of a ‘shared’ variance across genetic risk alleles associated with complex neuropsychiatric dimensional phenotypes using relatively small numbers of well-characterized research participants. PMID:23822756
Barton, James C; Barton, Ellen H; Acton, Ronald T
2006-01-01
Background In age-matched cohorts of screening study participants recruited from primary care clinics, mean serum transferrin saturation values were significantly lower and mean serum ferritin concentrations were significantly higher in Native Americans than in whites. Twenty-eight percent of 80 Alabama white hemochromatosis probands with HFE C282Y homozygosity previously reported having Native American ancestry, but the possible effect of this ancestry on hemochromatosis phenotypes was unknown. Methods We compiled observations in these 80 probands and used univariate and multivariate methods to analyze associations of age, sex, Native American ancestry (as a dichotomous variable), report of ethanol consumption (as a dichotomous variable), percentage transferrin saturation and loge serum ferritin concentration at diagnosis, quantities of iron removed by phlebotomy to achieve iron depletion, and quantities of excess iron removed by phlebotomy. Results In a univariate analysis in which probands were grouped by sex, there were no significant differences in reports of ethanol consumption, transferrin saturation, loge serum ferritin concentration, quantities of iron removed to achieve iron depletion, and quantities of excess iron removed by phlebotomy in probands who reported Native American ancestry than in those who did not. In multivariate analyses, transferrin saturation (as a dependent variable) was not significantly associated with any of the available variables, including reports of Native American ancestry and ethanol consumption. The independent variable quantities of excess iron removed by phlebotomy was significantly associated with loge serum ferritin used as a dependent variable (p < 0.0001), but not with reports of Native American ancestry or reports of ethanol consumption. Loge serum ferritin was the only independent variable significantly associated with quantities of excess iron removed by phlebotomy used as a dependent variable (p < 0.0001) (p < 0.0001; ANOVA of regression). Conclusion We conclude that the iron-related phenotypes of hemochromatosis probands with HFE C282Y homozygosity are similar in those with and without Native American ancestry reports. PMID:16533407
van der Molen, Thys; Fletcher, Monica; Price, David
Asthma is a highly heterogeneous disease that can be classified into different clinical phenotypes, and treatment may be tailored accordingly. However, factors beyond purely clinical traits, such as patient attitudes and behaviors, can also have a marked impact on treatment outcomes. The objective of this study was to further analyze data from the REcognise Asthma and LInk to Symptoms and Experience (REALISE) Europe survey, to identify distinct patient groups sharing common attitudes toward asthma and its management. Factor analysis of respondent data (N = 7,930) from the REALISE Europe survey consolidated the 34 attitudinal variables provided by the study population into a set of 8 summary factors. Cluster analyses were used to identify patient clusters that showed similar attitudes and behaviors toward each of the 8 summary factors. Five distinct patient clusters were identified and named according to the key characteristics comprising that cluster: "Confident and self-managing," "Confident and accepting of their asthma," "Confident but dependent on others," "Concerned but confident in their health care professional (HCP)," and "Not confident in themselves or their HCP." Clusters showed clear variability in attributes such as degree of confidence in managing their asthma, use of reliever and preventer medication, and level of asthma control. The 5 patient clusters identified in this analysis displayed distinctly different personal attitudes that would require different approaches in the consultation room certainly for asthma but probably also for other chronic diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Oral phenotype and scoring of vascular Ehlers-Danlos syndrome: a case-control study.
Ferré, François Côme; Frank, Michael; Gogly, Bruno; Golmard, Lisa; Naveau, Adrien; Chérifi, Hafida; Emmerich, Joseph; Gaultier, Frédérick; Berdal, Ariane; Jeunemaitre, Xavier; Fournier, Benjamin P J
2012-01-01
Vascular Ehlers-Danlos syndrome (vEDS) is a rare genetic condition related to mutations in the COL3A1 gene, responsible of vascular, digestive and uterine accidents. Difficulty of clinical diagnosis has led to the design of diagnostic criteria, summarised in the Villefranche classification. The goal was to assess oral features of vEDS. Gingival recession is the only oral sign recognised as a minor diagnostic criterion. The authors aimed to check this assumption since bibliographical search related to gingival recession in vEDS proved scarce. Prospective case-control study. Dental surgery department in a French tertiary hospital. 17 consecutive patients with genetically proven vEDS, aged 19-55 years, were compared with 46 age- and sex-matched controls. Complete oral examination (clinical and radiological) with standardised assessment of periodontal structure, temporomandibular joint function and dental characteristics were performed. COL3A1 mutations were identified by direct sequencing of genomic or complementary DNA. Prevalence of gingival recession was low among patients with vEDS, as for periodontitis. Conversely, patients showed marked gingival fragility, temporomandibular disorders, dentin formation defects, molar root fusion and increased root length. After logistic regression, three variables remained significantly associated to vEDS. These variables were integrated in a diagnostic oral score with 87.5% and 97% sensitivity and specificity, respectively. Gingival recession is an inappropriate diagnostic criterion for vEDS. Several new specific oral signs of the disease were identified, whose combination may be of greater value in diagnosing vEDS.
Hoppe, U C; Marbán, E; Johns, D C
2001-04-24
The long QT syndrome (LQTS) is a heritable disorder that predisposes to sudden cardiac death. LQTS is caused by mutations in ion channel genes including HERG and KCNE1, but the precise mechanisms remain unclear. To clarify this situation we injected adenoviral vectors expressing wild-type or LQT mutants of HERG and KCNE1 into guinea pig myocardium. End points at 48-72 h included electrophysiology in isolated myocytes and electrocardiography in vivo. HERG increased the rapid component, I(Kr), of the delayed rectifier current, thereby accelerating repolarization, increasing refractoriness, and diminishing beat-to-beat action potential variability. Conversely, HERG-G628S suppressed I(Kr) without significantly delaying repolarization. Nevertheless, HERG-G628S abbreviated refractoriness and increased beat-to-beat variability, leading to early afterdepolarizations (EADs). KCNE1 increased the slow component of the delayed rectifier, I(Ks), without clear phenotypic sequelae. In contrast, KCNE1-D76N suppressed I(Ks) and markedly slowed repolarization, leading to frequent EADs and electrocardiographic QT prolongation. Thus, the two genes predispose to sudden death by distinct mechanisms: the KCNE1 mutant flagrantly undermines cardiac repolarization, and HERG-G628S subtly facilitates the genesis and propagation of premature beats. Our ability to produce electrocardiographic long QT in vivo with a clinical KCNE1 mutation demonstrates the utility of somatic gene transfer in creating genotype-specific disease models.
USDA-ARS?s Scientific Manuscript database
Developmental ethanol exposure is able to induce Fetal Alcohol Spectrum Disorder (FASD) phenotypes in Japanese rice fish (Oryzias latipes). This study investigated possible differential expression of cannabinoid receptor (cnr) mRNAs during Japanese rice fish embryogenesis and variability to ethanol-...
Breeding to adapt agriculture to climate change: affordable phenotyping solutions.
Araus, José L; Kefauver, Shawn C
2018-05-28
Breeding is one of the central pillars of adaptation of crops to climate change. However, phenotyping is a key bottleneck that is limiting breeding efficiency. The awareness of phenotyping as a breeding limitation is not only sustained by the lack of adequate approaches, but also by the perception that phenotyping is an expensive activity. Phenotyping is not just dependent on the choice of appropriate traits and tools (e.g. sensors) but relies on how these tools are deployed on their carrying platforms, the speed and volume of data extraction and analysis (throughput), the handling of spatial variability and characterization of environmental conditions, and finally how all the information is integrated and processed. Affordable high throughput phenotyping aims to achieve reasonably priced solutions for all the components comprising the phenotyping pipeline. This mini-review will cover current and imminent solutions for all these components, from the increasing use of conventional digital RGB cameras, within the category of sensors, to open-access cloud-structured data processing and the use of smartphones. Emphasis will be placed on field phenotyping, which is really the main application for day-to-day phenotyping. Copyright © 2018 Elsevier Ltd. All rights reserved.
2013-01-01
Background The taxonomic and phylogenetic relationships of the genus Phyllomedusa have been amply discussed. The marked morphological similarities among some species hamper the reliable identification of specimens and may often lead to their incorrect taxonomic classification on the sole basis of morphological traits. Phenotypic variation was observed among populations assigned to either P. azurea or P. hypochondrialis. In order to evaluate whether the variation observed in populations assigned to P. hypochondrialis is related to that in genotypes, a cytogenetic analysis was combined with phylogenetic inferences based on mitochondrial and nuclear sequences. Results The inter- and intra-population variation in the external morphology observed among the specimens analyzed in the present study do not reflect the phylogenetic relationships among populations. A monophyletic clade was recovered, grouping all the specimens identified as P. hypochondrialis and specimens assigned P. azurea from Minas Gerais state. This clade is characterized by conserved chromosomal morphology and a common C-banding pattern. Extensive variation in the nucleolar organizing region (NOR) was observed among populations, with four distinct NOR positions being recognized in the karyotypes. Intra-population polymorphism of the additional rDNA clusters observed in specimens from Barreiras, Bahia state, also highlights the marked genomic instability of the rDNA in the genome of this group. Based on the topology obtained in the phylogenetic analyses, the re-evaluation of the taxonomic status of the specimens from the southernmost population known in Brazil is recommended. Conclusions The results of this study support the need for a thorough revision of the phenotypic features used to discriminate P. azurea and P. hypochondrialis. The phylogenetic data presented here also contribute to an extension of the geographic range of P. hypochondrialis, which is known to occur in the Amazon basin and neighboring areas of the Cerrado savanna, where it may be sympatric with P. azurea, within contact zones. The misidentification of specimens may have led to inconsistencies in the original definition of the geographic range of P. azurea. The variability observed in the NOR of P. hypochondrialis reinforces the conclusion that these sites represent hotspots of rearrangement. Intraspecific variation in the location of these sites is the result of constant rearrangements that are not detected by classical cytogenetic methods or are traits of an ancestral, polymorphic karyotype, which would not be phylogenetically informative for this group. PMID:23937545
Age Dependent Variability in Gene Expression in Fischer 344 Rat Retina.
Recent evidence suggests older adults may be a sensitive population with regard to environmental exposure to toxic compounds. One source of this sensitivity could be an enhanced variability in response. Studies on phenotypic differences have suggested that variation in response d...
Kalueff, A V; Fox, M A; Gallagher, P S; Murphy, D L
2007-06-01
Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice.
Plastic flies: the regulation and evolution of trait variability in Drosophila.
Shingleton, Alexander W; Tang, Hui Yuan
2012-01-01
Individuals within species and populations vary. Such variation arises through environmental and genetic factors and ensures that no two individuals are identical. However, it is clear that not all traits show the same degree of intraspecific variation. Some traits, in particular secondary sexual characteristics used by males to compete for and attract females, are extremely variable among individuals in a population. Other traits, for example brain size in mammals, are not. Recent research has begun to explore the possibility that the extent of phenotypic variation (here referred to as "variability") may be a character itself and subject to natural selection. While these studies support the concept of variability as an evolvable trait, controversy remains over what precisely the trait is. At the heart of this controversy is the fact that there are very few examples of developmental mechanisms that regulate trait variability in response to any source of variation, be it environmental or genetic. Here, we describe a recent study from our laboratory that identifies such a mechanism. We then place the study in the context of current research on the regulation of trait variability, and discuss the implications for our understanding of the developmental regulation and evolution of phenotypic variation.
Zhou, Jin J.; Cho, Michael H.; Lange, Christoph; Lutz, Sharon; Silverman, Edwin K.; Laird, Nan M.
2015-01-01
Many correlated disease variables are analyzed jointly in genetic studies in the hope of increasing power to detect causal genetic variants. One approach involves assessing the relationship between each phenotype and each single nucleotide polymorphism (SNP) individually and using a Bonferroni correction for the effective number of tests conducted. Alternatively, one can apply a multivariate regression or a dimension reduction technique, such as principal component analysis (PCA), and test for the association with the principal components (PC) of the phenotypes rather than the individual phenotypes. Inspired by the previous approaches of combining phenotypes to maximize heritability at individual SNPs, in this paper, we propose to construct a maximally heritable phenotype (MaxH) by taking advantage of the estimated total heritability and co-heritability. The heritability and co-heritability only need to be estimated once, therefore our method is applicable to genome-wide scans. MaxH phenotype is a linear combination of the individual phenotypes with increased heritability and power over the phenotypes being combined. Simulations show that the heritability and power achieved agree well with the theory for large samples and two phenotypes. We compare our approach with commonly used methods and assess both the heritability and the power of the MaxH phenotype. Moreover we provide suggestions for how to choose the phenotypes for combination. An application of our approach to a COPD genome-wide association study shows the practical relevance. PMID:26111731
Shalev, Stavit Allon; Khayat, Morad; Etty, Daniel-Spiegl; Elpeleg, Orly
2015-03-01
Mutations in genes encoding the origin recognition complex subunits cause Meier-Gorlin syndrome. The disease manifests a triad of short stature, small ears, and small and/or absent patellae with variable expressivity. We report on the identification of a homozygous deleterious mutation in the ORC6 gene in previously described fetuses at the severe end of the Meier-Gorlin spectrum. The phenotype included severe intrauterine growth retardation, dislocation of knees, gracile bones, clubfeet, and small mandible and chest. To date, the clinical presentation of ORC6-associated Meier-Gorlin syndrome has been mild compared to other the phenotype associated with other loci. The present report expands the clinical phenotype associated with ORC6 mutations to include severely abnormal embryological development suggesting a possible genotype-phenotype correlation. © 2015 Wiley Periodicals, Inc.
Leite, P S S; Rodrigues, R; Silva, R N O; Pimenta, S; Medeiros, A M; Bento, C S; Gonçalves, L S A
2016-10-05
Capsicum baccatum is one of the most important chili peppers in South America, since this region is considered to be the center of origin and diversity of this species. In Brazil, C. baccatum has been widely explored by family farmers and there are different local names for each fruit phenotype, such as cambuci and dedo-de-moça (lady's finger). Although very popular among farmers and consumers, C. baccatum has been less extensively studied than other Capsicum species. This study describes the phenotypic and genotypic variability in C. baccatum var. pendulum accessions. Twenty-nine accessions from the Universidade Estadual do Norte Fluminense Darcy Ribeiro gene bank, and one commercial genotype ('BRS-Mari') were evaluated for 53 morphoagronomic descriptors (31 qualitative and 22 quantitative traits). In addition, accessions were genotyped using 30 microsatellite primers. Three accessions from the C. annuum complex were included in the molecular characterization. Nine of 31 qualitative descriptors were monomorphic, while all quantitative descriptors were highly significant different between accessions (P < 0.01). Using the unweighted pair group method using arithmetic averages, four groups were obtained based on multicategoric variables and five groups were obtained based on quantitative variables. In the genotyping analysis, 12 polymorphic simple sequence repeat primers amplified in C. baccatum with dissimilarity between accessions ranging from 0.13 to 0.91, permitting the formation of two distinct groups for Bayesian analysis. These results indicate wide variability among the accessions comparing phenotypic and genotypic data and revealed distinct patterns of dissimilarity between matrices, indicating that both steps are valuable for the characterization of C. baccatum var. pendulum accessions.
Phenotypic Variability Among Café-au-lait Macules in NF1
Boyd, Kevin P.; Gao, Liyan; Feng, Rui; Beasley, Mark; Messiaen, Ludwine; Korf, Bruce R.; Theos, Amy
2009-01-01
Background Cafe-au-lait macules (CALMs) in NF1 are an early and accessible phenotype in NF1, but have not been extensively studied. Objective To more fully characterize the phenotype of CALMs in patients with NF1. Methods Twenty-four patients with a diagnosis of NF1 confirmed through clinical diagnosis or molecular genetic testing were recruited from patients seen in the Genetics Department at the University of Alabama at Birmingham. CALM locations were mapped using standard digital photography. Pigment intensity was measured with a narrowband spectrophotometer, which estimates the relative amount of melanin (M) based on its absorption of visible light. The major response was defined as the difference between the mean M from the CALM and the mean M from the surrounding skin. The major response for each spot was compared to spots within an individual and across individuals in the study population. Results There was significant variability of the major response, primarily attributable to intrapersonal variability (48.4%, <0.0001) and secondly to interpersonal variability (33.0%, <0.0094). Subsequent analysis based on genetic mutation type showed significantly darker spots in individuals with germline mutations leading to haploinsufficiency. Limitations The study was performed on a small population of patients and the method utilized has not yet been used extensively for this purpose. Conclusions CALMs vary in pigment intensity not only across individuals, but also within individuals and this variability was unrelated to sun exposure. Further studies may help elucidate the molecular basis of this finding, leading to an increased understanding of the pathogenesis of CALMs in NF1. PMID:20605257
Massonnet, Catherine; Vile, Denis; Fabre, Juliette; Hannah, Matthew A.; Caldana, Camila; Lisec, Jan; Beemster, Gerrit T.S.; Meyer, Rhonda C.; Messerli, Gaëlle; Gronlund, Jesper T.; Perkovic, Josip; Wigmore, Emma; May, Sean; Bevan, Michael W.; Meyer, Christian; Rubio-Díaz, Silvia; Weigel, Detlef; Micol, José Luis; Buchanan-Wollaston, Vicky; Fiorani, Fabio; Walsh, Sean; Rinn, Bernd; Gruissem, Wilhelm; Hilson, Pierre; Hennig, Lars; Willmitzer, Lothar; Granier, Christine
2010-01-01
A major goal of the life sciences is to understand how molecular processes control phenotypes. Because understanding biological systems relies on the work of multiple laboratories, biologists implicitly assume that organisms with the same genotype will display similar phenotypes when grown in comparable conditions. We investigated to what extent this holds true for leaf growth variables and metabolite and transcriptome profiles of three Arabidopsis (Arabidopsis thaliana) genotypes grown in 10 laboratories using a standardized and detailed protocol. A core group of four laboratories generated similar leaf growth phenotypes, demonstrating that standardization is possible. But some laboratories presented significant differences in some leaf growth variables, sometimes changing the genotype ranking. Metabolite profiles derived from the same leaf displayed a strong genotype × environment (laboratory) component. Genotypes could be separated on the basis of their metabolic signature, but only when the analysis was limited to samples derived from one laboratory. Transcriptome data revealed considerable plant-to-plant variation, but the standardization ensured that interlaboratory variation was not considerably larger than intralaboratory variation. The different impacts of the standardization on phenotypes and molecular profiles could result from differences of temporal scale between processes involved at these organizational levels. Our findings underscore the challenge of describing, monitoring, and precisely controlling environmental conditions but also demonstrate that dedicated efforts can result in reproducible data across multiple laboratories. Finally, our comparative analysis revealed that small variations in growing conditions (light quality principally) and handling of plants can account for significant differences in phenotypes and molecular profiles obtained in independent laboratories. PMID:20200072
An Multivariate Distance-Based Analytic Framework for Connectome-Wide Association Studies
Shehzad, Zarrar; Kelly, Clare; Reiss, Philip T.; Craddock, R. Cameron; Emerson, John W.; McMahon, Katie; Copland, David A.; Castellanos, F. Xavier; Milham, Michael P.
2014-01-01
The identification of phenotypic associations in high-dimensional brain connectivity data represents the next frontier in the neuroimaging connectomics era. Exploration of brain-phenotype relationships remains limited by statistical approaches that are computationally intensive, depend on a priori hypotheses, or require stringent correction for multiple comparisons. Here, we propose a computationally efficient, data-driven technique for connectome-wide association studies (CWAS) that provides a comprehensive voxel-wise survey of brain-behavior relationships across the connectome; the approach identifies voxels whose whole-brain connectivity patterns vary significantly with a phenotypic variable. Using resting state fMRI data, we demonstrate the utility of our analytic framework by identifying significant connectivity-phenotype relationships for full-scale IQ and assessing their overlap with existent neuroimaging findings, as synthesized by openly available automated meta-analysis (www.neurosynth.org). The results appeared to be robust to the removal of nuisance covariates (i.e., mean connectivity, global signal, and motion) and varying brain resolution (i.e., voxelwise results are highly similar to results using 800 parcellations). We show that CWAS findings can be used to guide subsequent seed-based correlation analyses. Finally, we demonstrate the applicability of the approach by examining CWAS for three additional datasets, each encompassing a distinct phenotypic variable: neurotypical development, Attention-Deficit/Hyperactivity Disorder diagnostic status, and L-dopa pharmacological manipulation. For each phenotype, our approach to CWAS identified distinct connectome-wide association profiles, not previously attainable in a single study utilizing traditional univariate approaches. As a computationally efficient, extensible, and scalable method, our CWAS framework can accelerate the discovery of brain-behavior relationships in the connectome. PMID:24583255
Aposematism and crypsis are not enough to explain dorsal polymorphism in the Iberian adder
NASA Astrophysics Data System (ADS)
Martínez-Freiría, Fernando; Pérez i de Lanuza, Guillem; Pimenta, António A.; Pinto, Tiago; Santos, Xavier
2017-11-01
Aposematic organisms can show phenotypic variability across their distributional ranges. The ecological advantages of this variability have been scarcely studied in vipers. We explored this issue in Vipera seoanei, a species that exhibits five geographically structured dorsal colour phenotypes across Northern Iberia: two zigzag patterned (Classic and Cantabrica), one dorsal-strip patterned (Bilineata), one even grey (Uniform), and one melanistic (Melanistic). We compared predation rates (raptors and mammals) on plasticine models resembling each colour phenotype in three localities. Visual modelling techniques were used to infer detectability (i.e. conspicuousness) of each model type for visually guided predators (i.e. diurnal raptors). We hypothesize that predation rates will be lower for the two zigzag models (aposematism hypothesis) and that models with higher detectability would show higher predation rates (detectability hypothesis). Classic and Bilineata models were the most conspicuous, while Cantabrica and Uniform were the less. Melanistic presented an intermediate conspicuousness. Predation rate was low (3.24% of models) although there was variation in attack frequency among models. Zigzag models were scarcely predated supporting the aposematic role of the zigzag pattern in European vipers to reduce predation (aposematism hypothesis). From the non-zigzag models, high predation occurred on Bilineata and Melanistic models, and low on Uniform models, partially supporting our detectability hypothesis. These results suggest particular evolutionary advantages for non-zigzag phenotypes such as better performance of Melanistic phenotypes in cold environments or better crypsis of Uniform phenotypes. Polymorphism in V. seoanei may respond to a complex number of forces acting differentially across an environmental gradient.
Patterns of genomic and phenomic diversity in wine and table grapes
Migicovsky, Zoë; Sawler, Jason; Gardner, Kyle M; Aradhya, Mallikarjuna K; Prins, Bernard H; Schwaninger, Heidi R; Bustamante, Carlos D; Buckler, Edward S; Zhong, Gan-Yuan; Brown, Patrick J; Myles, Sean
2017-01-01
Grapes are one of the most economically and culturally important crops worldwide, and they have been bred for both winemaking and fresh consumption. Here we evaluate patterns of diversity across 33 phenotypes collected over a 17-year period from 580 table and wine grape accessions that belong to one of the world’s largest grape gene banks, the grape germplasm collection of the United States Department of Agriculture. We find that phenological events throughout the growing season are correlated, and quantify the marked difference in size between table and wine grapes. By pairing publicly available historical phenotype data with genome-wide polymorphism data, we identify large effect loci controlling traits that have been targeted during domestication and breeding, including hermaphroditism, lighter skin pigmentation and muscat aroma. Breeding for larger berries in table grapes was traditionally concentrated in geographic regions where Islam predominates and alcohol was prohibited, whereas wine grapes retained the ancestral smaller size that is more desirable for winemaking in predominantly Christian regions. We uncover a novel locus with a suggestive association with berry size that harbors a signature of positive selection for larger berries. Our results suggest that religious rules concerning alcohol consumption have had a marked impact on patterns of phenomic and genomic diversity in grapes. PMID:28791127
Patterns of genomic and phenomic diversity in wine and table grapes.
Migicovsky, Zoë; Sawler, Jason; Gardner, Kyle M; Aradhya, Mallikarjuna K; Prins, Bernard H; Schwaninger, Heidi R; Bustamante, Carlos D; Buckler, Edward S; Zhong, Gan-Yuan; Brown, Patrick J; Myles, Sean
2017-01-01
Grapes are one of the most economically and culturally important crops worldwide, and they have been bred for both winemaking and fresh consumption. Here we evaluate patterns of diversity across 33 phenotypes collected over a 17-year period from 580 table and wine grape accessions that belong to one of the world's largest grape gene banks, the grape germplasm collection of the United States Department of Agriculture. We find that phenological events throughout the growing season are correlated, and quantify the marked difference in size between table and wine grapes. By pairing publicly available historical phenotype data with genome-wide polymorphism data, we identify large effect loci controlling traits that have been targeted during domestication and breeding, including hermaphroditism, lighter skin pigmentation and muscat aroma. Breeding for larger berries in table grapes was traditionally concentrated in geographic regions where Islam predominates and alcohol was prohibited, whereas wine grapes retained the ancestral smaller size that is more desirable for winemaking in predominantly Christian regions. We uncover a novel locus with a suggestive association with berry size that harbors a signature of positive selection for larger berries. Our results suggest that religious rules concerning alcohol consumption have had a marked impact on patterns of phenomic and genomic diversity in grapes.
Wiskott-Aldrich syndrome protein deficiency in B cells results in impaired peripheral homeostasis
Meyer-Bahlburg, Almut; Becker-Herman, Shirly; Humblet-Baron, Stephanie; Khim, Socheath; Weber, Michele; Bouma, Gerben; Thrasher, Adrian J.; Batista, Facundo D.
2008-01-01
To more precisely identify the B-cell phenotype in Wiskott-Aldrich syndrome (WAS), we used 3 distinct murine in vivo models to define the cell intrinsic requirements for WAS protein (WASp) in central versus peripheral B-cell development. Whereas WASp is dispensable for early bone marrow B-cell development, WASp deficiency results in a marked reduction in each of the major mature peripheral B-cell subsets, exerting the greatest impact on marginal zone and B1a B cells. Using in vivo bromodeoxyuridine labeling and in vitro functional assays, we show that these deficits reflect altered peripheral homeostasis, partially resulting from an impairment in integrin function, rather than a developmental defect. Consistent with these observations, we also show that: (1) WASp expression levels increase with cell maturity, peaking in those subsets exhibiting the greatest sensitivity to WASp deficiency; (2) WASp+ murine B cells exhibit a marked selective advantage beginning at the late transitional B-cell stage; and (3) a similar in vivo selective advantage is manifest by mature WASp+ human B cells. Together, our data provide a better understanding of the clinical phenotype of WAS and suggest that gene therapy might be a useful approach to rescue altered B-cell homeostasis in this disease. PMID:18687984
Effects of Verb Familiarity on Finiteness Marking in Children with Specific Language Impairment
ERIC Educational Resources Information Center
Abel, Alyson D.; Rice, Mabel L.; Bontempo, Daniel E.
2015-01-01
Purpose: Children with specific language impairment (SLI) have known deficits in the verb lexicon and finiteness marking. This study investigated a potential relationship between these 2 variables in children with SLI and 2 control groups considering predictions from 2 different theoretical perspectives, morphosyntactic versus morphophonological.…
Homosexuality via canalized sexual development: a testing protocol for a new epigenetic model.
Rice, William R; Friberg, Urban; Gavrilets, Sergey
2013-09-01
We recently synthesized and reinterpreted published studies to advance an epigenetic model for the development of homosexuality (HS). The model is based on epigenetic marks laid down in response to the XX vs. XY karyotype in embryonic stem cells. These marks boost sensitivity to testosterone in XY fetuses and lower it in XX fetuses, thereby canalizing sexual development. Our model predicts that a subset of these canalizing epigenetic marks stochastically carry over across generations and lead to mosaicism for sexual development in opposite-sex offspring--the homosexual phenotype being one such outcome. Here, we begin by outlining why HS has been under-appreciated as a commonplace phenomenon in nature, and how this trend is currently being reversed in the field of neurobiology. We next briefly describe our epigenetic model of HS, develop a set of predictions, and describe how epigenetic profiles of human stem cells can provide for a strong test of the model. © 2013 The Authors. Bioessays published by WILEY Periodicals, Inc.
Homosexuality via canalized sexual development: A testing protocol for a new epigenetic model
Rice, William R; Friberg, Urban; Gavrilets, Sergey
2013-01-01
We recently synthesized and reinterpreted published studies to advance an epigenetic model for the development of homosexuality (HS). The model is based on epigenetic marks laid down in response to the XX vs. XY karyotype in embryonic stem cells. These marks boost sensitivity to testosterone in XY fetuses and lower it in XX fetuses, thereby canalizing sexual development. Our model predicts that a subset of these canalizing epigenetic marks stochastically carry over across generations and lead to mosaicism for sexual development in opposite-sex offspring – the homosexual phenotype being one such outcome. Here, we begin by outlining why HS has been under-appreciated as a commonplace phenomenon in nature, and how this trend is currently being reversed in the field of neurobiology. We next briefly describe our epigenetic model of HS, develop a set of predictions, and describe how epigenetic profiles of human stem cells can provide for a strong test of the model. PMID:23868698
Clinical and molecular characterization of KCNT1-related severe early-onset epilepsy
Nair, Umesh; Malhotra, Sony; Meyer, Esther; Trump, Natalie; Gazina, Elena V.; Papandreou, Apostolos; Ngoh, Adeline; Ackermann, Sally; Ambegaonkar, Gautam; Appleton, Richard; Desurkar, Archana; Eltze, Christin; Kneen, Rachel; Kumar, Ajith V.; Lascelles, Karine; Montgomery, Tara; Ramesh, Venkateswaran; Samanta, Rajib; Scott, Richard H.; Tan, Jeen; Whitehouse, William; Poduri, Annapurna; Scheffer, Ingrid E.; Chong, W.K. “Kling”; Cross, J. Helen; Topf, Maya; Petrou, Steven
2018-01-01
Objective To characterize the phenotypic spectrum, molecular genetic findings, and functional consequences of pathogenic variants in early-onset KCNT1 epilepsy. Methods We identified a cohort of 31 patients with epilepsy of infancy with migrating focal seizures (EIMFS) and screened for variants in KCNT1 using direct Sanger sequencing, a multiple-gene next-generation sequencing panel, and whole-exome sequencing. Additional patients with non-EIMFS early-onset epilepsy in whom we identified KCNT1 variants on local diagnostic multiple gene panel testing were also included. When possible, we performed homology modeling to predict the putative effects of variants on protein structure and function. We undertook electrophysiologic assessment of mutant KCNT1 channels in a xenopus oocyte model system. Results We identified pathogenic variants in KCNT1 in 12 patients, 4 of which are novel. Most variants occurred de novo. Ten patients had a clinical diagnosis of EIMFS, and the other 2 presented with early-onset severe nocturnal frontal lobe seizures. Three patients had a trial of quinidine with good clinical response in 1 patient. Computational modeling analysis implicates abnormal pore function (F346L) and impaired tetramer formation (F502V) as putative disease mechanisms. All evaluated KCNT1 variants resulted in marked gain of function with significantly increased channel amplitude and variable blockade by quinidine. Conclusions Gain-of-function KCNT1 pathogenic variants cause a spectrum of severe focal epilepsies with onset in early infancy. Currently, genotype-phenotype correlations are unclear, although clinical outcome is poor for the majority of cases. Further elucidation of disease mechanisms may facilitate the development of targeted treatments, much needed for this pharmacoresistant genetic epilepsy. PMID:29196579
Rare NaV1.7 variants associated with painful diabetic peripheral neuropathy
Blesneac, Iulia; Themistocleous, Andreas C.; Fratter, Carl; Conrad, Linus J.; Ramirez, Juan D.; Cox, James J.; Tesfaye, Solomon; Shillo, Pallai R.; Rice, Andrew S.C.; Tucker, Stephen J.
2018-01-01
Abstract Diabetic peripheral neuropathy (DPN) is a common disabling complication of diabetes. Almost half of the patients with DPN develop neuropathic pain (NeuP) for which current analgesic treatments are inadequate. Understanding the role of genetic variability in the development of painful DPN is needed for improved understanding of pain pathogenesis for better patient stratification in clinical trials and to target therapy more appropriately. Here, we examined the relationship between variants in the voltage-gated sodium channel NaV1.7 and NeuP in a deeply phenotyped cohort of patients with DPN. Although no rare variants were found in 78 participants with painless DPN, we identified 12 rare NaV1.7 variants in 10 (out of 111) study participants with painful DPN. Five of these variants had previously been described in the context of other NeuP disorders and 7 have not previously been linked to NeuP. Those patients with rare variants reported more severe pain and greater sensitivity to pressure stimuli on quantitative sensory testing. Electrophysiological characterization of 2 of the novel variants (M1852T and T1596I) demonstrated that gain of function changes as a consequence of markedly impaired channel fast inactivation. Using a structural model of NaV1.7, we were also able to provide further insight into the structural mechanisms underlying fast inactivation and the role of the C-terminal domain in this process. Our observations suggest that rare NaV1.7 variants contribute to the development NeuP in patients with DPN. Their identification should aid understanding of sensory phenotype, patient stratification, and help target treatments effectively. PMID:29176367
Stewart, Garrick C.; Lopez-Molina, Javier; Gottumukkala, Raju V.; Rosner, Gregg F.; Anello, Mary S.; Hecht, Jonathan L.; Winters, Gayle L.; Padera, Robert F.; Baughman, Kenneth L.; Lipes, Myra A.
2011-01-01
Background Multiple viruses have been isolated from the heart, but their significance remains controversial. We sought to determine the prevalence of cardiotropic viruses in endomyocardial biopsy (EMB) samples from adult heart failure (HF) patients and to define the clinicopathologic profile of patients exhibiting viral positivity. Methods and Results EMB from 100 patients (median EF 30%, IQR 20–45%) presenting for cardiomyopathy evaluation (median symptom duration 5 months, IQR 1–13 months) were analyzed by polymerase chain reaction for adenovirus, cytomegalovirus, enteroviruses, Epstein-Barr virus, and parvovirus B19. Each isolate was sequenced and viral load was determined. Parvovirus B19 was the only virus detected in EMB samples (12% of subjects). No subject had anti-parvovirus IgM antibodies, but all had IgG antibodies, suggesting viral persistence. The clinical presentation of parvovirus-positive patients was markedly heterogeneous, with both acute and chronic HF, variable ventricular function, and ischemic cardiomyopathy. No subject met Dallas histopathological criteria for active or borderline myocarditis. Two patients with a positive cardiac MRI and presumed “parvomyocarditis” had similar viral loads as autopsy controls without heart disease. The oldest parvovirus-positive subjects were positive for genotype 2, suggesting lifelong persistence in heart tissue. Conclusions Parvovirus B19 was the only virus isolated from EMB samples in this series of adult HF patients from the United States. Positivity was associated with a wide array of clinical presentations and heart failure phenotypes. Our studies do not support a causative role for parvovirus B19 persistence in HF and therefore advocate against the use of antiviral therapy for these patients. PMID:21097605
Gershony, L C; Penedo, M C T; Davis, B W; Murphy, W J; Helps, C R; Lyons, L A
2014-12-01
Coat colours and patterns are highly variable in cats and are determined mainly by several genes with Mendelian inheritance. A 2-bp deletion in agouti signalling protein (ASIP) is associated with melanism in domestic cats. Bengal cats are hybrids between domestic cats and Asian leopard cats (Prionailurus bengalensis), and the charcoal coat colouration/pattern in Bengals presents as a possible incomplete melanism. The complete coding region of ASIP was directly sequenced in Asian leopard, domestic and Bengal cats. Twenty-seven variants were identified between domestic and leopard cats and were investigated in Bengals and Savannahs, a hybrid with servals (Leptailurus serval). The leopard cat ASIP haplotype was distinguished from domestic cat by four synonymous and four non-synonymous exonic SNPs, as well as 19 intronic variants, including a 42-bp deletion in intron 4. Fifty-six of 64 reported charcoal cats were compound heterozygotes at ASIP, with leopard cat agouti (A(P) (be) ) and domestic cat non-agouti (a) haplotypes. Twenty-four Bengals had an additional unique haplotype (A2) for exon 2 that was not identified in leopard cats, servals or jungle cats (Felis chaus). The compound heterozygote state suggests the leopard cat allele, in combination with the recessive non-agouti allele, influences Bengal markings, producing a darker, yet not completely melanistic coat. This is the first validation of a leopard cat allele segregating in the Bengal breed and likely affecting their overall pelage phenotype. Genetic testing services need to be aware of the possible segregation of wild felid alleles in all assays performed on hybrid cats. © 2014 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.
Association between tuberculosis and atopy: role of the CD14-159C/T polymorphism.
Baççioğlu Kavut, A; Kalpaklioğlu, F; Birben, E; Ayaslioğlu, E
2012-01-01
The development of allergic hypersensitivity depends on both genetic and environmental factors. Different amounts of microbial products could affect patients with atopy and different genotypes. We aimed to evaluate the role of varying degrees of exposure to infection by Mycobacterium tuberculosis (tuberculosis) in atopic patients and analyze the association with genetic factors. We performed CD14-159C/T genotyping in atopic patients (n=118) and healthy individuals (n=62) and recorded the following variables: rural lifestyle, exposure to persons with tuberculosis, bacille Calmette-Guerin (BCG) vaccination, tuberculin skin test (TST), skin prick test, and phenotypes of atopy. Blood samples were analyzed for soluble-CD14 (sCD14), interferon (IFN) y, total immunoglobulin (Ig) E, and eosinophil levels. A score was used to identify the likelihood of exposure to tuberculosis. Almost all the study participants had had a BCG vaccination, and half had a positive TST result. No differences were observed between atopic patients with high/low tuberculosis scores and CD14 genotypes in terms of atopic phenotypes, allergen sensitization, and levels of total IgE, sCD14, and IFN-y. However, the frequency of asthma was higher in atopic patients with a high tuberculosis score and was not associated with CD14 genotypes. Eosinophil counts in blood were higher in atopic patients with a high tuberculosis score and CC+CT genotypes. These results suggest that the C allele of the CD14-159C/T polymorphism has a marked effect on eosinophil levels in atopic patients with increased exposure to tuberculosis. In addition, the degree of exposure to tuberculosis in atopic patients may modify the development of asthma.
Román, Federico; Cantón, Rafael; Pérez-Vázquez, María; Baquero, Fernando; Campos, José
2004-04-01
The persistence and variability of 188 Haemophilus influenzae isolates in respiratory tract of 30 cystic fibrosis (CF) patients over the course of 7 years was studied. Antibiotic susceptibility testing, DNA fingerprinting, and analysis of outer membrane protein profiles were performed on all isolates. A total of 115 distinct pulsed-field gel electrophoresis profiles were identified. Ninety percent of patients were cocolonized with two or more clones over the studied period. A third of the patients were cross-colonized with one or two H. influenzae strains; 11% of the clones persisted for 3 or more months. Biotype, outer membrane protein profiles, and resistance profiles showed variation along the studied period, even in persisting clones. Four isolates (2.1%) recovered from 3 patients were type f capsulate, with three of them belonging to the same clone. beta-Lactamase production was detected in 23.9% of isolates while 7% of the beta-lactamase-negative isolates presented diminished susceptibility to ampicillin (beta-lactamase-negative ampicillin resistance phenotype). Remarkably, 21.3% of the H. influenzae isolates presented decreased susceptibility to ciprofloxacin, which was mainly observed in persisting clones. Of the H. influenzae isolates from CF patients, 18 (14.5%) were found to be hypermutable in comparison with 1 (1.4%) from non-CF patients (P < 0.0001). Ten patients (33.3%) were colonized by hypermutable strains over the study period. A multiresistance phenotype and long-term clonal persistence were significantly associated in some cases for up to 7 years. These results suggest that H. influenzae bronchial colonization in CF patients is a dynamic process, but better-adapted clones can persist for long periods of time.
Román, Federico; Cantón, Rafael; Pérez-Vázquez, María; Baquero, Fernando; Campos, José
2004-01-01
The persistence and variability of 188 Haemophilus influenzae isolates in respiratory tract of 30 cystic fibrosis (CF) patients over the course of 7 years was studied. Antibiotic susceptibility testing, DNA fingerprinting, and analysis of outer membrane protein profiles were performed on all isolates. A total of 115 distinct pulsed-field gel electrophoresis profiles were identified. Ninety percent of patients were cocolonized with two or more clones over the studied period. A third of the patients were cross-colonized with one or two H. influenzae strains; 11% of the clones persisted for 3 or more months. Biotype, outer membrane protein profiles, and resistance profiles showed variation along the studied period, even in persisting clones. Four isolates (2.1%) recovered from 3 patients were type f capsulate, with three of them belonging to the same clone. β-Lactamase production was detected in 23.9% of isolates while 7% of the β-lactamase-negative isolates presented diminished susceptibility to ampicillin (β-lactamase-negative ampicillin resistance phenotype). Remarkably, 21.3% of the H. influenzae isolates presented decreased susceptibility to ciprofloxacin, which was mainly observed in persisting clones. Of the H. influenzae isolates from CF patients, 18 (14.5%) were found to be hypermutable in comparison with 1 (1.4%) from non-CF patients (P < 0.0001). Ten patients (33.3%) were colonized by hypermutable strains over the study period. A multiresistance phenotype and long-term clonal persistence were significantly associated in some cases for up to 7 years. These results suggest that H. influenzae bronchial colonization in CF patients is a dynamic process, but better-adapted clones can persist for long periods of time. PMID:15070988
Mazzeo, Anna; Russo, Massimo; Di Bella, Gianluca; Minutoli, Fabio; Stancanelli, Claudia; Gentile, Luca; Baldari, Sergio; Carerj, Scipione; Toscano, Antonio; Vita, Giuseppe
2015-07-22
Familial amyloid polyneuropathy related to transthyretin gene (TTR-FAP) is a life-threatening disease transmitted as an autosomal dominant trait. Val30Met mutation accounts for the majority of the patients with large endemic foci especially in Portugal, Sweden and Japan. However, more than one hundred other mutations have been described worldwide. A great phenotypic variability among patients with late- and early-onset has been reported. To present a detailed report of TTR-FAP patients diagnosed in our tertiary neuromuscular center, in a 20-year period. Clinical informations were gathered through the database of our center. The study involved 76 individuals carrying a TTR-FAP mutation. Three phenotypes were identified, each corresponding to a different TTR variant, homogeneous within and heterogeneous between each other: i) Glu89Gln mutation, characterised by 5th - 6th decade onset, neuropathy as presenting symptoms, early heart dysfunction, cardiomyopathy as major cause of mortality followed by dysautonomia and cachexia; ii) Phe64Leu mutation, marked by familiarity reported in one-half of cases, late onset, severe peripheral neuropathy, moderate dysautonomia and mild cardiomyopathy, death for wasting syndrome; iii) Thr49Ala mutation, distinguished by onset in the 5th decade, autonomic disturbances as inaugural symptoms which may remain isolated for many years, moderate polyneuropathy, cachexia as major cause of mortality followed by cardiomyopathy. This survey highlighted a prevalence of 8.8/1,000,000 in Sicily Island. Good knowledge of the natural history of the disease according to different TTR mutations allow clinicians to optimise multiprofessional care for patients and to offer carriers a personalized follow-up to reveal first signs of the disease.
Chromatin organization as an indicator of glucocorticoid induced natural killer cell dysfunction.
Misale, Michael S; Witek Janusek, Linda; Tell, Dina; Mathews, Herbert L
2018-01-01
It is well-established that psychological distress reduces natural killer cell immune function and that this reduction can be due to the stress-induced release of glucocorticoids. Glucocorticoids are known to alter epigenetic marks associated with immune effector loci, and are also known to influence chromatin organization. The purpose of this investigation was to assess the effect of glucocorticoids on natural killer cell chromatin organization and to determine the relationship of chromatin organization to natural killer cell effector function, e.g. interferon gamma production. Interferon gamma production is the prototypic cytokine produced by natural killer cells and is known to modulate both innate and adaptive immunity. Glucocorticoid treatment of human peripheral blood mononuclear cells resulted in a significant reduction in interferon gamma production. Glucocorticoid treatment also resulted in a demonstrable natural killer cell nuclear phenotype. This phenotype was localization of the histone, post-translational epigenetic mark, H3K27me3, to the nuclear periphery. Peripheral nuclear localization of H3K27me3 was directly related to cellular levels of interferon gamma. This nuclear phenotype was determined by direct visual inspection and by use of an automated, high through-put technology, the Amnis ImageStream. This technology combines the per-cell information content provided by standard microscopy with the statistical significance afforded by large sample sizes common to standard flow cytometry. Most importantly, this technology provides for a direct assessment of the localization of signal intensity within individual cells. The results demonstrate glucocorticoids to dysregulate natural killer cell function at least in part through altered H3K27me3 nuclear organization and demonstrate H3K27me3 chromatin organization to be a predictive indicator of glucocorticoid induced immune dysregulation of natural killer cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Chen, Sinuo; Li, Renren; Cheng, Chun; Xu, Jing-Ying; Jin, Caixia; Gao, Furong; Wang, Juan; Zhang, Jieping; Zhang, Jingfa; Wang, Hong; Lu, Lixia; Xu, Guo-Tong; Tian, Haibin
2018-03-07
Macrophages play critical roles in wound healing process. They switch from "classically activated" (M1) phenotype in the early inflammatory phase to "alternatively activated" (M2) phenotype in the later healing phase. However, the dynamic process of macrophage phenotype switching in diabetic wounds burdened with bacteria is unclear. In this report, Pseudomonas aeruginosa, frequently detected in diabetic foot ulcers, was inoculated into cutaneous wounds of db/db diabetic mice to mimic bacterium-infected diabetic wound healing. We observed that P. aeruginosa infection impaired diabetic wound healing and quickly promoted the expression of pro-inflammatory genes (M1 macrophage markers) tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β) and il-6 in wounds. The expression of markers of M2 macrophages, including il-10, arginase-1, and ym1 were also upregulated. In addition, similar gene expression patterns were observed in macrophages isolated directly from wounds. Immunostaining showed that P. aeruginosa infection increased both the ratios of M1 and M2 macrophages in wounds compared with that in control groups, which was further confirmed by in vitro culturing macrophages with P. aeruginosa and skin fibroblast conditioned medium. However, the ratios of the expression levels of pro-inflammatory genes to anti-inflammatory gene il-10 was increased markedly in P. aeruginosa infected wounds and macrophages compared with that in control groups, and P. aeruginosa prolonged the presence of M1 macrophages in the wounds. These data demonstrated that P. aeruginosa in diabetic wounds activates a mixed M1/M2 macrophage phenotype with an excessive activation of M1 phenotype or relatively inadequate activation of M2 phenotype. © 2018 International Federation for Cell Biology.
John R. Jones; Norbert V. DeByle
1985-01-01
The broad genotypic variability in quaking aspen (Populus tremuloides Michx.), that results in equally broad phenotypic variability among clones is important to the ecology and management of this species. This chapter considers principles of aspen genetics and variation, variation in aspen over its range, and local variation among clones. For a more...
Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview.
Andreoli, Virginia; Sprovieri, Francesca
2017-01-18
Human exposure to mercury is still a major public health concern. In this context, children have a higher susceptibility to adverse neurological mercury effects, compared to adults with similar exposures. Moreover, there exists a marked variability of personal response to detrimental mercury action, in particular among population groups with significant mercury exposure. New scientific evidence on genetic backgrounds has raised the issue of whether candidate susceptibility genes can make certain individuals more or less vulnerable to mercury toxicity. In this review, the aim is to evaluate a new genetic dimension and its involvement in mercury risk assessment, focusing on the important role played by relevant polymorphisms, located in attractive gene targets for mercury toxicity. Existing original articles on epidemiologic research which report a direct link between the genetic basis of personal vulnerability and different mercury repercussions on human health will be reviewed. Based on this evidence, a careful evaluation of the significant markers of susceptibility will be suggested, in order to obtain a powerful positive "feedback" to improve the quality of life. Large consortia of studies with clear phenotypic assessments will help clarify the "window of susceptibility" in the human health risks due to mercury exposure.
Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview
Andreoli, Virginia; Sprovieri, Francesca
2017-01-01
Human exposure to mercury is still a major public health concern. In this context, children have a higher susceptibility to adverse neurological mercury effects, compared to adults with similar exposures. Moreover, there exists a marked variability of personal response to detrimental mercury action, in particular among population groups with significant mercury exposure. New scientific evidence on genetic backgrounds has raised the issue of whether candidate susceptibility genes can make certain individuals more or less vulnerable to mercury toxicity. In this review, the aim is to evaluate a new genetic dimension and its involvement in mercury risk assessment, focusing on the important role played by relevant polymorphisms, located in attractive gene targets for mercury toxicity. Existing original articles on epidemiologic research which report a direct link between the genetic basis of personal vulnerability and different mercury repercussions on human health will be reviewed. Based on this evidence, a careful evaluation of the significant markers of susceptibility will be suggested, in order to obtain a powerful positive “feedback” to improve the quality of life. Large consortia of studies with clear phenotypic assessments will help clarify the “window of susceptibility” in the human health risks due to mercury exposure. PMID:28106810
Idiopathic Inflammatory Myopathies
Barohn, Richard J.; Amato, Anthony
2014-01-01
The idiopathic inflammatory myopathies (IIM) consist of rare heterogenous autoimmune disorders that present with marked proximal and symmetric muscle weakness, except for distal and asymmetric weakness in inclusion body myositis (IBM). Besides frequent creatine kinase (CK) elevation, the electromyogram confirms the presence of an irritative myopathy. Extramuscular involvement affects a significant number of cases with interstitial lung disease (ILD), cutaneous in dermatomyositis (DM), systemic or joint manifestations and increased risk of malignancy especially in DM. Myositis specific autoantibodies influence phenotype of the IIM. Jo-1 antibodies are frequently associated with ILD and the newly described HMG-CoA reductase antibodies are characteristic of autoimmune necrotizing myopathy (NM). Muscle pathology ranges from inflammatory exudates of variable distribution, to intact muscle fiber invasion, necrosis, phagocytosis and in the case of IBM rimmed vacuoles and protein deposits. Despite many similarities, the IIM are a quite heterogeneous from the histopathological and pathogenetic standpoints in addition to some clinical and treatment-response difference. The field has witnessed significant advances in our understanding of pathophysiology and treatment of these rare disorders. In this review, we focus on DM, polymyositis (PM) and NM and examine current and promising therapies. The reader interested in more details on IBM is referred to the corresponding chapter in this issue. PMID:25037081
Auray-Blais, Christiane; Lavoie, Pamela; Boutin, Michel; Abaoui, Mona
2017-04-06
Fabry disease is a complex, panethnic lysosomal storage disorder. It is characterized by the accumulation of glycosphingolipids in tissues, organs, the vascular endothelium, and biological fluids. The reported incidence in different populations is quite variable, ranging from 1:1400 to 1:117,000. Its complexity lies in the marked genotypic and phenotypic heterogeneity. Despite the fact that it is an X-linked disease, more than 600 mutations affect both males and females. In fact, some females may be affected as severely as males. The purpose of this protocol is to focus on the high-risk screening of patients who might have Fabry disease using a simple, rapid, non-invasive high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method for urinary globotriaosylceramide (Gb 3 ) analysis. Urine filter paper samples are easily collected at home by patients and sent by regular mail. This method has been successfully used for high-risk screening of patients with ophthalmologic manifestations and in an on-going study for high-risk screening of Fabry disease in patients with chronic kidney diseases. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
[Congenital nephrogenic diabetes insipidus: about a case report].
Esselmani, Hicham; Yassine, Asmaa; Bouabdellah, Mounya; Benchekroun, Laila; Handor, Najat; Elalami, Sanae; Chabraoui, Layachi
2013-01-01
Congenital nephrogenic diabetes insipidus is a rare, hereditary in nature, characterized by an inability of the kidney to concentrate urine, secondary to the manifold resistance to the action of vasopressin. X-linked forms of transmission (90%) are expressed in boys, from the neonatal period in general, by polyuria and polydipsia. Symptomatology in transmissive girls is variable but can sometimes be quite marked. These forms are secondary to mutations in the gene encoding the vasopressin V2 receptor, located at position Xq28, responsible for a loss of function of this receptor. Some of these mutations may cause a partial phenotype, less severe. Forms of autosomal, recessive or dominant are more rare (10%). Treatment is symptomatic, sometimes difficult in infants. It aims to avoid episodes of dehydration. It is based on a conventional diet hypo-osmotic and administration of hydrochlorothiazide and indomethacin. We report here the case of a child with congenital nephrogenic diabetes insipidus hospitalized at Children's Hospital of Rabat and throughout this case we review the pathophysiology and clinical and biological characteristics of the disease and including importance of contribution of clinical biochemistry laboratory in the diagnosis and monitoring of this disease.
Epidemiology, demographic characteristics and prognostic predictors of ulcerative colitis
da Silva, Bruno César; Lyra, Andre Castro; Rocha, Raquel; Santana, Genoile Oliveira
2014-01-01
Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the mucosa of the colon and rectum. The hallmark clinical symptom of UC is bloody diarrhea. The clinical course is marked by exacerbations and remissions, which may occur spontaneously or in response to treatment changes or intercurrent illnesses. UC is most commonly diagnosed in late adolescence or early adulthood, but it can occur at any age. The incidence of UC has increased worldwide over recent decades, especially in developing nations. In contrast, during this period, therapeutic advances have improved the life expectancy of patients, and there has been a decrease in the mortality rate over time. It is important to emphasize that there is considerable variability in the phenotypic presentation of UC. Within this context, certain clinical and demographic characteristics are useful in identifying patients who tend to have more severe evolution of the disease and a poor prognosis. In this group of patients, better clinical surveillance and more intensive therapy may change the natural course of the disease. The aim of this article was to review the epidemiology and demographic characteristics of UC and the factors that may be associated with its clinical prognosis. PMID:25071340
[Evaluation of the lifetime of nail markings during polio vaccinations in Chad].
Quoc Cuong, Huong; Schlumberger, Martin; Garba Tchang, Salomon; Ould Cheikh, Dah; Savès, Marianne; Mallah, Barah; Demtilo Attilo, Jacques; Ngangro Mosurel, Ndeikoundam; Gamatié, Youssouf
2010-01-01
SID (Supplemental Immunization Days) is a special strategy intended to accelerate eradication of poliomyelitis in countries where it is still endemic (India, Afghanistan, and Pakistan in Asia, and Nigeria in Africa). This strategy is also applied in Nigeria's neighbours (Cameroon, Chad, Niger and Benin). Since the poliomyelitis virus was imported from Nigeria in 2001, Chad has reported cases of poliomyelitis every year. After 30 SIDs in Chad and the inaccurate or false attribution of side-effects to polio vaccines, some groups persistently refuse polio vaccination. To ascertain the true coverage of SID, the Ministry of Health and several partners (WHO, UNICEF and Rotary) conduct external coverage evaluations, to identify the under-vaccinated areas where population may be refusing immunization. The nails of the children receiving vaccinations are marked with indelible ink and those markings are the best indicator of the area's actual SID coverage. When coverage investigators arrive and propose vaccination to all children not immunized during SID, mothers who wish to refuse vaccination may claim that the children's markings disappeared after a few days, due to bathing. WHO experts have found that markings applied to their own nails with the WHO-recommended markers persist a few weeks, but others suggested that the markings may disappear much faster among children living in a traditional tropical environment. Until now, the lifetime of these markings has not been tested among children in Africa. To determine the lifetime of the fingernail markings after SID and factors that influence this lifetime in children young than 5 years old in Chad. This prospective cohort study of 200 children (aged 0 to 59 months) took place from March to May 2009 in Milezi, a health zone north of Ndjamena, the capital of Chad, in central Africa. These children received nail markings on their left little finger with an indelible marker pen provided by WHO. The finger was monitored for 35 days, visually and by photographs, to determine the factors associated with the lifetime of the markings. Kaplan-Meier and log-rank methods were applied to estimate their survival curve and the variables significant for their lifetime; the Cox proportional hazard model was used to determine multivariable-adjusted hazard ratios. Of the 184 children surveyed through the end of the study, the markings disappeared after 35 days of follow-up for 35% of them. The average lifetime of markings on these children was 28 days (SD: 4.95) and was associated, according to the Cox model, with 3 variables: the quality of the marking (RR = 0.335, 95% CI: 0.182-0.617, p < 0.001), playing with soil or mud (RR = 0.38, 95% CI: 0.208-0.697, p = 0.002), and living in different blocks, after stratification for the variable of application of chemical products on the nail. The latter could not be included in the Cox model because it made the markings disappear instantly. WHO experts were right in stating that the lifetime of the markings was sufficient to estimate coverage accurately when external evaluation takes place one or two weeks after SID. The only action found to make markings disappear rapidly was the application of chemical products. Mothers who tell SID attendance evaluation teams that the marking disappeared with bathing are expressing a tacit refusal of vaccination. These evaluations, which take place well before the disappearance of markings, help to determine the precise coverage of SID.
Kindler syndrome: extension of FERMT1 mutational spectrum and natural history.
Has, Cristina; Castiglia, Daniele; del Rio, Marcela; Diez, Marta Garcia; Piccinni, Eugenia; Kiritsi, Dimitra; Kohlhase, Jürgen; Itin, Peter; Martin, Ludovic; Fischer, Judith; Zambruno, Giovanna; Bruckner-Tuderman, Leena
2011-11-01
Mutations in the FERMT1 gene (also known as KIND1), encoding the focal adhesion protein kindlin-1, underlie the Kindler syndrome (KS), an autosomal recessive skin disorder with an intriguing progressive phenotype comprising skin blistering, photosensitivity, progressive poikiloderma with extensive skin atrophy, and propensity to skin cancer. Herein we review the clinical and genetic data of 62 patients, and delineate the natural history of the disorder, for example, age at onset of symptoms, or risk of malignancy. Although most mutations are predicted to lead to premature termination of translation, and to loss of kindlin-1 function, significant clinical variability is observed among patients. There is an association of FERMT1 missense and in-frame deletion mutations with milder disease phenotypes, and later onset of complications. Nevertheless, the clinical variability is not fully explained by genotype-phenotype correlations. Environmental factors and yet unidentified modifiers may play a role. Better understanding of the molecular pathogenesis of KS should enable the development of prevention strategies for disease complications. © 2011 Wiley Periodicals, Inc.
From mild ataxia to huntington disease phenocopy: the multiple faces of spinocerebellar ataxia 17.
Koutsis, Georgios; Panas, Marios; Paraskevas, George P; Bougea, Anastasia M; Kladi, Athina; Karadima, Georgia; Kapaki, Elisabeth
2014-01-01
Introduction. Spinocerebellar ataxia 17 (SCA 17) is a rare autosomal dominant cerebellar ataxia (ADCA) caused by a CAG/CAA expansion in the TBP gene, reported from a limited number of countries. It is a very heterogeneous ADCA characterized by ataxia, cognitive decline, psychiatric symptoms, and involuntary movements, with some patients presenting with Huntington disease (HD) phenocopies. The SCA 17 expansion is stable during parent-child transmission and intrafamilial phenotypic homogeneity has been reported. However, significant phenotypic variability within families has also been observed. Report of the Family. We presently report a Greek family with a pathological expansion of 54 repeats at the SCA 17 locus that displayed remarkable phenotypic variability. Among 3 affected members, one presented with HD phenocopy; one with progressive ataxia, dementia, chorea, dystonia, and seizures, and one with mild slowly progressive ataxia with minor cognitive and affective symptoms. Conclusions. This is the first family with SCA 17 identified in Greece and highlights the multiple faces of this rare disorder, even within the same family.
From Mild Ataxia to Huntington Disease Phenocopy: The Multiple Faces of Spinocerebellar Ataxia 17
Panas, Marios; Paraskevas, George P.; Bougea, Anastasia M.; Karadima, Georgia; Kapaki, Elisabeth
2014-01-01
Introduction. Spinocerebellar ataxia 17 (SCA 17) is a rare autosomal dominant cerebellar ataxia (ADCA) caused by a CAG/CAA expansion in the TBP gene, reported from a limited number of countries. It is a very heterogeneous ADCA characterized by ataxia, cognitive decline, psychiatric symptoms, and involuntary movements, with some patients presenting with Huntington disease (HD) phenocopies. The SCA 17 expansion is stable during parent-child transmission and intrafamilial phenotypic homogeneity has been reported. However, significant phenotypic variability within families has also been observed. Report of the Family. We presently report a Greek family with a pathological expansion of 54 repeats at the SCA 17 locus that displayed remarkable phenotypic variability. Among 3 affected members, one presented with HD phenocopy; one with progressive ataxia, dementia, chorea, dystonia, and seizures, and one with mild slowly progressive ataxia with minor cognitive and affective symptoms. Conclusions. This is the first family with SCA 17 identified in Greece and highlights the multiple faces of this rare disorder, even within the same family. PMID:25349749
A platform for high-throughput bioenergy production phenotype characterization in single cells
Kelbauskas, Laimonas; Glenn, Honor; Anderson, Clifford; Messner, Jacob; Lee, Kristen B.; Song, Ganquan; Houkal, Jeff; Su, Fengyu; Zhang, Liqiang; Tian, Yanqing; Wang, Hong; Bussey, Kimberly; Johnson, Roger H.; Meldrum, Deirdre R.
2017-01-01
Driven by an increasing number of studies demonstrating its relevance to a broad variety of disease states, the bioenergy production phenotype has been widely characterized at the bulk sample level. Its cell-to-cell variability, a key player associated with cancer cell survival and recurrence, however, remains poorly understood due to ensemble averaging of the current approaches. We present a technology platform for performing oxygen consumption and extracellular acidification measurements of several hundreds to 1,000 individual cells per assay, while offering simultaneous analysis of cellular communication effects on the energy production phenotype. The platform comprises two major components: a tandem optical sensor for combined oxygen and pH detection, and a microwell device for isolation and analysis of single and few cells in hermetically sealed sub-nanoliter chambers. Our approach revealed subpopulations of cells with aberrant energy production profiles and enables determination of cellular response variability to electron transfer chain inhibitors and ion uncouplers. PMID:28349963
Qin, Shengfang; Wang, Xueyan; Li, Yunxing; Wei, Ping; Chen, Chun; Zeng, Lan
2016-02-01
To explore the genetics mechanism for the phenotypic variability in a patient carrying a rare ring chromosome 9. The karyotype of the patient was analyzed with cytogenetics method. Presence of sex chromosome was confirmed with fluorescence in situ hybridization. The SRY gene was subjected to PCR amplification and direct sequencing. Potential deletion and duplication were detected with array-based comparative genomic hybridization (array-CGH). The karyotype of the patient has comprised 6 types of cell lines containing a ring chromosome 9. The SRY gene sequence was normal. By array-CGH, the patient has carried a hemizygous deletion at 9p24.3-p23 (174 201-9 721 761) encompassing 30 genes from Online Mendelian Inheritance in Man. The phenotypic variability of the 9p deletion syndrome in conjunct with ring chromosome 9 may be attributable to multiple factors including loss of chromosomal material, insufficient dosage of genes, instability of ring chromosome, and pattern of inheritance.
Dental management of amelogenesis imperfecta patients: a primer on genotype-phenotype correlations.
Ng, F K; Messer, L B
2009-01-01
Amelogenesis imperfecta (AI) represents a group of hereditary conditions which affects enamel formation in the primary and permanent dentitions. Mutations in genes critical for amelogenesis result in diverse phenotypes characterized by variably thin and/or defective enamel. To date, mutations in 5 genes are known to cause AI in humans. Understanding the molecular etiologies and associated inheritance patterns can assist in the early diagnosis of this condition. Recognition of genotype-phenotype correlations will allow clinicians to guide genetic testing and select appropriate management strategies for patients who express different phenotypes. The purpose of this paper was to provide a narrative review of the current literature on amelogenesis imperfecta, particularly regarding recent advances in the identification of candidate genes and the patterns of inheritance.
Allelic and Phenotypic Heterogeneity in ABCA4 mutations
Burke, Tomas R; Tsang, Stephen H
2011-01-01
Since the discovery of the ABCA4 gene as the cause of autosomal recessive Stargardt disease/fundus flavimaculatus much has been written of the phenotypic variability in ABCA4 retinopathy. In this review the authors discuss the findings seen on examination and the disease features detected using various clinical tests. Important differential diagnoses are presented and unusual presentations of ABCA4 disease highlighted. PMID:21510770
Li, Yuanyuan; Tollefsbol, Trygve O
2016-01-01
Aging is considered as one of the most important developmental processes in organisms and is closely associated with global deteriorations of epigenetic markers such as aberrant methylomic patterns. This altered epigenomic state, referred to ‘epigenetic drift’, reflects deficient maintenance of epigenetic marks and contributes to impaired cellular and molecular functions in aged cells. Epigenetic drift-induced abnormal changes during aging are scantily repaired by epigenetic modulators. This inflexibility in the aged epigenome may lead to an age-related decline in phenotypic plasticity at the cellular and molecular levels due to epigenetic drift. This perspective aims to provide novel concepts for understanding epigenetic effects on the aging process and to provide insights into epigenetic prevention and therapeutic strategies for age-related human disease. PMID:27882781
Phenotypes of organ involvement in sarcoidosis.
Schupp, Jonas Christian; Freitag-Wolf, Sandra; Bargagli, Elena; Mihailović-Vučinić, Violeta; Rottoli, Paola; Grubanovic, Aleksandar; Müller, Annegret; Jochens, Arne; Tittmann, Lukas; Schnerch, Jasmin; Olivieri, Carmela; Fischer, Annegret; Jovanovic, Dragana; Filipovic, Snežana; Videnovic-Ivanovic, Jelica; Bresser, Paul; Jonkers, René; O'Reilly, Kate; Ho, Ling-Pei; Gaede, Karoline I; Zabel, Peter; Dubaniewicz, Anna; Marshall, Ben; Kieszko, Robert; Milanowski, Janusz; Günther, Andreas; Weihrich, Anette; Petrek, Martin; Kolek, Vitezslav; Keane, Michael P; O'Beirne, Sarah; Donnelly, Seamas; Haraldsdottir, Sigridur Olina; Jorundsdottir, Kristin B; Costabel, Ulrich; Bonella, Francesco; Wallaert, Benoît; Grah, Christian; Peroš-Golubičić, Tatjana; Luisetti, Mauritio; Kadija, Zamir; Pabst, Stefan; Grohé, Christian; Strausz, János; Vašáková, Martina; Sterclova, Martina; Millar, Ann; Homolka, Jiří; Slováková, Alena; Kendrick, Yvonne; Crawshaw, Anjali; Wuyts, Wim; Spencer, Lisa; Pfeifer, Michael; Valeyre, Dominique; Poletti, Venerino; Wirtz, Hubertus; Prasse, Antje; Schreiber, Stefan; Krawczak, Michael; Müller-Quernheim, Joachim
2018-01-01
Sarcoidosis is a highly variable, systemic granulomatous disease of hitherto unknown aetiology. The GenPhenReSa (Genotype-Phenotype Relationship in Sarcoidosis) project represents a European multicentre study to investigate the influence of genotype on disease phenotypes in sarcoidosis.The baseline phenotype module of GenPhenReSa comprised 2163 Caucasian patients with sarcoidosis who were phenotyped at 31 study centres according to a standardised protocol.From this module, we found that patients with acute onset were mainly female, young and of Scadding type I or II. Female patients showed a significantly higher frequency of eye and skin involvement, and complained more of fatigue. Based on multidimensional correspondence analysis and subsequent cluster analysis, patients could be clearly stratified into five distinct, yet undescribed, subgroups according to predominant organ involvement: 1) abdominal organ involvement, 2) ocular-cardiac-cutaneous-central nervous system disease involvement, 3) musculoskeletal-cutaneous involvement, 4) pulmonary and intrathoracic lymph node involvement, and 5) extrapulmonary involvement.These five new clinical phenotypes will be useful to recruit homogenous cohorts in future biomedical studies. Copyright ©ERS 2018.
Recombination and phenotype evolution dynamics of Helicobacter pylori in colonized hosts.
Shafiee, Ahmad; Amini, Massoud; Emamirad, Hassan; Abadi, Amin Talebi Bezmin
2016-07-01
The ample genetic diversity and variability of Helicobater pylori, and therefore its phenotypic evolution, relate not only to frequent mutation and selection but also to intra-specific recombination. Webb and Blaser applied a mathematical model to distinguish the role of selection and mutation for Lewis antigen phenotype evolution during long-term gastric colonization in infected animal hosts (mice and gerbils). To investigate the role of recombination in Lewis antigen phenotype evolution, we have developed a prior population dynamic by adding recombination term to the model. We simulate and interpret the new model simulation's results with a comparative analysis of biological aspects. The main conclusions are as follows: (i) the models and consequently the hosts with higher recombination rate require a longer time for stabilization; and (ii) recombination and mutation have opposite effects on the size of H. pylori populations with phenotypes in the range of the most-fit ones (i.e. those that have a selective advantage) due to natural selection, although both can increase phenotypic diversity.
Karadima, Georgia; Koutsis, Georgios; Raftopoulou, Maria; Floroskufi, Paraskewi; Karletidi, Karolina-Maria; Panas, Marios
2014-06-15
Charcot-Marie-Tooth (CMT) disease, the most common hereditary neuropathy, is clinically and genetically heterogeneous. X-linked CMT (CMTX) is usually caused by mutations in the gap junction protein b 1 gene (GJB1) coding for connexin 32 (Cx32). The clinical manifestations of CMTX are characterized by significant variability, with some patients exhibiting central nervous system (CNS) involvement. We report four novel mutations in GJB1, c.191G>A (p.Cys64Tyr), c.508G>T (p.Val170Phe), c.778A>G (p.Lys260Glu) and c.300C>G (p.His100Gln) identified in four unrelated Greek families. These mutations were characterized by variable phenotypic expression, including a family with the Roussy-Lévy syndrome, and three of them were associated with mild clinical CNS manifestations. Copyright © 2014. Published by Elsevier B.V.
Purchase, Craig F; Moreau, Darek T R
2012-01-01
Genetic variation for phenotypic plasticity is ubiquitous and important. However, the scale of such variation including the relative variability present in reaction norms among different hierarchies of biological organization (e.g., individuals, populations, and closely related species) is unknown. Complicating interpretation is a trade-off in environmental scale. As plasticity can only be inferred over the range of environments tested, experiments focusing on fine tuned responses to normal or benign conditions may miss cryptic phenotypic variation expressed under novel or stressful environments. Here, we sought to discern the presence and shape of plasticity in the performance of brown trout sperm as a function of optimal to extremely stressful river pH, and demarcate if the reaction norm varies among genotypes. Our overarching goal was to determine if deteriorating environmental quality increases expressed variation among individuals. A more applied aim was to ascertain whether maintaining sperm performance over a wide pH range could help explain how brown trout are able to invade diverse river systems when transplanted outside of their native range. Individuals differed in their reaction norms of phenotypic expression of an important trait in response to environmental change. Cryptic variation was revealed under stressful conditions, evidenced through increasing among-individual variability. Importantly, data on population averages masked this variability in plasticity. In addition, canalized reaction norms in sperm swimming velocities of many individuals over a very large range in water chemistry may help explain why brown trout are able to colonize a wide variety of habitats. PMID:23145341
Peng, Chunlian; Zhang, Siming; Liu, Haixin; Jiao, Yanxiao; Su, Guifa; Zhu, Yan
2017-11-05
Vascular Smooth muscle cells (VSMCs) possess remarkable phenotype plasticity that allows it to rapidly adapt to fluctuating environmental cues, including the period of development and progression of vascular diseases such as atherosclerosis and restenosis subsequent to vein grafting or coronary intervention. Although VSMC phenotypic switch is an attractive target, there is no effective drug so far. Using rat aortic VSMCs, we investigate the effects of Ligustrazine and its synthetic derivatives on platelet-derived growth factor-BB (PDGF-BB) induced proliferation and phenotypic switch by a cell image-based screening of 60 Ligustrazine stilbene derivatives. We showed that one of the Ligustrazine stilbene derivatives TMP-C 4a markedly inhibited PDGF-BB-induced VSMCs proliferation in a time and dose-dependent manner, which is more potent than Ligustrazine. Stimulation of contractile VSMCs with PDGF-BB significantly reduced the contractile marker protein α-smooth muscle actin expression and increased the synthetic marker proteins osteopontin expression. However, TMP-C 4a effectively reversed this phenotypic switch, which was accompanied by a decreased expression of Matrix metalloproteinase 2 and 9 (MMP2 and MMP9) and cell cycle related proteins, including cyclin D1 and CDK4. In conclusion, the present study showed that a new Ligustrazine stilbene derivative TMP-C 4a suppressed PDGF-induced VSMC proliferation and phenotypic switch, indicating that it has a potential to become a promising therapeutic agent for treating VSMC-related atherosclerosis and restenosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Chabot, Andréanne; Hertig, Vanessa; Boscher, Elena; Nguyen, Quang Trinh; Boivin, Benoît; Chebli, Jasmine; Bissonnette, Lyse; Villeneuve, Louis; Brochiero, Emmanuelle; Dupuis, Jocelyn; Calderone, Angelino
2016-07-01
Endothelial and epithelial cell transition to a mesenchymal phenotype was identified as cellular paradigms implicated in the appearance of fibroblasts and development of reactive fibrosis in interstitial lung disease. The intermediate filament protein nestin was highly expressed in fibrotic tissue, detected in fibroblasts and participated in proliferation and migration. The present study tested the hypothesis that the transition of endothelial and epithelial cells to a mesenchymal phenotype was delineated by nestin expression. Three weeks following hypobaric hypoxia, adult male Sprague-Dawley rats characterized by alveolar and perivascular lung fibrosis were associated with increased nestin protein and mRNA levels and marked appearance of nestin/collagen type I((+))-fibroblasts. In the perivascular region of hypobaric hypoxic rats, displaced CD31((+))-endothelial cells were detected, exhibited a mesenchymal phenotype and co-expressed nestin. Likewise, epithelial cells in the lungs of hypobaric hypoxic rats transitioned to a mesenchymal phenotype distinguished by the co-expression of E-cadherin and collagen. Following the removal of FBS from primary passage rat alveolar epithelial cells, TGF-β1 was detected in the media and a subpopulation acquired a mesenchymal phenotype characterized by E-cadherin downregulation and concomitant induction of collagen and nestin. Bone morphogenic protein-7 treatment of alveolar epithelial cells prevented E-cadherin downregulation, suppressed collagen induction but partially inhibited nestin expression. These data support the premise that the transition of endothelial and epithelial cells to a mesenchymal cell may have contributed in part to the appearance nestin/collagen type I((+))-fibroblasts and the reactive fibrotic response in the lungs of hypobaric hypoxic rats. © 2015 Wiley Periodicals, Inc.
Honeyborne, Isobella; McHugh, Timothy D; Kuittinen, Iitu; Cichonska, Anna; Evangelopoulos, Dimitrios; Ronacher, Katharina; van Helden, Paul D; Gillespie, Stephen H; Fernandez-Reyes, Delmiro; Walzl, Gerhard; Rousu, Juho; Butcher, Philip D; Waddell, Simon J
2016-04-07
New treatment options are needed to maintain and improve therapy for tuberculosis, which caused the death of 1.5 million people in 2013 despite potential for an 86 % treatment success rate. A greater understanding of Mycobacterium tuberculosis (M.tb) bacilli that persist through drug therapy will aid drug development programs. Predictive biomarkers for treatment efficacy are also a research priority. Genome-wide transcriptional profiling was used to map the mRNA signatures of M.tb from the sputa of 15 patients before and 3, 7 and 14 days after the start of standard regimen drug treatment. The mRNA profiles of bacilli through the first 2 weeks of therapy reflected drug activity at 3 days with transcriptional signatures at days 7 and 14 consistent with reduced M.tb metabolic activity similar to the profile of pre-chemotherapy bacilli. These results suggest that a pre-existing drug-tolerant M.tb population dominates sputum before and after early drug treatment, and that the mRNA signature at day 3 marks the killing of a drug-sensitive sub-population of bacilli. Modelling patient indices of disease severity with bacterial gene expression patterns demonstrated that both microbiological and clinical parameters were reflected in the divergent M.tb responses and provided evidence that factors such as bacterial load and disease pathology influence the host-pathogen interplay and the phenotypic state of bacilli. Transcriptional signatures were also defined that predicted measures of early treatment success (rate of decline in bacterial load over 3 days, TB test positivity at 2 months, and bacterial load at 2 months). This study defines the transcriptional signature of M.tb bacilli that have been expectorated in sputum after two weeks of drug therapy, characterizing the phenotypic state of bacilli that persist through treatment. We demonstrate that variability in clinical manifestations of disease are detectable in bacterial sputa signatures, and that the changing M.tb mRNA profiles 0-2 weeks into chemotherapy predict the efficacy of treatment 6 weeks later. These observations advocate assaying dynamic bacterial phenotypes through drug therapy as biomarkers for treatment success.
To characterize intra or within subject reproducibility and variability To characterize inter or across subject variability by adenoma phenotype (normal vs. adenoma) To evaluate biomarker expression in relation to long term adenoma recurrence
Post, Andrew R.; Kurc, Tahsin; Cholleti, Sharath; Gao, Jingjing; Lin, Xia; Bornstein, William; Cantrell, Dedra; Levine, David; Hohmann, Sam; Saltz, Joel H.
2013-01-01
Objective To create an analytics platform for specifying and detecting clinical phenotypes and other derived variables in electronic health record (EHR) data for quality improvement investigations. Materials and Methods We have developed an architecture for an Analytic Information Warehouse (AIW). It supports transforming data represented in different physical schemas into a common data model, specifying derived variables in terms of the common model to enable their reuse, computing derived variables while enforcing invariants and ensuring correctness and consistency of data transformations, long-term curation of derived data, and export of derived data into standard analysis tools. It includes software that implements these features and a computing environment that enables secure high-performance access to and processing of large datasets extracted from EHRs. Results We have implemented and deployed the architecture in production locally. The software is available as open source. We have used it as part of hospital operations in a project to reduce rates of hospital readmission within 30 days. The project examined the association of over 100 derived variables representing disease and co-morbidity phenotypes with readmissions in five years of data from our institution’s clinical data warehouse and the UHC Clinical Database (CDB). The CDB contains administrative data from over 200 hospitals that are in academic medical centers or affiliated with such centers. Discussion and Conclusion A widely available platform for managing and detecting phenotypes in EHR data could accelerate the use of such data in quality improvement and comparative effectiveness studies. PMID:23402960
Axelrod, Kevin; Sanchez, Alvaro; Gore, Jeff
2015-01-01
Microorganisms often exhibit a history-dependent phenotypic response after exposure to a stimulus which can be imperative for proper function. However, cells frequently experience unexpected environmental perturbations that might induce phenotypic switching. How cells maintain phenotypic states in the face of environmental fluctuations remains an open question. Here, we use environmental perturbations to characterize the resilience of phenotypic states in a synthetic gene network near a critical transition. We find that far from the critical transition an environmental perturbation may induce little to no phenotypic switching, whereas close to the critical transition the same perturbation can cause many cells to switch phenotypic states. This loss of resilience was observed for perturbations that interact directly with the gene circuit as well as for a variety of generic perturbations-such as salt, ethanol, or temperature shocks-that alter the state of the cell more broadly. We obtain qualitatively similar findings in natural gene circuits, such as the yeast GAL network. Our findings illustrate how phenotypic memory can become destabilized by environmental variability near a critical transition. DOI: http://dx.doi.org/10.7554/eLife.07935.001 PMID:26302311
Factors and processes modulating phenotypes in neuronopathic lysosomal storage diseases.
Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Banecka-Majkutewicz, Zyta; Banecki, Bogdan; Węgrzyn, Alicja; Węgrzyn, Grzegorz
2014-03-01
Lysosomal storage diseases are inherited metabolic disorders caused by genetic defects causing deficiency of various lysosomal proteins, and resultant accumulation of non-degraded compounds. They are multisystemic diseases, and in most of them (>70%) severe brain dysfunctions are evident. However, expression of various phenotypes in particular diseases is extremely variable, from non-neuronopathic to severely neurodegenerative in the deficiency of the same enzyme. Although all lysosomal storage diseases are monogenic, clear genotype-phenotype correlations occur only in some cases. In this article, we present an overview on various factors and processes, both general and specific for certain disorders, that can significantly modulate expression of phenotypes in these diseases. On the basis of recent reports describing studies on both animal models and clinical data, we propose a hypothesis that efficiency of production of compounds that cannot be degraded due to enzyme deficiency might be especially important in modulation of phenotypes of patients suffering from lysosomal storage diseases.
De Cinque, Marianna; Palumbo, Orazio; Mazzucco, Ermelinda; Simone, Antonella; Palumbo, Pietro; Ciavatta, Renata; Maria, Giuliana; Ferese, Rosangela; Gambardella, Stefano; Angiolillo, Antonella; Carella, Massimo; Garofalo, Silvio
2017-01-01
Terminal deletion of chromosome 6q is a rare chromosomal abnormality associated with variable phenotype spectrum. Although intellectual disability, facial dysmorphism, seizures and brain abnormalities are typical features of this syndrome, genotype–phenotype correlation needs to be better understood. We report the case of a 6-year-old Caucasian boy with a clinical diagnosis of intellectual disability, delayed language development and dyspraxia who carries an approximately 8 Mb de novo heterozygous microdeletion in the 6q26-q27 locus identified by karyotype and defined by high-resolution SNP-array analysis. This patient has no significant structural brain or other organ malformation, and he shows a very mild phenotype compared to similar 6q26-qter deletion. The patient phenotype also suggests that a dyspraxia susceptibility gene is located among the deleted genes. PMID:29270193
Gal, Moran; Levanon, Erez Y; Hujeirat, Yasir; Khayat, Morad; Pe'er, Jacob; Shalev, Stavit
2014-12-01
Developmental malformations of the vitreoretinal vasculature are a heterogeneous group of conditions with various modes of inheritance, and include familial exudative vitreoretinopathy (FEVR), persistent fetal vasculature (PFV), and Norrie disease. We investigated a large consanguineous kindred with multiple affected individuals exhibiting variable phenotypes of abnormal vitreoretinal vasculature, consistent with the three above-mentioned conditions and compatible with autosomal recessive inheritance. Exome sequencing identified a novel c.542G > T (p.C181F) apparently mutation in the TSPAN12 gene that segregated with the ocular disease in the family. The TSPAN12 gene was previously reported to cause dominant and recessive FEVR, but has not yet been associated with other vitreoretinal manifestations. The intra-familial clinical variability caused by a single mutation in the TSPAN12 gene underscores the complicated phenotype-genotype correlation of mutations in this gene, and suggests that there are additional genetic and environmental factors involved in the complex process of ocular vascularization during embryonic development. Our study supports considering PFV, FEVR, and Norrie disease a spectrum of disorders, with clinical and genetic overlap, caused by mutations in distinct genes acting in the Norrin/β-catenin signaling pathway. © 2014 Wiley Periodicals, Inc.
Zaremba, J; Feil, S; Juszko, J; Myga, W; van Duijnhoven, G; Berger, W
1998-09-01
To describe the phenotypic variability in a Polish Norrie disease (ND) family associated with the missense mutation A63D. A patient with spared vision from a Polish ND family underwent detailed ophthalmological examinations including slit-lamp biomicroscopy, ultrasound (USG), angiography, Goldmann kinetic visual field, and electroretinography (ERG). Mutation screening was carried out using the single-strand conformation polymorphism (SSCP) technique and subsequent DNA sequencing of the coding part of the ND gene. A mutation was detected (exon 3, A63D) in a large Polish family with 12 affected males, all but one presenting with classical ND symptoms. In one male, partially preserved vision was observed up to 40 years of age (distance acuity of the right eye 1/50 and left eye 2/50). Slit-lamp examination revealed remnants of a persistent primary vitreous and hyaloid artery. Upon angiography, the retina was vascularized within the posterior pole but not in the periphery. The ERG revealed pathological changes characteristic for chorioretinal degenerations. Within one family, individuals with identical sequence alterations in the ND gene can show remarkable phenotypic variability of the ocular symptoms. These findings indicate the involvement of additional factors (epigenetic or genetic) in ocular pathogenesis of ND.
Delgado-Lista, Javier; Perez-Martinez, Pablo; Solivera, Juan; Garcia-Rios, Antonio; Perez-Caballero, A I; Lovegrove, Julie A; Drevon, Christian A; Defoort, Catherine; Blaak, Ellen E; Dembinska-Kieć, Aldona; Risérus, Ulf; Herruzo-Gomez, Ezequiel; Camargo, Antonio; Ordovas, Jose M; Roche, Helen; Lopez-Miranda, José
2014-02-01
Metabolic syndrome (MetS) is a high-prevalence condition characterized by altered energy metabolism, insulin resistance, and elevated cardiovascular risk. Although many individual single nucleotide polymorphisms (SNPs) have been linked to certain MetS features, there are few studies analyzing the influence of SNPs on carbohydrate metabolism in MetS. A total of 904 SNPs (tag SNPs and functional SNPs) were tested for influence on 8 fasting and dynamic markers of carbohydrate metabolism, by performance of an intravenous glucose tolerance test in 450 participants in the LIPGENE study. From 382 initial gene-phenotype associations between SNPs and any phenotypic variables, 61 (16% of the preselected variables) remained significant after bootstrapping. Top SNPs affecting glucose metabolism variables were as follows: fasting glucose, rs26125 (PPARGC1B); fasting insulin, rs4759277 (LRP1); C-peptide, rs4759277 (LRP1); homeostasis assessment of insulin resistance, rs4759277 (LRP1); quantitative insulin sensitivity check index, rs184003 (AGER); sensitivity index, rs7301876 (ABCC9), acute insulin response to glucose, rs290481 (TCF7L2); and disposition index, rs12691 (CEBPA). We describe here the top SNPs linked to phenotypic features in carbohydrate metabolism among approximately 1000 candidate gene variations in fasting and postprandial samples of 450 patients with MetS from the LIPGENE study.
Phenotypic Plasticity of Leaf Shape along a Temperature Gradient in Acer rubrum
Royer, Dana L.; Meyerson, Laura A.; Robertson, Kevin M.; Adams, Jonathan M.
2009-01-01
Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida). Leaves in the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source. Plasticity in these variables accounts for at least 6–19 % of the total variance, while genetic differences among ecotypes probably account for at most 69–87 %. This study highlights the role of phenotypic plasticity in leaf-climate relationships. We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change, which increases confidence in paleoclimate methods that use these variables. PMID:19893620
Louwers, Y V; Lao, O; Fauser, B C J M; Kayser, M; Laven, J S E
2014-10-01
It is well established that ethnicity is associated with the phenotype of polycystic ovary syndrome (PCOS). Self-reported ethnicity was shown to be an inaccurate proxy for ethnic origin in other disease traits, and it remains unclear how in PCOS patients self-reported ethnicity compares with a biological proxy such as genetic ancestry. We compared the impact of self-reported ethnicity versus genetic ancestry on PCOS and tested which of these 2 classifications better predicts the variability in phenotypic characteristics of PCOS. A total of 1499 PCOS patients from The Netherlands, comprising 11 self-reported ethnic groups of European, African, American, and Asian descent were genotyped with the Illumina 610K Quad BeadChip and merged with the data genotyped with the Illumina HumanHap650K available for the reference panel collected by the Human Genome Diversity Project (HGDP), in a collaboration with the Centre Etude Polymorphism Humain (CEPH), including 53 populations for ancestry reference. Algorithms for inferring genetic relationships among individuals, including multidimensional scaling and ADMIXTURE, were applied to recover genetic ancestry for each individual. Regression analysis was used to determine the best predictor for the variability in PCOS characteristics. The association between self-reported ethnicity and genetic ancestry was moderate. For amenorrhea, total follicle count, body mass index, SHBG, dehydroepiandrosterone sulfate, and insulin, mainly genetic ancestry clusters ended up in the final models (P values < .004), indicating that they explain a larger proportion of variability of these PCOS characteristics compared with self-reported ethnicity. Especially variability of insulin levels seems predominantly explained by genetic ancestry. Self-reported ancestry is not a perfect proxy for genetic ancestry in patients with PCOS, emphasizing that by using genetic ancestry data instead of self-reported ethnicity, PCOS-relevant misclassification can be avoided. Moreover, because genetic ancestry explained a larger proportion of phenotypic variability associated with PCOS than self-reported ethnicity, future studies should focus on genetic ancestry verification of PCOS patients for research questions and treatment as well as preventive strategies in these women.
Ortega-Mayagoitia, Elizabeth; Hernández-Martínez, Osvaldo; Ciros-Pérez, Jorge
2018-01-01
According to the Climatic Variability Hypothesis [CVH], thermal plasticity should be wider in organisms from temperate environments, but is unlikely to occur in tropical latitudes where temperature fluctuations are narrow. In copepods, food availability has been suggested as the main driver of phenotypic variability in adult size if the range of temperature change is less than 14°C. Leptodiaptomus garciai is a calanoid copepod inhabiting Lake Alchichica, a monomictic, tropical lake in Mexico that experiences regular, narrow temperature fluctuations but wide changes in phytoplankton availability. We investigated whether the seasonal fluctuations of temperature and food produce phenotypic variation in the life-history traits of this tropical species. We sampled L. garciai throughout a year and measured female size, egg size and number, and hatching success, along with temperature and phytoplankton biomass. The amplitude of the plastic responses was estimated with the Phenotypic Plasticity Index. This index was also computed for a published dataset of 84 copepod populations to look if there is a relationship between the amplitude of the phenotypic plasticity of adult size and seasonal change in temperature. The temperature annual range in Lake Alchichica was 3.2°C, whereas phytoplankton abundance varied 17-fold. A strong pattern of thermal plasticity in egg size and adult female size followed the inverse relationship with temperature commonly observed in temperate environments, although its adaptive value was not demonstrated. Egg number, relative reproductive effort and number of nauplii per female were clearly plastic to food availability, allowing organisms to increase their fitness. When comparing copepod species from different latitudes, we found that the magnitude of thermal plasticity of adult size is not related to the range of temperature variation; furthermore, thermal plasticity exists even in environments of limited temperature variation, where the response is more intense compared to temperate populations.
Hernández-Martínez, Osvaldo; Ciros-Pérez, Jorge
2018-01-01
According to the Climatic Variability Hypothesis [CVH], thermal plasticity should be wider in organisms from temperate environments, but is unlikely to occur in tropical latitudes where temperature fluctuations are narrow. In copepods, food availability has been suggested as the main driver of phenotypic variability in adult size if the range of temperature change is less than 14°C. Leptodiaptomus garciai is a calanoid copepod inhabiting Lake Alchichica, a monomictic, tropical lake in Mexico that experiences regular, narrow temperature fluctuations but wide changes in phytoplankton availability. We investigated whether the seasonal fluctuations of temperature and food produce phenotypic variation in the life-history traits of this tropical species. We sampled L. garciai throughout a year and measured female size, egg size and number, and hatching success, along with temperature and phytoplankton biomass. The amplitude of the plastic responses was estimated with the Phenotypic Plasticity Index. This index was also computed for a published dataset of 84 copepod populations to look if there is a relationship between the amplitude of the phenotypic plasticity of adult size and seasonal change in temperature. The temperature annual range in Lake Alchichica was 3.2°C, whereas phytoplankton abundance varied 17-fold. A strong pattern of thermal plasticity in egg size and adult female size followed the inverse relationship with temperature commonly observed in temperate environments, although its adaptive value was not demonstrated. Egg number, relative reproductive effort and number of nauplii per female were clearly plastic to food availability, allowing organisms to increase their fitness. When comparing copepod species from different latitudes, we found that the magnitude of thermal plasticity of adult size is not related to the range of temperature variation; furthermore, thermal plasticity exists even in environments of limited temperature variation, where the response is more intense compared to temperate populations. PMID:29708999
Butnariu, Lăcrămioara; Rusu, Cristina; Caba, Lavinia; Pânzaru, Monica; Braha, Elena; Grămescu, Mihaela; Popescu, Roxana; Bujoranu, C; Gorduza, E V
2013-01-01
Trisomy X (47,XXX) is a gonosomal aneuploidy characterized by the presence of an extra X chromosome in a female person. Usually the diagnosis is established made postnatally by chromosome analysis in patients with suggestive clinical signs. Clinical signs vary by age. In prepubertal patients have a growth retardation associated with uncharacteristic facial dysmorphism, mild mental retardation with behavioral disorders, plus clinical signs of ovarian dysgenesis, postpubertal. We analyzed retrospectively the genotype - phenotype correlations for a selected group of 36 patients diagnosed with trisomy X (homogeneous or mosaic) by cytogenetic methods (X chromatin and karyotype). Analysis of the clinical data of 36 patients diagnosed with trisomy X and correlation with the results of X chromatin and karyotype. Clinical signs detected in patients with homogeneous trisomy X 47,XXX (22.22%), mosaic 46,XX/47,XXX (16.66%) or 47,XXX/48,XXXX (5.55%) were prepubertal, growth retardation associated with dysmorphic facial (upslanted palpebral fissure, epichantus, thin lips) and postpubertal, signs of ovarian dysgenesis (secondary amenorrhea, early menopause). The phenotype of patients with different gonosomal mosaic corresponding to Turner syndrome, incorporating a cell line with trisomy X (55.55%) was variable, correlated with the type of chromosomal abnormalities detected. The results of our study are similar to those obtained in other studies and emphasizes that phenotypic variability of patients with trisomy X feature makes it difficult to genotype - phenotype correlations.
Diversity of ARSACS mutations in French-Canadians.
Thiffault, I; Dicaire, M J; Tetreault, M; Huang, K N; Demers-Lamarche, J; Bernard, G; Duquette, A; Larivière, R; Gehring, K; Montpetit, A; McPherson, P S; Richter, A; Montermini, L; Mercier, J; Mitchell, G A; Dupré, N; Prévost, C; Bouchard, J P; Mathieu, J; Brais, B
2013-01-01
The growing number of spastic ataxia of Charlevoix-Saguenay (SACS) gene mutations reported worldwide has broadened the clinical phenotype of autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS). The identification of Quebec ARSACS cases without two known SACS mutation led to the development of a multi-modal genomic strategy to uncover mutations in this large gene and explore phenotype variability. Search for SACS mutations by combining various methods on 20 cases with a classical French-Canadian ARSACS phenotype without two mutations and a group of 104 sporadic or recessive spastic ataxia cases of unknown cause. Western blot on lymphoblast protein from cases with different genotypes was probed to establish if they still expressed sacsin. A total of 12 mutations, including 7 novels, were uncovered in Quebec ARSACS cases. The screening of 104 spastic ataxia cases of unknown cause for 98 SACS mutations did not uncover carriers of two mutations. Compounds heterozygotes for one missense SACS mutation were found to minimally express sacsin. The large number of SACS mutations present even in Quebec suggests that the size of the gene alone may explain the great genotypic diversity. This study does not support an expanding ARSACS phenotype in the French-Canadian population. Most mutations lead to loss of function, though phenotypic variability in other populations may reflect partial loss of function with preservation of some sacsin expression. Our results also highlight the challenge of SACS mutation screening and the necessity to develop new generation sequencing methods to ensure low cost complete gene sequencing.
Quillet, Edwige; Bégout, Marie-Laure; Aupérin, Benoit; Khaw, Hooi Ling; Millot, Sandie; Valotaire, Claudiane; Kernéis, Thierry; Labbé, Laurent; Prunet, Patrick; Dupont-Nivet, Mathilde
2017-01-01
Adaptive phenotypic plasticity is a key component of the ability of organisms to cope with changing environmental conditions. Fish have been shown to exhibit a substantial level of phenotypic plasticity in response to abiotic and biotic factors. In the present study, we investigate the link between environmental sensitivity assessed globally (revealed by phenotypic variation in body weight) and more targeted physiological and behavioral indicators that are generally used to assess the sensitivity of a fish to environmental stressors. We took advantage of original biological material, the rainbow trout isogenic lines, which allowed the disentangling of the genetic and environmental parts of the phenotypic variance. Ten lines were characterized for the changes of body weight variability (weight measurements taken every month during 18 months), the plasma cortisol response to confinement stress (3 challenges) and a set of selected behavioral indicators. This study unambiguously demonstrated the existence of genetic determinism of environmental sensitivity, with some lines being particularly sensitive to environmental fluctuations and others rather insensitive. Correlations between coefficient of variation (CV) for body weight and behavioral and physiological traits were observed. This confirmed that CV for body weight could be used as an indicator of environmental sensitivity. As the relationship between indicators (CV weight, risk-taking, exploration and cortisol) was shown to be likely depending on the nature and intensity of the stressor, the joint use of several indicators should help to investigate the biological complexity of environmental sensitivity. PMID:29253015
Lucarelli, Marco; Bruno, Sabina Maria; Pierandrei, Silvia; Ferraguti, Giampiero; Stamato, Antonella; Narzi, Fabiana; Amato, Annalisa; Cimino, Giuseppe; Bertasi, Serenella; Quattrucci, Serena; Strom, Roberto
2015-01-01
Cystic fibrosis (CF) is a monogenic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The genotype–phenotype relationship in this disease is still unclear, and diagnostic, prognostic and therapeutic challenges persist. We enrolled 610 patients with different forms of CF and studied them from a clinical, biochemical, microbiological and genetic point of view. Overall, there were 125 different mutated alleles (11 with novel mutations and 10 with complex mutations) and 225 genotypes. A strong correlation between mutational patterns at the genotypic level and phenotypic macrocategories emerged. This specificity appears to largely depend on rare and individual mutations, as well as on the varying prevalence of common alleles in different clinical macrocategories. However, 19 genotypes appeared to underlie different clinical forms of the disease. The dissection of the pathway from the CFTR mutated genotype to the clinical phenotype allowed to identify at least two components of the variability usually found in the genotype–phenotype relationship. One component seems to depend on the genetic variation of CFTR, the other component on the cumulative effect of variations in other genes and cellular pathways independent from CFTR. The experimental dissection of the overall biological CFTR pathway appears to be a powerful approach for a better comprehension of the genotype–phenotype relationship. However, a change from an allele-oriented to a genotypic-oriented view of CFTR genetics is mandatory, as well as a better assessment of sources of variability within the CFTR pathway. PMID:25910067
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindsay, E.A.; Shaffer, L.G.; Greenberg, F.
DiGeorge anomaly (DGA) and velo-cardio-facial syndrome (VCFS) are frequently associated with monosomy of chromosome region 22q11. Most patients have a submicroscopic deletion, recently estimated to be at least 1-2 Mb. It is not clear whether individuals who present with only some of the features of these conditions have the deletion, and if so, whether the size of the deletion varies from those with more classic phenotypes. We have used fluorescence in situ hybridization (FISH) to assess the deletion status of 85 individuals referred to us for molecular analysis, with a wide range of DGA-like or VCFS-like clinical features. The testmore » probe used was the cosmid sc11.1, which detects two loci about 2 Mb apart in 22q11.2. Twenty-four patients carried the deletion. Of the deleted patients, most had classic DGA or VCFS phenotypes, but 6 deleted patients had mild phenotypes, including 2 with minor facial anomalies and velopharyngeal incompetence as the only presenting signs. Despite the great phenotypic variability among the deleted patients, none had a deletion smaller than the 2-Mb region defined by sc11.1. Smaller deletions were not detected in patients with particularly suggestive phenotypes who were not deleted for sc11.1, even when tested with two other probes from the DGA/VCFS region. 24 refs., 2 figs., 2 tabs.« less
Oral Appliance Treatment Response and Polysomnographic Phenotypes of Obstructive Sleep Apnea
Sutherland, Kate; Takaya, Hisashi; Qian, Jin; Petocz, Peter; Ng, Andrew T.; Cistulli, Peter A.
2015-01-01
Study Objectives: Mandibular advancement splints (MAS) are an effective treatment for obstructive sleep apnea (OSA); however, therapeutic response is variable. Younger age, female gender, less obesity, and milder and supine-dependent OSA have variably been associated with treatment success in relatively small samples. Our objective was to utilize a large cohort of MAS treated patients (1) to compare efficacy across patients with different phenotypes of OSA and (2) to assess demographic, anthropometric, and polysomnography variables as treatment response predictors. Methods: Retrospective analysis of MAS-treated patients participating in clinical trials in sleep centers in Sydney, Australia between years 2000–2013. All studies used equivalent customized two-piece MAS devices and treatment protocols. Treatment response was defined as (1) apnea-hypopnea index (AHI) < 5/h, (2) AHI < 10/h and ≥ 50% reduction, and (3) ≥ 50% AHI reduction. Results: A total of 425 patients (109 female) were included (age 51.2 ± 10.9 years, BMI 29.2 ± 5.0 kg/m2). MAS reduced AHI by 50.3% ± 50.7% across the group. Supine-predominant OSA patients had lower treatment response rates than non-positional OSA (e.g., 36% vs. 59% for AHI < 10/h). REM-predominant OSA showed a lower response rate than either NREM or non-stage dependent OSA. In prediction modelling, age, baseline AHI, and anthropometric variables were predictive of MAS treatment outcome but not OSA phenotype. Gender was not associated with treatment outcome. Conclusions: Lower MAS treatment response rates were observed in supine and REM sleep. In a large sample, we confirm that demographic, anthropometric, and polysomnographic data only weakly inform about MAS efficacy, supporting the need for alternative objective prediction methods to reliably select patients for MAS treatment. Citation: Sutherland K, Takaya H, Qian J, Petocz P, Ng AT, Cistulli PA. Oral appliance treatment response and polysomnographic phenotypes of obstructive sleep apnea. J Clin Sleep Med 2015;11(8):861–868. PMID:25845897
Cucchi, Thomas; Barnett, Ross; Martínková, Natália; Renaud, Sabrina; Renvoisé, Elodie; Evin, Allowen; Sheridan, Alison; Mainland, Ingrid; Wickham‐Jones, Caroline; Tougard, Christelle; Quéré, Jean Pierre; Pascal, Michel; Pascal, Marine; Heckel, Gerald; O'Higgins, Paul; Searle, Jeremy B.; Dobney, Keith M.
2014-01-01
Island evolution may be expected to involve fast initial morphological divergence followed by stasis. We tested this model using the dental phenotype of modern and ancient common voles (Microtus arvalis), introduced onto the Orkney archipelago (Scotland) from continental Europe some 5000 years ago. First, we investigated phenotypic divergence of Orkney and continental European populations and assessed climatic influences. Second, phenotypic differentiation among Orkney populations was tested against geography, time, and neutral genetic patterns. Finally, we examined evolutionary change along a time series for the Orkney Mainland. Molar gigantism and anterior‐lobe hypertrophy evolved rapidly in Orkney voles following introduction, without any transitional forms detected. Founder events and adaptation appear to explain this initial rapid evolution. Idiosyncrasy in dental features among different island populations of Orkney voles is also likely the result of local founder events following Neolithic translocation around the archipelago. However, against our initial expectations, a second marked phenotypic shift occurred between the 4th and 12th centuries AD, associated with increased pastoral farming and introduction of competitors (mice and rats) and terrestrial predators (foxes and cats). These results indicate that human agency can generate a more complex pattern of morphological evolution than might be expected in island rodents. PMID:24957579
Kirkby, Nicholas S.; Chan, Melissa V.; Finsterbusch, Michaela; Hogg, Nancy; Nourshargh, Sussan; Warner, Timothy D.
2015-01-01
Testing of platelet function is central to the cardiovascular phenotyping of genetically modified mice. Traditional platelet function tests have been developed primarily for testing human samples and the volumes required make them highly unsuitable for the testing of mouse platelets. This limits research in this area. To address this problem, we have developed a miniaturized whole blood aggregometry assay, based on a readily accessible 96-well plate format coupled with quantification of single platelet depletion by flow cytometric analysis. Using this approach, we observed a concentration-dependent loss of single platelets in blood exposed to arachidonic acid, collagen, U46619 or protease activated receptor 4 activating peptide. This loss was sensitive to well-established antiplatelet agents and genetic manipulation of platelet activation pathways. Observations were more deeply analyzed by flow cytometric imaging, confocal imaging, and measurement of platelet releasates. Phenotypic analysis of the reactivity of platelets taken from mice lacking intercellular adhesion molecule (ICAM)-1 identified a marked decrease in fibrinogen-dependent platelet-monocyte interactions, especially under inflammatory conditions. Such findings exemplify the value of screening platelet phenotypes of genetically modified mice and shed further light upon the roles and interactions of platelets in inflammation. PMID:26215112
Epigenetic Potential as a Mechanism of Phenotypic Plasticity in Vertebrate Range Expansions.
Kilvitis, Holly J; Hanson, Haley; Schrey, Aaron W; Martin, Lynn B
2017-08-01
During range expansions, organisms are often exposed to multiple pressures, including novel enemies (i.e., predators, competitors and/or parasites) and unfamiliar or limited resources. Additionally, small propagule sizes at range edges can result in genetic founder effects and bottlenecks, which can affect phenotypic diversity and thus selection. Despite these obstacles, individuals in expanding populations often thrive at the periphery of a range, and this success may be mediated by phenotypic plasticity. Increasing evidence suggests that epigenetic mechanisms may underlie such plasticity because they allow for more rapid phenotypic responses to novel environments than are possible via the accumulation of genetic variation. Here, we review how molecular epigenetic mechanisms could facilitate plasticity in range-expanding organisms, emphasizing the roles of DNA methylation and other epigenetic marks in the physiological regulatory networks that drive whole-organism performance. We focus on the hypothalamic-pituitary-adrenal (HPA) axis, arguing that epigenetically-mediated plasticity in the regulation of glucocorticoids in particular might strongly impact range expansions. We hypothesize that novel environments release and/or select for epigenetic potential in HPA variation and hence organismal performance and ultimately fitness. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Functional Loss of Bmsei Causes Thermosensitive Epilepsy in Contractile Mutant Silkworm, Bombyx mori
NASA Astrophysics Data System (ADS)
Nie, Hongyi; Cheng, Tingcai; Huang, Xiaofeng; Zhou, Mengting; Zhang, Yinxia; Dai, Fangyin; Mita, Kazuei; Xia, Qingyou; Liu, Chun
2015-07-01
The thermoprotective mechanisms of insects remain largely unknown. We reported the Bombyx mori contractile (cot) behavioral mutant with thermo-sensitive seizures phenotype. At elevated temperatures, the cot mutant exhibit seizures associated with strong contractions, rolling, vomiting, and a temporary lack of movement. We narrowed a region containing cot to ~268 kb by positional cloning and identified the mutant gene as Bmsei which encoded a potassium channel protein. Bmsei was present in both the cell membrane and cytoplasm in wild-type ganglia but faint in cot. Furthermore, Bmsei was markedly decreased upon high temperature treatment in cot mutant. With the RNAi method and injecting potassium channel blockers, the wild type silkworm was induced the cot phenotype. These results demonstrated that Bmsei was responsible for the cot mutant phenotype and played an important role in thermoprotection in silkworm. Meanwhile, comparative proteomic approach was used to investigate the proteomic differences. The results showed that the protein of Hsp-1 and Tn1 were significantly decreased and increased on protein level in cot mutant after thermo-stimulus, respectively. Our data provide insights into the mechanism of thermoprotection in insect. As cot phenotype closely resembles human epilepsy, cot might be a potential model for the mechanism of epilepsy in future.
Functional Loss of Bmsei Causes Thermosensitive Epilepsy in Contractile Mutant Silkworm, Bombyx mori
Nie, Hongyi; Cheng, Tingcai; Huang, Xiaofeng; Zhou, Mengting; Zhang, Yinxia; Dai, Fangyin; Mita, Kazuei; Xia, Qingyou; Liu, Chun
2015-01-01
The thermoprotective mechanisms of insects remain largely unknown. We reported the Bombyx mori contractile (cot) behavioral mutant with thermo-sensitive seizures phenotype. At elevated temperatures, the cot mutant exhibit seizures associated with strong contractions, rolling, vomiting, and a temporary lack of movement. We narrowed a region containing cot to ~268 kb by positional cloning and identified the mutant gene as Bmsei which encoded a potassium channel protein. Bmsei was present in both the cell membrane and cytoplasm in wild-type ganglia but faint in cot. Furthermore, Bmsei was markedly decreased upon high temperature treatment in cot mutant. With the RNAi method and injecting potassium channel blockers, the wild type silkworm was induced the cot phenotype. These results demonstrated that Bmsei was responsible for the cot mutant phenotype and played an important role in thermoprotection in silkworm. Meanwhile, comparative proteomic approach was used to investigate the proteomic differences. The results showed that the protein of Hsp-1 and Tn1 were significantly decreased and increased on protein level in cot mutant after thermo-stimulus, respectively. Our data provide insights into the mechanism of thermoprotection in insect. As cot phenotype closely resembles human epilepsy, cot might be a potential model for the mechanism of epilepsy in future. PMID:26198671
Kayser, Manfred
2015-09-01
Forensic DNA Phenotyping refers to the prediction of appearance traits of unknown sample donors, or unknown deceased (missing) persons, directly from biological materials found at the scene. "Biological witness" outcomes of Forensic DNA Phenotyping can provide investigative leads to trace unknown persons, who are unidentifiable with current comparative DNA profiling. This intelligence application of DNA marks a substantially different forensic use of genetic material rather than that of current DNA profiling presented in the courtroom. Currently, group-specific pigmentation traits are already predictable from DNA with reasonably high accuracies, while several other externally visible characteristics are under genetic investigation. Until individual-specific appearance becomes accurately predictable from DNA, conventional DNA profiling needs to be performed subsequent to appearance DNA prediction. Notably, and where Forensic DNA Phenotyping shows great promise, this is on a (much) smaller group of potential suspects, who match the appearance characteristics DNA-predicted from the crime scene stain or from the deceased person's remains. Provided sufficient funding being made available, future research to better understand the genetic basis of human appearance will expectedly lead to a substantially more detailed description of an unknown person's appearance from DNA, delivering increased value for police investigations in criminal and missing person cases involving unknowns. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Williams syndrome as a model of genetically determined right-hemisphere dominance.
Bogdanov, N N; Solonichenko, V G
1997-01-01
Studies were carried out on the dermatoglyphics (skin ridge marks) on the hands of children with Williams syndrome; this is an inherited disease with cardiovascular pathology and a characteristic facial phenotype ("elf" facies), along with specific mental and cognitive disturbances. The results suggest a characteristic dermatoglyphic type with the presence of complex whorls on the fingers and a clear predominance of marks of greater complexity on the left hand; this is a very rare trait in normal people and in those with other inherited nervous system disorders. The features of the dermatoglyphic pattern serve as a characteristic marker of a genetically determined state of the human central nervous system, and suggests directions for neurophysiological studies of children with Williams syndrome as a unique model for analysis of higher nervous function in humans.
Ghorbanoghli, Z; Nieuwenhuis, M H; Houwing-Duistermaat, J J; Jagmohan-Changur, S; Hes, F J; Tops, C M; Wagner, A; Aalfs, C M; Verhoef, S; Gómez García, E B; Sijmons, R H; Menko, F H; Letteboer, T G; Hoogerbrugge, N; van Wezel, T; Vasen, H F A; Wijnen, J T
2016-10-01
Familial adenomatous polyposis (FAP) is a dominantly inherited syndrome caused by germline mutations in the APC gene and characterized by the development of multiple colorectal adenomas and a high risk of developing colorectal cancer (CRC). The severity of polyposis is correlated with the site of the APC mutation. However, there is also phenotypic variability within families with the same underlying APC mutation, suggesting that additional factors influence the severity of polyposis. Genome-wide association studies identified several single nucleotide polymorphisms (SNPs) that are associated with CRC. We assessed whether these SNPs are associated with polyp multiplicity in proven APC mutation carriers. Sixteen CRC-associated SNPs were analysed in a cohort of 419 APC germline mutation carriers from 182 families. Clinical data were retrieved from the Dutch Polyposis Registry. Allele frequencies of the SNPs were compared for patients with <100 colorectal adenomas versus patients with ≥100 adenomas, using generalized estimating equations with the APC genotype as a covariate. We found a trend of association of two of the tested SNPs with the ≥100 adenoma phenotype: the C alleles of rs16892766 at 8q23.3 (OR 1.71, 95 % CI 1.05-2.76, p = 0.03, dominant model) and rs3802842 at 11q23.1 (OR 1.51, 95 % CI 1.03-2.22, p = 0.04, dominant model). We identified two risk variants that are associated with a more severe phenotype in APC mutation carriers. These risk variants may partly explain the phenotypic variability in families with the same APC gene defect. Further studies with a larger sample size are recommended to evaluate and confirm the phenotypic effect of these SNPs in FAP.
Nowacka-Woszuk, J; Switonski, M
2010-02-01
Numerous mutations of the human androgen receptor (AR) gene cause an intersexual phenotype, called the androgen insensitivity syndrome. The intersexual phenotype is also quite often diagnosed in dogs. The aim of this study was to conduct a comparative analysis of the entire coding sequence (eight exons) of the AR gene in healthy and four intersex dogs, as well as in three other canids (the red fox, arctic fox and Chinese raccoon dog). The coding sequence of the studied species appeared to be conserved (similarity above 97%) and polymorphism was found in exon 1 only. Altogether, 2 SNPs were identified in healthy dogs, 14 in red foxes, 16 in arctic foxes and 6 were found in Chinese raccoon dogs, respectively. Moreover, a variable number of tandem repeats (CAG and CAA), encoding an array of glutamines, was also observed in this exon. The CAA codon numbers were invariable within species, but the CAG repeats were polymorphic. The highest number of the CAG and CAA repeats was found in dogs (from 40 to 42) and the observed variability was similar in intersex and healthy dogs. In the other canids the variability fell within the following ranges: 29-37 (red fox), 37-39 (arctic fox) and 29-32 (Chinese raccoon dog). In addition, a polymorphic microsatellite marker in intron 2 was found in the dog, red fox and Chinese raccoon dog. It was concluded that the polymorphism level of the AR gene in the dog was lower than in the other canids and none of the detected polymorphisms, including variability of the CAG tandem repeats, could be related with the intersexual phenotype of the studied dogs.
Phenotypic variability among café-au-lait macules in neurofibromatosis type 1.
Boyd, Kevin P; Gao, Liyan; Feng, Rui; Beasley, Mark; Messiaen, Ludwine; Korf, Bruce R; Theos, Amy
2010-09-01
Café-au-lait macules (CALMs) in neurofibromatosis type 1 (NF1) are an early and accessible phenotype in NF1, but have not been extensively studied. We sought to more fully characterize the phenotype of CALMs in patients with NF1. In all, 24 patients with a diagnosis of NF1 confirmed through clinical diagnosis or molecular genetic testing were recruited from patients seen in the genetics department at the University of Alabama at Birmingham. CALM locations were mapped using standard digital photography. Pigment intensity was measured with a narrowband spectrophotometer, which estimates the relative amount of melanin based on its absorption of visible light. The major response was defined as the difference between the mean melanin from the CALM and the mean melanin from the surrounding skin. The major response for each spot was compared with spots within an individual and across individuals in the study population. There was significant variability of the major response, primarily attributable to intrapersonal variability (48.4%, P < .0001) and secondly to interpersonal variability (33.0%, P < .0094). Subsequent analysis based on genetic mutation type showed significantly darker spots in individuals with germline mutations leading to haploinsufficiency. The study was performed on a small population of patients and the method has not yet been used extensively for this purpose. CALMs vary in pigment intensity not only across individuals, but also within individuals and this variability was unrelated to sun exposure. Further studies may help elucidate the molecular basis of this finding, leading to an increased understanding of the pathogenesis of CALMs in NF1. Copyright 2009 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity
Saleheen, Danish; Natarajan, Pradeep; Armean, Irina M.; Zhao, Wei; Rasheed, Asif; Khetarpal, Sumeet; Won, Hong-Hee; Karczewski, Konrad J.; O’Donnell-Luria, Anne H.; Samocha, Kaitlin E.; Weisburd, Benjamin; Gupta, Namrata; Zaidi, Mozzam; Samuel, Maria; Imran, Atif; Abbas, Shahid; Majeed, Faisal; Ishaq, Madiha; Akhtar, Saba; Trindade, Kevin; Mucksavage, Megan; Qamar, Nadeem; Zaman, Khan Shah; Yaqoob, Zia; Saghir, Tahir; Rizvi, Syed Nadeem Hasan; Memon, Anis; Mallick, Nadeem Hayyat; Ishaq, Mohammad; Rasheed, Syed Zahed; Memon, Fazal-ur-Rehman; Mahmood, Khalid; Ahmed, Naveeduddin; Do, Ron; Krauss, Ronald M.; MacArthur, Daniel G.; Gabriel, Stacey; Lander, Eric S.; Daly, Mark J.; Frossard, Philippe; Danesh, John; Rader, Daniel J.; Kathiresan, Sekar
2017-01-01
A major goal of biomedicine is to understand the function of every gene in the human genome.1 Loss-of-function (LoF) mutations can disrupt both copies of a given gene in humans and phenotypic analysis of such ‘human knockouts’ can provide insight into gene function. Consanguineous unions are more likely to result in offspring who carry LoF mutations in a homozygous state. In Pakistan, consanguinity rates are notably high.2 Here, we sequenced the protein-coding regions of 10,503 adult participants in the Pakistan Risk of Myocardial Infarction Study (PROMIS) designed to understand the determinants of cardiometabolic diseases in South Asians.3 We identified individuals carrying predicted LoF (pLoF) mutations in the homozygous state, and performed phenotypic analysis involving >200 biochemical and disease traits. We enumerated 49,138 rare (<1 % minor allele frequency) pLoF mutations. These pLoF mutations are predicted to knock out 1,317 genes in at least one participant. Homozygosity for pLoF mutations at PLAG27 was associated with absent enzymatic activity of soluble lipoprotein-associated phospholipase A2; at CYP2F1, with higher plasma interleukin-8 concentrations; at TREH, with lower concentrations of apoB-containing lipoprotein subfractions; at either A3GALT2 or NRG4, with markedly reduced plasma insulin C-peptide concentrations; and at SLC9A3R1, with mediators of calcium and phosphate signaling. Finally, APOC3 is a gene which retards clearance of plasma triglyceride-rich lipoproteins and where heterozygous deficiency confers protection against coronary heart disease.4,5 In Pakistan, we now observe APOC3 homozygous pLoF carriers; we recalled these knockout humans and challenged with an oral fat load. Compared with wild-type family members, APOC3 knockouts displayed marked blunting of the usual post-prandial rise in plasma triglycerides. Overall, these observations provide a roadmap for a ‘human knockout project’, a systematic effort to understand the phenotypic consequences of complete disruption of genes in humans. PMID:28406212
The role of phenotype structure in the population dynamics of gypsy moth in the Lower Dnieper region
Nikolaj M. Derevyanko
1991-01-01
One of the characteristic features of the gypsy moth population in the Lower Dnieper area is its variable larval coloring. Phenotype frequency has been recorded over the years in separate micropopulations at different density levels. The data show the population to consist mainly of gray larvae in all life stages, and their abundance varying from 85 to 99.6 percent....
Path analysis of phenotypic traits in young cacao plants under drought conditions.
Santos, Emerson Alves Dos; Almeida, Alex-Alan Furtado de; Branco, Marcia Christina da Silva; Santos, Ivanildes Conceição Dos; Ahnert, Dario; Baligar, Virupax C; Valle, Raúl René
2018-01-01
Drought is worldwide considered one of the most limiting factors of Theobroma cacao production, which can be intensified by global climate changes. In this study, we aimed to investigate the phenotypic correlation among morphological characteristics of cacao progenies submitted to irrigation and drought conditions and their partitions into direct and indirect effects. Path analysis with phenotypic plasticity index was used as criteria for estimation of basic and explanatory variables. The experiment was conducted in a greenhouse at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a randomized block 21 x 2 factorial arrangement [21 cacao progenies obtained from complete diallel crosses and two water regimes (control and drought)] and six replications. In general, drought conditions influenced biomass production in most progenies, causing significant reductions in total leaf area, leaf number, leaf biomass, fine-roots length (diameter <1 mm), root volume and root area for considered drought intolerant. All progenies showed alterations in growth due to drought. Phenotypic plasticity was most strongly pronounced in root volume. Stem and root diameters, as well as stem dry biomass were the growth variables with the greatest direct effects on root volume under drought conditions, these characters being indicated in screening of cacao progenies drought tolerant.
Path analysis of phenotypic traits in young cacao plants under drought conditions
dos Santos, Emerson Alves; de Almeida, Alex-Alan Furtado; Branco, Marcia Christina da Silva; dos Santos, Ivanildes Conceição; Ahnert, Dario; Baligar, Virupax C.; Valle, Raúl René
2018-01-01
Drought is worldwide considered one of the most limiting factors of Theobroma cacao production, which can be intensified by global climate changes. In this study, we aimed to investigate the phenotypic correlation among morphological characteristics of cacao progenies submitted to irrigation and drought conditions and their partitions into direct and indirect effects. Path analysis with phenotypic plasticity index was used as criteria for estimation of basic and explanatory variables. The experiment was conducted in a greenhouse at the Cacao Research Center (CEPEC), Ilhéus, Bahia, Brazil, in a randomized block 21 x 2 factorial arrangement [21 cacao progenies obtained from complete diallel crosses and two water regimes (control and drought)] and six replications. In general, drought conditions influenced biomass production in most progenies, causing significant reductions in total leaf area, leaf number, leaf biomass, fine-roots length (diameter <1 mm), root volume and root area for considered drought intolerant. All progenies showed alterations in growth due to drought. Phenotypic plasticity was most strongly pronounced in root volume. Stem and root diameters, as well as stem dry biomass were the growth variables with the greatest direct effects on root volume under drought conditions, these characters being indicated in screening of cacao progenies drought tolerant. PMID:29408854
Vertically transmitted fecal IgA levels distinguish extra-chromosomal phenotypic variation
Wallace, Meghan A.; D, Carey-Ann; Burnham; Virgin, Herbert W.; Stappenbeck, Thaddeus S.
2014-01-01
Summary The proliferation of genetically modified mouse models has exposed phenotypic variation between investigators and institutions that has been challenging to control1-5. In many cases, the microbiota is the presumed culprit of the variation. Current solutions to account for phenotypic variability include littermate and maternal controls or defined microbial consortia in gnotobiotic mice6,7. In conventionally raised mice, the microbiome is transmitted from the dam2,8,9. Here we show that microbially–driven dichotomous fecal IgA levels in WT mice within the same facility mimic the effects of chromosomal mutations. We observed in multiple facilities that vertically-transmissible bacteria in IgA-Low mice dominantly lowered fecal IgA levels in IgA-High mice after cohousing or fecal transplantation. In response to injury, IgA-Low mice showed increased damage that was transferable by fecal transplantation and driven by fecal IgA differences. We found that bacteria from IgA-Low mice degraded the secretory component (SC) of SIgA as well as IgA itself. These data indicate that phenotypic comparisons between mice must take into account the non-chromosomal hereditary variation between different breeders. We propose fecal IgA as one marker of microbial variability and conclude that cohousing and/or fecal transplantation enables analysis of progeny from different dams. PMID:25686606
Variability in human body size
NASA Technical Reports Server (NTRS)
Annis, J. F.
1978-01-01
The range of variability found among homogeneous groups is described and illustrated. Those trends that show significantly marked differences between sexes and among a number of racial/ethnic groups are also presented. Causes of human-body size variability discussed include genetic endowment, aging, nutrition, protective garments, and occupation. The information is presented to aid design engineers of space flight hardware and equipment.
Rietschel, Liz; Streit, Fabian; Zhu, Gu; McAloney, Kerrie; Frank, Josef; Couvy-Duchesne, Baptiste; Witt, Stephanie H; Binz, Tina M; McGrath, John; Hickie, Ian B; Hansell, Narelle K; Wright, Margaret J; Gillespie, Nathan A; Forstner, Andreas J; Schulze, Thomas G; Wüst, Stefan; Nöthen, Markus M; Baumgartner, Markus R; Walker, Brian R; Crawford, Andrew A; Colodro-Conde, Lucía; Medland, Sarah E; Martin, Nicholas G; Rietschel, Marcella
2017-11-10
Hair cortisol concentration (HCC) is a promising measure of long-term hypothalamus-pituitary-adrenal (HPA) axis activity. Previous research has suggested an association between HCC and psychological variables, and initial studies of inter-individual variance in HCC have implicated genetic factors. However, whether HCC and psychological variables share genetic risk factors remains unclear. The aims of the present twin study were to: (i) assess the heritability of HCC; (ii) estimate the phenotypic and genetic correlation between HPA axis activity and the psychological variables perceived stress, depressive symptoms, and neuroticism; using formal genetic twin models and molecular genetic methods, i.e. polygenic risk scores (PRS). HCC was measured in 671 adolescents and young adults. These included 115 monozygotic and 183 dizygotic twin-pairs. For 432 subjects PRS scores for plasma cortisol, major depression, and neuroticism were calculated using data from large genome wide association studies. The twin model revealed a heritability for HCC of 72%. No significant phenotypic or genetic correlation was found between HCC and the three psychological variables of interest. PRS did not explain variance in HCC. The present data suggest that HCC is highly heritable. However, the data do not support a strong biological link between HCC and any of the investigated psychological variables.
META-ANALYSIS OF CYP2D6 METABOLIZER PHENOTYPE AND METOPROLOL PHARMACOKINETICS
Blake, CM; Kharasch, ED; Schwab, M; Nagele, P
2013-01-01
Metoprolol, a commonly prescribed beta-blocker, is primarily metabolized by cytochrome P450 2D6 (CYP2D6), an enzyme with substantial genetic heterogeneity. Several smaller studies have shown that metoprolol pharmacokinetics is influenced by CYP2D6 genotype and metabolizer phenotype. To increase robustness of metoprolol pharmacokinetic estimates, a systematic review and meta-analysis of pharmacokinetic studies that administered a single oral dose of immediate release metoprolol was performed. Pooled analysis (n= 264) demonstrated differences in peak plasma metoprolol concentration, area under the concentration-time curve, elimination half-life, and apparent oral clearance that were 2.3-, 4.9-, 2.3-, and 5.9-fold between extensive and poor metabolizers, respectively, and 5.3-, 13-, 2.6-, and 15-fold between ultra-rapid and poor metabolizers (all p<0.001). Enantiomer-specific analysis revealed genotype-dependent enantio-selective metabolism, with nearly 40% greater R- vs S-metoprolol metabolism in ultra-rapid and extensive metabolizers. This study demonstrates a marked effect of CYP2D6 metabolizer phenotype on metoprolol pharmacokinetics and confirms enantiomer specific metabolism of metoprolol. PMID:23665868
c-myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3
Sutherland, Kate D; Vaillant, François; Alexander, Warren S; Wintermantel, Tim M; Forrest, Natasha C; Holroyd, Sheridan L; McManus, Edward J; Schutz, Gunther; Watson, Christine J; Chodosh, Lewis A; Lindeman, Geoffrey J; Visvader, Jane E
2006-01-01
Suppressor of cytokine signalling (SOCS) proteins are critical attenuators of cytokine-mediated signalling in diverse tissues. To determine the importance of Socs3 in mammary development, we generated mice in which Socs3 was deleted in mammary epithelial cells. No overt phenotype was evident during pregnancy and lactation, indicating that Socs3 is not a key physiological regulator of prolactin signalling. However, Socs3-deficient mammary glands exhibited a profound increase in epithelial apoptosis and tissue remodelling, resulting in precocious involution. This phenotype was accompanied by augmented Stat3 activation and a marked increase in the level of c-myc. Moreover, induction of c-myc before weaning using an inducible transgenic model recapitulated the Socs3 phenotype, and elevated expression of likely c-myc target genes, E2F-1, Bax and p53, was observed. Our data establish Socs3 as a critical attenuator of pro-apoptotic pathways that act in the developing mammary gland and provide evidence that c-myc regulates apoptosis during involution. PMID:17139252
Nayyar, Tultul; Bruner-Tran, Kaylon L.; Piestrzeniewicz-Ulanska, Dagmara; Osteen, Kevin G.
2007-01-01
Whether environmental toxicants impact an individual woman’s risk for developing endometriosis remains uncertain. Although the growth of endometrial glands and stroma at extra-uterine sites is associated with retrograde menstruation, our studies suggest that reduced responsiveness to progesterone may increase the invasive capacity of endometrial tissue in women with endometriosis. Interestingly, our recent studies using isolated human endometrial cells in short-term culture suggest that experimental exposure to the environmental contaminant 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) can alter the expression of progesterone receptor isotypes. Compared to adult exposure, toxicant exposure during development can exert a significantly greater biological impact, potentially affecting the incidence of endometriosis in adults. To address this possibility, we exposed mice to TCDD at critical developmental time points and subsequently examined uterine progesterone receptor expression and steroid responsive transforming growth factor-β2 expression in adult animals. We find that the uterine phenotype of toxicant-exposed mice is markedly similarly to the endometrial phenotype of women with endometriosis. PMID:17056225
Platform for combined analysis of functional and biomolecular phenotypes of the same cell.
Kelbauskas, L; Ashili, S; Zeng, J; Rezaie, A; Lee, K; Derkach, D; Ueberroth, B; Gao, W; Paulson, T; Wang, H; Tian, Y; Smith, D; Reid, B; Meldrum, Deirdre R
2017-03-16
Functional and molecular cell-to-cell variability is pivotal at the cellular, tissue and whole-organism levels. Yet, the ultimate goal of directly correlating the function of the individual cell with its biomolecular profile remains elusive. We present a platform for integrated analysis of functional and transcriptional phenotypes in the same single cells. We investigated changes in the cellular respiration and gene expression diversity resulting from adaptation to repeated episodes of acute hypoxia in a premalignant progression model. We find differential, progression stage-specific alterations in phenotypic heterogeneity and identify cells with aberrant phenotypes. To our knowledge, this study is the first demonstration of an integrated approach to elucidate how heterogeneity at the transcriptional level manifests in the physiologic profile of individual cells in the context of disease progression.
Ars, Elisabet; Torra, Roser
2017-10-01
A significant percentage of adults (10%) and children (20%) on renal replacement therapy have an inherited kidney disease (IKD). The new genomic era, ushered in by the next generation sequencing techniques, has contributed to the identification of new genes and facilitated the genetic diagnosis of the highly heterogeneous IKDs. Consequently, it has also allowed the reclassification of diseases and has broadened the phenotypic spectrum of many classical IKDs. Various genetic, epigenetic and environmental factors may explain 'atypical' phenotypes. In this article, we examine different mechanisms that may contribute to phenotypic variability and also provide case examples that illustrate them. The aim of the article is to raise awareness, among nephrologists and geneticists, of rare presentations that IKDs may show, to facilitate diagnosis.
Sakaguchi, Kouhei; Ohno, Ryoko; Yoshida, Kentaro
2017-01-01
Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids. PMID:28463975
A Novel Intergenic ETnII-β Insertion Mutation Causes Multiple Malformations in Polypodia Mice
Lehoczky, Jessica A.; Thomas, Peedikayil E.; Patrie, Kevin M.; Owens, Kailey M.; Villarreal, Lisa M.; Galbraith, Kenneth; Washburn, Joe; Johnson, Craig N.; Gavino, Bryant; Borowsky, Alexander D.; Millen, Kathleen J.; Wakenight, Paul; Law, William; Van Keuren, Margaret L.; Gavrilina, Galina; Hughes, Elizabeth D.; Saunders, Thomas L.; Brihn, Lesil; Nadeau, Joseph H.; Innis, Jeffrey W.
2013-01-01
Mouse early transposon insertions are responsible for ∼10% of spontaneous mutant phenotypes. We previously reported the phenotypes and genetic mapping of Polypodia, (Ppd), a spontaneous, X-linked dominant mutation with profound effects on body plan morphogenesis. Our new data shows that mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. In addition, we refined the Ppd genetic interval and discovered a novel ETnII-β early transposon insertion between the genes for Dusp9 and Pnck. The ETn inserted 1.6 kb downstream and antisense to Dusp9 and does not disrupt polyadenylation or splicing of either gene. Knock-in mice engineered to carry the ETn display Ppd characteristic ectopic caudal limb phenotypes, showing that the ETn insertion is the Ppd molecular lesion. Early transposons are actively expressed in the early blastocyst. To explore the consequences of the ETn on the genomic landscape at an early stage of development, we compared interval gene expression between wild-type and mutant ES cells. Mutant ES cell expression analysis revealed marked upregulation of Dusp9 mRNA and protein expression. Evaluation of the 5′ LTR CpG methylation state in adult mice revealed no correlation with the occurrence or severity of Ppd phenotypes at birth. Thus, the broad range of phenotypes observed in this mutant is secondary to a novel intergenic ETn insertion whose effects include dysregulation of nearby interval gene expression at early stages of development. PMID:24339789
Yang, Lujun; Zhang, Dangui; Wu, Hongjuan; Xie, Sitian; Zhang, Mingjun; Zhang, Bingna; Tang, Shijie
2018-05-30
To elucidate the possible mechanisms of how basic fibroblast growth factor (bFGF) influences epidermal homeostasis in a living skin equivalent (LSE) model. Several wound healing-related growth factors were analyzed at protein and mRNA levels for dermal fibroblasts of induced alpha-smooth muscle actin (α-SMA)-positive or α-SMA-negative phenotypes. During culturing an LSE model by seeding normal human keratinocytes on a fibroblast-populated type I collagen gel, bFGF or neutralizing antibody for keratinocyte growth factor (KGF) was added to investigate its effects on fibroblast phenotypes and, subsequently, epidermal homeostasis by histology and immunohistochemistry. The α-SMA-positive phenotype of fibroblasts induced by transforming growth factor beta-1 (TGF-β1) markedly suppressed the expression of KGF and hepatocyte growth factor (HGF), and slightly upregulated vascular endothelial growth factor (VEGF) and TGF-β1 at mRNA and protein levels, compared with α-SMA-negative fibroblasts treated with bFGF. α-SMA expression of fibroblasts at the epidermal-mesenchymal junction of the LSEs was suppressed by the addition of bFGF, and a better-differentiated epidermis was presented. The abrogation of KGF from fibroblasts by the addition of the KGF neutralizing antibody disenabled the LSE culturing system to develop an epidermis. bFGF, through affecting the phenotypes and functions of fibroblasts, especially KGF expression, influenced epidermal homeostasis in an LSE model. © 2018 S. Karger AG, Basel.
Heterogeneous Stock Rat: A Unique Animal Model for Mapping Genes Influencing Bone Fragility
Alam, Imranul; Koller, Daniel L.; Sun, Qiwei; Roeder, Ryan K.; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla; Diez, Margarita; Johannesson, Martina; Flint, Jonathan; Econs, Michael J.; Turner, Charles H.; Foroud, Tatiana
2011-01-01
Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in 4 inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which is time consuming and often not successful. A potential alternative approach is to use a highly genetically informative animal model resource capable of delivering very high-resolution gene mapping such as Heterogeneous stock (HS) rat. HS rat was derived from eight inbred progenitors: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N. The genetic recombination pattern generated across 50 generations in these rats has been shown to deliver ultra-high even gene-level resolution for complex genetic studies. The purpose of this study is to investigate the usefulness of the HS rat model for fine mapping and identification of genes underlying bone fragility phenotypes. We compared bone geometry, density and strength phenotypes at multiple skeletal sites in HS rats with those obtained from 5 of the 8 progenitor inbred strains. In addition, we estimated the heritability for different bone phenotypes in these rats and employed principal component analysis to explore relationships among bone phenotypes in the HS rats. Our study demonstrates that significant variability exists for different skeletal phenotypes in HS rats compared with their inbred progenitors. In addition, we estimated high heritability for several bone phenotypes and biologically interpretable factors explaining significant overall variability, suggesting that the HS rat model could be a unique genetic resource for rapid and efficient discovery of the genetic determinants of bone fragility. PMID:21334473
Heterogeneous stock rat: a unique animal model for mapping genes influencing bone fragility.
Alam, Imranul; Koller, Daniel L; Sun, Qiwei; Roeder, Ryan K; Cañete, Toni; Blázquez, Gloria; López-Aumatell, Regina; Martínez-Membrives, Esther; Vicens-Costa, Elia; Mont, Carme; Díaz, Sira; Tobeña, Adolf; Fernández-Teruel, Alberto; Whitley, Adam; Strid, Pernilla; Diez, Margarita; Johannesson, Martina; Flint, Jonathan; Econs, Michael J; Turner, Charles H; Foroud, Tatiana
2011-05-01
Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in four inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which is time consuming and often not successful. A potential alternative approach is to use a highly genetically informative animal model resource capable of delivering very high resolution gene mapping such as Heterogeneous stock (HS) rat. HS rat was derived from eight inbred progenitors: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N. The genetic recombination pattern generated across 50 generations in these rats has been shown to deliver ultra-high even gene-level resolution for complex genetic studies. The purpose of this study is to investigate the usefulness of the HS rat model for fine mapping and identification of genes underlying bone fragility phenotypes. We compared bone geometry, density and strength phenotypes at multiple skeletal sites in HS rats with those obtained from five of the eight progenitor inbred strains. In addition, we estimated the heritability for different bone phenotypes in these rats and employed principal component analysis to explore relationships among bone phenotypes in the HS rats. Our study demonstrates that significant variability exists for different skeletal phenotypes in HS rats compared with their inbred progenitors. In addition, we estimated high heritability for several bone phenotypes and biologically interpretable factors explaining significant overall variability, suggesting that the HS rat model could be a unique genetic resource for rapid and efficient discovery of the genetic determinants of bone fragility. Copyright © 2010 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A new species of eriophyoid mite, Metaculus diplotaxi n.sp. inhabiting Diplotaxis tenuifolia (L.) DC., has been described from Serbia. To investigate interspecific variability between Metaculus spp., on three different host plants of Brassicaceae we analyzed phenotypic variability of morphological t...
Picker-Minh, Sylvie; Mignot, Cyril; Doummar, Diane; Hashem, Mais; Faqeih, Eissa; Josset, Patrice; Dubern, Béatrice; Alkuraya, Fowzan S; Kraemer, Nadine; Kaindl, Angela M
2016-04-29
Infantile-onset multisystem neurologic, endocrine, and pancreatic disease (IMNEPD) has been recently linked to biallelic mutation of the peptidyl-tRNA hydrolase 2 gene PTRH2. Two index patients with IMNEPD in the original report had multiple neurological symptoms such as postnatal microcephaly, intellectual disability, developmental delay, sensorineural deafness, cerebellar atrophy, ataxia, and peripheral neuropathy. In addition, distal muscle weakness and abnormalities of thyroid, pancreas, and liver were found. Here, we report five further IMNEPD patients with a different homozygous PTRH2 mutation, broaden the phenotypic spectrum of the disease and differentiate common symptoms and interindividual variability in IMNEPD associated with a unique mutation. We thereby hope to better define IMNEPD and promote recognition and diagnosis of this novel disease entity.
Presentation and Treatment of Poland Anomaly.
Buckwalter V, Joseph A; Shah, Apurva S
2016-12-01
Background: Poland anomaly is a sporadic, phenotypically variable congenital condition usually characterized by unilateral pectoral muscle agenesis and ipsilateral hand deformity. Methods: A comprehensive review of the medical literature on Poland anomaly was performed using a Medline search. Results: Poland anomaly is a sporadic, phenotypically variable congenital condition usually characterized by unilateral, simple syndactyly with ipsilateral limb hypoplasia and pectoralis muscle agenesis. Operative management of syndactyly in Poland anomaly is determined by the severity of hand involvement and the resulting anatomical dysfunction. Syndactyly reconstruction is recommended in all but the mildest cases because most patients with Poland anomaly have notable brachydactyly, and digital separation can improve functional length. Conclusions: Improved understanding the etiology and presentation of Poland anomaly can improve clinician recognition and management of this rare congenital condition.
ERIC Educational Resources Information Center
Massey, Alf
1983-01-01
The effects of penmanship, complexity and accuracy of prose, length of answers, and use of quotations on marks awarded by English literature examiners were studied. The sex of students and examiners, untidiness, and prose complexity and accuracy were unrelated to grades. The results suggested that examiners avoid crediting students for…
Better marking means cheaper pruning.
Kenneth R. Eversole
1953-01-01
Careful selection of trees to be pruned can make the difference between profit and loss on the pruning investment, especially in stands where no thinning is contemplated. Expert marking is required to make sure that the pruned trees will grow rapidly. The most important variable influencing the cost of clear wood produced by pruning is growth rate. For example, at 3...
ERIC Educational Resources Information Center
Sarnecka, Barbara W.; Kamenskaya, Valentina G.; Yamana, Yuko; Ogura, Tamiko; Yudovina, Yulia B.
2007-01-01
This study examined whether singular/plural marking in a language helps children learn the meanings of the words "one," "two," and "three." First, CHILDES data in English, Russian (which marks singular/plural), and Japanese (which does not) were compared for frequency, variability, and contexts of number-word use.…
Abdullah, Wan Zawiah Wan; Mackey, Bernard M; Karatzas, Kimon Andreas G
2018-01-01
Salmonella is an important foodborne pathogen, whose ability to resist stress and survive can vary among strains. This variability is normally not taken into account when predictions are made about survival in foods with negative consequences. Therefore, we examined the contribution of variable phenotypic properties to survival under stress in 10 Salmonella serovars. One strain (Typhimurium 10) was intentionally RpoS-negative; however, another strain (Heidelberg) showed an rpoS mutation, rendering it inactive. We assessed an array of characteristics (motility, biofilm formation, bile resistance, acid resistance, and colony morphology) that show major variability among strains associated with a 10- to 19-fold difference between the highest and the lowest strain for most characteristics. The RpoS status of isolates did not affect variability in the characteristics, with the exception of resistance to NaCl, acetic acid, lactic acid, and the combination of acetic acid and salt, where the variability between the highest and the lowest strain was reduced to 3.1-fold, 1.7-fold, 2-fold, and 1.7-fold, respectively, showing that variability was significant among RpoS-positive strains. Furthermore, we also found a good correlation between acid resistance and lysine decarboxylase activity, showing its importance for acid resistance, and demonstrated a possible role of RpoS in the lysine decarboxylase activity in Salmonella.
Hardiness commitment, gender, and age differentiate university academic performance.
Sheard, Michael
2009-03-01
The increasing diversity of students, particularly in age, attending university has seen a concomitant interest in factors predicting academic success. This 2-year correlational study examined whether age, gender (demographic variables), and hardiness (cognitive/emotional variable) differentiate and predict university final degree grade point average (GPA) and final-year dissertation mark. Data are reported from a total of 134 university undergraduate students. Participants provided baseline data in questionnaires administered during the first week of their second year of undergraduate study and gave consent for their academic progress to be tracked. Final degree GPA and dissertation mark were the academic performance criteria. Mature-age students achieved higher final degree GPA compared to young undergraduates. Female students significantly outperformed their male counterparts in each measured academic assessment criteria. Female students also reported a significantly higher mean score on hardiness commitment compared to male students. commitment was the most significant positive correlate of academic achievement. Final degree GPA and dissertation mark were significantly predicted by commitment, and commitment and gender, respectively. The findings have implications for universities targeting academic support services to maximize student scholastic potential. Future research should incorporate hardiness, gender, and age with other variables known to predict academic success.
Some insight on censored cost estimators.
Zhao, H; Cheng, Y; Bang, H
2011-08-30
Censored survival data analysis has been studied for many years. Yet, the analysis of censored mark variables, such as medical cost, quality-adjusted lifetime, and repeated events, faces a unique challenge that makes standard survival analysis techniques invalid. Because of the 'informative' censorship imbedded in censored mark variables, the use of the Kaplan-Meier (Journal of the American Statistical Association 1958; 53:457-481) estimator, as an example, will produce biased estimates. Innovative estimators have been developed in the past decade in order to handle this issue. Even though consistent estimators have been proposed, the formulations and interpretations of some estimators are less intuitive to practitioners. On the other hand, more intuitive estimators have been proposed, but their mathematical properties have not been established. In this paper, we prove the analytic identity between some estimators (a statistically motivated estimator and an intuitive estimator) for censored cost data. Efron (1967) made similar investigation for censored survival data (between the Kaplan-Meier estimator and the redistribute-to-the-right algorithm). Therefore, we view our study as an extension of Efron's work to informatively censored data so that our findings could be applied to other marked variables. Copyright © 2011 John Wiley & Sons, Ltd.
Kochat, Veena; Equbal, Zaffar; Baligar, Prakash; Kumar, Vikash; Srivastava, Madhulika; Mukhopadhyay, Asok
2017-01-01
The strictly regulated unidirectional differentiation program in some somatic stem/progenitor cells has been found to be modified in the ectopic site (tissue) undergoing regeneration. In these cases, the lineage barrier is crossed by either heterotypic cell fusion or direct differentiation. Though studies have shown the role of coordinated genetic and epigenetic mechanisms in cellular development and differentiation, how the lineage fate of adult bone marrow progenitor cells (BMPCs) is reprogrammed during liver regeneration and whether this lineage switch is stably maintained are not clearly understood. In the present study, we wanted to decipher genetic and epigenetic mechanisms that involve in lineage reprogramming of BMPCs into hepatocyte-like cells. Here we report dynamic transcriptional change during cellular reprogramming of BMPCs to hepatocytes and dissect the epigenetic switch mechanism of BM cell-mediated liver regeneration after acute injury. Genome-wide gene expression analysis in BM-derived hepatocytes, isolated after 1 month and 5 months of transplantation, showed induction of hepatic transcriptional program and diminishing of donor signatures over the time. The transcriptional reprogramming of BM-derived cells was found to be the result of enrichment of activating marks (H3K4me3 and H3K9Ac) and loss of repressive marks (H3K27me3 and H3K9me3) at the promoters of hepatic transcription factors (HTFs). Further analyses showed that BMPCs possess bivalent histone marks (H3K4me3 and H3K27me3) at the promoters of crucial HTFs. H3K27 methylation dynamics at the HTFs was antagonistically regulated by EZH2 and JMJD3. Preliminary evidence suggests a role of JMJD3 in removal of H3K27me3 mark from promoters of HTFs, thus activating epigenetically poised hepatic genes in BMPCs prior to partial nuclear reprogramming. The importance of JMJD3 in reprogramming of BMPCs to hepatic phenotype was confirmed by inhibiting catalytic function of the enzyme using small molecule GSK-J4. Our results propose a potential role of JMJD3 in lineage conversion of BM cells into hepatic lineage. PMID:28328977
Akimoto, Yuki; Yugi, Katsuyuki; Uda, Shinsuke; Kudo, Takamasa; Komori, Yasunori; Kubota, Hiroyuki; Kuroda, Shinya
2013-01-01
Cells use common signaling molecules for the selective control of downstream gene expression and cell-fate decisions. The relationship between signaling molecules and downstream gene expression and cellular phenotypes is a multiple-input and multiple-output (MIMO) system and is difficult to understand due to its complexity. For example, it has been reported that, in PC12 cells, different types of growth factors activate MAP kinases (MAPKs) including ERK, JNK, and p38, and CREB, for selective protein expression of immediate early genes (IEGs) such as c-FOS, c-JUN, EGR1, JUNB, and FOSB, leading to cell differentiation, proliferation and cell death; however, how multiple-inputs such as MAPKs and CREB regulate multiple-outputs such as expression of the IEGs and cellular phenotypes remains unclear. To address this issue, we employed a statistical method called partial least squares (PLS) regression, which involves a reduction of the dimensionality of the inputs and outputs into latent variables and a linear regression between these latent variables. We measured 1,200 data points for MAPKs and CREB as the inputs and 1,900 data points for IEGs and cellular phenotypes as the outputs, and we constructed the PLS model from these data. The PLS model highlighted the complexity of the MIMO system and growth factor-specific input-output relationships of cell-fate decisions in PC12 cells. Furthermore, to reduce the complexity, we applied a backward elimination method to the PLS regression, in which 60 input variables were reduced to 5 variables, including the phosphorylation of ERK at 10 min, CREB at 5 min and 60 min, AKT at 5 min and JNK at 30 min. The simple PLS model with only 5 input variables demonstrated a predictive ability comparable to that of the full PLS model. The 5 input variables effectively extracted the growth factor-specific simple relationships within the MIMO system in cell-fate decisions in PC12 cells.
T cell chronic lymphocytic leukaemia with suppressor phenotype.
Hofman, F M; Smith, D; Hocking, W
1982-01-01
The peripheral blood cells from a patient with T cell chronic lymphocytic leukaemia were examined for surface marker and functional characteristics. Eighty-91% of the peripheral blood cells formed SRBC rosettes and 22-49% possessed Fc receptors; 73% of the peripheral blood cells were reactive with the OKT8 antiserum and 61% expressed DR antigens. Response to PHA stimulation was markedly reduced, whereas allogeneic responsiveness in mixed leucocyte culture was intact. The ability of Con A-stimulated peripheral blood cells to generate suppressor activity in a mixed leucocyte reaction was deficient, whereas suppression of in vitro immunoglobulin synthesis was greater than normal. The leukaemic peripheral blood cell population expressed a T suppressor phenotype. Functional studies suggest that these cells were derived from the subset of T lymphocytes with regulatory activity for immunoglobulin synthesis as opposed to mitogenic responsiveness. PMID:6215199
Expression Analysis of Macrodactyly Identifies Pleiotrophin Upregulation
Lau, Frank H.; Xia, Fang; Kaplan, Adam; Cerrato, Felecia; Greene, Arin K.; Taghinia, Amir; Cowan, Chad A.; Labow, Brian I.
2012-01-01
Macrodactyly is a rare family of congenital disorders characterized by the diffuse enlargement of 1 or more digits. Multiple tissue types within the affected digits are involved, but skeletal patterning and gross morphological features are preserved. Not all tissues are equally involved and there is marked heterogeneity with respect to clinical phenotype. The molecular mechanisms responsible for these growth disturbances offer unique insight into normal limb growth and development, in general. To date, no genes or loci have been implicated in the development of macrodactyly. In this study, we performed the first transcriptional profiling of macrodactyly tissue. We found that pleiotrophin (PTN) was significantly overexpressed across all our macrodactyly samples. The mitogenic functions of PTN correlate closely with the clinical characteristics of macrodactyly. PTN thus represents a promising target for further investigation into the etiology of overgrowth phenotypes. PMID:22848377
Passot, Sixtine; Moreno-Ortega, Beatriz; Moukouanga, Daniel; Balsera, Crispulo; Guyomarc'h, Soazig; Lucas, Mikael; Lobet, Guillaume; Laplaze, Laurent; Muller, Bertrand; Guédon, Yann
2018-05-11
Recent progress in root phenotyping has focused mainly on increasing throughput for genetic studies while identifying root developmental patterns has been comparatively underexplored. We introduce a new phenotyping pipeline for producing high-quality spatio-temporal root system development data and identifying developmental patterns within these data. The SmartRoot image analysis system and temporal and spatial statistical models were applied to two cereals, pearl millet (Pennisetum glaucum) and maize (Zea mays). Semi-Markov switching linear models were used to cluster lateral roots based on their growth rate profiles. These models revealed three types of lateral roots with similar characteristics in both species. The first type corresponds to fast and accelerating roots, the second to rapidly arrested roots, and the third to an intermediate type where roots cease elongation after a few days. These types of lateral roots were retrieved in different proportions in a maize mutant affected in auxin signaling, while the first most vigorous type was absent in maize plants exposed to severe shading. Moreover, the classification of growth rate profiles was mirrored by a ranking of anatomical traits in pearl millet. Potential dependencies in the succession of lateral root types along the primary root were then analyzed using variable-order Markov chains. The lateral root type was not influenced by the shootward neighbor root type or by the distance from this root. This random branching pattern of primary roots was remarkably conserved, despite the high variability of root systems in both species. Our phenotyping pipeline opens the door to exploring the genetic variability of lateral root developmental patterns. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.
van den Broek, M; Bolat, I; Nijkamp, J F; Ramos, E; Luttik, M A H; Koopman, F; Geertman, J M; de Ridder, D; Pronk, J T; Daran, J-M
2015-09-01
Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes. Copyright © 2015, van den Broek et al.
van den Broek, M.; Bolat, I.; Nijkamp, J. F.; Ramos, E.; Luttik, M. A. H.; Koopman, F.; Geertman, J. M.; de Ridder, D.; Pronk, J. T.
2015-01-01
Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes. PMID:26150454
Recurrent Rearrangements of Chromosome 1q21.1 and Variable Pediatric Phenotypes
Mefford, Heather C.; Sharp, Andrew J.; Baker, Carl; Itsara, Andy; Jiang, Zhaoshi; Buysse, Karen; Huang, Shuwen; Maloney, Viv K.; Crolla, John A.; Baralle, Diana; Collins, Amanda; Mercer, Catherine; Norga, Koen; de Ravel, Thomy; Devriendt, Koen; Bongers, Ernie M.H.F.; de Leeuw, Nicole; Reardon, William; Gimelli, Stefania; Bena, Frederique; Hennekam, Raoul C.; Male, Alison; Gaunt, Lorraine; Clayton-Smith, Jill; Simonic, Ingrid; Park, Soo Mi; Mehta, Sarju G.; Nik-Zainal, Serena; Woods, C. Geoffrey; Firth, Helen V.; Parkin, Georgina; Fichera, Marco; Reitano, Santina; Giudice, Mariangela Lo; Li, Kelly E.; Casuga, Iris; Broomer, Adam; Conrad, Bernard; Schwerzmann, Markus; Räber, Lorenz; Gallati, Sabina; Striano, Pasquale; Coppola, Antonietta; Tolmie, John L.; Tobias, Edward S.; Lilley, Chris; Armengol, Lluis; Spysschaert, Yves; Verloo, Patrick; De Coene, Anja; Goossens, Linde; Mortier, Geert; Speleman, Frank; van Binsbergen, Ellen; Nelen, Marcel R.; Hochstenbach, Ron; Poot, Martin; Gallagher, Louise; Gill, Michael; McClellan, Jon; King, Mary-Claire; Regan, Regina; Skinner, Cindy; Stevenson, Roger E.; Antonarakis, Stylianos E.; Chen, Caifu; Estivill, Xavier; Menten, Björn; Gimelli, Giorgio; Gribble, Susan; Schwartz, Stuart; Sutcliffe, James S.; Walsh, Tom; Knight, Samantha J.L.; Sebat, Jonathan; Romano, Corrado; Schwartz, Charles E.; Veltman, Joris A.; de Vries, Bert B.A.; Vermeesch, Joris R.; Barber, John C.K.; Willatt, Lionel; Tassabehji, May; Eichler, Evan E.
2009-01-01
BACKGROUND Duplications and deletions in the human genome can cause disease or predispose persons to disease. Advances in technologies to detect these changes allow for the routine identification of submicroscopic imbalances in large numbers of patients. METHODS We tested for the presence of microdeletions and microduplications at a specific region of chromosome 1q21.1 in two groups of patients with unexplained mental retardation, autism, or congenital anomalies and in unaffected persons. RESULTS We identified 25 persons with a recurrent 1.35-Mb deletion within 1q21.1 from screening 5218 patients. The microdeletions had arisen de novo in eight patients, were inherited from a mildly affected parent in three patients, were inherited from an apparently unaffected parent in six patients, and were of unknown inheritance in eight patients. The deletion was absent in a series of 4737 control persons (P = 1.1×10−7). We found considerable variability in the level of phenotypic expression of the microdeletion; phenotypes included mild-to-moderate mental retardation, microcephaly, cardiac abnormalities, and cataracts. The reciprocal duplication was enriched in the nine children with mental retardation or autism spectrum disorder and other variable features (P = 0.02). We identified three deletions and three duplications of the 1q21.1 region in an independent sample of 788 patients with mental retardation and congenital anomalies. CONCLUSIONS We have identified recurrent molecular lesions that elude syndromic classification and whose disease manifestations must be considered in a broader context of development as opposed to being assigned to a specific disease. Clinical diagnosis in patients with these lesions may be most readily achieved on the basis of genotype rather than phenotype. PMID:18784092
The Genetic Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities
Chong, Jessica X.; Buckingham, Kati J.; Jhangiani, Shalini N.; Boehm, Corinne; Sobreira, Nara; Smith, Joshua D.; Harrell, Tanya M.; McMillin, Margaret J.; Wiszniewski, Wojciech; Gambin, Tomasz; Coban Akdemir, Zeynep H.; Doheny, Kimberly; Scott, Alan F.; Avramopoulos, Dimitri; Chakravarti, Aravinda; Hoover-Fong, Julie; Mathews, Debra; Witmer, P. Dane; Ling, Hua; Hetrick, Kurt; Watkins, Lee; Patterson, Karynne E.; Reinier, Frederic; Blue, Elizabeth; Muzny, Donna; Kircher, Martin; Bilguvar, Kaya; López-Giráldez, Francesc; Sutton, V. Reid; Tabor, Holly K.; Leal, Suzanne M.; Gunel, Murat; Mane, Shrikant; Gibbs, Richard A.; Boerwinkle, Eric; Hamosh, Ada; Shendure, Jay; Lupski, James R.; Lifton, Richard P.; Valle, David; Nickerson, Deborah A.; Bamshad, Michael J.
2015-01-01
Discovering the genetic basis of a Mendelian phenotype establishes a causal link between genotype and phenotype, making possible carrier and population screening and direct diagnosis. Such discoveries also contribute to our knowledge of gene function, gene regulation, development, and biological mechanisms that can be used for developing new therapeutics. As of February 2015, 2,937 genes underlying 4,163 Mendelian phenotypes have been discovered, but the genes underlying ∼50% (i.e., 3,152) of all known Mendelian phenotypes are still unknown, and many more Mendelian conditions have yet to be recognized. This is a formidable gap in biomedical knowledge. Accordingly, in December 2011, the NIH established the Centers for Mendelian Genomics (CMGs) to provide the collaborative framework and infrastructure necessary for undertaking large-scale whole-exome sequencing and discovery of the genetic variants responsible for Mendelian phenotypes. In partnership with 529 investigators from 261 institutions in 36 countries, the CMGs assessed 18,863 samples from 8,838 families representing 579 known and 470 novel Mendelian phenotypes as of January 2015. This collaborative effort has identified 956 genes, including 375 not previously associated with human health, that underlie a Mendelian phenotype. These results provide insight into study design and analytical strategies, identify novel mechanisms of disease, and reveal the extensive clinical variability of Mendelian phenotypes. Discovering the gene underlying every Mendelian phenotype will require tackling challenges such as worldwide ascertainment and phenotypic characterization of families affected by Mendelian conditions, improvement in sequencing and analytical techniques, and pervasive sharing of phenotypic and genomic data among researchers, clinicians, and families. PMID:26166479
Ramírez-Prado, Dolores; Cortés, Ernesto; Aguilar-Segura, María Soledad; Gil-Guillén, Vicente Francisco
2016-01-01
In January 2012, a review of the cases of chromosome 15q24 microdeletion syndrome was published. However, this study did not include inferential statistics. The aims of the present study were to update the literature search and calculate confidence intervals for the prevalence of each phenotype using bootstrap methodology. Published case reports of patients with the syndrome that included detailed information about breakpoints and phenotype were sought and 36 were included. Deletions in megabase (Mb) pairs were determined to calculate the size of the interstitial deletion of the phenotypes studied in 2012. To determine confidence intervals for the prevalence of the phenotype and the interstitial loss, we used bootstrap methodology. Using the bootstrap percentiles method, we found wide variability in the prevalence of the different phenotypes (3–100%). The mean interstitial deletion size was 2.72 Mb (95% CI [2.35–3.10 Mb]). In comparison with our work, which expanded the literature search by 45 months, there were differences in the prevalence of 17% of the phenotypes, indicating that more studies are needed to analyze this rare disease. PMID:26925314
Systematic Association of Genes to Phenotypes by Genome and Literature Mining
Jensen, Lars J; Perez-Iratxeta, Carolina; Kaczanowski, Szymon; Hooper, Sean D; Andrade, Miguel A
2005-01-01
One of the major challenges of functional genomics is to unravel the connection between genotype and phenotype. So far no global analysis has attempted to explore those connections in the light of the large phenotypic variability seen in nature. Here, we use an unsupervised, systematic approach for associating genes and phenotypic characteristics that combines literature mining with comparative genome analysis. We first mine the MEDLINE literature database for terms that reflect phenotypic similarities of species. Subsequently we predict the likely genomic determinants: genes specifically present in the respective genomes. In a global analysis involving 92 prokaryotic genomes we retrieve 323 clusters containing a total of 2,700 significant gene–phenotype associations. Some clusters contain mostly known relationships, such as genes involved in motility or plant degradation, often with additional hypothetical proteins associated with those phenotypes. Other clusters comprise unexpected associations; for example, a group of terms related to food and spoilage is linked to genes predicted to be involved in bacterial food poisoning. Among the clusters, we observe an enrichment of pathogenicity-related associations, suggesting that the approach reveals many novel genes likely to play a role in infectious diseases. PMID:15799710
Circadian Phenotype Composition is a Major Predictor of Diurnal Physical Performance in Teams.
Facer-Childs, Elise; Brandstaetter, Roland
2015-01-01
Team performance is a complex phenomenon involving numerous influencing factors including physiology, psychology, and management. Biological rhythms and the impact of circadian phenotype have not been studied for their contribution to this array of factors so far despite our knowledge of the circadian regulation of key physiological processes involved in physical and mental performance. This study involved 216 individuals from 12 different teams who were categorized into circadian phenotypes using the novel RBUB chronometric test. The composition of circadian phenotypes within each team was used to model predicted daily team performance profiles based on physical performance tests. Our results show that the composition of circadian phenotypes within teams is variable and unpredictable. Predicted physical peak performance ranged from 1:52 to 8:59 p.m. with performance levels fluctuating by up to 14.88% over the course of the day. The major predictor for peak performance time in the course of a day in a team is the occurrence of late circadian phenotypes. We conclude that circadian phenotype is a performance indicator in teams that allows new insight and a better understanding of team performance variation in the course of a day as often observed in different groupings of individuals.
Circadian Phenotype Composition is a Major Predictor of Diurnal Physical Performance in Teams
Facer-Childs, Elise; Brandstaetter, Roland
2015-01-01
Team performance is a complex phenomenon involving numerous influencing factors including physiology, psychology, and management. Biological rhythms and the impact of circadian phenotype have not been studied for their contribution to this array of factors so far despite our knowledge of the circadian regulation of key physiological processes involved in physical and mental performance. This study involved 216 individuals from 12 different teams who were categorized into circadian phenotypes using the novel RBUB chronometric test. The composition of circadian phenotypes within each team was used to model predicted daily team performance profiles based on physical performance tests. Our results show that the composition of circadian phenotypes within teams is variable and unpredictable. Predicted physical peak performance ranged from 1:52 to 8:59 p.m. with performance levels fluctuating by up to 14.88% over the course of the day. The major predictor for peak performance time in the course of a day in a team is the occurrence of late circadian phenotypes. We conclude that circadian phenotype is a performance indicator in teams that allows new insight and a better understanding of team performance variation in the course of a day as often observed in different groupings of individuals. PMID:26483754
Courtney L. Davis,; David A.W. Miller,; Walls, Susan; Barichivich, William J.; Riley, Jeffrey W.; Brown, Mary E.
2017-01-01
Plasticity in life history strategies can be advantageous for species that occupy spatially or temporally variable environments. We examined how phenotypic plasticity influences responses of the mole salamander, Ambystoma talpoideum, to disturbance events at the St. Marks National Wildlife Refuge (SMNWR), FL, USA from 2009 to 2014. We observed periods of extensive drought early in the study, in contrast to high rainfall and expansive flooding events in later years. Flooding facilitated colonization of predatory fishes to isolated wetlands across the refuge. We employed multistate occupancy models to determine how this natural experiment influenced the occurrence of aquatic larvae and paedomorphic adults and what implications this may have for the population. We found that, in terms of occurrence, responses to environmental variation differed between larvae and paedomorphs, but plasticity (i.e. the ability to metamorphose rather than remain in aquatic environment) was not sufficient to buffer populations from declining as a result of environmental perturbations. Drought and fish presence negatively influenced occurrence dynamics of larval and paedomorphic mole salamanders and, consequently, contributed to observed short-term declines of this species. Overall occurrence of larval salamanders decreased from 0.611 in 2009 to 0.075 in 2014 and paedomorph occurrence decreased from 0.311 in 2009 to 0.121 in 2014. Although variation in selection pressures has likely maintained this polyphenism previously, our results suggest that continued changes in environmental variability and the persistence of fish in isolated wetlands could lead to a loss of paedomorphosis in the SMNWR population and, ultimately, impact regional persistence in the future.
Oral phenotype and scoring of vascular Ehlers–Danlos syndrome: a case–control study
Frank, Michael; Gogly, Bruno; Golmard, Lisa; Naveau, Adrien; Chérifi, Hafida; Emmerich, Joseph; Gaultier, Frédérick; Berdal, Ariane; Jeunemaitre, Xavier; Fournier, Benjamin P J
2012-01-01
Objective Vascular Ehlers–Danlos syndrome (vEDS) is a rare genetic condition related to mutations in the COL3A1 gene, responsible of vascular, digestive and uterine accidents. Difficulty of clinical diagnosis has led to the design of diagnostic criteria, summarised in the Villefranche classification. The goal was to assess oral features of vEDS. Gingival recession is the only oral sign recognised as a minor diagnostic criterion. The authors aimed to check this assumption since bibliographical search related to gingival recession in vEDS proved scarce. Design Prospective case–control study. Setting Dental surgery department in a French tertiary hospital. Participants 17 consecutive patients with genetically proven vEDS, aged 19–55 years, were compared with 46 age- and sex-matched controls. Observations Complete oral examination (clinical and radiological) with standardised assessment of periodontal structure, temporomandibular joint function and dental characteristics were performed. COL3A1 mutations were identified by direct sequencing of genomic or complementary DNA. Results Prevalence of gingival recession was low among patients with vEDS, as for periodontitis. Conversely, patients showed marked gingival fragility, temporomandibular disorders, dentin formation defects, molar root fusion and increased root length. After logistic regression, three variables remained significantly associated to vEDS. These variables were integrated in a diagnostic oral score with 87.5% and 97% sensitivity and specificity, respectively. Conclusions Gingival recession is an inappropriate diagnostic criterion for vEDS. Several new specific oral signs of the disease were identified, whose combination may be of greater value in diagnosing vEDS. PMID:22492385
Bryan, Angela D; Jakicic, John M; Hunter, Christine M; Evans, Mary E; Yanovski, Susan Z; Epstein, Leonard H
2017-10-01
Risk for obesity is determined by a complex mix of genetics and lifetime exposures at multiple levels, from the metabolic milieu to psychosocial and environmental influences. These phenotypic differences underlie the variability in risk for obesity and response to weight management interventions, including differences in physical activity and sedentary behavior. As part of a broader effort focused on behavioral and psychological phenotyping in obesity research, the National Institutes of Health convened a multidisciplinary workshop to explore the state of the science in behavioral and psychological phenotyping in humans to explain individual differences in physical activity, both as a risk factor for obesity development and in response to activity-enhancing interventions. Understanding the behavioral and psychological phenotypes that contribute to differences in physical activity and sedentary behavior could allow for improved treatment matching and inform new targets for tailored, innovative, and effective weight management interventions. This summary provides the rationale for identifying psychological and behavioral phenotypes relevant to physical activity and identifies opportunities for future research to better understand, define, measure, and validate putative phenotypic factors and characterize emerging phenotypes that are empirically associated with initiation of physical activity, response to intervention, and sustained changes in physical activity. © 2017 The Obesity Society.
Pillers, D A; Fitzgerald, K M; Duncan, N M; Rash, S M; White, R A; Dwinnell, S J; Powell, B R; Schnur, R E; Ray, P N; Cibis, G W; Weleber, R G
1999-01-01
The dark-adapted electroretinogram (ERG) of patients with Duchenne and Becker muscular dystrophy (DMD/BMD) shows a marked reduction in b-wave amplitude. Genotype-phenotype studies of mouse models for DMD show position-specific effects of the mutations upon the phenotype: mice with 5' defects of dystrophin have normal ERGs, those with defects in the central region have a normal b-wave amplitude associated with prolonged implicit times for both the b-wave and oscillatory potentials, and mice with 3' defects have a phenotype similar to that seen in DMD/BMD patients. The mouse studies suggest a key role for the carboxyl terminal dystrophin isoform, Dp260, in retinal electrophysiology. We have undertaken a systematic evaluation of DMD/BMD patients through clinical examination and review of the literature in order to determine whether the position-specific effects of mutations noted in the mouse are present in man. We have found that, in man, a wider variation of DMD defects correlate with reductions in the b-wave amplitude. Individuals with normal ERGs have mutations predominantly located 5' of the transcript initiation site of Dp260. Our results suggest that the most important determinant in the ERG b-wave phenotype is the mutation position, rather than muscle disease severity. Forty-six per cent of patients with mutations 5' of the Dp260 transcript start site have abnormal ERGs, as opposed to 94% with more distal mutations. The human genotype-phenotype correlations are consistent with a role for Dp260 in normal retinal electrophysiology and may also reflect the expression of other C-terminal dystrophin isoforms and their contributions to retinal signal transmission.
Carduner, L; Leroy-Dudal, J; Picot, C R; Gallet, O; Carreiras, F; Kellouche, S
2014-08-01
At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence. The presence of ascites, which acts as a dynamic reservoir of active molecules and cellular components, correlates with the OC peritoneal metastasis and is associated with poor prognosis. Since epithelial-mesenchymal transition (EMT) is involved in different phases of OC progression, we have investigated the effect of the unique ascitic tumor microenvironment on the EMT status and the behavior of OC cells. The exposure of three OC cell lines to ascites leads to changes in cellular morphologies. Within ascites, OC cells harboring an initial intermediate epithelial phenotype are characterized by marked dislocation of epithelial markers (E-cadherin, ZO-1 staining) while OC cells initially harboring an intermediate mesenchymal phenotype strengthen their mesenchymal markers (N-cadherin, vimentin). Ascites differentially triggers a dissemination phenotype related to the initial cell features by either allowing the proliferation and the formation of spheroids and the extension of colonies for cells that present an initial epithelial intermediate phenotype, or favoring the migration of cells with a mesenchymal intermediate phenotype. In an ascitic microenvironment, a redeployment of αv integrins into cells was observed and the ascites-induced accentuation of the two different invasive phenotypes (i.e. spheroids formation or migration) was shown to involve αv integrins. Thus, ascites induces a shift toward an unstable intermediate state of the epithelial-mesenchymal spectrum and confers a more aggressive cell behavior that takes on a different pathway based on the initial epithelial-mesenchymal cell features.
Geographical variation in relationships between parental body size and offspring phenotype at birth
Leary, Sam; Fall, Caroline; Osmond, Clive; Lovel, Hermione; Campbell, Doris; Eriksson, Johan; Forrester, Terrence; Godfrey, Keith; Hill, Jacqui; Jie, Mi; Law, Catherine; Newby, Rachel; Robinson, Sian; Yajnik, Chittaranjan
2009-01-01
Background Size and body proportions at birth are partly determined by maternal body composition, but most studies of mother-baby relationships have only considered the effects of maternal height and weight on offspring birthweight, and few have examined the size of effects. Paternal size and body composition also play a role, primarily through the fetal genome, although few studies have investigated relationships with neonatal phenotype. Methods Data from the UK, Finland, India, Sri Lanka, China, DR Congo, Nigeria and Jamaica were used to investigate the effects of maternal measures including estimates of muscle and fat (derived at 30-weeks gestation, N=16 418), and also paternal size (N=3 733) on neonatal phenotype, for singleton, liveborn, term births. Results After accounting for variation in maternal size and shape across populations, differences in neonatal phenotype were markedly reduced. Mother-baby relationships were similar across populations, although some were stronger in developing countries. Maternal height was generally the strongest predictor of neonatal length, maternal head circumference of neonatal head circumference, and maternal skinfold thickness of neonatal skinfolds. Relationships with maternal arm muscle area were generally weak. Data from fathers were limited to height and body mass index, but when compared with maternal height and body mass index, paternal effects were weaker in most studies. Conclusions Differences in maternal body composition account for a large part of the geographical variation in neonatal phenotype. The size of the effects of all maternal measures on neonatal phenotype suggests that nutrition at every stage of the mother's life cycle may influence fetal growth. Further research is needed into father-baby relationships and the genetic mechanisms which influence fetal growth. PMID:16929411
Beunders, Gea; van de Kamp, Jiddeke; Vasudevan, Pradeep; Morton, Jenny; Smets, Katrien; Kleefstra, Tjitske; de Munnik, Sonja A; Schuurs-Hoeijmakers, Janneke; Ceulemans, Berten; Zollino, Marcella; Hoffjan, Sabine; Wieczorek, Stefan; So, Joyce; Mercer, Leanne; Walker, Tanya; Velsher, Lea; Parker, Michael J; Magee, Alex C; Elffers, Bart; Kooy, R Frank; Yntema, Helger G; Meijers-Heijboer, Elizabeth J; Sistermans, Erik A
2016-08-01
AUTS2 syndrome is an 'intellectual disability (ID) syndrome' caused by genomic rearrangements, deletions, intragenic duplications or mutations disrupting AUTS2. So far, 50 patients with AUTS2 syndrome have been described, but clinical data are limited and almost all cases involved young children. We present a detailed clinical description of 13 patients (including six adults) with AUTS2 syndrome who have a pathogenic mutation or deletion in AUTS2. All patients were systematically evaluated by the same clinical geneticist. All patients have borderline to severe ID/developmental delay, 83-100% have microcephaly and feeding difficulties. Congenital malformations are rare, but mild heart defects, contractures and genital malformations do occur. There are no major health issues in the adults; the oldest of whom is now 59 years of age. Behaviour is marked by it is a friendly outgoing social interaction. Specific features of autism (like obsessive behaviour) are seen frequently (83%), but classical autism was not diagnosed in any. A mild clinical phenotype is associated with a small in-frame 5' deletions, which are often inherited. Deletions and other mutations causing haploinsufficiency of the full-length AUTS2 transcript give a more severe phenotype and occur de novo. The 13 patients with AUTS2 syndrome with unique pathogenic deletions scattered around the AUTS2 locus confirm a phenotype-genotype correlation. Despite individual variations, AUTS2 syndrome emerges as a specific ID syndrome with microcephaly, feeding difficulties, dysmorphic features and a specific behavioural phenotype. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Su, Chunlei; Khan, Asis; Zhou, Peng; Majumdar, Debashree; Ajzenberg, Daniel; Dardé, Marie-Laure; Zhu, Xing-Quan; Ajioka, James W.; Rosenthal, Benjamin M.; Dubey, Jitender P.; Sibley, L. David
2012-01-01
Marked phenotypic variation characterizes isolates of Toxoplasma gondii, a ubiquitous zoonotic parasite that serves as an important experimental model for studying apicomplexan parasites. Progress in identifying the heritable basis for clinically and epidemiologically significant differences requires a robust system for describing and interpreting evolutionary subdivisions in this prevalent pathogen. To develop such a system, we have examined more than 950 isolates collected from around the world and genotyped them using three independent sets of polymorphic DNA markers, sampling 30 loci distributed across all nuclear chromosomes as well as the plastid genome. Our studies reveal a biphasic pattern consisting of regions in the Northern Hemisphere where a few, highly clonal and abundant lineages predominate; elsewhere, and especially in portions of South America are characterized by a diverse assemblage of less common genotypes that show greater evidence of recombination. Clustering methods were used to organize the marked genetic diversity of 138 unique genotypes into 15 haplogroups that collectively define six major clades. Analysis of gene flow indicates that a small number of ancestral lineages gave rise to the existing diversity through a process of limited admixture. Identification of reference strains for these major groups should facilitate future studies on comparative genomics and identification of genes that control important biological phenotypes including pathogenesis and transmission. PMID:22431627
Interstitial lung disease in an adult with Fanconi anemia: Clues to the pathogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubinstein, W.S.; Wenger, S.L.; Hoffman, R.M.
1997-03-31
We have studied a 38-year-old man with a prior diagnosis of Holt-Oram syndrome, who presented with diabetes mellitus. He had recently taken prednisone for idiopathic interstitial lung disease and trimethoprim-sulfamethoxazole for sinusitis. Thrombocytopenia progressed to pancytopenia. The patient had skeletal, cardiac, renal, cutaneous, endocrine, hepatic, neurologic, and hematologic manifestations of Fanconi anemia (FA). Chest radiographs showed increased interstitial markings at age 25, dyspnea began in his late 20s, and he stopped smoking at age 32. At age 38, computerized tomography showed bilateral upper lobe fibrosis, lower lobe honeycombing, and bronchiectasis. Pulmonary function tests, compromised at age 29, showed a moderatelymore » severe obstructive and restrictive pattern by age 38. Serum alpha-1 antitrypsin level was 224 (normal 85-213) mg/dL and PI phenotype was M1. Karyotype was 46,X-Y with a marked increase in chromosome aberrations induced in vitro by diepoxybutane. The early onset and degree of pulmonary disease in this patient cannot be fully explained by environmental or known genetic causes. The International Fanconi Anemia Registry (IFAR) contains no example of a similar pulmonary presentation. Gene-environment (ecogenetic) interactions in FA seem evident in the final phenotype. The pathogenic mechanism of lung involvement in FA may relate to oxidative injury and cytokine anomalies. 49 refs., 2 figs., 1 tab.« less
Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes
Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B. Cicero; Zarzoso, Manuel; Ramirez, Rafael J.; Sener, Michelle F.; Mundada, Lakshmi V.; Klos, Matthew; Devaney, Eric J.; Vikstrom, Karen L.; Herron, Todd J.; Jalife, José
2014-01-01
Applications of human induced pluripotent stemcell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricularmyocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. PMID:24095945
Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes.
Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B Cicero; Zarzoso, Manuel; Ramirez, Rafael J; Sener, Michelle F; Mundada, Lakshmi V; Klos, Matthew; Devaney, Eric J; Vikstrom, Karen L; Herron, Todd J; Jalife, José
2013-11-01
Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. © 2013.
Kevin L. O' Hara; Lathrop P. Leonard; Christopher R. Keyes
2012-01-01
Variable-density thinning (VDT) is an emerging thinning method that attempts to enhance stand structural heterogeneity by deliberately thinning at different intensities throughout a stand. VDT may create stands with dense areas, open areas, and other areas that may be intermediate in density. Subsequent stand development forms a more varied structure than is...
Nochomovitz, Yigal D; Li, Hao
2006-03-14
Deciphering the design principles for regulatory networks is fundamental to an understanding of biological systems. We have explored the mapping from the space of network topologies to the space of dynamical phenotypes for small networks. Using exhaustive enumeration of a simple model of three- and four-node networks, we demonstrate that certain dynamical phenotypes can be generated by an atypically broad spectrum of network topologies. Such dynamical outputs are highly designable, much like certain protein structures can be designed by an unusually broad spectrum of sequences. The network topologies that encode a highly designable dynamical phenotype possess two classes of connections: a fully conserved core of dedicated connections that encodes the stable dynamical phenotype and a partially conserved set of variable connections that controls the transient dynamical flow. By comparing the topologies and dynamics of the three- and four-node network ensembles, we observe a large number of instances of the phenomenon of "mutational buffering," whereby addition of a fourth node suppresses phenotypic variation amongst a set of three-node networks.
Organelles – understanding noise and heterogeneity in cell biology at an intermediate scale
Chang, Amy Y.
2017-01-01
ABSTRACT Many studies over the years have shown that non-genetic mechanisms for producing cell-to-cell variation can lead to highly variable behaviors across genetically identical populations of cells. Most work to date has focused on gene expression noise as the primary source of phenotypic heterogeneity, yet other sources may also contribute. In this Commentary, we explore organelle-level heterogeneity as a potential secondary source of cellular ‘noise’ that contributes to phenotypic heterogeneity. We explore mechanisms for generating organelle heterogeneity and present evidence of functional links between organelle morphology and cellular behavior. Given the many instances in which molecular-level heterogeneity has been linked to phenotypic heterogeneity, we posit that organelle heterogeneity may similarly contribute to overall phenotypic heterogeneity and underline the importance of studying organelle heterogeneity to develop a more comprehensive understanding of phenotypic heterogeneity. Finally, we conclude with a discussion of the medical challenges associated with phenotypic heterogeneity and outline how improved methods for characterizing and controlling this heterogeneity may lead to improved therapeutic strategies and outcomes for patients. PMID:28183729
Johnson, M T J
2007-01-01
Monocarpic plant species, where reproduction is fatal, frequently exhibit variation in the length of their prereproductive period prior to flowering. If this life-history variation in flowering strategy has a genetic basis, genotype-by-environment interactions (G x E) may maintain phenotypic diversity in flowering strategy. The native monocarpic plant Common Evening Primrose (Oenothera biennis L., Onagraceae) exhibits phenotypic variation for annual vs. biennial flowering strategies. I tested whether there was a genetic basis to variation in flowering strategy in O. biennis, and whether environmental variation causes G x E that imposes variable selection on flowering strategy. In a field experiment, I randomized more than 900 plants from 14 clonal families (genotypes) into five distinct habitats that represented a natural productivity gradient. G x E strongly affected the lifetime fruit production of O. biennis, with the rank-order in relative fitness of genotypes changing substantially between habitats. I detected genetic variation in annual vs. biennial strategies in most habitats, as well as a G x E effect on flowering strategy. This variation in flowering strategy was correlated with genetic variation in relative fitness, and phenotypic and genotypic selection analyses revealed that environmental variation resulted in variable directional selection on annual vs. biennial strategies. Specifically, a biennial strategy was favoured in moderately productive environments, whereas an annual strategy was favoured in low-productivity environments. These results highlight the importance of variable selection for the maintenance of genetic variation in the life-history strategy of a monocarpic plant.
Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio
2013-10-24
The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration.
Peña-Perez, Luis Manuel; Pedraza-Ortega, Jesus Carlos; Ramos-Arreguin, Juan Manuel; Arriaga, Saul Tovar; Fernandez, Marco Antonio Aceves; Becerra, Luis Omar; Hurtado, Efren Gorrostieta; Vargas-Soto, Jose Emilio
2013-01-01
The present work presents an improved method to align the measurement scale mark in an immersion hydrometer calibration system of CENAM, the National Metrology Institute (NMI) of Mexico, The proposed method uses a vision system to align the scale mark of the hydrometer to the surface of the liquid where it is immersed by implementing image processing algorithms. This approach reduces the variability in the apparent mass determination during the hydrostatic weighing in the calibration process, therefore decreasing the relative uncertainty of calibration. PMID:24284770
Life History Traits of an Extended Longevity Phenotype of Drosophila melanogaster.
Deepashree, S; Shivanandappa, T; Ramesh, S R
2017-01-01
Aging or senescence is a complex biological phenomenon. Artificially selected Drosophila for extended longevity is one of the experimental models used to understand the mechanisms involved in aging and to test various theories. To examine the life history traits and biochemical defenses in relation to aging in an extended longevity phenotype of Drosophila melanogaster. Life history traits viz., survivability, fecundity, development time, dry weight, wing size, lipid content, starvation, desiccation and cold resistances, locomotory ability, antioxidant enzyme activities and reactive oxygen species level between control and selected lines of D. melanogaster were investigated. In our model of Drosophila, extended longevity is associated with no trade-off in fecundity and shows variable resistance to environmental stress such as starvation, cold and desiccation. Enhanced biochemical defense involving the antioxidant enzymes was positively correlated with longevity. Extended longevity phenotypes of Drosophila represent genomic plasticity associated with variable life history traits attributed to the genetic background of the progenitor population and the environment of selection. Oxidative stress resistance seems to be a significant factor in longevity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Genetic and epigenetic contributions to the cortical phenotype in mammals☆
Larsen, DeLaine D.; Krubitzer, Leah
2008-01-01
One aspect of cortical organization, cortical field size, is variable both within and across species. The observed variability arises from a variety of sources, including genes intrinsic to the neocortex and a number of extrinsic and epigenetic factors. Genes intrinsic to the cortex are directly involved in the development and specification of cortical fields and are regulated from both signaling centers located outside of the neocortex, which secrete diffusible molecules, and the expression of transcription factors within the neocortex. In addition, extrinsic factors such as the type, location and density of sensory receptor arrays and how these receptor arrays are utilized, are also strongly related to cortical field size. Epigenetic factors including the relative activity patterns generated by the different types of physical stimuli in a given environment also contribute to differences in cortical organization, including cortical field size. Since both genetic and epigenetic factors contribute to cortical organization, some aspects of the cortical phenotype evolve, while other aspects of the cortical phenotype persist only if the environment in which an individual develops is relatively stable. PMID:18331904
Evaluation and integration of disparate classification systems for clefts of the lip
Wang, Kathie H.; Heike, Carrie L.; Clarkson, Melissa D.; Mejino, Jose L. V.; Brinkley, James F.; Tse, Raymond W.; Birgfeld, Craig B.; Fitzsimons, David A.; Cox, Timothy C.
2014-01-01
Orofacial clefting is a common birth defect with wide phenotypic variability. Many systems have been developed to classify cleft patterns to facilitate diagnosis, management, surgical treatment, and research. In this review, we examine the rationale for different existing classification schemes and determine their inter-relationships, as well as strengths and deficiencies for subclassification of clefts of the lip. The various systems differ in how they describe and define attributes of cleft lip (CL) phenotypes. Application and analysis of the CL classifications reveal discrepancies that may result in errors when comparing studies that use different systems. These inconsistencies in terminology, variable levels of subclassification, and ambiguity in some descriptions may confound analyses and impede further research aimed at understanding the genetics and etiology of clefts, development of effective treatment options for patients, as well as cross-institutional comparisons of outcome measures. Identification and reconciliation of discrepancies among existing systems is the first step toward creating a common standard to allow for a more explicit interpretation that will ultimately lead to a better understanding of the causes and manifestations of phenotypic variations in clefting. PMID:24860508
Dynamical predictors of an imminent phenotypic switch in bacteria
NASA Astrophysics Data System (ADS)
Wang, Huijing; Ray, J. Christian J.
2017-08-01
Single cells can stochastically switch across thresholds imposed by regulatory networks. Such thresholds can act as a tipping point, drastically changing global phenotypic states. In ecology and economics, imminent transitions across such tipping points can be predicted using dynamical early warning indicators. A typical example is ‘flickering’ of a fast variable, predicting a longer-lasting switch from a low to a high state or vice versa. Considering the different timescales between metabolite and protein fluctuations in bacteria, we hypothesized that metabolic early warning indicators predict imminent transitions across a network threshold caused by enzyme saturation. We used stochastic simulations to determine if flickering predicts phenotypic transitions, accounting for a variety of molecular physiological parameters, including enzyme affinity, burstiness of enzyme gene expression, homeostatic feedback, and rates of metabolic precursor influx. In most cases, we found that metabolic flickering rates are robustly peaked near the enzyme saturation threshold. The degree of fluctuation was amplified by product inhibition of the enzyme. We conclude that sensitivity to flickering in fast variables may be a possible natural or synthetic strategy to prepare physiological states for an imminent transition.
Say-Meyer syndrome: additional manifestations in a new patient and phenotypic assessment.
Salinas-Torres, Victor M
2015-07-01
In 1981, Say and Meyer described a seemingly X-linked recessive syndrome of trigonocephaly, short stature, and developmental delay. Here, I present a new patient and review eight patients from the literature examining the nature and phenotypic differences. A Mexican 10-year-old boy with Say-Meyer syndrome is described. Additionally, he had C6 vertebral right pedicle agenesis, brachymesophalangy of the fifth fingers, bilateral widening of Sylvian fissure, and white matter amplitude as novel observed findings of the syndrome. This appears to be the first Say-Meyer syndrome patient with extracranial skeletal anomalies. In light of these manifestations, a detailed comparative phenotypic analysis of published patients revealed a heterogeneous syndrome with a significant clinical variability. Moreover, increasing evidence points to a variable expressivity of the same autosomal dominant mutation. Accordingly, it is proposed that Say-Meyer syndrome should be considered in those patients with the combination of trigonocephaly/metopic synostosis, short stature, developmental delay including prenatal and postnatal growth disorders, craniofacial dysmorphic features (especially hypotelorism), structural CNS anomalies (mainly white matter involvement), conductive hearing loss, seizures, and cardiovascular abnormalities.
The human clinical phenotypes of altered CHRNA7 copy number.
Gillentine, Madelyn A; Schaaf, Christian P
2015-10-15
Copy number variants (CNVs) have been implicated in multiple neuropsychiatric conditions, including autism spectrum disorder (ASD), schizophrenia, and intellectual disability (ID). Chromosome 15q13 is a hotspot for such CNVs due to the presence of low copy repeat (LCR) elements, which facilitate non-allelic homologous recombination (NAHR). Several of these CNVs have been overrepresented in individuals with neuropsychiatric disorders; yet variable expressivity and incomplete penetrance are commonly seen. Dosage sensitivity of the CHRNA7 gene, which encodes for the α7 nicotinic acetylcholine receptor in the human brain, has been proposed to have a major contribution to the observed cognitive and behavioral phenotypes, as it represents the smallest region of overlap to all the 15q13.3 deletions and duplications. Individuals with zero to four copies of CHRNA7 have been reported in the literature, and represent a range of clinical severity, with deletions causing generally more severe and more highly penetrant phenotypes. Potential mechanisms to account for the variable expressivity within each group of 15q13.3 CNVs will be discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Mitochondrial threshold effects.
Rossignol, Rodrigue; Faustin, Benjamin; Rocher, Christophe; Malgat, Monique; Mazat, Jean-Pierre; Letellier, Thierry
2003-01-01
The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases. PMID:12467494
Molar intercuspal dimensions: genetic input to phenotypic variation.
Townsend, G; Richards, L; Hughes, T
2003-05-01
Molecular studies indicate that epigenetic events are important in determining how the internal enamel epithelium folds during odontogenesis. Since this process of folding leads to the subsequent arrangement of cusps on molar teeth, we hypothesized that intercuspal distances of human molar teeth would display greater phenotypic variation but lower heritabilities than overall crown diameters. Intercuspal distances and maximum crown diameters were recorded from digitized images of dental casts in 100 monozygotic and 74 dizygotic twin pairs. Intercuspal distances displayed less sexual dimorphism in mean values but greater relative variability and fluctuating asymmetry than overall crown measures. Correlations between intercuspal distances and overall crown measures were low. Models incorporating only environmental effects accounted for observed variation in several intercuspal measures. For those intercuspal variables displaying significant additive genetic variance, estimates of heritability ranged from 43 to 79%, whereas those for overall crown size were higher generally, ranging from 60 to 82%. Our finding of high phenotypic variation in intercuspal distances with only moderate genetic contribution is consistent with substantial epigenetic influence on the progressive folding of the internal enamel epithelium, following formation of the primary and secondary enamel knots.
Differential gene expression patterns in the autogamous plant Hordeum euclaston (Poaceae).
Georg-Kraemer, J E; Ferreira, C A S; Cavalli, S S
2011-02-22
Sib-seedlings of 95 strains of the strictly autogamous grass Hordeum euclaston were analyzed by horizontal polyacrylamide gel electrophoresis for four isoenzyme systems at a specific ontogenetic stage. We found differences in the activity of some genes among individuals of this species. Hence, an ontogenetic analysis was carried out to investigate 12 strains at five ontogenetic stages, to determine the patterns of expression of these genes during development. The differences in the presence versus absence of certain isoenzyme bands may be due to differential regulatory activation in response to environmental differences, as all plants showed the same structural genes, although these genes were active in different tissues and/or times of development. These results indicate the importance of differential gene activation in the metabolic phenotype variability of this strictly autogamous, highly homozygous species. The same structural alleles for isoenzymes showed the active form of the enzymes (phenotypic expression) to be present in different tissues and/or stages of development. Differential isoenzyme gene activation was shown to be directly responsible for the enzymatic variability (metabolic phenotype) presented by the plants, which seem to possess almost no heterozygosis.
Growth hormone receptor deficiency (Laron syndrome): clinical and genetic characteristics.
Guevara-Aguirre, J; Rosenbloom, A L; Vaccarello, M A; Fielder, P J; de la Vega, A; Diamond, F B; Rosenfeld, R G
1991-01-01
Approximately 60 cases of GHRD (Laron syndrome) were reported before 1990 and half of these were from Israel. We have described 47 additional patients from an inbred population of South Ecuador and have emphasized certain clinical features including: markedly advanced osseous maturation for height age; normal body proportions in childhood but child-like proportions in adults; much greater deviation of stature than head size, giving an appearance of large cranium and small facies; underweight in childhood despite the appearance of obesity and true obesity in adulthood; blue scleras; and limited elbow extension. The Ecuadorean patients differed markedly and most importantly from the other large concentration, in Israel, by being of normal or superior intelligence, suggesting a unique linkage in the Ecuadorean population. The Ecuadorean population also differed in that those patients coming from Loja province had a markedly skewed sex ratio (19 females: 2 males), while those from El Oro province had a normal sex distribution (14 females: 12 males). The phenotypic similarity between the El Oro and Loja patients indicates that this abnormal sex distribution is not a direct result of the GHRD.
Sinclair, Thomas R; Manandhar, Anju; Shekoofa, Avat; Rosas-Anderson, Pablo; Bagherzadi, Laleh; Schoppach, Remy; Sadok, Walid; Rufty, Thomas W
2017-04-01
Theoretical derivation predicted growth retardation due to pot water limitations, i.e., pot binding. Experimental observations were consistent with these limitations. Combined, these results indicate a need for caution in high-throughput screening and phenotyping. Pot experiments are a mainstay in many plant studies, including the current emphasis on developing high-throughput, phenotyping systems. Pot studies can be vulnerable to decreased physiological activity of the plants particularly when pot volume is small, i.e., "pot binding". It is necessary to understand the conditions under which pot binding may exist to avoid the confounding influence of pot binding in interpreting experimental results. In this paper, a derivation is offered that gives well-defined conditions for the occurrence of pot binding based on restricted water availability. These results showed that not only are pot volume and plant size important variables, but the potting media is critical. Artificial potting mixtures used in many studies, including many high-throughput phenotyping systems, are particularly susceptible to the confounding influences of pot binding. Experimental studies for several crop species are presented that clearly show the existence of thresholds of plant leaf area at which various pot sizes and potting media result in the induction of pot binding even though there may be no immediate, visual plant symptoms. The derivation and experimental results showed that pot binding can readily occur in plant experiments if care is not given to have sufficiently large pots, suitable potting media, and maintenance of pot water status. Clear guidelines are provided for avoiding the confounding effects of water-limited pot binding in studying plant phenotype.
Blanco, Juan Felipe; Tamayo, Silvana; Scatena, Frederick N
2014-04-01
Gastropods of the Neritinidae family exhibit an amphidromous life cycle and an impressive variability in shell coloration in Puerto Rican streams and rivers. Various nominal species have been described, but Neritina virginea [Linne 1758], N. punctulata [Lamarck 1816] and N. reclivata [Say 1822] are the only broadly reported. However, recent studies have shown that these three species are sympatric at the river scale and that species determination might be difficult due to the presence of intermediate color morphs. Individuals (8 751) were collected from ten rivers across Puerto Rico, and from various segments and habitats in Mameyes River (the most pristine island-wide) during three years (2000-2003), and they were assigned to one of seven phenotypes corresponding to nominal species and morphs (non-nominal species). The "axial lines and dots" morph corresponding to N. reclivata was the most frequent island-wide, while the patelliform N. punctulata was scant, but the only found in headwater reaches. The "yellowish large tongues" phenotype, typical of N. virginea s.s. was the most frequent in the river mouth. The frequency of secondary phenotypes varied broadly among rivers, along the rivers, and among habitats, seemly influenced by salinity and predation gradients. The occurrence of individuals with coloration shifts after predation injuries, suggests phenotypic plasticity in the three nominal species, and urges for the use of molecular markers to unravel the possible occurrence of a species complex, and to understand the genetic basis of polymorphism. The longitudinal distribution of individual sizes, population density and egg capsules suggested the adaptive value of upstream migration, possibly to avoid marine predators.
Reasor, Eric H; Brosnan, James T; Staton, Margaret E; Lane, Thomas; Trigiano, Robert N; Wadl, Phillip A; Conner, Joann A; Schwartz, Brian M
2018-01-01
Interspecific hybrid bermudagrass [ Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy] is one of the most widely used grasses on golf courses, with cultivars derived from 'Tifgreen' or 'Tifdwarf' particularly used for putting greens. Many bermudagrass cultivars established for putting greens can be genetically unstable and lead to the occurrence of undesirable off-type grasses that vary in phenotype. The objective of this research was to genetically and phenotypically differentiate off-type grasses and hybrid cultivars. Beginning in 2013, off-type and desirable hybrid bermudagrass samples were collected from golf course putting greens in the southeastern United States and genetically and phenotypically characterized using genotyping-by-sequencing and morphology. Genotyping-by-sequencing determined that 11% (5) of off-type and desirable samples from putting greens were genetically divergent from standard cultivars such as Champion, MiniVerde, Tifdwarf, TifEagle, and Tifgreen. In addition, genotyping-by-sequencing was unable to genetically distinguish all standard cultivars from one another due to their similar origin and clonal propagation; however, over 90,000 potentially informative nucleotide variants were identified among the triploid hybrid cultivars. Although few genetic differences were found in this research, samples harvested from golf course putting greens had variable morphology and were clustered into three distinct phenotypic groups. The majority of off-type grasses in hybrid bermudagrass putting greens were genetically similar with variable morphological traits. Off-type grasses within golf course putting greens have the potential to compromise putting surface functionality and aesthetics.
2013-01-01
Background The genus Limonium Miller comprises annual and perennial halophytes that can produce sexual and/or asexual seeds (apomixis). Genetic and epigenetic (DNA methylation) variation patterns were investigated in populations of three phenotypically similar putative sexual diploid species (L. nydeggeri, L. ovalifolium, L. lanceolatum), one sexual tetraploid species (L. vulgare) and two apomict tetraploid species thought to be related (L. dodartii, L. multiflorum). The extent of morphological differentiation between these species was assessed using ten diagnostic morphometric characters. Results A discriminant analysis using the morphometric variables reliably assigns individuals into their respective species groups. We found that only modest genetic and epigenetic differentiation was revealed between species by Methylation Sensitive Amplification Polymorphism (MSAP). However, whilst there was little separation possible between ploidy levels on the basis of genetic profiles, there was clear and pronounced interploidy discrimination on the basis of epigenetic profiles. Here we investigate the relative contribution of genetic and epigenetic factors in explaining the complex phenotypic variability seen in problematic taxonomic groups such as Limonium that operate both apomixis and sexual modes of reproduction. Conclusions Our results suggest that epigenetic variation might be one of the drivers of the phenotypic divergence between diploid and tetraploid taxa and discuss that intergenome silencing offers a plausible mechanistic explanation for the observed phenotypic divergence between these microspecies. These results also suggest that epigenetic profiling offer an additional tool to infer ploidy level in stored specimens and that stable epigenetic change may play an important role in apomict evolution and species recognition. PMID:24314092
Flex, Elisabetta; Jaiswal, Mamta; Pantaleoni, Francesca; Martinelli, Simone; Strullu, Marion; Fansa, Eyad K.; Caye, Aurélie; De Luca, Alessandro; Lepri, Francesca; Dvorsky, Radovan; Pannone, Luca; Paolacci, Stefano; Zhang, Si-Cai; Fodale, Valentina; Bocchinfuso, Gianfranco; Rossi, Cesare; Burkitt-Wright, Emma M.M.; Farrotti, Andrea; Stellacci, Emilia; Cecchetti, Serena; Ferese, Rosangela; Bottero, Lisabianca; Castro, Silvana; Fenneteau, Odile; Brethon, Benoît; Sanchez, Massimo; Roberts, Amy E.; Yntema, Helger G.; Van Der Burgt, Ineke; Cianci, Paola; Bondeson, Marie-Louise; Cristina Digilio, Maria; Zampino, Giuseppe; Kerr, Bronwyn; Aoki, Yoko; Loh, Mignon L.; Palleschi, Antonio; Di Schiavi, Elia; Carè, Alessandra; Selicorni, Angelo; Dallapiccola, Bruno; Cirstea, Ion C.; Stella, Lorenzo; Zenker, Martin; Gelb, Bruce D.; Cavé, Hélène; Ahmadian, Mohammad R.; Tartaglia, Marco
2014-01-01
RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2S2G mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease. PMID:24705357
Mallick, Pijush; Sikdar, Samir Ranjan
2014-08-01
Nine inter-generic somatic hybrids named as pfle were produced through PEG-mediated protoplast fusion between Pleurotus florida and Lentinula edodes using double selection method. Hybridity of the newly developed strains was established on the basis of colony morphology, mycelial growth, hyphal traits, fruit-body productivity and inter single sequence repeat (ISSR) marker profiling. Hybrid population was assessed with different phenotypic variables by one-way analysis of variance. Principal component matrices were analyzed for the six phenotypic variables in scatter plot showing maximum positive correlation between each variable for all strains examined. Six ISSR primers generated 66 reproducible fragments with 98.48 % polymorphism. The dendrogram thus created based on unweighted pair-group method with mathematic averages method of clustering and Euclidean distance which exhibited three major groups between the parents and pfle hybrids. Though P. florida parent remained in one group but it showed different degrees of genetic distance with all the hybrid lines belonging to the other two groups while L. edodes was most distantly related to all the hybrid lines. L. edodes specific sequence-rich ISSR amplicon was recorded in all the hybrid lines and in L. edodes but not in P. florida. All the fruit body generating pfle hybrid lines could produce basidiocarp on paddy straw in sub-tropical climate and showed phenotypic resemblance to the P. florida parent.
Pre-disposition and epigenetics govern variation in bacterial survival upon stress.
Ni, Ming; Decrulle, Antoine L; Fontaine, Fanette; Demarez, Alice; Taddei, Francois; Lindner, Ariel B
2012-01-01
Bacteria suffer various stresses in their unpredictable environment. In response, clonal populations may exhibit cell-to-cell variation, hypothetically to maximize their survival. The origins, propagation, and consequences of this variability remain poorly understood. Variability persists through cell division events, yet detailed lineage information for individual stress-response phenotypes is scarce. This work combines time-lapse microscopy and microfluidics to uniformly manipulate the environmental changes experienced by clonal bacteria. We quantify the growth rates and RpoH-driven heat-shock responses of individual Escherichia coli within their lineage context, stressed by low streptomycin concentrations. We observe an increased variation in phenotypes, as different as survival from death, that can be traced to asymmetric division events occurring prior to stress induction. Epigenetic inheritance contributes to the propagation of the observed phenotypic variation, resulting in three-fold increase of the RpoH-driven expression autocorrelation time following stress induction. We propose that the increased permeability of streptomycin-stressed cells serves as a positive feedback loop underlying this epigenetic effect. Our results suggest that stochasticity, pre-disposition, and epigenetic effects are at the source of stress-induced variability. Unlike in a bet-hedging strategy, we observe that cells with a higher investment in maintenance, measured as the basal RpoH transcriptional activity prior to antibiotic treatment, are more likely to give rise to stressed, frail progeny.