Sample records for marker-assisted breeding programs

  1. Review of functional markers for improving cooking, eating, and the nutritional qualities of rice

    PubMed Central

    Lau, Wendy C. P.; Rafii, Mohd Y.; Ismail, Mohd R.; Puteh, Adam; Latif, Mohammad A.; Ramli, Asfaliza

    2015-01-01

    After yield, quality is one of the most important aspects of rice breeding. Preference for rice quality varies among cultures and regions; therefore, rice breeders have to tailor the quality according to the preferences of local consumers. Rice quality assessment requires routine chemical analysis procedures. The advancement of molecular marker technology has revolutionized the strategy in breeding programs. The availability of rice genome sequences and the use of forward and reverse genetics approaches facilitate gene discovery and the deciphering of gene functions. A well-characterized gene is the basis for the development of functional markers, which play an important role in plant genotyping and, in particular, marker-assisted breeding. In addition, functional markers offer advantages that counteract the limitations of random DNA markers. Some functional markers have been applied in marker-assisted breeding programs and have successfully improved rice quality to meet local consumers’ preferences. Although functional markers offer a plethora of advantages over random genetic markers, the development and application of functional markers should be conducted with care. The decreasing cost of sequencing will enable more functional markers for rice quality improvement to be developed, and application of these markers in rice quality breeding programs is highly anticipated. PMID:26528304

  2. Advances and Challenges in Genomic Selection for Disease Resistance.

    PubMed

    Poland, Jesse; Rutkoski, Jessica

    2016-08-04

    Breeding for disease resistance is a central focus of plant breeding programs, as any successful variety must have the complete package of high yield, disease resistance, agronomic performance, and end-use quality. With the need to accelerate the development of improved varieties, genomics-assisted breeding is becoming an important tool in breeding programs. With marker-assisted selection, there has been success in breeding for disease resistance; however, much of this work and research has focused on identifying, mapping, and selecting for major resistance genes that tend to be highly effective but vulnerable to breakdown with rapid changes in pathogen races. In contrast, breeding for minor-gene quantitative resistance tends to produce more durable varieties but is a more challenging breeding objective. As the genetic architecture of resistance shifts from single major R genes to a diffused architecture of many minor genes, the best approach for molecular breeding will shift from marker-assisted selection to genomic selection. Genomics-assisted breeding for quantitative resistance will therefore necessitate whole-genome prediction models and selection methodology as implemented for classical complex traits such as yield. Here, we examine multiple case studies testing whole-genome prediction models and genomic selection for disease resistance. In general, whole-genome models for disease resistance can produce prediction accuracy suitable for application in breeding. These models also largely outperform multiple linear regression as would be applied in marker-assisted selection. With the implementation of genomic selection for yield and other agronomic traits, whole-genome marker profiles will be available for the entire set of breeding lines, enabling genomic selection for disease at no additional direct cost. In this context, the scope of implementing genomics selection for disease resistance, and specifically for quantitative resistance and quarantined pathogens, becomes a tractable and powerful approach in breeding programs.

  3. Demonstrating Cost-Effective Marker Assisted Selection for Biomass Yield in Red Clover (Trifolium pratense L.) – Part 1: Paternity Testing

    USDA-ARS?s Scientific Manuscript database

    Many methods have been proposed to incorporate molecular markers into breeding programs. Presented is a cost effective marker assisted selection (MAS) methodology that utilizes individual plant phenotypes, seed production-based knowledge of maternity, and molecular marker-determined paternity. Proge...

  4. Validation and Implementation of Marker-Assisted Selection (MAS) for PVY Resistance (Ryadg gene) in a Tetraploid Potato Breeding Program

    USDA-ARS?s Scientific Manuscript database

    The gene Ryadg from S. tuberosum ssp. andigena provides extreme resistance to PVY. This gene has been mapped to chromosome XI and linked PCR-based DNA markers have been identified. Advanced tetraploid russeted potato clones developed by the U.S. Pacific Northwest Potato Breeding Program with Ryadg P...

  5. A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: A case study for marker assisted selection in grapevine

    USDA-ARS?s Scientific Manuscript database

    Marker assisted selection (MAS) has become widely used in perennial crop breeding programs to accelerate and enhance cultivar development via selection during the juvenile phase and parental selection prior to crossing. Next generation sequencing (NGS) has been widely used for whole genome molecular...

  6. A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: a case study for marker assisted selection in grapevine

    USDA-ARS?s Scientific Manuscript database

    Marker assisted selection (MAS) is often employed in crop breeding programs to accelerate and enhance cultivar development, via selection during the juvenile phase and parental selection prior to crossing. Next generation sequencing (NGS) and its derivative technologies have been used for genome-wid...

  7. Extending RosBREED in the Pacific Northwest for strawberry processing traits: year 1

    USDA-ARS?s Scientific Manuscript database

    In an effort to implement marker-assisted breeding in Rosaceae, many traits need to be characterized in diverse germplasm. The USDA-NIFA Specialty Crop Research Initiative-funded RosBREED project includes breeding programs of four Rosaceae crops (apple, peach, cherry, and strawberry). Phenotyping ea...

  8. A Review of Microsatellite Markers and Their Applications in Rice Breeding Programs to Improve Blast Disease Resistance

    PubMed Central

    Miah, Gous; Rafii, Mohd Y.; Ismail, Mohd R.; Puteh, Adam B.; Rahim, Harun A.; Islam, Kh. Nurul; Latif, Mohammad Abdul

    2013-01-01

    Over the last few decades, the use of molecular markers has played an increasing role in rice breeding and genetics. Of the different types of molecular markers, microsatellites have been utilized most extensively, because they can be readily amplified by PCR and the large amount of allelic variation at each locus. Microsatellites are also known as simple sequence repeats (SSR), and they are typically composed of 1–6 nucleotide repeats. These markers are abundant, distributed throughout the genome and are highly polymorphic compared with other genetic markers, as well as being species-specific and co-dominant. For these reasons, they have become increasingly important genetic markers in rice breeding programs. The evolution of new biotypes of pests and diseases as well as the pressures of climate change pose serious challenges to rice breeders, who would like to increase rice production by introducing resistance to multiple biotic and abiotic stresses. Recent advances in rice genomics have now made it possible to identify and map a number of genes through linkage to existing DNA markers. Among the more noteworthy examples of genes that have been tightly linked to molecular markers in rice are those that confer resistance or tolerance to blast. Therefore, in combination with conventional breeding approaches, marker-assisted selection (MAS) can be used to monitor the presence or lack of these genes in breeding populations. For example, marker-assisted backcross breeding has been used to integrate important genes with significant biological effects into a number of commonly grown rice varieties. The use of cost-effective, finely mapped microsatellite markers and MAS strategies should provide opportunities for breeders to develop high-yield, blast resistance rice cultivars. The aim of this review is to summarize the current knowledge concerning the linkage of microsatellite markers to rice blast resistance genes, as well as to explore the use of MAS in rice breeding programs aimed at improving blast resistance in this species. We also discuss the various advantages, disadvantages and uses of microsatellite markers relative to other molecular marker types. PMID:24240810

  9. Sequencing consolidates molecular markers with plant breeding practice.

    PubMed

    Yang, Huaan; Li, Chengdao; Lam, Hon-Ming; Clements, Jonathan; Yan, Guijun; Zhao, Shancen

    2015-05-01

    Plenty of molecular markers have been developed by contemporary sequencing technologies, whereas few of them are successfully applied in breeding, thus we present a review on how sequencing can facilitate marker-assisted selection in plant breeding. The growing global population and shrinking arable land area require efficient plant breeding. Novel strategies assisted by certain markers have proven effective for genetic gains. Fortunately, cutting-edge sequencing technologies bring us a deluge of genomes and genetic variations, enlightening the potential of marker development. However, a large gap still exists between the potential of molecular markers and actual plant breeding practices. In this review, we discuss marker-assisted breeding from a historical perspective, describe the road from crop sequencing to breeding, and highlight how sequencing facilitates the application of markers in breeding practice.

  10. Marker-assisted selection in plant breeding for salinity tolerance.

    PubMed

    Ashraf, M; Akram, N A; Mehboob-Ur-Rahman; Foolad, M R

    2012-01-01

    Marker-assisted selection (MAS) is the process of using morphological, biochemical, or DNA markers as indirect selection criteria for selecting agriculturally important traits in crop breeding. This process is used to improve the effectiveness or efficiency of selection for the traits of interest in breeding programs. The significance of MAS as a tool for crop improvement has been extensively investigated in different crop -species and for different traits. The use of MAS for manipulating simple/qualitative traits is straightforward and has been well reported. However, MAS for the improvement of complex/polygenic traits, including plant tolerance/resistance to abiotic stresses, is more complicated, although its usefulness has been recognized. With the recent advances in marker technology, including high-throughput genotyping of plants, together with the development of nested association mapping populations, it is expected that the utility of MAS for breeding for stress tolerance traits will increase. In this chapter, we describe the basic procedure for using MAS in crop breeding for salt tolerance.

  11. Increasing the efficiency of traditional cacao breeding using whole genome sequencing information.

    USDA-ARS?s Scientific Manuscript database

    Unfortunately, 80% of the genotypes from the "hybrid seeds" are unproductive in farmers' fields. In 1999 the USDA and Mars Inc. initiated a Marker Assisted Selection (MAS) program for cacao that has reduces many of the problems in traditional breeding. One limitation of the MAS program is the distan...

  12. Marker-Assisted Introgression in Backcross Breeding Programs

    PubMed Central

    Visscher, P. M.; Haley, C. S.; Thompson, R.

    1996-01-01

    The efficiency of marker-assisted introgression in backcross populations derived from inbred lines was investigated by simulation. Background genotypes were simulated assuming that a genetic model of many genes of small effects in coupling phase explains the observed breed difference and variance in backcross populations. Markers were efficient in introgression backcross programs for simultaneously introgressing an allele and selecting for the desired genomic background. Using a marker spacing of 10-20 cM gave an advantage of one to two backcross generations selection relative to random or phenotypic selection. When the position of the gene to be introgressed is uncertain, for example because its position was estimated from a trait gene mapping experiment, a chromosome segment should be introgressed that is likely to include the allele of interest. Even for relatively precisely mapped quantitative trait loci, flanking markers or marker haplotypes should cover ~10-20 cM around the estimated position of the gene, to ensure that the allele frequency does not decline in later backcross generations. PMID:8978075

  13. Routine DNA testing

    USDA-ARS?s Scientific Manuscript database

    Routine DNA testing. It’s done once you’ve Marker-Assisted Breeding Pipelined promising Qantitative Trait Loci within your own breeding program and thereby established the performance-predictive power of each DNA test for your germplasm under your conditions. By then you are ready to screen your par...

  14. National Plant Genome Initiative

    DTIC Science & Technology

    2004-01-01

    trials have also identified new objectives for vegetable breeding programs, expedited by knowledge and tools from crop genomics and farmer demand...The same tools and resources are being applied to develop improved crops and new breeding strategies, as well. With the sequencing of the rice genome...marker-assisted breeding strategies for wheat • Establishment of a comparative cereal genomics database, Gramene, which uses the complete rice

  15. [Medicinal plant DNA marker assisted breeding (Ⅱ) the assistant identification of SNPs assisted identification and breeding research of high yield Perilla frutescens new variety].

    PubMed

    Shen, Qi; Zhang, Dong; Sun, Wei; Zhang, Yu-Jun; Shang, Zhi-Wei; Chen, Shi-Lin

    2017-05-01

    Perilla frutescens is one of 60 kinds of food and medicine plants in the initial directory announced by health ministry of China. With the development of Perilla domain in recent , the breeding and application of good varieties has become the main bottleneck of its development. This study reported that applied to the system selection, add to marker-assisted method to breed perilla varieties. Through the whole genome sequencing and consistency matching, annotated the mutation locus according to genome data, and comparison analysis with Perilla common variants database, finally selected 30 non-synonymous mutation SNPs used as characteristic markers of Zhongyan Feishu No.1. those SNP marker were used as chosen standard of Perilla varieties. Finally breeding new perilla variety Zhongyan Feishu No.1, which possess to characters of the leaf and seed dual-used, high yield, high resistance, and could used to green fertilizer. The Zhongyan Feishu No.1 acquired the plant new varieties identification of Beijing city , the identification numbers is 2016054. Marker assisted identification guide new varieties breeding in plants, which can provide a new reference for breeding of medicinal plants. Copyright© by the Chinese Pharmaceutical Association.

  16. Avian Disease and Oncology Laboratory (ADOL) research update

    USDA-ARS?s Scientific Manuscript database

    GENOMICS To meet the growing demands of consumers, the poultry industry will need to continue to improve methods of selection in breeding programs for production and associated traits. One possible solution is genome-wide marker-assisted selection (GWMAS). In brief, evenly-spaced genetic markers s...

  17. Rapid development of molecular markers by next-generation sequencing linked to a gene conferring phomopsis stem blight disease resistance for marker-assisted selection in lupin (Lupinus angustifolius L.) breeding.

    PubMed

    Yang, Huaan; Tao, Ye; Zheng, Zequn; Shao, Di; Li, Zhenzhong; Sweetingham, Mark W; Buirchell, Bevan J; Li, Chengdao

    2013-02-01

    Selection for phomopsis stem blight disease (PSB) resistance is one of the key objectives in lupin (Lupinus angustifolius L.) breeding programs. A cross was made between cultivar Tanjil (resistant to PSB) and Unicrop (susceptible). The progeny was advanced into F(8) recombinant inbred lines (RILs). The RIL population was phenotyped for PSB disease resistance. Twenty plants from the RIL population representing disease resistance and susceptibility was subjected to next-generation sequencing (NGS)-based restriction site-associated DNA sequencing on the NGS platform Solexa HiSeq2000, which generated 7,241 single nucleotide polymorphisms (SNPs). Thirty-three SNP markers showed the correlation between the marker genotypes and the PSB disease phenotype on the 20 representative plants, which were considered as candidate markers linked to a putative R gene for PSB resistance. Seven candidate markers were converted into sequence-specific PCR markers, which were designated as PhtjM1, PhtjM2, PhtjM3, PhtjM4, PhtjM5, PhtjM6 and PhtjM7. Linkage analysis of the disease phenotyping data and marker genotyping data on a F(8) population containing 187 RILs confirmed that all the seven converted markers were associated with the putative R gene within the genetic distance of 2.1 CentiMorgan (cM). One of the PCR markers, PhtjM3, co-segregated with the R gene. The seven established PCR markers were tested in the 26 historical and current commercial cultivars released in Australia. The numbers of "false positives" (showing the resistance marker allele band but lack of the putative R gene) for each of the seven PCR markers ranged from nil to eight. Markers PhtjM4 and PhtjM7 are recommended in marker-assisted selection for PSB resistance in the Australian national lupin breeding program due to its wide applicability on breeding germplasm and close linkage to the putative R gene. The results demonstrated that application of NGS technology is a rapid and cost-effective approach in development of markers for molecular plant breeding.

  18. Development and utilization of InDel markers to identify peanut (Arachis hypogaea) disease resistance

    USDA-ARS?s Scientific Manuscript database

    To date, nearly 10,000 SSR-based markers have been identified by various research groups around the world, but less than 14.5% showed polymorphism in peanut and only 6.4% were mapped. Low levels of polymorphism limit the application of marker assisted selection (MAS) in peanut breeding programs. I...

  19. Parentage assignment with genomic markers: a major advance for understanding and exploiting genetic variation of quantitative traits in farmed aquatic animals

    PubMed Central

    Vandeputte, Marc; Haffray, Pierrick

    2014-01-01

    Since the middle of the 1990s, parentage assignment using microsatellite markers has been introduced as a tool in aquaculture breeding. It now allows close to 100% assignment success, and offered new ways to develop aquaculture breeding using mixed family designs in commercial conditions. Its main achievements are the knowledge and control of family representation and inbreeding, especially in mass spawning species, above all the capacity to estimate reliable genetic parameters in any species and rearing system with no prior investment in structures, and the development of new breeding programs in many species. Parentage assignment should not be seen as a way to replace physical tagging, but as a new way to conceive breeding programs, which have to be optimized with its specific constraints, one of the most important being to well define the number of individuals to genotype to limit costs, maximize genetic gain while minimizing inbreeding. The recent possible shift to (for the moment) more costly single nucleotide polymorphism markers should benefit from future developments in genomics and marker-assisted selection to combine parentage assignment and indirect prediction of breeding values. PMID:25566319

  20. Efficient Breeding by Genomic Mating.

    PubMed

    Akdemir, Deniz; Sánchez, Julio I

    2016-01-01

    Selection in breeding programs can be done by using phenotypes (phenotypic selection), pedigree relationship (breeding value selection) or molecular markers (marker assisted selection or genomic selection). All these methods are based on truncation selection, focusing on the best performance of parents before mating. In this article we proposed an approach to breeding, named genomic mating, which focuses on mating instead of truncation selection. Genomic mating uses information in a similar fashion to genomic selection but includes information on complementation of parents to be mated. Following the efficiency frontier surface, genomic mating uses concepts of estimated breeding values, risk (usefulness) and coefficient of ancestry to optimize mating between parents. We used a genetic algorithm to find solutions to this optimization problem and the results from our simulations comparing genomic selection, phenotypic selection and the mating approach indicate that current approach for breeding complex traits is more favorable than phenotypic and genomic selection. Genomic mating is similar to genomic selection in terms of estimating marker effects, but in genomic mating the genetic information and the estimated marker effects are used to decide which genotypes should be crossed to obtain the next breeding population.

  1. Public availability of a genotyped, segregating population may foster marker assisted breeding (MAB) and quantitative trait loci (QTL) discovery: An example using strawberry

    USDA-ARS?s Scientific Manuscript database

    Much of the cost associated with marker discovery for marker assisted breeding (MAB) can be eliminated if a diverse, segregating population is generated, genotyped and made available to the global breeding community. Herein, we present an example of a hybrid, wild-derived family of the octoploid str...

  2. Development of single nucleotide polymorphism (SNP) markers from the mango (Mangiferaindica) transcriptome for mapping and estimation of genetic diversity

    USDA-ARS?s Scientific Manuscript database

    The development of resources for genomic studies in Mangifera indica (mango) will allow marker-assisted selection and identification of genetically diverse germplasm, greatly aiding mango breeding programs. We report here a first step in developing such resources, our identification of thousands una...

  3. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L.

    PubMed Central

    2012-01-01

    Background In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS) technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin) as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA) sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Results Twenty informative plants from a cross of RxS (disease resistant x susceptible) in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM), and are now replacing the markers previously developed by a traditional DNA fingerprinting method for marker-assisted selection in the Australian national lupin breeding program. Conclusions We demonstrated that more than 30 molecular markers linked to a target gene of agronomic trait of interest can be identified from a small portion (1/8) of one sequencing run on HiSeq2000 by applying NGS based RAD sequencing in marker development. The markers developed by the strategy described in this study are all co-dominant SNP markers, which can readily be converted into high throughput multiplex format or low-cost, simple PCR-based markers desirable for large scale marker implementation in plant breeding programs. The high density and closely linked molecular markers associated with a target trait help to overcome a major bottleneck for implementation of molecular markers on a wide range of germplasm in breeding programs. We conclude that application of NGS based RAD sequencing as DNA fingerprinting is a very rapid and cost-effective strategy for marker development in molecular plant breeding. The strategy does not require any prior genome knowledge or molecular information for the species under investigation, and it is applicable to other plant species. PMID:22805587

  4. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L.

    PubMed

    Yang, Huaan; Tao, Ye; Zheng, Zequn; Li, Chengdao; Sweetingham, Mark W; Howieson, John G

    2012-07-17

    In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS) technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin) as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA) sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Twenty informative plants from a cross of RxS (disease resistant x susceptible) in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM), and are now replacing the markers previously developed by a traditional DNA fingerprinting method for marker-assisted selection in the Australian national lupin breeding program. We demonstrated that more than 30 molecular markers linked to a target gene of agronomic trait of interest can be identified from a small portion (1/8) of one sequencing run on HiSeq2000 by applying NGS based RAD sequencing in marker development. The markers developed by the strategy described in this study are all co-dominant SNP markers, which can readily be converted into high throughput multiplex format or low-cost, simple PCR-based markers desirable for large scale marker implementation in plant breeding programs. The high density and closely linked molecular markers associated with a target trait help to overcome a major bottleneck for implementation of molecular markers on a wide range of germplasm in breeding programs. We conclude that application of NGS based RAD sequencing as DNA fingerprinting is a very rapid and cost-effective strategy for marker development in molecular plant breeding. The strategy does not require any prior genome knowledge or molecular information for the species under investigation, and it is applicable to other plant species.

  5. Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.)

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) and marker-assisted selection (MAS) rely on marker-trait associations and are both routinely used for breeding purposes. Although similar, these two approaches differ in their applications and how markers are used to estimate breeding values. In this study, GS and MAS were com...

  6. [DNA marker-assisted selection of medicinal plants (Ⅰ) .Breeding research of disease-resistant cultivars of Panax notoginseng].

    PubMed

    Dong, Lin-Lin; Chen, Zhong-Jian; Wang, Yong; Wei, Fu-Gang; Zhang, Lian-Juan; Xu, Jiang; Wei, Guang-Fei; Wang, Rui; Yang, Juan; Liu, Wei-Lin; Li, Xi-Wen; Yu, Yu-Qi; Chen, Shi-Lin

    2017-01-01

    DNA marker-assisted selection of medicinal plants is based on the DNA polymorphism, selects the DNA sequences related to the phenotypes such as high yields, superior quality, stress-resistance and so on according to the technologies of molecular hybridization, polymerase chain reaction and high-throughput sequencing, and assists the breeding of new cultivars. This study bred the first disease-resistant cultivar of notoginseng "Miaoxiang Kangqi 1" using the technology of DNA marker-assisted selection of medicinal plants and systematic breeding. The disease-resistant cultivar of notoginseng contained 12 special SNPs based on the analysis of Restriction-site Associated DNA Sequencing (RAD-Seq). Among the SNP (record_519688) was related to the root rot-resistant characteristics, which indicated this SNP could serve as genetic markers of disease-resistant cultivars and assist the systematic breeding. Compared to the conventional cultivated cultivars, the incidence rate of root-rot and rust-rot in notoginseng seedlings decreased by 83.6% and 71.8%, respectively. The incidence rate of root-rot respectively declined by 43.6% and 62.9% in notoginseng cultivation for 2 and 3 years compared with those of the conventional cultivated cultivars. Additionally, the potential disease-resistant groups were screened based on the relative SNP, and this model enlarged the target groups and advanced the breeding efficiency. DNA marker-assisted selection of medicinal plants accelerated the breeding and promotion of new cultivars, and guaranteed the healthy development of Chinese medicinal materials industry. Copyright© by the Chinese Pharmaceutical Association.

  7. The GCP molecular marker toolkit, an instrument for use in breeding food security crops.

    PubMed

    Van Damme, Veerle; Gómez-Paniagua, Humberto; de Vicente, M Carmen

    2011-12-01

    Crop genetic resources carry variation useful for overcoming the challenges of modern agriculture. Molecular markers can facilitate the selection of agronomically important traits. The pervasiveness of genomics research has led to an overwhelming number of publications and databases, which are, nevertheless, scattered and hence often difficult for plant breeders to access, particularly those in developing countries. This situation separates them from developed countries, which have better endowed programs for developing varieties. To close this growing knowledge gap, we conducted an intensive literature review and consulted with more than 150 crop experts on the use of molecular markers in the breeding program of 19 food security crops. The result was a list of effectively used and highly reproducible sequence tagged site (STS), simple sequence repeat (SSR), single nucleotide polymorphism (SNP), and sequence characterized amplified region (SCAR) markers. However, only 12 food crops had molecular markers suitable for improvement. That is, marker-assisted selection is not yet used for Musa spp., coconut, lentils, millets, pigeonpea, sweet potato, and yam. For the other 12 crops, 214 molecular markers were found to be effectively used in association with 74 different traits. Results were compiled as the GCP Molecular Marker Toolkit, a free online tool that aims to promote the adoption of molecular approaches in breeding activities.

  8. Recurrent parent genome recovery analysis in a marker-assisted backcrossing program of rice (Oryza sativa L.).

    PubMed

    Miah, Gous; Rafii, Mohd Y; Ismail, Mohd R; Puteh, Adam B; Rahim, Harun A; Latif, Mohammad A

    2015-02-01

    Backcross breeding is the most commonly used method for incorporating a blast resistance gene into a rice cultivar. Linkage between the resistance gene and undesirable units can persist for many generations of backcrossing. Marker-assisted backcrossing (MABC) along with marker-assisted selection (MAS) contributes immensely to overcome the main limitation of the conventional breeding and accelerates recurrent parent genome (RPG) recovery. The MABC approach was employed to incorporate (a) blast resistance gene(s) from the donor parent Pongsu Seribu 1, the blast-resistant local variety in Malaysia, into the genetic background of MR219, a popular high-yielding rice variety that is blast susceptible, to develop a blast-resistant MR219 improved variety. In this perspective, the recurrent parent genome recovery was analyzed in early generations of backcrossing using simple sequence repeat (SSR) markers. Out of 375 SSR markers, 70 markers were found polymorphic between the parents, and these markers were used to evaluate the plants in subsequent generations. Background analysis revealed that the extent of RPG recovery ranged from 75.40% to 91.3% and from 80.40% to 96.70% in BC1F1 and BC2F1 generations, respectively. In this study, the recurrent parent genome content in the selected BC2F2 lines ranged from 92.7% to 97.7%. The average proportion of the recurrent parent in the selected improved line was 95.98%. MAS allowed identification of the plants that are more similar to the recurrent parent for the loci evaluated in backcross generations. The application of MAS with the MABC breeding program accelerated the recovery of the RP genome, reducing the number of generations and the time for incorporating resistance against rice blast. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Fine Mapping for Identification of Citrus Alternaria Brown Spot Candidate Resistance Genes and Development of New SNP Markers for Marker-Assisted Selection

    PubMed Central

    Cuenca, Jose; Aleza, Pablo; Garcia-Lor, Andres; Ollitrault, Patrick; Navarro, Luis

    2016-01-01

    Alternaria brown spot (ABS) is a serious disease affecting susceptible citrus genotypes, which is a strong concern regarding citrus breeding programs. Resistance is conferred by a recessive locus (ABSr) previously located by our group within a 3.3 Mb genome region near the centromere in chromosome III. This work addresses fine-linkage mapping of this region for identifying candidate resistance genes and develops new molecular markers for ABS-resistance effective marker-assisted selection (MAS). Markers closely linked to ABSr locus were used for fine mapping using a 268-segregating diploid progeny derived from a heterozygous susceptible × resistant cross. Fine mapping limited the genomic region containing the ABSr resistance gene to 366 kb, flanked by markers at 0.4 and 0.7 cM. This region contains nine genes related to pathogen resistance. Among them, eight are resistance (R) gene homologs, with two of them harboring a serine/threonine protein kinase domain. These two genes along with a gene encoding a S-adenosyl-L-methionine-dependent-methyltransferase protein, should be considered as strong candidates for ABS-resistance. Moreover, the closest SNP was genotyped in 40 citrus varieties, revealing very high association with the resistant/susceptible phenotype. This new marker is currently used in our citrus breeding program for ABS-resistant parent and cultivar selection, at diploid, triploid and tetraploid level. PMID:28066498

  10. Genome-Wide Computational Analysis of Musa Microsatellites: Classification, Cross-Taxon Transferability, Functional Annotation, Association with Transposons & miRNAs, and Genetic Marker Potential

    PubMed Central

    Biswas, Manosh Kumar; Liu, Yuxuan; Li, Chunyu; Sheng, Ou; Mayer, Christoph; Yi, Ganjun

    2015-01-01

    The development of organized, informative, robust, user-friendly, and freely accessible molecular markers is imperative to the Musa marker assisted breeding program. Although several hundred SSR markers have already been developed, the number of informative, robust, and freely accessible Musa markers remains inadequate for some breeding applications. In view of this issue, we surveyed SSRs in four different data sets, developed large-scale non-redundant highly informative therapeutic SSR markers, and classified them according to their attributes, as well as analyzed their cross-taxon transferability and utility for the genetic study of Musa and its relatives. A high SSR frequency (177 per Mbp) was found in the Musa genome. AT-rich dinucleotide repeats are predominant, and trinucleotide repeats are the most abundant in transcribed regions. A significant number of Musa SSRs are associated with pre-miRNAs, and 83% of these SSRs are promising candidates for the development of therapeutic SSR markers. Overall, 74% of the SSR markers were polymorphic, and 94% were transferable to at least one Musa spp. Two hundred forty-three markers generated a total of 1047 alleles, with 2-8 alleles each and an average of 4.38 alleles per locus. The PIC values ranged from 0.31 to 0.89 and averaged 0.71. We report the largest set of non-redundant, polymorphic, new SSR markers to be developed in Musa. These additional markers could be a valuable resource for marker-assisted breeding, genetic diversity and genomic studies of Musa and related species. PMID:26121637

  11. A and MdMYB1 allele-specific markers controlling apple (Malus x domestica Borkh.) skin color and suitability for marker-assisted selection.

    PubMed

    Zhang, X J; Wang, L X; Chen, X X; Liu, Y L; Meng, R; Wang, Y J; Zhao, Z Y

    2014-10-31

    Pre-selection for fruit skin color at the seedling stage would be highly advantageous, with marker-assisted selection offering a potential method for apple pre-selection. A and MdMYB1 alleles are allele-specific DNA markers that are potentially associated with apple skin color, and co-segregate with the Rf and Rni loci, respectively. Here, we assessed the potential application of these 2 alleles for marker-assisted breeding across 30 diverse cultivars and 2 apple seedling progenies. The red skin color phenotype was usually associated with the MdMYB1-1 allele and A(1) allele, respectively, while the 2 molecular markers provided approximately 91% predictability in the 'Fuji' x 'Cripps Pink' and 'Fuji' x 'Gala' progenies. The results obtained from the 30 cultivars and 2 progenies were consistent for the 2 molecular markers. Hence, the results supported that Rf and Rni could be located in a gene cluster, or even correspond to alleles of the same gene. Our results are consistent with the hypothesis that red/yellow dimorphism is controlled by a monogenic system, with the presence of the red anthocyanin pigmentation being dominant. In addition, our results supported that the practical utilization of the 2 function markers to efficiently and accurately select red-skinned apple cultivars in apple scion breeding programs.

  12. Current patents and future development underlying marker-assisted breeding in major grain crops.

    PubMed

    Utomo, Herry S; Linscombe, Steve D

    2009-01-01

    Genomics and molecular markers provide new tools to assemble and mobilize important traits from different genetic backgrounds, including breeding lines and cultivars from different parts of the world and their related wild ancestors, to improve the quality and yield of the existing commercial cultivars to meet the increasing challenges of global food demand. The basic techniques of marker-assisted breeding, such as isolating DNA, amplifying DNA of interest using publicly available primers, and visualizing DNA fragments using standard polyacrylamid gel, have been described in the literature and, therefore, are available to scientists and breeders without any restrictions. A more sophisticated high-throughput system that includes proprietary chemicals and reagents, parts and equipments, software, and methods or processes, has been a subject of intensive patents and trade secrets. The high-throughput systems offer a more efficient way to discover associated QTLs for traits of economic importance. Therefore, an increasing number of patents of highly valued genes and QTLs is expected. This paper will discuss and review current patents associated with genes and QTLs utilized in marker-assisted breeding in major grain crops. The availability of molecular markers for important agronomic traits combined with more efficient marker detection systems will help reach the full benefit of MAS in the breeding effort to reassemble potential genes and recapture critical genes among the breeding lines that were lost during domestication to help boost crop production worldwide.

  13. Germplasm-regression-combined (GRC) marker-trait association identification in plant breeding: a challenge for plant biotechnological breeding under soil water deficit conditions.

    PubMed

    Ruan, Cheng-Jiang; Xu, Xue-Xuan; Shao, Hong-Bo; Jaleel, Cheruth Abdul

    2010-09-01

    In the past 20 years, the major effort in plant breeding has changed from quantitative to molecular genetics with emphasis on quantitative trait loci (QTL) identification and marker assisted selection (MAS). However, results have been modest. This has been due to several factors including absence of tight linkage QTL, non-availability of mapping populations, and substantial time needed to develop such populations. To overcome these limitations, and as an alternative to planned populations, molecular marker-trait associations have been identified by the combination between germplasm and the regression technique. In the present preview, the authors (1) survey the successful applications of germplasm-regression-combined (GRC) molecular marker-trait association identification in plants; (2) describe how to do the GRC analysis and its differences from mapping QTL based on a linkage map reconstructed from the planned populations; (3) consider the factors that affect the GRC association identification, including selections of optimal germplasm and molecular markers and testing of identification efficiency of markers associated with traits; and (4) finally discuss the future prospects of GRC marker-trait association analysis used in plant MAS/QTL breeding programs, especially in long-juvenile woody plants when no other genetic information such as linkage maps and QTL are available.

  14. Application of whole genome re-sequencing data in the development of diagnostic DNA markers tightly linked to a disease-resistance locus for marker-assisted selection in lupin (Lupinus angustifolius).

    PubMed

    Yang, Huaan; Jian, Jianbo; Li, Xuan; Renshaw, Daniel; Clements, Jonathan; Sweetingham, Mark W; Tan, Cong; Li, Chengdao

    2015-09-02

    Molecular marker-assisted breeding provides an efficient tool to develop improved crop varieties. A major challenge for the broad application of markers in marker-assisted selection is that the marker phenotypes must match plant phenotypes in a wide range of breeding germplasm. In this study, we used the legume crop species Lupinus angustifolius (lupin) to demonstrate the utility of whole genome sequencing and re-sequencing on the development of diagnostic markers for molecular plant breeding. Nine lupin cultivars released in Australia from 1973 to 2007 were subjected to whole genome re-sequencing. The re-sequencing data together with the reference genome sequence data were used in marker development, which revealed 180,596 to 795,735 SNP markers from pairwise comparisons among the cultivars. A total of 207,887 markers were anchored on the lupin genetic linkage map. Marker mining obtained an average of 387 SNP markers and 87 InDel markers for each of the 24 genome sequence assembly scaffolds bearing markers linked to 11 genes of agronomic interest. Using the R gene PhtjR conferring resistance to phomopsis stem blight disease as a test case, we discovered 17 candidate diagnostic markers by genotyping and selecting markers on a genetic linkage map. A further 243 candidate diagnostic markers were discovered by marker mining on a scaffold bearing non-diagnostic markers linked to the PhtjR gene. Nine out from the ten tested candidate diagnostic markers were confirmed as truly diagnostic on a broad range of commercial cultivars. Markers developed using these strategies meet the requirements for broad application in molecular plant breeding. We demonstrated that low-cost genome sequencing and re-sequencing data were sufficient and very effective in the development of diagnostic markers for marker-assisted selection. The strategies used in this study may be applied to any trait or plant species. Whole genome sequencing and re-sequencing provides a powerful tool to overcome current limitations in molecular plant breeding, which will enable plant breeders to precisely pyramid favourable genes to develop super crop varieties to meet future food demands.

  15. Advances in marker-assisted breeding of sugarcane

    USDA-ARS?s Scientific Manuscript database

    Despite the challenges posed by sugarcane, geneticists and breeders have actively sought to use DNA marker technology to enhance breeding efforts. Markers have been used to explore taxonomy, estimate genetic diversity, and to develop unique molecular fingerprints. Numerous studies have been undertak...

  16. Genome-enabled prediction models for yield related traits in chickpea

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) unlike marker-assisted backcrossing (MABC) predicts breeding values of lines using genome-wide marker profiling and allows selection of lines prior to field-phenotyping, thereby shortening the breeding cycle. A collection of 320 elite breeding lines was selected and phenotyped...

  17. High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations.

    PubMed

    2014-12-11

    Cassava (Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400-500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculenta Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480 meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. We used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selection-enhanced breeding of this important crop. Copyright © 2015 International Cassava Genetic Map Consortium (ICGMC).

  18. High-resolution linkage map and chromosome-scale genome assembly for cassava ( Manihot esculenta Crantz) from 10 populations

    DOE PAGES

    Lyons, Jessica

    2014-12-11

    Cassava Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400–500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculent Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480more » meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. Here, we used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selectionenhanced breeding of this important crop.« less

  19. High-resolution linkage map and chromosome-scale genome assembly for cassava ( Manihot esculenta Crantz) from 10 populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, Jessica

    Cassava Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400–500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculent Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480more » meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. Here, we used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selectionenhanced breeding of this important crop.« less

  20. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses.

    PubMed

    Talukder, Shyamal K; Saha, Malay C

    2017-01-01

    Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder.

  1. Genomic selection in plant breeding

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor ...

  2. Development of Novel SSR Markers for Flax (Linum usitatissimum L.) Using Reduced-Representation Genome Sequencing.

    PubMed

    Wu, Jianzhong; Zhao, Qian; Wu, Guangwen; Zhang, Shuquan; Jiang, Tingbo

    2016-01-01

    Flax ( Linum usitatissimum L.) is a major fiber and oil yielding crop grown in northeastern China. Identification of flax molecular markers is a key step toward improving flax yield and quality via marker-assisted breeding. Simple sequence repeat (SSR) markers, which are based on genomic structural variation, are considered the most valuable type of genetic marker for this purpose. In this study, we screened 1574 microsatellites from Linum usitatissimum L. obtained using reduced representation genome sequencing (RRGS) to systematically identify SSR markers. The resulting set of microsatellites consisted mainly of trinucleotide (56.10%) and dinucleotide (35.23%) repeats, with each motif consisting of 5-8 repeats. We then evaluated marker sensitivity and specificity based on samples of 48 flax isolates obtained from northeastern China. Using the new SSR panel, the results demonstrated that fiber flax and oilseed flax varieties clustered into two well separated groups. The novel SSR markers developed in this study show potential value for selection of varieties for use in flax breeding programs.

  3. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics.

    PubMed

    Varshney, Rajeev K; Mohan, S Murali; Gaur, Pooran M; Gangarao, N V P R; Pandey, Manish K; Bohra, Abhishek; Sawargaonkar, Shrikant L; Chitikineni, Annapurna; Kimurto, Paul K; Janila, Pasupuleti; Saxena, K B; Fikre, Asnake; Sharma, Mamta; Rathore, Abhishek; Pratap, Aditya; Tripathi, Shailesh; Datta, Subhojit; Chaturvedi, S K; Mallikarjuna, Nalini; Anuradha, G; Babbar, Anita; Choudhary, Arbind K; Mhase, M B; Bharadwaj, Ch; Mannur, D M; Harer, P N; Guo, Baozhu; Liang, Xuanqiang; Nadarajan, N; Gowda, C L L

    2013-12-01

    Advances in next-generation sequencing and genotyping technologies have enabled generation of large-scale genomic resources such as molecular markers, transcript reads and BAC-end sequences (BESs) in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive transcriptome assemblies and genome sequences have either been developed or underway in these crops. Based on these resources, dense genetic maps, QTL maps as well as physical maps for these legume species have also been developed. As a result, these crops have graduated from 'orphan' or 'less-studied' crops to 'genomic resources rich' crops. This article summarizes the above-mentioned advances in genomics and genomics-assisted breeding applications in the form of marker-assisted selection (MAS) for hybrid purity assessment in pigeonpea; marker-assisted backcrossing (MABC) for introgressing QTL region for drought-tolerance related traits, Fusarium wilt (FW) resistance and Ascochyta blight (AB) resistance in chickpea; late leaf spot (LLS), leaf rust and nematode resistance in groundnut. We critically present the case of use of other modern breeding approaches like marker-assisted recurrent selection (MARS) and genomic selection (GS) to utilize the full potential of genomics-assisted breeding for developing superior cultivars with enhanced tolerance to various environmental stresses. In addition, this article recommends the use of advanced-backcross (AB-backcross) breeding and development of specialized populations such as multi-parents advanced generation intercross (MAGIC) for creating new variations that will help in developing superior lines with broadened genetic base. In summary, we propose the use of integrated genomics and breeding approach in these legume crops to enhance crop productivity in marginal environments ensuring food security in developing countries. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Progress in the molecular and genetic modification breeding of beef cattle in China.

    PubMed

    Tong, Bin; Zhang, Li; Li, Guang-Peng

    2017-11-20

    The studies of beef cattle breeding in China have been greatly improved with the rapid development of the international beef cattle industrialization. The beef cattle breeding technologies have rapidly transformed from traditional breeding to molecular marker-assisted breeding, genomic selection and genetic modification breeding. Hundreds of candidate genes and molecular markers associated with growth, meat quality, reproduction performance and diseases resistance have been identified, and some of them have already been used in cattle breeding. Genes and molecular markers associated with growth and development are focused on the growth hormone, muscle regulatory factors, myostatin and insulin-like growth factors. Meat quality is mediated by fatty acid transport and deposition related signals, calpains and calpain system, muscle regulatory factors and muscle growth regulation pathways. Reproduction performance is regulated by GnRH-FSH-LH, growth differentiation factor 9, prolactin receptor and forkhead box protein O1. Disease resistance is modulated by the major histocompatibility complex gene family, toll-like receptors, mannose-binding lectin and interferon gene signals. In this review, we summarize the most recent progress in beef cattle breeding in marker-assisted selection, genome-wide selection and genetic modification breeding, aiming to provide a reference for further genetic breeding research of beef cattle in China.

  5. Genomic Tools in Groundnut Breeding Program: Status and Perspectives

    PubMed Central

    Janila, P.; Variath, Murali T.; Pandey, Manish K.; Desmae, Haile; Motagi, Babu N.; Okori, Patrick; Manohar, Surendra S.; Rathnakumar, A. L.; Radhakrishnan, T.; Liao, Boshou; Varshney, Rajeev K.

    2016-01-01

    Groundnut, a nutrient-rich food legume, is cultivated world over. It is valued for its good quality cooking oil, energy and protein rich food, and nutrient-rich fodder. Globally, groundnut improvement programs have developed varieties to meet the preferences of farmers, traders, processors, and consumers. Enhanced yield, tolerance to biotic and abiotic stresses and quality parameters have been the target traits. Spurt in genetic information of groundnut was facilitated by development of molecular markers, genetic, and physical maps, generation of expressed sequence tags (EST), discovery of genes, and identification of quantitative trait loci (QTL) for some important biotic and abiotic stresses and quality traits. The first groundnut variety developed using marker assisted breeding (MAB) was registered in 2003. Since then, USA, China, Japan, and India have begun to use genomic tools in routine groundnut improvement programs. Introgression lines that combine foliar fungal disease resistance and early maturity were developed using MAB. Establishment of marker-trait associations (MTA) paved way to integrate genomic tools in groundnut breeding for accelerated genetic gain. Genomic Selection (GS) tools are employed to improve drought tolerance and pod yield, governed by several minor effect QTLs. Draft genome sequence and low cost genotyping tools such as genotyping by sequencing (GBS) are expected to accelerate use of genomic tools to enhance genetic gains for target traits in groundnut. PMID:27014312

  6. Genetic analysis of prolactin gene in Pakistani cattle.

    PubMed

    Uddin, Raza Mohy; Babar, Masroor Ellahi; Nadeem, Asif; Hussain, Tanveer; Ahmad, Shakil; Munir, Sadia; Mehboob, Riffat; Ahmad, Fridoon Jawad

    2013-10-01

    Prolactin (PRL) is a polypeptide hormone, secreted mainly by the anterior pituitary gland. It is involved in many endocrine activities. The key functions of PRL are related to reproduction and lactation in mammals. To ascertain the presence of polymorphisms in the bovine PRL gene (bPRL), the bPRL gene was sequenced. Five mutations were identified in exonic region and eleven in associated intronic regions in 100 cattle from four Pakistani cattle breeds. Haplotype of predicted amino acid changes represent a common alteration at codon 222 from R-Arginine into K-Lysine in all four breeds. Significant statistical variations were observed in the distribution of single nucleotide polymorphism (SNP) in various cattle populations. However, on basis of present study, an association of these SNPs with milk performance traits in four Pakistani cow breeds cannot be truly replicated but at least can be effective DNA markers for some of the breeds studied. Linkage analysis between these SNPs on larger populations can be useful for the association with milk production traits. Furthermore, present study may be used for marker-assisted selection and management in cattle breeding program in local cattle breeds.

  7. Genomic selection in plant breeding.

    PubMed

    Newell, Mark A; Jannink, Jean-Luc

    2014-01-01

    Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor and major marker effects. Thus, the GEBV may capture more of the genetic variation for the particular trait under selection.

  8. A Comparison Between Genotyping-by-sequencing and Array-based Scoring of SNPs for Genomic Prediction Accuracy in Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    The utilization of DNA molecular markers in plant breeding to maximize selection response via marker assisted selection (MAS) and genomic selection (GS) has the potential to revolutionize plant breeding. A key factor affecting GS applicability is the choice of molecular marker platform. Genotypying-...

  9. Estimation by simulation of the efficiency of the French marker-assisted selection program in dairy cattle (Open Access publication)

    PubMed Central

    Guillaume, François; Fritz, Sébastien; Boichard, Didier; Druet, Tom

    2008-01-01

    The efficiency of the French marker-assisted selection (MAS) was estimated by a simulation study. The data files of two different time periods were used: April 2004 and 2006. The simulation method used the structure of the existing French MAS: same pedigree, same marker genotypes and same animals with records. The program simulated breeding values and new records based on this existing structure and knowledge on the QTL used in MAS (variance and frequency). Reliabilities of genetic values of young animals (less than one year old) obtained with and without marker information were compared to assess the efficiency of MAS for evaluation of milk, fat and protein yields and fat and protein contents. Mean gains of reliability ranged from 0.015 to 0.094 and from 0.038 to 0.114 in 2004 and 2006, respectively. The larger number of animals genotyped and the use of a new set of genetic markers can explain the improvement of MAS reliability from 2004 to 2006. This improvement was also observed by analysis of information content for young candidates. The gain of MAS reliability with respect to classical selection was larger for sons of sires with genotyped progeny daughters with records. Finally, it was shown that when superiority of MAS over classical selection was estimated with daughter yield deviations obtained after progeny test instead of true breeding values, the gain was underestimated. PMID:18096117

  10. Characterization and mapping of LanrBo: a locus conferring anthracnose resistance in narrow-leafed lupin (Lupinus angustifolius L.).

    PubMed

    Fischer, Kristin; Dieterich, Regine; Nelson, Matthew N; Kamphuis, Lars G; Singh, Karam B; Rotter, Björn; Krezdorn, Nicolas; Winter, Peter; Wehling, Peter; Ruge-Wehling, Brigitte

    2015-10-01

    A novel and highly effective source of anthracnose resistance in narrow-leafed lupin was identified. Resistance was shown to be governed by a single dominant locus. Molecular markers have been developed, which can be used for selecting resistant genotypes in lupin breeding. A screening for anthracnose resistance of a set of plant genetic resources of narrow-leafed lupin (Lupinus angustifolius L.) identified the breeding line Bo7212 as being highly resistant to anthracnose (Colletotrichum lupini). Segregation analysis indicated that the resistance of Bo7212 is inherited by a single dominant locus. The corresponding resistance gene was given the designation LanrBo. Previously published molecular anchor markers allowed us to locate LanrBo on linkage group NLL-11 of narrow-leafed lupin. Using information from RNAseq data obtained with inoculated resistant vs. susceptible lupin entries as well as EST-sequence information from the model genome Lotus japonicus, additional SNP and EST markers linked to LanrBo were derived. A bracket of two LanrBo-flanking markers allows for precise marker-assisted selection of the novel resistance gene in narrow-leafed lupin breeding programs.

  11. Development of Novel SSR Markers for Flax (Linum usitatissimum L.) Using Reduced-Representation Genome Sequencing

    PubMed Central

    Wu, Jianzhong; Zhao, Qian; Wu, Guangwen; Zhang, Shuquan; Jiang, Tingbo

    2017-01-01

    Flax (Linum usitatissimum L.) is a major fiber and oil yielding crop grown in northeastern China. Identification of flax molecular markers is a key step toward improving flax yield and quality via marker-assisted breeding. Simple sequence repeat (SSR) markers, which are based on genomic structural variation, are considered the most valuable type of genetic marker for this purpose. In this study, we screened 1574 microsatellites from Linum usitatissimum L. obtained using reduced representation genome sequencing (RRGS) to systematically identify SSR markers. The resulting set of microsatellites consisted mainly of trinucleotide (56.10%) and dinucleotide (35.23%) repeats, with each motif consisting of 5–8 repeats. We then evaluated marker sensitivity and specificity based on samples of 48 flax isolates obtained from northeastern China. Using the new SSR panel, the results demonstrated that fiber flax and oilseed flax varieties clustered into two well separated groups. The novel SSR markers developed in this study show potential value for selection of varieties for use in flax breeding programs. PMID:28133461

  12. Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia

    PubMed Central

    Iwata, Hiroyoshi; Hayashi, Takeshi; Terakami, Shingo; Takada, Norio; Sawamura, Yutaka; Yamamoto, Toshiya

    2013-01-01

    Although the potential of marker-assisted selection (MAS) in fruit tree breeding has been reported, bi-parental QTL mapping before MAS has hindered the introduction of MAS to fruit tree breeding programs. Genome-wide association studies (GWAS) are an alternative to bi-parental QTL mapping in long-lived perennials. Selection based on genomic predictions of breeding values (genomic selection: GS) is another alternative for MAS. This study examined the potential of GWAS and GS in pear breeding with 76 Japanese pear cultivars to detect significant associations of 162 markers with nine agronomic traits. We applied multilocus Bayesian models accounting for ordinal categorical phenotypes for GWAS and GS model training. Significant associations were detected at harvest time, black spot resistance and the number of spurs and two of the associations were closely linked to known loci. Genome-wide predictions for GS were accurate at the highest level (0.75) in harvest time, at medium levels (0.38–0.61) in resistance to black spot, firmness of flesh, fruit shape in longitudinal section, fruit size, acid content and number of spurs and at low levels (<0.2) in all soluble solid content and vigor of tree. Results suggest the potential of GWAS and GS for use in future breeding programs in Japanese pear. PMID:23641189

  13. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection.

    PubMed

    Clevenger, Josh; Chu, Ye; Chavarro, Carolina; Botton, Stephanie; Culbreath, Albert; Isleib, Thomas G; Holbrook, C C; Ozias-Akins, Peggy

    2018-01-01

    Late leaf spot (LLS; Cercosporidium personatum ) is a major fungal disease of cultivated peanut ( Arachis hypogaea ). A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools. Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping.

  14. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for Marker-Assisted Selection

    PubMed Central

    Clevenger, Josh; Chu, Ye; Chavarro, Carolina; Botton, Stephanie; Culbreath, Albert; Isleib, Thomas G.; Holbrook, C. C.; Ozias-Akins, Peggy

    2018-01-01

    Late leaf spot (LLS; Cercosporidium personatum) is a major fungal disease of cultivated peanut (Arachis hypogaea). A recombinant inbred line population segregating for quantitative field resistance was used to identify quantitative trait loci (QTL) using QTL-seq. High rates of false positive SNP calls using established methods in this allotetraploid crop obscured significant QTLs. To resolve this problem, robust parental SNPs were first identified using polyploid-specific SNP identification pipelines, leading to discovery of significant QTLs for LLS resistance. These QTLs were confirmed over 4 years of field data. Selection with markers linked to these QTLs resulted in a significant increase in resistance, showing that these markers can be immediately applied in breeding programs. This study demonstrates that QTL-seq can be used to rapidly identify QTLs controlling highly quantitative traits in polyploid crops with complex genomes. Markers identified can then be deployed in breeding programs, increasing the efficiency of selection using molecular tools. Key Message: Field resistance to late leaf spot is a quantitative trait controlled by many QTLs. Using polyploid-specific methods, QTL-seq is faster and more cost effective than QTL mapping. PMID:29459876

  15. Rice Molecular Breeding Laboratories in the Genomics Era: Current Status and Future Considerations

    PubMed Central

    Collard, Bert C. Y.; Vera Cruz, Casiana M.; McNally, Kenneth L.; Virk, Parminder S.; Mackill, David J.

    2008-01-01

    Using DNA markers in plant breeding with marker-assisted selection (MAS) could greatly improve the precision and efficiency of selection, leading to the accelerated development of new crop varieties. The numerous examples of MAS in rice have prompted many breeding institutes to establish molecular breeding labs. The last decade has produced an enormous amount of genomics research in rice, including the identification of thousands of QTLs for agronomically important traits, the generation of large amounts of gene expression data, and cloning and characterization of new genes, including the detection of single nucleotide polymorphisms. The pinnacle of genomics research has been the completion and annotation of genome sequences for indica and japonica rice. This information—coupled with the development of new genotyping methodologies and platforms, and the development of bioinformatics databases and software tools—provides even more exciting opportunities for rice molecular breeding in the 21st century. However, the great challenge for molecular breeders is to apply genomics data in actual breeding programs. Here, we review the current status of MAS in rice, current genomics projects and promising new genotyping methodologies, and evaluate the probable impact of genomics research. We also identify critical research areas to “bridge the application gap” between QTL identification and applied breeding that need to be addressed to realize the full potential of MAS, and propose ideas and guidelines for establishing rice molecular breeding labs in the postgenome sequence era to integrate molecular breeding within the context of overall rice breeding and research programs. PMID:18528527

  16. Development of diagnostic markers from disease resistance QTLs for marker-assisted breeding in peanut

    USDA-ARS?s Scientific Manuscript database

    Breeding for disease resistance in peanut cultivars has been constrained due to both a narrow genetic base and a low degree of polymorphism. Earlier attempts have resulted in the development of a few hundreds of simple sequence repeat (SSR) markers in peanut that could define broad QTL on the physic...

  17. Development and validation of microsatellite markers for Brachiaria ruziziensis obtained by partial genome assembly of Illumina single-end reads

    PubMed Central

    2013-01-01

    Background Brachiaria ruziziensis is one of the most important forage species planted in the tropics. The application of genomic tools to aid the selection of superior genotypes can provide support to B. ruziziensis breeding programs. However, there is a complete lack of information about the B. ruziziensis genome. Also, the availability of genomic tools, such as molecular markers, to support B. ruziziensis breeding programs is rather limited. Recently, next-generation sequencing technologies have been applied to generate sequence data for the identification of microsatellite regions and primer design. In this study, we present a first validated set of SSR markers for Brachiaria ruziziensis, selected from a de novo partial genome assembly of single-end Illumina reads. Results A total of 85,567 perfect microsatellite loci were detected in contigs with a minimum 10X coverage. We selected a set of 500 microsatellite loci identified in contigs with minimum 100X coverage for primer design and synthesis, and tested a subset of 269 primer pairs, 198 of which were polymorphic on 11 representative B. ruziziensis accessions. Descriptive statistics for these primer pairs are presented, as well as estimates of marker transferability to other relevant brachiaria species. Finally, a set of 11 multiplex panels containing the 30 most informative markers was validated and proposed for B. ruziziensis genetic analysis. Conclusions We show that the detection and development of microsatellite markers from genome assembled Illumina single-end DNA sequences is highly efficient. The developed markers are readily suitable for genetic analysis and marker assisted selection of Brachiaria ruziziensis. The use of this approach for microsatellite marker development is promising for species with limited genomic information, whose breeding programs would benefit from the use of genomic tools. To our knowledge, this is the first set of microsatellite markers developed for this important species. PMID:23324172

  18. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century.

    PubMed

    Collard, Bertrand C Y; Mackill, David J

    2008-02-12

    DNA markers have enormous potential to improve the efficiency and precision of conventional plant breeding via marker-assisted selection (MAS). The large number of quantitative trait loci (QTLs) mapping studies for diverse crops species have provided an abundance of DNA marker-trait associations. In this review, we present an overview of the advantages of MAS and its most widely used applications in plant breeding, providing examples from cereal crops. We also consider reasons why MAS has had only a small impact on plant breeding so far and suggest ways in which the potential of MAS can be realized. Finally, we discuss reasons why the greater adoption of MAS in the future is inevitable, although the extent of its use will depend on available resources, especially for orphan crops, and may be delayed in less-developed countries. Achieving a substantial impact on crop improvement by MAS represents the great challenge for agricultural scientists in the next few decades.

  19. Biotechnology and apple breeding in Japan

    PubMed Central

    Igarashi, Megumi; Hatsuyama, Yoshimichi; Harada, Takeo; Fukasawa-Akada, Tomoko

    2016-01-01

    Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding. PMID:27069388

  20. Biotechnology and apple breeding in Japan.

    PubMed

    Igarashi, Megumi; Hatsuyama, Yoshimichi; Harada, Takeo; Fukasawa-Akada, Tomoko

    2016-01-01

    Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding.

  1. Using SCC8, SCF27 and VMC7f2 markers in grapevine breeding for seedlessness via marker assisted selection.

    PubMed

    Akkurt, M; Çakır, A; Shidfar, M; Çelikkol, B P; Söylemezoğlu, G

    2012-08-13

    We used molecular markers associated with seedlessness in grapes, namely SCC8, SCF27 and VMC7f2, to improve the efficiency of seedless grapevine breeding via marker assisted selection (MAS). DNA from 372 F₁ hybrid progeny from the cross between seeded "Alphonse Lavallée" and seedless "Sultani" was amplified by PCR using three markers. After digestion of SCC8 marker amplification products by restriction enzyme BgIII, 40 individuals showed homozygous SCC8+/SCC8+ alleles at the seed development inhibitor (SdI) locus. DNA from 80 of the progeny amplified with the SCF27 marker produced bands; 174 individuals had 198-bp alleles of the VMC7f2 marker associated with seedlessness. In the second year, based on MAS, 183 F₁ hybrids were designated as seedless grapevine candidates because they were positive for a minimum of one marker. Twenty individuals were selected as genetic resources for future studies on seedless grapevine breeding because they carried alleles for the three markers associated with seedlessness. The VMC7f2 SSR marker was identified as the marker most associated with seedlessness.

  2. Next-Generation Sequencing Approaches in Genome-Wide Discovery of Single Nucleotide Polymorphism Markers Associated with Pungency and Disease Resistance in Pepper.

    PubMed

    Manivannan, Abinaya; Kim, Jin-Hee; Yang, Eun-Young; Ahn, Yul-Kyun; Lee, Eun-Su; Choi, Sena; Kim, Do-Sun

    2018-01-01

    Pepper is an economically important horticultural plant that has been widely used for its pungency and spicy taste in worldwide cuisines. Therefore, the domestication of pepper has been carried out since antiquity. Owing to meet the growing demand for pepper with high quality, organoleptic property, nutraceutical contents, and disease tolerance, genomics assisted breeding techniques can be incorporated to develop novel pepper varieties with desired traits. The application of next-generation sequencing (NGS) approaches has reformed the plant breeding technology especially in the area of molecular marker assisted breeding. The availability of genomic information aids in the deeper understanding of several molecular mechanisms behind the vital physiological processes. In addition, the NGS methods facilitate the genome-wide discovery of DNA based markers linked to key genes involved in important biological phenomenon. Among the molecular markers, single nucleotide polymorphism (SNP) indulges various benefits in comparison with other existing DNA based markers. The present review concentrates on the impact of NGS approaches in the discovery of useful SNP markers associated with pungency and disease resistance in pepper. The information provided in the current endeavor can be utilized for the betterment of pepper breeding in future.

  3. Addition of a breeding database in the Genome Database for Rosaceae

    PubMed Central

    Evans, Kate; Jung, Sook; Lee, Taein; Brutcher, Lisa; Cho, Ilhyung; Peace, Cameron; Main, Dorrie

    2013-01-01

    Breeding programs produce large datasets that require efficient management systems to keep track of performance, pedigree, geographical and image-based data. With the development of DNA-based screening technologies, more breeding programs perform genotyping in addition to phenotyping for performance evaluation. The integration of breeding data with other genomic and genetic data is instrumental for the refinement of marker-assisted breeding tools, enhances genetic understanding of important crop traits and maximizes access and utility by crop breeders and allied scientists. Development of new infrastructure in the Genome Database for Rosaceae (GDR) was designed and implemented to enable secure and efficient storage, management and analysis of large datasets from the Washington State University apple breeding program and subsequently expanded to fit datasets from other Rosaceae breeders. The infrastructure was built using the software Chado and Drupal, making use of the Natural Diversity module to accommodate large-scale phenotypic and genotypic data. Breeders can search accessions within the GDR to identify individuals with specific trait combinations. Results from Search by Parentage lists individuals with parents in common and results from Individual Variety pages link to all data available on each chosen individual including pedigree, phenotypic and genotypic information. Genotypic data are searchable by markers and alleles; results are linked to other pages in the GDR to enable the user to access tools such as GBrowse and CMap. This breeding database provides users with the opportunity to search datasets in a fully targeted manner and retrieve and compare performance data from multiple selections, years and sites, and to output the data needed for variety release publications and patent applications. The breeding database facilitates efficient program management. Storing publicly available breeding data in a database together with genomic and genetic data will further accelerate the cross-utilization of diverse data types by researchers from various disciplines. Database URL: http://www.rosaceae.org/breeders_toolbox PMID:24247530

  4. Addition of a breeding database in the Genome Database for Rosaceae.

    PubMed

    Evans, Kate; Jung, Sook; Lee, Taein; Brutcher, Lisa; Cho, Ilhyung; Peace, Cameron; Main, Dorrie

    2013-01-01

    Breeding programs produce large datasets that require efficient management systems to keep track of performance, pedigree, geographical and image-based data. With the development of DNA-based screening technologies, more breeding programs perform genotyping in addition to phenotyping for performance evaluation. The integration of breeding data with other genomic and genetic data is instrumental for the refinement of marker-assisted breeding tools, enhances genetic understanding of important crop traits and maximizes access and utility by crop breeders and allied scientists. Development of new infrastructure in the Genome Database for Rosaceae (GDR) was designed and implemented to enable secure and efficient storage, management and analysis of large datasets from the Washington State University apple breeding program and subsequently expanded to fit datasets from other Rosaceae breeders. The infrastructure was built using the software Chado and Drupal, making use of the Natural Diversity module to accommodate large-scale phenotypic and genotypic data. Breeders can search accessions within the GDR to identify individuals with specific trait combinations. Results from Search by Parentage lists individuals with parents in common and results from Individual Variety pages link to all data available on each chosen individual including pedigree, phenotypic and genotypic information. Genotypic data are searchable by markers and alleles; results are linked to other pages in the GDR to enable the user to access tools such as GBrowse and CMap. This breeding database provides users with the opportunity to search datasets in a fully targeted manner and retrieve and compare performance data from multiple selections, years and sites, and to output the data needed for variety release publications and patent applications. The breeding database facilitates efficient program management. Storing publicly available breeding data in a database together with genomic and genetic data will further accelerate the cross-utilization of diverse data types by researchers from various disciplines. Database URL: http://www.rosaceae.org/breeders_toolbox.

  5. Application of Genomic Technologies to the Breeding of Trees

    PubMed Central

    Badenes, Maria L.; Fernández i Martí, Angel; Ríos, Gabino; Rubio-Cabetas, María J.

    2016-01-01

    The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the former gap of genetic tools between trees and annual species. PMID:27895664

  6. Application of Genomic Technologies to the Breeding of Trees.

    PubMed

    Badenes, Maria L; Fernández I Martí, Angel; Ríos, Gabino; Rubio-Cabetas, María J

    2016-01-01

    The recent introduction of next generation sequencing (NGS) technologies represents a major revolution in providing new tools for identifying the genes and/or genomic intervals controlling important traits for selection in breeding programs. In perennial fruit trees with long generation times and large sizes of adult plants, the impact of these techniques is even more important. High-throughput DNA sequencing technologies have provided complete annotated sequences in many important tree species. Most of the high-throughput genotyping platforms described are being used for studies of genetic diversity and population structure. Dissection of complex traits became possible through the availability of genome sequences along with phenotypic variation data, which allow to elucidate the causative genetic differences that give rise to observed phenotypic variation. Association mapping facilitates the association between genetic markers and phenotype in unstructured and complex populations, identifying molecular markers for assisted selection and breeding. Also, genomic data provide in silico identification and characterization of genes and gene families related to important traits, enabling new tools for molecular marker assisted selection in tree breeding. Deep sequencing of transcriptomes is also a powerful tool for the analysis of precise expression levels of each gene in a sample. It consists in quantifying short cDNA reads, obtained by NGS technologies, in order to compare the entire transcriptomes between genotypes and environmental conditions. The miRNAs are non-coding short RNAs involved in the regulation of different physiological processes, which can be identified by high-throughput sequencing of RNA libraries obtained by reverse transcription of purified short RNAs, and by in silico comparison with known miRNAs from other species. All together, NGS techniques and their applications have increased the resources for plant breeding in tree species, closing the former gap of genetic tools between trees and annual species.

  7. Genomic tools and and prospects for new breeding techniques in flower bulb crops

    USDA-ARS?s Scientific Manuscript database

    For many of the new breeding techniques, sequence information is of the utmost importance. In addition to current breeding techniques, such as marker-assisted selection (MAS) and genetic modification (GM), new breeding techniques such as zinc finger nucleases, oligonucleotide-mediated mutagenesis, R...

  8. Comparing the predictive abilities of phenotypic and marker-assisted selection methods in a biparental lettuce population

    USDA-ARS?s Scientific Manuscript database

    Breeding and selection for the traits with polygenic inheritance is a challenging task that can be done by phenotypic selection, by marker-assisted selection or by genome wide selection. We tested predictive ability of four selection models in a biparental population genotyped with 95 SNP markers an...

  9. Molecular and genetic characterization of the Ry adg locus on chromosome XI from Andigena potatoes conferring extreme resistance to potato virus Y.

    PubMed

    Herrera, María Del Rosario; Vidalon, Laura Jara; Montenegro, Juan D; Riccio, Cinzia; Guzman, Frank; Bartolini, Ida; Ghislain, Marc

    2018-05-31

    We have elucidated the Andigena origin of the potato Ry adg gene on chromosome XI of CIP breeding lines and developed two marker assays to facilitate its introgression in potato by marker-assisted selection. Potato virus Y (PVY) is causing yield and quality losses forcing farmers to renew periodically their seeds from clean stocks. Two loci for extreme resistance to PVY, one on chromosome XI and the other on XII, have been identified and used in breeding. The latter corresponds to a well-known source of resistance (Solanum stoloniferum), whereas the one on chromosome XI was reported from S. stoloniferum and S. tuberosum group Andigena as well. To elucidate its taxonomic origin in our breeding lines, we analyzed the nucleotide sequences of tightly linked markers (M45, M6) and screened 251 landraces of S. tuberosum group Andigena for the presence of this gene. Our results indicate that the PVY resistance allele on chromosome XI in our breeding lines originated from S. tuberosum group Andigena. We have developed two marker assays to accelerate the introgression of Ry adg gene into breeding lines by marker-assisted selection (MAS). First, we have multiplexed RYSC3, M6 and M45 DNA markers flanking the Ry adg gene and validated it on potato varieties with known presence/absence of the Ry adg gene and a progeny of 6,521 individuals. Secondly, we developed an allele-dosage assay particularly useful to identify multiplex Ry adg progenitors. The assay based on high-resolution melting analysis at the M6 marker confirmed Ry adg plex level as nulliplex, simplex and duplex progenitors and few triplex progenies. These marker assays have been validated and can be used to facilitate MAS in potato breeding.

  10. Development of cost-effective Hordeum chilense DNA markers: molecular aids for marker-assisted cereal breeding.

    PubMed

    Hernández, P; Dorado, G; Ramírez, M C; Laurie, D A; Snape, J W; Martín, A

    2003-01-01

    Hordeum chilense is a potential source of useful genes for wheat breeding. The use of this wild species to increase genetic variation in wheat will be greatly facilitated by marker-assisted introgression. In recent years, the search for the most suitable DNA marker system for tagging H. chilense genomic regions in a wheat background has lead to the development of RAPD and SCAR markers for this species. RAPDs represent an easy way of quickly generating suitable introgression markers, but their use is limited in heterogeneous wheat genetic backgrounds. SCARs are more specific assays, suitable for automatation or multiplexing. Direct sequencing of RAPD products is a cost-effective approach that reduces labour and costs for SCAR development. The use of SSR and STS primers originally developed for wheat and barley are additional sources of genetic markers. Practical applications of the different marker approaches for obtaining derived introgression products are described.

  11. Genomics-based precision breeding approaches to improve drought tolerance in rice.

    PubMed

    Swamy, B P Mallikarjuna; Kumar, Arvind

    2013-12-01

    Rice (Oryza sativa L.), the major staple food crop of the world, faces a severe threat from widespread drought. The development of drought-tolerant rice varieties is considered a feasible option to counteract drought stress. The screening of rice germplasm under drought and its characterization at the morphological, genetic, and molecular levels revealed the existence of genetic variation for drought tolerance within the rice gene pool. The improvements made in managed drought screening and selection for grain yield under drought have significantly contributed to progress in drought breeding programs. The availability of rice genome sequence information, genome-wide molecular markers, and low-cost genotyping platforms now makes it possible to routinely apply marker-assisted breeding approaches to improve grain yield under drought. Grain yield QTLs with a large and consistent effect under drought have been indentified and successfully pyramided in popular rice mega-varieties. Various rice functional genomics resources, databases, tools, and recent advances in "-omics" are facilitating the characterization of genes and pathways involved in drought tolerance, providing the basis for candidate gene identification and allele mining. The transgenic approach is successful in generating drought tolerance in rice under controlled conditions, but field-level testing is necessary. Genomics-assisted drought breeding approaches hold great promise, but a well-planned integration with standardized phenotyping is highly essential to exploit their full potential. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Genome-wide association analysis of bacterial cold water disease resistance in rainbow trout reveals the potential of a hybrid approach between genomic selection and marker assisted selection

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) simultaneously incorporates dense SNP marker genotypes with phenotypic data from related animals to predict animal-specific genomic breeding value (GEBV), which circumvents the need to measure the disease phenotype in potential breeders. Marker assisted selection (MAS) involv...

  13. Development and dissection of diagnostic SNP markers for the downy mildew resistance genes Pl Arg and Pl 8 and maker-assisted gene pyramiding in sunflower (Helianthus annuus L.).

    PubMed

    Qi, L L; Talukder, Z I; Hulke, B S; Foley, M E

    2017-06-01

    Diagnostic DNA markers are an invaluable resource in breeding programs for successful introgression and pyramiding of disease resistance genes. Resistance to downy mildew (DM) disease in sunflower is mediated by Pl genes which are known to be effective against the causal fungus, Plasmopara halstedii. Two DM resistance genes, Pl Arg and Pl 8 , are highly effective against P. halstedii races in the USA, and have been previously mapped to the sunflower linkage groups (LGs) 1 and 13, respectively, using simple sequence repeat (SSR) markers. In this study, we developed high-density single nucleotide polymorphism (SNP) maps encompassing the Pl arg and Pl 8 genes and identified diagnostic SNP markers closely linked to these genes. The specificity of the diagnostic markers was validated in a highly diverse panel of 548 sunflower lines. Dissection of a large marker cluster co-segregated with Pl Arg revealed that the closest SNP markers NSA_007595 and NSA_001835 delimited Pl Arg to an interval of 2.83 Mb on the LG1 physical map. The SNP markers SFW01497 and SFW06597 delimited Pl 8 to an interval of 2.85 Mb on the LG13 physical map. We also developed sunflower lines with homozygous, three gene pyramids carrying Pl Arg , Pl 8 , and the sunflower rust resistance gene R 12 using the linked SNP markers from a segregating F 2 population of RHA 340 (carrying Pl 8 )/RHA 464 (carrying Pl Arg and R 12 ). The high-throughput diagnostic SNP markers developed in this study will facilitate marker-assisted selection breeding, and the pyramided sunflower lines will provide durable resistance to downy mildew and rust diseases.

  14. Citrus breeding, genetics and genomics in Japan

    PubMed Central

    Omura, Mitsuo; Shimada, Takehiko

    2016-01-01

    Citrus is one of the most cultivated fruits in the world, and satsuma mandarin (Citrus unshiu Marc.) is a major cultivated citrus in Japan. Many excellent cultivars derived from satsuma mandarin have been released through the improvement of mandarins using a conventional breeding method. The citrus breeding program is a lengthy process owing to the long juvenility, and it is predicted that marker-assisted selection (MAS) will overcome the obstacle and improve the efficiency of conventional breeding methods. To promote citrus molecular breeding in Japan, a genetic mapping was initiated in 1987, and the experimental tools and resources necessary for citrus functional genomics have been developed in relation to the physiological analysis of satsuma mandarin. In this paper, we review the progress of citrus breeding and genome researches in Japan and report the studies on genetic mapping, expression sequence tag cataloguing, and molecular characterization of breeding characteristics, mainly in terms of the metabolism of bio-functional substances as well as factors relating to, for example, fruit quality, disease resistance, polyembryony, and flowering. PMID:27069387

  15. Identification of Quantitative Trait Loci Controlling Root and Shoot Traits Associated with Drought Tolerance in a Lentil (Lens culinaris Medik.) Recombinant Inbred Line Population

    PubMed Central

    Idrissi, Omar; Udupa, Sripada M.; De Keyser, Ellen; McGee, Rebecca J.; Coyne, Clarice J.; Saha, Gopesh C.; Muehlbauer, Fred J.; Van Damme, Patrick; De Riek, Jan

    2016-01-01

    Drought is one of the major abiotic stresses limiting lentil productivity in rainfed production systems. Specific rooting patterns can be associated with drought avoidance mechanisms that can be used in lentil breeding programs. In all, 252 co-dominant and dominant markers were used for Quantitative Trait Loci (QTL) analysis on 132 lentil recombinant inbred lines based on greenhouse experiments for root and shoot traits during two seasons under progressive drought-stressed conditions. Eighteen QTLs controlling a total of 14 root and shoot traits were identified. A QTL-hotspot genomic region related to a number of root and shoot characteristics associated with drought tolerance such as dry root biomass, root surface area, lateral root number, dry shoot biomass and shoot length was identified. Interestingly, a QTL (QRSratioIX-2.30) related to root-shoot ratio, an important trait for drought avoidance, explaining the highest phenotypic variance of 27.6 and 28.9% for the two consecutive seasons, respectively, was detected. This QTL was closed to the co-dominant SNP marker TP6337 and also flanked by the two SNP TP518 and TP1280. An important QTL (QLRNIII-98.64) related to lateral root number was found close to TP3371 and flanked by TP5093 and TP6072 SNP markers. Also, a QTL (QSRLIV-61.63) associated with specific root length was identified close to TP1873 and flanked by F7XEM6b SRAP marker and TP1035 SNP marker. These two QTLs were detected in both seasons. Our results could be used for marker-assisted selection in lentil breeding programs targeting root and shoot characteristics conferring drought avoidance as an efficient alternative to slow and labor-intensive conventional breeding methods. PMID:27602034

  16. Effects of bovine SMO gene polymorphisms on the body measurement and meat quality traits of Qinchuan cattle.

    PubMed

    Zhang, Y R; Li, Y K; Fu, C Z; Wang, J L; Wang, H B; Zan, L S

    2014-10-07

    Beef cattle breeding programs focus on improving important economic traits, including growth rates, and meat quantity and quality. Molecular marker-assisted selection based on genetic variation represents a potential method for breeding genetically improved livestock with better economic traits. Smoothened (SMO) protein is a signal transducer that contributes to the regulation of both osteogenesis and adipogenesis through the hedgehog pathway. In this study, we detected polymorphisms in the bovine SMO gene of Qinchuan cattle, and we analyzed their associations with body measurement traits (BMTs) and meat quality traits (MQTs). Using DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism, 3 novel single nucleotide polymorphisms were identified in the SMO gene of 562 cattle: 1 G > C mutation on exon 9 (G21234C) and 2 C > T mutations on exon 11 (C22424T and C22481T). Association analysis showed that polymorphisms on both the G21234C and C22424T loci significantly affected certain BMTs and MQTs (P < 0.05 or P < 0.01), whereas those on the C22481T locus did not (P > 0.05). Therefore, the SMO gene could be used as a candidate gene to alter BMTs and MQTs in Qinchuan cattle or for marker-assisted selection to breed cattle with superior BMTs and MQTs.

  17. Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet

    PubMed Central

    Shivhare, Radha; Lata, Charu

    2017-01-01

    Pearl millet is one of the most important small-grained C4 Panicoid crops with a large genome size (∼2352 Mb), short life cycle and outbreeding nature. It is highly resilient to areas with scanty rain and high temperature. Pearl millet is a nutritionally superior staple crop for people inhabiting hot, drought-prone arid and semi-arid regions of South Asia and Africa where it is widely grown and used for food, hay, silage, bird feed, building material, and fuel. Having excellent nutrient composition and exceptional buffering capacity against variable climatic conditions and pathogen attack makes pearl millet a wonderful model crop for stress tolerance studies. Pearl millet germplasm show a large range of genotypic and phenotypic variations including tolerance to abiotic and biotic stresses. Conventional breeding for enhancing abiotic and biotic stress resistance in pearl millet have met with considerable success, however, in last few years various novel approaches including functional genomics and molecular breeding have been attempted in this crop for augmenting yield under adverse environmental conditions, and there is still a lot of scope for further improvement using genomic tools. Discovery and use of various DNA-based markers such as EST-SSRs, DArT, CISP, and SSCP-SNP in pearl millet not only help in determining population structure and genetic diversity but also prove to be important for developing strategies for crop improvement at a faster rate and greater precision. Molecular marker-based genetic linkage maps and identification of genomic regions determining yield under abiotic stresses particularly terminal drought have paved way for marker-assisted selection and breeding of pearl millet cultivars. Reference collections and marker-assisted backcrossing have also been used to improve biotic stress resistance in pearl millet specifically to downy mildew. Whole genome sequencing of pearl millet genome will give new insights for processing of functional genes and assist in crop improvement programs through molecular breeding approaches. This review thus summarizes the exploration of pearl millet genetic and genomic resources for improving abiotic and biotic stress resistance and development of cultivars superior in stress tolerance. PMID:28167949

  18. Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L.

    PubMed

    Kafkas, Salih; Khodaeiaminjan, Mortaza; Güney, Murat; Kafkas, Ebru

    2015-02-18

    Pistachio (Pistacia vera L.) is a dioecious species that has a long juvenility period. Therefore, development of marker-assisted selection (MAS) techniques would greatly facilitate pistachio cultivar-breeding programs. The sex determination mechanism is presently unknown in pistachio. The generation of sex-linked markers is likely to reduce time, labor, and costs associated with breeding programs, and will help to clarify the sex determination system in pistachio. Restriction site-associated DNA (RAD) markers were used to identify sex-linked markers and to elucidate the sex determination system in pistachio. Eight male and eight female F1 progenies from a Pistacia vera L. Siirt × Bağyolu cross, along with the parents, were subjected to RAD sequencing in two lanes of a Hi-Seq 2000 sequencing platform. This generated 449 million reads, comprising approximately 37.7 Gb of sequences. There were 33,757 polymorphic single nucleotide polymorphism (SNP) loci between the parents. Thirty-eight of these, from 28 RAD reads, were detected as putative sex-associated loci in pistachio. Validation was performed by SNaPshot analysis in 42 mature F1 progenies and in 124 cultivars and genotypes in a germplasm collection. Eight loci could distinguish sex with 100% accuracy in pistachio. To ascertain cost-effective application of markers in a breeding program, high-resolution melting (HRM) analysis was performed; four markers were found to perfectly separate sexes in pistachio. Because of the female heterogamety in all candidate SNP loci, we report for the first time that pistachio has a ZZ/ZW sex determination system. As the reported female-to-male segregation ratio is 1:1 in all known segregating populations and there is no previous report of super-female genotypes or female heteromorphic chromosomes in pistachio, it appears that the WW genotype is not viable. Sex-linked SNP markers were identified and validated in a large germplasm and proved their suitability for MAS in pistachio. HRM analysis successfully validated the sex-linked markers for MAS. For the first time in dioecious pistachio, a female heterogamety ZW/ZZ sex determination system is suggested.

  19. QTL mapping of soybean oil content for marker-assisted selection in plant breeding program.

    PubMed

    Leite, D C; Pinheiro, J B; Campos, J B; Di Mauro, A O; Unêda-Trevisoli, S H

    2016-03-18

    The present study was undertaken to detect and map the quantitative trait loci (QTL) related to soybean oil content. We used 244 progenies derived from a bi-parental cross of the Lineage 69 (from Universidade Estadual Paulista "Júlio de Mesquita Filho"/Faculdade de Ciências Agrárias e Veterinárias - Breeding Program) and Tucunaré cultivar. A total of 358 simple sequence repeat (SSR; microsatellite) markers were used to investigate the polymorphism between the parental lines, and for the polymorphic lines all the F2 individuals were tested. Evaluation of the oil content and phenotype was performed with the aid of a Tango equipment by near infra-red reflectance spectroscopy, using single F2 seeds and F2:3 progenies, in triplicate. The data were analyzed by QTL Cartographer program for 56 SSR polymorphic markers. Two oil-content related QTLs were detected on K and H linkage groups. The total phenotypic variation explained by QTLs ranged from 7.8 to 46.75% for oil content. New QTLs were identified for the oil content in addition to those previously identified in other studies. The results reported in this study show that regions different from those already known could be involved in the genetic control of soybean oil content.

  20. A blackberry (Rubus L.) expressed sequence tag library for the development of simple sequence repeat markers

    PubMed Central

    Lewers, Kim S; Saski, Chris A; Cuthbertson, Brandon J; Henry, David C; Staton, Meg E; Main, Dorrie S; Dhanaraj, Anik L; Rowland, Lisa J; Tomkins, Jeff P

    2008-01-01

    Background The recent development of novel repeat-fruiting types of blackberry (Rubus L.) cultivars, combined with a long history of morphological marker-assisted selection for thornlessness by blackberry breeders, has given rise to increased interest in using molecular markers to facilitate blackberry breeding. Yet no genetic maps, molecular markers, or even sequences exist specifically for cultivated blackberry. The purpose of this study is to begin development of these tools by generating and annotating the first blackberry expressed sequence tag (EST) library, designing primers from the ESTs to amplify regions containing simple sequence repeats (SSR), and testing the usefulness of a subset of the EST-SSRs with two blackberry cultivars. Results A cDNA library of 18,432 clones was generated from expanding leaf tissue of the cultivar Merton Thornless, a progenitor of many thornless commercial cultivars. Among the most abundantly expressed of the 3,000 genes annotated were those involved with energy, cell structure, and defense. From individual sequences containing SSRs, 673 primer pairs were designed. Of a randomly chosen set of 33 primer pairs tested with two blackberry cultivars, 10 detected an average of 1.9 polymorphic PCR products. Conclusion This rate predicts that this library may yield as many as 940 SSR primer pairs detecting 1,786 polymorphisms. This may be sufficient to generate a genetic map that can be used to associate molecular markers with phenotypic traits, making possible molecular marker-assisted breeding to compliment existing morphological marker-assisted breeding in blackberry. PMID:18570660

  1. A major QTL corresponding to the Rk locus for resistance to root-knot nematodes in cowpea (Vigna unguiculata L. Walp.).

    PubMed

    Huynh, Bao-Lam; Matthews, William C; Ehlers, Jeffrey D; Lucas, Mitchell R; Santos, Jansen R P; Ndeve, Arsenio; Close, Timothy J; Roberts, Philip A

    2016-01-01

    Genome resolution of a major QTL associated with the Rk locus in cowpea for resistance to root-knot nematodes has significance for plant breeding programs and R gene characterization. Cowpea (Vigna unguiculata L. Walp.) is a susceptible host of root-knot nematodes (Meloidogyne spp.) (RKN), major plant-parasitic pests in global agriculture. To date, breeding for host resistance in cowpea has relied on phenotypic selection which requires time-consuming and expensive controlled infection assays. To facilitate marker-based selection, we aimed to identify and map quantitative trait loci (QTL) conferring the resistance trait. One recombinant inbred line (RIL) and two F2:3 populations, each derived from a cross between a susceptible and a resistant parent, were genotyped with genome-wide single nucleotide polymorphism (SNP) markers. The populations were screened in the field for root-galling symptoms and/or under growth-chamber conditions for nematode reproduction levels using M. incognita and M. javanica biotypes. One major QTL was mapped consistently on linkage group VuLG11 of each population. By genotyping additional cowpea lines and near-isogenic lines derived from conventional backcrossing, we confirmed that the detected QTL co-localized with the genome region associated with the Rk locus for RKN resistance that has been used in conventional breeding for many decades. This chromosomal location defined with flanking markers will be a valuable target in marker-assisted breeding and for positional cloning of genes controlling RKN resistance.

  2. Molecular Breeding of Rice Restorer Lines and Hybrids for Brown Planthopper (BPH) Resistance Using the Bph14 and Bph15 Genes.

    PubMed

    Wang, Hongbo; Ye, Shengtuo; Mou, Tongmin

    2016-12-01

    The development of hybrid rice is a practical approach for increasing rice production. However, the brown planthopper (BPH), Nilaparvata lugens Stål, causes severe yield loss of rice (Oryza sativa L.) and can threaten food security. Therefore, breeding hybrid rice resistant to BPH is the most effective and economical strategy to maintain high and stable production. Fortunately, numerous BPH resistance genes have been identified, and abundant linkage markers are available for molecular marker-assisted selection (MAS) in breeding programs. Hence, we pyramided two BPH resistance genes, Bph14 and Bph15, into a susceptive CMS restorer line Huahui938 and its derived hybrids using MAS to improve the BPH resistance of hybrid rice. Three near-isogenic lines (NILs) with pyramided Bph14 and Bph15 were obtained by molecular marker-assisted backcross (MAB) and phenotypic selection. The genomic components of these NILs were detected using the whole-genome SNP (Single nucleotide polymorphism) array, RICE6K, suggesting that the recurrent parent genome (RPG) recovery of the NILs was 87.88, 87.70 and 86.62 %, respectively. BPH bioassays showed that the improved NILs and their derived hybrids carrying homozygous Bph14 and Bph15 were resistant to BPH. However, the hybrids with heterozygous Bph14 and Bph15 remained susceptible to BPH. The developed NILs showed no significant differences in major agronomic traits and rice qualities compared with the recurrent parent. Moreover, the improved hybrids derived from the NILs exhibited better agronomic performance and rice quality compared with the controls under natural field conditions. This study demonstrates that it is essential to stack Bph14 and Bph15 into both the maternal and paternal parents for developing BPH-resistant hybrid rice varieties. The SNP array with abundant DNA markers is an efficient tool for analyzing the RPG recovery of progenies and can be used to monitor the donor segments in NILs, thus being extremely important for rice molecular breeding.

  3. Genetic Variants in SDC3 Gene are Significantly Associated with Growth Traits in Two Chinese Beef Cattle Breeds.

    PubMed

    Huang, Yong-Zhen; Wang, Qin; Zhang, Chun-Lei; Fang, Xing-Tang; Song, En-Liang; Chen, Hong

    2016-01-01

    Identification of the genes and polymorphisms underlying quantitative traits, and understanding these genes and polymorphisms affect economic growth traits, are important for successful marker-assisted selection and more efficient management strategies in commercial cattle (Bos taurus) population. Syndecan-3 (SDC3), a member of the syndecan family of type I transmembrane heparan sulfate proteoglycans is a novel regulator of feeding behavior and body weight. The aim of this study is to examine the association of the SDC3 polymorphism with growth traits in Chinese Jiaxian and Qinchuan cattle breeds (). Four single nucleotide polymorphisms (SNPs: 1-4) were detected in 555 cows from three Chinese native cattle breeds by means of sequencing pooled DNA samples and polymerase chain reaction-single stranded conformational polymorphism (PCR-SSCP) methods. We found one SNP (g.28362A > G) in intron and three SNPs (g.30742T > G, g.30821C > T and 33418 A > G) in exons. The statistical analyses indicated that these SNPs of SDC3 gene were associated with bovine body height, body length, chest circumference, and circumference of cannon bone (P < 0.05). The mutant-type variant was superior for growth traits; the heterozygote was associated with higher growth traits compared to wild-type homozygote. Our result confirms the polymorphisms in the SDC3 gene are associated with growth traits that may be used for marker-assisted selection in beef cattle breeding programs.

  4. Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers.

    PubMed

    Sudheer Pamidimarri, D V N; Singh, Sweta; Mastan, Shaik G; Patel, Jalpa; Reddy, Muppala P

    2009-07-01

    Jatropha curcas L., a multipurpose shrub has acquired significant economic importance for its seed oil which can be converted to biodiesel, is emerging as an alternative to petro-diesel. The deoiled seed cake remains after oil extraction is toxic and cannot be used as a feed despite having best nutritional contents. No quantitative and qualitative differences were observed between toxic and non-toxic varieties of J. curcas except for phorbol esters content. Development of molecular marker will enable to differentiate non-toxic from toxic variety in a mixed population and also help in improvement of the species through marker assisted breeding programs. The present investigation was undertaken to characterize the toxic and non-toxic varieties at molecular level and to develop PCR based molecular markers for distinguishing non-toxic from toxic or vice versa. The polymorphic markers were successfully identified specific to non-toxic and toxic variety using RAPD and AFLP techniques. Totally 371 RAPD, 1,442 AFLP markers were analyzed and 56 (15.09%) RAPD, 238 (16.49%) AFLP markers were found specific to either of the varieties. Genetic similarity between non-toxic and toxic verity was found to be 0.92 by RAPD and 0.90 by AFLP fingerprinting. In the present study out of 12 microsatellite markers analyzed, seven markers were found polymorphic. Among these seven, jcms21 showed homozygous allele in the toxic variety. The study demonstrated that both RAPD and AFLP techniques were equally competitive in identifying polymorphic markers and differentiating both the varieties of J. curcas. Polymorphism of SSR markers prevailed between the varieties of J. curcas. These RAPD and AFLP identified markers will help in selective cultivation of specific variety and along with SSRs these markers can be exploited for further improvement of the species through breeding and Marker Assisted Selection (MAS).

  5. Genomic assisted selection for enhancing line breeding: merging genomic and phenotypic selection in winter wheat breeding programs with preliminary yield trials.

    PubMed

    Michel, Sebastian; Ametz, Christian; Gungor, Huseyin; Akgöl, Batuhan; Epure, Doru; Grausgruber, Heinrich; Löschenberger, Franziska; Buerstmayr, Hermann

    2017-02-01

    Early generation genomic selection is superior to conventional phenotypic selection in line breeding and can be strongly improved by including additional information from preliminary yield trials. The selection of lines that enter resource-demanding multi-environment trials is a crucial decision in every line breeding program as a large amount of resources are allocated for thoroughly testing these potential varietal candidates. We compared conventional phenotypic selection with various genomic selection approaches across multiple years as well as the merit of integrating phenotypic information from preliminary yield trials into the genomic selection framework. The prediction accuracy using only phenotypic data was rather low (r = 0.21) for grain yield but could be improved by modeling genetic relationships in unreplicated preliminary yield trials (r = 0.33). Genomic selection models were nevertheless found to be superior to conventional phenotypic selection for predicting grain yield performance of lines across years (r = 0.39). We subsequently simplified the problem of predicting untested lines in untested years to predicting tested lines in untested years by combining breeding values from preliminary yield trials and predictions from genomic selection models by a heritability index. This genomic assisted selection led to a 20% increase in prediction accuracy, which could be further enhanced by an appropriate marker selection for both grain yield (r = 0.48) and protein content (r = 0.63). The easy to implement and robust genomic assisted selection gave thus a higher prediction accuracy than either conventional phenotypic or genomic selection alone. The proposed method took the complex inheritance of both low and high heritable traits into account and appears capable to support breeders in their selection decisions to develop enhanced varieties more efficiently.

  6. Spiked GBS: A unified, open platform for single marker genotyping and whole-genome profiling

    USDA-ARS?s Scientific Manuscript database

    In plant breeding, there are two primary applications for DNA markers in selection: 1) selection of known genes using a single marker assay (marker-assisted selection; MAS); and 2) whole-genome profiling and prediction (genomic selection; GS). Typically, marker platforms have addressed only one of t...

  7. Using general and specific combining ability to further advance strawberry (Fragaria sp.) breeding

    USDA-ARS?s Scientific Manuscript database

    Strawberry is one of the five fruit crops included in the USDA-funded multi-institutionaland trans-disciplinary project, “RosBREED: Enabling Marker-Assisted Breeding in Rosaceae”. A Crop Reference Set (CRS) was developed of 900 genotypes and seedlings from 40 crosses representing the breadth of rele...

  8. Association Mapping of Disease Resistance Traits in Rainbow Trout Using Restriction Site Associated DNA Sequencing

    PubMed Central

    Campbell, Nathan R.; LaPatra, Scott E.; Overturf, Ken; Towner, Richard; Narum, Shawn R.

    2014-01-01

    Recent advances in genotyping-by-sequencing have enabled genome-wide association studies in nonmodel species including those in aquaculture programs. As with other aquaculture species, rainbow trout and steelhead (Oncorhynchus mykiss) are susceptible to disease and outbreaks can lead to significant losses. Fish culturists have therefore been pursuing strategies to prevent losses to common pathogens such as Flavobacterium psychrophilum (the etiological agent for bacterial cold water disease [CWD]) and infectious hematopoietic necrosis virus (IHNV) by adjusting feed formulations, vaccine development, and selective breeding. However, discovery of genetic markers linked to disease resistance offers the potential to use marker-assisted selection to increase resistance and reduce outbreaks. For this study we sampled juvenile fish from 40 families from 2-yr classes that either survived or died after controlled exposure to either CWD or IHNV. Restriction site−associated DNA sequencing produced 4661 polymorphic single-nucleotide polymorphism loci after strict filtering. Genotypes from individual survivors and mortalities were then used to test for association between disease resistance and genotype at each locus using the program TASSEL. After we accounted for kinship and stratification of the samples, tests revealed 12 single-nucleotide polymorphism markers that were highly associated with resistance to CWD and 19 markers associated with resistance to IHNV. These markers are candidates for further investigation and are expected to be useful for marker assisted selection in future broodstock selection for various aquaculture programs. PMID:25354781

  9. Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus cajan)

    PubMed Central

    Pazhamala, Lekha; Saxena, Rachit K.; Singh, Vikas K.; Sameerkumar, C. V.; Kumar, Vinay; Sinha, Pallavi; Patel, Kishan; Obala, Jimmy; Kaoneka, Seleman R.; Tongoona, P.; Shimelis, Hussein A.; Gangarao, N. V. P. R.; Odeny, Damaris; Rathore, Abhishek; Dharmaraj, P. S.; Yamini, K. N.; Varshney, Rajeev K.

    2015-01-01

    Pigeonpea is an important pulse crop grown predominantly in the tropical and sub-tropical regions of the world. Although pigeonpea growing area has considerably increased, yield has remained stagnant for the last six decades mainly due to the exposure of the crop to various biotic and abiotic constraints. In addition, low level of genetic variability and limited genomic resources have been serious impediments to pigeonpea crop improvement through modern breeding approaches. In recent years, however, due to the availability of next generation sequencing and high-throughput genotyping technologies, the scenario has changed tremendously. The reduced sequencing costs resulting in the decoding of the pigeonpea genome has led to the development of various genomic resources including molecular markers, transcript sequences and comprehensive genetic maps. Mapping of some important traits including resistance to Fusarium wilt and sterility mosaic disease, fertility restoration, determinacy with other agronomically important traits have paved the way for applying genomics-assisted breeding (GAB) through marker assisted selection as well as genomic selection (GS). This would accelerate the development and improvement of both varieties and hybrids in pigeonpea. Particularly for hybrid breeding programme, mitochondrial genomes of cytoplasmic male sterile (CMS) lines, maintainers and hybrids have been sequenced to identify genes responsible for cytoplasmic male sterility. Furthermore, several diagnostic molecular markers have been developed to assess the purity of commercial hybrids. In summary, pigeonpea has become a genomic resources-rich crop and efforts have already been initiated to integrate these resources in pigeonpea breeding. PMID:25741349

  10. Development of next-generation mapping populations: Multi-parent Advanced Generation Inter-Cross (MAGIC) and Marker-Assisted Recurrent Selection (MARS) populations in peanut

    USDA-ARS?s Scientific Manuscript database

    Generation Inter-Cross (MAGIC) and Marker-Assisted Recurrent Selection (MARS) have been proposed and used in many crops to dissect complex traits or QTL. MAGIC allows for dissecting genomic structure, and for improving breeding populations by integrating multiple alleles from different parents. MAR...

  11. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.).

    PubMed

    Wang, Jiping; Li, Runzhi; Mao, Xinguo; Jing, Ruilian

    2017-01-01

    Calreticulin (CRT), an endoplasmic reticulum (ER)-localized Ca 2+ -binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat ( Triticum aestivum L.), particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C) was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL) population (114 lines) developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding.

  12. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.)

    PubMed Central

    Wang, Jiping; Li, Runzhi; Mao, Xinguo; Jing, Ruilian

    2017-01-01

    Calreticulin (CRT), an endoplasmic reticulum (ER)-localized Ca2+-binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat (Triticum aestivum L.), particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C) was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL) population (114 lines) developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding. PMID:28955354

  13. Association Study Reveals Novel Genes Related to Yield and Quality of Fruit in Cape Gooseberry (Physalis peruviana L.).

    PubMed

    García-Arias, Francy L; Osorio-Guarín, Jaime A; Núñez Zarantes, Victor M

    2018-01-01

    Association mapping has been proposed as an efficient approach to assist plant breeding programs to investigate the genetic basis of agronomic traits. In this study, we evaluated 18 traits related to yield, (FWP, NF, FWI, and FWII), fruit size-shape (FP, FA, MW, WMH, MH, HMW, DI, FSI, FSII, OVO, OBO), and fruit quality (FIR, CF, and SST), in a diverse collection of 100 accessions of Physalis peruviana including wild, landraces, and anther culture derived lines. We identified seven accessions with suitable traits: fruit weight per plant (FWP) > 7,000 g/plant and cracked fruits (CF) < 4%, to be used as parents in cape gooseberry breeding program. In addition, the accessions were also characterized using Genotyping By Sequencing (GBS). We discovered 27,982 and 36,142 informative SNP markers based on the alignment against the two cape gooseberry references transcriptomes. Besides, 30,344 SNPs were identified based on alignment to the tomato reference genome. Genetic structure analysis showed that the population could be divided into two or three sub-groups, corresponding to landraces-anther culture and wild accessions for K = 2 and wild, landraces, and anther culture plants for K = 3. Association analysis was carried out using a Mixed Linear Model (MLM) and 34 SNP markers were significantly associated. These results reveal the basis of the genetic control of important agronomic traits and may facilitate marker-based breeding in P. peruviana .

  14. Association Study Reveals Novel Genes Related to Yield and Quality of Fruit in Cape Gooseberry (Physalis peruviana L.)

    PubMed Central

    García-Arias, Francy L.; Osorio-Guarín, Jaime A.; Núñez Zarantes, Victor M.

    2018-01-01

    Association mapping has been proposed as an efficient approach to assist plant breeding programs to investigate the genetic basis of agronomic traits. In this study, we evaluated 18 traits related to yield, (FWP, NF, FWI, and FWII), fruit size-shape (FP, FA, MW, WMH, MH, HMW, DI, FSI, FSII, OVO, OBO), and fruit quality (FIR, CF, and SST), in a diverse collection of 100 accessions of Physalis peruviana including wild, landraces, and anther culture derived lines. We identified seven accessions with suitable traits: fruit weight per plant (FWP) > 7,000 g/plant and cracked fruits (CF) < 4%, to be used as parents in cape gooseberry breeding program. In addition, the accessions were also characterized using Genotyping By Sequencing (GBS). We discovered 27,982 and 36,142 informative SNP markers based on the alignment against the two cape gooseberry references transcriptomes. Besides, 30,344 SNPs were identified based on alignment to the tomato reference genome. Genetic structure analysis showed that the population could be divided into two or three sub-groups, corresponding to landraces-anther culture and wild accessions for K = 2 and wild, landraces, and anther culture plants for K = 3. Association analysis was carried out using a Mixed Linear Model (MLM) and 34 SNP markers were significantly associated. These results reveal the basis of the genetic control of important agronomic traits and may facilitate marker-based breeding in P. peruviana. PMID:29616069

  15. Development of a RAD-Seq Based DNA Polymorphism Identification Software, AgroMarker Finder, and Its Application in Rice Marker-Assisted Breeding

    PubMed Central

    Luo, Zhijing; Chen, Mingjiao; Zhao, Xiangxiang; Zhang, Dabing; Qi, Yiping; Yuan, Zheng

    2016-01-01

    Rapid and accurate genome-wide marker detection is essential to the marker-assisted breeding and functional genomics studies. In this work, we developed an integrated software, AgroMarker Finder (AMF: http://erp.novelbio.com/AMF), for providing graphical user interface (GUI) to facilitate the recently developed restriction-site associated DNA (RAD) sequencing data analysis in rice. By application of AMF, a total of 90,743 high-quality markers (82,878 SNPs and 7,865 InDels) were detected between rice varieties JP69 and Jiaoyuan5A. The density of the identified markers is 0.2 per Kb for SNP markers, and 0.02 per Kb for InDel markers. Sequencing validation revealed that the accuracy of genome-wide marker detection by AMF is 93%. In addition, a validated subset of 82 SNPs and 31 InDels were found to be closely linked to 117 important agronomic trait genes, providing a basis for subsequent marker-assisted selection (MAS) and variety identification. Furthermore, we selected 12 markers from 31 validated InDel markers to identify seed authenticity of variety Jiaoyuanyou69, and we also identified 10 markers closely linked to the fragrant gene BADH2 to minimize linkage drag for Wuxiang075 (BADH2 donor)/Jiachang1 recombinants selection. Therefore, this software provides an efficient approach for marker identification from RAD-seq data, and it would be a valuable tool for plant MAS and variety protection. PMID:26799713

  16. Development of a RAD-Seq Based DNA Polymorphism Identification Software, AgroMarker Finder, and Its Application in Rice Marker-Assisted Breeding.

    PubMed

    Fan, Wei; Zong, Jie; Luo, Zhijing; Chen, Mingjiao; Zhao, Xiangxiang; Zhang, Dabing; Qi, Yiping; Yuan, Zheng

    2016-01-01

    Rapid and accurate genome-wide marker detection is essential to the marker-assisted breeding and functional genomics studies. In this work, we developed an integrated software, AgroMarker Finder (AMF: http://erp.novelbio.com/AMF), for providing graphical user interface (GUI) to facilitate the recently developed restriction-site associated DNA (RAD) sequencing data analysis in rice. By application of AMF, a total of 90,743 high-quality markers (82,878 SNPs and 7,865 InDels) were detected between rice varieties JP69 and Jiaoyuan5A. The density of the identified markers is 0.2 per Kb for SNP markers, and 0.02 per Kb for InDel markers. Sequencing validation revealed that the accuracy of genome-wide marker detection by AMF is 93%. In addition, a validated subset of 82 SNPs and 31 InDels were found to be closely linked to 117 important agronomic trait genes, providing a basis for subsequent marker-assisted selection (MAS) and variety identification. Furthermore, we selected 12 markers from 31 validated InDel markers to identify seed authenticity of variety Jiaoyuanyou69, and we also identified 10 markers closely linked to the fragrant gene BADH2 to minimize linkage drag for Wuxiang075 (BADH2 donor)/Jiachang1 recombinants selection. Therefore, this software provides an efficient approach for marker identification from RAD-seq data, and it would be a valuable tool for plant MAS and variety protection.

  17. High degree of genetic diversity among genotypes of the forage grass Brachiaria ruziziensis (Poaceae) detected with ISSR markers.

    PubMed

    Azevedo, A L S; Costa, P P; Machado, M A; de Paula, C M P; Sobrinho, F S

    2011-11-17

    The grasses of the genus Brachiaria account for 80% of the cultivated pastures in Brazil. Despite its importance for livestock production, little information is available for breeding purposes. Embrapa has a population of B. ruziziensis from different regions of Brazil, representing most of existing variability. This population was used to initiate an improvement program based on recurrent selection. In order to assist the genetic improvement program, we estimated the molecular variability among 93 genotypes of Embrapa's collection using ISSR (inter-simple sequence repeat) markers. DNA was extracted from the leaves. Twelve ISSR primers generated 89 polymorphic bands in the 93 genotypes. The number of bands identified by each primer ranged from two to 13, with a mean of 7.41. Cluster analysis revealed a clearly distinct group, containing most of the B. ruziziensis genotypes apart from the outgroup genotypes. Genetic similarity coefficients ranged from 0.0 to 0.95, with a mean of 0.50 and analysis of molecular variance indicated higher variation within (73.43%) than among species (26.57%). We conclude that there is a high genetic diversity among these B. ruziziensis genotypes, which could be explored by breeding programs.

  18. Applying SNP marker technology in the cacao breeding program at the Cocoa Research Institute of Ghana

    USDA-ARS?s Scientific Manuscript database

    In this investigation 45 parental cacao plants and five progeny derived from the parental stock studied were genotyped using six SNP markers to determine off-types or mislabeled clones and to authenticate crosses made in the Cocoa Research Institute of Ghana (CRIG) breeding program. Investigation wa...

  19. ISSR marker-assisted genetic diversity analysis of Dioscorea hispida and selection of the best variety for sustainable production.

    PubMed

    Nudin, Nur Fatihah Hasan; Ali, Abdul Manaf; Ngah, Norhayati; Mazlan, Nor Zuhailah; Mat, Nashriyah; Ghani, Mohd Noor Abd; Alias, Nadiawati; Zakaria, Abd Jamil; Jahan, Md Sarwar

    2017-08-01

    Plant breeding is a way of selection of a particular individual for the production of the progeny by separating or combining desired characteristics. The objective of this study was to justify different characteristics of Dioscorea hispida (Ubi gadong) varieties using molecular techniques to select the best variety for sustainable production at the farmer's level. A total of 160 germplasms of Ubi gadong were collected from different locations at the Terengganu and Kelantan states of Malaysia. Forty eight (48) out of 160 germplasms were selected as "primary" selection based on yield and other qualitative characters. Selected collections were then grown and maintained for ISSR marker-assisted genetic diversity analysis. Overall plant growth and yield of tubers were also determined. A total of 12 ISSR markers were tested to justify the characteristics of Ubi gadong varieties among which three markers showed polymorphic bands and on average 57.3% polymorphism were observed representing the highest variation among germplasms. The ISSR marker based on UPGMA cluster analysis grouped all 48 D. hispida into 10 vital groups that proved a vast genetic variation among germplasm collections. Therefore, hybridization should be made between two distant populations. The D. hispida is already proved as the highest starch content tuber crops and very rich in vitamins with both micro and macro minerals. Considering all these criteria and results from marker-assisted diversity analysis, accessions that are far apart based on their genetic coefficient (like DH27 and DH71; DH30 and DH70; DH43 and DH62; DH45 and DH61; DH77 and DH61; DH78 and DH57) could be selected as parents for further breeding programs. This will bring about greater diversity, which will lead to high productive index in terms of increase in yield and overall quality and for the ultimate target of sustainable Ubi gadong production. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  20. Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers.

    PubMed

    de Miguel, Marina; de Maria, Nuria; Guevara, M Angeles; Diaz, Luis; Sáez-Laguna, Enrique; Sánchez-Gómez, David; Chancerel, Emilie; Aranda, Ismael; Collada, Carmen; Plomion, Christophe; Cabezas, José-Antonio; Cervera, María-Teresa

    2012-10-04

    Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest.

  1. Annotated genetic linkage maps of Pinus pinaster Ait. from a Central Spain population using microsatellite and gene based markers

    PubMed Central

    2012-01-01

    Background Pinus pinaster Ait. is a major resin producing species in Spain. Genetic linkage mapping can facilitate marker-assisted selection (MAS) through the identification of Quantitative Trait Loci and selection of allelic variants of interest in breeding populations. In this study, we report annotated genetic linkage maps for two individuals (C14 and C15) belonging to a breeding program aiming to increase resin production. We use different types of DNA markers, including last-generation molecular markers. Results We obtained 13 and 14 linkage groups for C14 and C15 maps, respectively. A total of 211 and 215 markers were positioned on each map and estimated genome length was between 1,870 and 2,166 cM respectively, which represents near 65% of genome coverage. Comparative mapping with previously developed genetic linkage maps for P. pinaster based on about 60 common markers enabled aligning linkage groups to this reference map. The comparison of our annotated linkage maps and linkage maps reporting QTL information revealed 11 annotated SNPs in candidate genes that co-localized with previously reported QTLs for wood properties and water use efficiency. Conclusions This study provides genetic linkage maps from a Spanish population that shows high levels of genetic divergence with French populations from which segregating progenies have been previously mapped. These genetic maps will be of interest to construct a reliable consensus linkage map for the species. The importance of developing functional genetic linkage maps is highlighted, especially when working with breeding populations for its future application in MAS for traits of interest. PMID:23036012

  2. The Elusive Search for Reniform Nematode Resistance in Cotton.

    PubMed

    Khanal, Churamani; McGawley, Edward C; Overstreet, Charles; Stetina, Salliana R

    2018-05-01

    The reniform nematode (Rotylenchulus reniformis Linford and Oliveira) has emerged as the most important plant-parasitic nematode of cotton in the United States cotton belt. Success in the development of reniform nematode-resistant upland cotton cultivars (Gossypium hirsutum L.) has not been realized despite over three decades of breeding efforts. Research approaches ranging from conventional breeding to triple species hybrids to marker-assisted selection have been employed to introgress reniform nematode resistance from other species of cotton into upland cultivars. Reniform nematode-resistant breeding lines derived from G. longicalyx were developed in 2007. However, these breeding lines displayed stunting symptoms and a hypersensitive response to reniform nematode infection. Subsequent breeding efforts focused on G. barbadense, G. aridum, G. armoreanum, and other species that have a high level of resistance to reniform nematode. Marker-assisted selection has greatly improved screening of reniform nematode-resistant lines. The use of advanced molecular techniques such as CRISPER-Cas9 systems and alternative ways such as delivery of suitable "cry" proteins and specific double-stranded RNA to nematodes will assist in developing resistant cultivars of cotton. In spite of the efforts of cotton breeders and nematologists, successes are limited only to the development of reniform nematode-resistant breeding lines. In this article, we provide an overview of the approaches employed to develop reniform nematode-resistant upland cotton cultivars in the past, progress to date, major obstacles, and some promising future research activity.

  3. Identifying Quantitative Trait Loci (QTLs) and Developing Diagnostic Markers Linked to Orange Rust Resistance in Sugarcane (Saccharum spp.).

    PubMed

    Yang, Xiping; Islam, Md S; Sood, Sushma; Maya, Stephanie; Hanson, Erik A; Comstock, Jack; Wang, Jianping

    2018-01-01

    Sugarcane ( Saccharum spp.) is an important economic crop, contributing up to 80% of table sugar used in the world and has become a promising feedstock for biofuel production. Sugarcane production has been threatened by many diseases, and fungicide applications for disease control have been opted out for sustainable agriculture. Orange rust is one of the major diseases impacting sugarcane production worldwide. Identifying quantitative trait loci (QTLs) and developing diagnostic markers are valuable for breeding programs to expedite release of superior sugarcane cultivars for disease control. In this study, an F 1 segregating population derived from a cross between two hybrid sugarcane clones, CP95-1039 and CP88-1762, was evaluated for orange rust resistance in replicated trails. Three QTLs controlling orange rust resistance in sugarcane (qORR109, qORR4 and qORR102) were identified for the first time ever, which can explain 58, 12 and 8% of the phenotypic variation, separately. We also characterized 1,574 sugarcane putative resistance ( R ) genes. These sugarcane putative R genes and simple sequence repeats in the QTL intervals were further used to develop diagnostic markers for marker-assisted selection of orange rust resistance. A PCR-based Resistance gene-derived maker, G1 was developed, which showed significant association with orange rust resistance. The putative QTLs and marker developed in this study can be effectively utilized in sugarcane breeding programs to facilitate the selection process, thus contributing to the sustainable agriculture for orange rust disease control.

  4. Simple sequence repeat marker loci discovery using SSR primer.

    PubMed

    Robinson, Andrew J; Love, Christopher G; Batley, Jacqueline; Barker, Gary; Edwards, David

    2004-06-12

    Simple sequence repeats (SSRs) have become important molecular markers for a broad range of applications, such as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a range of molecular ecology and diversity studies. With the increase in the availability of DNA sequence information, an automated process to identify and design PCR primers for amplification of SSR loci would be a useful tool in plant breeding programs. We report an application that integrates SPUTNIK, an SSR repeat finder, with Primer3, a PCR primer design program, into one pipeline tool, SSR Primer. On submission of multiple FASTA formatted sequences, the script screens each sequence for SSRs using SPUTNIK. The results are parsed to Primer3 for locus-specific primer design. The script makes use of a Web-based interface, enabling remote use. This program has been written in PERL and is freely available for non-commercial users by request from the authors. The Web-based version may be accessed at http://hornbill.cspp.latrobe.edu.au/

  5. Productive performance of the dairy cattle Girolando breed mediated by the fat-related genes DGAT1 and LEP and their polymorphisms.

    PubMed

    Cardoso, S R; Queiroz, L B; Goulart, V Alonso; Mourão, G B; Benedetti, E; Goulart, L R

    2011-12-01

    Candidate genes have been associated with milk production in bovines, such as the diacylglycerol O-acyltransferase 1 (DGAT1) and leptin (LEP); however, they have not been simultaneously investigated nor have been evaluated in the Brazilian Girolando breed (Gir×Holstein, backcrossed to Holstein). Our aim was to determine the influence of fat-related genes, DGAT1 and LEP, and their polymorphisms on performance traits of milk production in the Girolando breed. Results indicated that the K allele of the DGAT1 gene showed a significant association with total and average daily milk production with additive effect. The LEP gene showed that the A allele and its homozygote are highly prevalent and almost fixed in this population and may have been favorably selected during backcrossing for the origin of this breed. The important impact of the K allele of the DGAT1 gene on milk production corroborates the initiative of performing marker-assisted selections with this gene in breeding programs of the Girolando breed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Persimmon breeding in Japan for pollination-constant non-astringent (PCNA) type with marker-assisted selection

    PubMed Central

    Sato, Akihiko; Yamada, Masahiko

    2016-01-01

    Oriental persimmon (Diospyros kaki) originated in Eastern Asia, and many indigenous cultivars have been developed in China, Japan, and Korea. These cultivars are classified into four groups based on their natural astringency loss on the tree and seed formation: pollination-constant non-astringent (PCNA), pollination-variant non-astringent (PVNA), pollination-constant astringent (PCA), and pollination-variant astringent (PVA). PCNA is the most desirable type because the fruit can be eaten without any postharvest treatment; therefore, one of the goals of our persimmon breeding programs is to release superior PCNA cultivars. The PCNA genotype is recessive to the other three non-PCNA genotypes, and PCNA-type F1 offspring are obtained exclusively from crosses among PCNA genotypes. Moreover, the number of superior PCNA cross-parents have been limited. In the late 1980s, inbreeding depression became obvious, especially in terms of fruit size, tree vigor, and productivity. To mitigate the inbreeding, a backcross program using PCNA [(non-PCNA × PCNA) × PCNA] was started in 1990. This process, however, was inefficient because only 15% of the offspring were PCNA, and all offspring had to be grown to the fruiting stage. Therefore, molecular markers linked to the PCNA locus were developed for discriminating PCNA offspring. A molecular marker linked to Chinese PCNA has also been developed. PMID:27069391

  7. Persimmon breeding in Japan for pollination-constant non-astringent (PCNA) type with marker-assisted selection.

    PubMed

    Sato, Akihiko; Yamada, Masahiko

    2016-01-01

    Oriental persimmon (Diospyros kaki) originated in Eastern Asia, and many indigenous cultivars have been developed in China, Japan, and Korea. These cultivars are classified into four groups based on their natural astringency loss on the tree and seed formation: pollination-constant non-astringent (PCNA), pollination-variant non-astringent (PVNA), pollination-constant astringent (PCA), and pollination-variant astringent (PVA). PCNA is the most desirable type because the fruit can be eaten without any postharvest treatment; therefore, one of the goals of our persimmon breeding programs is to release superior PCNA cultivars. The PCNA genotype is recessive to the other three non-PCNA genotypes, and PCNA-type F1 offspring are obtained exclusively from crosses among PCNA genotypes. Moreover, the number of superior PCNA cross-parents have been limited. In the late 1980s, inbreeding depression became obvious, especially in terms of fruit size, tree vigor, and productivity. To mitigate the inbreeding, a backcross program using PCNA [(non-PCNA × PCNA) × PCNA] was started in 1990. This process, however, was inefficient because only 15% of the offspring were PCNA, and all offspring had to be grown to the fruiting stage. Therefore, molecular markers linked to the PCNA locus were developed for discriminating PCNA offspring. A molecular marker linked to Chinese PCNA has also been developed.

  8. Genetic linkage map construction and QTL mapping of salt tolerance traits in Zoysiagrass (Zoysia japonica).

    PubMed

    Guo, Hailin; Ding, Wanwen; Chen, Jingbo; Chen, Xuan; Zheng, Yiqi; Wang, Zhiyong; Liu, Jianxiu

    2014-01-01

    Zoysiagrass (Zoysia Willd.) is an important warm season turfgrass that is grown in many parts of the world. Salt tolerance is an important trait in zoysiagrass breeding programs. In this study, a genetic linkage map was constructed using sequence-related amplified polymorphism markers and random amplified polymorphic DNA markers based on an F1 population comprising 120 progeny derived from a cross between Zoysia japonica Z105 (salt-tolerant accession) and Z061 (salt-sensitive accession). The linkage map covered 1211 cM with an average marker distance of 5.0 cM and contained 24 linkage groups with 242 marker loci (217 sequence-related amplified polymorphism markers and 25 random amplified polymorphic DNA markers). Quantitative trait loci affecting the salt tolerance of zoysiagrass were identified using the constructed genetic linkage map. Two significant quantitative trait loci (qLF-1 and qLF-2) for leaf firing percentage were detected; qLF-1 at 36.3 cM on linkage group LG4 with a logarithm of odds value of 3.27, which explained 13.1% of the total variation of leaf firing and qLF-2 at 42.3 cM on LG5 with a logarithm of odds value of 2.88, which explained 29.7% of the total variation of leaf firing. A significant quantitative trait locus (qSCW-1) for reduced percentage of dry shoot clipping weight was detected at 44.1 cM on LG5 with a logarithm of odds value of 4.0, which explained 65.6% of the total variation. This study provides important information for further functional analysis of salt-tolerance genes in zoysiagrass. Molecular markers linked with quantitative trait loci for salt tolerance will be useful in zoysiagrass breeding programs using marker-assisted selection.

  9. Identification of a rice gene (Bph 1) conferring resistance to brown planthopper (Nilaparvata lugens Stal) using STS markers.

    PubMed

    Kim, Suk-Man; Sohn, Jae-Keun

    2005-08-31

    This study was carried out to identify a high-resolution marker for a gene conferring resistance to brown planthopper (BPH) biotype 1, using japonica type resistant lines. Bulked segregant analyses were conducted using 520 RAPD primers to identify RAPD fragments linked to the BPH resistance gene. Eleven RAPDs were shown to be polymorphic amplicons between resistant and susceptible progeny. One of these primers, OPE 18, which amplified a 923 bp band tightly linked to resistance, was converted into a sequence-tagged-site (STS) marker. The STS marker, BpE18-3, was easily detectable as a dominant band with tight linkage (3.9cM) to Bph1. It promises to be useful as a marker for assisted selection of resistant progeny in backcross breeding programs to introgress the resistance gene into elite japonica cultivars.

  10. Isolation and characterization of microsatellite markers for Jasminum sambac (Oleaceae) using Illumina shotgun sequencing.

    PubMed

    Li, Yong; Zhang, Weirui

    2015-10-01

    Microsatellite markers of Jasminum sambac (Oleaceae) were isolated to investigate wild germplasm resources and provide markers for breeding. Illumina sequencing was used to isolate microsatellite markers from the transcriptome of J. sambac. A total of 1322 microsatellites were identified from 49,772 assembled unigenes. One hundred primer pairs were randomly selected to verify primer amplification efficiency. Out of these tested primer pairs, 31 were successfully amplified: 18 primer pairs yielded a single allele, seven exhibited fixed heterozygosity with two alleles, and only six displayed polymorphisms. This study obtained the first set of microsatellite markers for J. sambac, which will be helpful for the assessment of wild germplasm resources and the development of molecular marker-assisted breeding.

  11. Identification of associated SSR markers for yield component and fiber quality traits based on frame map and Upland cotton collections.

    PubMed

    Qin, Hongde; Chen, Min; Yi, Xianda; Bie, Shu; Zhang, Cheng; Zhang, Youchang; Lan, Jiayang; Meng, Yanyan; Yuan, Youlu; Jiao, Chunhai

    2015-01-01

    Detecting QTLs (quantitative trait loci) that enhance cotton yield and fiber quality traits and accelerate breeding has been the focus of many cotton breeders. In the present study, 359 SSR (simple sequence repeat) markers were used for the association mapping of 241 Upland cotton collections. A total of 333 markers, representing 733 polymorphic loci, were detected. The average linkage disequilibrium (LD) decay distances were 8.58 cM (r2 > 0.1) and 5.76 cM (r2 > 0.2). 241 collections were arranged into two subgroups using STRUCTURE software. Mixed linear modeling (MLM) methods (with population structure (Q) and relative kinship matrix (K)) were applied to analyze four phenotypic datasets obtained from four environments (two different locations and two years). Forty-six markers associated with the number of bolls per plant (NB), boll weight (BW), lint percentage (LP), fiber length (FL), fiber strength (FS) and fiber micornaire value (FM) were repeatedly detected in at least two environments. Of 46 associated markers, 32 were identified as new association markers, and 14 had been previously reported in the literature. Nine association markers were near QTLs (at a distance of less than 1-2 LD decay on the reference map) that had been previously described. These results provide new useful markers for marker-assisted selection in breeding programs and new insights for understanding the genetic basis of Upland cotton yields and fiber quality traits at the whole-genome level.

  12. Genomics-assisted breeding in fruit trees.

    PubMed

    Iwata, Hiroyoshi; Minamikawa, Mai F; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding.

  13. Genomics-assisted breeding in fruit trees

    PubMed Central

    Iwata, Hiroyoshi; Minamikawa, Mai F.; Kajiya-Kanegae, Hiromi; Ishimori, Motoyuki; Hayashi, Takeshi

    2016-01-01

    Recent advancements in genomic analysis technologies have opened up new avenues to promote the efficiency of plant breeding. Novel genomics-based approaches for plant breeding and genetics research, such as genome-wide association studies (GWAS) and genomic selection (GS), are useful, especially in fruit tree breeding. The breeding of fruit trees is hindered by their long generation time, large plant size, long juvenile phase, and the necessity to wait for the physiological maturity of the plant to assess the marketable product (fruit). In this article, we describe the potential of genomics-assisted breeding, which uses these novel genomics-based approaches, to break through these barriers in conventional fruit tree breeding. We first introduce the molecular marker systems and whole-genome sequence data that are available for fruit tree breeding. Next we introduce the statistical methods for biparental linkage and quantitative trait locus (QTL) mapping as well as GWAS and GS. We then review QTL mapping, GWAS, and GS studies conducted on fruit trees. We also review novel technologies for rapid generation advancement. Finally, we note the future prospects of genomics-assisted fruit tree breeding and problems that need to be overcome in the breeding. PMID:27069395

  14. Molecular breeding for the development of multiple disease resistance in Basmati rice.

    PubMed

    Singh, Atul; Singh, Vikas K; Singh, S P; Pandian, R T P; Ellur, Ranjith K; Singh, Devinder; Bhowmick, Prolay K; Gopala Krishnan, S; Nagarajan, M; Vinod, K K; Singh, U D; Prabhu, K V; Sharma, T R; Mohapatra, T; Singh, A K

    2012-01-01

    Basmati rice grown in the Indian subcontinent is highly valued for its unique culinary qualities. Production is, however, often constrained by diseases such as bacterial blight (BB), blast and sheath blight (ShB). The present study developed Basmati rice with inbuilt resistance to BB, blast and ShB using molecular marker-assisted selection. The rice cultivar 'Improved Pusa Basmati 1' (carrying the BB resistance genes xa13 and Xa21) was used as the recurrent parent and cultivar 'Tetep' (carrying the blast resistance gene Pi54 and ShB resistance quality trait loci (QTL), qSBR11-1) was the donor. Marker-assisted foreground selection was employed to identify plants possessing resistance alleles in the segregating generations along with stringent phenotypic selection for faster recovery of the recurrent parent genome (RPG) and phenome (RPP). Background analysis with molecular markers was used to estimate the recovery of RPG in improved lines. Foreground selection coupled with stringent phenotypic selection identified plants homozygous for xa13, Xa21 and Pi54, which were advanced to BC(2)F(5) through pedigree selection. Marker-assisted selection for qSBR11-1 in BC(2)F(5) using flanking markers identified seven homozygous families. Background analysis revealed that RPG recovery was up to 89.5%. Screening with highly virulent isolates of BB, blast and ShB showed that the improved lines were resistant to all three diseases and were on a par with 'Improved Pusa Basmati 1' for yield, duration and Basmati grain quality. This is the first report of marker-assisted transfer of genes conferring resistance to three different diseases in rice wherein genes xa13 and Xa21 for BB resistance, Pi54 for blast resistance, and a major QTL qSBR11-1 have been combined through marker-assisted backcross breeding. In addition to offering the potential for release as cultivars, the pyramided lines will serve as useful donors of gene(s) for BB, blast and ShB in future Basmati rice breeding programmes.

  15. Development and Utilization of InDel Markers to Identify Peanut (Arachis hypogaea L.) Disease Resistance

    USDA-ARS?s Scientific Manuscript database

    Peanut diseases, such as leaf spot and spotted wilt caused by Tomato Spotted Wilt Virus, can significantly reduce yield and quality. Application of marker assisted plant breeding requires the development and validation of different types of DNA molecular markers. Nearly 10,000 SSR-based molecular ...

  16. Genome-based prediction of test cross performance in two subsequent breeding cycles.

    PubMed

    Hofheinz, Nina; Borchardt, Dietrich; Weissleder, Knuth; Frisch, Matthias

    2012-12-01

    Genome-based prediction of genetic values is expected to overcome shortcomings that limit the application of QTL mapping and marker-assisted selection in plant breeding. Our goal was to study the genome-based prediction of test cross performance with genetic effects that were estimated using genotypes from the preceding breeding cycle. In particular, our objectives were to employ a ridge regression approach that approximates best linear unbiased prediction of genetic effects, compare cross validation with validation using genetic material of the subsequent breeding cycle, and investigate the prospects of genome-based prediction in sugar beet breeding. We focused on the traits sugar content and standard molasses loss (ML) and used a set of 310 sugar beet lines to estimate genetic effects at 384 SNP markers. In cross validation, correlations >0.8 between observed and predicted test cross performance were observed for both traits. However, in validation with 56 lines from the next breeding cycle, a correlation of 0.8 could only be observed for sugar content, for standard ML the correlation reduced to 0.4. We found that ridge regression based on preliminary estimates of the heritability provided a very good approximation of best linear unbiased prediction and was not accompanied with a loss in prediction accuracy. We conclude that prediction accuracy assessed with cross validation within one cycle of a breeding program can not be used as an indicator for the accuracy of predicting lines of the next cycle. Prediction of lines of the next cycle seems promising for traits with high heritabilities.

  17. Breeding blueberries for a changing global environment: a review

    PubMed Central

    Lobos, Gustavo A.; Hancock, James F.

    2015-01-01

    Today, blueberries are recognized worldwide as one of the foremost health foods, becoming one of the crops with the highest productive and commercial projections. Over the last 100 years, the geographical area where highbush blueberries are grown has extended dramatically into hotter and drier environments. The expansion of highbush blueberry growing into warmer regions will be challenged in the future by increases in average global temperature and extreme fluctuations in temperature and rainfall patterns. Considerable genetic variability exists within the blueberry gene pool that breeders can use to meet these challenges, but traditional selection techniques can be slow and inefficient and the precise adaptations of genotypes often remain hidden. Marker assisted breeding (MAB) and phenomics could aid greatly in identifying those individuals carrying adventitious traits, increasing selection efficiency and shortening the rate of cultivar release. While phenomics have begun to be used in the breeding of grain crops in the last 10 years, their use in fruit breeding programs it is almost non-existent. PMID:26483803

  18. Expanding possibilities for intervention against small ruminant lentiviruses through genetic marker-assisted selective breeding

    USDA-ARS?s Scientific Manuscript database

    Small ruminant lentiviruses include members that infect sheep (ovine lentivirus [OvLV]; also known as ovine progressive pneumonia virus/maedi-visna virus) and goats (caprine arthritis encephalitis virus [CAEV]). Breed differences in seroprevalence and proviral concentration of OvLV had suggested a s...

  19. Advances in Japanese pear breeding in Japan

    PubMed Central

    Saito, Toshihiro

    2016-01-01

    The Japanese pear (Pyrus pyrifolia Nakai) is one of the most widely grown fruit trees in Japan, and it has been used throughout Japan’s history. The commercial production of pears increased rapidly with the successive discoveries of the chance seedling cultivars ‘Chojuro’ and ‘Nijisseiki’ around 1890, and the development of new cultivars has continued since 1915. The late-maturing, leading cultivars ‘Niitaka’ and ‘Shinko’ were released during the initial breeding stage. Furthermore, systematic breeding by the Horticultural Research Station (currently, NARO Institute of Fruit Tree Science, National Agriculture and Food Research Organization (NIFTS)) began in 1935, which mainly aimed to improve fruit quality by focusing on flesh texture and black spot disease resistance. To date, 22 cultivars have been released, including ‘Kosui’, ‘Hosui’, and ‘Akizuki’, which are current leading cultivars from the breeding program. Four induced mutant cultivars induced by gamma irradiation, which exhibit some resistance to black spot disease, were released from the Institute of Radiation Breeding. Among these cultivars, ‘Gold Nijisseiki’ has become a leading cultivar. Moreover, ‘Nansui’ from the Nagano prefectural institute breeding program was released, and it has also become a leading cultivar. Current breeding objectives at NIFTS mainly combine superior fruit quality with traits related to labor and cost reduction, multiple disease resistance, or self-compatibility. Regarding future breeding, marker-assisted selection for each trait, QTL analyses, genome-wide association studies, and genomic selection analyses are currently in progress. PMID:27069390

  20. Black raspberry genetic and genomic resources development

    USDA-ARS?s Scientific Manuscript database

    This study incorporates field and laboratory components to advance and streamline identification of a variety of traits of economic interest and to develop molecular markers for marker assisted breeding of black raspberry (Rubus occidentalis). A lack of adapted, disease resistant cultivars has led t...

  1. Developing black raspberry genetic and genomic resources

    USDA-ARS?s Scientific Manuscript database

    This study incorporates field and laboratory components to advance and streamline identification of a variety of traits of economic interest and to develop molecular markers for marker assisted breeding of black raspberry (Rubus occidentalis). A lack of adapted, disease resistant cultivars has led t...

  2. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice

    PubMed Central

    Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright’s F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance. PMID:27494320

  3. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    PubMed

    Pradhan, Sharat Kumar; Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai; Pandit, Elssa

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  4. Sunflower Hybrid Breeding: From Markers to Genomic Selection

    PubMed Central

    Dimitrijevic, Aleksandra; Horn, Renate

    2018-01-01

    In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches combining omic technologies (genomics, transcriptomics, proteomics, metabolomics and phenomics) using bioinformatic tools will facilitate the identification of target genes and markers for complex traits and will give a better insight into the mechanisms behind the traits. PMID:29387071

  5. Development of the first consensus genetic map of intermediate wheatgrass (Thinopyrum intermedium) using genotyping-by-sequencing.

    PubMed

    Kantarski, Traci; Larson, Steve; Zhang, Xiaofei; DeHaan, Lee; Borevitz, Justin; Anderson, James; Poland, Jesse

    2017-01-01

    Development of the first consensus genetic map of intermediate wheatgrass gives insight into the genome and tools for molecular breeding. Intermediate wheatgrass (Thinopyrum intermedium) has been identified as a candidate for domestication and improvement as a perennial grain, forage, and biofuel crop and is actively being improved by several breeding programs. To accelerate this process using genomics-assisted breeding, efficient genotyping methods and genetic marker reference maps are needed. We present here the first consensus genetic map for intermediate wheatgrass (IWG), which confirms the species' allohexaploid nature (2n = 6x = 42) and homology to Triticeae genomes. Genotyping-by-sequencing was used to identify markers that fit expected segregation ratios and construct genetic maps for 13 heterogeneous parents of seven full-sib families. These maps were then integrated using a linear programming method to produce a consensus map with 21 linkage groups containing 10,029 markers, 3601 of which were present in at least two populations. Each of the 21 linkage groups contained between 237 and 683 markers, cumulatively covering 5061 cM (2891 cM--Kosambi) with an average distance of 0.5 cM between each pair of markers. Through mapping the sequence tags to the diploid (2n = 2x = 14) barley reference genome, we observed high colinearity and synteny between these genomes, with three homoeologous IWG chromosomes corresponding to each of the seven barley chromosomes, and mapped translocations that are known in the Triticeae. The consensus map is a valuable tool for wheat breeders to map important disease-resistance genes within intermediate wheatgrass. These genomic tools can help lead to rapid improvement of IWG and development of high-yielding cultivars of this perennial grain that would facilitate the sustainable intensification of agricultural systems.

  6. Construction of the first genetic linkage map of Japanese gentian (Gentianaceae)

    PubMed Central

    2012-01-01

    Background Japanese gentians (Gentiana triflora and Gentiana scabra) are amongst the most popular floricultural plants in Japan. However, genomic resources for Japanese gentians have not yet been developed, mainly because of the heterozygous genome structure conserved by outcrossing, the long juvenile period, and limited knowledge about the inheritance of important traits. In this study, we developed a genetic linkage map to improve breeding programs of Japanese gentians. Results Enriched simple sequence repeat (SSR) libraries from a G. triflora double haploid line yielded almost 20,000 clones using 454 pyrosequencing technology, 6.7% of which could be used to design SSR markers. To increase the number of molecular markers, we identified three putative long terminal repeat (LTR) sequences using the recently developed inter-primer binding site (iPBS) method. We also developed retrotransposon microsatellite amplified polymorphism (REMAP) markers combining retrotransposon and inter-simple sequence repeat (ISSR) markers. In addition to SSR and REMAP markers, modified amplified fragment length polymorphism (AFLP) and random amplification polymorphic DNA (RAPD) markers were developed. Using 93 BC1 progeny from G. scabra backcrossed with a G. triflora double haploid line, 19 linkage groups were constructed with a total of 263 markers (97 SSR, 97 AFLP, 39 RAPD, and 30 REMAP markers). One phenotypic trait (stem color) and 10 functional markers related to genes controlling flower color, flowering time and cold tolerance were assigned to the linkage map, confirming its utility. Conclusions This is the first reported genetic linkage map for Japanese gentians and for any species belonging to the family Gentianaceae. As demonstrated by mapping of functional markers and the stem color trait, our results will help to explain the genetic basis of agronomic important traits, and will be useful for marker-assisted selection in gentian breeding programs. Our map will also be an important resource for further genetic analyses such as mapping of quantitative trait loci and map-based cloning of genes in this species. PMID:23186361

  7. Identifying molecular markers associated with stigma characteristics in rice

    USDA-ARS?s Scientific Manuscript database

    Stigma characteristics play essential roles in hybrid seed production of rice and marker-assisted breeding plays essential role because they are quantitatively inherited with single-flowered perfect spikelet. Ninety four accessions originated from 47 countries were selected from the USDA rice core c...

  8. Identifying Quantitative Trait Loci (QTLs) and Developing Diagnostic Markers Linked to Orange Rust Resistance in Sugarcane (Saccharum spp.)

    PubMed Central

    Yang, Xiping; Islam, Md. S.; Sood, Sushma; Maya, Stephanie; Hanson, Erik A.; Comstock, Jack; Wang, Jianping

    2018-01-01

    Sugarcane (Saccharum spp.) is an important economic crop, contributing up to 80% of table sugar used in the world and has become a promising feedstock for biofuel production. Sugarcane production has been threatened by many diseases, and fungicide applications for disease control have been opted out for sustainable agriculture. Orange rust is one of the major diseases impacting sugarcane production worldwide. Identifying quantitative trait loci (QTLs) and developing diagnostic markers are valuable for breeding programs to expedite release of superior sugarcane cultivars for disease control. In this study, an F1 segregating population derived from a cross between two hybrid sugarcane clones, CP95-1039 and CP88-1762, was evaluated for orange rust resistance in replicated trails. Three QTLs controlling orange rust resistance in sugarcane (qORR109, qORR4 and qORR102) were identified for the first time ever, which can explain 58, 12 and 8% of the phenotypic variation, separately. We also characterized 1,574 sugarcane putative resistance (R) genes. These sugarcane putative R genes and simple sequence repeats in the QTL intervals were further used to develop diagnostic markers for marker-assisted selection of orange rust resistance. A PCR-based Resistance gene-derived maker, G1 was developed, which showed significant association with orange rust resistance. The putative QTLs and marker developed in this study can be effectively utilized in sugarcane breeding programs to facilitate the selection process, thus contributing to the sustainable agriculture for orange rust disease control. PMID:29616061

  9. Development and validation of a breeder-friendly KASPar marker for wheat leaf rust resistance locus Lr21

    USDA-ARS?s Scientific Manuscript database

    Development and utilization of genetic markers play a pivotal role in marker assisted breeding of wheat cultivars with pyramids of disease resistance genes. The objective of this study is to develop a closed tube, gel-free assay for high throughput genotyping of leaf rust resistance locus Lr21. Poly...

  10. Deletion variant near ZNF389 is associated with control of ovine lentivirus in multiple flocks of sheep

    USDA-ARS?s Scientific Manuscript database

    Ovine lentivirus (OvLV) is a macrophage-tropic lentivirus found in many countries that causes interstitial pneumonia, mastitis, arthritis and cachexia in sheep. There is no preventive vaccine and no cure, but breed differences suggest marker-assisted selective breeding might improve odds of infectio...

  11. Molecular marker-assisted breeding for maize improvement in Asia

    USDA-ARS?s Scientific Manuscript database

    Maize is one of the most important food and feed crops in Asia, and is a source of income for several million farmers. Despite impressive progress made in the last few decades through conventional breeding in the “Asia-7” (China, India, Indonesia, Nepal, Philippines, Thailand and Vietnam), average m...

  12. Black raspberry genomic and genetic resource development to enable cultivar improvement

    USDA-ARS?s Scientific Manuscript database

    This project incorporates use of phenotypic, genotypic and genomic data to advance and streamline identification of traits of economic interest and to develop molecular markers for marker assisted breeding of black raspberry (Rubus occidentalis L.). A lack of adapted, disease resistant cultivars has...

  13. Evaluation of the effect and profitability of gene-assisted selection in pig breeding system*

    PubMed Central

    Li, Ya-lan; Zhang, Qin; Chen, Yao-sheng

    2007-01-01

    Objective: To evaluate the effect and profitability of using the quantitative trait loci (QTL)-linked direct marker (DR marker) in gene-assisted selection (GAS). Methods: Three populations (100, 200, or 300 sows plus 10 boars within each group) with segregating QTL were simulated stochastically. Five economic traits were investigated, including number of born alive (NBA), average daily gain to 100 kg body weight (ADG), feed conversion ratio (FCR), back fat at 100 kg body weight (BF) and intramuscular fat (IMF). Selection was based on the estimated breeding value (EBV) of each trait. The starting frequencies of the QTL’s favorable allele were 0.1, 0.3 and 0.5, respectively. The economic return was calculated by gene flow method. Results: The selection efficiency was higher than 100% when DR markers were used in GAS for 5 traits. The selection efficiency for NBA was the highest, and the lowest was for ADG whose QTL had the lowest variance. The mixed model applied DR markers and obtained higher extra genetic gain and extra economic returns. We also found that the lower the frequency of the favorable allele of the QTL, the higher the extra return obtained. Conclusion: GAS is an effective selection scheme to increase the genetic gain and the economic returns in pig breeding. PMID:17973344

  14. Evaluation of the effect and profitability of gene-assisted selection in pig breeding system.

    PubMed

    Li, Ya-Lan; Zhang, Qin; Chen, Yao-Sheng

    2007-11-01

    To evaluate the effect and profitability of using the quantitative trait loci (QTL)-linked direct marker (DR marker) in gene-assisted selection (GAS). Three populations (100, 200, or 300 sows plus 10 boars within each group) with segregating QTL were simulated stochastically. Five economic traits were investigated, including number of born alive (NBA), average daily gain to 100 kg body weight (ADG), feed conversion ratio (FCR), back fat at 100 kg body weight (BF) and intramuscular fat (IMF). Selection was based on the estimated breeding value (EBV) of each trait. The starting frequencies of the QTL's favorable allele were 0.1, 0.3 and 0.5, respectively. The economic return was calculated by gene flow method. The selection efficiency was higher than 100% when DR markers were used in GAS for 5 traits. The selection efficiency for NBA was the highest, and the lowest was for ADG whose QTL had the lowest variance. The mixed model applied DR markers and obtained higher extra genetic gain and extra economic returns. We also found that the lower the frequency of the favorable allele of the QTL, the higher the extra return obtained. GAS is an effective selection scheme to increase the genetic gain and the economic returns in pig breeding.

  15. QTL Mapping for Resistance to Iridovirus in Asian Seabass Using Genotyping-by-Sequencing.

    PubMed

    Wang, Le; Bai, Bin; Huang, Shuqing; Liu, Peng; Wan, Zi Yi; Ye, Baoqing; Wu, Jinlu; Yue, Gen Hua

    2017-10-01

    Identifying quantitative trait loci (QTL) for viral disease resistance is of particular importance in selective breeding programs of fish species. Genetic markers linked to QTL can be useful in marker-assisted selection (MAS) for elites resistant to specific pathogens. Here, we conducted a genome scan for QTL associated with Singapore grouper iridovirus (SGIV) resistance in an Asian seabass (Lates calcarifer) family, using a high-density linkage map generated with genotyping-by-sequencing. One genome-wide significant and three suggestive QTL were detected at LG21, LG6, LG13, and LG15, respectively. The phenotypic variation explained (PVE) by the four QTL ranged from 7.5 to 15.6%. The position of the most significant QTL at LG21 was located between 31.88 and 36.81 cM. The SNP marker (SNP130416) nearest to the peak of this QTL was significantly associated with SGIV resistance in an unrelated multifamily population. One candidate gene, MECOM, close to the peak of this QTL region, was predicted. Evidence of alternative splicing was observed for MECOM and one specific category of splicing variants was differentially expressed at 5 days post-SGIV infection. The QTL detected in this study are valuable resources and can be used in the selective breeding programs of Asian seabass with regard to resistance to SGIV.

  16. QTL mapping of fruit mineral contents provides new chances for molecular breeding of tomato nutritional traits.

    PubMed

    Capel, Carmen; Yuste-Lisbona, Fernando J; López-Casado, Gloria; Angosto, Trinidad; Heredia, Antonio; Cuartero, Jesús; Fernández-Muñoz, Rafael; Lozano, Rafael; Capel, Juan

    2017-05-01

    Agronomical characterization of a RIL population for fruit mineral contents allowed for the identification of QTL controlling these fruit quality traits, flanked by co-dominant markers useful for marker-assisted breeding. Tomato quality is a multi-variant attribute directly depending on fruit chemical composition, which in turn determines the benefits of tomato consumption for human health. Commercially available tomato varieties possess limited variability in fruit quality traits. Wild species, such as Solanum pimpinellifolium, could provide different nutritional advantages and can be used for tomato breeding to improve overall fruit quality. Determining the genetic basis of the inheritance of all the traits that contribute to tomato fruit quality will increase the efficiency of the breeding program necessary to take advantage of the wild species variability. A high-density linkage map has been constructed from a recombinant inbred line (RIL) population derived from a cross between tomato Solanum lycopersicum and the wild-relative species S. pimpinellifolium. The RIL population was evaluated for fruit mineral contents during three consecutive growing seasons. The data obtained allowed for the identification of main QTL and novel epistatic interaction among QTL controlling fruit mineral contents on the basis of a multiple-environment analysis. Most of the QTL were flanked by candidate genes providing valuable information for both tomato breeding for new varieties with novel nutritional properties and the starting point to identify the genes underlying these QTL, which will help to reveal the genetic basis of tomato fruit nutritional properties.

  17. Comparative analysis of juice volatiles in selected mandarins, mandarin relatives and other citrus genotypes.

    PubMed

    Yu, Yuan; Bai, Jinhe; Chen, Chunxian; Plotto, Anne; Baldwin, Elizabeth A; Gmitter, Frederick G

    2018-02-01

    Citrus fruit flavor is an important attribute prioritized in variety improvement. The present study compared juice volatiles compositions from 13 selected citrus genotypes, including six mandarins (Citrus reticulata), three sour oranges (Citrus aurantium), one blood orange (Citrus sinensis), one lime (Citrus limonia), one Clementine (Citrus clementina) and one satsuma (Citrus unshiu). Large differences were observed with respect to volatile compositions among the citrus genotypes. 'Goutou' sour orange contained the greatest number of volatile compounds and the largest volatile production level. 'Ponkan' mandarin had the smallest number of volatiles and 'Owari' satsuma yielded the lowest volatile production level. 'Goutou' sour orange and 'Moro' blood orange were clearly distinguished from other citrus genotypes based on the analysis of volatile compositions, even though they were assigned into one single group with two other sour oranges by the molecular marker profiles. The clustering analysis based on the aroma volatile compositions was able to differentiate mandarin varieties and natural sub-groups, and was also supported by the molecular marker study. The gas chromatography-mass spectrometry analysis of citrus juice aroma volatiles can be used as a tool to distinguish citrus genotypes and assist in the assessment of future citrus breeding programs. The aroma volatile profiles of the different citrus genotypes and inter-relationships detected among volatile compounds and among citrus genotypes will provide fundamental information on the development of marker-assisted selection in citrus breeding. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Cross-transferability of SSR markers in Osmanthus

    USDA-ARS?s Scientific Manuscript database

    Developing a molecular tool kit for hybrid breeding of Osmanthus species and related genera is an important step in creating a systematic breeding program for this species. To date, molecular resources have been aimed solely at O. fragrans with little work to develop markers for other species and cu...

  19. Isolation and characterization of microsatellite markers for Jasminum sambac (Oleaceae) using Illumina shotgun sequencing1

    PubMed Central

    Li, Yong; Zhang, Weirui

    2015-01-01

    Premise of the study: Microsatellite markers of Jasminum sambac (Oleaceae) were isolated to investigate wild germplasm resources and provide markers for breeding. Methods and Results: Illumina sequencing was used to isolate microsatellite markers from the transcriptome of J. sambac. A total of 1322 microsatellites were identified from 49,772 assembled unigenes. One hundred primer pairs were randomly selected to verify primer amplification efficiency. Out of these tested primer pairs, 31 were successfully amplified: 18 primer pairs yielded a single allele, seven exhibited fixed heterozygosity with two alleles, and only six displayed polymorphisms. Conclusions: This study obtained the first set of microsatellite markers for J. sambac, which will be helpful for the assessment of wild germplasm resources and the development of molecular marker–assisted breeding. PMID:26504683

  20. New Advances in Marker Assisted Selection for Winter Hardiness in Oats.

    USDA-ARS?s Scientific Manuscript database

    Oat (Avena sativa L.) breeding and genetics research has lagged behind other small grains, such as wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.), in the development of PCR based markers and map construction due to fewer oat researchers and reduced research funding. As a result, marke...

  1. A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L.)

    PubMed Central

    2013-01-01

    Background Faba bean (Vicia faba L.) is among the earliest domesticated crops from the Near East. Today this legume is a key protein feed and food worldwide and continues to serve an important role in culinary traditions throughout Middle East, Mediterranean region, China and Ethiopia. Adapted to a wide range of soil types, the main faba bean breeding objectives are to improve yield, resistance to biotic and abiotic stresses, seed quality and other agronomic traits. Genomic approaches aimed at enhancing faba bean breeding programs require high-quality genetic linkage maps to facilitate quantitative trait locus analysis and gene tagging for use in a marker-assisted selection. The objective of this study was to construct a reference consensus map in faba bean by joining the information from the most relevant maps reported so far in this crop. Results A combination of two approaches, increasing the number of anchor loci in diverse mapping populations and joining the corresponding genetic maps, was used to develop a reference consensus map in faba bean. The map was constructed from three main recombinant inbreed populations derived from four parental lines, incorporates 729 markers and is based on 69 common loci. It spans 4,602 cM with a range from 323 to 1041 loci in six main linkage groups or chromosomes, and an average marker density of one locus every 6 cM. Locus order is generally well maintained between the consensus map and the individual maps. Conclusion We have constructed a reliable and fairly dense consensus genetic linkage map that will serve as a basis for genomic approaches in faba bean research and breeding. The core map contains a larger number of markers than any previous individual map, covers existing gaps and achieves a wider coverage of the large faba bean genome as a whole. This tool can be used as a reference resource for studies in different genetic backgrounds, and provides a framework for transferring genetic information when using different marker technologies. Combined with syntenic approaches, the consensus map will increase marker density in selected genomic regions and will be useful for future faba bean molecular breeding applications. PMID:24377374

  2. Genomics Assisted Ancestry Deconvolution in Grape

    PubMed Central

    Sawler, Jason; Reisch, Bruce; Aradhya, Mallikarjuna K.; Prins, Bernard; Zhong, Gan-Yuan; Schwaninger, Heidi; Simon, Charles; Buckler, Edward; Myles, Sean

    2013-01-01

    The genus Vitis (the grapevine) is a group of highly diverse, diploid woody perennial vines consisting of approximately 60 species from across the northern hemisphere. It is the world’s most valuable horticultural crop with ~8 million hectares planted, most of which is processed into wine. To gain insights into the use of wild Vitis species during the past century of interspecific grape breeding and to provide a foundation for marker-assisted breeding programmes, we present a principal components analysis (PCA) based ancestry estimation method to calculate admixture proportions of hybrid grapes in the United States Department of Agriculture grape germplasm collection using genome-wide polymorphism data. We find that grape breeders have backcrossed to both the domesticated V. vinifera and wild Vitis species and that reasonably accurate genome-wide ancestry estimation can be performed on interspecific Vitis hybrids using a panel of fewer than 50 ancestry informative markers (AIMs). We compare measures of ancestry informativeness used in selecting SNP panels for two-way admixture estimation, and verify the accuracy of our method on simulated populations of admixed offspring. Our method of ancestry deconvolution provides a first step towards selection at the seed or seedling stage for desirable admixture profiles, which will facilitate marker-assisted breeding that aims to introgress traits from wild Vitis species while retaining the desirable characteristics of elite V. vinifera cultivars. PMID:24244717

  3. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan

    PubMed Central

    Ain, Qurat-ul; Rasheed, Awais; Anwar, Alia; Mahmood, Tariq; Imtiaz, Muhammad; Mahmood, Tariq; Xia, Xianchun; He, Zhonghu; Quraishi, Umar M.

    2015-01-01

    Genome-wide association studies (GWAS) were undertaken to identify SNP markers associated with yield and yield-related traits in 123 Pakistani historical wheat cultivars evaluated during 2011–2014 seasons under rainfed field conditions. The population was genotyped by using high-density Illumina iSelect 90K single nucleotide polymorphism (SNP) assay, and finally 14,960 high quality SNPs were used in GWAS. Population structure examined using 1000 unlinked markers identified seven subpopulations (K = 7) that were representative of different breeding programs in Pakistan, in addition to local landraces. Forty four stable marker-trait associations (MTAs) with -log p > 4 were identified for nine yield-related traits. Nine multi-trait MTAs were found on chromosomes 1AL, 1BS, 2AL, 2BS, 2BL, 4BL, 5BL, 6AL, and 6BL, and those on 5BL and 6AL were stable across two seasons. Gene annotation and syntey identified that 14 trait-associated SNPs were linked to genes having significant importance in plant development. Favorable alleles for days to heading (DH), plant height (PH), thousand grain weight (TGW), and grain yield (GY) showed minor additive effects and their frequencies were slightly higher in cultivars released after 2000. However, no selection pressure on any favorable allele was identified. These genomic regions identified have historically contributed to achieve yield gains from 2.63 million tons in 1947 to 25.7 million tons in 2015. Future breeding strategies can be devised to initiate marker assisted breeding to accumulate these favorable alleles of SNPs associated with yield-related traits to increase grain yield. Additionally, in silico identification of 454-contigs corresponding to MTAs will facilitate fine mapping and subsequent cloning of candidate genes and functional marker development. PMID:26442056

  4. A pyramid breeding of eight grain-yield related quantitative trait loci based on marker-assistant and phenotype selection in rice (Oryza sativa L.).

    PubMed

    Zong, Guo; Wang, Ahong; Wang, Lu; Liang, Guohua; Gu, Minghong; Sang, Tao; Han, Bin

    2012-07-20

    1000-Grain weight and spikelet number per panicle are two important components for rice grain yield. In our previous study, eight quantitative trait loci (QTLs) conferring spikelet number per panicle and 1000-grain weight were mapped through sequencing-based genotyping of 150 rice recombinant inbred lines (RILs). In this study, we validated the effects of four QTLs from Nipponbare using chromosome segment substitution lines (CSSLs), and pyramided eight grain yield related QTLs. The new lines containing the eight QTLs with positive effects showed increased panicle and spikelet size as compared with the parent variety 93-11. We further proposed a novel pyramid breeding scheme based on marker-assistant and phenotype selection (MAPS). This scheme allowed pyramiding of as many as 24 QTLs at a single hybridization without massive cross work. This study provided insights into the molecular basis of rice grain yield for direct wealth for high-yielding rice breeding. Copyright © 2012. Published by Elsevier Ltd.

  5. Linkages and Interactions Analysis of Major Effect Drought Grain Yield QTLs in Rice.

    PubMed

    Vikram, Prashant; Swamy, B P Mallikarjuna; Dixit, Shalabh; Trinidad, Jennylyn; Sta Cruz, Ma Teresa; Maturan, Paul C; Amante, Modesto; Kumar, Arvind

    2016-01-01

    Quantitative trait loci conferring high grain yield under drought in rice are important genomic resources for climate resilient breeding. Major and consistent drought grain yield QTLs usually co-locate with flowering and/or plant height QTLs, which could be due to either linkage or pleiotropy. Five mapping populations used for the identification of major and consistent drought grain yield QTLs underwent multiple-trait, multiple-interval mapping test (MT-MIM) to estimate the significance of pleiotropy effects. Results indicated towards possible linkages between the drought grain yield QTLs with co-locating flowering and/or plant height QTLs. Linkages of days to flowering and plant height were eliminated through a marker-assisted breeding approach. Drought grain yield QTLs also showed interaction effects with flowering QTLs. Drought responsiveness of the flowering locus on chromosome 3 (qDTY3.2) has been revealed through allelic analysis. Considering linkage and interaction effects associated with drought QTLs, a comprehensive marker-assisted breeding strategy was followed to develop rice genotypes with improved grain yield under drought stress.

  6. A genotypic and phenotypic information source for marker-assisted selection of cereals: the CEREALAB database

    PubMed Central

    Milc, Justyna; Sala, Antonio; Bergamaschi, Sonia; Pecchioni, Nicola

    2011-01-01

    The CEREALAB database aims to store genotypic and phenotypic data obtained by the CEREALAB project and to integrate them with already existing data sources in order to create a tool for plant breeders and geneticists. The database can help them in unravelling the genetics of economically important phenotypic traits; in identifying and choosing molecular markers associated to key traits; and in choosing the desired parentals for breeding programs. The database is divided into three sub-schemas corresponding to the species of interest: wheat, barley and rice; each sub-schema is then divided into two sub-ontologies, regarding genotypic and phenotypic data, respectively. Database URL: http://www.cerealab.unimore.it/jws/cerealab.jnlp PMID:21247929

  7. Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan.

    PubMed

    Shavrukov, Yuri; Suchecki, Radoslaw; Eliby, Serik; Abugalieva, Aigul; Kenebayev, Serik; Langridge, Peter

    2014-09-28

    New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.

  8. Sorghum Landrace Collections from Cooler Regions of the World Exhibit Magnificent Genetic Differentiation and Early Season Cold Tolerance.

    PubMed

    Maulana, Frank; Weerasooriya, Dilooshi; Tesso, Tesfaye

    2017-01-01

    Cold temperature is an important abiotic stress affecting sorghum production in temperate regions. It reduces seed germination, seedling emergence and seedling vigor thus limiting the production of the crop both temporally and spatially. The objectives of this study were (1) to assess early season cold temperature stress response of sorghum germplasm from cooler environments and identify sources of tolerance for use in breeding programs, (2) to determine population structure and marker-trait association among these germplasms for eventual development of marker tools for improving cold tolerance. A total of 136 sorghum accessions from cooler regions of the world were phenotyped for seedling growth characteristics under cold temperature imposed through early planting. The accessions were genotyped using 67 simple sequence repeats markers spanning all ten linkage groups of sorghum, of which 50 highly polymorphic markers were used in the analysis. Genetic diversity and population structure analyses sorted the population into four subpopulations. Several accessions distributed in all subpopulations showed either better or comparable level of tolerance to the standard cold tolerance source, Shan qui red. Association analysis between the markers and seedling traits identified markers Xtxp 34, Xtxp 88, and Xtxp 319 as associated with seedling emergence, Xtxp 211 and Xtxp 304 with seedling dry weight, and Xtxp 20 with seedling height. The markers were detected on chromosomes previously found to harbor QTLs associated with cold tolerance in sorghum. Once validated these may serve as genomic tools in marker-assisted breeding or for screening larger pool of genotypes to identify additional sources of cold tolerance.

  9. Sorghum Landrace Collections from Cooler Regions of the World Exhibit Magnificent Genetic Differentiation and Early Season Cold Tolerance

    PubMed Central

    Maulana, Frank; Weerasooriya, Dilooshi; Tesso, Tesfaye

    2017-01-01

    Cold temperature is an important abiotic stress affecting sorghum production in temperate regions. It reduces seed germination, seedling emergence and seedling vigor thus limiting the production of the crop both temporally and spatially. The objectives of this study were (1) to assess early season cold temperature stress response of sorghum germplasm from cooler environments and identify sources of tolerance for use in breeding programs, (2) to determine population structure and marker-trait association among these germplasms for eventual development of marker tools for improving cold tolerance. A total of 136 sorghum accessions from cooler regions of the world were phenotyped for seedling growth characteristics under cold temperature imposed through early planting. The accessions were genotyped using 67 simple sequence repeats markers spanning all ten linkage groups of sorghum, of which 50 highly polymorphic markers were used in the analysis. Genetic diversity and population structure analyses sorted the population into four subpopulations. Several accessions distributed in all subpopulations showed either better or comparable level of tolerance to the standard cold tolerance source, Shan qui red. Association analysis between the markers and seedling traits identified markers Xtxp34, Xtxp88, and Xtxp319 as associated with seedling emergence, Xtxp211 and Xtxp304 with seedling dry weight, and Xtxp20 with seedling height. The markers were detected on chromosomes previously found to harbor QTLs associated with cold tolerance in sorghum. Once validated these may serve as genomic tools in marker-assisted breeding or for screening larger pool of genotypes to identify additional sources of cold tolerance. PMID:28536596

  10. A high-density SNP genetic linkage map for the silver-lipped pearl oyster, Pinctada maxima: a valuable resource for gene localisation and marker-assisted selection.

    PubMed

    Jones, David B; Jerry, Dean R; Khatkar, Mehar S; Raadsma, Herman W; Zenger, Kyall R

    2013-11-20

    The silver-lipped pearl oyster, Pinctada maxima, is an important tropical aquaculture species extensively farmed for the highly sought "South Sea" pearls. Traditional breeding programs have been initiated for this species in order to select for improved pearl quality, but many economic traits under selection are complex, polygenic and confounded with environmental factors, limiting the accuracy of selection. The incorporation of a marker-assisted selection (MAS) breeding approach would greatly benefit pearl breeding programs by allowing the direct selection of genes responsible for pearl quality. However, before MAS can be incorporated, substantial genomic resources such as genetic linkage maps need to be generated. The construction of a high-density genetic linkage map for P. maxima is not only essential for unravelling the genomic architecture of complex pearl quality traits, but also provides indispensable information on the genome structure of pearl oysters. A total of 1,189 informative genome-wide single nucleotide polymorphisms (SNPs) were incorporated into linkage map construction. The final linkage map consisted of 887 SNPs in 14 linkage groups, spans a total genetic distance of 831.7 centimorgans (cM), and covers an estimated 96% of the P. maxima genome. Assessment of sex-specific recombination across all linkage groups revealed limited overall heterochiasmy between the sexes (i.e. 1.15:1 F/M map length ratio). However, there were pronounced localised differences throughout the linkage groups, whereby male recombination was suppressed near the centromeres compared to female recombination, but inflated towards telomeric regions. Mean values of LD for adjacent SNP pairs suggest that a higher density of markers will be required for powerful genome-wide association studies. Finally, numerous nacre biomineralization genes were localised providing novel positional information for these genes. This high-density SNP genetic map is the first comprehensive linkage map for any pearl oyster species. It provides an essential genomic tool facilitating studies investigating the genomic architecture of complex trait variation and identifying quantitative trait loci for economically important traits useful in genetic selection programs within the P. maxima pearling industry. Furthermore, this map provides a foundation for further research aiming to improve our understanding of the dynamic process of biomineralization, and pearl oyster evolution and synteny.

  11. Molecular characterization of diverse CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers

    USDA-ARS?s Scientific Manuscript database

    Knowledge of germplasm diversity and relationships among elite breeding materials is fundamentally important in crop improvement. We genotyped 450 maize lines developed and/or widely used by CIMMYT breeding programs both in Kenya and Zimbabwe using 1065 SNP markers to (i) investigate population stru...

  12. Introgression and pyramiding into common bean market class fabada of genes conferring resistance to anthracnose and potyvirus.

    PubMed

    Ferreira, Juan José; Campa, Ana; Pérez-Vega, Elena; Rodríguez-Suárez, Cristina; Giraldez, Ramón

    2012-03-01

    Anthracnose and bean common mosaic (BCM) are considered major diseases in common bean crop causing severe yield losses worldwide. This work describes the introgression and pyramiding of genes conferring genetic resistance to BCM and anthracnose local races into line A25, a bean genotype classified as market class fabada. Resistant plants were selected using resistance tests or combining resistance tests and marker-assisted selection. Lines A252, A321, A493, Sanilac BC6-Are, and BRB130 were used as resistance sources. Resistance genes to anthracnose (Co-2 ( C ), Co-2 ( A252 ) and Co-3/9) and/or BCM (I and bc-3) were introgressed in line A25 through six parallel backcrossing programs, and six breeding lines showing a fabada seed phenotype were obtained after six backcross generations: line A1258 from A252; A1231 from A321; A1220 from A493; A1183 and A1878 from Sanilac BC6-Are; and line A2418 from BRB130. Pyramiding of different genes were developed using the pedigree method from a single cross between lines obtained in the introgression step: line A1699 (derived from cross A1258 × A1220), A2438 (A1220 × A1183), A2806 (A1878 × A2418), and A3308 (A1699 × A2806). A characterization based on eight morpho-agronomic traits revealed a limited differentiation among the obtained breeding lines and the recurrent line A25. However, using a set of seven molecular markers linked to the loci used in the breeding programs it was possible to differentiate the 11 fabada lines. Considering the genetic control of the resistance in resistant donor lines, the observed segregations in the last backcrossing generation, the reaction against the pathogens, and the expression of the molecular markers it was also possible to infer the genotype conferring resistance in the ten fabada breeding lines obtained. As a result of these breeding programs, genetic resistance to three anthracnose races controlled by genes included in clusters Co-2 and Co-3/9, and genetic resistance to BCM controlled by genotype I + bc-3 was combined in the fabada line A3308.

  13. A second generation genetic linkage map of Japanese flounder (Paralichthys olivaceus)

    PubMed Central

    2010-01-01

    Background Japanese flounder (Paralichthys olivaceus) is one of the most economically important marine species in Northeast Asia. Information on genetic markers associated with quantitative trait loci (QTL) can be used in breeding programs to identify and select individuals carrying desired traits. Commercial production of Japanese flounder could be increased by developing disease-resistant fish and improving commercially important traits. Previous maps have been constructed with AFLP markers and a limited number of microsatellite markers. In this study, improved genetic linkage maps are presented. In contrast with previous studies, these maps were built mainly with a large number of codominant markers so they can potentially be used to analyze different families and populations. Results Sex-specific genetic linkage maps were constructed for the Japanese flounder including a total of 1,375 markers [1,268 microsatellites, 105 single nucleotide polymorphisms (SNPs) and two genes]; 1,167 markers are linked to the male map and 1,067 markers are linked to the female map. The lengths of the male and female maps are 1,147.7 cM and 833.8 cM, respectively. Based on estimations of map lengths, the female and male maps covered 79 and 82% of the genome, respectively. Recombination ratio in the new maps revealed F:M of 1:0.7. All linkage groups in the maps presented large differences in the location of sex-specific recombination hot-spots. Conclusions The improved genetic linkage maps are very useful for QTL analyses and marker-assisted selection (MAS) breeding programs for economically important traits in Japanese flounder. In addition, SNP flanking sequences were blasted against Tetraodon nigroviridis (puffer fish) and Danio rerio (zebrafish), and synteny analysis has been carried out. The ability to detect synteny among species or genera based on homology analysis of SNP flanking sequences may provide opportunities to complement initial QTL experiments with candidate gene approaches from homologous chromosomal locations identified in related model organisms. PMID:20937088

  14. Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes

    PubMed Central

    Sharma, Shivali; Upadhyaya, H. D.; Varshney, R. K.; Gowda, C. L. L.

    2013-01-01

    The narrow genetic base of cultivars coupled with low utilization of genetic resources are the major factors limiting grain legume production and productivity globally. Exploitation of new and diverse sources of variation is needed for the genetic enhancement of grain legumes. Wild relatives with enhanced levels of resistance/tolerance to multiple stresses provide important sources of genetic diversity for crop improvement. However, their exploitation for cultivar improvement is limited by cross-incompatibility barriers and linkage drags. Pre-breeding provides a unique opportunity, through the introgression of desirable genes from wild germplasm into genetic backgrounds readily used by the breeders with minimum linkage drag, to overcome this. Pre-breeding activities using promising landraces, wild relatives, and popular cultivars have been initiated at International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) to develop new gene pools in chickpea, pigeonpea, and groundnut with a high frequency of useful genes, wider adaptability, and a broad genetic base. The availability of molecular markers will greatly assist in reducing linkage drags and increasing the efficiency of introgression in pre-breeding programs. PMID:23970889

  15. Mapping and QTL analysis of drought tolerance in a spring wheat population using AFLP and DArt markers

    USDA-ARS?s Scientific Manuscript database

    Water availability is commonly the most limiting factor to crop production. This study was conducted to map quantitative trait loci (QTL) involved in drought tolerance in wheat (Triticum aestivum L.) to enable their use for marker assisted selection (MAS) in breeding. Using amplified fragment leng...

  16. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs

    PubMed Central

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2015-01-01

    Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios. PMID:25750652

  17. Genomic selection needs to be carefully assessed to meet specific requirements in livestock breeding programs.

    PubMed

    Jonas, Elisabeth; de Koning, Dirk-Jan

    2015-01-01

    Genomic selection is a promising development in agriculture, aiming improved production by exploiting molecular genetic markers to design novel breeding programs and to develop new markers-based models for genetic evaluation. It opens opportunities for research, as novel algorithms and lab methodologies are developed. Genomic selection can be applied in many breeds and species. Further research on the implementation of genomic selection (GS) in breeding programs is highly desirable not only for the common good, but also the private sector (breeding companies). It has been projected that this approach will improve selection routines, especially in species with long reproduction cycles, late or sex-limited or expensive trait recording and for complex traits. The task of integrating GS into existing breeding programs is, however, not straightforward. Despite successful integration into breeding programs for dairy cattle, it has yet to be shown how much emphasis can be given to the genomic information and how much additional phenotypic information is needed from new selection candidates. Genomic selection is already part of future planning in many breeding companies of pigs and beef cattle among others, but further research is needed to fully estimate how effective the use of genomic information will be for the prediction of the performance of future breeding stock. Genomic prediction of production in crossbreeding and across-breed schemes, costs and choice of individuals for genotyping are reasons for a reluctance to fully rely on genomic information for selection decisions. Breeding objectives are highly dependent on the industry and the additional gain when using genomic information has to be considered carefully. This review synthesizes some of the suggested approaches in selected livestock species including cattle, pig, chicken, and fish. It outlines tasks to help understanding possible consequences when applying genomic information in breeding scenarios.

  18. Identification and genetic effect of haplotype in the bovine BMP7 gene.

    PubMed

    Huang, Yong-Zhen; Wang, Xin-Lei; He, Hua; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Chen, Hong

    2013-12-15

    Bone morphogenetic proteins (BMPs) are peptide growth factors belonging to the transforming growth factor-beta (TGF-β) superfamily, and some members of the BMP family support white adipocyte differentiation. In this study, we focused on the BMP7 which singularly promotes the differentiation of brown preadipocytes. Haplotypes involving 5 single nucleotide polymorphism (SNP) sites in the bovine BMP7 gene were identified and their effect on body weight was analyzed. 16 haplotypes and 18 combined haplotypes were revealed and the linkage disequilibrium was assessed in the cattle population with 602 individuals representing three main cattle breeds from China. The results showed that haplotypes 3, 10 and 14 were predominant and accounted for 75.64%, 69.85%, and 83.36% in Nanyang, Qinchuan and Jiaxian cattle breeds, respectively. The statistical analyses indicated that the SNP 1, 4, and 5 are associated with the body weight, body length, and heart girth at 12 and 24 months in Nanyang cattle population (P<0.05), whereas there is no significant association between their 16 haplotypes and 18 combined haplotypes. Our results provide evidence that some SNPs and haplotypes in BMP7 are associated with growth traits, and may be utilized as a genetic marker in marker-assisted selection for beef cattle breeding programs. Copyright © 2013. Published by Elsevier B.V.

  19. Development of a Genetic Map for Onion (Allium cepa L.) Using Reference-Free Genotyping-by-Sequencing and SNP Assays

    PubMed Central

    Jo, Jinkwan; Purushotham, Preethi M.; Han, Koeun; Lee, Heung-Ryul; Nah, Gyoungju; Kang, Byoung-Cheorl

    2017-01-01

    Single nucleotide polymorphisms (SNPs) play important roles as molecular markers in plant genomics and breeding studies. Although onion (Allium cepa L.) is an important crop globally, relatively few molecular marker resources have been reported due to its large genome and high heterozygosity. Genotyping-by-sequencing (GBS) offers a greater degree of complexity reduction followed by concurrent SNP discovery and genotyping for species with complex genomes. In this study, GBS was employed for SNP mining in onion, which currently lacks a reference genome. A segregating F2 population, derived from a cross between ‘NW-001’ and ‘NW-002,’ as well as multiple parental lines were used for GBS analysis. A total of 56.15 Gbp of raw sequence data were generated and 1,851,428 SNPs were identified from the de novo assembled contigs. Stringent filtering resulted in 10,091 high-fidelity SNP markers. Robust SNPs that satisfied the segregation ratio criteria and with even distribution in the mapping population were used to construct an onion genetic map. The final map contained eight linkage groups and spanned a genetic length of 1,383 centiMorgans (cM), with an average marker interval of 8.08 cM. These robust SNPs were further analyzed using the high-throughput Fluidigm platform for marker validation. This is the first study in onion to develop genome-wide SNPs using GBS. The resulting SNP markers and developed linkage map will be valuable tools for genetic mapping of important agronomic traits and marker-assisted selection in onion breeding programs. PMID:28959273

  20. Exploiting Wild Relatives for Genomics-assisted Breeding of Perennial Crops

    PubMed Central

    Migicovsky, Zoë; Myles, Sean

    2017-01-01

    Perennial crops are vital contributors to global food production and nutrition. However, the breeding of new perennial crops is an expensive and time-consuming process due to the large size and lengthy juvenile phase of many species. Genomics provides a valuable tool for improving the efficiency of breeding by allowing progeny possessing a trait of interest to be selected at the seed or seedling stage through marker-assisted selection (MAS). The benefits of MAS to a breeder are greatest when the targeted species takes a long time to reach maturity and is expensive to grow and maintain. Thus, MAS holds particular promise in perennials since they are often costly and time-consuming to grow to maturity and evaluate. Well-characterized germplasm that breeders can tap into for improving perennials is often limited in genetic diversity. Wild relatives are a largely untapped source of desirable traits including disease resistance, fruit quality, and rootstock characteristics. This review focuses on the use of genomics-assisted breeding in perennials, especially as it relates to the introgression of useful traits from wild relatives. The identification of genetic markers predictive of beneficial phenotypes derived from wild relatives is hampered by genomic tools designed for domesticated species that are often ill-suited for use in wild relatives. There is therefore an urgent need for better genomic resources from wild relatives. A further barrier to exploiting wild diversity through genomics is the phenotyping bottleneck: well-powered genetic mapping requires accurate and cost-effective characterization of large collections of diverse wild germplasm. While genomics will always be used in combination with traditional breeding methods, it is a powerful tool for accelerating the speed and reducing the costs of breeding while harvesting the potential of wild relatives for improving perennial crops. PMID:28421095

  1. Exploiting Wild Relatives for Genomics-assisted Breeding of Perennial Crops.

    PubMed

    Migicovsky, Zoë; Myles, Sean

    2017-01-01

    Perennial crops are vital contributors to global food production and nutrition. However, the breeding of new perennial crops is an expensive and time-consuming process due to the large size and lengthy juvenile phase of many species. Genomics provides a valuable tool for improving the efficiency of breeding by allowing progeny possessing a trait of interest to be selected at the seed or seedling stage through marker-assisted selection (MAS). The benefits of MAS to a breeder are greatest when the targeted species takes a long time to reach maturity and is expensive to grow and maintain. Thus, MAS holds particular promise in perennials since they are often costly and time-consuming to grow to maturity and evaluate. Well-characterized germplasm that breeders can tap into for improving perennials is often limited in genetic diversity. Wild relatives are a largely untapped source of desirable traits including disease resistance, fruit quality, and rootstock characteristics. This review focuses on the use of genomics-assisted breeding in perennials, especially as it relates to the introgression of useful traits from wild relatives. The identification of genetic markers predictive of beneficial phenotypes derived from wild relatives is hampered by genomic tools designed for domesticated species that are often ill-suited for use in wild relatives. There is therefore an urgent need for better genomic resources from wild relatives. A further barrier to exploiting wild diversity through genomics is the phenotyping bottleneck: well-powered genetic mapping requires accurate and cost-effective characterization of large collections of diverse wild germplasm. While genomics will always be used in combination with traditional breeding methods, it is a powerful tool for accelerating the speed and reducing the costs of breeding while harvesting the potential of wild relatives for improving perennial crops.

  2. Trichothecene resistance in wheat: Development of molecular markers for PDR-type ABC transporter genes.

    PubMed

    Mitterbauer, R; Heinrich, M; Rauscher, R; Lemmens, M; Bürstmayr, H; Adam, G

    2003-03-01

    Infection withFusarium graminearum andF. culmorum not only causes severe yield and quality losses, the most relevant concern is the contamination of cereal foods and feeds with trichothecenes (e.g. deoxynivalenol, DON). The ability to synthesize trichothecenes has been shown to be a virulence factor ofF. graminearum on wheat and, on the other hand, toxin resistance is most likely an important component of field resistance. Our hypothesis is that pleiotropic drug resistance mediated by PDR-type ABC transporter proteins (acting as membrane located drug efflux pumps) is a relevant mechanism of DON resistance not only in yeast but also in wheat. Goal of this project is the development of molecular markers for this gene family for use in marker-assisted plant breeding programs. The technical difficulties caused by the large size of the PDR-family are discussed.

  3. Genetic diversity and association mapping in the Colombian Central Collection of Solanum tuberosum L. Andigenum group using SNPs markers.

    PubMed

    Berdugo-Cely, Jhon; Valbuena, Raúl Iván; Sánchez-Betancourt, Erika; Barrero, Luz Stella; Yockteng, Roxana

    2017-01-01

    The potato (Solanum tuberosum L.) is the fourth most important crop food in the world and Colombia has one of the most important collections of potato germplasm in the world (the Colombian Central Collection-CCC). Little is known about its potential as a source of genetic diversity for molecular breeding programs. In this study, we analyzed 809 Andigenum group accessions from the CCC using 5968 SNPs to determine: 1) the genetic diversity and population structure of the Andigenum germplasm and 2) the usefulness of this collection to map qualitative traits across the potato genome. The genetic structure analysis based on principal components, cluster analyses, and Bayesian inference revealed that the CCC can be subdivided into two main groups associated with their ploidy level: Phureja (diploid) and Andigena (tetraploid). The Andigena population was more genetically diverse but less genetically substructured than the Phureja population (three vs. five subpopulations, respectively). The association mapping analysis of qualitative morphological data using 4666 SNPs showed 23 markers significantly associated with nine morphological traits. The present study showed that the CCC is a highly diverse germplasm collection genetically and phenotypically, useful to implement association mapping in order to identify genes related to traits of interest and to assist future potato genetic breeding programs.

  4. Genetic diversity and association mapping in the Colombian Central Collection of Solanum tuberosum L. Andigenum group using SNPs markers

    PubMed Central

    Berdugo-Cely, Jhon; Valbuena, Raúl Iván; Sánchez-Betancourt, Erika; Barrero, Luz Stella

    2017-01-01

    The potato (Solanum tuberosum L.) is the fourth most important crop food in the world and Colombia has one of the most important collections of potato germplasm in the world (the Colombian Central Collection-CCC). Little is known about its potential as a source of genetic diversity for molecular breeding programs. In this study, we analyzed 809 Andigenum group accessions from the CCC using 5968 SNPs to determine: 1) the genetic diversity and population structure of the Andigenum germplasm and 2) the usefulness of this collection to map qualitative traits across the potato genome. The genetic structure analysis based on principal components, cluster analyses, and Bayesian inference revealed that the CCC can be subdivided into two main groups associated with their ploidy level: Phureja (diploid) and Andigena (tetraploid). The Andigena population was more genetically diverse but less genetically substructured than the Phureja population (three vs. five subpopulations, respectively). The association mapping analysis of qualitative morphological data using 4666 SNPs showed 23 markers significantly associated with nine morphological traits. The present study showed that the CCC is a highly diverse germplasm collection genetically and phenotypically, useful to implement association mapping in order to identify genes related to traits of interest and to assist future potato genetic breeding programs. PMID:28257509

  5. Construction of a genetic linkage map and analysis of quantitative trait loci associated with the agronomically important traits of Pleurotus eryngii

    Treesearch

    Chak Han Im; Young-Hoon Park; Kenneth E. Hammel; Bokyung Park; Soon Wook Kwon; Hojin Ryu; Jae-San Ryu

    2016-01-01

    Breeding new strains with improved traits is a long-standing goal of mushroom breeders that can be expedited by marker-assisted selection (MAS). We constructed a genetic linkage map of Pleurotus eryngii based on segregation analysis of markers in postmeiotic monokaryons from KNR2312. In total, 256 loci comprising 226 simple sequence-repeat (SSR) markers, 2 mating-type...

  6. Genome wide association study (GWAS) for grain yield in rice cultivated under water deficit.

    PubMed

    Pantalião, Gabriel Feresin; Narciso, Marcelo; Guimarães, Cléber; Castro, Adriano; Colombari, José Manoel; Breseghello, Flavio; Rodrigues, Luana; Vianello, Rosana Pereira; Borba, Tereza Oliveira; Brondani, Claudio

    2016-12-01

    The identification of rice drought tolerant materials is crucial for the development of best performing cultivars for the upland cultivation system. This study aimed to identify markers and candidate genes associated with drought tolerance by Genome Wide Association Study analysis, in order to develop tools for use in rice breeding programs. This analysis was made with 175 upland rice accessions (Oryza sativa), evaluated in experiments with and without water restriction, and 150,325 SNPs. Thirteen SNP markers associated with yield under drought conditions were identified. Through stepwise regression analysis, eight SNP markers were selected and validated in silico, and when tested by PCR, two out of the eight SNP markers were able to identify a group of rice genotypes with higher productivity under drought. These results are encouraging for deriving markers for the routine analysis of marker assisted selection. From the drought experiment, including the genes inherited in linkage blocks, 50 genes were identified, from which 30 were annotated, and 10 were previously related to drought and/or abiotic stress tolerance, such as the transcription factors WRKY and Apetala2, and protein kinases.

  7. Genetics and genomics of disease resistance in salmonid species

    PubMed Central

    Yáñez, José M.; Houston, Ross D.; Newman, Scott

    2014-01-01

    Infectious and parasitic diseases generate large economic losses in salmon farming. A feasible and sustainable alternative to prevent disease outbreaks may be represented by genetic improvement for disease resistance. To include disease resistance into the breeding goal, prior knowledge of the levels of genetic variation for these traits is required. Furthermore, the information from the genetic architecture and molecular factors involved in resistance against diseases may be used to accelerate the genetic progress for these traits. In this regard, marker assisted selection and genomic selection are approaches which incorporate molecular information to increase the accuracy when predicting the genetic merit of selection candidates. In this article we review and discuss key aspects related to disease resistance in salmonid species, from both a genetic and genomic perspective, with emphasis in the applicability of disease resistance traits into breeding programs in salmonids. PMID:25505486

  8. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus ‘Robusta 5’ accessions

    PubMed Central

    2012-01-01

    Background Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus ‘Robusta 5’. In this study we identified markers derived from putative fire blight resistance genes associated with the QTL by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases. Results When several defined E.amylovora strains were used to inoculate three progenies from international breeding programs, all with ‘Robusta 5’ as a common parent, two distinct QTLs were detected on linkage group 3, where only one had previously been mapped. In the New Zealand ‘Malling 9’ X ‘Robusta 5’ population inoculated with E. amylovora ICMP11176, the proximal QTL co-located with SNP markers derived from a leucine-rich repeat, receptor-like protein ( MxdRLP1) and a closely linked class 3 peroxidase gene. While the QTL detected in the German ‘Idared’ X ‘Robusta 5’ population inoculated with E. amylovora strains Ea222_JKI or ICMP11176 was approximately 6 cM distal to this, directly below a SNP marker derived from a heat shock 90 family protein gene ( HSP90). In the US ‘Otawa3’ X ‘Robusta5’ population inoculated with E. amylovora strains Ea273 or E2002a, the position of the LOD score peak on linkage group 3 was dependent upon the pathogen strains used for inoculation. One of the five MxdRLP1 alleles identified in fire blight resistant and susceptible cultivars was genetically associated with resistance and used to develop a high resolution melting PCR marker. A resistance QTL detected on linkage group 7 of the US population co-located with another HSP90 gene-family member and a WRKY transcription factor previously associated with fire blight resistance. However, this QTL was not observed in the New Zealand or German populations. Conclusions The results suggest that the upper region of ‘Robusta 5’ linkage group 3 contains multiple genes contributing to fire blight resistance and that their contributions to resistance can vary depending upon pathogen virulence and other factors. Mapping markers derived from putative fire blight resistance genes has proved a useful aid in defining these QTLs and developing markers for marker-assisted breeding of fire blight resistance. PMID:22471693

  9. Genome-wide SNP identification, linkage map construction and QTL mapping for mineral nutrient concentrations and contents in pea (Pisum sativum L.)

    USDA-ARS?s Scientific Manuscript database

    Marker-assisted breeding is now routinely used in major crops to facilitate more efficient cultivar improvement. This has been significantly enabled by the use of next-generation sequencing technology to identify loci and markers associated with traits of interest. While rich in a variety of nutriti...

  10. The polymorphisms of bovine VEGF gene and their associations with growth traits in Chinese cattle.

    PubMed

    Pang, Yonghong; Wang, Juqiang; Zhang, Chunlei; Lei, Chuzhao; Lan, Xianyong; Yue, Wangping; Gu, Chuanwen; Chen, Danxia; Chen, Hong

    2011-02-01

    PCR-SSCP and DNA sequencing methods were employed to screen the genetic variation of VEGF gene in 671 individuals belonging to three Chinese indigenous cattle breeds including Nanyang, Jiaxian Red and Qinchuan. Three haplotypes (A, B and C), four observed genotypes (AA, AB, BB and AC) and three new SNPs (6765T>C ss130456744, 6860A>G ss130456745, 6893T>C ss130456746) were detected. The analysis suggested that one SNP (ss130456744) in the bovine VEGF gene had significant effects on birth weight, body weight and heart girth at 6 months old in the Nanyang breed (P < 0.05). The results showed that the SNP (ss130456744) in intron 2 of the VEGF gene is associated with early development and growth of Chinese cattle. These findings raise hope that this polymorphism can be a molecular breeding marker in breeding strategies through marker assisted selection (MAS) in Chinese domestic cattle.

  11. Genetic and genomic analyses for economically important traits and their applications in molecular breeding of cultured fish.

    PubMed

    Tong, JinGou; Sun, XiaoWen

    2015-02-01

    The traits of cultured fish must continually be genetically improved to supply high-quality animal protein for human consumption. Economically important fish traits are controlled by multiple gene quantitative trait loci (QTL), most of which have minor effects, but a few genes may have major effects useful for molecular breeding. In this review, we chose relevant studies on some of the most intensively cultured fish and concisely summarize progress on identifying and verifying QTLs for such traits as growth, disease and stress resistance and sex in recent decades. The potential applications of these major-effect genes and their associated markers in marker-assisted selection and molecular breeding, as well as future research directions are also discussed. These genetic and genomic analyses will be valuable for elucidating the mechanisms modulating economically important traits and to establish more effective molecular breeding techniques in fish.

  12. Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice.

    PubMed

    Hu, Jie; Xiao, Cong; He, Yuqing

    2016-12-01

    Brown planthopper (BPH) is the most devastating pest of rice. Host-plant resistance is the most desirable and economic strategy in the management of BPH. To date, 29 major BPH resistance genes have been identified from indica cultivars and wild rice species, and more than ten genes have been fine mapped to chromosome regions of less than 200 kb. Four genes (Bph14, Bph26, Bph17 and bph29) have been cloned. The increasing number of fine-mapped and cloned genes provide a solid foundation for development of functional markers for use in breeding. Several BPH resistant introgression lines (ILs), near-isogenic lines (NILs) and pyramided lines (PLs) carrying single or multiple resistance genes were developed by marker assisted backcross breeding (MABC). Here we review recent progress on the genetics and molecular breeding of BPH resistance in rice. Prospect for developing cultivars with durable, broad-spectrum BPH resistance are discussed.

  13. Genomics of pear and other Rosaceae fruit trees

    PubMed Central

    Yamamoto, Toshiya; Terakami, Shingo

    2016-01-01

    The family Rosaceae includes many economically important fruit trees, such as pear, apple, peach, cherry, quince, apricot, plum, raspberry, and loquat. Over the past few years, whole-genome sequences have been released for Chinese pear, European pear, apple, peach, Japanese apricot, and strawberry. These sequences help us to conduct functional and comparative genomics studies and to develop new cultivars with desirable traits by marker-assisted selection in breeding programs. These genomics resources also allow identification of evolutionary relationships in Rosaceae, development of genome-wide SNP and SSR markers, and construction of reference genetic linkage maps, which are available through the Genome Database for the Rosaceae website. Here, we review the recent advances in genomics studies and their practical applications for Rosaceae fruit trees, particularly pear, apple, peach, and cherry. PMID:27069399

  14. Genomics of pear and other Rosaceae fruit trees.

    PubMed

    Yamamoto, Toshiya; Terakami, Shingo

    2016-01-01

    The family Rosaceae includes many economically important fruit trees, such as pear, apple, peach, cherry, quince, apricot, plum, raspberry, and loquat. Over the past few years, whole-genome sequences have been released for Chinese pear, European pear, apple, peach, Japanese apricot, and strawberry. These sequences help us to conduct functional and comparative genomics studies and to develop new cultivars with desirable traits by marker-assisted selection in breeding programs. These genomics resources also allow identification of evolutionary relationships in Rosaceae, development of genome-wide SNP and SSR markers, and construction of reference genetic linkage maps, which are available through the Genome Database for the Rosaceae website. Here, we review the recent advances in genomics studies and their practical applications for Rosaceae fruit trees, particularly pear, apple, peach, and cherry.

  15. Groundnut improvement: use of genetic and genomic tools

    PubMed Central

    Janila, Pasupuleti; Nigam, S. N.; Pandey, Manish K.; Nagesh, P.; Varshney, Rajeev K.

    2013-01-01

    Groundnut (Arachis hypogaea L.), a self-pollinated legume is an important crop cultivated in 24 million ha world over for extraction of edible oil and food uses. The kernels are rich in oil (48–50%) and protein (25–28%), and are source of several vitamins, minerals, antioxidants, biologically active polyphenols, flavonoids, and isoflavones. Improved varieties of groundnut with high yield potential were developed and released for cultivation world over. The improved varieties belong to different maturity durations and possess resistance to diseases, tolerance to drought, enhanced oil content, and improved quality traits for food uses. Conventional breeding procedures along with the tools for phenotyping were largely used in groundnut improvement programs. Mutations were used to induce variability and wide hybridization was attempted to tap variability from wild species. Low genetic variability has been a bottleneck for groundnut improvement. The vast potential of wild species, reservoir of new alleles remains under-utilized. Development of linkage maps of groundnut during the last decade was followed by identification of markers and quantitative trait loci for the target traits. Consequently, the last decade has witnessed the deployment of molecular breeding approaches to complement the ongoing groundnut improvement programs in USA, China, India, and Japan. The other potential advantages of molecular breeding are the feasibility to target multiple traits for improvement and provide tools to tap new alleles from wild species. The first groundnut variety developed through marker-assisted back-crossing is a root-knot nematode-resistant variety, NemaTAM in USA. The uptake of molecular breeding approaches in groundnut improvement programs by NARS partners in India and many African countries is slow or needs to be initiated in part due to inadequate infrastructure, high genotyping costs, and human capacities. Availability of draft genome sequence for diploid (AA and BB) and tetraploid, AABB genome species of Arachis in coming years is expected to bring low-cost genotyping to the groundnut community that will facilitate use of modern genetics and breeding approaches such as genome-wide association studies for trait mapping and genomic selection for crop improvement. PMID:23443056

  16. Simulating a base population in honey bee for molecular genetic studies

    PubMed Central

    2012-01-01

    Background Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Results Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ2 statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r2 values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. Conclusion We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to constitute a genomic dataset compatible with the simulation studies necessary to optimize breeding programs. The source code together with an instruction file is freely accessible at http://msproteomics.org/Research/Misc/honeybeepopulationsimulator.html PMID:22520469

  17. Simulating a base population in honey bee for molecular genetic studies.

    PubMed

    Gupta, Pooja; Conrad, Tim; Spötter, Andreas; Reinsch, Norbert; Bienefeld, Kaspar

    2012-06-27

    Over the past years, reports have indicated that honey bee populations are declining and that infestation by an ecto-parasitic mite (Varroa destructor) is one of the main causes. Selective breeding of resistant bees can help to prevent losses due to the parasite, but it requires that a robust breeding program and genetic evaluation are implemented. Genomic selection has emerged as an important tool in animal breeding programs and simulation studies have shown that it yields more accurate breeding value estimates, higher genetic gain and low rates of inbreeding. Since genomic selection relies on marker data, simulations conducted on a genomic dataset are a pre-requisite before selection can be implemented. Although genomic datasets have been simulated in other species undergoing genetic evaluation, simulation of a genomic dataset specific to the honey bee is required since this species has a distinct genetic and reproductive biology. Our software program was aimed at constructing a base population by simulating a random mating honey bee population. A forward-time population simulation approach was applied since it allows modeling of genetic characteristics and reproductive behavior specific to the honey bee. Our software program yielded a genomic dataset for a base population in linkage disequilibrium. In addition, information was obtained on (1) the position of markers on each chromosome, (2) allele frequency, (3) χ(2) statistics for Hardy-Weinberg equilibrium, (4) a sorted list of markers with a minor allele frequency less than or equal to the input value, (5) average r(2) values of linkage disequilibrium between all simulated marker loci pair for all generations and (6) average r2 value of linkage disequilibrium in the last generation for selected markers with the highest minor allele frequency. We developed a software program that takes into account the genetic and reproductive biology specific to the honey bee and that can be used to constitute a genomic dataset compatible with the simulation studies necessary to optimize breeding programs. The source code together with an instruction file is freely accessible at http://msproteomics.org/Research/Misc/honeybeepopulationsimulator.html.

  18. Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.).

    PubMed

    Izquierdo, Paulo; Astudillo, Carolina; Blair, Matthew W; Iqbal, Asif M; Raatz, Bodo; Cichy, Karen A

    2018-05-11

    Twelve meta-QTL for seed Fe and Zn concentration and/or content were identified from 87 QTL originating from seven population grown in sixteen field trials. These meta-QTL include 2 specific to iron, 2 specific to zinc and 8 that co-localize for iron and zinc concentrations and/or content. Common bean (Phaseolus vulgaris L.) is the most important legume for human consumption worldwide and it is an important source of microelements, especially iron and zinc. Bean biofortification breeding programs develop new varieties with high levels of Fe and Zn targeted for countries with human micronutrient deficiencies. Biofortification efforts thus far have relied on phenotypic selection of raw seed mineral concentrations in advanced generations. While numerous quantitative trait loci (QTL) studies have been conducted to identify genomic regions associated with increased Fe and Zn concentration in seeds, these results have yet to be employed for marker-assisted breeding. The objective of this study was to conduct a meta-analysis from seven QTL studies in Andean and Middle American intra- and inter-gene pool populations to identify the regions in the genome that control the Fe and Zn levels in seeds. Two meta-QTL specific to Fe and two meta-QTL specific to Zn were identified. Additionally, eight Meta QTL that co-localized for Fe and Zn concentration and/or content were identified across seven chromosomes. The Fe and Zn shared meta-QTL could be useful candidates for marker-assisted breeding to simultaneously increase seed Fe and Zn. The physical positions for 12 individual meta-QTL were identified and within five of the meta-QTL, candidate genes were identified from six gene families that have been associated with transport of iron and zinc in plants.

  19. Will genomic selection be a practical method for plant breeding?

    PubMed

    Nakaya, Akihiro; Isobe, Sachiko N

    2012-11-01

    Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use. In this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed. Statistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory.

  20. Peptide biomarkers used for the selective breeding of a complex polygenic trait in honey bees.

    PubMed

    Guarna, M Marta; Hoover, Shelley E; Huxter, Elizabeth; Higo, Heather; Moon, Kyung-Mee; Domanski, Dominik; Bixby, Miriam E F; Melathopoulos, Andony P; Ibrahim, Abdullah; Peirson, Michael; Desai, Suresh; Micholson, Derek; White, Rick; Borchers, Christoph H; Currie, Robert W; Pernal, Stephen F; Foster, Leonard J

    2017-08-21

    We present a novel way to select for highly polygenic traits. For millennia, humans have used observable phenotypes to selectively breed stronger or more productive livestock and crops. Selection on genotype, using single-nucleotide polymorphisms (SNPs) and genome profiling, is also now applied broadly in livestock breeding programs; however, selection on protein/peptide or mRNA expression markers has not yet been proven useful. Here we demonstrate the utility of protein markers to select for disease-resistant hygienic behavior in the European honey bee (Apis mellifera L.). Robust, mechanistically-linked protein expression markers, by integrating cis- and trans- effects from many genomic loci, may overcome limitations of genomic markers to allow for selection. After three generations of selection, the resulting marker-selected stock outperformed an unselected benchmark stock in terms of hygienic behavior, and had improved survival when challenged with a bacterial disease or a parasitic mite, similar to bees selected using a phenotype-based assessment for this trait. This is the first demonstration of the efficacy of protein markers for industrial selective breeding in any agricultural species, plant or animal.

  1. The development of genomics applied to dairy breeding

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) has profoundly changed dairy cattle breeding in the last decade and can be defined as the use of genomic breeding values (GEBV) in selection programs. The GEBV is the sum of the effects of dense DNA markers across the whole genome, capturing all the quantitative trait loci (QT...

  2. Gene-assisted selection: applications of association genetics for forest tree breeding

    Treesearch

    Philip L. Wilcox; Craig E. Echt; Rowland D. Burdon

    2007-01-01

    This chapter describes application of association genetics in forest tree species for the purposes of selection. We use the term gene-assisted selection (GAS) to denote application of marker-trait associations determined via association genetics, which we anticipate will be based on poly morph isms associated with expressed genes. The salient features of forest trees...

  3. Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection.

    PubMed

    Huang, Jing; Guo, Na; Li, Yinghui; Sun, Jutao; Hu, Guanjun; Zhang, Haipeng; Li, Yanfei; Zhang, Xing; Zhao, Jinming; Xing, Han; Qiu, Lijuan

    2016-06-18

    Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most serious diseases affecting soybean (Glycine max (L.) Merr.) production all over the world. The most economical and environmentally-friendly way to control the disease is the exploration and utilization of resistant varieties. We screened a soybean mini core collection composed of 224 germplasm accessions for resistance against eleven P. sojae isolates. Soybean accessions from the Southern and Huanghuai regions, especially the Hubei, Jiangsu, Sichuan and Fujian provinces, had the most varied and broadest spectrum of resistance. Based on gene postulation, Rps1b, Rps1c, Rps4, Rps7 and novel resistance genes were identified in resistant accessions. Consequently, association mapping of resistance to each isolate was performed with 1,645 single nucleotide polymorphism (SNP) markers. A total of 14 marker-trait associations for Phytophthora resistance were identified. Among them, four were located in known PRR resistance loci intervals, five were located in other disease resistance quantitative trait locus (QTL) regions, and five associations unmasked novel loci for PRR resistance. In addition, we also identified candidate genes related to resistance. This is the first P. sojae resistance evaluation conducted using the Chinese soybean mini core collection, which is a representative sample of Chinese soybean cultivars. The resistance reaction analyses provided an excellent database of resistant resources and genetic variations for future breeding programs. The SNP markers associated with resistance will facilitate marker-assisted selection (MAS) in breeding programs for resistance to PRR, and the candidate genes may be useful for exploring the mechanism underlying P. sojae resistance.

  4. Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of indica rice.

    PubMed

    Steele, Katherine A; Quinton-Tulloch, Mark J; Amgai, Resham B; Dhakal, Rajeev; Khatiwada, Shambhu P; Vyas, Darshna; Heine, Martin; Witcombe, John R

    2018-01-01

    Few public sector rice breeders have the capacity to use NGS-derived markers in their breeding programmes despite rapidly expanding repositories of rice genome sequence data. They rely on > 18,000 mapped microsatellites (SSRs) for marker-assisted selection (MAS) using gel analysis. Lack of knowledge about target SNP and InDel variant loci has hampered the uptake by many breeders of Kompetitive allele-specific PCR (KASP), a proprietary technology of LGC genomics that can distinguish alleles at variant loci. KASP is a cost-effective single-step genotyping technology, cheaper than SSRs and more flexible than genotyping by sequencing (GBS) or array-based genotyping when used in selection programmes. Before this study, there were 2015 rice KASP marker loci in the public domain, mainly identified by array-based screening, leaving large proportions of the rice genome with no KASP coverage. Here we have addressed the urgent need for a wide choice of appropriate rice KASP assays and demonstrated that NGS can detect many more KASP to give full genome coverage. Through re-sequencing of nine indica rice breeding lines or released varieties, this study has identified 2.5 million variant sites. Stringent filtering of variants generated 1.3 million potential KASP assay designs, including 92,500 potential functional markers. This strategy delivers a 650-fold increase in potential selectable KASP markers at a density of 3.1 per 1 kb in the indica crosses analysed and 377,178 polymorphic KASP design sites on average per cross. This knowledge is available to breeders and has been utilised to improve the efficiency of public sector breeding in Nepal, enabling identification of polymorphic KASP at any region or quantitative trait loci in relevant crosses. Validation of 39 new KASP was carried out by genotyping progeny from a range of crosses to show that they detected segregating alleles. The new KASP have replaced SSRs to aid trait selection during marker-assisted backcrossing in these crosses, where target traits include rice blast and BLB resistance loci. Furthermore, we provide the software for plant breeders to generate KASP designs from their own datasets.

  5. Recent trends and perspectives of molecular markers against fungal diseases in wheat.

    PubMed

    Goutam, Umesh; Kukreja, Sarvjeet; Yadav, Rakesh; Salaria, Neha; Thakur, Kajal; Goyal, Aakash K

    2015-01-01

    Wheat accounts for 19% of the total production of major cereal crops in the world. In view of ever increasing population and demand for global food production, there is an imperative need of 40-60% increase in wheat production to meet the requirement of developing world in coming 40 years. However, both biotic and abiotic stresses are major hurdles for attaining the goal. Among the most important diseases in wheat, fungal diseases pose serious threat for widening the gap between actual and attainable yield. Fungal disease management, mainly, depends on the pathogen detection, genetic and pathological variability in population, development of resistant cultivars and deployment of effective resistant genes in different epidemiological regions. Wheat protection and breeding of resistant cultivars using conventional methods are time-consuming, intricate and slow processes. Molecular markers offer an excellent alternative in development of improved disease resistant cultivars that would lead to increase in crop yield. They are employed for tagging the important disease resistance genes and provide valuable assistance in increasing selection efficiency for valuable traits via marker assisted selection (MAS). Plant breeding strategies with known molecular markers for resistance and functional genomics enable a breeder for developing resistant cultivars of wheat against different fungal diseases.

  6. The forest and the trees: Applications for molecular markers in the Pecan Breeding Program

    USDA-ARS?s Scientific Manuscript database

    Inventory specific verification of accession identity is crucial to the function of the National Collection of Genetic Resources (NCGR) for Pecans and Hickories, and is an increasingly important component of the USDA ARS Pecan Breeding Program. The foundation of the NCGR is the living trees maintai...

  7. Identification of sequence-related amplified polymorphism markers linked to the red leaf trait in ornamental kale (Brassica oleracea L. var. acephala).

    PubMed

    Wang, Y S; Liu, Z Y; Li, Y F; Zhang, Y; Yang, X F; Feng, H

    2013-04-02

    Artistic diversiform leaf color is an important agronomic trait that affects the market value of ornamental kale. In the present study, genetic analysis showed that a single-dominant gene, Re (red leaf), determines the red leaf trait in ornamental kale. An F2 population consisting of 500 individuals from the cross of a red leaf double-haploid line 'D05' with a white leaf double-haploid line 'D10' was analyzed for the red leaf trait. By combining bulked segregant analysis and sequence-related amplified polymorphism technology, we identified 3 markers linked to the Re/re locus. A genetic map of the Re locus was constructed using these sequence-related amplified polymorphism markers. Two of the markers, Me8Em4 and Me8Em17, were located on one side of Re/re at distances of 2.2 and 6.4 cM, whereas the other marker, Me9Em11, was located on the other side of Re/re at a distance of 3.7 cM. These markers could be helpful for the subsequent cloning of the red trait gene and marker-assisted selection in ornamental kale breeding programs.

  8. Genome Mapping and Molecular Breeding of Tomato

    PubMed Central

    Foolad, Majid R.

    2007-01-01

    The cultivated tomato, Lycopersicon esculentum, is the second most consumed vegetable worldwide and a well-studied crop species in terms of genetics, genomics, and breeding. It is one of the earliest crop plants for which a genetic linkage map was constructed, and currently there are several molecular maps based on crosses between the cultivated and various wild species of tomato. The high-density molecular map, developed based on an L. esculentum × L. pennellii cross, includes more than 2200 markers with an average marker distance of less than 1 cM and an average of 750 kbp per cM. Different types of molecular markers such as RFLPs, AFLPs, SSRs, CAPS, RGAs, ESTs, and COSs have been developed and mapped onto the 12 tomato chromosomes. Markers have been used extensively for identification and mapping of genes and QTLs for many biologically and agriculturally important traits and occasionally for germplasm screening, fingerprinting, and marker-assisted breeding. The utility of MAS in tomato breeding has been restricted largely due to limited marker polymorphism within the cultivated species and economical reasons. Also, when used, MAS has been employed mainly for improving simply-inherited traits and not much for improving complex traits. The latter has been due to unavailability of reliable PCR-based markers and problems with linkage drag. Efforts are being made to develop high-throughput markers with greater resolution, including SNPs. The expanding tomato EST database, which currently includes ∼214 000 sequences, the new microarray DNA chips, and the ongoing sequencing project are expected to aid development of more practical markers. Several BAC libraries have been developed that facilitate map-based cloning of genes and QTLs. Sequencing of the euchromatic portions of the tomato genome is paving the way for comparative and functional analysis of important genes and QTLs. PMID:18364989

  9. Validation of candidate gene markers for marker-assisted selection of potato cultivars with improved tuber quality.

    PubMed

    Li, Li; Tacke, Eckhard; Hofferbert, Hans-Reinhardt; Lübeck, Jens; Strahwald, Josef; Draffehn, Astrid M; Walkemeier, Birgit; Gebhardt, Christiane

    2013-04-01

    Tuber yield, starch content, starch yield and chip color are complex traits that are important for industrial uses and food processing of potato. Chip color depends on the quantity of reducing sugars glucose and fructose in the tubers, which are generated by starch degradation. Reducing sugars accumulate when tubers are stored at low temperatures. Early and efficient selection of cultivars with superior yield, starch yield and chip color is hampered by the fact that reliable phenotypic selection requires multiple year and location trials. Application of DNA-based markers early in the breeding cycle, which are diagnostic for superior alleles of genes that control natural variation of tuber quality, will reduce the number of clones to be evaluated in field trials. Association mapping using genes functional in carbohydrate metabolism as markers has discovered alleles of invertases and starch phosphorylases that are associated with tuber quality traits. Here, we report on new DNA variants at loci encoding ADP-glucose pyrophosphorylase and the invertase Pain-1, which are associated with positive or negative effect with chip color, tuber starch content and starch yield. Marker-assisted selection (MAS) and marker validation were performed in tetraploid breeding populations, using various combinations of 11 allele-specific markers associated with tuber quality traits. To facilitate MAS, user-friendly PCR assays were developed for specific candidate gene alleles. In a multi-parental population of advanced breeding clones, genotypes were selected for having different combinations of five positive and the corresponding negative marker alleles. Genotypes combining five positive marker alleles performed on average better than genotypes with four negative alleles and one positive allele. When tested individually, seven of eight markers showed an effect on at least one quality trait. The direction of effect was as expected. Combinations of two to three marker alleles were identified that significantly improved average chip quality after cold storage and tuber starch content. In F1 progeny of a single-cross combination, MAS with six markers did not give the expected result. Reasons and implications for MAS in potato are discussed.

  10. Association mapping of seed and disease resistance traits in Theobroma cacao L.

    PubMed

    Motilal, Lambert A; Zhang, Dapeng; Mischke, Sue; Meinhardt, Lyndel W; Boccara, Michel; Fouet, Olivier; Lanaud, Claire; Umaharan, Pathmanathan

    2016-12-01

    Microsatellite and single nucleotide polymorphism markers that could be used in marker assisted breeding of cacao were identified for number of filled seeds, black pod resistance and witches' broom disease resistance. An association mapping approach was employed to identify markers for seed number and resistance to black pod and witches' broom disease (WBD) in cacao (Theobroma cacao L.). Ninety-five microsatellites (SSRs) and 775 single nucleotide polymorphisms (SNPs) were assessed on 483 unique trees in the International Cocoa Genebank Trinidad (ICGT). Linkage disequilibrium (LD) and association mapping studies were conducted to identify markers to tag the phenotypic traits. Decay of LD occurred over an average 9.3 cM for chromosomes 1-9 and 2.5 cM for chromosome 10. Marker/trait associations were generally identified based on general linear models (GLMs) that incorporated principal components from molecular information on relatedness factor. Seven markers (mTcCIR 8, 66, 126, 212; TcSNP368, 697, 1370) on chromosomes 1 and 9 were identified for number of filled seeds (NSEED). A single marker was found for black pod resistance (mTcCIR280) on chromosome 3, whereas six markers on chromosomes 4, 5, 6, 8, and 10 were detected for WBD (mTcCIR91, 183; TcSNP375, 720, 1230 and 1374). It is expected that this association mapping study in cacao would contribute to the knowledge of the genetic determinism of cocoa traits and that the markers identified herein would prove useful in marker assisted breeding of cacao.

  11. Association of RGA-SSCP markers with resistance to downy mildew and anthracnose in grapevines.

    PubMed

    Tantasawat, P A; Poolsawat, O; Prajongjai, T; Chaowiset, W; Tharapreuksapong, A

    2012-07-02

    Downy mildew (Plasmopara viticola) and anthracnose (Sphaceloma ampelinum) are two major diseases that severely affect most grapevine (Vitis vinifera) cultivars grown commercially in Thailand. Progress of conventional breeding programs of grapevine for improved resistance to these diseases can be speeded up by selection of molecular markers associated with resistance traits. We evaluated the association between 13 resistance gene analog (RGA)-single-strand conformation polymorphism (SSCP) markers with resistance to downy mildew and anthracnose in 71 segregating progenies of seven cross combinations between susceptible cultivars and resistant lines. F(1) hybrids from each cross were assessed for resistance to downy mildew and anthracnose (isolates Nk4-1 and Rc2-1) under laboratory conditions. Association of resistance traits with RGA-SSCP markers was evaluated using simple linear regression analysis. Three RGA-SSCP markers were found to be significantly correlated with anthracnose resistance, whereas significant correlation with downy mildew resistance was observed for only one RGA-SSCP marker. These results demonstrate the usefulness of RGA-SSCP markers. Four candidate markers with significant associations to resistance to these two major diseases of grapevine were identified. However, these putative associations between markers and resistance need to be verified with larger segregating populations before they can be used for marker-assisted selection.

  12. Characterization and mapping of leaf rust resistance in four durum wheat cultivars.

    PubMed

    Kthiri, Dhouha; Loladze, Alexander; MacLachlan, P R; N'Diaye, Amidou; Walkowiak, Sean; Nilsen, Kirby; Dreisigacker, Susanne; Ammar, Karim; Pozniak, Curtis J

    2018-01-01

    Widening the genetic basis of leaf rust resistance is a primary objective of the global durum wheat breeding effort at the International Wheat and Maize Improvement Center (CIMMYT). Breeding programs in North America are following suit, especially after the emergence of new races of Puccinia triticina such as BBG/BP and BBBQD in Mexico and the United States, respectively. This study was conducted to characterize and map previously undescribed genes for leaf rust resistance in durum wheat and to develop reliable molecular markers for marker-assisted breeding. Four recombinant inbred line (RIL) mapping populations derived from the resistance sources Amria, Byblos, Geromtel_3 and Tunsyr_2, which were crossed to the susceptible line ATRED #2, were evaluated for their reaction to the Mexican race BBG/BP of P. triticina. Genetic analyses of host reactions indicated that leaf rust resistance in these genotypes was based on major seedling resistance genes. Allelism tests among resistant parents supported that Amria and Byblos carried allelic or closely linked genes. The resistance in Geromtel_3 and Tunsyr_2 also appeared to be allelic. Bulked segregant analysis using the Infinium iSelect 90K single nucleotide polymorphism (SNP) array identified two genomic regions for leaf rust resistance; one on chromosome 6BS for Geromtel_3 and Tunsyr_2 and the other on chromosome 7BL for Amria and Byblos. Polymorphic SNPs identified within these regions were converted to kompetitive allele-specific PCR (KASP) assays and used to genotype the RIL populations. KASP markers usw215 and usw218 were the closest to the resistance genes in Geromtel_3 and Tunsyr_2, while usw260 was closely linked to the resistance genes in Amria and Byblos. DNA sequences associated with these SNP markers were anchored to the wild emmer wheat (WEW) reference sequence, which identified several candidate resistance genes. The molecular markers reported herein will be useful to effectively pyramid these resistance genes with other previously marked genes into adapted, elite durum wheat genotypes.

  13. Characterization and mapping of leaf rust resistance in four durum wheat cultivars

    PubMed Central

    Kthiri, Dhouha; Loladze, Alexander; MacLachlan, P. R.; N’Diaye, Amidou; Walkowiak, Sean; Nilsen, Kirby; Dreisigacker, Susanne; Ammar, Karim

    2018-01-01

    Widening the genetic basis of leaf rust resistance is a primary objective of the global durum wheat breeding effort at the International Wheat and Maize Improvement Center (CIMMYT). Breeding programs in North America are following suit, especially after the emergence of new races of Puccinia triticina such as BBG/BP and BBBQD in Mexico and the United States, respectively. This study was conducted to characterize and map previously undescribed genes for leaf rust resistance in durum wheat and to develop reliable molecular markers for marker-assisted breeding. Four recombinant inbred line (RIL) mapping populations derived from the resistance sources Amria, Byblos, Geromtel_3 and Tunsyr_2, which were crossed to the susceptible line ATRED #2, were evaluated for their reaction to the Mexican race BBG/BP of P. triticina. Genetic analyses of host reactions indicated that leaf rust resistance in these genotypes was based on major seedling resistance genes. Allelism tests among resistant parents supported that Amria and Byblos carried allelic or closely linked genes. The resistance in Geromtel_3 and Tunsyr_2 also appeared to be allelic. Bulked segregant analysis using the Infinium iSelect 90K single nucleotide polymorphism (SNP) array identified two genomic regions for leaf rust resistance; one on chromosome 6BS for Geromtel_3 and Tunsyr_2 and the other on chromosome 7BL for Amria and Byblos. Polymorphic SNPs identified within these regions were converted to kompetitive allele-specific PCR (KASP) assays and used to genotype the RIL populations. KASP markers usw215 and usw218 were the closest to the resistance genes in Geromtel_3 and Tunsyr_2, while usw260 was closely linked to the resistance genes in Amria and Byblos. DNA sequences associated with these SNP markers were anchored to the wild emmer wheat (WEW) reference sequence, which identified several candidate resistance genes. The molecular markers reported herein will be useful to effectively pyramid these resistance genes with other previously marked genes into adapted, elite durum wheat genotypes. PMID:29746580

  14. Additive Genetic Variability and the Bayesian Alphabet

    PubMed Central

    Gianola, Daniel; de los Campos, Gustavo; Hill, William G.; Manfredi, Eduardo; Fernando, Rohan

    2009-01-01

    The use of all available molecular markers in statistical models for prediction of quantitative traits has led to what could be termed a genomic-assisted selection paradigm in animal and plant breeding. This article provides a critical review of some theoretical and statistical concepts in the context of genomic-assisted genetic evaluation of animals and crops. First, relationships between the (Bayesian) variance of marker effects in some regression models and additive genetic variance are examined under standard assumptions. Second, the connection between marker genotypes and resemblance between relatives is explored, and linkages between a marker-based model and the infinitesimal model are reviewed. Third, issues associated with the use of Bayesian models for marker-assisted selection, with a focus on the role of the priors, are examined from a theoretical angle. The sensitivity of a Bayesian specification that has been proposed (called “Bayes A”) with respect to priors is illustrated with a simulation. Methods that can solve potential shortcomings of some of these Bayesian regression procedures are discussed briefly. PMID:19620397

  15. Molecular Diversity Analysis and Genetic Mapping of Pod Shatter Resistance Loci in Brassica carinata L.

    PubMed Central

    Raman, Rosy; Qiu, Yu; Coombes, Neil; Song, Jie; Kilian, Andrzej; Raman, Harsh

    2017-01-01

    Seed lost due to easy pod dehiscence at maturity (pod shatter) is a major problem in several members of Brassicaceae family. We investigated the level of pod shatter resistance in Ethiopian mustard (Brassica carinata) and identified quantitative trait loci (QTL) for targeted introgression of this trait in Ethiopian mustard and its close relatives of the genus Brassica. A set of 83 accessions of B. carinata, collected from the Australian Grains Genebank, was evaluated for pod shatter resistance based on pod rupture energy (RE). In comparison to B. napus (RE = 2.16 mJ), B. carinata accessions had higher RE values (2.53 to 20.82 mJ). A genetic linkage map of an F2 population from two contrasting B. carinata selections, BC73526 (shatter resistant with high RE) and BC73524 (shatter prone with low RE) comprising 300 individuals, was constructed using a set of 6,464 high quality DArTseq markers and subsequently used for QTL analysis. Genetic analysis of the F2 and F2:3 derived lines revealed five statistically significant QTL (LOD ≥ 3) that are linked with pod shatter resistance on chromosomes B1, B3, B8, and C5. Herein, we report for the first time, identification of genetic loci associated with pod shatter resistance in B. carinata. These characterized accessions would be useful in Brassica breeding programs for introgression of pod shatter resistance alleles in to elite breeding lines. Molecular markers would assist marker-assisted selection for tracing the introgression of resistant alleles. Our results suggest that the value of the germplasm collections can be harnessed through genetic and genomics tools. PMID:29250080

  16. Current advance methods for the identification of blast resistance genes in rice.

    PubMed

    Tanweer, Fatah A; Rafii, Mohd Y; Sijam, Kamaruzaman; Rahim, Harun A; Ahmed, Fahim; Latif, Mohammad A

    2015-05-01

    Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice around the world and crop losses due to blast are considerably high. Many blast resistant rice varieties have been developed by classical plant breeding and adopted by farmers in various rice-growing countries. However, the variability in the pathogenicity of the blast fungus according to environment made blast disease a major concern for farmers, which remains a threat to the rice industry. With the utilization of molecular techniques, plant breeders have improved rice production systems and minimized yield losses. In this article, we have summarized the current advanced molecular techniques used for controlling blast disease. With the advent of new technologies like marker-assisted selection, molecular mapping, map-based cloning, marker-assisted backcrossing and allele mining, breeders have identified more than 100 Pi loci and 350 QTL in rice genome responsible for blast disease. These Pi genes and QTLs can be introgressed into a blast-susceptible cultivar through marker-assisted backcross breeding. These molecular techniques provide timesaving, environment friendly and labour-cost-saving ways to control blast disease. The knowledge of host-plant interactions in the frame of blast disease will lead to develop resistant varieties in the future. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  17. Linkage disequilibrium, persistence of phase, and effective population size in Spanish local beef cattle breeds assessed through a high-density single nucleotide polymorphism chip.

    PubMed

    Cañas-Álvarez, J J; Mouresan, E F; Varona, L; Díaz, C; Molina, A; Baro, J A; Altarriba, J; Carabaño, M J; Casellas, J; Piedrafita, J

    2016-07-01

    Linkage disequilibrium (LD) and persistence of phase are fundamental approaches for exploring the genetic basis of economically important traits in cattle, including the identification of QTL for genomic selection and the estimation of effective population size () to determine the size of the training populations. In this study, we have used the Illumina BovineHD chip in 168 trios of 7 Spanish beef cattle breeds to obtain an overview of the magnitude of LD and the persistence of LD phase through the physical distance between markers. Also, we estimated the time of divergence based on the persistence of the LD phase and calculated past from LD estimates using different alternatives to define the recombination rate. Estimates of average (as a measure of LD) for adjacent markers were close to 0.52 in the 7 breeds and decreased with the distance between markers, although in long distances, some LD still remained (0.07 and 0.05 for markers 200 kb and 1 Mb apart, respectively). A panel with a lower boundary of 38,000 SNP would be necessary to launch a successful within-breed genomic selection program. Persistence of phase, measured as the pairwise correlations between estimates of in 2 breeds at short distances (10 kb), was in the 0.89 to 0.94 range and decreased from 0.33 to 0.52 to a range of 0.01 to 0.08 when marker distance increased from 200 kb to 1 Mb, respectively. The magnitude of the persistence of phase between the Spanish beef breeds was similar to those found in dairy breeds. For across-breed genomic selection, the size of the SNP panels must be in the range of 50,000 to 83,000 SNP. Estimates of past showed values ranging from 26 to 31 for 1 generation ago in all breeds. The divergence among breeds occurred between 129 and 207 generations ago. The results of this study are relevant for the future implementation of within- and across-breed genomic selection programs in the Spanish beef cattle populations. Our results suggest that a reduced subset of the SNP panel would be enough to achieve an adequate precision of the genomic predictions.

  18. Genetic analysis and identification of SSR markers associated with rice blast disease in a BC2F1 backcross population.

    PubMed

    Hasan, N; Rafii, M Y; Abdul Rahim, H; Nusaibah, S A; Mazlan, N; Abdullah, S

    2017-01-23

    Rice (Oryza sativa L.) blast disease is one of the most destructive rice diseases in the world. The fungal pathogen, Magnaporthe oryzae, is the causal agent of rice blast disease. Development of resistant cultivars is the most preferred method to achieve sustainable rice production. However, the effectiveness of resistant cultivars is hindered by the genetic plasticity of the pathogen genome. Therefore, information on genetic resistance and virulence stability are vital to increase our understanding of the molecular basis of blast disease resistance. The present study set out to elucidate the resistance pattern and identify potential simple sequence repeat markers linked with rice blast disease. A backcross population (BC 2 F 1 ), derived from crossing MR264 and Pongsu Seribu 2 (PS2), was developed using marker-assisted backcross breeding. Twelve microsatellite markers carrying the blast resistance gene clearly demonstrated a polymorphic pattern between both parental lines. Among these, two markers, RM206 and RM5961, located on chromosome 11 exhibited the expected 1:1 testcross ratio in the BC 2 F 1 population. The 195 BC 2 F 1 plants inoculated against M. oryzae pathotype P7.2 showed a significantly different distribution in the backcrossed generation and followed Mendelian segregation based on a single-gene model. This indicates that blast resistance in PS2 is governed by a single dominant gene, which is linked to RM206 and RM5961 on chromosome 11. The findings presented in this study could be useful for future blast resistance studies in rice breeding programs.

  19. Will genomic selection be a practical method for plant breeding?

    PubMed Central

    Nakaya, Akihiro; Isobe, Sachiko N.

    2012-01-01

    Background Genomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use. Scope In this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed. Conclusions Statistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory. PMID:22645117

  20. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines.

    PubMed

    Spindel, Jennifer; Begum, Hasina; Akdemir, Deniz; Virk, Parminder; Collard, Bertrand; Redoña, Edilberto; Atlin, Gary; Jannink, Jean-Luc; McCouch, Susan R

    2015-02-01

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.

  1. Genomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic Selection in Elite, Tropical Rice Breeding Lines

    PubMed Central

    Spindel, Jennifer; Begum, Hasina; Akdemir, Deniz; Virk, Parminder; Collard, Bertrand; Redoña, Edilberto; Atlin, Gary; Jannink, Jean-Luc; McCouch, Susan R.

    2015-01-01

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute's (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline. PMID:25689273

  2. Diversity and genetic stability in banana genotypes in a breeding program using inter simple sequence repeats (ISSR) markers.

    PubMed

    Silva, A V C; Nascimento, A L S; Vitória, M F; Rabbani, A R C; Soares, A N R; Lédo, A S

    2017-02-23

    Banana (Musa spp) is a fruit species frequently cultivated and consumed worldwide. Molecular markers are important for estimating genetic diversity in germplasm and between genotypes in breeding programs. The objective of this study was to analyze the genetic diversity of 21 banana genotypes (FHIA 23, PA42-44, Maçã, Pacovan Ken, Bucaneiro, YB42-47, Grand Naine, Tropical, FHIA 18, PA94-01, YB42-17, Enxerto, Japira, Pacovã, Prata-Anã, Maravilha, PV79-34, Caipira, Princesa, Garantida, and Thap Maeo), by using inter-simple sequence repeat (ISSR) markers. Material was generated from the banana breeding program of Embrapa Cassava & Fruits and evaluated at Embrapa Coastal Tablelands. The 12 primers used in this study generated 97.5% polymorphism. Four clusters were identified among the different genotypes studied, and the sum of the first two principal components was 48.91%. From the Unweighted Pair Group Method using Arithmetic averages (UPGMA) dendrogram, it was possible to identify two main clusters and subclusters. Two genotypes (Garantida and Thap Maeo) remained isolated from the others, both in the UPGMA clustering and in the principal cordinate analysis (PCoA). Using ISSR markers, we could analyze the genetic diversity of the studied material and state that these markers were efficient at detecting sufficient polymorphism to estimate the genetic variability in banana genotypes.

  3. S-genotype identification based on allele-specific PCR in Japanese pear

    PubMed Central

    Nashima, Kenji; Terakami, Shingo; Nishio, Sogo; Kunihisa, Miyuki; Nishitani, Chikako; Saito, Toshihiro; Yamamoto, Toshiya

    2015-01-01

    Gametophytic self-incompatibility in Japanese pear (Pyrus pyrifolia Nakai) is controlled by the single, multi-allelic S-locus. Information about the S-genotypes is important for breeding and the selection of pollen donors for fruit production. Rapid and reliable S-genotype identification system is necessary for efficient breeding of new cultivars in Japanese pear. We designed S allele-specific PCR primer pairs for ten previously reported S-RNase alleles (S1–S9 and Sk) as simple and reliable method. Specific nucleotide sequences were chosen to design the primers to amplify fragments of only the corresponding S alleles. The developed primer pairs were evaluated by using homozygous S-genotypes (S1/S1–S9/S9 and S4sm/S4sm) and 14 major Japanese pear cultivars, and found that S allele-specific primer pairs can identify S-genotypes effectively. The S allele-specific primer pairs developed in this study will be useful for efficient S-genotyping and for marker-assisted selection in Japanese pear breeding programs. PMID:26175617

  4. Development of Elite BPH-Resistant Wide-Spectrum Restorer Lines for Three and Two Line Hybrid Rice.

    PubMed

    Fan, Fengfeng; Li, Nengwu; Chen, Yunping; Liu, Xingdan; Sun, Heng; Wang, Jie; He, Guangcun; Zhu, Yingguo; Li, Shaoqing

    2017-01-01

    Hybrid rice has contributed significantly to the world food security. Breeding of elite high-yield, strong-resistant broad-spectrum restorer line is an important strategy for hybrid rice in commercial breeding programs. Here, we developed three elite brown planthopper (BPH)-resistant wide-spectrum restorer lines by pyramiding big-panicle gene Gn8.1 , BPH-resistant genes Bph6 and Bph9 , fertility restorer genes Rf3, Rf4, Rf5 , and Rf6 through molecular marker assisted selection. Resistance analysis revealed that the newly developed restorer lines showed stronger BPH-resistance than any of the single-gene donor parent Luoyang-6 and Luoyang-9. Moreover, the three new restorer lines had broad spectrum recovery capabilities for Honglian CMS, Wild abortive CMS and two-line GMS sterile lines, and higher grain yields than that of the recurrent parent 9,311 under nature field conditions. Importantly, the hybrid crosses also showed good performance for grain yield and BPH-resistance. Thus, the development of elite BPH-resistant wide-spectrum restorer lines has a promising future for breeding of broad spectrum BPH-resistant high-yield varieties.

  5. High-throughput genotyping of hop (Humulus lupulus L.) utilising diversity arrays technology (DArT).

    PubMed

    Howard, E L; Whittock, S P; Jakše, J; Carling, J; Matthews, P D; Probasco, G; Henning, J A; Darby, P; Cerenak, A; Javornik, B; Kilian, A; Koutoulis, A

    2011-05-01

    Implementation of molecular methods in hop (Humulus lupulus L.) breeding is dependent on the availability of sizeable numbers of polymorphic markers and a comprehensive understanding of genetic variation. However, use of molecular marker technology is limited due to expense, time inefficiency, laborious methodology and dependence on DNA sequence information. Diversity arrays technology (DArT) is a high-throughput cost-effective method for the discovery of large numbers of quality polymorphic markers without reliance on DNA sequence information. This study is the first to utilise DArT for hop genotyping, identifying 730 polymorphic markers from 92 hop accessions. The marker quality was high and similar to the quality of DArT markers previously generated for other species; although percentage polymorphism and polymorphism information content (PIC) were lower than in previous studies deploying other marker systems in hop. Genetic relationships in hop illustrated by DArT in this study coincide with knowledge generated using alternate methods. Several statistical analyses separated the hop accessions into genetically differentiated North American and European groupings, with hybrids between the two groups clearly distinguishable. Levels of genetic diversity were similar in the North American and European groups, but higher in the hybrid group. The markers produced from this time and cost-efficient genotyping tool will be a valuable resource for numerous applications in hop breeding and genetics studies, such as mapping, marker-assisted selection, genetic identity testing, guidance in the maintenance of genetic diversity and the directed breeding of superior cultivars.

  6. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also willmore » be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely to be similar to IVDMD, it is likely that they will not be highly positively correlated with yield. Hence to achieve target yields and improve specific quality traits, it will likely be necessary to increase the resources available to plant breeders. Marker assisted selection will be extremely useful in breeding for quality traits, particularly for traits that can be affected by modifying a few genes. Genetic markers are going to be needed for monitoring gene flow to wild populations. Transformation will be a very useful tool for determining the affects of specific genes on biomass feedstock quality.« less

  7. Genetic evaluation of the Association of Zoos and Aquariums Matschie's tree kangaroo (Dendrolagus matschiei) captive breeding program.

    PubMed

    McGreevy, Thomas J; Dabek, Lisa; Husband, Thomas P

    2011-01-01

    Matschie's tree kangaroo (Dendrolagus matschiei) is an endangered species that has been bred in captivity since the 1970s. In 1992, the Tree Kangaroo Species Survival Plan(®) (TKSSP) was established to coordinate the captive management of Association of Zoos and Aquariums (AZA) D. matschiei. The TKSSP makes annual breeding recommendations primarily based on the mean kinship (MK) strategy. Captive breeding programs often use the MK strategy to preserve genetic diversity in small populations-to avoid the negative consequences of inbreeding and retain their adaptive potential. The ability of a captive breeding program to retain the population's genetic diversity over time can be evaluated by comparing the genetic diversity of the captive population to wild populations. We analyzed DNA extracted from blood and fecal samples from AZA (n = 71), captive (n = 28), and wild (n = 22) D. matschiei using eight microsatellite markers and sequenced the partial mitochondrial DNA control region gene. AZA D. matschiei had a similar expected heterozygosity (H(e) = 0.595 ± 0.184) compared with wild D. matschiei (H(e) = 0.628 ± 0.143), but they had different allelic frequencies (F(ST) = 0.126; P < 0.001). AZA D. matschiei haplotype diversity was almost two times lower than wild D. matschiei Ĥ = 0.740 ± 0.063. These data will assist management of AZA D. matschiei and serve as a baseline for AZA and wild D. matschiei genetic diversity values that could be used to monitor future changes in their genetic diversity. © 2010 Wiley Periodicals, Inc.

  8. Disease resistance breeding in rose: current status and potential of biotechnological tools.

    PubMed

    Debener, Thomas; Byrne, David H

    2014-11-01

    The cultivated rose is a multispecies complex for which a high level of disease protection is needed due to the low tolerance of blemishes in ornamental plants. The most important fungal diseases are black spot, powdery mildew, botrytis and downy mildew. Rose rosette, a lethal viral pathogen, is emerging as a devastating disease in North America. Currently rose breeders use a recurrent phenotypic selection approach and perform selection for disease resistance for most pathogen issues in a 2-3 year field trial. Marker assisted selection could accelerate this breeding process. Thus far markers have been identified for resistance to black spot (Rdrs) and powdery mildew and with the ability of genotyping by sequencing to generate 1000s of markers our ability to identify markers useful in plant improvement should increase exponentially. Transgenic rose lines with various fungal resistance genes inserted have shown limited success and RNAi technology has potential to provide virus resistance. Roses, as do other plants, have sequences homologous to characterized R-genes in their genomes, some which have been related to specific disease resistance. With improving next generation sequencing technology, our ability to do genomic and transcriptomic studies of the resistance related genes in both the rose and the pathogens to reveal novel gene targets to develop resistant roses will accelerate. Finally, the development of designer nucleases opens up a potentially non-GMO approach to directly modify a rose's DNA to create a disease resistant rose. Although there is much potential, at present rose breeders are not using marker assisted breeding primarily because a good suite of marker/trait associations (MTA) that would ensure a path to stable disease resistance is not available. As our genomic analytical tools improve, so will our ability to identify useful genes and linked markers. Once these MTAs are available, it will be the cost savings, both in time and money, that will convince the breeders to use the technology. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.].

    PubMed

    Muchero, Wellington; Ehlers, Jeffrey D; Roberts, Philip A

    2010-02-01

    Quantitative trait loci (QTL) studies provide insight into the complexity of drought tolerance mechanisms. Molecular markers used in these studies also allow for marker-assisted selection (MAS) in breeding programs, enabling transfer of genetic factors between breeding lines without complete knowledge of their exact nature. However, potential for recombination between markers and target genes limit the utility of MAS-based strategies. Candidate gene mapping offers an alternative solution to identify trait determinants underlying QTL of interest. Here, we used restriction site polymorphisms to investigate co-location of candidate genes with QTL for seedling drought stress-induced premature senescence identified previously in cowpea. Genomic DNA isolated from 113 F(2:8) RILs of drought-tolerant IT93K503-1 and drought susceptible CB46 genotypes was digested with combinations of EcoR1 and HpaII, Mse1, or Msp1 restriction enzymes and amplified with primers designed from 13 drought-responsive cDNAs. JoinMap 3.0 and MapQTL 4.0 software were used to incorporate polymorphic markers onto the AFLP map and to analyze their association with the drought response QTL. Seven markers co-located with peaks of previously identified QTL. Isolation, sequencing, and blast analysis of these markers confirmed their significant homology with drought or other abiotic stress-induced expressed sequence tags (EST) from cowpea and other plant systems. Further, homology with coding sequences for a multidrug resistance protein 3 and a photosystem I assembly protein ycf3 was revealed in two of these candidates. These results provide a platform for the identification and characterization of genetic trait determinants underlying seedling drought tolerance in cowpea.

  10. Analysis of genetic diversity in banana cultivars (Musa cvs.) from the South of Oman using AFLP markers and classification by phylogenetic, hierarchical clustering and principal component analyses*

    PubMed Central

    Opara, Umezuruike Linus; Jacobson, Dan; Al-Saady, Nadiya Abubakar

    2010-01-01

    Banana is an important crop grown in Oman and there is a dearth of information on its genetic diversity to assist in crop breeding and improvement programs. This study employed amplified fragment length polymorphism (AFLP) to investigate the genetic variation in local banana cultivars from the southern region of Oman. Using 12 primer combinations, a total of 1094 bands were scored, of which 1012 were polymorphic. Eighty-two unique markers were identified, which revealed the distinct separation of the seven cultivars. The results obtained show that AFLP can be used to differentiate the banana cultivars. Further classification by phylogenetic, hierarchical clustering and principal component analyses showed significant differences between the clusters found with molecular markers and those clusters created by previous studies using morphological analysis. Based on the analytical results, a consensus dendrogram of the banana cultivars is presented. PMID:20443211

  11. Identification of quantitative trait loci associated with boiled seed hardness in soybean

    PubMed Central

    Hirata, Kaori; Masuda, Ryoichi; Tsubokura, Yasutaka; Yasui, Takeshi; Yamada, Tetsuya; Takahashi, Koji; Nagaya, Taiko; Sayama, Takashi; Ishimoto, Masao; Hajika, Makita

    2014-01-01

    Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, quantitative trait locus (QTL) analysis was performed to reveal the genetic factors associated with boiled seed hardness using a recombinant inbred line population developed from a cross between two Japanese cultivars, ‘Natto-shoryu’ and ‘Hyoukei-kuro 3’, which differ largely in boiled seed hardness, which in ‘Natto-shoryu’ is about twice that of ‘Hyoukei-kuro 3’. Two significantly stable QTLs, qHbs3-1 and qHbs6-1, were identified on chromosomes 3 and 6, for which the ‘Hyoukei-kuro 3’ alleles contribute to decrease boiled seed hardness for both QTLs. qHbs3-1 also showed significant effects in progeny of a residual heterozygous line and in a different segregating population. Given its substantial effect on boiled seed hardness, SSR markers closely linked to qHbs3-1, such as BARCSOYSSR_03_0165 and BARCSOYSSR_03_0185, could be useful for marker-assisted selection in soybean breeding. PMID:25914591

  12. Imputation of microsatellite alleles from dense SNP genotypes for parentage verification across multiple Bos taurus and Bos indicus breeds

    PubMed Central

    McClure, Matthew C.; Sonstegard, Tad S.; Wiggans, George R.; Van Eenennaam, Alison L.; Weber, Kristina L.; Penedo, Cecilia T.; Berry, Donagh P.; Flynn, John; Garcia, Jose F.; Carmo, Adriana S.; Regitano, Luciana C. A.; Albuquerque, Milla; Silva, Marcos V. G. B.; Machado, Marco A.; Coffey, Mike; Moore, Kirsty; Boscher, Marie-Yvonne; Genestout, Lucie; Mazza, Raffaele; Taylor, Jeremy F.; Schnabel, Robert D.; Simpson, Barry; Marques, Elisa; McEwan, John C.; Cromie, Andrew; Coutinho, Luiz L.; Kuehn, Larry A.; Keele, John W.; Piper, Emily K.; Cook, Jim; Williams, Robert; Van Tassell, Curtis P.

    2013-01-01

    To assist cattle producers transition from microsatellite (MS) to single nucleotide polymorphism (SNP) genotyping for parental verification we previously devised an effective and inexpensive method to impute MS alleles from SNP haplotypes. While the reported method was verified with only a limited data set (N = 479) from Brown Swiss, Guernsey, Holstein, and Jersey cattle, some of the MS-SNP haplotype associations were concordant across these phylogenetically diverse breeds. This implied that some haplotypes predate modern breed formation and remain in strong linkage disequilibrium. To expand the utility of MS allele imputation across breeds, MS and SNP data from more than 8000 animals representing 39 breeds (Bos taurus and B. indicus) were used to predict 9410 SNP haplotypes, incorporating an average of 73 SNPs per haplotype, for which alleles from 12 MS markers could be accurately be imputed. Approximately 25% of the MS-SNP haplotypes were present in multiple breeds (N = 2 to 36 breeds). These shared haplotypes allowed for MS imputation in breeds that were not represented in the reference population with only a small increase in Mendelian inheritance inconsistancies. Our reported reference haplotypes can be used for any cattle breed and the reported methods can be applied to any species to aid the transition from MS to SNP genetic markers. While ~91% of the animals with imputed alleles for 12 MS markers had ≤1 Mendelian inheritance conflicts with their parents' reported MS genotypes, this figure was 96% for our reference animals, indicating potential errors in the reported MS genotypes. The workflow we suggest autocorrects for genotyping errors and rare haplotypes, by MS genotyping animals whose imputed MS alleles fail parentage verification, and then incorporating those animals into the reference dataset. PMID:24065982

  13. Estimation of genetic diversity in Gute sheep: pedigree and microsatellite analyses of an ancient Swedish breed.

    PubMed

    Rochus, Christina M; Johansson, Anna M

    2017-01-01

    Breeds with small population size are in danger of an increased inbreeding rate and loss of genetic diversity, which puts them at risk for extinction. In Sweden there are a number of local breeds, native breeds which have adapted to specific areas in Sweden, for which efforts are being made to keep them pure and healthy over time. One example of such a breed is the Swedish Gute sheep. The objective of this study was to estimate inbreeding and genetic diversity of Swedish Gute sheep. Three datasets were analysed: pedigree information of the whole population, pedigree information for 100 animals of the population, and microsatellite genotypes for 94 of the 100 animals. The average inbreeding coefficient for lambs born during a six year time period (2007-2012) did not increase during that time period. The inbreeding calculated from the entire pedigree (0.038) and for a sample of the population (0.018) was very low. Sheep were more heterozygous at the microsatellite markers than expected (average multilocus heterozygosity and Ritland inbreeding estimates 1.01845 and -0.03931) and five of seven microsatellite markers were not in Hardy Weinberg equilibrium due to heterozygosity excess. The total effective population size estimated from the pedigree information was 155.4 and the average harmonic mean effective population size estimated from microsatellites was 88.3. Pedigree and microsatellite genotype estimations of inbreeding were consistent with a breeding program with the purpose of reducing inbreeding. Our results showed that current breeding programs of the Swedish Gute sheep are consistent with efforts of keeping this breed viable and these breeding programs are an example for other small local breeds in conserving breeds for the future.

  14. An AFLP genetic linkage map of pacific abalone ( Haliotis discus hannai)

    NASA Astrophysics Data System (ADS)

    Qi, Li; Yanhong, Xu; Ruihai, Yu; Akihiro, Kijima

    2007-07-01

    A genetic linkage map of Pacific abalone ( Haliotis discus hannai) was constructed using AFLP markers based on a two-way pseudo-testeross strategy in a full-sib family. With 33 primer combinations, a total of 455 markers (225 from the female parent and 230 from the male parent) segregated in a 1:1 ratio, corresponding to DNA polymorphism: heterozygous in one parent and null in the other. The female framework map consisted of 174 markers distributed in 18 linkage groups, equivalent to the H. discus hannai haploid chromosome number, and spanning a total length of 2031.4 cM, with an average interval of 13.0 cM between adjacent markers. The male framework map consisted of 195 markers mapped on 19 linkage groups, spanning a total length of 2273.4 cM, with an average spacing of 12.9 cM between adjacent markers. The estimated coverage for the framework linkage maps was 81.2% for the female and 82.1% for the male, on the basis of two estimates of genome length. Fifty-two markers (11.4%) remained unlinked. The level of segregation distortion observed in this cross was 20.4%. These linkage maps will serve as a starting point for linkage studies in the Pacific abalone with potential application for marker-assisted selection in breeding programs.

  15. Molecularly tagged genes and quantitative trait loci in cucumber

    USDA-ARS?s Scientific Manuscript database

    Since the release of the cucumber draft genome, significant progress has been made in molecular mapping, tagging or cloning of horticulturally important genes and quantitative trait loci (QTLs) in cucumber, which provides the foundation for practicing marker-assisted selection in cucumber breeding. ...

  16. Recent trends and perspectives of molecular markers against fungal diseases in wheat

    PubMed Central

    Goutam, Umesh; Kukreja, Sarvjeet; Yadav, Rakesh; Salaria, Neha; Thakur, Kajal; Goyal, Aakash K.

    2015-01-01

    Wheat accounts for 19% of the total production of major cereal crops in the world. In view of ever increasing population and demand for global food production, there is an imperative need of 40–60% increase in wheat production to meet the requirement of developing world in coming 40 years. However, both biotic and abiotic stresses are major hurdles for attaining the goal. Among the most important diseases in wheat, fungal diseases pose serious threat for widening the gap between actual and attainable yield. Fungal disease management, mainly, depends on the pathogen detection, genetic and pathological variability in population, development of resistant cultivars and deployment of effective resistant genes in different epidemiological regions. Wheat protection and breeding of resistant cultivars using conventional methods are time-consuming, intricate and slow processes. Molecular markers offer an excellent alternative in development of improved disease resistant cultivars that would lead to increase in crop yield. They are employed for tagging the important disease resistance genes and provide valuable assistance in increasing selection efficiency for valuable traits via marker assisted selection (MAS). Plant breeding strategies with known molecular markers for resistance and functional genomics enable a breeder for developing resistant cultivars of wheat against different fungal diseases. PMID:26379639

  17. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    PubMed Central

    Malik, Waqas; Iqbal, Muhammad Zaffar; Ali Khan, Asif; Qayyum, Abdul; Ali Abid, Muhammad; Noor, Etrat; Qadir Ahmad, Muhammad; Hasan Abbasi, Ghulam

    2014-01-01

    Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L.) is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS) technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS) are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i) comparative analysis of low- and high-throughput marker technologies available in cotton, (ii) genetic diversity in the available wild and improved gene pools of cotton, (iii) identification of the genomic regions within cotton genome underlying economic traits, and (iv) marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands. PMID:25401149

  18. Pedigree reconstruction with genome-wide markers in potato

    USDA-ARS?s Scientific Manuscript database

    Reliable pedigree information facilitates a scientific approach to breeding, but errors can be introduced in many stages of a breeding program. Our objective was to use single nucleotide polymorphisms (SNPs) to check the pedigree records of elite North American potato germplasm. A population of 635 ...

  19. Development and validation of 697 novel polymorphic genomic and EST-SSR markers in the American cranberry (Vaccinium macrocarpon Ait.).

    PubMed

    Schlautman, Brandon; Fajardo, Diego; Bougie, Tierney; Wiesman, Eric; Polashock, James; Vorsa, Nicholi; Steffan, Shawn; Zalapa, Juan

    2015-01-27

    The American cranberry, Vaccinium macrocarpon Ait., is an economically important North American fruit crop that is consumed because of its unique flavor and potential health benefits. However, a lack of abundant, genome-wide molecular markers has limited the adoption of modern molecular assisted selection approaches in cranberry breeding programs. To increase the number of available markers in the species, this study identified, tested, and validated microsatellite markers from existing nuclear and transcriptome sequencing data. In total, new primers were designed, synthesized, and tested for 979 SSR loci; 697 of the markers amplified allele patterns consistent with single locus segregation in a diploid organism and were considered polymorphic. Of the 697 polymorphic loci, 507 were selected for additional genetic diversity and segregation analyses in 29 cranberry genotypes. More than 95% of the 507 loci did not display segregation distortion at the p < 0.05 level, and contained moderate to high levels of polymorphism with a polymorphic information content >0.25. This comprehensive collection of developed and validated microsatellite loci represents a substantial addition to the molecular tools available for geneticists, genomicists, and breeders in cranberry and Vaccinium.

  20. A microsatellite genetic linkage map of black rockfish ( Sebastes schlegeli)

    NASA Astrophysics Data System (ADS)

    Chu, Guannan; Jiang, Liming; He, Yan; Yu, Haiyang; Wang, Zhigang; Jiang, Haibin; Zhang, Quanqi

    2014-12-01

    Ovoviviparous black rockfish ( Sebastes schlegeli) is an important marine fish species for aquaculture and fisheries in China. Genetic information of this species is scarce because of the lack of microsatellite markers. In this study, a large number of microsatellite markers of black rockfish were isolated by constructing microsatellite-enriched libraries. Female- and male-specific genetic linkage maps were constructed using 435 microsatellite markers genotyped in a full-sib family of the fish species. The female linkage map contained 140 microsatellite markers, in which 23 linkage groups had a total genetic length of 1334.1 cM and average inter-marker space of 13.3 cM. The male linkage map contained 156 microsatellite markers, in which 25 linkage groups had a total genetic length of 1359.6 cM and average inter-marker distance of 12.4 cM. The genome coverage of the female and male linkage maps was 68.6% and 69.3%, respectively. The female-to-male ratio of the recombination rate was approximately 1.07:1 in adjacent microsatellite markers. This paper presents the first genetic linkage map of microsatellites in black rockfish. The collection of polymorphic markers and sex-specific linkage maps of black rockfish could be useful for further investigations on parental assignment, population genetics, quantitative trait loci mapping, and marker-assisted selection in related breeding programs.

  1. Development and application of biological technologies in fish genetic breeding.

    PubMed

    Xu, Kang; Duan, Wei; Xiao, Jun; Tao, Min; Zhang, Chun; Liu, Yun; Liu, ShaoJun

    2015-02-01

    Fish genetic breeding is a process that remolds heritable traits to obtain neotype and improved varieties. For the purpose of genetic improvement, researchers can select for desirable genetic traits, integrate a suite of traits from different donors, or alter the innate genetic traits of a species. These improved varieties have, in many cases, facilitated the development of the aquaculture industry by lowering costs and increasing both quality and yield. In this review, we present the pertinent literatures and summarize the biological bases and application of selection breeding technologies (containing traditional selective breeding, molecular marker-assisted breeding, genome-wide selective breeding and breeding by controlling single-sex groups), integration breeding technologies (containing cross breeding, nuclear transplantation, germline stem cells and germ cells transplantation, artificial gynogenesis, artificial androgenesis and polyploid breeding) and modification breeding technologies (represented by transgenic breeding) in fish genetic breeding. Additionally, we discuss the progress our laboratory has made in the field of chromosomal ploidy breeding of fish, including distant hybridization, gynogenesis, and androgenesis. Finally, we systematically summarize the research status and known problems associated with each technology.

  2. Extent of Linkage Disequilibrium and Effective Population Size in Four South African Sanga Cattle Breeds.

    PubMed

    Makina, Sithembile O; Taylor, Jeremy F; van Marle-Köster, Este; Muchadeyi, Farai C; Makgahlela, Mahlako L; MacNeil, Michael D; Maiwashe, Azwihangwisi

    2015-01-01

    Knowledge on the extent of linkage disequilibrium (LD) in livestock populations is essential to determine the minimum distance between markers required for effective coverage when conducting genome-wide association studies (GWAS). This study evaluated the extent of LD, persistence of allelic phase and effective population size (Ne) for four Sanga cattle breeds in South Africa including the Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), and Bonsmara breeds (n = 46), using Angus (n = 31) and Holstein (n = 29) as reference populations. We found that moderate LD extends up to inter-marker distances of 40-60 kb in Angus (0.21) and Holstein (0.21) and up to 100 kb in Afrikaner (0.20). This suggests that genomic selection and association studies performed within these breeds using an average inter-marker r (2)≥ 0.20 would require about 30,000-50,000 SNPs. However, r (2)≥ 0.20 extended only up to 10-20 kb in the Nguni and Drakensberger and 20-40 kb in the Bonsmara indicating that 75,000 to 150,000 SNPs would be necessary for GWAS in these breeds. Correlation between alleles at contiguous loci indicated that phase was not strongly preserved between breeds. This suggests the need for breed-specific reference populations in which a much greater density of markers should be scored to identify breed specific haplotypes which may then be imputed into multi-breed commercial populations. Analysis of effective population size based on the extent of LD, revealed Ne = 95 (Nguni), Ne = 87 (Drakensberger), Ne = 77 (Bonsmara), and Ne = 41 (Afrikaner). Results of this study form the basis for implementation of genomic selection programs in the Sanga breeds of South Africa.

  3. Extent of Linkage Disequilibrium and Effective Population Size in Four South African Sanga Cattle Breeds

    PubMed Central

    Makina, Sithembile O.; Taylor, Jeremy F.; van Marle-Köster, Este; Muchadeyi, Farai C.; Makgahlela, Mahlako L.; MacNeil, Michael D.; Maiwashe, Azwihangwisi

    2015-01-01

    Knowledge on the extent of linkage disequilibrium (LD) in livestock populations is essential to determine the minimum distance between markers required for effective coverage when conducting genome-wide association studies (GWAS). This study evaluated the extent of LD, persistence of allelic phase and effective population size (Ne) for four Sanga cattle breeds in South Africa including the Afrikaner (n = 44), Nguni (n = 54), Drakensberger (n = 47), and Bonsmara breeds (n = 46), using Angus (n = 31) and Holstein (n = 29) as reference populations. We found that moderate LD extends up to inter-marker distances of 40–60 kb in Angus (0.21) and Holstein (0.21) and up to 100 kb in Afrikaner (0.20). This suggests that genomic selection and association studies performed within these breeds using an average inter-marker r2≥ 0.20 would require about 30,000–50,000 SNPs. However, r2≥ 0.20 extended only up to 10–20 kb in the Nguni and Drakensberger and 20–40 kb in the Bonsmara indicating that 75,000 to 150,000 SNPs would be necessary for GWAS in these breeds. Correlation between alleles at contiguous loci indicated that phase was not strongly preserved between breeds. This suggests the need for breed-specific reference populations in which a much greater density of markers should be scored to identify breed specific haplotypes which may then be imputed into multi-breed commercial populations. Analysis of effective population size based on the extent of LD, revealed Ne = 95 (Nguni), Ne = 87 (Drakensberger), Ne = 77 (Bonsmara), and Ne = 41 (Afrikaner). Results of this study form the basis for implementation of genomic selection programs in the Sanga breeds of South Africa. PMID:26648975

  4. Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.).

    PubMed

    Ma, Yu; Coyne, Clarice J; Grusak, Michael A; Mazourek, Michael; Cheng, Peng; Main, Dorrie; McGee, Rebecca J

    2017-02-13

    Marker-assisted breeding is now routinely used in major crops to facilitate more efficient cultivar improvement. This has been significantly enabled by the use of next-generation sequencing technology to identify loci and markers associated with traits of interest. While rich in a range of nutritional components, such as protein, mineral nutrients, carbohydrates and several vitamins, pea (Pisum sativum L.), one of the oldest domesticated crops in the world, remains behind many other crops in the availability of genomic and genetic resources. To further improve mineral nutrient levels in pea seeds requires the development of genome-wide tools. The objectives of this research were to develop these tools by: identifying genome-wide single nucleotide polymorphisms (SNPs) using genotyping by sequencing (GBS); constructing a high-density linkage map and comparative maps with other legumes, and identifying quantitative trait loci (QTL) for levels of boron, calcium, iron, potassium, magnesium, manganese, molybdenum, phosphorous, sulfur, and zinc in the seed, as well as for seed weight. In this study, 1609 high quality SNPs were found to be polymorphic between 'Kiflica' and 'Aragorn', two parents of an F 6 -derived recombinant inbred line (RIL) population. Mapping 1683 markers including 75 previously published markers and 1608 SNPs developed from the present study generated a linkage map of size 1310.1 cM. Comparative mapping with other legumes demonstrated that the highest level of synteny was observed between pea and the genome of Medicago truncatula. QTL analysis of the RIL population across two locations revealed at least one QTL for each of the mineral nutrient traits. In total, 46 seed mineral concentration QTLs, 37 seed mineral content QTLs, and 6 seed weight QTLs were discovered. The QTLs explained from 2.4% to 43.3% of the phenotypic variance. The genome-wide SNPs and the genetic linkage map developed in this study permitted QTL identification for pea seed mineral nutrients that will serve as important resources to enable marker-assisted selection (MAS) for nutritional quality traits in pea breeding programs.

  5. Development of Cytoplasmic Male Sterile IR24 and IR64 Using CW-CMS/Rf17 System.

    PubMed

    Toriyama, Kinya; Kazama, Tomohiko

    2016-12-01

    A wild-abortive-type (WA) cytoplasmic male sterility (CMS) has been almost exclusively used for breeding three-line hybrid rice. Many indica cultivars are known to carry restorer genes for WA-CMS lines and cannot be used as maintainer lines. Especially elite indica cultivars IR24 and IR64 are known to be restorer lines for WA-CMS lines, and are used as male parents for hybrid seed production. If we develop CMS IR24 and CMS IR64, the combination of F1 pairs in hybrid rice breeding programs will be greatly broadened. For production of CMS lines and restorer lines of IR24 and IR64, we employed Chinese wild rice (CW)-type CMS/Restorer of fertility 17 (Rf17) system, in which fertility is restored by a single nuclear gene, Rf17. Successive backcrossing and marker-assisted selection of Rf17 succeeded to produce completely male sterile CMS lines and fully restored restorer lines of IR24 and IR64. CW-cytoplasm did not affect agronomic characteristics. Since IR64 is one of the most popular mega-varieties and used for breeding of many modern varieties, the CW-CMS line of IR64 will be useful for hybrid rice breeding.

  6. Marker-assisted breeding for introgression of opaque-2 allele into elite maize inbred line BML-7.

    PubMed

    Krishna, M S R; Sokka Reddy, S; Satyanarayana, Sadam D V

    2017-07-01

    Improvement of quality protein maize (QPM) along with high content of lysine and tryptophan had foremost importance in maize breeding program. The efficient and easiest way of developing QPM hybrids was by backcross breeding in marker aided selection. Hence, the present investigation aimed at conversion of elite maize inbred line BML-7 into QPM line. CML-186 was identified to be a donor variety as it revealed high-quality polymorphism with BML-7 for opaque-2 gene specific marker umc1066. Non-QPM inbred line BML-7 was crossed with QPM donor CML-186 and produced F 1 followed by the development of BC 1 F 1 and BC 2 F 1 population. Foreground selection was carried out with umc1066 in F 1 , and selected plants were used for BC 1 F 1 and BC 2 F 1 populations. Two hundred plants were screened in both BC 1 F 1 and BC 2 F 1 population with umc1066 for foreground selection amino acid modifiers. Foreground selected plants for both opaque-2 and amino acid modifiers were screened for background selection for BML-7 genome. Recurrent parent genome (RPG) was calculated for BC 2 F 1 population plants. Two plants have shown with RPG 90-93% in two generation with back cross population. Two BC 2 F 2 populations resulted from marker recognized BC 2 F 1 individuals subjected toward foreground selection followed by tryptophan estimation. The tryptophan and lysine concentration was improved in all the plants. BC 2 F 2 lines developed from hard endosperm kernels were selfed for BC 2 F 2 lines and finest line was selected to illustrate the QPM version of BML-7, with 0.97% of tryptophan and 4.04% of lysine concentration in protein. Therefore, the QPM version of BML-7 line can be used for the development of single cross hybrid QPM maize version.

  7. Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection.

    PubMed

    Flachowsky, Henryk; Le Roux, Pierre-Marie; Peil, Andreas; Patocchi, Andrea; Richter, Klaus; Hanke, Magda-Viola

    2011-10-01

    Breeding of apple (Malus × domestica) remains a slow process because of protracted generation cycles. Shortening the juvenile phase to achieve the introgression of traits from wild species into prebreeding material within a reasonable time frame is a great challenge. In this study, we evaluated early flowering transgenic apple lines overexpressing the BpMADS4 gene of silver birch with regard to tree morphology in glasshouse conditions. Based on the results obtained, line T1190 was selected for further analysis and application to fast breeding. The DNA sequences flanking the T-DNA were isolated and the T-DNA integration site was mapped on linkage group 4. The inheritance and correctness of the T-DNA integration were confirmed after meiosis. A crossbred breeding programme was initiated by crossing T1190 with the fire blight-resistant wild species Malus fusca. Transgenic early flowering F(1) seedlings were selected and backcrossed with 'Regia' and 98/6-10 in order to introgress the apple scab Rvi2, Rvi4 and powdery mildew Pl-1, Pl-2 resistance genes and the fire blight resistance quantitative trait locus FB-F7 present in 'Regia'. Three transgenic BC'1 seedlings pyramiding Rvi2, Rvi4 and FB-F7, as well as three other BC'1 seedlings combining Pl-1 and Pl-2, were identified. Thus, the first transgenic early flowering-based apple breeding programme combined with marker-assisted selection was established. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  8. Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21.

    PubMed

    Gao, Lifen; Cao, Yinghao; Xia, Zhihui; Jiang, Guanghuai; Liu, Guozhen; Zhang, Weixiong; Zhai, Wenxue

    2013-10-29

    The potential impact of genetically modified (GM) plants on human health has attracted much attention worldwide, and the issue remains controversial. This is in sharp contrast to the broad acceptance of plants produced by breeding through Marker Assisted Backcrossing (MAB). Focusing on transcriptome variation and perturbation to signaling pathways, we assessed the molecular and biological aspects of substantial equivalence, a general principle for food safety endorsed by the Food and Agricultural Organization and the World Health Organization, between a transgenic crop and a plant from MAB breeding. We compared a transgenic rice line (DXT) and a MAB rice line (DXB), both of which contain the gene Xa21 providing resistance to bacterial leaf blight. By using Next-Generation sequencing data of DXT, DXB and their parental line (D62B), we compared the transcriptome variation of DXT and DXB. Remarkably, DXT had 43% fewer differentially expressed genes (DEGs) than DXB. The genes exclusively expressed in DXT and in DXB have pathogen and stress defense functions. Functional categories of DEGs in DXT were comparable to that in DXB, and seven of the eleven pathways significantly affected by transgenesis were also perturbed by MAB breeding. These results indicated that the transgenic rice and rice from MAB breeding are substantial equivalent at the transcriptome level, and paved a way for further study of transgenic rice, e.g., understanding the chemical and nutritional properties of the DEGs identified in the current study.

  9. Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? - A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21

    PubMed Central

    2013-01-01

    Background The potential impact of genetically modified (GM) plants on human health has attracted much attention worldwide, and the issue remains controversial. This is in sharp contrast to the broad acceptance of plants produced by breeding through Marker Assisted Backcrossing (MAB). Results Focusing on transcriptome variation and perturbation to signaling pathways, we assessed the molecular and biological aspects of substantial equivalence, a general principle for food safety endorsed by the Food and Agricultural Organization and the World Health Organization, between a transgenic crop and a plant from MAB breeding. We compared a transgenic rice line (DXT) and a MAB rice line (DXB), both of which contain the gene Xa21 providing resistance to bacterial leaf blight. By using Next-Generation sequencing data of DXT, DXB and their parental line (D62B), we compared the transcriptome variation of DXT and DXB. Remarkably, DXT had 43% fewer differentially expressed genes (DEGs) than DXB. The genes exclusively expressed in DXT and in DXB have pathogen and stress defense functions. Functional categories of DEGs in DXT were comparable to that in DXB, and seven of the eleven pathways significantly affected by transgenesis were also perturbed by MAB breeding. Conclusions These results indicated that the transgenic rice and rice from MAB breeding are substantial equivalent at the transcriptome level, and paved a way for further study of transgenic rice, e.g., understanding the chemical and nutritional properties of the DEGs identified in the current study. PMID:24165682

  10. The association of SNPs in Hsp90β gene 5' flanking region with thermo tolerance traits and tissue mRNA expression in two chicken breeds.

    PubMed

    Chen, Zhuo-Yu; Gan, Jian-Kang; Xiao, Xiong; Jiang, Li-Yan; Zhang, Xi-Quan; Luo, Qing-Bin

    2013-09-01

    Thermo stress induces heat shock proteins (HSPs) expression and HSP90 family is one of them that has been reported to involve in cellular protection against heat stress. But whether there is any association of genetic variation in the Hsp90β gene in chicken with thermo tolerance is still unknown. Direct sequencing was used to detect possible SNPs in Hsp90β gene 5' flanking region in 3 chicken breeds (n = 663). Six mutations, among which 2 SNPs were chosen and genotypes were analyzed with PCR-RFLP method, were found in Hsp90β gene in these 3 chicken breeds. Association analysis indicated that SNP of C.-141G>A in the 5' flanking region of the Hsp90β gene in chicken had some effect on thermo tolerance traits, which may be a potential molecular marker of thermo tolerance, and the genotype GG was the thermo tolerance genotype. Hsp90β gene mRNA expression in different tissues detected by quantitative real-time PCR assay were demonstrated to be tissue dependent, implying that different tissues have distinct sensibilities to thermo stress. Besides, it was shown time specific and varieties differences. The expression of Hsp90β mRNA in Lingshan chickens in some tissues including heart, liver, brain and spleen were significantly higher or lower than that of White Recessive Rock (WRR). In this study, we presume that these mutations could be used in marker assisted selection for anti-heat stress chickens in our breeding program, and WRR were vulnerable to tropical thermo stress whereas Lingshan chickens were well adapted.

  11. Advances in Maize Genomics and Their Value for Enhancing Genetic Gains from Breeding

    PubMed Central

    Xu, Yunbi; Skinner, Debra J.; Wu, Huixia; Palacios-Rojas, Natalia; Araus, Jose Luis; Yan, Jianbing; Gao, Shibin; Warburton, Marilyn L.; Crouch, Jonathan H.

    2009-01-01

    Maize is an important crop for food, feed, forage, and fuel across tropical and temperate areas of the world. Diversity studies at genetic, molecular, and functional levels have revealed that, tropical maize germplasm, landraces, and wild relatives harbor a significantly wider range of genetic variation. Among all types of markers, SNP markers are increasingly the marker-of-choice for all genomics applications in maize breeding. Genetic mapping has been developed through conventional linkage mapping and more recently through linkage disequilibrium-based association analyses. Maize genome sequencing, initially focused on gene-rich regions, now aims for the availability of complete genome sequence. Conventional insertion mutation-based cloning has been complemented recently by EST- and map-based cloning. Transgenics and nutritional genomics are rapidly advancing fields targeting important agronomic traits including pest resistance and grain quality. Substantial advances have been made in methodologies for genomics-assisted breeding, enhancing progress in yield as well as abiotic and biotic stress resistances. Various genomic databases and informatics tools have been developed, among which MaizeGDB is the most developed and widely used by the maize research community. In the future, more emphasis should be given to the development of tools and strategic germplasm resources for more effective molecular breeding of tropical maize products. PMID:19688107

  12. Biotechnological Approaches in Plant Protection: Achievements, New Initiatives and Prospects

    USDA-ARS?s Scientific Manuscript database

    This chapter reviews the latest developments in the application of biotechnology to solve crop looses due to fungal disease. These include marker-assisted breeding, map-based cloning of genes, and development of transgenic plants. New areas of investigation which hold much promise are gene silenci...

  13. Marker-assisted selection for resistance to bacterial cold water disease in a commercial rainbow trout breeding population

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD), caused by Flavobacterium psychrophilum, is an endemic and problematic disease in rainbow trout (Oncorhynchus mykiss) aquaculture. Previously, we have identified SNPs (single nucleotide polymorphisms) associated with BCWD resistance in rainbow trout. The objective...

  14. DNA fingerprinting sets for four southern pines

    Treesearch

    Craig Echt; Sedley Josserand

    2018-01-01

    DNA markers can provide valuable genetic information for forest tree research, breeding, conservation, and restoration programs. When properly evaluated, selected sets of DNA markers can be used to efficiently get information about genetic diversity in regions, forests, or stands, or in seed lots and orchards. Selected markers also can be used to determine parentage or...

  15. An Efficient Strategy Combining SSR Markers- and Advanced QTL-seq-driven QTL Mapping Unravels Candidate Genes Regulating Grain Weight in Rice

    PubMed Central

    Daware, Anurag; Das, Sweta; Srivastava, Rishi; Badoni, Saurabh; Singh, Ashok K.; Agarwal, Pinky; Parida, Swarup K.; Tyagi, Akhilesh K.

    2016-01-01

    Development and use of genome-wide informative simple sequence repeat (SSR) markers and novel integrated genomic strategies are vital to drive genomics-assisted breeding applications and for efficient dissection of quantitative trait loci (QTLs) underlying complex traits in rice. The present study developed 6244 genome-wide informative SSR markers exhibiting in silico fragment length polymorphism based on repeat-unit variations among genomic sequences of 11 indica, japonica, aus, and wild rice accessions. These markers were mapped on diverse coding and non-coding sequence components of known cloned/candidate genes annotated from 12 chromosomes and revealed a much higher amplification (97%) and polymorphic potential (88%) along with wider genetic/functional diversity level (16–74% with a mean 53%) especially among accessions belonging to indica cultivar group, suggesting their utility in large-scale genomics-assisted breeding applications in rice. A high-density 3791 SSR markers-anchored genetic linkage map (IR 64 × Sonasal) spanning 2060 cM total map-length with an average inter-marker distance of 0.54 cM was generated. This reference genetic map identified six major genomic regions harboring robust QTLs (31% combined phenotypic variation explained with a 5.7–8.7 LOD) governing grain weight on six rice chromosomes. One strong grain weight major QTL region (OsqGW5.1) was narrowed-down by integrating traditional QTL mapping with high-resolution QTL region-specific integrated SSR and single nucleotide polymorphism markers-based QTL-seq analysis and differential expression profiling. This led us to delineate two natural allelic variants in two known cis-regulatory elements (RAV1AAT and CARGCW8GAT) of glycosyl hydrolase and serine carboxypeptidase genes exhibiting pronounced seed-specific differential regulation in low (Sonasal) and high (IR 64) grain weight mapping parental accessions. Our genome-wide SSR marker resource (polymorphic within/between diverse cultivar groups) and integrated genomic strategy can efficiently scan functionally relevant potential molecular tags (markers, candidate genes and alleles) regulating complex agronomic traits (grain weight) and expedite marker-assisted genetic enhancement in rice. PMID:27833617

  16. Mapping and validation of major quantitative trait loci for kernel length in wild barley (Hordeum vulgare ssp. spontaneum).

    PubMed

    Zhou, Hong; Liu, Shihang; Liu, Yujiao; Liu, Yaxi; You, Jing; Deng, Mei; Ma, Jian; Chen, Guangdeng; Wei, Yuming; Liu, Chunji; Zheng, Youliang

    2016-09-13

    Kernel length is an important target trait in barley (Hordeum vulgare L.) breeding programs. However, the number of known quantitative trait loci (QTLs) controlling kernel length is limited. In the present study, we aimed to identify major QTLs for kernel length, as well as putative candidate genes that might influence kernel length in wild barley. A recombinant inbred line (RIL) population derived from the barley cultivar Baudin (H. vulgare ssp. vulgare) and the long-kernel wild barley genotype Awcs276 (H.vulgare ssp. spontaneum) was evaluated at one location over three years. A high-density genetic linkage map was constructed using 1,832 genome-wide diversity array technology (DArT) markers, spanning a total of 927.07 cM with an average interval of approximately 0.49 cM. Two major QTLs for kernel length, LEN-3H and LEN-4H, were detected across environments and further validated in a second RIL population derived from Fleet (H. vulgare ssp. vulgare) and Awcs276. In addition, a systematic search of public databases identified four candidate genes and four categories of proteins related to LEN-3H and LEN-4H. This study establishes a fundamental research platform for genomic studies and marker-assisted selection, since LEN-3H and LEN-4H could be used for accelerating progress in barley breeding programs that aim to improve kernel length.

  17. Utilization of a major brown rust resistance gene in sugarcane breeding

    USDA-ARS?s Scientific Manuscript database

    Brown rust, caused by Puccinia melanocephala has had devastating effects on sugarcane (Saccharum spp.) breeding programs and on commercial production. The discovery of Bru1, a major gene conferring resistance to brown rust represented a substantial breakthrough and markers for the detection of Bru1 ...

  18. Breeding black walnuts in the age of genomics

    Treesearch

    Mark V. Coggeshall; Jeanne Romero-Severson

    2013-01-01

    Molecular markers have been used in several walnut species to help reconstruct breeding program pedigrees, to characterize genetic structure in natural Juglans populations, to determine the impact of different timber harvest scenarios on residual levels of genetic diversity, and to quantify the effects of interspecific hybridization on subsequent...

  19. Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.)

    PubMed Central

    Ritschel, Patricia Silva; Lins, Tulio Cesar de Lima; Tristan, Rodrigo Lourenço; Buso, Gláucia Salles Cortopassi; Buso, José Amauri; Ferreira, Márcio Elias

    2004-01-01

    Background Despite the great advances in genomic technology observed in several crop species, the availability of molecular tools such as microsatellite markers has been limited in melon (Cucumis melo L.) and cucurbit species. The development of microsatellite markers will have a major impact on genetic analysis and breeding of melon, especially on the generation of marker saturated genetic maps and implementation of marker assisted breeding programs. Genomic microsatellite enriched libraries can be an efficient alternative for marker development in such species. Results Seven hundred clones containing microsatellite sequences from a Tsp-AG/TC microsatellite enriched library were identified and one-hundred and forty-four primer pairs designed and synthesized. When 67 microsatellite markers were tested on a panel of melon and other cucurbit accessions, 65 revealed DNA polymorphisms among the melon accessions. For some cucurbit species, such as Cucumis sativus, up to 50% of the melon microsatellite markers could be readily used for DNA polymophism assessment, representing a significant reduction of marker development costs. A random sample of 25 microsatellite markers was extracted from the new microsatellite marker set and characterized on 40 accessions of melon, generating an allelic frequency database for the species. The average expected heterozygosity was 0.52, varying from 0.45 to 0.70, indicating that a small set of selected markers should be sufficient to solve questions regarding genotype identity and variety protection. Genetic distances based on microsatellite polymorphism were congruent with data obtained from RAPD marker analysis. Mapping analysis was initiated with 55 newly developed markers and most primers showed segregation according to Mendelian expectations. Linkage analysis detected linkage between 56% of the markers, distributed in nine linkage groups. Conclusions Genomic library microsatellite enrichment is an efficient procedure for marker development in melon. One-hundred and forty-four new markers were developed from Tsp-AG/TC genomic library. This is the first reported attempt of successfully using enriched library for microsatellite marker development in the species. A sample of the microsatellite markers tested proved efficient for genetic analysis of melon, including genetic distance estimates and identity tests. Linkage analysis indicated that the markers developed are dispersed throughout the genome and should be very useful for genetic analysis of melon. PMID:15149552

  20. Discovery and mapping of a new expressed sequence tag-single nucleotide polymorphism and simple sequence repeat panel for large-scale genetic studies and breeding of Theobroma cacao L.

    PubMed Central

    Allegre, Mathilde; Argout, Xavier; Boccara, Michel; Fouet, Olivier; Roguet, Yolande; Bérard, Aurélie; Thévenin, Jean Marc; Chauveau, Aurélie; Rivallan, Ronan; Clement, Didier; Courtois, Brigitte; Gramacho, Karina; Boland-Augé, Anne; Tahi, Mathias; Umaharan, Pathmanathan; Brunel, Dominique; Lanaud, Claire

    2012-01-01

    Theobroma cacao is an economically important tree of several tropical countries. Its genetic improvement is essential to provide protection against major diseases and improve chocolate quality. We discovered and mapped new expressed sequence tag-single nucleotide polymorphism (EST-SNP) and simple sequence repeat (SSR) markers and constructed a high-density genetic map. By screening 149 650 ESTs, 5246 SNPs were detected in silico, of which 1536 corresponded to genes with a putative function, while 851 had a clear polymorphic pattern across a collection of genetic resources. In addition, 409 new SSR markers were detected on the Criollo genome. Lastly, 681 new EST-SNPs and 163 new SSRs were added to the pre-existing 418 co-dominant markers to construct a large consensus genetic map. This high-density map and the set of new genetic markers identified in this study are a milestone in cocoa genomics and for marker-assisted breeding. The data are available at http://tropgenedb.cirad.fr. PMID:22210604

  1. Genetic diversity analysis in Malaysian giant prawns using expressed sequence tag microsatellite markers for stock improvement program.

    PubMed

    Atin, K H; Christianus, A; Fatin, N; Lutas, A C; Shabanimofrad, M; Subha, B

    2017-08-17

    The Malaysian giant prawn is among the most commonly cultured species of the genus Macrobrachium. Stocks of giant prawns from four rivers in Peninsular Malaysia have been used for aquaculture over the past 25 years, which has led to repeated harvesting, restocking, and transplantation between rivers. Consequently, a stock improvement program is now important to avoid the depletion of wild stocks and the loss of genetic diversity. However, the success of such an improvement program depends on our knowledge of the genetic variation of these base populations. The aim of the current study was to estimate genetic variation and differentiation of these riverine sources using novel expressed sequence tag-microsatellite (EST-SSR) markers, which not only are informative on genetic diversity but also provide information on immune and metabolic traits. Our findings indicated that the tested stocks have inbreeding depression due to a significant deficiency in heterozygotes, and F IS was estimated as 0.15538 to 0.31938. An F-statistics analysis suggested that the stocks are composed of one large panmictic population. Among the four locations, stocks from Johor, in the southern region of the peninsular, showed higher allelic and genetic diversity than the other stocks. To overcome inbreeding problems, the Johor population could be used as a base population in a stock improvement program by crossing to the other populations. The study demonstrated that EST-SSR markers can be incorporated in future marker assisted breeding to aid the proper management of the stocks by breeders and stakeholders in Malaysia.

  2. Development of a high-density cranberry SSR linkage map for comparative genetic analysis and trait detection

    USDA-ARS?s Scientific Manuscript database

    Since its domestication 200 years ago, breeding of the American Cranberry (Vaccinium macrocarpon) has relied on phenotypic selection because applicable resources for molecular improvement strategies such as marker-assisted selection (MAS) remain limited. To enable MAS in cranberry, the first high de...

  3. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics

    USDA-ARS?s Scientific Manuscript database

    Advances in sequencing and genotyping technologies have enabled generation of several thousand markers including SSRs, SNPs, DArTs, hundreds of thousands transcript reads and BAC-end sequences in chickpea, pigeonpea and groundnut, three major legume crops of the semi-arid tropics. Comprehensive tran...

  4. History of cotton fiber bioscience research at USDA-ARS Southern Regional Research Center

    USDA-ARS?s Scientific Manuscript database

    Improving fiber quality has been an important breeding goal for cotton breeders. Better understanding of fiber development helps cotton scientists to devise a strategy for crop improvement either through marker-assisted selection or via manipulation of fiber genes. USDA-ARS Southern Regional Researc...

  5. [DNA marker-assisted selection of medicinal plants (Ⅰ) .Breeding research of disease-resistant cultivars of Panax notoginseng].

    PubMed

    Li, Qing; Li, Biao; Guo, Shun-Xing

    2017-01-01

    SSR is one of the most important molecular markers used in molecular identification and genetic diversity research of Dendrobium nobile. In order to enrich the library of SSR and establish a method for rapid identification of D. nobile, the SSR information was analyzed in the transcriptome of D. nobile. A total of 32 709 SSRs were obtained from the transcriptome of D. nobile, distributed in 26 742 unigenes with the distribution frequency of 12.90%. SSR loci occurred every 3 748 bp. Mono-nucleotide repeat was the main type, account for as much as 72.18% of all SSRs, followed by di-nucleotide (15.97%) and tri-nucleotide (11.19%). Among all repeat types, A/T was the predominant one followed by AG/CT. Finally a total of 62 157 primer pairs were designed for marker development. Randomly 20 pairs of primers were selected for PCR amplification, 17 amplified on clear and reproducible bands, the amplification rate was 85.0%.Thirteen pairs were polymorphic among the 3 Dendrobium plants. The results indicated that the unigenes generated from transcriptome sequencing in D. nobile can be used as effective source to develop SSR markers. The SSR loci in the transcriptome of D. nobile have the characteristics of type riches, high density and high potential of polymorphism, and these characteristics might applied in the study of molecular identification, genetic diversity and marker-assisted breeding of D. nobile and its closely related species. Copyright© by the Chinese Pharmaceutical Association.

  6. Rindsel: an R package for phenotypic and molecular selection indices used in plant breeding.

    PubMed

    Perez-Elizalde, Sergío; Cerón-Rojas, Jesús J; Crossa, José; Fleury, Delphine; Alvarado, Gregorio

    2014-01-01

    Selection indices are estimates of the net genetic merit of the individual candidates for selection and are calculated based on phenotyping and molecular marker information collected on plants under selection in a breeding program. They reflect the breeding value of the plants and help breeders to choose the best ones for next generation. Rindsel is an R package that calculates phenotypic and molecular selection indices.

  7. Development of DArT-based PCR markers for selecting drought-tolerant spring barley.

    PubMed

    Fiust, Anna; Rapacz, Marcin; Wójcik-Jagła, Magdalena; Tyrka, Mirosław

    2015-08-01

    The tolerance of spring barley (Hordeum vulgare L.) cultivars to spring drought is an important agronomic trait affecting crop yield and quality in Poland. Therefore, breeders require new molecular markers to select plants with lower spring drought susceptibility. With the advent of genomic selection technology, simple molecular tools may still be applicable to screen material for markers of the most important traits and in-depth genome scanning. In previous studies, diversity arrays technology (DArT)-based genetic maps were constructed for F2 populations of Polish fodder and malt barley elite breeding lines, and 15 and 18 quantitative trait loci (QTLs) related to spring drought tolerance were identified, respectively. In this paper, we show the results of a conversion of 30 DArT markers corresponding to 11 QTLs into simple sequence repeat (SSR) and sequence tagged site (STS) markers. Twenty-two polymorphic markers were obtained, including 13 DArT-based SSRs. Additionally, 31 SSR markers, located in close proximity to the DArT markers, were selected from the GrainGenes database and tested. Further analyses of 24 advanced breeding lines with different drought tolerances confirmed that five out of the 30 converted markers, as well as three out of the 31 additional SSR markers, were effective in marker-assisted selection for drought tolerance. The possible function of clones related to these markers in drought tolerance is discussed.

  8. A method for genotyping elite breeding stocks of leaf chicory (Cichorium intybus L.) by assaying mapped microsatellite marker loci.

    PubMed

    Ghedina, Andrea; Galla, Giulio; Cadalen, Thierry; Hilbert, Jean-Louis; Caenazzo, Silvano Tiozzo; Barcaccia, Gianni

    2015-12-30

    Leaf chicory (Cichorium intybus subsp. intybus var. foliosum L.) is a diploid plant species (2n = 18) of the Asteraceae family. The term "chicory" specifies at least two types of cultivated plants: a leafy vegetable, which is highly differentiated with respect to several cultural types, and a root crop, whose current industrial utilization primarily addresses the extraction of inulin or the production of a coffee substitute. The populations grown are generally represented by local varieties (i.e., landraces) with high variation and adaptation to the natural and anthropological environment where they originated, and have been yearly selected and multiplied by farmers. Currently, molecular genetics and biotechnology are widely utilized in marker-assisted breeding programs in this species. In particular, molecular markers are becoming essential tools for developing parental lines with traits of interest and for assessing the specific combining ability of these lines to breed F1 hybrids. The present research deals with the implementation of an efficient method for genotyping elite breeding stocks developed from old landraces of leaf chicory, Radicchio of Chioggia, which are locally dominant in the Veneto region, using 27 microsatellite (SSR) marker loci scattered throughout the linkage groups. Information on the genetic diversity across molecular markers and plant accessions was successfully assessed along with descriptive statistics over all marker loci and inbred lines. Our overall data support an efficient method for assessing a multi-locus genotype of plant individuals and lineages that is useful for the selection of new varieties and the certification of local products derived from Radicchio of Chioggia. This method proved to be useful for assessing the observed degree of homozygosity of the inbred lines as a measure of their genetic stability; plus it allowed an estimate of the specific combining ability (SCA) between maternal and paternal inbred lines on the basis of their genetic diversity and the predicted degree of heterozygosity of their F1 hybrids. This information could be exploited for planning crosses and predicting plant vigor traits (i.e., heterosis) of experimental F1 hybrids on the basis of the genetic distance and allelic divergence between parental inbred lines. Knowing the parental genotypes would allow us not only to protect newly registered varieties but also to assess the genetic purity and identity of the seed stocks of commercial F1 hybrids, and to certificate the origin of their food derivatives.

  9. Insulin-like growth factor I gene polymorphism associated with growth and carcass traits in Thai synthetic chickens.

    PubMed

    Promwatee, N; Laopaiboon, B; Vongpralub, T; Phasuk, Y; Kunhareang, S; Boonkum, W; Duangjinda, M

    2013-03-15

    Four Thai synthetic chicken lines (Kaen Thong, Khai Mook Esarn, Soi Nin, and Soi Pet) originated from Thai native and exotic commercial chickens were evaluated for their growth and carcass traits with the purpose of developing a Thai broiler breeding program. Insulin-like growth factor I (IGF-I) gene is known to play an important role in growth, proliferation and differentiation. Consequently, we investigated the possibility of using the IGF-I gene for marker-assisted selection in Thai synthetic chickens. We looked for variations in the IGF-I gene and studied their association with growth and carcass traits; 1046 chickens were genotyped using PCR-RFLP methods. A general linear model was used to analyze associations of the IGF-I polymorphism with growth and carcass traits. Kaen Thong, Khai Mook Esarn, and Soi Nin chickens were found to carry similar frequencies of alleles A and C (0.40-0.60), while Soi Pet chickens had high frequencies of allele C (0.75). The IGF-I gene was significantly associated with some growth traits (body weight at hatching, and at 4, 8, 12, and 14 weeks of age; average daily gain during 0-12 and 0-14 weeks of age) in all synthetic chickens. Carcass traits (the percentage of dressing and pectoralis major) were significantly different only in Khai Mook Esarn chickens. We conclude that IGF-I can be used as a marker gene for the selection of growth and carcass traits of synthetic chickens in a marker-assisted selection program.

  10. Linkage and Association Mapping for Two Major Traits Used in the Maritime Pine Breeding Program: Height Growth and Stem Straightness

    PubMed Central

    Bink, Marco CAM; van Heerwaarden, Joost; Chancerel, Emilie; Boury, Christophe; Lesur, Isabelle; Isik, Fikret; Bouffier, Laurent; Plomion, Christophe

    2016-01-01

    Background Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. Results The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. Conclusions This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program. PMID:27806077

  11. Linkage and Association Mapping for Two Major Traits Used in the Maritime Pine Breeding Program: Height Growth and Stem Straightness.

    PubMed

    Bartholomé, Jérôme; Bink, Marco Cam; van Heerwaarden, Joost; Chancerel, Emilie; Boury, Christophe; Lesur, Isabelle; Isik, Fikret; Bouffier, Laurent; Plomion, Christophe

    2016-01-01

    Increasing our understanding of the genetic architecture of complex traits, through analyses of genotype-phenotype associations and of the genes/polymorphisms accounting for trait variation, is crucial, to improve the integration of molecular markers into forest tree breeding. In this study, two full-sib families and one breeding population of maritime pine were used to identify quantitative trait loci (QTLs) for height growth and stem straightness, through linkage analysis (LA) and linkage disequilibrium (LD) mapping approaches. The populations used for LA consisted of two unrelated three-generation full-sib families (n = 197 and n = 477). These populations were assessed for height growth or stem straightness and genotyped for 248 and 217 markers, respectively. The population used for LD mapping consisted of 661 founders of the first and second generations of the breeding program. This population was phenotyped for the same traits and genotyped for 2,498 single-nucleotide polymorphism (SNP) markers corresponding to 1,652 gene loci. The gene-based reference genetic map of maritime pine was used to localize and compare the QTLs detected by the two approaches, for both traits. LA identified three QTLs for stem straightness and two QTLs for height growth. The LD study yielded seven significant associations (P ≤ 0.001): four for stem straightness and three for height growth. No colocalisation was found between QTLs identified by LA and SNPs detected by LD mapping for the same trait. This study provides the first comparison of LA and LD mapping approaches in maritime pine, highlighting the complementary nature of these two approaches for deciphering the genetic architecture of two mandatory traits of the breeding program.

  12. Genotyping-by-sequencing-based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.).

    PubMed

    Yu, Long-Xi; Zheng, Ping; Zhang, Tiejun; Rodringuez, Jonas; Main, Dorrie

    2017-02-01

    Verticillium wilt (VW) is a fungal disease that causes severe yield losses in alfalfa. The most effective method to control the disease is through the development and use of resistant varieties. The identification of marker loci linked to VW resistance can facilitate breeding for disease-resistant alfalfa. In the present investigation, we applied an integrated framework of genome-wide association with genotyping-by-sequencing (GBS) to identify VW resistance loci in a panel of elite alfalfa breeding lines. Phenotyping was performed by manual inoculation of the pathogen to healthy seedlings, and scoring for disease resistance was carried out according to the standard test of the North America Alfalfa Improvement Conference (NAAIC). Marker-trait association by linkage disequilibrium identified 10 single nucleotide polymorphism (SNP) markers significantly associated with VW resistance. Alignment of the SNP marker sequences to the M. truncatula genome revealed multiple quantitative trait loci (QTLs). Three, two, one and five markers were located on chromosomes 5, 6, 7 and 8, respectively. Resistance loci found on chromosomes 7 and 8 in the present study co-localized with the QTLs reported previously. A pairwise alignment (blastn) using the flanking sequences of the resistance loci against the M. truncatula genome identified potential candidate genes with putative disease resistance function. With further investigation, these markers may be implemented into breeding programmes using marker-assisted selection, ultimately leading to improved VW resistance in alfalfa. PUBLISHED 2016. THIS ARTICLE IS A U.S. GOVERNMENT WORK AND IS IN THE PUBLIC DOMAIN IN THE USA.

  13. Identification of Loci Associated with Drought Resistance Traits in Heterozygous Autotetraploid Alfalfa (Medicago sativa L.) Using Genome-Wide Association Studies with Genotyping by Sequencing.

    PubMed

    Zhang, Tiejun; Yu, Long-Xi; Zheng, Ping; Li, Yajun; Rivera, Martha; Main, Dorrie; Greene, Stephanie L

    2015-01-01

    Drought resistance is an important breeding target for enhancing alfalfa productivity in arid and semi-arid regions. Identification of genes involved in drought tolerance will facilitate breeding for improving drought resistance and water use efficiency in alfalfa. Our objective was to use a diversity panel of alfalfa accessions comprised of 198 cultivars and landraces to identify genes involved in drought tolerance. The panel was selected from the USDA-ARS National Plant Germplasm System alfalfa collection and genotyped using genotyping by sequencing. A greenhouse procedure was used for phenotyping two important traits associated with drought tolerance: drought resistance index (DRI) and relative leaf water content (RWC). Marker-trait association identified nineteen and fifteen loci associated with DRI and RWC, respectively. Alignments of target sequences flanking to the resistance loci against the reference genome of M. truncatula revealed multiple chromosomal locations. Markers associated with DRI are located on all chromosomes while markers associated with RWC are located on chromosomes 1, 2, 3, 4, 5, 6 and 7. Co-localizations of significant markers between DRI and RWC were found on chromosomes 3, 5 and 7. Most loci associated with DRI in this work overlap with the reported QTLs associated with biomass under drought in alfalfa. Additional significant markers were targeted to several contigs with unknown chromosomal locations. BLAST search using their flanking sequences revealed homology to several annotated genes with functions in stress tolerance. With further validation, these markers may be used for marker-assisted breeding new alfalfa varieties with drought resistance and enhanced water use efficiency.

  14. Tagging and mapping of SSR marker for rust resistance gene in lentil (Lens culinaris Medikus subsp. culinaris).

    PubMed

    Dikshit, H K; Singh, Akanksha; Singh, D; Aski, M; Jain, Neelu; Hegde, V S; Basandrai, A K; Basandrai, D; Sharma, T R

    2016-06-01

    Lentil, as an economical source of protein, minerals and vitamins, plays important role in nutritional security of the common man. Grown mainly in West Asia, North Africa (WANA) region and South Asia, it suffers from several biotic stresses such as wilt, rust, blight and broomrape. Lentil rust caused by autoecious fungus Uromyces viciae fabae (Pers.) Schroet is a serious lentil disease in Algeria, Bangladesh, Ethiopia, India, Italy, Morocco, Pakistan and Nepal. The disease symptoms are observed during flowering and early podding stages. Rust causes severe yield losses in lentil. It can only be effectively controlled by identifying the resistant source, understanding its inheritance and breeding for host resistance. The obligate parasitic nature of pathogen makes it difficult to maintain the pathogen in culture and to apply it to screen segregating progenies under controlled growth conditions. Hence, the use of molecular markers will compliment in identification of resistant types in different breeding programs. Here, we studied the inheritance of resistance to rust in lentil using F₁, F₂ and F₂:₃ from cross PL 8 (susceptible) x L 4149 (resistant) varieties. The phenotyping of lentil population was carried out at Sirmour, India. The result of genetic analysis revealed that a single dominant gene controls rust resistance in lentil genotype L 4149. The F2 population from this cross was used to tag and map the rust resistance gene using SSR and SRAP markers. Markers such as 270 SRAP and 162 SSR were studied for polymorphism and 101 SRAP and 33 SSRs were found to be polymorphic between the parents. Two SRAP and two SSR markers differentiated the resistant and susceptible bulks. SSR marker Gllc 527 was estimated to be linked to rust resistant locus at a distance of 5.9 cM. The Gllc 527 marker can be used for marker assisted selection for rust resistance; however, additional markers closer to rust resistant locus are required. The markers linked to the rust resistance gene can serve as starting points for map-based cloning of the rust resistance gene.

  15. A Bio-Economic Case Study of Canadian Honey Bee (Hymenoptera: Apidae) Colonies: Marker-Assisted Selection (MAS) in Queen Breeding Affects Beekeeper Profits

    PubMed Central

    Baylis, Kathy; Hoover, Shelley E.; Currie, Rob W.; Melathopoulos, Andony P.; Pernal, Stephen F.; Foster, Leonard J.; Guarna, M. Marta

    2017-01-01

    Abstract Over the past decade in North America and Europe, winter losses of honey bee (Hymenoptera: Apidae) colonies have increased dramatically. Scientific consensus attributes these losses to multifactorial causes including altered parasite and pathogen profiles, lack of proper nutrition due to agricultural monocultures, exposure to pesticides, management, and weather. One method to reduce colony loss and increase productivity is through selective breeding of queens to produce disease-, pathogen-, and mite-resistant stock. Historically, the only method for identifying desirable traits in honey bees to improve breeding was through observation of bee behavior. A team of Canadian scientists have recently identified markers in bee antennae that correspond to behavioral traits in bees and can be tested for in a laboratory. These scientists have demonstrated that this marker-assisted selection (MAS) can be used to produce hygienic, pathogen-resistant honey bee colonies. Based on this research, we present a beekeeping case study where a beekeeper’s profit function is used to evaluate the economic impact of adopting colonies selected for hygienic behavior using MAS into an apiary. Our results show a net profit gain from an MAS colony of between 2% and 5% when Varroa mites are effectively treated. In the case of ineffective treatment, MAS generates a net profit benefit of between 9% and 96% depending on the Varroa load. When a Varroa mite population has developed some treatment resistance, we show that MAS colonies generate a net profit gain of between 8% and 112% depending on the Varroa load and degree of treatment resistance. PMID:28334400

  16. [Expression of angiopoietin-like proteins for animal breeding: a review].

    PubMed

    Fu, Weiwei; Ma, Yun; Chen, Ningbo; Li, He; Bai, Yueyu

    2015-11-01

    Angiopoietin-like proteins are a family of proteins that are closely related to lipid, glucose and energy metabolism, as well as angiogenesis. To date, eight Angptls have been discovered, namely Angptl1 to Angptl8 that play key roles in metabolic regulation and marker assisted selection. In this review, we summarized current progress on the structure, signaling pathways, upstream regulatory genes and metabolic network of Angptl1-8. Finally, in combination with our work, the status and problems of animal breeding as well as the future prospects for Angptls were discussed.

  17. Association mapping of stem rust race TTKSK resistance in US barley breeding germplasm.

    PubMed

    Zhou, H; Steffenson, B J; Muehlbauer, Gary; Wanyera, Ruth; Njau, Peter; Ndeda, Sylvester

    2014-06-01

    Loci conferring resistance to the highly virulent African stem rust race TTKSK were identified in advanced barley breeding germplasm and positioned to chromosomes 5H and 7H using an association mapping approach. African races of the stem rust pathogen (Puccinia graminis f. sp. tritici) are a serious threat to barley production worldwide because of their wide virulence. To discover and characterize resistance to African stem rust race TTKSK in US barley breeding germplasm, over 3,000 lines/cultivars were assessed for resistance at the seedling stage in the greenhouse and also the adult plant stage in the field in Kenya. Only 12 (0.3 %) and 64 (2.1 %) lines exhibited a resistance level comparable to the resistant control at the seedling and adult plant stage, respectively. To map quantitative trait loci (QTL) for resistance to race TTKSK, an association mapping approach was conducted, utilizing 3,072 single nucleotide polymorphism (SNP) markers. At the seedling stage, two neighboring SNP markers (0.8 cM apart) on chromosome 7H (11_21491 and 12_30528) were found significantly associated with resistance. The most significant one found was 12_30528; thus, the resistance QTL was named Rpg-qtl-7H-12_30528. At the adult plant stage, two SNP markers on chromosome 5H (11_11355 and 12_31427) were found significantly associated with resistance. This resistance QTL was named Rpg-qtl-5H-11_11355 for the most significant marker identified. Adult plant resistance is of paramount importance for stem rust. The marker associated with Rpg-qtl-5H-11_11355 for adult plant resistance explained only a small portion of the phenotypic variation (0.02); however, this QTL reduced disease severity up to 55.0 % under low disease pressure and up to 21.1 % under heavy disease pressure. SNP marker 11_11355 will be valuable for marker-assisted selection of adult plant stem rust resistance in barley breeding.

  18. Development of diagnostic markers for use in breeding potatoes resistant to Globodera pallida pathotype Pa2/3 using germplasm derived from Solanum tuberosum ssp. andigena CPC 2802.

    PubMed

    Moloney, Claire; Griffin, Denis; Jones, Peter W; Bryan, Glenn J; McLean, Karen; Bradshaw, John E; Milbourne, Dan

    2010-02-01

    Quantitative resistance to Globodera pallida pathotype Pa2/3, originally derived from Solanum tuberosum ssp. andigena Commonwealth Potato Collection (CPC) accession 2802, is present in several potato cultivars and advanced breeding lines. One genetic component of this resistance, a large effect quantitative trait locus (QTL) on linkage group IV (which we have renamed GpaIV(adg)(s)) has previously been mapped in the tetraploid breeding line 12601ab1. In this study, we show that GpaIV(adg)(s) is also present in a breeding line called C1992/31 via genetic mapping in an F(1) population produced by crossing C1992/31 with the G. pallida susceptible cultivar Record. C1992/31 is relatively divergent from 12601ab1, confirming that GpaIV(adg)(s) is an ideal target for marker-assisted selection in currently available germplasm. To generate markers exhibiting diagnostic potential for GpaIV(adg)(s), three bacterial artificial chromosome clones were isolated from the QTL region, sequenced, and used to develop 15 primer sets generating single-copy amplicons, which were examined for polymorphisms exhibiting linkage to GpaIV(adg)(s) in C1992/31. Eight such polymorphisms were found. Subsequently, one insertion/deletion polymorphism, three single nucleotide polymorphisms and a specific allele of the microsatellite marker STM3016 were shown to exhibit diagnostic potential for the QTL in a panel of 37 potato genotypes, 12 with and 25 without accession CPC2082 in their pedigrees. STM3016 and one of the SNP polymorphisms, C237(119), were assayed in 178 potato genotypes, arising from crosses between C1992/31 and 16 G. pallida susceptible genotypes, undergoing selection in a commercial breeding programme. The results suggest that the diagnostic markers would most effectively be employed in MAS-based approaches to pyramid different resistance loci to develop cultivars exhibiting strong, durable resistance to G. pallida pathotype Pa2/3.

  19. High density genetic linkage map and bin mapping for disease resistance QTLs in peanut

    USDA-ARS?s Scientific Manuscript database

    Mapping and identification of QTLs are important for efficient marker-assisted breeding and for analysis of the molecular mechanisms regulating traits. Diseases, such as early and late leaf spots, Tomato spotted wilt virus (TSWV), cause significant loses to peanut growers. Our goal is to develop a h...

  20. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.

    USDA-ARS?s Scientific Manuscript database

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ~4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification pr...

  1. DNA sequences of Pima (Gossypium barbadense L.) cotton leaf for examining transcriptome diversity and SNP biomarker discovery

    USDA-ARS?s Scientific Manuscript database

    As an initial step to explore the transcriptome genetic diversity and to discover single nucleotide polymorphic (SNP)-biomarkers for marker assisted breeding within Pima (Gossypium barbadense L.) cotton, leaves from 25 day plants of three diverse genotypes were used to develop cDNA libraries. Using ...

  2. Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen.

    PubMed

    Yu, Guotai; Zhang, Qijun; Friesen, Timothy L; Rouse, Matthew N; Jin, Yue; Zhong, Shaobin; Rasmussen, Jack B; Lagudah, Evans S; Xu, Steven S

    2015-03-01

    Mapping studies confirm that resistance to Ug99 race of stem rust pathogen in Aegilops tauschii accession Clae 25 is conditioned by Sr46 and markers linked to the gene were developed for marker-assisted selection. The race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the causal pathogen for wheat stem rust, is considered as a major threat to global wheat production. To address this threat, researchers across the world have been devoted to identifying TTKSK-resistant genes. Here, we report the identification and mapping of a stem rust resistance gene in Aegilops tauschii accession CIae 25 that confers resistance to TTKSK and the development of molecular markers for the gene. An F2 population of 710 plants from an Ae. tauschii cross CIae 25 × AL8/78 were first evaluated against race TPMKC. A set of 14 resistant and 116 susceptible F2:3 families from the F2 plants were then evaluated for their reactions to TTKSK. Based on the tests, 179 homozygous susceptible F2 plants were selected as the mapping population to identify the simple sequence repeat (SSR) and sequence tagged site (STS) markers linked to the gene by bulk segregant analysis. A dominant stem rust resistance gene was identified and mapped with 16 SSR and five new STS markers to the deletion bin 2DS5-0.47-1.00 of chromosome arm 2DS in which Sr46 was located. Molecular marker and stem rust tests on CIae 25 and two Ae. tauschii accessions carrying Sr46 confirmed that the gene in CIae 25 is Sr46. This study also demonstrated that Sr46 is temperature-sensitive being less effective at low temperatures. The marker validation indicated that two closely linked markers Xgwm210 and Xwmc111 can be used for marker-assisted selection of Sr46 in wheat breeding programs.

  3. Friends and family: A software program for identification of unrelated individuals from molecular marker data.

    PubMed

    de Jager, Deon; Swarts, Petrus; Harper, Cindy; Bloomer, Paulette

    2017-11-01

    The identification of related and unrelated individuals from molecular marker data is often difficult, particularly when no pedigree information is available and the data set is large. High levels of relatedness or inbreeding can influence genotype frequencies and thus genetic marker evaluation, as well as the accurate inference of hidden genetic structure. Identification of related and unrelated individuals is also important in breeding programmes, to inform decisions about breeding pairs and translocations. We present Friends and Family, a Windows executable program with a graphical user interface that identifies unrelated individuals from a pairwise relatedness matrix or table generated in programs such as coancestry and genalex. Friends and Family outputs a list of samples that are all unrelated to each other, based on a user-defined relatedness cut-off value. This unrelated data set can be used in downstream analyses, such as marker evaluation or inference of genetic structure. The results can be compared to that of the full data set to determine the effect related individuals have on the analyses. We demonstrate one of the applications of the program: how the removal of related individuals altered the Hardy-Weinberg equilibrium test outcome for microsatellite markers in an empirical data set. Friends and Family can be obtained from https://github.com/DeondeJager/Friends-and-Family. © 2017 John Wiley & Sons Ltd.

  4. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects

    PubMed Central

    Pandey, Manish K.; Roorkiwal, Manish; Singh, Vikas K.; Ramalingam, Abirami; Kudapa, Himabindu; Thudi, Mahendar; Chitikineni, Anu; Rathore, Abhishek; Varshney, Rajeev K.

    2016-01-01

    Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries. PMID:27199998

  5. Putative resistance gene markers associated with quantitative trait loci for fire blight resistance in Malus 'Robusta 5' accessions

    USDA-ARS?s Scientific Manuscript database

    Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large effect QTL for fire blight resistance has been pre...

  6. Identification of quantitative trait loci (QTL) for fruit quality traits and number of weeks of flowering in the cultivated strawberry

    USDA-ARS?s Scientific Manuscript database

    Fruit quality traits and dayneutrality are two major foci of several strawberry breeding programs. The identification of quantitative trait loci (QTL) and molecular markers linked to these traits could improve breeding efficiency. In this work, an F1 population derived from the cross ‘Delmarvel’ × ...

  7. A suite of microsatellite markers optimized for amplification of DNA from Addax (Addax nasomaculatus) blood preserved on FTA cards.

    PubMed

    Heim, Brett C; Ivy, Jamie A; Latch, Emily K

    2012-01-01

    The addax (Addax nasomaculatus) is a critically endangered antelope that is currently maintained in zoos through regional, conservation breeding programs. As for many captive species, incomplete pedigree data currently impedes the ability of addax breeding programs to confidently manage the genetics of captive populations and to select appropriate animals for reintroduction. Molecular markers are often used to improve pedigree resolution, thereby improving the long-term effectiveness of genetic management. When developing a suite of molecular markers, it is important to consider the source of DNA, as the utility of markers may vary across DNA sources. In this study, we optimized a suite of microsatellite markers for use in genotyping captive addax blood samples collected on FTA cards. We amplified 66 microsatellite loci previously described in other Artiodactyls. Sixteen markers amplified a single product in addax, but only 5 of these were found to be polymorphic in a sample of 37 addax sampled from a captive herd at Fossil Rim Wildlife Center in the US. The suite of microsatellite markers developed in this study provides a new tool for the genetic management of captive addax, and demonstrates that FTA cards can be a useful means of sample storage, provided appropriate loci are used in downstream analyses. © 2011 Wiley Periodicals, Inc.

  8. Identification of molecular markers associated with mite resistance in coconut (Cocos nucifera L.).

    PubMed

    Shalini, K V; Manjunatha, S; Lebrun, P; Berger, A; Baudouin, L; Pirany, N; Ranganath, R M; Prasad, D Theertha

    2007-01-01

    Coconut mite (Aceria guerreronis 'Keifer') has become a major threat to Indian coconut (Coçcos nucifera L.) cultivators and the processing industry. Chemical and biological control measures have proved to be costly, ineffective, and ecologically undesirable. Planting mite-resistant coconut cultivars is the most effective method of preventing yield loss and should form a major component of any integrated pest management stratagem. Coconut genotypes, and mite-resistant and -susceptible accessions were collected from different parts of South India. Thirty-two simple sequence repeat (SSR) and 7 RAPD primers were used for molecular analyses. In single-marker analysis, 9 SSR and 4 RAPD markers associated with mite resistance were identified. In stepwise multiple regression analysis of SSRs, a combination of 6 markers showed 100% association with mite infestation. Stepwise multiple regression analysis for RAPD data revealed that a combination of 3 markers accounted for 83.86% of mite resistance in the selected materials. Combined stepwise multiple regression analysis of RAPD and SSR data showed that a combination of 5 markers explained 100% of the association with mite resistance in coconut. Markers associated with mite resistance are important in coconut breeding programs and will facilitate the selection of mite-resistant plants at an early stage as well as mother plants for breeding programs.

  9. Association Genetics of Wood Physical Traits in the Conifer White Spruce and Relationships With Gene Expression

    PubMed Central

    Beaulieu, Jean; Doerksen, Trevor; Boyle, Brian; Clément, Sébastien; Deslauriers, Marie; Beauseigle, Stéphanie; Blais, Sylvie; Poulin, Pier-Luc; Lenz, Patrick; Caron, Sébastien; Rigault, Philippe; Bicho, Paul; Bousquet, Jean; MacKay, John

    2011-01-01

    Marker-assisted selection holds promise for highly influencing tree breeding, especially for wood traits, by considerably reducing breeding cycles and increasing selection accuracy. In this study, we used a candidate gene approach to test for associations between 944 single-nucleotide polymorphism markers from 549 candidate genes and 25 wood quality traits in white spruce. A mixed-linear model approach, including a weak but nonsignificant population structure, was implemented for each marker–trait combination. Relatedness among individuals was controlled using a kinship matrix estimated either from the known half-sib structure or from the markers. Both additive and dominance effect models were tested. Between 8 and 21 single-nucleotide polymorphisms (SNPs) were found to be significantly associated (P ≤ 0.01) with each of earlywood, latewood, or total wood traits. After controlling for multiple testing (Q ≤ 0.10), 13 SNPs were still significant across as many genes belonging to different families, each accounting for between 3 and 5% of the phenotypic variance in 10 wood characters. Transcript accumulation was determined for genes containing SNPs associated with these traits. Significantly different transcript levels (P ≤ 0.05) were found among the SNP genotypes of a 1-aminocyclopropane-1-carboxylate oxidase, a β-tonoplast intrinsic protein, and a long-chain acyl-CoA synthetase 9. These results should contribute toward the development of efficient marker-assisted selection in an economically important tree species. PMID:21385726

  10. Identification and characterization of gene-based SSR markers in date palm (Phoenix dactylifera L.).

    PubMed

    Zhao, Yongli; Williams, Roxanne; Prakash, C S; He, Guohao

    2012-12-15

    Date palm (Phoenix dactylifera L.) is an important tree in the Middle East and North Africa due to the nutritional value of its fruit. Molecular Breeding would accelerate genetic improvement of fruit tree through marker assisted selection. However, the lack of molecular markers in date palm restricts the application of molecular breeding. In this study, we analyzed 28,889 EST sequences from the date palm genome database to identify simple-sequence repeats (SSRs) and to develop gene-based markers, i.e. expressed sequence tag-SSRs (EST-SSRs). We identified 4,609 ESTs as containing SSRs, among which, trinucleotide motifs (69.7%) were the most common, followed by tetranucleotide (10.4%) and dinucleotide motifs (9.6%). The motif AG (85.7%) was most abundant in dinucleotides, while motifs AGG (26.8%), AAG (19.3%), and AGC (16.1%) were most common among trinucleotides. A total of 4,967 primer pairs were designed for EST-SSR markers from the computational data. In a follow up laboratory study, we tested a sample of 20 random selected primer pairs for amplification and polymorphism detection using genomic DNA from date palm cultivars. Nearly one-third of these primer pairs detected DNA polymorphism to differentiate the twelve date palm cultivars used. Functional categorization of EST sequences containing SSRs revealed that 3,108 (67.4%) of such ESTs had homology with known proteins. Date palm EST sequences exhibits a good resource for developing gene-based markers. These genic markers identified in our study may provide a valuable genetic and genomic tool for further genetic research and varietal development in date palm, such as diversity study, QTL mapping, and molecular breeding.

  11. Genomic Regions in Local Endangered Sheep Encode Potentially Favorable Genes.

    PubMed

    Moioli, Bianca; Steri, Roberto; Catillo, Gennaro

    2018-01-02

    The economic evaluation of farm animal genetic resources plays a key role in developing conservation programs. However, to date, the link between diversity as assessed by neutral genetic markers and the functional diversity is not yet understood. Two genome-wide comparisons, using over 44,000 Single Nucleotide Polymorphisms, identified the markers with the highest difference in allele frequency between the Alpago endangered breed and two clusters, composed of four specialized dairy sheep, and four meat breeds respectively. The genes in proximity of these markers were mapped to known pathways of the Gene Ontology to determine which ones were most represented. Our results indicated that the differences of the Alpago breed from the more productive sheep rely upon genes involved in cellular defense and repair mechanisms. A higher number of different markers and genes were detected in the comparison with the specialized dairy sheep. These genes play a role in complex biological processes: metabolic, homeostatic, neurological system, and macromolecular organization; such processes may possibly explain the evolution of gene function as a result of selection to improve milk yield.

  12. CoCoa: a software tool for estimating the coefficient of coancestry from multilocus genotype data.

    PubMed

    Maenhout, Steven; De Baets, Bernard; Haesaert, Geert

    2009-10-15

    Phenotypic data collected in breeding programs and marker-trait association studies are often analyzed by means of linear mixed models. In these models, the covariance between the genetic background effects of all genotypes under study is modeled by means of pairwise coefficients of coancestry. Several marker-based coancestry estimation procedures allow to estimate this covariance matrix, but generally introduce a certain amount of bias when the examined genotypes are part of a breeding program. CoCoa implements the most commonly used marker-based coancestry estimation procedures and as such, allows to select the best fitting covariance structure for the phenotypic data at hand. This better model fit translates into an increased power and improved type I error control in association studies and an improved accuracy in phenotypic prediction studies. The presented software package also provides an implementation of the new Weighted Alikeness in State (WAIS) estimator for use in hybrid breeding programs. Besides several matrix manipulation tools, CoCoa implements two different bending heuristics, in case the inverse of an ill-conditioned coancestry matrix estimate is needed. The software package CoCoa is freely available at http://webs.hogent.be/cocoa. Source code, manual, binaries for 32 and 64-bit Linux systems and an installer for Microsoft Windows are provided. The core components of CoCoa are written in C++, while the graphical user interface is written in Java.

  13. Internal amplification control of PCR for the Glu1-Dx5 allele in wheat.

    PubMed

    Heim, H N; Vieira, E S N; Polo, L R T; Lima, N K; Silva, G J; Linde, G A; Colauto, N B; Schuster, I

    2017-08-17

    One of the limiting factors in using dominant markers is the unique amplification of the target fragment. Therefore, failures in polymerase chain reaction (PCR) or non-amplifications can be interpreted as an absence of the allele. The possibility of false negatives implies in reduced efficiency in the selection process in genetic breeding programs besides the loss of valuable genetic material. Thus, this study aimed to evaluate the viability of a microsatellite marker as an internal amplification control with a dominant marker for the wheat Glu1-Dx5 gene. A population of 77 wheat cultivars/breeding lines was analyzed. Fourteen microsatellite markers were analyzed in silico regarding the formation of dimers and clamps. The biplex reaction conditions were optimized, and the Xbarc117 marker was selected as the internal amplification control with a Glu1-Dx5 marker in wheat. It was concluded that the Xbarc117 microsatellite marker was effective in the simultaneous amplification with a dominant Glu1-Dx5 marker, making biplex PCR viable in wheat for the studied markers.

  14. Genotyping by sequencing for SNP-based linkage analysis and identification of QTLs linked to fruit quality traits in Japanese plum (Prunus salicina Lindl.)

    USDA-ARS?s Scientific Manuscript database

    Marker-assisted selection (MAS) in stone fruit (Prunus species) breeding is currently difficult to achieve due to the polygenic nature of themost relevant agronomic traits linked to fruit quality. Genotyping by sequencing (GBS), however, provides a large quantity of useful data suitable for finemapp...

  15. Genetic variation patterns of American chestnut populations at EST-SSRs

    Treesearch

    Oliver Gailing; C. Dana Nelson

    2017-01-01

    The objective of this study is to analyze patterns of genetic variation at genic expressed sequence tag - simple sequence repeats (EST-SSRs) and at chloroplast DNA markers in populations of American chestnut (Castanea dentata Borkh.) to assist in conservation and breeding efforts. Allelic diversity at EST-SSRs decreased significantly from southwest to northeast along...

  16. Quantitative trait loci for seed isoflavones contents in 'MD96-5722' by 'Spencer' recombinant inbred lines of soybean

    USDA-ARS?s Scientific Manuscript database

    Isoflavones from soybeans (Glycine max L. Merr.) have significant impact on human health in reducing the risk of several major diseases. Breeding soybean for high isoflavones content in the seed is possible through marker assisted selection (MAS), which can be based on quantitative trait loci (QTL)....

  17. Application of a new IBD-based QTL mapping method to common wheat breeding population: analysis of kernel hardness and dough strength.

    PubMed

    Crepieux, Sebastien; Lebreton, Claude; Flament, Pascal; Charmet, Gilles

    2005-11-01

    Mapping quantitative trait loci (QTL) in plants is usually conducted using a population derived from a cross between two inbred lines. The power of such QTL detection and the estimation of the effects highly depend on the choice of the two parental lines. Thus, the QTL found represent only a small part of the genetic architecture and can be of limited economical interest in marker-assisted selection. On the other hand, applied breeding programmes evaluate large numbers of progeny derived from multiple-related crosses for a wide range of agronomic traits. It is assumed that the development of statistical techniques to deal with pedigrees in existing plant populations would increase the relevance and cost effectiveness of QTL mapping in a breeding context. In this study, we applied a two-step IBD-based-variance component method to a real wheat breeding population, composed of 374 F6 lines derived from 80 different parents. Two bread wheat quality related traits were analysed by the method. Results obtained show very close agreement with major genes and QTL already known for those two traits. With this new QTL mapping strategy, inferences about QTL can be drawn across the breeding programme rather than being limited to the sample of progeny from a single cross and thus the use of the detected QTL in assisting breeding would be facilitated.

  18. The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding.

    PubMed

    Shirasawa, Kenta; Isuzugawa, Kanji; Ikenaga, Mitsunobu; Saito, Yutaro; Yamamoto, Toshiya; Hirakawa, Hideki; Isobe, Sachiko

    2017-10-01

    We determined the genome sequence of sweet cherry (Prunus avium) using next-generation sequencing technology. The total length of the assembled sequences was 272.4 Mb, consisting of 10,148 scaffold sequences with an N50 length of 219.6 kb. The sequences covered 77.8% of the 352.9 Mb sweet cherry genome, as estimated by k-mer analysis, and included >96.0% of the core eukaryotic genes. We predicted 43,349 complete and partial protein-encoding genes. A high-density consensus map with 2,382 loci was constructed using double-digest restriction site-associated DNA sequencing. Comparing the genetic maps of sweet cherry and peach revealed high synteny between the two genomes; thus the scaffolds were integrated into pseudomolecules using map- and synteny-based strategies. Whole-genome resequencing of six modern cultivars found 1,016,866 SNPs and 162,402 insertions/deletions, out of which 0.7% were deleterious. The sequence variants, as well as simple sequence repeats, can be used as DNA markers. The genomic information helps us to identify agronomically important genes and will accelerate genetic studies and breeding programs for sweet cherries. Further information on the genomic sequences and DNA markers is available in DBcherry (http://cherry.kazusa.or.jp (8 May 2017, date last accessed)). © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  19. A family of LRR sequences in the vicinity of the Co-2 locus for anthracnose resistance in Phaseolus vulgaris and its potential use in marker-assisted selection.

    PubMed

    Geffroy, V; Creusot, F; Falquet, J; Sévignac, M; Adam-Blondon, A F; Bannerot, H; Gepts, P; Dron, M

    1998-03-01

    Molecular markers offer new opportunities for breeding for disease resistance. Resistance gene pyramiding in a single cultivar, as a strategy for durable resistance, can be facilitated by marker-assisted selection (MAS). A RAPD marker, ROH20(450), linked to the Mesoamerican Co-2 anthracnose resistance gene, was previously transformed into a SCAR marker, SCH20. In the present paper we have further characterized the relevance of the SCH20 SCAR marker in different genetic backgrounds. Since this SCAR marker was found to be useful mainly in the Andean gene pool, we identified a new PCR-based marker (SCAreoli) for indirect scoring of the presence of the Co-2 gene. The SCAreoli SCAR marker is polymorphic in the Mesoamerican as well as in the Andean gene pool and should be useful in MAS. We also report that PvH20, the cloned sequence corresponding to the 450-bp RAPD marker ROH20(450), contains six imperfect leucine-rich repeats, and reveals a family of related sequences in the vicinity of the Co-2 locus. These results are discussed in the context of the recent cloning of some plant resistance genes.

  20. Effectors as tools in disease resistance breeding against biotrophic, hemibiotrophic, and necrotrophic plant pathogens.

    PubMed

    Vleeshouwers, Vivianne G A A; Oliver, Richard P

    2014-03-01

    One of most important challenges in plant breeding is improving resistance to the plethora of pathogens that threaten our crops. The ever-growing world population, changing pathogen populations, and fungicide resistance issues have increased the urgency of this task. In addition to a vital inflow of novel resistance sources into breeding programs, the functional characterization and deployment of resistance also needs improvement. Therefore, plant breeders need to adopt new strategies and techniques. In modern resistance breeding, effectors are emerging as tools to accelerate and improve the identification, functional characterization, and deployment of resistance genes. Since genome-wide catalogues of effectors have become available for various pathogens, including biotrophs as well as necrotrophs, effector-assisted breeding has been shown to be successful for various crops. "Effectoromics" has contributed to classical resistance breeding as well as for genetically modified approaches. Here, we present an overview of how effector-assisted breeding and deployment is being exploited for various pathosystems.

  1. Application of microsatellite markers as potential tools for traceability of Girgentana goat breed dairy products.

    PubMed

    Sardina, Maria Teresa; Tortorici, Lina; Mastrangelo, Salvatore; Di Gerlando, Rosalia; Tolone, Marco; Portolano, Baldassare

    2015-08-01

    In livestock, breed assignment may play a key role in the certification of products linked to specific breeds. Traceability of farm animals and authentication of their products can contribute to improve breed profitability and sustainability of animal productions with significant impact on the rural economy of particular geographic areas and on breed and biodiversity conservation. With the goal of developing a breed genetic traceability system for Girgentana dairy products, the aim of this study was to identify specific microsatellite markers able to discriminate among the most important Sicilian dairy goat breeds, in order to detect possible adulteration in Girgentana dairy products. A total of 20 microsatellite markers were analyzed on 338 individual samples from Girgentana, Maltese, and Derivata di Siria goat breeds. Specific microsatellite markers useful for traceability of dairy products were identified. Eight microsatellite markers showed alleles present at the same time in Maltese and Derivata di Siria and absent in Girgentana and, therefore, they were tested on DNA pools of the three breeds. Considering the electropherograms' results, only FCB20, SRCRSP5, and TGLA122 markers were tested on DNA samples extracted from cheeses of Girgentana goat breed. These three microsatellite markers could be applied in a breed genetic traceability system of Girgentana dairy products in order to detect adulteration due to Maltese and Derivata di Siria goat breeds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A Bio-Economic Case Study of Canadian Honey Bee (Hymenoptera: Apidae) Colonies: Marker-Assisted Selection (MAS) in Queen Breeding Affects Beekeeper Profits.

    PubMed

    Bixby, Miriam; Baylis, Kathy; Hoover, Shelley E; Currie, Rob W; Melathopoulos, Andony P; Pernal, Stephen F; Foster, Leonard J; Guarna, M Marta

    2017-06-01

    Over the past decade in North America and Europe, winter losses of honey bee (Hymenoptera: Apidae) colonies have increased dramatically. Scientific consensus attributes these losses to multifactorial causes including altered parasite and pathogen profiles, lack of proper nutrition due to agricultural monocultures, exposure to pesticides, management, and weather. One method to reduce colony loss and increase productivity is through selective breeding of queens to produce disease-, pathogen-, and mite-resistant stock. Historically, the only method for identifying desirable traits in honey bees to improve breeding was through observation of bee behavior. A team of Canadian scientists have recently identified markers in bee antennae that correspond to behavioral traits in bees and can be tested for in a laboratory. These scientists have demonstrated that this marker-assisted selection (MAS) can be used to produce hygienic, pathogen-resistant honey bee colonies. Based on this research, we present a beekeeping case study where a beekeeper's profit function is used to evaluate the economic impact of adopting colonies selected for hygienic behavior using MAS into an apiary. Our results show a net profit gain from an MAS colony of between 2% and 5% when Varroa mites are effectively treated. In the case of ineffective treatment, MAS generates a net profit benefit of between 9% and 96% depending on the Varroa load. When a Varroa mite population has developed some treatment resistance, we show that MAS colonies generate a net profit gain of between 8% and 112% depending on the Varroa load and degree of treatment resistance. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  3. Population genetics of commercial and feral honey bees in Western Australia.

    PubMed

    Chapman, Nadine C; Lim, Julianne; Oldroyd, Benjamin P

    2008-04-01

    Due to the introduction of exotic honey bee (Apis mellifera L.) diseases in the eastern states, the borders of the state of Western Australia were closed to the import of bees for breeding and other purposes > 25 yr ago. To provide genetically improved stock for the industry, a closed population breeding program was established that now provides stock for the majority of Western Australian beekeepers. Given concerns that inbreeding may have resulted from the closed population breeding structure, we assessed the genetic diversity within and between the breeding lines by using microsatellite and mitochondrial markers. We found that the breeding population still maintains considerable genetic diversity, despite 25 yr of selective breeding. We also investigated the genetic distance of the closed population breeding program to that of beekeepers outside of the program, and the feral Western Australian honey bee population. The feral population is genetically distinct from the closed population, but not from the genetic stock maintained by beekeepers outside of the program. The honey bees of Western Australia show three mitotypes, originating from two subspecies: Apis mellifera ligustica (mitotypes C1 and M7b) and Apis mellifera iberica (mitotype M6). Only mitotypes C1 and M6 are present in the commercial populations. The feral population contains all three mitotypes.

  4. Can genomics boost productivity of orphan crops?

    USDA-ARS?s Scientific Manuscript database

    Advances in genomics over the past 20 years have enhanced the precision and efficiency of breeding programs in many temperate cereal crops. One of the first applications of genomics-assisted breeding has been the introgression of loci for resistance to biotic stresses or major quantitative trait loc...

  5. Development of Genomic Microsatellite Markers in Carthamus tinctorius L. (Safflower) Using Next Generation Sequencing and Assessment of Their Cross-Species Transferability and Utility for Diversity Analysis

    PubMed Central

    Variath, Murali Tottekkad; Joshi, Gopal; Bali, Sapinder; Agarwal, Manu; Kumar, Amar; Jagannath, Arun; Goel, Shailendra

    2015-01-01

    Background Safflower (Carthamus tinctorius L.), an Asteraceae member, yields high quality edible oil rich in unsaturated fatty acids and is resilient to dry conditions. The crop holds tremendous potential for improvement through concerted molecular breeding programs due to the availability of significant genetic and phenotypic diversity. Genomic resources that could facilitate such breeding programs remain largely underdeveloped in the crop. The present study was initiated to develop a large set of novel microsatellite markers for safflower using next generation sequencing. Principal Findings Low throughput genome sequencing of safflower was performed using Illumina paired end technology providing ~3.5X coverage of the genome. Analysis of sequencing data allowed identification of 23,067 regions harboring perfect microsatellite loci. The safflower genome was found to be rich in dinucleotide repeats followed by tri-, tetra-, penta- and hexa-nucleotides. Primer pairs were designed for 5,716 novel microsatellite sequences with repeat length ≥ 20 bases and optimal flanking regions. A subset of 325 microsatellite loci was tested for amplification, of which 294 loci produced robust amplification. The validated primers were used for assessment of 23 safflower accessions belonging to diverse agro-climatic zones of the world leading to identification of 93 polymorphic primers (31.6%). The numbers of observed alleles at each locus ranged from two to four and mean polymorphism information content was found to be 0.3075. The polymorphic primers were tested for cross-species transferability on nine wild relatives of cultivated safflower. All primers except one showed amplification in at least two wild species while 25 primers amplified across all the nine species. The UPGMA dendrogram clustered C. tinctorius accessions and wild species separately into two major groups. The proposed progenitor species of safflower, C. oxyacantha and C. palaestinus were genetically closer to cultivated safflower and formed a distinct cluster. The cluster analysis also distinguished diploid and tetraploid wild species of safflower. Conclusion Next generation sequencing of safflower genome generated a large set of microsatellite markers. The novel markers developed in this study will add to the existing repertoire of markers and can be used for diversity analysis, synteny studies, construction of linkage maps and marker-assisted selection. PMID:26287743

  6. DNA sequence polymorphism within the bovine adenosine monophosphate deaminase 1 (AMPD1) is associated with production traits in Chinese cattle.

    PubMed

    Wei, C-B; Wang, J-Q; Chen, F-Y; Niu, H; Li, K

    2015-02-06

    The objectives of the present study were to detect an 18-bp deletion mutation in the bovine adenosine monophosphate deaminase 1 (AMPD1) gene and analyze its effect on growth traits in 2 Chinese cattle breeds using DNA sequencing and agarose electrophoresis. The five 19-bp polymerase chain reaction products of the AMPD1 gene exhibited 3 genotypes and 2 alleles: WW: homozygote genotype (wild-type); DD: homozygote genotype (mutant-type); WD: heterozygote genotype. Frequencies of the W allele varied from 66.15-70.35%. The associations between the 18-bp deletion mutation in the AMPD1 gene with production traits in 226 Jia-Xian red cattle was analyzed. The animals with genotype WW showed significantly higher heart girth and body weight than those with genotypes WD and DD at 24 months (P < 0.01). Our results indicate that the deletion mutation in the AMPD1 gene is associated with production traits, and may be used for marker-assisted selection in beef cattle breeding programs.

  7. High genetic diversity of Jatropha curcas assessed by ISSR.

    PubMed

    Díaz, B G; Argollo, D M; Franco, M C; Nucci, S M; Siqueira, W J; de Laat, D M; Colombo, C A

    2017-05-31

    Jatropha curcas L. is a highly promising oilseed for sustainable production of biofuels and bio-kerosene due to its high oil content and excellent quality. However, it is a perennial and incipiently domesticated species with none stable cultivar created until now despite genetic breeding programs in progress in several countries. Knowledge of the genetic structure and diversity of the species is a necessary step for breeding programs. The molecular marker can be used as a tool for speed up the process. This study was carried out to assess genetic diversity of a germplasm bank represented by J. curcas accessions from different provenance beside interspecific hybrid and backcrosses generated by IAC breeding programs using inter-simple sequence repeat markers. The molecular study revealed 271 bands of which 98.9% were polymorphic with an average of 22.7 polymorphic bands per primer. Genetic diversity of the germplasm evaluated was slightly higher than other germplasm around the world and ranged from 0.55 to 0.86 with an average of 0.59 (Jaccard index). Cluster analysis (UPGMA) revealed no clear grouping as to the geographical origin of accessions, consistent with genetic structure analysis using the Structure software. For diversity analysis between groups, accessions were divided into eight groups by origin. Nei's genetic distance between groups was 0.14. The results showed the importance of Mexican accessions, congeneric wild species, and interspecific hybrids for conservation and development of new genotypes in breeding programs.

  8. Introgression of Blast Resistance Genes (Putative Pi-b and Pi-kh) into Elite Rice Cultivar MR219 through Marker-Assisted Selection

    PubMed Central

    Tanweer, Fatah A.; Rafii, Mohd Y.; Sijam, Kamaruzaman; Rahim, Harun A.; Ahmed, Fahim; Ashkani, Sadegh; Latif, Mohammad A.

    2015-01-01

    Blast is the most common biotic stress leading to the reduction of rice yield in many rice-growing areas of the world, including Malaysia. Improvement of blast resistance of rice varieties cultivated in blast endemic areas is one of the most important objectives of rice breeding programs. In this study, the marker-assisted backcrossing strategy was applied to improve the blast resistance of the most popular Malaysian rice variety MR219 by introgressing blast resistance genes from the Pongsu Seribu 2 variety. Two blast resistance genes, Pi-b and Pi-kh, were pyramided into MR219. Foreground selection coupled with stringent phenotypic selection identified 15 plants homozygous for the Pi-b and Pi-kh genes, and background selection revealed more than 95% genome recovery of MR219 in advanced blast resistant lines. Phenotypic screening against blast disease indicated that advanced homozygous blast resistant lines were strongly resistant against pathotype P7.2 in the blast disease endemic areas. The morphological, yield, grain quality, and yield-contributing characteristics were significantly similar to those of MR219. The newly developed blast resistant improved lines will retain the high adoptability of MR219 by farmers. The present results will also play an important role in sustaining the rice production of Malaysia. PMID:26734013

  9. DNA marker-assisted evaluation of potato genotypes for potential resistance to potato cyst nematode pathotypes not yet invading into Japan.

    PubMed

    Asano, Kenji; Kobayashi, Akira; Tsuda, Shogo; Nishinaka, Mio; Tamiya, Seiji

    2012-06-01

    One of major objectives of crop breeding is conferring resistance to diseases and pests. However, large-scale phenotypic evaluation for many diseases and pests is difficult because strict controls are required to prevent their spread. Detection of disease resistance genes by using DNA markers may be an alternative approach to select potentially resistant accessions. Potato (Solanum tuberosum L.) breeders in Japan extensively use resistance gene H1, which confers nearly absolute resistance to potato cyst nematode (Globodera rostochiensis) pathotype Ro1, the only pathotype found in Japan. However, considering the possibility of accidental introduction of the other pathotypes, breeding of resistant varieties is an important strategy to prevent infestation by non-invading pathotypes in Japan. In this study, to evaluate the prevalence of resistance genes in Japanese genetic resources, we developed a multiplex PCR method that simultaneously detects 3 resistance genes, H1, Gpa2 and Gro1-4. We revealed that many Japanese varieties possess not only H1 but Gpa2, which are potentially resistant to other pathotypes of potato cyst nematode. On the other hand, no genotype was found to have the Gro1-4, indicating importance of introduction of varieties having Gro1-4. Our results demonstrate the applicability of DNA-marker assisted evaluation of resistant potato genotypes without phenotypic evaluation.

  10. DNA marker-assisted evaluation of potato genotypes for potential resistance to potato cyst nematode pathotypes not yet invading into Japan

    PubMed Central

    Asano, Kenji; Kobayashi, Akira; Tsuda, Shogo; Nishinaka, Mio; Tamiya, Seiji

    2012-01-01

    One of major objectives of crop breeding is conferring resistance to diseases and pests. However, large-scale phenotypic evaluation for many diseases and pests is difficult because strict controls are required to prevent their spread. Detection of disease resistance genes by using DNA markers may be an alternative approach to select potentially resistant accessions. Potato (Solanum tuberosum L.) breeders in Japan extensively use resistance gene H1, which confers nearly absolute resistance to potato cyst nematode (Globodera rostochiensis) pathotype Ro1, the only pathotype found in Japan. However, considering the possibility of accidental introduction of the other pathotypes, breeding of resistant varieties is an important strategy to prevent infestation by non-invading pathotypes in Japan. In this study, to evaluate the prevalence of resistance genes in Japanese genetic resources, we developed a multiplex PCR method that simultaneously detects 3 resistance genes, H1, Gpa2 and Gro1-4. We revealed that many Japanese varieties possess not only H1 but Gpa2, which are potentially resistant to other pathotypes of potato cyst nematode. On the other hand, no genotype was found to have the Gro1-4, indicating importance of introduction of varieties having Gro1-4. Our results demonstrate the applicability of DNA-marker assisted evaluation of resistant potato genotypes without phenotypic evaluation. PMID:23136525

  11. Genetic diversity and differentiation of exotic and American commercial cattle breeds raised in Brazil.

    PubMed

    Brasil, B S A F; Coelho, E G A; Drummond, M G; Oliveira, D A A

    2013-11-18

    The Brazilian cattle population is mainly composed of breeds of zebuine origin and their American derivatives. Comprehensive knowledge about the genetic diversity of these populations is fundamental for animal breeding programs and the conservation of genetic resources. This study aimed to assess the phylogenetic relationships, levels of genetic diversity, and patterns of taurine/zebuine admixture among 9 commercial cattle breeds raised in Brazil. Analysis of DNA polymorphisms was performed on 2965 animals using the 11 microsatellite markers recommended by the International Society of Animal Genetics. High genetic diversity was detected in all breeds, even though significant inbreeding was observed within some. Differences among the breeds accounted for 14.72% of the total genetic variability, and genetic differentiation was higher among taurine than among zebuine cattle. Of note, Nelore cattle presented with high levels of admixture, which is consistent with the history of frequent gene flow during the establishment of this breed in Brazil. Furthermore, significant genetic variability was partitioned within the commercial cattle breeds formed in America, which, therefore, comprise important resources of genetic diversity in the tropics. The genetic characterization of these important Brazilian breeds may now facilitate the development of management and breeding programs for these populations.

  12. Horses for courses: a DNA-based test for race distance aptitude in thoroughbred racehorses.

    PubMed

    Hill, Emmeline W; Ryan, Donal P; MacHugh, David E

    2012-12-01

    Variation at the myostatin (MSTN) gene locus has been shown to influence racing phenotypes in Thoroughbred horses, and in particular, early skeletal muscle development and the aptitude for racing at short distances. Specifically, a single nucleotide polymorphism (SNP) in the first intron of MSTN (g.66493737C/T) is highly predictive of best race distance among Flat racing Thoroughbreds: homozygous C/C horses are best suited to short distance races, heterozygous C/T horses are best suited to middle distance races, and homozygous T/T horses are best suited to longer distance races. Patent applications for this gene marker association, and other linked markers, have been filed. The information contained within the patent applications is exclusively licensed to the commercial biotechnology company Equinome Ltd, which provides a DNA-based test to the international Thoroughbred horse racing and breeding industry. The application of this information in the industry enables informed decision making in breeding and racing and can be used to assist selection to accelerate the rate of change of genetic types among distinct populations (Case Study 1) and within individual breeding operations (Case Study 2).

  13. Towards development of new ornamental plants: status and progress in wide hybridization.

    PubMed

    Kuligowska, Katarzyna; Lütken, Henrik; Müller, Renate

    2016-07-01

    The present review provides insights into the key findings of the hybridization process, crucial factors affecting the adaptation of new technologies within wide hybridization of ornamental plants and presents perspectives of further development of this strategy. Wide hybridization is one of the oldest breeding techniques that contributed enormously to the development of modern plant cultivars. Within ornamental breeding, it represents the main source of genetic variation. During the long history of wide hybridization, a number of methods were implemented allowing the evolution from a conventional breeding tool into a modern methodology. Nowadays, the research on model plants and crop species increases our understanding of reproductive isolation among distant species and partly explains the background of the traditional approaches previously used for overcoming hybridization barriers. Characterization of parental plants and hybrids is performed using molecular and cytological techniques that strongly facilitate breeding processes. Molecular markers and sequencing technologies are used for the assessment of genetic relationships among plants, as the genetic distance is typically depicted as one of the most important factors influencing cross-compatibility in hybridization processes. Furthermore, molecular marker systems are frequently applied for verification of hybrid state of the progeny. The flow cytometry and genomic in situ hybridization are used in the assessment of hybridization partners and characterization of hybrid progeny in relation to genome stabilization as well as genome recombination and introgression. In the future, new research and technologies are likely to provide more detailed information about genes and pathways responsible for interspecific reproductive isolation. Ultimately, this knowledge will enable development of strategies for obtaining compatible lines for hybrid production. Recent development in sequencing technologies and availability of sequence data will also facilitate creation of new molecular markers that will advance marker-assisted selection in hybridization process.

  14. Population analysis of 60 worldwide cattle breeds using high-density (700k)SNP genotyping

    USDA-ARS?s Scientific Manuscript database

    Genetic differences associated with speciation, breed formation, or local adaptation can help inform efforts to preserve and to effectively utilize individuals in selection programs as well as assist in accurately identifying genomic region’s importance through genome-wide association studies. To th...

  15. Feeding & Management of Dairy Calves & Heifers. Teacher's Guide.

    ERIC Educational Resources Information Center

    Bjoraker, Walt

    This guide is designed to assist postsecondary and secondary teachers of agriculture in their use of the University of Wisconsin bulletin "Raising Dairy Replacements" in their dairy science instructional program. Eight lessons are provided in this unit: breeding decisions, management of cows from breeding to calving, care at calving time, the…

  16. Development of the first consensus genetic map of intermediate wheatgrass (Thinopyrum intermedium) using genotyping-by-sequencing

    USDA-ARS?s Scientific Manuscript database

    Intermediate wheatgrass (Thinopyrum intermedium) has been identified as a candidate for domestication and improvement as a perennial grain, forage, and biofuel crop by several active breeding programs. To accelerate this process using genomics-assisted breeding, efficient genotyping methods and gen...

  17. From phenotyping towards breeding strategies: using in vivo indicator traits and genetic markers to improve meat quality in an endangered pig breed.

    PubMed

    Biermann, A D M; Yin, T; König von Borstel, U U; Rübesam, K; Kuhn, B; König, S

    2015-06-01

    In endangered and local pig breeds of small population sizes, production has to focus on alternative niche markets with an emphasis on specific product and meat quality traits to achieve economic competiveness. For designing breeding strategies on meat quality, an adequate performance testing scheme focussing on phenotyped selection candidates is required. For the endangered German pig breed 'Bunte Bentheimer' (BB), no breeding program has been designed until now, and no performance testing scheme has been implemented. For local breeds, mainly reared in small-scale production systems, a performance test based on in vivo indicator traits might be a promising alternative in order to increase genetic gain for meat quality traits. Hence, the main objective of this study was to design and evaluate breeding strategies for the improvement of meat quality within the BB breed using in vivo indicator traits and genetic markers. The in vivo indicator trait was backfat thickness measured by ultrasound (BFiv), and genetic markers were allele variants at the ryanodine receptor 1 (RYR1) locus. In total, 1116 records of production and meat quality traits were collected, including 613 in vivo ultrasound measurements and 713 carcass and meat quality records. Additionally, 700 pigs were genotyped at the RYR1 locus. Data were used (1) to estimate genetic (co)variance components for production and meat quality traits, (2) to estimate allele substitution effects at the RYR1 locus using a selective genotyping approach and (3) to evaluate breeding strategies on meat quality by combining results from quantitative-genetic and molecular-genetic approaches. Heritability for the production trait BFiv was 0.27, and 0.48 for backfat thickness measured on carcass. Estimated heritabilities for meat quality traits ranged from 0.14 for meat brightness to 0.78 for the intramuscular fat content (IMF). Genetic correlations between BFiv and IMF were higher than estimates based on carcass backfat measurements (0.39 v. 0.25). The presence of the unfavorable n allele was associated with increased electric conductivity, paler meat and higher drip loss. The allele substitution effect on IMF was unfavorable, indicating lower IMF when the n allele is present. A breeding strategy including the phenotype (BFiv) combined with genetic marker information at the RYR1 locus from the selection candidate, resulted in a 20% increase in accuracy and selection response when compared with a breeding strategy without genetic marker information.

  18. The genetic map of finger millet, Eleusine coracana.

    PubMed

    Dida, Mathews M; Srinivasachary; Ramakrishnan, Sujatha; Bennetzen, Jeffrey L; Gale, Mike D; Devos, Katrien M

    2007-01-01

    Restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP), expressed-sequenced tag (EST), and simple sequence repeat (SSR) markers were used to generate a genetic map of the tetraploid finger millet (Eleusine coracana subsp. coracana) genome (2n = 4x = 36). Because levels of variation in finger millet are low, the map was generated in an inter-subspecific F(2) population from a cross between E. coracana subsp. coracana cv. Okhale-1 and its wild progenitor E. coracana subsp. africana acc. MD-20. Duplicated loci were used to identify homoeologous groups. Assignment of linkage groups to the A and B genome was done by comparing the hybridization patterns of probes in Okhale-1, MD-20, and Eleusine indica acc. MD-36. E. indica is the A genome donor to E. coracana. The maps span 721 cM on the A genome and 787 cM on the B genome and cover all 18 finger millet chromosomes, at least partially. To facilitate the use of marker-assisted selection in finger millet, a first set of 82 SSR markers was developed. The SSRs were identified in small-insert genomic libraries generated using methylation-sensitive restriction enzymes. Thirty-one of the SSRs were mapped. Application of the maps and markers in hybridization-based breeding programs will expedite the improvement of finger millet.

  19. An integrated approach for increasing breeding efficiency in apple and peach in Europe.

    PubMed

    Laurens, Francois; Aranzana, Maria José; Arus, Pere; Bassi, Daniele; Bink, Marco; Bonany, Joan; Caprera, Andrea; Corelli-Grappadelli, Luca; Costes, Evelyne; Durel, Charles-Eric; Mauroux, Jehan-Baptiste; Muranty, Hélène; Nazzicari, Nelson; Pascal, Thierry; Patocchi, Andrea; Peil, Andreas; Quilot-Turion, Bénédicte; Rossini, Laura; Stella, Alessandra; Troggio, Michela; Velasco, Riccardo; van de Weg, Eric

    2018-01-01

    Despite the availability of whole genome sequences of apple and peach, there has been a considerable gap between genomics and breeding. To bridge the gap, the European Union funded the FruitBreedomics project (March 2011 to August 2015) involving 28 research institutes and private companies. Three complementary approaches were pursued: (i) tool and software development, (ii) deciphering genetic control of main horticultural traits taking into account allelic diversity and (iii) developing plant materials, tools and methodologies for breeders. Decisive breakthroughs were made including the making available of ready-to-go DNA diagnostic tests for Marker Assisted Breeding, development of new, dense SNP arrays in apple and peach, new phenotypic methods for some complex traits, software for gene/QTL discovery on breeding germplasm via Pedigree Based Analysis (PBA). This resulted in the discovery of highly predictive molecular markers for traits of horticultural interest via PBA and via Genome Wide Association Studies (GWAS) on several European genebank collections. FruitBreedomics also developed pre-breeding plant materials in which multiple sources of resistance were pyramided and software that can support breeders in their selection activities. Through FruitBreedomics, significant progresses were made in the field of apple and peach breeding, genetics, genomics and bioinformatics of which advantage will be made by breeders, germplasm curators and scientists. A major part of the data collected during the project has been stored in the FruitBreedomics database and has been made available to the public. This review covers the scientific discoveries made in this major endeavour, and perspective in the apple and peach breeding and genomics in Europe and beyond.

  20. Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination.

    PubMed

    Tamiru, Muluneh; Natsume, Satoshi; Takagi, Hiroki; White, Benjamen; Yaegashi, Hiroki; Shimizu, Motoki; Yoshida, Kentaro; Uemura, Aiko; Oikawa, Kaori; Abe, Akira; Urasaki, Naoya; Matsumura, Hideo; Babil, Pachakkil; Yamanaka, Shinsuke; Matsumoto, Ryo; Muranaka, Satoru; Girma, Gezahegn; Lopez-Montes, Antonio; Gedil, Melaku; Bhattacharjee, Ranjana; Abberton, Michael; Kumar, P Lava; Rabbi, Ismail; Tsujimura, Mai; Terachi, Toru; Haerty, Wilfried; Corpas, Manuel; Kamoun, Sophien; Kahl, Günter; Takagi, Hiroko; Asiedu, Robert; Terauchi, Ryohei

    2017-09-19

    Root and tuber crops are a major food source in tropical Africa. Among these crops are several species in the monocotyledonous genus Dioscorea collectively known as yam, a staple tuber crop that contributes enormously to the subsistence and socio-cultural lives of millions of people, principally in West and Central Africa. Yam cultivation is constrained by several factors, and yam can be considered a neglected "orphan" crop that would benefit from crop improvement efforts. However, the lack of genetic and genomic tools has impeded the improvement of this staple crop. To accelerate marker-assisted breeding of yam, we performed genome analysis of white Guinea yam (Dioscorea rotundata) and assembled a 594-Mb genome, 76.4% of which was distributed among 21 linkage groups. In total, we predicted 26,198 genes. Phylogenetic analyses with 2381 conserved genes revealed that Dioscorea is a unique lineage of monocotyledons distinct from the Poales (rice), Arecales (palm), and Zingiberales (banana). The entire Dioscorea genus is characterized by the occurrence of separate male and female plants (dioecy), a feature that has limited efficient yam breeding. To infer the genetics of sex determination, we performed whole-genome resequencing of bulked segregants (quantitative trait locus sequencing [QTL-seq]) in F1 progeny segregating for male and female plants and identified a genomic region associated with female heterogametic (male = ZZ, female = ZW) sex determination. We further delineated the W locus and used it to develop a molecular marker for sex identification of Guinea yam plants at the seedling stage. Guinea yam belongs to a unique and highly differentiated clade of monocotyledons. The genome analyses and sex-linked marker development performed in this study should greatly accelerate marker-assisted breeding of Guinea yam. In addition, our QTL-seq approach can be utilized in genetic studies of other outcrossing crops and organisms with highly heterozygous genomes. Genomic analysis of orphan crops such as yam promotes efforts to improve food security and the sustainability of tropical agriculture.

  1. RUN1 and REN1 Pyramiding in Grapevine (Vitis vinifera cv. Crimson Seedless) Displays an Improved Defense Response Leading to Enhanced Resistance to Powdery Mildew (Erysiphe necator)

    PubMed Central

    Agurto, Mario; Schlechter, Rudolf O.; Armijo, Grace; Solano, Esteban; Serrano, Carolina; Contreras, Rodrigo A.; Zúñiga, Gustavo E.; Arce-Johnson, Patricio

    2017-01-01

    Fungal pathogens are the cause of the most common diseases in grapevine and among them powdery mildew represents a major focus for disease management. Different strategies for introgression of resistance in grapevine are currently undertaken in breeding programs. For example, introgression of several resistance genes (R) from different sources for making it more durable and also strengthening the plant defense response. Taking this into account, we cross-pollinated P09-105/34, a grapevine plant carrying both RUN1 and REN1 pyramided loci of resistance to Erysiphe necator inherited from a pseudo-backcrossing scheme with Muscadinia rotundifolia and Vitis vinifera ‘Dzhandzhal Kara,’ respectively, with the susceptible commercial table grape cv. ‘Crimson Seedless.’ We developed RUN1REN1 resistant genotypes through conventional breeding and identified them by marker assisted selection. The characterization of defense response showed a highly effective defense mechanism against powdery mildew in these plants. Our results reveal that RUN1REN1 grapevine plants display a robust defense response against E. necator, leading to unsuccessful fungal establishment with low penetration rate and poor hypha development. This resistance mechanism includes reactive oxygen species production, callose accumulation, programmed cell death induction and mainly VvSTS36 and VvPEN1 gene activation. RUN1REN1 plants have a great potential as new table grape cultivars with durable complete resistance to E. necator, and are valuable germplasm to be included in grape breeding programs to continue pyramiding with other sources of resistance to grapevine diseases. PMID:28553300

  2. Development and preliminary evaluation of a 90K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria ×ananassa

    USDA-ARS?s Scientific Manuscript database

    A high-throughput genotyping platform is needed to enable marker-assisted breeding in the allo-octoploid cultivated strawberry Fragaria ×ananassa. Short-read sequences from one diploid and 19 octoploid accessions were aligned to the diploid Fragaria vesca ‘Hawaii 4’ reference genome to identify sing...

  3. Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L).

    PubMed

    Osorio-Guarín, Jaime A; Enciso-Rodríguez, Felix E; González, Carolina; Fernández-Pozo, Noé; Mueller, Lukas A; Barrero, Luz Stella

    2016-03-18

    Vascular wilt caused by Fusarium oxysporum is the most important disease in cape gooseberry (Physalis peruviana L.) in Colombia. The development of resistant cultivars is considered one of the most cost-effective means to reduce the impact of this disease. In order to do so, it is necessary to provide breeders with molecular markers and promising germplasm for introgression of different resistance loci as part of breeding schemes. Here we described an association mapping study in cape gooseberry with the goal to: (i) select promising materials for use in plant breeding and (ii) identify SNPs associated with the cape gooseberry resistance response to the F. oxysporum pathogen under greenhouse conditions, as potential markers for cape gooseberry breeding. We found a total of 21 accessions with different resistance responses within a diversity panel of 100 cape gooseberry accessions. A total of 60,663 SNPs were also identified within the same panel by means of GBS (Genotyping By Sequencing). Model-based population structure and neighbor-joining analyses showed three populations comprising the cape gooseberry panel. After correction for population structure and kinship, we identified SNPs markers associated with the resistance response against F. oxysporum. The identification of markers was based on common tags using the reference genomes of tomato and potato as well as the root/stem transcriptome of cape gooseberry. By comparing their location with the tomato genome, 16 SNPs were found in genes involved in defense/resistance response to pathogens, likewise when compared with the genome of potato, 12 markers were related. The work presented herein provides the first association mapping study in cape gooseberry showing both the identification of promising accessions with resistance response phenotypes and the identification of a set of SNP markers mapped to defense/resistance response genes of reference genomes. Thus, the work also provides new knowledge on candidate genes involved in the P. peruviana - F. oxysporum pathosystem as a foundation for further validation in marker-assisted selection. The results have important implications for conservation and breeding strategies in cape gooseberry.

  4. Genetic diversity and genetic structure of consecutive breeding generations of golden mandarin fish (Siniperca scherzeri Steindachner) using microsatellite markers.

    PubMed

    Luo, X N; Yang, M; Liang, X F; Jin, K; Lv, L Y; Tian, C X; Yuan, Y C; Sun, J

    2015-09-25

    In this study, 12 polymorphic microsatellites were inves-tigated to determine the genetic diversity and structure of 5 consecu-tive selected populations of golden mandarin fish (Siniperca scherzeri Steindachner). The total numbers of alleles, average heterozyosity, and average polymorphism information content showed that the genetic diversity of these breeding populations was decreasing. Additionally, pairwise fixation index FST values among populations and Da values in-creased from F1 generation to subsequent generations (FST values from 0.0221-0.1408; Da values from 0.0608-0.1951). Analysis of molecular variance indicated that most genetic variations arise from individuals within populations (about 92.05%), while variation among populations accounted for only 7.95%. The allele frequency of the loci SC75-220 and SC101-222 bp changed regularly in the 5 breeding generations. Their frequencies were gradually increased and showed an enrichment trend, indicating that there may be genetic correlations between these 2 loci and breeding traits. Our study indicated that microsatellite markers are effective for assessing the genetic variability in the golden mandarin fish breeding program.

  5. Polymorphisms of FLII implicate gene expressions and growth traits in Chinese cattle.

    PubMed

    Liu, Mei; Liu, Min; Li, Bo; Zhou, Yang; Huang, Yongzhen; Lan, Xianyong; Qu, Weidong; Qi, Xingshan; Bai, Yueyu; Chen, Hong

    2016-08-01

    Flightless-1 (FLII) is essential for early embryogenesis, structural organization of indirect flight muscle and can inhibit adipocyte differentiation. We therefore aimed to identify common variations in FLII gene and to investigate their effects on cattle growth traits. By DNA sequencing and forced PCR-RFLP methods, we evaluated two synonymous mutations (rs41910826 and rs444484913) and one intron mutation (rs522737248) in four Chinese domestic breeds (n = 628). Association analysis indicated that these SNPs were associated with growth traits and gene expressions (P < 0.05). At rs41910826, individuals with TT and/or CT genotypes had some better body sizes in Jiaxian, Nanyang, and Qinchuan breeds. Consistently, among adult Qinchuan cattle muscles, quantitative real-time PCR study witnessed considerable increases of mRNA level of FLII in cattle with CT genotype. For rs444484913, TT and/or TC genotypes were significantly associated with increased body traits of Qinchuan cattle while the qPCR data showed that the TT genotype was more conducive to FLII expression in fetal muscle. At rs522737248, performances of cattle with AA genotype showed compelling superior merits in all four breeds, and allele A had an increasing tendency for the mRNA expression of PPARγ in adult adipose and FLII in fetal muscle. These findings strongly demonstrate that the three SNPs of FLII gene could be utilized as molecular markers for future assisted selection in cattle breeding program. Copyright © 2016. Published by Elsevier Ltd.

  6. The Metabolic Basis of Pollen Thermo-Tolerance: Perspectives for Breeding

    PubMed Central

    Paupière, Marine J.; van Heusden, Adriaan W.; Bovy, Arnaud G.

    2014-01-01

    Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1–3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of) metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed. PMID:25271355

  7. The metabolic basis of pollen thermo-tolerance: perspectives for breeding.

    PubMed

    Paupière, Marine J; van Heusden, Adriaan W; Bovy, Arnaud G

    2014-09-30

    Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1-3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of) metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed.

  8. Integration of DNA marker information into breeding value predictions

    USDA-ARS?s Scientific Manuscript database

    Calves from seven breeds including 20 herds were genotyped with a reduced DNA marker panel for weaning weight. The marker panel used was derived using USMARC Cycle VII animals. The results from the current study suggest marker effects are not robust across breeds and that methodology exists to integ...

  9. Novel SNPs of the bovine NUCB2 gene and their association with growth traits in three native Chinese cattle breeds.

    PubMed

    Li, F; Chen, H; Lei, C Z; Ren, G; Wang, J; Li, Z J; Wang, J Q

    2010-01-01

    In this study, polymorphism in the exon 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 of bovine NUCB2 gene was detected by PCR-SSCP and DNA sequencing methods in 686 individuals from three Chinese cattle breeds. Two haplotypes (M and N), three observed genotypes (MM, MN and NN) and two SNPs (NC_007313: g. 27451G>A, NC_007313: g. 27472T>C) were detected. The frequencies of haplotypes M and N in inland Chinese three breeds were 0.531-0.721 and 0.279-0.469 respectively. The studied showed that Nanyang, Jiaxian Red and Qinchuan cattle populations were in Hardy-Weinberg equilibrium at SNPs locus of NUCB2 gene (P > 0.05). Polymorphism of the NUCB2 gene was shown to be associated with growth traits in Qingchuan and Nanyang cattle breed. The linkage of two mutant sites in the bovine NUCB2 gene had significant effects on body length, body weight, heart girth, and average daily gain at 24 months (P < 0.05). Results of this study suggested that the NUCB2-gene-specific SNP may be a useful marker for growth traits in future marker-assisted selection programmes in inland Chinese cattle.

  10. Selection against canine hip dysplasia: success or failure?

    PubMed

    Wilson, Bethany; Nicholas, Frank W; Thomson, Peter C

    2011-08-01

    Canine hip dysplasia (CHD) is a multifactorial skeletal disorder which is very common in pedigree dogs and represents a huge concern for canine welfare. Control schemes based on selective breeding have been in operation for decades. The aim of these schemes is to reduce the impact of CHD on canine welfare by selecting for reduced radiographic evidence of CHD pathology as assessed by a variety of phenotypes. There is less information regarding the genotypic correlation between these phenotypes and the impact of CHD on canine welfare. Although the phenotypes chosen as the basis for these control schemes have displayed heritable phenotypic variation in many studies, success in achieving improvement in the phenotypes has been mixed. There is significant room for improvement in the current schemes through the use of estimated breeding values (EBVs), which can combine a dog's CHD phenotype with CHD phenotypes of relatives, other phenotypes as they are proven to be genetically correlated with CHD (especially elbow dysplasia phenotypes), and information from genetic tests for population-relevant DNA markers, as such tests become available. Additionally, breed clubs should be encouraged and assisted to formulate rational, evidenced-based breeding recommendations for CHD which suit their individual circumstances and dynamically to adjust the breeding recommendations based on continuous tracking of CHD genetic trends. These improvements can assist in safely and effectively reducing the impact of CHD on pedigree dog welfare. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding.

    PubMed

    Hammond-Kosack, Kim E; Parker, Jane E

    2003-04-01

    Activation of local and systemic plant defences in response to pathogen attack involves dramatic cellular reprogramming. Over the past 10 years many novel genes, proteins and molecules have been discovered as a result of investigating plant-pathogen interactions. Most attempts to harness this knowledge to engineer improved disease resistance in crops have failed. Although gene efficacy in transgenic plants has often been good, commercial exploitation has not been possible because of the detrimental effects on plant growth, development and crop yield. Biotechnology approaches have now shifted emphasis towards marker-assisted breeding and the construction of vectors containing highly regulated transgenes that confer resistance in several distinct ways.

  12. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

    PubMed

    Kujur, Alice; Saxena, Maneesha S; Bajaj, Deepak; Laxmi; Parida, Swarup K

    2013-12-01

    The enormous population growth, climate change and global warming are now considered major threats to agriculture and world's food security. To improve the productivity and sustainability of agriculture, the development of highyielding and durable abiotic and biotic stress-tolerant cultivars and/climate resilient crops is essential. Henceforth, understanding the molecular mechanism and dissection of complex quantitative yield and stress tolerance traits is the prime objective in current agricultural biotechnology research. In recent years, tremendous progress has been made in plant genomics and molecular breeding research pertaining to conventional and next-generation whole genome, transcriptome and epigenome sequencing efforts, generation of huge genomic, transcriptomic and epigenomic resources and development of modern genomics-assisted breeding approaches in diverse crop genotypes with contrasting yield and abiotic stress tolerance traits. Unfortunately, the detailed molecular mechanism and gene regulatory networks controlling such complex quantitative traits is not yet well understood in crop plants. Therefore, we propose an integrated strategies involving available enormous and diverse traditional and modern -omics (structural, functional, comparative and epigenomics) approaches/resources and genomics-assisted breeding methods which agricultural biotechnologist can adopt/utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in crop plants. This would provide clues and much needed inputs for rapid selection of novel functionally relevant molecular tags regulating such complex traits to expedite traditional and modern marker-assisted genetic enhancement studies in target crop species for developing high-yielding stress-tolerant varieties.

  13. Identification of aerenchyma formation-related QTL in barley that can be effective in breeding for waterlogging tolerance.

    PubMed

    Zhang, Xuechen; Zhou, Gaofeng; Shabala, Sergey; Koutoulis, Anthony; Shabala, Lana; Johnson, Peter; Li, Chengdao; Zhou, Meixue

    2016-06-01

    Aerenchyma formation after 7 days of waterlogging in commercial potting mixture can be a reliable, fast, and widely utilized approach for the selection of waterlogging tolerant barley genotypes. One major QTL for aerenchyma formation after 7 days of waterlogging treatment was identified and the newly developed markers explained 44 % of the phenotypic variance. This QTL can now be effectively used in barley breeding programs. Waterlogging is one of the important limiting conditions for crop yield and productivity. The main feature of waterlogged soils is oxygen deprivation, due to slow gas diffusion in water. Decreased oxygen content in waterlogged soils leads to the oxygen deficiency in plant tissues, resulting in reduced energy availability for plants. Rapidly induced aerenchyma formation is critical to maintaining adequate oxygen supply and overall waterlogging tolerance in barley. In this study, we have proved that quantifying aerenchyma formation after 7 days of waterlogging in commercial potting mixture can be a reliable, fast, and widely utilised approach for the selection of waterlogging tolerant barley genotypes, which is supported by measurements of redox potential (an indicator of anaerobic conditions). This protocol was also used to identify quantitative trait loci (QTL) in a doubled haploid population of barley from the cross between Yerong (tolerant) and Franklin (sensitive) genotypes. The QTL for aerenchyma formation and root porosity were at the same location as the waterlogging tolerance QTL. Seven new markers were developed and added onto this region on chromosome 4H. One major QTL for aerenchyma formation after 7 days waterlogging treatment explained 44.0 % of the phenotypic variance. This successful QTL for aerenchyma formation can be effectively used in the marker assisted selection to improve waterlogging tolerance in barley.

  14. Screening and identification of a microsatellite marker associated with sex in Wami tilapia, Oreochromis urolepis hornorum.

    PubMed

    Zhu, Huaping; Liu, Zhigang; Lu, Maixin; Gao, Fengying; Ke, Xiaoli; Ma, Dongmei; Huang, Zhanghan; Cao, Jianmeng; Wang, Miao

    2016-06-01

    In this study, primer pairs of 15 microsatellite markers associated with sex determination of tilapia were selected and amplified in Wami tilapia, Oreochromis urolepis hornorum. While one marker, UNH168, on linkage group 3 (LG3) was associated (P <0.001) with the phenotypic sex in the experimental population, nine genotypes were detected in both sexes. Only 99-bp allele was detected in the female samples, while 141, 149 and 157-bp alleles were present in both male and female samples. UNH168 was localized by fluorescence in situ hybridization (FISH) on the long arm of the largest tilapia chromosome pair (chromosome 1, equivalent to LG3). This sex-linked microsatellite marker could potentially be used for marker-assisted selection in tilapia breeding programmes to produce monosex male tilapia.

  15. Short Communication: Genetic linkage map of Cucurbita maxima with molecular and morphological markers.

    PubMed

    Ge, Y; Li, X; Yang, X X; Cui, C S; Qu, S P

    2015-05-22

    Cucurbita maxima is one of the most widely cultivated vegetables in China and exhibits distinct morphological characteristics. In this study, genetic linkage analysis with 57 simple-sequence repeats, 21 amplified fragment length polymorphisms, 3 random-amplified polymorphic DNA, and one morphological marker revealed 20 genetic linkage groups of C. maxima covering a genetic distance of 991.5 cM with an average of 12.1 cM between adjacent markers. Genetic linkage analysis identified the simple-sequence repeat marker 'PU078072' 5.9 cM away from the locus 'Rc', which controls rind color. The genetic map in the present study will be useful for better mapping, tagging, and cloning of quantitative trait loci/gene(s) affecting economically important traits and for breeding new varieties of C. maxima through marker-assisted selection.

  16. A journey from a SSR-based low density map to a SNP-based high density map for identification of disease resistance quantitative trait loci in peanut

    USDA-ARS?s Scientific Manuscript database

    Mapping and identification of quantitative trait loci (QTLs) are important for efficient marker-assisted breeding. Diseases such as leaf spots and Tomato spotted wilt virus (TSWV) cause significant loses to peanut growers. The U.S. Peanut Genome Initiative (PGI) was launched in 2004, and expanded to...

  17. Development and Molecular Characterization of Novel Polymorphic Genomic DNA SSR Markers in Lentinula edodes.

    PubMed

    Moon, Suyun; Lee, Hwa-Yong; Shim, Donghwan; Kim, Myungkil; Ka, Kang-Hyeon; Ryoo, Rhim; Ko, Han-Gyu; Koo, Chang-Duck; Chung, Jong-Wook; Ryu, Hojin

    2017-06-01

    Sixteen genomic DNA simple sequence repeat (SSR) markers of Lentinula edodes were developed from 205 SSR motifs present in 46.1-Mb long L. edodes genome sequences. The number of alleles ranged from 3-14 and the major allele frequency was distributed from 0.17-0.96. The values of observed and expected heterozygosity ranged from 0.00-0.76 and 0.07-0.90, respectively. The polymorphic information content value ranged from 0.07-0.89. A dendrogram, based on 16 SSR markers clustered by the paired hierarchical clustering' method, showed that 33 shiitake cultivars could be divided into three major groups and successfully identified. These SSR markers will contribute to the efficient breeding of this species by providing diversity in shiitake varieties. Furthermore, the genomic information covered by the markers can provide a valuable resource for genetic linkage map construction, molecular mapping, and marker-assisted selection in the shiitake mushroom.

  18. Phylogenetic relationships of chrysanthemums in Korea based on novel SSR markers.

    PubMed

    Khaing, A A; Moe, K T; Hong, W J; Park, C S; Yeon, K H; Park, H S; Kim, D C; Choi, B J; Jung, J Y; Chae, S C; Lee, K M; Park, Y J

    2013-11-07

    Chrysanthemums are well known for their esthetic and medicinal values. Characterization of chrysanthemums is vital for their conservation and management as well as for understanding their genetic relationships. We found 12 simple sequence repeat markers (SSRs) of 100 designed primers to be polymorphic. These novel SSR markers were used to evaluate 95 accessions of chrysanthemums (3 indigenous and 92 cultivated accessions). Two hundred alleles were identified, with an average of 16.7 alleles per locus. KNUCRY-77 gave the highest polymorphic information content value (0.879), while KNUCRY-10 gave the lowest (0.218). Similar patterns of grouping were observed with a distance-based dendrogram developed using PowerMarker and model-based clustering with Structure. Three clusters with some admixtures were identified by model-based clustering. These newly developed SSR markers will be useful for further studies of chrysanthemums, such as taxonomy and marker-assisted selection breeding.

  19. Marker-assisted combination of major genes for pathogen resistance in potato.

    PubMed

    Gebhardt, C; Bellin, D; Henselewski, H; Lehmann, W; Schwarzfischer, J; Valkonen, J P T

    2006-05-01

    Closely linked PCR-based markers facilitate the tracing and combining of resistance factors that have been introgressed previously into cultivated potato from different sources. Crosses were performed to combine the Ry ( adg ) gene for extreme resistance to Potato virus Y (PVY) with the Gro1 gene for resistance to the root cyst nematode Globodera rostochiensis and the Rx1 gene for extreme resistance to Potato virus X (PVX), or with resistance to potato wart (Synchytrium endobioticum). Marker-assisted selection (MAS) using four PCR-based diagnostic assays was applied to 110 F1 hybrids resulting from four 2x by 4x cross-combinations. Thirty tetraploid plants having the appropriate marker combinations were selected and tested for presence of the corresponding resistance traits. All plants tested showed the expected resistant phenotype. Unexpectedly, the plants segregated for additional resistance to pathotypes 1, 2 and 6 of S. endobioticum, which was subsequently shown to be inherited from the PVY resistant parents of the crosses. The selected plants can be used as sources of multiple resistance traits in pedigree breeding and are available from a potato germplasm bank.

  20. DNA typing of Pakistani cattle breeds Tharparkar and Red Sindhi by microsatellite markers.

    PubMed

    Azam, Amber; Babar, Masroor Ellahi; Firyal, Sehrish; Anjum, Aftab Ahmad; Akhtar, Nabeela; Asif, Muhammad; Hussain, Tanveer

    2012-02-01

    Microsatellite markers are used for any individual identity and breed characterization in animals that is an efficient and successful way of investigation. They are used for multiple purposes as genetic detectors including, rapid mutation rate, high level of polymorphism, and range of variety of microsatellite markers available. A panel of 19 microsatellite markers was developed for breed characterization in Tharparkar and Red Sindhi breeds of cattle in Pakistan. Forty four blood samples of cattle (each breed) were collected from Department of Livestock Management, Sindh Agriculture University, Tandojam, Tando Qaiser, Tharparkar Cattle Farm Nabi sar Road, Umer Kot, Sindh, and Govt. Red Sindhi Cattle Breeding Farm, Tando Muhammad Khan Pakistan. Breed characterization was 100% successful. Average PIC, He and Power of Exclusion values were found to be 0.91, 0.62 and 13.28, respectively. Pattern of allelic frequencies of most of the microsatellite markers were clearly distinct between two breeds. As a result of present study a reliable, efficient and very informative panel of microsatellite markers was successfully developed which was capable to interpret individual identity, forensic cases and breed characterization in cattle. This facility is ready to be provided to local cattle breeder at commercial level for DNA testing of cattle. This study will also be highly helpful for breed conservation of cattle. In addition this study can also become a basis to open up new disciplines of animal forensics in Pakistan.

  1. Rapid identification of candidate genes for resistance to tomato late blight disease using next-generation sequencing technologies

    PubMed Central

    Arafa, Ramadan A.; Rakha, Mohamed T.; Kamel, Said M.

    2017-01-01

    Tomato late blight caused by Phytophthora infestans (Mont.) de Bary, also known as the Irish famine pathogen, is one of the most destructive plant diseases. Wild relatives of tomato possess useful resistance genes against this disease, and could therefore be used in breeding to improve cultivated varieties. In the genome of a wild relative of tomato, Solanum habrochaites accession LA1777, we identified a new quantitative trait locus for resistance against blight caused by an aggressive Egyptian isolate of P. infestans. Using double-digest restriction site–associated DNA sequencing (ddRAD-Seq) technology, we determined 6,514 genome-wide SNP genotypes of an F2 population derived from an interspecific cross. Subsequent association analysis of genotypes and phenotypes of the mapping population revealed that a 6.8 Mb genome region on chromosome 6 was a candidate locus for disease resistance. Whole-genome resequencing analysis revealed that 298 genes in this region potentially had functional differences between the parental lines. Among of them, two genes with missense mutations, Solyc06g071810.1 and Solyc06g083640.3, were considered to be potential candidates for disease resistance. SNP and SSR markers linking to this region can be used in marker-assisted selection in future breeding programs for late blight disease, including introgression of new genetic loci from wild species. In addition, the approach developed in this study provides a model for identification of other genes for attractive agronomical traits. PMID:29253902

  2. Animal breeding strategies can improve meat quality attributes within entire populations.

    PubMed

    Berry, D P; Conroy, S; Pabiou, T; Cromie, A R

    2017-10-01

    The contribution of animal breeding to changes in animal performance is well documented across a range of species. Once genetic variation in a trait exists, then breeding to improve the characteristics of that trait is possible, if so desired. Considerable genetic variation exists in a range of meat quality attributes across a range of species. The genetic variation that exists for meat quality is as large as observed for most performance traits; thus, within a well-structured breeding program, rapid genetic gain for meat quality could be possible. The rate of genetic gain can be augmented through the integration of DNA-based technologies into the breeding program; such DNA-based technologies should, however, be based on thousands of DNA markers dispersed across the entire genome. Genetic and genomic technologies can also have beneficial impact outside the farm gate as a tool to segregate carcasses or meat cuts based on expected meat quality features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Accuracy of genomic selection in European maize elite breeding populations.

    PubMed

    Zhao, Yusheng; Gowda, Manje; Liu, Wenxin; Würschum, Tobias; Maurer, Hans P; Longin, Friedrich H; Ranc, Nicolas; Reif, Jochen C

    2012-03-01

    Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3-4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.

  4. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice.

    PubMed

    Ishikawa, Satoru; Ishimaru, Yasuhiro; Igura, Masato; Kuramata, Masato; Abe, Tadashi; Senoura, Takeshi; Hase, Yoshihiro; Arao, Tomohito; Nishizawa, Naoko K; Nakanishi, Hiromi

    2012-11-20

    Rice (Oryza sativa L.) grain is a major dietary source of cadmium (Cd), which is toxic to humans, but no practical technique exists to substantially reduce Cd contamination. Carbon ion-beam irradiation produced three rice mutants with <0.05 mg Cd⋅kg(-1) in the grain compared with a mean of 1.73 mg Cd⋅kg(-1) in the parent, Koshihikari. We identified the gene responsible for reduced Cd uptake and developed a strategy for marker-assisted selection of low-Cd cultivars. Sequence analysis revealed that these mutants have different mutations of the same gene (OsNRAMP5), which encodes a natural resistance-associated macrophage protein. Functional analysis revealed that the defective transporter protein encoded by the mutant osnramp5 greatly decreases Cd uptake by roots, resulting in decreased Cd in the straw and grain. In addition, we developed DNA markers to facilitate marker-assisted selection of cultivars carrying osnramp5. When grown in Cd-contaminated paddy fields, the mutants have nearly undetectable Cd in their grains and exhibit no agriculturally or economically adverse traits. Because mutants produced by ion-beam radiation are not transgenic plants, they are likely to be accepted by consumers and thus represent a practical choice for rice production worldwide.

  5. Molecular plant breeding: methodology and achievements.

    PubMed

    Varshney, Rajeev K; Hoisington, Dave A; Nayak, Spurthi N; Graner, Andreas

    2009-01-01

    The progress made in DNA marker technology has been remarkable and exciting in recent years. DNA markers have proved valuable tools in various analyses in plant breeding, for example, early generation selection, enrichment of complex F(1)s, choice of donor parent in backcrossing, recovery of recurrent parent genotype in backcrossing, linkage block analysis and selection. Other main areas of applications of molecular markers in plant breeding include germplasm characterization/fingerprinting, determining seed purity, systematic sampling of germplasm, and phylogenetic analysis. Molecular markers, thus, have proved powerful tools in replacing the bioassays and there are now many examples available to show the efficacy of such markers. We have illustrated some basic concepts and methodology of applying molecular markers for enhancing the selection efficiency in plant breeding. Some successful examples of product developments of molecular breeding have also been presented.

  6. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities.

    PubMed

    Bohra, Abhishek; Jha, Uday Chand; Kishor, P B Kavi; Pandey, Shailesh; Singh, Narendra P

    2014-12-01

    Pulses are multipurpose crops for providing income, employment and food security in the underprivileged regions, notably the FAO-defined low-income food-deficit countries. Owing to their intrinsic ability to endure environmental adversities and the least input/management requirements, these crops remain central to subsistence farming. Given their pivotal role in rain-fed agriculture, substantial research has been invested to boost the productivity of these pulse crops. To this end, genomic tools and technologies have appeared as the compelling supplement to the conventional breeding. However, the progress in minor pulse crops including dry beans (Vigna spp.), lupins, lablab, lathyrus and vetches has remained unsatisfactory, hence these crops are often labeled as low profile or lesser researched. Nevertheless, recent scientific and technological breakthroughs particularly the next generation sequencing (NGS) are radically transforming the scenario of genomics and molecular breeding in these minor crops. NGS techniques have allowed de novo assembly of whole genomes in these orphan crops. Moreover, the availability of a reference genome sequence would promote re-sequencing of diverse genotypes to unlock allelic diversity at a genome-wide scale. In parallel, NGS has offered high-resolution genetic maps or more precisely, a robust genetic framework to implement whole-genome strategies for crop improvement. As has already been demonstrated in lupin, sequencing-based genotyping of the representative sample provided access to a number of functionally-relevant markers that could be deployed straight away in crop breeding programs. This article attempts to outline the recent progress made in genomics of these lesser explored pulse crops, and examines the prospects of genomics assisted integrated breeding to enhance and stabilize crop yields. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Development of CACTA transposon derived SCAR markers and their use in population structure analysis in Zea mays.

    PubMed

    Roy, Neha Samir; Park, Kyong-Cheul; Lee, Sung-Il; Im, Min-Ji; Ramekar, Rahul Vasudeo; Kim, Nam-Soo

    2018-02-01

    Molecular marker technologies have proven to be an important breakthrough for genetic studies, construction of linkage maps and population genetics analysis. Transposable elements (TEs) constitute major fractions of repetitive sequences in plants and offer a wide range of possible areas to be explored as molecular markers. Sequence characterized amplified region (SCAR) marker development provides us with a simple and time saving alternative approach for marker development. We employed the CACTA-TD to develop SCARs and then integrated them into linkage map and used them for population structure and genetic diversity analysis of corn inbred population. A total of 108 dominant SCAR markers were designed out of which, 32 were successfully integrated in to the linkage map of maize RIL population and the remaining were added to a physical map for references to check the distribution throughout all chromosomes. Moreover, 76 polymorphic SCARs were used for diversity analysis of corn accessions being used in Korean corn breeding program. The overall average polymorphic information content (PIC) was 0.34, expected heterozygosity was 0.324 and Shannon's information index was 0.491 with a percentage of polymorphism of 98.67%. Further analysis by associating with desirable traits may also provide some accurate trait specific tagged SCAR markers. TE linked SCARs can provide an added level of polymorphism as well as improved discriminating ability and therefore can be useful in further breeding programs to develop high yielding germplasm.

  8. Genetic diversity, population structure, and correlations between locally adapted zebu and taurine breeds in Brazil using SNP markers.

    PubMed

    Campos, Bárbara Machado; do Carmo, Adriana Santana; do Egito, Andrea Alves; da Mariante, Arthur Silva; do Albuquerque, Maria Socorro Muaés; de Gouveia, João José Simoni; Malhado, Carlos Henrique Mendes; Verardo, Lucas Lima; da Silva, Marcos Vinícius Gualberto Barbosa; Carneiro, Paulo Luiz Souza

    2017-12-01

    Genetic diversity is one of the most important issues in studies on conservation of cattle breeds and endangered species. The objective of this study was to estimate the levels of genetic differentiation between locally adapted taurine (Bos taurus taurus) and zebu (Bos taurus indicus) breeds in Brazil, which were genotyped for more than 777,000 SNPs. The fixation index (F ST ), principal component analysis (PCA), and Bayesian clustering were estimated. The F ST highlighted genetic differentiation between taurine and zebu breeds. The taurine lines, Caracu and Caracu Caldeano, had significant genetic differentiation (F ST close to 5%) despite their recent selection for different uses (meat and milk). This genetic variability can be used for conservation of locally adapted animals, as well as for breeding programs on zebu breeds. Introgression of zebu in locally adapted breeds was identified, especially in Curraleiro Pé-Duro breed. The Gyr breed, however, had low breed purity at genomic level due to its very heterogeneous mixing pattern.

  9. Assessment of genetic diversity and phylogenetic relationships of Korean native chicken breeds using microsatellite markers

    PubMed Central

    Seo, Joo Hee; Lee, Jun Heon; Kong, Hong Sik

    2017-01-01

    Objective This study was conducted to investigate the basic information on genetic structure and characteristics of Korean Native chickens (NC) and foreign breeds through the analysis of the pure chicken populations and commercial chicken lines of the Hanhyup Company which are popular in the NC market, using the 20 microsatellite markers. Methods In this study, the genetic diversity and phylogenetic relationships of 445 NC from five different breeds (NC, Leghorn [LH], Cornish [CS], Rhode Island Red [RIR], and Hanhyup [HH] commercial line) were investigated by performing genotyping using 20 microsatellite markers. Results The highest genetic distance was observed between RIR and LH (18.9%), whereas the lowest genetic distance was observed between HH and NC (2.7%). In the principal coordinates analysis (PCoA) illustrated by the first component, LH was clearly separated from the other groups. The correspondence analysis showed close relationship among individuals belonging to the NC, CS, and HH lines. From the STRUCTURE program, the presence of 5 clusters was detected and it was found that the proportion of membership in the different clusters was almost comparable among the breeds with the exception of one breed (HH), although it was highest in LH (0.987) and lowest in CS (0.578). For the cluster 1 it was high in HH (0.582) and in CS (0.368), while for the cluster 4 it was relatively higher in HH (0.392) than other breeds. Conclusion Our study showed useful genetic diversity and phylogenetic relationship data that can be utilized for NC breeding and development by the commercial chicken industry to meet consumer demands. PMID:28335091

  10. Genetic approaches refine ex situ lowland tapir (Tapirus terrestris) conservation.

    PubMed

    Gonçalves da Silva, Anders; Lalonde, Danielle R; Quse, Viviana; Shoemaker, Alan; Russello, Michael A

    2010-01-01

    Ex situ conservation management remains an important tool in the face of continued habitat loss and global environmental change. Here, we use microsatellite marker variation to evaluate conventional assumptions of pedigree-based ex situ population management and directly inform a captive lowland tapir breeding program within a range country. We found relatively high levels of genetic variation (N(total) = 41; mean H(E) = 0.67 across 10 variable loci) and little evidence for relatedness among founder individuals (N(founders) = 10; mean relatedness = -0.05). Seven of 29 putative parent-offspring relationships were excluded by parentage analysis based on allele sharing, and we identified 2 individuals of high genetic value to the population (mk

  11. Mapping and validation of a new QTL for adult-plant resistance to powdery mildew in Chinese elite bread wheat line Zhou8425B.

    PubMed

    Jia, Aolin; Ren, Yan; Gao, Fengmei; Yin, Guihong; Liu, Jindong; Guo, Lu; Zheng, Jizhou; He, Zhonghu; Xia, Xianchun

    2018-05-01

    Four QTLs for adult-plant resistance to powdery mildew were mapped in the Zhou8425B/Chinese Spring population, and a new QTL on chromosome 3B was validated in 103 wheat cultivars derived from Zhou8425B. Zhou8425B is an elite wheat (Triticum aestivum L.) line widely used as a parent in Chinese wheat breeding programs. Identification of genes for adult-plant resistance (APR) to powdery mildew in Zhou8425B is of high importance for continued controlling the disease. In the current study, the high-density Illumina iSelect 90K single-nucleotide polymorphism (SNP) array was used to map quantitative trait loci (QTL) for APR to powdery mildew in 244 recombinant inbred lines derived from the cross Zhou8425B/Chinese Spring. Inclusive composite interval mapping identified QTL on chromosomes 1B, 3B, 4B, and 7D, designated as QPm.caas-1BL.1, QPm.caas-3BS, QPm.caas-4BL.2, and QPm.caas-7DS, respectively. Resistance alleles at the QPm.caas-1BL.1, QPm.caas-3BS, and QPm.caas-4BL.2 loci were contributed by Zhou8425B, whereas that at QPm.caas-7DS was from Chinese Spring. QPm.caas-3BS, likely to be a new APR gene for powdery mildew resistance, was detected in all four environments. One SNP marker closely linked to QPm.caas-3BS was transferred into a semi-thermal asymmetric reverse PCR (STARP) marker and tested on 103 commercial wheat cultivars derived from Zhou8425B. Cultivars with the resistance allele at the QPm.caas-3BS locus had averaged maximum disease severity reduced by 5.3%. This STARP marker can be used for marker-assisted selection in improvement of the level of powdery mildew resistance in wheat breeding.

  12. Development of Novel Microsatellite Markers for the BBCC Oryza Genome (Poaceae) Using High-Throughput Sequencing Technology

    PubMed Central

    Peng, Suotang; Xu, Qun; Yuan, Xiaoping; Feng, Yue; Yu, Hanyong; Wang, Yiping; Wei, Xinghua

    2014-01-01

    Wild species of Oryza are extremely valuable sources of genetic material that can be used to broaden the genetic background of cultivated rice, and to increase its resistance to abiotic and biotic stresses. Until recently, there was no sequence information for the BBCC Oryza genome; therefore, no special markers had been developed for this genome type. The lack of suitable markers made it difficult to search for valuable genes in the BBCC genome. The aim of this study was to develop microsatellite markers for the BBCC genome. We obtained 13,991 SSR-containing sequences and designed 14,508 primer pairs. The most abundant was hexanuclelotide (31.39%), followed by trinucleotide (27.67%) and dinucleotide (19.04%). 600 markers were selected for validation in 23 accessions of Oryza species with the BBCC genome. A set of 495 markers produced clear amplified fragments of the expected sizes. The average number of alleles per locus (Na) was 2.5, ranging from 1 to 9. The genetic diversity per locus (He) ranged from 0 to 0.844 with a mean of 0.333. The mean polymorphism information content (PIC) was 0.290, and ranged from 0 to 0.825. Of the 495 markers, 12 were only found in the BB genome, 173 were unique to the CC genome, and 198 were also present in the AA genome. These microsatellite markers could be used to evaluate the phylogenetic relationships among different Oryza genomes, and to construct a genetic linkage map for locating and identifying valuable genes in the BBCC genome, and would also for marker-assisted breeding programs that included accessions with the AA genome, especially Oryza sativa. PMID:24632997

  13. Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana).

    PubMed

    Lenz, Patrick R N; Beaulieu, Jean; Mansfield, Shawn D; Clément, Sébastien; Desponts, Mireille; Bousquet, Jean

    2017-04-28

    Genomic selection (GS) uses information from genomic signatures consisting of thousands of genetic markers to predict complex traits. As such, GS represents a promising approach to accelerate tree breeding, which is especially relevant for the genetic improvement of boreal conifers characterized by long breeding cycles. In the present study, we tested GS in an advanced-breeding population of the boreal black spruce (Picea mariana [Mill.] BSP) for growth and wood quality traits, and concurrently examined factors affecting GS model accuracy. The study relied on 734 25-year-old trees belonging to 34 full-sib families derived from 27 parents and that were established on two contrasting sites. Genomic profiles were obtained from 4993 Single Nucleotide Polymorphisms (SNPs) representative of as many gene loci distributed among the 12 linkage groups common to spruce. GS models were obtained for four growth and wood traits. Validation using independent sets of trees showed that GS model accuracy was high, related to trait heritability and equivalent to that of conventional pedigree-based models. In forward selection, gains per unit of time were three times higher with the GS approach than with conventional selection. In addition, models were also accurate across sites, indicating little genotype-by-environment interaction in the area investigated. Using information from half-sibs instead of full-sibs led to a significant reduction in model accuracy, indicating that the inclusion of relatedness in the model contributed to its higher accuracies. About 500 to 1000 markers were sufficient to obtain GS model accuracy almost equivalent to that obtained with all markers, whether they were well spread across the genome or from a single linkage group, further confirming the implication of relatedness and potential long-range linkage disequilibrium (LD) in the high accuracy estimates obtained. Only slightly higher model accuracy was obtained when using marker subsets that were identified to carry large effects, indicating a minor role for short-range LD in this population. This study supports the integration of GS models in advanced-generation tree breeding programs, given that high genomic prediction accuracy was obtained with a relatively small number of markers due to high relatedness and family structure in the population. In boreal spruce breeding programs and similar ones with long breeding cycles, much larger gain per unit of time can be obtained from genomic selection at an early age than by the conventional approach. GS thus appears highly profitable, especially in the context of forward selection in species which are amenable to mass vegetative propagation of selected stock, such as spruces.

  14. Genomic selection in sugar beet breeding populations.

    PubMed

    Würschum, Tobias; Reif, Jochen C; Kraft, Thomas; Janssen, Geert; Zhao, Yusheng

    2013-09-18

    Genomic selection exploits dense genome-wide marker data to predict breeding values. In this study we used a large sugar beet population of 924 lines representing different germplasm types present in breeding populations: unselected segregating families and diverse lines from more advanced stages of selection. All lines have been intensively phenotyped in multi-location field trials for six agronomically important traits and genotyped with 677 SNP markers. We used ridge regression best linear unbiased prediction in combination with fivefold cross-validation and obtained high prediction accuracies for all except one trait. In addition, we investigated whether a calibration developed based on a training population composed of diverse lines is suited to predict the phenotypic performance within families. Our results show that the prediction accuracy is lower than that obtained within the diverse set of lines, but comparable to that obtained by cross-validation within the respective families. The results presented in this study suggest that a training population derived from intensively phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust calibration models for genomic selection. Taken together, our results indicate that genomic selection is a valuable tool and can thus complement the genomics toolbox in sugar beet breeding.

  15. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation

    PubMed Central

    Morales, Norma B.; Moskwa, Sam; Clingeleffer, Peter R.; Thomas, Mark R.

    2018-01-01

    Plant parasitic nematodes, including root knot nematode Meloidogyne species, cause extensive damage to agriculture and horticultural crops. As Vitis vinifera cultivars are susceptible to root knot nematode parasitism, rootstocks resistant to these soil pests provide a sustainable approach to maintain grapevine production. Currently, most of the commercially available root knot nematode resistant rootstocks are highly vigorous and take up excess potassium, which reduces wine quality. As a result, there is a pressing need to breed new root knot nematode resistant rootstocks, which have no impact on wine quality. To develop molecular markers that predict root knot nematode resistance for marker assisted breeding, a genetic approach was employed to identify a root knot nematode resistance locus in grapevine. To this end, a Meloidogyne javanica resistant Vitis cinerea accession was crossed to a susceptible Vitis vinifera cultivar Riesling and results from screening the F1 individuals support a model that root knot nematode resistance, is conferred by a single dominant allele, referred as MELOIDOGYNE JAVANICA RESISTANCE1 (MJR1). Further, MJR1 resistance appears to be mediated by a hypersensitive response that occurs in the root apical meristem. Single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing and results from association and genetic mapping identified the MJR1 locus, which is located on chromosome 18 in the Vitis cinerea accession. Validation of the SNPs linked to the MJR1 locus using a Sequenom MassARRAY platform found that only 50% could be validated. The validated SNPs that flank and co-segregate with the MJR1 locus can be used for marker-assisted selection for Meloidogyne javanica resistance in grapevine. PMID:29462210

  16. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation.

    PubMed

    Smith, Harley M; Smith, Brady P; Morales, Norma B; Moskwa, Sam; Clingeleffer, Peter R; Thomas, Mark R

    2018-01-01

    Plant parasitic nematodes, including root knot nematode Meloidogyne species, cause extensive damage to agriculture and horticultural crops. As Vitis vinifera cultivars are susceptible to root knot nematode parasitism, rootstocks resistant to these soil pests provide a sustainable approach to maintain grapevine production. Currently, most of the commercially available root knot nematode resistant rootstocks are highly vigorous and take up excess potassium, which reduces wine quality. As a result, there is a pressing need to breed new root knot nematode resistant rootstocks, which have no impact on wine quality. To develop molecular markers that predict root knot nematode resistance for marker assisted breeding, a genetic approach was employed to identify a root knot nematode resistance locus in grapevine. To this end, a Meloidogyne javanica resistant Vitis cinerea accession was crossed to a susceptible Vitis vinifera cultivar Riesling and results from screening the F1 individuals support a model that root knot nematode resistance, is conferred by a single dominant allele, referred as MELOIDOGYNE JAVANICA RESISTANCE1 (MJR1). Further, MJR1 resistance appears to be mediated by a hypersensitive response that occurs in the root apical meristem. Single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing and results from association and genetic mapping identified the MJR1 locus, which is located on chromosome 18 in the Vitis cinerea accession. Validation of the SNPs linked to the MJR1 locus using a Sequenom MassARRAY platform found that only 50% could be validated. The validated SNPs that flank and co-segregate with the MJR1 locus can be used for marker-assisted selection for Meloidogyne javanica resistance in grapevine.

  17. Characterization of Pm59, a novel powdery mildew resistance gene in Afghanistan wheat landrace PI 181356.

    PubMed

    Tan, Chengcheng; Li, Genqiao; Cowger, Christina; Carver, Brett F; Xu, Xiangyang

    2018-05-01

    A new powdery mildew resistance gene, designated Pm59, was identified in Afghanistan wheat landrace PI 181356, and mapped in the terminal region of the long arm of chromosome 7A. Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is an important foliar disease of wheat worldwide. In the Great Plains of the USA, Bgt isolates virulent to widely used powdery mildew resistance genes, such as Pm3a, were previously identified. The objectives of this study were to characterize the powdery mildew resistance gene in Afghanistan landrace PI 181356, which exhibited high resistance to Bgt isolates collected in southern Great Plains, and identify molecular markers for marker-assisted selection. An F 2 population and F 2:3 lines derived from a cross between PI 181356 and OK1059060-126135-3 were used in this study. Genetic analysis indicated that PI 181356 carries a single dominant gene, designated Pm59, in the terminal region of the long arm of chromosome 7A. Pm59 was mapped to an interval between sequence tag site (STS) markers Xmag1759 and Xmag1714 with genetic distances of 0.4 cM distal to Xmag1759 and 5.7 cM proximal to Xmag1714. Physical mapping suggested that Pm59 is in the distal bin 7AL 0.99-1.00. Pm59 is a novel powdery mildew resistance gene, and confers resistance to Bgt isolates collected from the Great Plains and the state of Montana. Therefore, Pm59 can be used to breed powdery mildew-resistant cultivars in these regions. Xmag1759 is ideal for marker-assisted selection of Pm59 in wheat breeding.

  18. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding

    PubMed Central

    Ghatak, Arindam; Chaturvedi, Palak; Weckwerth, Wolfram

    2017-01-01

    Sustainable crop production is the major challenge in the current global climate change scenario. Drought stress is one of the most critical abiotic factors which negatively impact crop productivity. In recent years, knowledge about molecular regulation has been generated to understand drought stress responses. For example, information obtained by transcriptome analysis has enhanced our knowledge and facilitated the identification of candidate genes which can be utilized for plant breeding. On the other hand, it becomes more and more evident that the translational and post-translational machinery plays a major role in stress adaptation, especially for immediate molecular processes during stress adaptation. Therefore, it is essential to measure protein levels and post-translational protein modifications to reveal information about stress inducible signal perception and transduction, translational activity and induced protein levels. This information cannot be revealed by genomic or transcriptomic analysis. Eventually, these processes will provide more direct insight into stress perception then genetic markers and might build a complementary basis for future marker-assisted selection of drought resistance. In this review, we survey the role of proteomic studies to illustrate their applications in crop stress adaptation analysis with respect to productivity. Cereal crops such as wheat, rice, maize, barley, sorghum and pearl millet are discussed in detail. We provide a comprehensive and comparative overview of all detected protein changes involved in drought stress in these crops and have summarized existing knowledge into a proposed scheme of drought response. Based on a recent proteome study of pearl millet under drought stress we compare our findings with wheat proteomes and another recent study which defined genetic marker in pearl millet. PMID:28626463

  19. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding

    PubMed Central

    Fu, Yong-Bi; Yang, Mo-Hua; Zeng, Fangqin; Biligetu, Bill

    2017-01-01

    Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding. PMID:28729875

  20. Genomic Selection Outperforms Marker Assisted Selection for Grain Yield and Physiological Traits in a Maize Doubled Haploid Population Across Water Treatments.

    PubMed

    Cerrudo, Diego; Cao, Shiliang; Yuan, Yibing; Martinez, Carlos; Suarez, Edgar Antonio; Babu, Raman; Zhang, Xuecai; Trachsel, Samuel

    2018-01-01

    To increase genetic gain for tolerance to drought, we aimed to identify environmentally stable QTL in per se and testcross combination under well-watered (WW) and drought stressed (DS) conditions and evaluate the possible deployment of QTL using marker assisted and/or genomic selection (QTL/GS-MAS). A total of 169 doubled haploid lines derived from the cross between CML495 and LPSC7F64 and 190 testcrosses (tester CML494) were evaluated in a total of 11 treatment-by-population combinations under WW and DS conditions. In response to DS, grain yield (GY) and plant height (PHT) were reduced while time to anthesis and the anthesis silking interval (ASI) increased for both lines and hybrids. Forty-eight QTL were detected for a total of nine traits. The allele derived from CML495 generally increased trait values for anthesis, ASI, PHT, the normalized difference vegetative index (NDVI) and the green leaf area duration (GLAD; a composite trait of NDVI, PHT and senescence) while it reduced trait values for leaf rolling and senescence. The LOD scores for all detected QTL ranged from 2.0 to 7.2 explaining 4.4 to 19.4% of the observed phenotypic variance with R 2 ranging from 0 (GY, DS, lines) to 37.3% (PHT, WW, lines). Prediction accuracy of the model used for genomic selection was generally higher than phenotypic variance explained by the sum of QTL for individual traits indicative of the polygenic control of traits evaluated here. We therefore propose to use QTL-MAS in forward breeding to enrich the allelic frequency for a few desired traits with strong additive QTL in early selection cycles while GS-MAS could be used in more mature breeding programs to additionally capture alleles with smaller additive effects.

  1. Identification of Major Quantitative Trait Loci for Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping.

    PubMed

    Cao, Yongce; Li, Shuguang; Wang, Zili; Chang, Fangguo; Kong, Jiejie; Gai, Junyi; Zhao, Tuanjie

    2017-01-01

    Soybean oil is the most widely produced vegetable oil in the world and its content in soybean seed is an important quality trait in breeding programs. More than 100 quantitative trait loci (QTLs) for soybean oil content have been identified. However, most of them are genotype specific and/or environment sensitive. Here, we used both a linkage and association mapping methodology to dissect the genetic basis of seed oil content of Chinese soybean cultivars in various environments in the Jiang-Huai River Valley. One recombinant inbred line (RIL) population (NJMN-RIL), with 104 lines developed from a cross between M8108 and NN1138-2 , was planted in five environments to investigate phenotypic data, and a new genetic map with 2,062 specific-locus amplified fragment markers was constructed to map oil content QTLs. A derived F 2 population between MN-5 (a line of NJMN-RIL) and NN1138-2 was also developed to confirm one major QTL. A soybean breeding germplasm population (279 lines) was established to perform a genome-wide association study (GWAS) using 59,845 high-quality single nucleotide polymorphism markers. In the NJMN-RIL population, 8 QTLs were found that explained a range of phenotypic variance from 6.3 to 26.3% in certain planting environments. Among them, qOil-5-1, qOil-10-1 , and qOil-14-1 were detected in different environments, and qOil-5-1 was further confirmed using the secondary F 2 population. Three loci located on chromosomes 5 and 20 were detected in a 2-year long GWAS, and one locus that overlapped with qOil-5-1 was found repeatedly and treated as the same locus. qOil-5-1 was further localized to a linkage disequilibrium block region of approximately 440 kb. These results will not only increase our understanding of the genetic control of seed oil content in soybean, but will also be helpful in marker-assisted selection for breeding high seed oil content soybean and gene cloning to elucidate the mechanisms of seed oil content.

  2. Identification of Major Quantitative Trait Loci for Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping

    PubMed Central

    Cao, Yongce; Li, Shuguang; Wang, Zili; Chang, Fangguo; Kong, Jiejie; Gai, Junyi; Zhao, Tuanjie

    2017-01-01

    Soybean oil is the most widely produced vegetable oil in the world and its content in soybean seed is an important quality trait in breeding programs. More than 100 quantitative trait loci (QTLs) for soybean oil content have been identified. However, most of them are genotype specific and/or environment sensitive. Here, we used both a linkage and association mapping methodology to dissect the genetic basis of seed oil content of Chinese soybean cultivars in various environments in the Jiang-Huai River Valley. One recombinant inbred line (RIL) population (NJMN-RIL), with 104 lines developed from a cross between M8108 and NN1138-2, was planted in five environments to investigate phenotypic data, and a new genetic map with 2,062 specific-locus amplified fragment markers was constructed to map oil content QTLs. A derived F2 population between MN-5 (a line of NJMN-RIL) and NN1138-2 was also developed to confirm one major QTL. A soybean breeding germplasm population (279 lines) was established to perform a genome-wide association study (GWAS) using 59,845 high-quality single nucleotide polymorphism markers. In the NJMN-RIL population, 8 QTLs were found that explained a range of phenotypic variance from 6.3 to 26.3% in certain planting environments. Among them, qOil-5-1, qOil-10-1, and qOil-14-1 were detected in different environments, and qOil-5-1 was further confirmed using the secondary F2 population. Three loci located on chromosomes 5 and 20 were detected in a 2-year long GWAS, and one locus that overlapped with qOil-5-1 was found repeatedly and treated as the same locus. qOil-5-1 was further localized to a linkage disequilibrium block region of approximately 440 kb. These results will not only increase our understanding of the genetic control of seed oil content in soybean, but will also be helpful in marker-assisted selection for breeding high seed oil content soybean and gene cloning to elucidate the mechanisms of seed oil content. PMID:28747922

  3. Genetically based location from triploid populations and gene ontology of a 3.3-mb genome region linked to Alternaria brown spot resistance in citrus reveal clusters of resistance genes.

    PubMed

    Cuenca, José; Aleza, Pablo; Vicent, Antonio; Brunel, Dominique; Ollitrault, Patrick; Navarro, Luis

    2013-01-01

    Genetic analysis of phenotypical traits and marker-trait association in polyploid species is generally considered as a challenge. In the present work, different approaches were combined taking advantage of the particular genetic structures of 2n gametes resulting from second division restitution (SDR) to map a genome region linked to Alternaria brown spot (ABS) resistance in triploid citrus progeny. ABS in citrus is a serious disease caused by the tangerine pathotype of the fungus Alternaria alternata. This pathogen produces ACT-toxin, which induces necrotic lesions on fruit and young leaves, defoliation and fruit drop in susceptible genotypes. It is a strong concern for triploid breeding programs aiming to produce seedless mandarin cultivars. The monolocus dominant inheritance of susceptibility, proposed on the basis of diploid population studies, was corroborated in triploid progeny. Bulk segregant analysis coupled with genome scan using a large set of genetically mapped SNP markers and targeted genetic mapping by half tetrad analysis, using SSR and SNP markers, allowed locating a 3.3 Mb genomic region linked to ABS resistance near the centromere of chromosome III. Clusters of resistance genes were identified by gene ontology analysis of this genomic region. Some of these genes are good candidates to control the dominant susceptibility to the ACT-toxin. SSR and SNP markers were developed for efficient early marker-assisted selection of ABS resistant hybrids.

  4. Genetically Based Location from Triploid Populations and Gene Ontology of a 3.3-Mb Genome Region Linked to Alternaria Brown Spot Resistance in Citrus Reveal Clusters of Resistance Genes

    PubMed Central

    Cuenca, José; Aleza, Pablo; Vicent, Antonio; Brunel, Dominique; Ollitrault, Patrick; Navarro, Luis

    2013-01-01

    Genetic analysis of phenotypical traits and marker-trait association in polyploid species is generally considered as a challenge. In the present work, different approaches were combined taking advantage of the particular genetic structures of 2n gametes resulting from second division restitution (SDR) to map a genome region linked to Alternaria brown spot (ABS) resistance in triploid citrus progeny. ABS in citrus is a serious disease caused by the tangerine pathotype of the fungus Alternaria alternata. This pathogen produces ACT-toxin, which induces necrotic lesions on fruit and young leaves, defoliation and fruit drop in susceptible genotypes. It is a strong concern for triploid breeding programs aiming to produce seedless mandarin cultivars. The monolocus dominant inheritance of susceptibility, proposed on the basis of diploid population studies, was corroborated in triploid progeny. Bulk segregant analysis coupled with genome scan using a large set of genetically mapped SNP markers and targeted genetic mapping by half tetrad analysis, using SSR and SNP markers, allowed locating a 3.3 Mb genomic region linked to ABS resistance near the centromere of chromosome III. Clusters of resistance genes were identified by gene ontology analysis of this genomic region. Some of these genes are good candidates to control the dominant susceptibility to the ACT-toxin. SSR and SNP markers were developed for efficient early marker-assisted selection of ABS resistant hybrids. PMID:24116149

  5. Use of microsatellite markers to assign goats to their breeds.

    PubMed

    Aljumaah, R S; Alobre, M M; Al-Atiyat, R M

    2015-08-07

    We investigated the potential of 17 microsatellite markers for assigning Saudi goat individuals to their breeds. Three local breeds, Bishi, Jabali, and Tohami were genotyped using these markers, and Somali goats were used as a reference breed. The majority of alleles were shared between the breeds, except for some that were specific to each breed. The Garza-Williamson index was lowest in the Bishi breed, indicating that a recent bottleneck event occurred. The overall results assigned the goat individuals (based on their genotypes) to the same breeds from which they were sampled, except in a few cases. The individuals' genotypes were sufficient to provide a clear distinction between the Somali goat breed and the others. In three factorial dimensions, the results of a correspondence analysis indicated that the total variation for the first and second factors was 48.85 and 31.43%, respectively. Consequently, Jabali, Bishi, and Tohami goats were in separate groups. The Jabali goat was closely related to the Bishi goat. Somali goats were distinguished from each other and from individuals of the other three goat breeds. The markers were successful in assigning individual goats to their breeds, based on the likelihood of a given individual's genotype.

  6. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing.

    PubMed

    Shi, Ainong; Qin, Jun; Mou, Beiquan; Correll, James; Weng, Yuejin; Brenner, David; Feng, Chunda; Motes, Dennis; Yang, Wei; Dong, Lingdi; Bhattarai, Gehendra; Ravelombola, Waltram

    2017-01-01

    Spinach (Spinacia oleracea L., 2n = 2x = 12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and minerals. The objective of this research was to conduct genetic diversity and population structure analysis of a collection of world-wide spinach genotypes using single nucleotide polymorphisms (SNPs) markers. Genotyping by sequencing (GBS) was used to discover SNPs in spinach genotypes. Three sets of spinach genotypes were used: 1) 268 USDA GRIN spinach germplasm accessions originally collected from 30 countries; 2) 45 commercial spinach F1 hybrids from three countries; and 3) 30 US Arkansas spinach cultivars/breeding lines. The results from this study indicated that there was genetic diversity among the 343 spinach genotypes tested. Furthermore, the genetic background in improved commercial F1 hybrids and in Arkansas cultivars/lines had a different structured populations from the USDA germplasm. In addition, the genetic diversity and population structures were associated with geographic origin and germplasm from the US Arkansas breeding program had a unique genetic background. These data could provide genetic diversity information and the molecular markers for selecting parents in spinach breeding programs.

  7. Genetic diversity and population structure analysis of spinach by single-nucleotide polymorphisms identified through genotyping-by-sequencing

    PubMed Central

    Qin, Jun; Mou, Beiquan; Correll, James; Weng, Yuejin; Brenner, David; Feng, Chunda; Motes, Dennis; Yang, Wei; Dong, Lingdi; Bhattarai, Gehendra; Ravelombola, Waltram

    2017-01-01

    Spinach (Spinacia oleracea L., 2n = 2x = 12) is an economically important vegetable crop worldwide and one of the healthiest vegetables due to its high concentrations of nutrients and minerals. The objective of this research was to conduct genetic diversity and population structure analysis of a collection of world-wide spinach genotypes using single nucleotide polymorphisms (SNPs) markers. Genotyping by sequencing (GBS) was used to discover SNPs in spinach genotypes. Three sets of spinach genotypes were used: 1) 268 USDA GRIN spinach germplasm accessions originally collected from 30 countries; 2) 45 commercial spinach F1 hybrids from three countries; and 3) 30 US Arkansas spinach cultivars/breeding lines. The results from this study indicated that there was genetic diversity among the 343 spinach genotypes tested. Furthermore, the genetic background in improved commercial F1 hybrids and in Arkansas cultivars/lines had a different structured populations from the USDA germplasm. In addition, the genetic diversity and population structures were associated with geographic origin and germplasm from the US Arkansas breeding program had a unique genetic background. These data could provide genetic diversity information and the molecular markers for selecting parents in spinach breeding programs. PMID:29190770

  8. Screening white spot syndrome virus (WSSV)-resistant molecular markers from Fenneropenaeus chinensis

    NASA Astrophysics Data System (ADS)

    Wu, Yingying; Meng, Xianhong; Kong, Jie; Luan, Sheng; Luo, Kun; Wang, Qingyin; Zheng, Yongyun

    2017-02-01

    White spot syndrome virus (WSSV)-resistant molecular markers were screened from the selectively bred new variety `Huanghai No. 2' of Fenneropenaeus chinensis using unlabeled-probe high-resolution melting (HRM) technique. After the artificial infection with WSSV, the first 96 dead shrimps and the last 96 surviving shrimps were collected, representing WSSV-susceptible and -resistant populations, respectively. The genotypes at well-developed 39 single nucleotide polymorphisms (SNPs) loci were obtained. As revealed in the Chi-square test, 3 SNPs, genotype A/A of contig C364-89AT, genotype A/A of C2635-527CA and genotype C/T of contig C12355-592CT, were positively correlated with disease-resistance traits. Other 2 SNPs, genotype G/G of contig C283-145AG and genotype C/C of contig C12355-592CT, were negatively correlated. Moreover, analysis with BlastX program for disease-resistant SNPs indicated that 3 contigs, Contig283, Contig364 and Contig12355, matched to the functional genes of effector caspase of Penaeus monodon, peptide transporter family 1-like protein, and 40S ribosomal protein S2 of Perca flavescens with high sequence similarity. The results will be helpful to provide theoretical and technical supports for molecular marker-assisted selective breeding of F. chinensis.

  9. Evaluation of powdery mildew-resistance of grape germplasm and rapid amplified polymorphic DNA markers associated with the resistant trait in Chinese wild Vitis.

    PubMed

    Zhang, J; Zhang, Y; Yu, H; Wang, Y

    2014-05-09

    The resistance of wild Vitis germplasm, including Chinese and American wild Vitis and Vitis vinifera cultivars, to powdery mildew (Uncinula necator Burr.) was evaluated for two consecutive years under natural conditions. Most of the Chinese and North American species displayed a resistant phenotype, whereas all of the European species were highly susceptible. The Alachua and Conquistador accessions of Vitis rotundifolia species, which originated in North America, were immune to the disease, while Baihe-35-1, one of the accessions of Vitis pseudoreticulata, showed the strongest resistance among all Chinese accessions evaluated. Three rapid amplified polymorphic DNA (RAPD) markers, OPW02-1756, OPO11-964, and OPY13-661, were obtained after screening 520 random primers among various germplasm, and these markers were found to be associated with powdery mildew resistance in Baihe-35-1 and in some Chinese species, but not in any European species. Analysis of F₁ and F₂ progenies of a cross between resistant Baihe-35-1 and susceptible Carignane (V. vinifera) revealed that the three RAPD markers were linked to the powdery resistant trait in Baihe-35-1 plants. Potential applications of the identified RAPD markers for gene mapping, marker-assisted selection, and breeding were investigated in 168 F₂ progenies of the same cross. Characterization of the resistant phenotype of the selected F₂ seedlings for breeding a new disease-resistant grape cultivar is in progress.

  10. Molecular Mapping of PMR1, a Novel Locus Conferring Resistance to Powdery Mildew in Pepper (Capsicum annuum).

    PubMed

    Jo, Jinkwan; Venkatesh, Jelli; Han, Koeun; Lee, Hea-Young; Choi, Gyung Ja; Lee, Hee Jae; Choi, Doil; Kang, Byoung-Cheorl

    2017-01-01

    Powdery mildew, caused by Leveillula taurica , is a major fungal disease affecting greenhouse-grown pepper ( Capsicum annuum ). Powdery mildew resistance has a complex mode of inheritance. In the present study, we investigated a novel powdery mildew resistance locus, PMR1 , using two mapping populations: 102 'VK515' F 2:3 families (derived from a cross between resistant parental line 'VK515R' and susceptible parental line 'VK515S') and 80 'PM Singang' F 2 plants (derived from the F 1 'PM Singang' commercial hybrid). Genetic analysis of the F 2:3 'VK515' and F 2 'PM Singang' populations revealed a single dominant locus for inheritance of the powdery mildew resistance trait. Genetic mapping showed that the PMR1 locus is located on syntenic regions of pepper chromosome 4 in a 4-Mb region between markers CZ2_11628 and HRM4.1.6 in 'VK515R'. Six molecular markers including one SCAR marker and five SNP markers were localized to a region 0 cM from the PMR1 locus. Two putative nucleotide-binding site leucine-rich repeat (NBS-LRR)-type disease resistance genes were identified in this PMR1 region. Genotyping-by-sequencing (GBS) and genetic mapping analysis revealed suppressed recombination in the PMR1 region, perhaps due to alien introgression. In addition, a comparison of species-specific InDel markers as well as GBS-derived SNP markers indicated that C. baccatum represents a possible source of such alien introgression of powdery mildew resistance into 'VK515R'. The molecular markers developed in this study will be especially helpful for marker-assisted selection in pepper breeding programs for powdery mildew resistance.

  11. Molecular Mapping of PMR1, a Novel Locus Conferring Resistance to Powdery Mildew in Pepper (Capsicum annuum)

    PubMed Central

    Jo, Jinkwan; Venkatesh, Jelli; Han, Koeun; Lee, Hea-Young; Choi, Gyung Ja; Lee, Hee Jae; Choi, Doil; Kang, Byoung-Cheorl

    2017-01-01

    Powdery mildew, caused by Leveillula taurica, is a major fungal disease affecting greenhouse-grown pepper (Capsicum annuum). Powdery mildew resistance has a complex mode of inheritance. In the present study, we investigated a novel powdery mildew resistance locus, PMR1, using two mapping populations: 102 ‘VK515' F2:3 families (derived from a cross between resistant parental line ‘VK515R' and susceptible parental line ‘VK515S') and 80 ‘PM Singang' F2 plants (derived from the F1 ‘PM Singang' commercial hybrid). Genetic analysis of the F2:3 ‘VK515' and F2 ‘PM Singang' populations revealed a single dominant locus for inheritance of the powdery mildew resistance trait. Genetic mapping showed that the PMR1 locus is located on syntenic regions of pepper chromosome 4 in a 4-Mb region between markers CZ2_11628 and HRM4.1.6 in ‘VK515R'. Six molecular markers including one SCAR marker and five SNP markers were localized to a region 0 cM from the PMR1 locus. Two putative nucleotide-binding site leucine-rich repeat (NBS-LRR)-type disease resistance genes were identified in this PMR1 region. Genotyping-by-sequencing (GBS) and genetic mapping analysis revealed suppressed recombination in the PMR1 region, perhaps due to alien introgression. In addition, a comparison of species-specific InDel markers as well as GBS-derived SNP markers indicated that C. baccatum represents a possible source of such alien introgression of powdery mildew resistance into ‘VK515R'. The molecular markers developed in this study will be especially helpful for marker-assisted selection in pepper breeding programs for powdery mildew resistance. PMID:29276524

  12. Unraveling the efficiency of RAPD and SSR markers in diversity analysis and population structure estimation in common bean.

    PubMed

    Zargar, Sajad Majeed; Farhat, Sufia; Mahajan, Reetika; Bhakhri, Ayushi; Sharma, Arjun

    2016-01-01

    Increase in food production viz-a-viz quality of food is important to feed the growing human population to attain food as well as nutritional security. The availability of diverse germplasm of any crop is an important genetic resource to mine the genes that may assist in attaining food as well as nutritional security. Here we used 15 RAPD and 23 SSR markers to elucidate diversity among 51 common bean genotypes mostly landraces collected from the Himalayan region of Jammu and Kashmir, India. We observed that both the markers are highly polymorphic. The discriminatory power of these markers was determined using various parameters like; percent polymorphism, PIC, resolving power and marker index. 15 RAPDs produced 171 polymorphic bands, while 23 SSRs produced 268 polymorphic bands. SSRs showed a higher PIC value (0.300) compared to RAPDs (0.243). Further the resolving power of SSRs was 5.241 compared to 3.86 for RAPDs. However, RAPDs showed a higher marker index (2.69) compared to SSRs (1.279) that may be attributed to their higher multiplex ratio. The dendrograms generated with hierarchical UPGMA cluster analysis grouped genotypes into two main clusters with various degrees of sub clustering within the cluster. Here we observed that both the marker systems showed comparable accuracy in grouping genotypes of common bean according to their area of cultivation. The model based STRUCTURE analysis using 15 RAPD and 23 SSR markers identified a population with 3 sub-populations which corresponds to distance based groupings. High level of genetic diversity was observed within the population. These findings have further implications in common bean breeding as well as conservation programs.

  13. An intra-specific consensus genetic map of pigeonpea [Cajanus cajan (L.) Millspaugh] derived from six mapping populations.

    PubMed

    Bohra, Abhishek; Saxena, Rachit K; Gnanesh, B N; Saxena, Kulbhushan; Byregowda, M; Rathore, Abhishek; Kavikishor, P B; Cook, Douglas R; Varshney, Rajeev K

    2012-10-01

    Pigeonpea (Cajanus cajan L.) is an important food legume crop of rainfed agriculture. Owing to exposure of the crop to a number of biotic and abiotic stresses, the crop productivity has remained stagnant for almost last five decades at ca. 750 kg/ha. The availability of a cytoplasmic male sterility (CMS) system has facilitated the development and release of hybrids which are expected to enhance the productivity of pigeonpea. Recent advances in genomics and molecular breeding such as marker-assisted selection (MAS) offer the possibility to accelerate hybrid breeding. Molecular markers and genetic maps are pre-requisites for deploying MAS in breeding. However, in the case of pigeonpea, only one inter- and two intra-specific genetic maps are available so far. Here, four new intra-specific genetic maps comprising 59-140 simple sequence repeat (SSR) loci with map lengths ranging from 586.9 to 881.6 cM have been constructed. Using these four genetic maps together with two recently published intra-specific genetic maps, a consensus map was constructed, comprising of 339 SSR loci spanning a distance of 1,059 cM. Furthermore, quantitative trait loci (QTL) analysis for fertility restoration (Rf) conducted in three mapping populations identified four major QTLs explaining phenotypic variances up to 24 %. To the best of our knowledge, this is the first report on construction of a consensus genetic map in pigeonpea and on the identification of QTLs for fertility restoration. The developed consensus genetic map should serve as a reference for developing new genetic maps as well as correlating with the physical map in pigeonpea to be developed in near future. The availability of more informative markers in the bins harbouring QTLs for sterility mosaic disease (SMD) and Rf will facilitate the selection of the most suitable markers for genetic analysis and molecular breeding applications in pigeonpea.

  14. Genomics-assisted characterization of a breeding collection of Apios americana, an edible tuberous legume

    PubMed Central

    Belamkar, Vikas; Farmer, Andrew D.; Weeks, Nathan T.; Kalberer, Scott R.; Blackmon, William J.; Cannon, Steven B.

    2016-01-01

    For species with potential as new crops, rapid improvement may be facilitated by new genomic methods. Apios (Apios americana Medik.), once a staple food source of Native American Indians, produces protein-rich tubers, tolerates a wide range of soils, and symbiotically fixes nitrogen. We report the first high-quality de novo transcriptome assembly, an expression atlas, and a set of 58,154 SNP and 39,609 gene expression markers (GEMs) for characterization of a breeding collection. Both SNPs and GEMs identify six genotypic clusters in the collection. Transcripts mapped to the Phaseolus vulgaris genome–another phaseoloid legume with the same chromosome number–provide provisional genetic locations for 46,852 SNPs. Linkage disequilibrium decays within 10 kb (based on the provisional genetic locations), consistent with outcrossing reproduction. SNPs and GEMs identify more than 21 marker-trait associations for at least 11 traits. This study demonstrates a holistic approach for mining plant collections to accelerate crop improvement. PMID:27721469

  15. Genotypes are useful for more than genomic evaluation

    USDA-ARS?s Scientific Manuscript database

    New services that provide pedigree discovery, breed composition, mating programs, genomic inbreeding, fertility defects, and inheritance tracking all are possible from low-cost genotyping in addition to genomic evaluation. Genetic markers let breeders select among sibs before their phenotypes became...

  16. Identification of SNP Haplotypes and Prospects of Association Mapping in Watermelon

    USDA-ARS?s Scientific Manuscript database

    Watermelon is the fifth most economically important vegetable crop cultivated world-wide. Implementing Single Nucleotide Polymorphism (SNP) marker technology in watermelon breeding and germplasm evaluation programs holds a key to improve horticulturally important traits. Next-generation sequencing...

  17. Population structure of rice varieties used in Turkish rice breeding programs determined using simple-sequence repeat and inter-primer binding site-retrotransposon data.

    PubMed

    Cömertpay, G; Baloch, F S; Derya, M; Andeden, E E; Alsaleh, A; Sürek, H; Özkan, H

    2016-02-19

    Effective breeding programs based on genetic diversity are needed to broaden the genetic basis of rice (Oryza sativa L.) in Turkey. In this study, 81 commercial varieties from seven countries were studied in order to estimate the genomic relationships among them using nine inter-primer binding site (iPBS)-retrotransposon and 17 simple-sequence repeat (SSR) markers. A total of 59 alleles for the SSR markers and 96 bands for the iPBS-retrotransposon markers were detected, with an average of 3.47 and 10.6 per locus, respectively. Each of the varieties could be unequivocally identified by the SSR and iPBS-retrotransposon profiles. The iPBS-retrotransposon- and SSR-based clustering were identical and closely mirrored each other, with a significantly high correlation (r = 0.73). A neighbor-joining cluster based on the combined SSR and iPBS-retrotransposon data divided the rice varieties into three clusters. The population structure was determined using the STRUCTURE software, and three populations (K = 3) were identified among the varieties studied, showing that the diversity harbored by Turkish rice varieties is low. The results indicate that iPBS-retrotransposon markers are a very powerful technique to determine the genetic diversity of rice varieties.

  18. Multiplex-Ready Technology for mid-throughput genotyping of molecular markers.

    PubMed

    Bonneau, Julien; Hayden, Matthew

    2014-01-01

    Screening molecular markers across large populations in breeding programs is generally time consuming and expensive. The Multiplex-Ready Technology (MRT) (Hayden et al., BMC genomics 9:80, 2008) was created to optimize polymorphism screening and genotyping using standardized PCR reaction conditions. The flexibility of this method maximizes the number of markers (up to 24 markers SSR or SNP, ideally small PCR product <500 bp and highly polymorphic) by using fluorescent dye (VIC, FAM, NED, and PET) and a semiautomated DNA fragment analyzer (ABI3730) capillary electrophoresis for large numbers of DNA samples (96 or 384 samples).

  19. Genome-wide association study (GWAS) for growth rate and age at sexual maturation in Atlantic salmon (Salmo salar).

    PubMed

    Gutierrez, Alejandro P; Yáñez, José M; Fukui, Steve; Swift, Bruce; Davidson, William S

    2015-01-01

    Early sexual maturation is considered a serious drawback for Atlantic salmon aquaculture as it retards growth, increases production times and affects flesh quality. Although both growth and sexual maturation are thought to be complex processes controlled by several genetic and environmental factors, selection for these traits has been continuously accomplished since the beginning of Atlantic salmon selective breeding programs. In this genome-wide association study (GWAS) we used a 6.5K single-nucleotide polymorphism (SNP) array to genotype ∼ 480 individuals from the Cermaq Canada broodstock program and search for SNPs associated with growth and age at sexual maturation. Using a mixed model approach we identified markers showing a significant association with growth, grilsing (early sexual maturation) and late sexual maturation. The most significant associations were found for grilsing, with markers located in Ssa10, Ssa02, Ssa13, Ssa25 and Ssa12, and for late maturation with markers located in Ssa28, Ssa01 and Ssa21. A lower level of association was detected with growth on Ssa13. Candidate genes, which were linked to these genetic markers, were identified and some of them show a direct relationship with developmental processes, especially for those in association with sexual maturation. However, the relatively low power to detect genetic markers associated with growth (days to 5 kg) in this GWAS indicates the need to use a higher density SNP array in order to overcome the low levels of linkage disequilibrium observed in Atlantic salmon before the information can be incorporated into a selective breeding program.

  20. Estimation of the genetic diversity in tetraploid alfalfa populations based on RAPD markers for breeding purposes.

    PubMed

    Nagl, Nevena; Taski-Ajdukovic, Ksenija; Barac, Goran; Baburski, Aleksandar; Seccareccia, Ivana; Milic, Dragan; Katic, Slobodan

    2011-01-01

    Alfalfa is an autotetraploid, allogamous and heterozygous forage legume, whose varieties are synthetic populations. Due to the complex nature of the species, information about genetic diversity of germplasm used in any alfalfa breeding program is most beneficial. The genetic diversity of five alfalfa varieties, involved in progeny tests at Institute of Field and Vegetable Crops, was characterized based on RAPD markers. A total of 60 primers were screened, out of which 17 were selected for the analysis of genetic diversity. A total of 156 polymorphic bands were generated, with 10.6 bands per primer. Number and percentage of polymorphic loci, effective number of alleles, expected heterozygosity and Shannon's information index were used to estimate genetic variation. Variety Zuzana had the highest values for all tested parameters, exhibiting the highest level of variation, whereas variety RSI 20 exhibited the lowest. Analysis of molecular variance (AMOVA) showed that 88.39% of the total genetic variation was attributed to intra-varietal variance. The cluster analysis for individual samples and varieties revealed differences in their population structures: variety Zuzana showed a very high level of genetic variation, Banat and Ghareh were divided in subpopulations, while Pecy and RSI 20 were relatively uniform. Ways of exploiting the investigated germplasm in the breeding programs are suggested in this paper, depending on their population structure and diversity. The RAPD analysis shows potential to be applied in analysis of parental populations in semi-hybrid alfalfa breeding program in both, development of new homogenous germplasm, and identification of promising, complementary germplasm.

  1. Development of Cymbidium ensifolium genic-SSR markers and their utility in genetic diversity and population structure analysis in cymbidiums.

    PubMed

    Li, Xiaobai; Jin, Feng; Jin, Liang; Jackson, Aaron; Huang, Cheng; Li, Kehu; Shu, Xiaoli

    2014-12-05

    Cymbidium is a genus of 68 species in the orchid family, with extremely high ornamental value. Marker-assisted selection has proven to be an effective strategy in accelerating plant breeding for many plant species. Analysis of cymbidiums genetic background by molecular markers can be of great value in assisting parental selection and breeding strategy design, however, in plants such as cymbidiums limited genomic resources exist. In order to obtain efficient markers, we deep sequenced the C. ensifolium transcriptome to identify simple sequence repeats derived from gene regions (genic-SSR). The 7,936 genic-SSR markers were identified. A total of 80 genic-SSRs were selected, and primers were designed according to their flanking sequences. Of the 80 genic-SSR primer sets, 62 were amplified in C. ensifolium successfully, and 55 showed polymorphism when cross-tested among 9 Cymbidium species comprising 59 accessions. Unigenes containing the 62 genic-SSRs were searched against Non-redundant (Nr), Gene Ontology database (GO), eukaryotic orthologous groups (KOGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The search resulted in 53 matching Nr sequences, of which 39 had GO terms, 18 were assigned to KOGs, and 15 were annotated with KEGG. Genetic diversity and population structure were analyzed based on 55 polymorphic genic-SSR data among 59 accessions. The genetic distance averaged 0.3911, ranging from 0.016 to 0.618. The polymorphic index content (PIC) of 55 polymorphic markers averaged 0.407, ranging from 0.033 to 0.863. A model-based clustering analysis revealed that five genetic groups existed in the collection. Accessions from the same species were typically grouped together; however, C. goeringii accessions did not always form a separate cluster, suggesting that C. goeringii accessions were polyphyletic. The genic-SSR identified in this study constitute a set of markers that can be applied across multiple Cymbidium species and used for the evaluation of genetic relationships as well as qualitative and quantitative trait mapping studies. Genic-SSR's coupled with the functional annotations provided by the unigenes will aid in mapping candidate genes of specific function.

  2. Development and preliminary evaluation of a 90 K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa.

    PubMed

    Bassil, Nahla V; Davis, Thomas M; Zhang, Hailong; Ficklin, Stephen; Mittmann, Mike; Webster, Teresa; Mahoney, Lise; Wood, David; Alperin, Elisabeth S; Rosyara, Umesh R; Koehorst-Vanc Putten, Herma; Monfort, Amparo; Sargent, Daniel J; Amaya, Iraida; Denoyes, Beatrice; Bianco, Luca; van Dijk, Thijs; Pirani, Ali; Iezzoni, Amy; Main, Dorrie; Peace, Cameron; Yang, Yilong; Whitaker, Vance; Verma, Sujeet; Bellon, Laurent; Brew, Fiona; Herrera, Raul; van de Weg, Eric

    2015-03-07

    A high-throughput genotyping platform is needed to enable marker-assisted breeding in the allo-octoploid cultivated strawberry Fragaria × ananassa. Short-read sequences from one diploid and 19 octoploid accessions were aligned to the diploid Fragaria vesca 'Hawaii 4' reference genome to identify single nucleotide polymorphisms (SNPs) and indels for incorporation into a 90 K Affymetrix® Axiom® array. We report the development and preliminary evaluation of this array. About 36 million sequence variants were identified in a 19 member, octoploid germplasm panel. Strategies and filtering pipelines were developed to identify and incorporate markers of several types: di-allelic SNPs (66.6%), multi-allelic SNPs (1.8%), indels (10.1%), and ploidy-reducing "haploSNPs" (11.7%). The remaining SNPs included those discovered in the diploid progenitor F. iinumae (3.9%), and speculative "codon-based" SNPs (5.9%). In genotyping 306 octoploid accessions, SNPs were assigned to six classes with Affymetrix's "SNPolisher" R package. The highest quality classes, PolyHigh Resolution (PHR), No Minor Homozygote (NMH), and Off-Target Variant (OTV) comprised 25%, 38%, and 1% of array markers, respectively. These markers were suitable for genetic studies as demonstrated in the full-sib family 'Holiday' × 'Korona' with the generation of a genetic linkage map consisting of 6,594 PHR SNPs evenly distributed across 28 chromosomes with an average density of approximately one marker per 0.5 cM, thus exceeding our goal of one marker per cM. The Affymetrix IStraw90 Axiom array is the first high-throughput genotyping platform for cultivated strawberry and is commercially available to the worldwide scientific community. The array's high success rate is likely driven by the presence of naturally occurring variation in ploidy level within the nominally octoploid genome, and by effectiveness of the employed array design and ploidy-reducing strategies. This array enables genetic analyses including generation of high-density linkage maps, identification of quantitative trait loci for economically important traits, and genome-wide association studies, thus providing a basis for marker-assisted breeding in this high value crop.

  3. Empirical Selection of Informative Microsatellite Markers within Co-ancestry Pig Populations Is Required for Improving the Individual Assignment Efficiency

    PubMed Central

    Li, Y. H.; Chu, H. P.; Jiang, Y. N.; Lin, C. Y.; Li, S. H.; Li, K. T.; Weng, G. J.; Cheng, C. C.; Lu, D. J.; Ju, Y. T.

    2014-01-01

    The Lanyu is a miniature pig breed indigenous to Lanyu Island, Taiwan. It is distantly related to Asian and European pig breeds. It has been inbred to generate two breeds and crossed with Landrace and Duroc to produce two hybrids for laboratory use. Selecting sets of informative genetic markers to track the genetic qualities of laboratory animals and stud stock is an important function of genetic databases. For more than two decades, Lanyu derived breeds of common ancestry and crossbreeds have been used to examine the effectiveness of genetic marker selection and optimal approaches for individual assignment. In this paper, these pigs and the following breeds: Berkshire, Duroc, Landrace and Yorkshire, Meishan and Taoyuan, TLRI Black Pig No. 1, and Kaohsiung Animal Propagation Station Black pig are studied to build a genetic reference database. Nineteen microsatellite markers (loci) provide information on genetic variation and differentiation among studied breeds. High differentiation index (FST) and Cavalli-Sforza chord distances give genetic differentiation among breeds, including Lanyu’s inbred populations. Inbreeding values (FIS) show that Lanyu and its derived inbred breeds have significant loss of heterozygosity. Individual assignment testing of 352 animals was done with different numbers of microsatellite markers in this study. The testing assigned 99% of the animals successfully into their correct reference populations based on 9 to 14 markers ranking D-scores, allelic number, expected heterozygosity (HE) or FST, respectively. All miss-assigned individuals came from close lineage Lanyu breeds. To improve individual assignment among close lineage breeds, microsatellite markers selected from Lanyu populations with high polymorphic, heterozygosity, FST and D-scores were used. Only 6 to 8 markers ranking HE, FST or allelic number were required to obtain 99% assignment accuracy. This result suggests empirical examination of assignment-error rates is required if discernible levels of co-ancestry exist. In the reference group, optimum assignment accuracy was achievable achieved through a combination of different markers by ranking the heterozygosity, FST and allelic number of close lineage populations. PMID:25049996

  4. Genetic mapping of resistance to Fusarium oxysporum f. sp. tulipae in tulip.

    PubMed

    Tang, Nan; van der Lee, Theo; Shahin, Arwa; Holdinga, Maarten; Bijman, Paul; Caser, Matteo; Visser, Richard G F; van Tuyl, Jaap M; Arens, Paul

    Fusarium oxysporum is a major problem in the production of tulip bulbs. Breeding for resistant cultivars through a conventional approach is a slow process due to the long life cycle of tulip. Until now, marker-assisted selection (MAS) has been hampered by the large genome size and the absence of a genetic map. This study is aimed at construction of the first genetic map for tulip and at the identification of loci associated with resistance to F. oxysporum . A cross-pollinated population of 125 individuals segregating for Fusarium resistance was obtained from Tulipa gesneriana "Kees Nelis" and T. fosteriana "Cantata." Fusarium resistance of the mapping population was evaluated through a soil infection test in two consecutive years, and a spot inoculation test in which a green fluorescent protein tagged Fusarium strain was used for inoculation. The genetic maps have been constructed for the parents separately. The genetic map of "Kees Nelis" comprised 342 markers on 27 linkage groups covering 1707 cM, while the map of "Cantata" comprised 300 markers on 21 linkage groups covering 1201 cM. Median distance between markers was 3.9 cM for "Kees Nelis" and 3.1 cM for "Cantata." Six putative quantitative trait loci (QTLs) for Fusarium resistance were identified, derived from both parents. QTL2, QTL3, and QTL6 were significant in all disease tests. For the flanking markers of the QTLs, phenotypic means of the two allelic groups, segregating from a parent for such a marker, were significantly different. These markers will be useful for the development of MAS in tulip breeding.

  5. Genetic variation and comparison of orchardgrass (Dactylis glomerata L.) cultivars and wild accessions as revealed by SSR markers.

    PubMed

    Xie, W G; Lu, X F; Zhang, X Q; Huang, L K; Cheng, L

    2012-02-24

    Orchardgrass is a highly variable, perennial forage grass that is cultivated throughout temperate and subtropical regions of the world. Despite its economic importance, the genetic relationship and distance among and within cultivars are largely unknown but would be of great interest for breeding programs. We investigated the molecular variation and structure of cultivar populations, compared the level of genetic diversity among cultivars (Baoxing, Anba, Bote, and Kaimo), subspecies (Dactylis glomerata ssp Woronowii) and advanced breeding line (YA02-116) to determine whether there is still sufficient genetic diversity within presently used cultivars for future breeding progress in China. Twenty individuals were analyzed from each of six accessions using SSR markers; 114 easily scored bands were generated from 15 SSR primer pairs, with an average of 7.6 alleles per locus. The polymorphic rate was 100% among the 120 individuals, reflecting a high degree of genetic diversity. Among the six accessions, the highest genetic diversity was observed in Kaimo (H = 0.2518; I = 0.3916; P = 87.3%) and 02-116 had a lower level of genetic diversity (H = 0.1806; I = 0.2788; P = 58.73%) compared with other cultivars tested. An of molecular variance revealed a much larger genetic variation within accessions (65%) than between them (35%). This observation suggests that these cultivars have potential for providing rich genetic resource for further breeding program. Furthermore, the study also indicated that Chinese orchardgrass breeding has involved strong selection for adaptation to forage production, which may result in restricted genetic base of orchardgrass cultivar.

  6. Genetic diversity and population structure of Musa accessions in ex situ conservation

    PubMed Central

    2013-01-01

    Background Banana cultivars are mostly derived from hybridization between wild diploid subspecies of Musa acuminata (A genome) and M. balbisiana (B genome), and they exhibit various levels of ploidy and genomic constitution. The Embrapa ex situ Musa collection contains over 220 accessions, of which only a few have been genetically characterized. Knowledge regarding the genetic relationships and diversity between modern cultivars and wild relatives would assist in conservation and breeding strategies. Our objectives were to determine the genomic constitution based on Internal Transcribed Spacer (ITS) regions polymorphism and the ploidy of all accessions by flow cytometry and to investigate the population structure of the collection using Simple Sequence Repeat (SSR) loci as co-dominant markers based on Structure software, not previously performed in Musa. Results From the 221 accessions analyzed by flow cytometry, the correct ploidy was confirmed or established for 212 (95.9%), whereas digestion of the ITS region confirmed the genomic constitution of 209 (94.6%). Neighbor-joining clustering analysis derived from SSR binary data allowed the detection of two major groups, essentially distinguished by the presence or absence of the B genome, while subgroups were formed according to the genomic composition and commercial classification. The co-dominant nature of SSR was explored to analyze the structure of the population based on a Bayesian approach, detecting 21 subpopulations. Most of the subpopulations were in agreement with the clustering analysis. Conclusions The data generated by flow cytometry, ITS and SSR supported the hypothesis about the occurrence of homeologue recombination between A and B genomes, leading to discrepancies in the number of sets or portions from each parental genome. These phenomenons have been largely disregarded in the evolution of banana, as the “single-step domestication” hypothesis had long predominated. These findings will have an impact in future breeding approaches. Structure analysis enabled the efficient detection of ancestry of recently developed tetraploid hybrids by breeding programs, and for some triploids. However, for the main commercial subgroups, Structure appeared to be less efficient to detect the ancestry in diploid groups, possibly due to sampling restrictions. The possibility of inferring the membership among accessions to correct the effects of genetic structure opens possibilities for its use in marker-assisted selection by association mapping. PMID:23497122

  7. Genomic Selection in Commercial Perennial Crops: Applicability and Improvement in Oil Palm (Elaeis guineensis Jacq.).

    PubMed

    Kwong, Qi Bin; Ong, Ai Ling; Teh, Chee Keng; Chew, Fook Tim; Tammi, Martti; Mayes, Sean; Kulaveerasingam, Harikrishna; Yeoh, Suat Hui; Harikrishna, Jennifer Ann; Appleton, David Ross

    2017-06-06

    Genomic selection (GS) uses genome-wide markers to select individuals with the desired overall combination of breeding traits. A total of 1,218 individuals from a commercial population of Ulu Remis x AVROS (UR x AVROS) were genotyped using the OP200K array. The traits of interest included: shell-to-fruit ratio (S/F, %), mesocarp-to-fruit ratio (M/F, %), kernel-to-fruit ratio (K/F, %), fruit per bunch (F/B, %), oil per bunch (O/B, %) and oil per palm (O/P, kg/palm/year). Genomic heritabilities of these traits were estimated to be in the range of 0.40 to 0.80. GS methods assessed were RR-BLUP, Bayes A (BA), Cπ (BC), Lasso (BL) and Ridge Regression (BRR). All methods resulted in almost equal prediction accuracy. The accuracy achieved ranged from 0.40 to 0.70, correlating with the heritability of traits. By selecting the most important markers, RR-BLUP B has the potential to outperform other methods. The marker density for certain traits can be further reduced based on the linkage disequilibrium (LD). Together with in silico breeding, GS is now being used in oil palm breeding programs to hasten parental palm selection.

  8. Derived variants at six genes explain nearly half of size reduction in dog breeds.

    PubMed

    Rimbault, Maud; Beale, Holly C; Schoenebeck, Jeffrey J; Hoopes, Barbara C; Allen, Jeremy J; Kilroy-Glynn, Paul; Wayne, Robert K; Sutter, Nathan B; Ostrander, Elaine A

    2013-12-01

    Selective breeding of dogs by humans has generated extraordinary diversity in body size. A number of multibreed analyses have been undertaken to identify the genetic basis of this diversity. We analyzed four loci discovered in a previous genome-wide association study that used 60,968 SNPs to identify size-associated genomic intervals, which were too large to assign causative roles to genes. First, we performed fine-mapping to define critical intervals that included the candidate genes GHR, HMGA2, SMAD2, and STC2, identifying five highly associated markers at the four loci. We hypothesize that three of the variants are likely to be causative. We then genotyped each marker, together with previously reported size-associated variants in the IGF1 and IGF1R genes, on a panel of 500 domestic dogs from 93 breeds, and identified the ancestral allele by genotyping the same markers on 30 wild canids. We observed that the derived alleles at all markers correlated with reduced body size, and smaller dogs are more likely to carry derived alleles at multiple markers. However, breeds are not generally fixed at all markers; multiple combinations of genotypes are found within most breeds. Finally, we show that 46%-52.5% of the variance in body size of dog breeds can be explained by seven markers in proximity to exceptional candidate genes. Among breeds with standard weights <41 kg (90 lb), the genotypes accounted for 64.3% of variance in weight. This work advances our understanding of mammalian growth by describing genetic contributions to canine size determination in non-giant dog breeds.

  9. Genome-wide association study for cheese yield and curd nutrient recovery in dairy cows.

    PubMed

    Dadousis, C; Biffani, S; Cipolat-Gotet, C; Nicolazzi, E L; Rosa, G J M; Gianola, D; Rossoni, A; Santus, E; Bittante, G; Cecchinato, A

    2017-02-01

    Cheese production and consumption are increasing in many countries worldwide. As a result, interest has increased in strategies for genetic selection of individuals for technological traits of milk related to cheese yield (CY) in dairy cattle breeding. However, little is known about the genetic background of a cow's ability to produce cheese. Recently, a relatively large panel (1,264 cows) of different measures of individual cow CY and milk nutrient and energy recoveries in the cheese (REC) became available. Genetic analyses showed considerable variation for CY and for aptitude to retain high proportions of fat, protein, and water in the coagulum. For the dairy industry, these characteristics are of major economic importance. Nevertheless, use of this knowledge in dairy breeding is hampered by high costs, intense labor requirement, and lack of appropriate technology. However, in the era of genomics, new possibilities are available for animal breeding and genetic improvement. For example, identification of genomic regions involved in cow CY might provide potential for marker-assisted selection. The objective of this study was to perform genome-wide association studies on different CY and REC measures. Milk and DNA samples from 1,152 Italian Brown Swiss cows were used. Three CY traits expressing the weight (wt) of fresh curd (%CY CURD ), curd solids (%CY SOLIDS ), and curd moisture (%CY WATER ) as a percentage of weight of milk processed, and 4 REC (REC FAT , REC PROTEIN , REC SOLIDS , and REC ENERGY , calculated as the % ratio between the nutrient in curd and the corresponding nutrient in processed milk) were analyzed. Animals were genotyped with the Illumina BovineSNP50 Bead Chip v.2. Single marker regressions were fitted using the GenABEL R package (genome-wide association using mixed model and regression-genomic control). In total, 103 significant associations (88 single nucleotide polymorphisms) were identified in 10 chromosomes (2, 6, 9, 11, 12, 14, 18, 19, 27, 28). For REC FAT and REC PROTEIN , high significance peaks were identified in Bos taurus autosome (BTA) 6 and BTA11, respectively. Marker ARS-BFGL-NGS-104610 (∼104.3 Mbp) was highly associated with REC PROTEIN and Hapmap52348-rs29024684 (∼87.4 Mbp), closely located to the casein genes on BTA6, with REC FAT . Genomic regions identified may enhance marker-assisted selection in bovine cheese breeding beyond the use of protein (casein) and fat contents, whereas new knowledge will help to unravel the genomic background of a cow's ability for cheese production. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Predicting Breed Composition Using Breed Frequencies of 50,000 Markers from the U.S. Meat Animal Research Center 2,000 Bull Project

    USDA-ARS?s Scientific Manuscript database

    Our objective was to evaluate whether breed composition of crossbred cattle could be predicted using reference breed frequencies of SNP markers on the BovineSNP50 array. Semen DNA samples of over 2,000 bulls from 16 common commercial beef breeds were genotyped using the array and used to estimate cu...

  11. Myrciaria dubia, an Amazonian fruit: population structure and its implications for germplasm conservation and genetic improvement.

    PubMed

    Nunes, C F; Setotaw, T A; Pasqual, M; Chagas, E A; Santos, E G; Santos, D N; Lima, C G B; Cançado, G M A

    2017-03-22

    Myrciaria dubia (camu-camu) is an Amazon tree that produces a tart fruit with high vitamin C content. It is probably the fruit with the highest vitamin C content among all Brazilian fruit crops and it can be used to supplement daily vitamin C dose. This property has attracted the attention of consumers and, consequently, encouraged fruit farmers to produce it. In order to identify and select potential accessions for commercial exploitation and breeding programs, M. dubia has received considerable research attention. The identification and characterization of genetic diversity, as well as identification of the population structure of accessions preserved in germplasm banks are fundamental for the success of any breeding program. The objective of this study was to evaluate the genetic variability of 10 M. dubia populations obtained from the shores of Reis Lake, located in the municipality of Caracaraí, Roraima, Brazil. Fourteen polymorphic inter simple sequence repeat (ISSR) markers were used to study the population genetic diversity, which resulted in 108 identified alleles. Among the 14 primers, GCV, UBC810, and UBC827 produced the highest number of alleles. The study illustrated the suitability and efficiency of ISSR markers to study the genetic diversity of M. dubia accessions. We also revealed the existence of high genetic variability among both accessions and populations that can be exploited in future breeding programs and conservation activities of this species.

  12. Tetra-primer ARMS-PCR identified four pivotal genetic variations in bovine PNPLA3 gene and its expression patterns.

    PubMed

    Wang, Zi-nian; Cai, Han-fang; Li, Ming-xun; Cao, Xiu-kai; Lan, Xian-yong; Lei, Chu-zhao; Chen, Hong

    2016-01-10

    Patatin-like phospholipase domain-containing protein 3 (PNPLA3), a member of the patatin like phospholipase domain-containing (PNPLA) family, plays an important role in energy balance, fat metabolism regulation, glucose metabolism and fatty liver disease. Tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR) is a new method offering fast detection and extreme simplicity at a negligible cost for SNP genotyping. In this paper, we investigated the genetic variations at different ages of 660 Chinese indigenous cattle belonging to three breeds (QC, NY, JX) and applied T-ARMS-PCR and PCR-RFLP methods to genotype four SNPs, SNP1: g.A2980G, SNP2: g.A2996T, SNP3: g.A36718G, SNP4: g.G36850A. The statistical analyses indicated that these 4 SNPs affected growth traits markedly (P<0.05) in QC population, whereas combined haplotypes were not (P>0.05). The qPCR (quantitative PCR) indicated that bovine PNPLA3 gene was exclusively expressed in fat tissues. Besides, the analysis between SNP and mRNA expression revealed that, in SNP1, the expression of AG was much higher than AA and GG (P<0.05), which was in accordance with the results of growth traits association analysis, while the results of SNP4 was not. These results supported high potential that SNPs of bovine PNPLA3 gene might be utilized as genetic markers in marker-assisted selection (MAS) for Chinese cattle breeding programs. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Expanding Omics Resources for Improvement of Soybean Seed Composition Traits

    PubMed Central

    Chaudhary, Juhi; Patil, Gunvant B.; Sonah, Humira; Deshmukh, Rupesh K.; Vuong, Tri D.; Valliyodan, Babu; Nguyen, Henry T.

    2015-01-01

    Food resources of the modern world are strained due to the increasing population. There is an urgent need for innovative methods and approaches to augment food production. Legume seeds are major resources of human food and animal feed with their unique nutrient compositions including oil, protein, carbohydrates, and other beneficial nutrients. Recent advances in next-generation sequencing (NGS) together with “omics” technologies have considerably strengthened soybean research. The availability of well annotated soybean genome sequence along with hundreds of identified quantitative trait loci (QTL) associated with different seed traits can be used for gene discovery and molecular marker development for breeding applications. Despite the remarkable progress in these technologies, the analysis and mining of existing seed genomics data are still challenging due to the complexity of genetic inheritance, metabolic partitioning, and developmental regulations. Integration of “omics tools” is an effective strategy to discover key regulators of various seed traits. In this review, recent advances in “omics” approaches and their use in soybean seed trait investigations are presented along with the available databases and technological platforms and their applicability in the improvement of soybean. This article also highlights the use of modern breeding approaches, such as genome-wide association studies (GWAS), genomic selection (GS), and marker-assisted recurrent selection (MARS) for developing superior cultivars. A catalog of available important resources for major seed composition traits, such as seed oil, protein, carbohydrates, and yield traits are provided to improve the knowledge base and future utilization of this information in the soybean crop improvement programs. PMID:26635846

  14. Breeding-assisted genomics.

    PubMed

    Poland, Jesse

    2015-04-01

    The revolution of inexpensive sequencing has ushered in an unprecedented age of genomics. The promise of using this technology to accelerate plant breeding is being realized with a vision of genomics-assisted breeding that will lead to rapid genetic gain for expensive and difficult traits. The reality is now that robust phenotypic data is an increasing limiting resource to complement the current wealth of genomic information. While genomics has been hailed as the discipline to fundamentally change the scope of plant breeding, a more symbiotic relationship is likely to emerge. In the context of developing and evaluating large populations needed for functional genomics, none excel in this area more than plant breeders. While genetic studies have long relied on dedicated, well-structured populations, the resources dedicated to these populations in the context of readily available, inexpensive genotyping is making this philosophy less tractable relative to directly focusing functional genomics on material in breeding programs. Through shifting effort for basic genomic studies from dedicated structured populations, to capturing the entire scope of genetic determinants in breeding lines, we can move towards not only furthering our understanding of functional genomics in plants, but also rapidly improving crops for increased food security, availability and nutrition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Translational research impacting on crop productivity in drought-prone environments.

    PubMed

    Reynolds, Matthew; Tuberosa, Roberto

    2008-04-01

    Conventional breeding for drought-prone environments (DPE) has been complemented by using exotic germplasm to extend crop gene pools and physiological approaches that consider water uptake (WU), water-use efficiency (WUE), and harvest index (HI) as drivers of yield. Drivers are associated with proxy genetic markers, such as carbon-isotope discrimination for WUE, canopy temperature for WU, and anthesis-silking interval for HI in maize. Molecular markers associated with relevant quantitative trait loci are being developed. WUE has also been increased through combining understanding of root-to-shoot signaling with deficit irrigation. Impacts in DPE will be accelerated by combining proven technologies with promising new strategies such as marker-assisted selection, and genetic transformation, as well as conservation agriculture that can increase WU while averting soil degradation.

  16. Genomic selection in sugar beet breeding populations

    PubMed Central

    2013-01-01

    Background Genomic selection exploits dense genome-wide marker data to predict breeding values. In this study we used a large sugar beet population of 924 lines representing different germplasm types present in breeding populations: unselected segregating families and diverse lines from more advanced stages of selection. All lines have been intensively phenotyped in multi-location field trials for six agronomically important traits and genotyped with 677 SNP markers. Results We used ridge regression best linear unbiased prediction in combination with fivefold cross-validation and obtained high prediction accuracies for all except one trait. In addition, we investigated whether a calibration developed based on a training population composed of diverse lines is suited to predict the phenotypic performance within families. Our results show that the prediction accuracy is lower than that obtained within the diverse set of lines, but comparable to that obtained by cross-validation within the respective families. Conclusions The results presented in this study suggest that a training population derived from intensively phenotyped and genotyped diverse lines from a breeding program does hold potential to build up robust calibration models for genomic selection. Taken together, our results indicate that genomic selection is a valuable tool and can thus complement the genomics toolbox in sugar beet breeding. PMID:24047500

  17. Genetic Map of Mango: A Tool for Mango Breeding

    PubMed Central

    Kuhn, David N.; Bally, Ian S. E.; Dillon, Natalie L.; Innes, David; Groh, Amy M.; Rahaman, Jordon; Ophir, Ron; Cohen, Yuval; Sherman, Amir

    2017-01-01

    Mango (Mangifera indica) is an economically and nutritionally important tropical/subtropical tree fruit crop. Most of the current commercial cultivars are selections rather than the products of breeding programs. To improve the efficiency of mango breeding, molecular markers have been used to create a consensus genetic map that identifies all 20 linkage groups in seven mapping populations. Polyembryony is an important mango trait, used for clonal propagation of cultivars and rootstocks. In polyembryonic mango cultivars, in addition to a zygotic embryo, several apomictic embryos develop from maternal tissue surrounding the fertilized egg cell. This trait has been associated with linkage group 8 in our consensus genetic map and has been validated in two of the seven mapping populations. In addition, we have observed a significant association between trait and single nucleotide polymorphism (SNP) markers for the vegetative trait of branch habit and the fruit traits of bloom, ground skin color, blush intensity, beak shape, and pulp color. PMID:28473837

  18. Genetic Breeding and Diversity of the Genus Passiflora: Progress and Perspectives in Molecular and Genetic Studies

    PubMed Central

    Cerqueira-Silva, Carlos Bernard M.; Jesus, Onildo N.; Santos, Elisa S. L.; Corrêa, Ronan X.; Souza, Anete P.

    2014-01-01

    Despite the ecological and economic importance of passion fruit (Passiflora spp.), molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i) to present the current condition of the passion fruit crop; (ii) to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii) to present the contributions of genetic engineering for passion fruit culture; and (iv) to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit. PMID:25196515

  19. Prospecting sugarcane resistance to Sugarcane yellow leaf virus by genome-wide association.

    PubMed

    Debibakas, S; Rocher, S; Garsmeur, O; Toubi, L; Roques, D; D'Hont, A; Hoarau, J-Y; Daugrois, J H

    2014-08-01

    Using GWAS approaches, we detected independent resistant markers in sugarcane towards a vectored virus disease. Based on comparative genomics, several candidate genes potentially involved in virus/aphid/plant interactions were pinpointed. Yellow leaf of sugarcane is an emerging viral disease whose causal agent is a Polerovirus, the Sugarcane yellow leaf virus (SCYLV) transmitted by aphids. To identify quantitative trait loci controlling resistance to yellow leaf which are of direct relevance for breeding, we undertook a genome-wide association study (GWAS) on a sugarcane cultivar panel (n = 189) representative of current breeding germplasm. This panel was fingerprinted with 3,949 polymorphic markers (DArT and AFLP). The panel was phenotyped for SCYLV infection in leaves and stalks in two trials for two crop cycles, under natural disease pressure prevalent in Guadeloupe. Mixed linear models including co-factors representing population structure fixed effects and pairwise kinship random effects provided an efficient control of the risk of inflated type-I error at a genome-wide level. Six independent markers were significantly detected in association with SCYLV resistance phenotype. These markers explained individually between 9 and 14 % of the disease variation of the cultivar panel. Their frequency in the panel was relatively low (8-20 %). Among them, two markers were detected repeatedly across the GWAS exercises based on the different disease resistance parameters. These two markers could be blasted on Sorghum bicolor genome and candidate genes potentially involved in plant-aphid or plant-virus interactions were localized in the vicinity of sorghum homologs of sugarcane markers. Our results illustrate the potential of GWAS approaches to prospect among sugarcane germplasm for accessions likely bearing resistance alleles of significant effect useful in breeding programs.

  20. Analysis of genetic diversity of rapeseed genetic resources in Japan and core collection construction

    PubMed Central

    Chen, Ruikun; Hara, Takashi; Ohsawa, Ryo; Yoshioka, Yosuke

    2017-01-01

    Diversity analysis of rapeseed accessions preserved in the Japanese Genebank can provide valuable information for breeding programs. In this study, 582 accessions were genotyped with 30 SSR markers covering all 19 rapeseed chromosomes. These markers amplified 311 alleles (10.37 alleles per marker; range, 3–39). The genetic diversity of Japanese accessions was lower than that of overseas accessions. Analysis of molecular variance indicated significant genetic differentiation between Japanese and overseas accessions. Small but significant differences were found among geographical groups in Japan, and genetic differentiation tended to increase with geographical distance. STRUCTURE analysis indicated the presence of two main genetic clusters in the NARO rapeseed collection. With the membership probabilities threshold, 227 accessions mostly originating from overseas were assigned to one subgroup, and 276 accessions mostly originating from Japan were assigned to the other subgroup. The remaining 79 accessions are assigned to admixed group. The core collection constructed comprises 96 accessions of diverse origin. It represents the whole collection well and thus it may be useful for rapeseed genetic research and breeding programs. The core collection improves the efficiency of management, evaluation, and utilization of genetic resources. PMID:28744177

  1. Genetic architecture of sex determination in fish: applications to sex ratio control in aquaculture

    PubMed Central

    Martínez, Paulino; Viñas, Ana M.; Sánchez, Laura; Díaz, Noelia; Ribas, Laia; Piferrer, Francesc

    2014-01-01

    Controlling the sex ratio is essential in finfish farming. A balanced sex ratio is usually good for broodstock management, since it enables to develop appropriate breeding schemes. However, in some species the production of monosex populations is desirable because the existence of sexual dimorphism, primarily in growth or first time of sexual maturation, but also in color or shape, can render one sex more valuable. The knowledge of the genetic architecture of sex determination (SD) is convenient for controlling sex ratio and for the implementation of breeding programs. Unlike mammals and birds, which show highly conserved master genes that control a conserved genetic network responsible for gonad differentiation (GD), a huge diversity of SD mechanisms has been reported in fish. Despite theory predictions, more than one gene is in many cases involved in fish SD and genetic differences have been observed in the GD network. Environmental factors also play a relevant role and epigenetic mechanisms are becoming increasingly recognized for the establishment and maintenance of the GD pathways. Although major genetic factors are frequently involved in fish SD, these observations strongly suggest that SD in this group resembles a complex trait. Accordingly, the application of quantitative genetics combined with genomic tools is desirable to address its study and in fact, when applied, it has frequently demonstrated a multigene trait interacting with environmental factors in model and cultured fish species. This scenario has notable implications for aquaculture and, depending upon the species, from chromosome manipulation or environmental control techniques up to classical selection or marker assisted selection programs, are being applied. In this review, we selected four relevant species or fish groups to illustrate this diversity and hence the technologies that can be used by the industry for the control of sex ratio: turbot and European sea bass, two reference species of the European aquaculture, and salmonids and tilapia, representing the fish for which there are well established breeding programs. PMID:25324858

  2. Plant databases and data analysis tools

    USDA-ARS?s Scientific Manuscript database

    It is anticipated that the coming years will see the generation of large datasets including diagnostic markers in several plant species with emphasis on crop plants. To use these datasets effectively in any plant breeding program, it is essential to have the information available via public database...

  3. QTL affecting stress response to crowding in a rainbow trout broodstock population

    USDA-ARS?s Scientific Manuscript database

    Background Genomic analyses have the potential to impact selective breeding programs by identifying markers that serve as proxies for traits which are expensive or difficult to measure. Also, identifying genes affecting traits of interest enhances our understanding of their underlying biochemical ...

  4. Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches

    PubMed Central

    Kumar, Arvind; Dixit, Shalabh; Ram, T.; Yadaw, R. B.; Mishra, K. K.; Mandal, N. P.

    2014-01-01

    The increased occurrence and severity of drought stress have led to a high yield decline in rice in recent years in drought-affected areas. Drought research at the International Rice Research Institute (IRRI) over the past decade has concentrated on direct selection for grain yield under drought. This approach has led to the successful development and release of 17 high-yielding drought-tolerant rice varieties in South Asia, Southeast Asia, and Africa. In addition to this, 14 quantitative trait loci (QTLs) showing a large effect against high-yielding drought-susceptible popular varieties were identified using grain yield as a selection criterion. Six of these (qDTY 1.1, qDTY 2.2, qDTY 3.1, qDTY 3.2, qDTY 6.1, and qDTY 12.1) showed an effect against two or more high-yielding genetic backgrounds in both the lowland and upland ecosystem, indicating their usefulness in increasing the grain yield of rice under drought. The yield of popular rice varieties IR64 and Vandana has been successfully improved through a well-planned marker-assisted backcross breeding approach, and QTL introgression in several other popular varieties is in progress. The identification of large-effect QTLs for grain yield under drought and the higher yield increase under drought obtained through the use of these QTLs (which has not been reported in other cereals) indicate that rice, because of its continuous cultivation in two diverse ecosystems (upland, drought tolerant, and lowland, drought susceptible), has benefited from the existence of larger genetic variability than in other cereals. This can be successfully exploited using marker-assisted breeding. PMID:25205576

  5. The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat.

    PubMed

    Hao, Chenyang; Wang, Yuquan; Chao, Shiaoman; Li, Tian; Liu, Hongxia; Wang, Lanfen; Zhang, Xueyong

    2017-01-30

    A Chinese wheat mini core collection was genotyped using the wheat 9 K iSelect SNP array. Total 2420 and 2396 polymorphic SNPs were detected on the A and the B genome chromosomes, which formed 878 haplotype blocks. There were more blocks in the B genome, but the average block size was significantly (P < 0.05) smaller than those in the A genome. Intense selection (domestication and breeding) had a stronger effect on the A than on the B genome chromosomes. Based on the genetic pedigrees, many blocks can be traced back to a well-known Strampelli cross, which was made one century ago. Furthermore, polyploidization of wheat (both tetraploidization and hexaploidization) induced revolutionary changes in both the A and the B genomes, with a greater increase of gene diversity compared to their diploid ancestors. Modern breeding has dramatically increased diversity in the gene coding regions, though obvious blocks were formed on most of the chromosomes in both tetraploid and hexaploid wheats. Tag-SNP markers identified in this study can be used for marker assisted selection using haplotype blocks as a wheat breeding strategy. This strategy can also be employed to facilitate genome selection in other self-pollinating crop species.

  6. Farm-by-farm analysis of microsatellite, mtDNA and SNP genotype data reveals inbreeding and crossbreeding as threats to the survival of a native Spanish pig breed.

    PubMed

    Herrero-Medrano, J M; Megens, H J; Crooijmans, R P; Abellaneda, J M; Ramis, G

    2013-06-01

    The Chato Murciano (CM), a pig breed from the Murcia region in the southeastern region of Spain, is a good model for endangered livestock populations. The remaining populations are bred on approximately 15 small farms, and no herdbook exists. To assess the genetic threats to the integrity and survival of the CM breed, and to aid in designing a conservation program, three genetic marker systems - microsatellites, SNPs and mtDNA - were applied across the majority of the total breeding stock. In addition, mtDNA and SNPs were genotyped in breeds that likely contributed genetically to the current CM gene pool. The analyses revealed the levels of genetic diversity within the range of other European local breeds (H(e) = 0.53). However, when the eight farms that rear at least 10 CM pigs were independently analyzed, high levels of inbreeding were found in some. Despite the evidence for recent crossbreeding with commercial breeds on a few farms, the entire breeding stock remains readily identifiable as CM, facilitating the design of traceability assays. The genetic management of the breed is consistent with farm size, farm owner and presence of other pig breeds on the farm, demonstrating the highly ad hoc nature of current CM breeding. The results of genetic diversity and substructure of the entire breed, as well as admixture and crossbreeding obtained in the present study, provide a benchmark to develop future conservation strategies. Furthermore, this study demonstrates that identifying farm-based practices and farm-based breeding stocks can aid in the design of a sustainable breeding program for minority breeds. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  7. Genoproteomics-assisted improvement of Andrographis paniculata: toward a promising molecular and conventional breeding platform for autogamous plants affecting the pharmaceutical industry.

    PubMed

    Valdiani, Alireza; Talei, Daryush; Lattoo, Surrinder K; Ortiz, Rodomiro; Rasmussen, Søren Kjærsgaard; Batley, Jacqueline; Rafii, Mohd Yusop; Maziah, Mahmood; Sabu, Kallevettankuzhy K; Abiri, Rambod; Sakuanrungsirikul, Suchirat; Tan, Soon Guan

    2017-09-01

    Andrographis paniculata (Burm. f.) Wall. ex Nees. (AP) is a hermaphroditic, self-compatible, and habitual inbreeding plant. Its main bioactive component is andrographolide, which is capable of inducing autophagic cell death in some human cancer cells and helps fight HIV/AIDS. Increasing the andrographolide content by investigating the genetic mechanisms controlling its biosynthesis in order to improve and develop high-yielding cultivars are the main breeding targets for AP. However, there might exist some limitations or barriers for crossability within AP accessions. Recently, this problem was addressed in AP by using a combination of crossbreeding and biotechnology-aided genetic methods. This review emphasizes that development of a breeding platform in a hard-to-breed plant, such as AP, requires the involvement of a broad range of methods from classical genetics to molecular breeding. To this end, a phenological stage (for example, flowering and stigma development) can be simplified to a quantitative morphological trait (for example, bud or stigma length) to be used as an index to express the highest level of receptivity in order to manage outcrossing. The outcomes of the basic crossability research can be then employed in diallel mating and crossbreeding. This review explains how genomic data could produce useful information regarding genetic distance and its influence on the crossability of AP accessions. Our review indicates that co-dominant DNA markers, such as microsatellites, are also capable of resolving the evolutionary pathway and cryptic features of plant populations and such information can be used to select the best breeding strategy. This review also highlights the importance of proteomic analysis as a breeding tool. In this regard, protein diversification, as well as the impact of normal and stress-responsive proteins on morphometric and physiological behaviors, could be used in breeding programs. These findings have immense potential for improving plant production and, therefore, can be regarded as prospective breeding platforms for medicinal plants that have an autogamous mode of reproduction. Finally, this review suggests that novel site-directed genome editing approaches such as TALENs (Transcription Activator-Like Effector Nucleases) and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein-9 nuclease) systems together with other new plant breeding technologies (NPBT) should simultaneously be taken into consideration for improvement of pharmaceutical plants.

  8. Genetic Map Construction and Quantitative Trait Locus (QTL) Detection of Growth-Related Traits in Litopenaeus vannamei for Selective Breeding Applications

    PubMed Central

    Andriantahina, Farafidy; Liu, Xiaolin; Huang, Hao

    2013-01-01

    Growth is a priority trait from the point of view of genetic improvement. Molecular markers linked to quantitative trait loci (QTL) have been regarded as useful for marker-assisted selection (MAS) in complex traits as growth. Using an intermediate F2 cross of slow and fast growth parents, a genetic linkage map of Pacific whiteleg shrimp, Litopenaeusvannamei , based on amplified fragment length polymorphisms (AFLP) and simple sequence repeats (SSR) markers was constructed. Meanwhile, QTL analysis was performed for growth-related traits. The linkage map consisted of 451 marker loci (429 AFLPs and 22 SSRs) which formed 49 linkage groups with an average marker space of 7.6 cM; they spanned a total length of 3627.6 cM, covering 79.50% of estimated genome size. 14 QTLs were identified for growth-related traits, including three QTLs for body weight (BW), total length (TL) and partial carapace length (PCL), two QTLs for body length (BL), one QTL for first abdominal segment depth (FASD), third abdominal segment depth (TASD) and first abdominal segment width (FASW), which explained 2.62 to 61.42% of phenotypic variation. Moreover, comparison of linkage maps between L . vannamei and Penaeus japonicus was applied, providing a new insight into the genetic base of QTL affecting the growth-related traits. The new results will be useful for conducting MAS breeding schemes in L . vannamei . PMID:24086466

  9. Derived variants at six genes explain nearly half of size reduction in dog breeds

    PubMed Central

    Rimbault, Maud; Beale, Holly C.; Schoenebeck, Jeffrey J.; Hoopes, Barbara C.; Allen, Jeremy J.; Kilroy-Glynn, Paul; Wayne, Robert K.; Sutter, Nathan B.; Ostrander, Elaine A.

    2013-01-01

    Selective breeding of dogs by humans has generated extraordinary diversity in body size. A number of multibreed analyses have been undertaken to identify the genetic basis of this diversity. We analyzed four loci discovered in a previous genome-wide association study that used 60,968 SNPs to identify size-associated genomic intervals, which were too large to assign causative roles to genes. First, we performed fine-mapping to define critical intervals that included the candidate genes GHR, HMGA2, SMAD2, and STC2, identifying five highly associated markers at the four loci. We hypothesize that three of the variants are likely to be causative. We then genotyped each marker, together with previously reported size-associated variants in the IGF1 and IGF1R genes, on a panel of 500 domestic dogs from 93 breeds, and identified the ancestral allele by genotyping the same markers on 30 wild canids. We observed that the derived alleles at all markers correlated with reduced body size, and smaller dogs are more likely to carry derived alleles at multiple markers. However, breeds are not generally fixed at all markers; multiple combinations of genotypes are found within most breeds. Finally, we show that 46%–52.5% of the variance in body size of dog breeds can be explained by seven markers in proximity to exceptional candidate genes. Among breeds with standard weights <41 kg (90 lb), the genotypes accounted for 64.3% of variance in weight. This work advances our understanding of mammalian growth by describing genetic contributions to canine size determination in non-giant dog breeds. PMID:24026177

  10. Rapid genotyping with DNA micro-arrays for high-density linkage mapping and QTL mapping in common buckwheat (Fagopyrum esculentum Moench)

    PubMed Central

    Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi

    2014-01-01

    For genetic studies and genomics-assisted breeding, particularly of minor crops, a genotyping system that does not require a priori genomic information is preferable. Here, we demonstrated the potential of a novel array-based genotyping system for the rapid construction of high-density linkage map and quantitative trait loci (QTL) mapping. By using the system, we successfully constructed an accurate, high-density linkage map for common buckwheat (Fagopyrum esculentum Moench); the map was composed of 756 loci and included 8,884 markers. The number of linkage groups converged to eight, which is the basic number of chromosomes in common buckwheat. The sizes of the linkage groups of the P1 and P2 maps were 773.8 and 800.4 cM, respectively. The average interval between adjacent loci was 2.13 cM. The linkage map constructed here will be useful for the analysis of other common buckwheat populations. We also performed QTL mapping for main stem length and detected four QTL. It took 37 days to process 178 samples from DNA extraction to genotyping, indicating the system enables genotyping of genome-wide markers for a few hundred buckwheat plants before the plants mature. The novel system will be useful for genomics-assisted breeding in minor crops without a priori genomic information. PMID:25914583

  11. Rapid genotyping with DNA micro-arrays for high-density linkage mapping and QTL mapping in common buckwheat (Fagopyrum esculentum Moench).

    PubMed

    Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi

    2014-12-01

    For genetic studies and genomics-assisted breeding, particularly of minor crops, a genotyping system that does not require a priori genomic information is preferable. Here, we demonstrated the potential of a novel array-based genotyping system for the rapid construction of high-density linkage map and quantitative trait loci (QTL) mapping. By using the system, we successfully constructed an accurate, high-density linkage map for common buckwheat (Fagopyrum esculentum Moench); the map was composed of 756 loci and included 8,884 markers. The number of linkage groups converged to eight, which is the basic number of chromosomes in common buckwheat. The sizes of the linkage groups of the P1 and P2 maps were 773.8 and 800.4 cM, respectively. The average interval between adjacent loci was 2.13 cM. The linkage map constructed here will be useful for the analysis of other common buckwheat populations. We also performed QTL mapping for main stem length and detected four QTL. It took 37 days to process 178 samples from DNA extraction to genotyping, indicating the system enables genotyping of genome-wide markers for a few hundred buckwheat plants before the plants mature. The novel system will be useful for genomics-assisted breeding in minor crops without a priori genomic information.

  12. Haplotype structure around Bru1 reveals a narrow genetic basis for brown rust resistance in modern sugarcane cultivars.

    PubMed

    Costet, L; Le Cunff, L; Royaert, S; Raboin, L-M; Hervouet, C; Toubi, L; Telismart, H; Garsmeur, O; Rousselle, Y; Pauquet, J; Nibouche, S; Glaszmann, J-C; Hoarau, J-Y; D'Hont, A

    2012-09-01

    Modern sugarcane cultivars (Saccharum spp., 2n = 100-130) are high polyploid, aneuploid and of interspecific origin. A major gene (Bru1) conferring resistance to brown rust, caused by the fungus Puccinia melanocephala, has been identified in cultivar R570. We analyzed 380 modern cultivars and breeding materials covering the worldwide diversity with 22 molecular markers genetically linked to Bru1 in R570 within a 8.2 cM segment. Our results revealed a strong LD in the Bru1 region and strong associations between most of the markers and rust resistance. Two PCR markers, that flank the Bru1-bearing segment, were found completely associated with one another and only in resistant clones representing efficient molecular diagnostic for Bru1. On this basis, Bru1 was inferred in 86 % of the 194 resistant sugarcane accessions, revealing that it constitutes the main source of brown rust resistance in modern cultivars. Bru1 PCR diagnostic markers should be particularly useful to identify cultivars with potentially alternative sources of resistance to diversify the basis of brown rust resistance in breeding programs.

  13. Genetic diagnosis of sex chromosome aberrations in horses based on parentage test by microsatellite DNA and analysis of X- and Y-linked markers.

    PubMed

    Kakoi, H; Hirota, K; Gawahara, H; Kurosawa, M; Kuwajima, M

    2005-03-01

    Sex chromosome aberrations are often associated with clinical signs that affect equine health and reproduction. However, abnormal manifestation with sex chromosome aberration usually appears at maturity and potential disorders may be suspected infrequently. A reliable survey at an early stage is therefore required. To detect and characterise sex chromosome aberrations in newborn foals by the parentage test and analysis using X- and Y-linked markers. We conducted a genetic diagnosis combined with a parentage test by microsatellite DNA and analysis of X- and Y-linked genetic markers in newborn light-breed foals (n = 17, 471). The minimum incidence of sex chromosome aberration in horses was estimated in the context of available population data. Eighteen cases with aberrations involving 63,XO, 65,XXY and 65,XXX were found. The XO, XXY (pure 65,XXY and/or mosaics/chimaeras) and XXX were found in 0.15, 0.02 and 0.01% of the population, respectively, based solely on detection of abnormal segregation of a single X chromosome marker, LEX003. Detection at an early age and understanding of the prevalence of sex chromosome aberrations should assist in the diagnosis and managment of horses kept for breeding. Further, the parental origin of the X chromosome of each disorder could be proved by the results of genetic analysis, thereby contributing to cytogenetic characterisation.

  14. Microsatellite analysis and marker development in garlic: distribution in EST sequence, genetic diversity analysis, and marker transferability across Alliaceae.

    PubMed

    Barboza, Karina; Beretta, Vanesa; Kozub, Perla C; Salinas, Cecilia; Morgenfeld, Mauro M; Galmarini, Claudio R; Cavagnaro, Pablo F

    2018-04-28

    Allium vegetables, such as garlic and onion, have understudied genomes and limited molecular resources, hindering advances in genetic research and breeding of these species. In this study, we characterized and compared the simple sequence repeats (SSR) landscape in the transcriptomes of garlic and related Allium (A. cepa, A. fistulosum, and A. tuberosum) and non-Allium monocot species. In addition, 110 SSR markers were developed from garlic ESTs, and they were characterized-along with 112 previously developed SSRs-at various levels, including transferability across Alliaceae species, and their usefulness for genetic diversity analysis. Among the Allium species analyzed, garlic ESTs had the highest overall SSR density, the lowest frequency of trinucleotides, and the highest of di- and tetranucleotides. When compared to more distantly related monocots, outside the Asparagales order, it was evident that ESTs of Allium species shared major commonalities with regards to SSR density, frequency distribution, sequence motifs, and GC content. A significant fraction of the SSR markers were successfully transferred across Allium species, including crops for which no SSR markers have been developed yet, such as leek, shallot, chives, and elephant garlic. Diversity analysis of garlic cultivars with selected SSRs revealed 36 alleles, with 2-5 alleles/locus, and PIC = 0.38. Cluster analysis grouped the accessions according to their flowering behavior, botanical variety, and ecophysiological characteristics. Results from this study contribute to the characterization of Allium transcriptomes. The new SSR markers developed, along with the data from the polymorphism and transferability analyses, will aid in assisting genetic research and breeding in garlic and other Allium.

  15. Genomic selection & association mapping in rice: effect of trait genetic architecture, training population composition, marker number & statistical model on accuracy of rice genomic selection in elite, tropical rice breeding

    USDA-ARS?s Scientific Manuscript database

    Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its ef...

  16. Development of SNP Genotyping Assays for Seed Composition Traits in Soybean

    PubMed Central

    Patil, Gunvant; Chaudhary, Juhi; Vuong, Tri D.; Jenkins, Brian; Qiu, Dan; Kadam, Suhas; Shannon, Grover J.

    2017-01-01

    Seed composition is one of the most important determinants of the economic values in soybean. The quality and quantity of different seed components, such as oil, protein, and carbohydrates, are crucial ingredients in food, feed, and numerous industrial products. Soybean researchers have successfully developed and utilized a diverse set of molecular markers for seed trait improvement in soybean breeding programs. It is imperative to design and develop molecular assays that are accurate, robust, high-throughput, cost-effective, and available on a common genotyping platform. In the present study, we developed and validated KASP (Kompetitive allele-specific polymerase chain reaction) genotyping assays based on previously known functional mutant alleles for the seed composition traits, including fatty acids, oligosaccharides, trypsin inhibitor, and lipoxygenase. These assays were validated on mutant sources as well as mapping populations and precisely distinguish the homozygotes and heterozygotes of the mutant genes. With the obvious advantages, newly developed KASP assays in this study can substitute the genotyping assays that were previously developed for marker-assisted selection (MAS). The functional gene-based assay resource developed using common genotyping platform will be helpful to accelerate efforts to improve soybean seed composition traits. PMID:28630621

  17. Fruit Phenolic Profiling: A New Selection Criterion in Olive Breeding Programs

    PubMed Central

    Pérez, Ana G.; León, Lorenzo; Sanz, Carlos; de la Rosa, Raúl

    2018-01-01

    Olive growing is mainly based on traditional varieties selected by the growers across the centuries. The few attempts so far reported to obtain new varieties by systematic breeding have been mainly focused on improving the olive adaptation to different growing systems, the productivity and the oil content. However, the improvement of oil quality has rarely been considered as selection criterion and only in the latter stages of the breeding programs. Due to their health promoting and organoleptic properties, phenolic compounds are one of the most important quality markers for Virgin olive oil (VOO) although they are not commonly used as quality traits in olive breeding programs. This is mainly due to the difficulties for evaluating oil phenolic composition in large number of samples and the limited knowledge on the genetic and environmental factors that may influence phenolic composition. In the present work, we propose a high throughput methodology to include the phenolic composition as a selection criterion in olive breeding programs. For that purpose, the phenolic profile has been determined in fruits and oils of several breeding selections and two varieties (“Picual” and “Arbequina”) used as control. The effect of three different environments, typical for olive growing in Andalusia, Southern Spain, was also evaluated. A high genetic effect was observed on both fruit and oil phenolic profile. In particular, the breeding selection UCI2-68 showed an optimum phenolic profile, which sums up to a good agronomic performance previously reported. A high correlation was found between fruit and oil total phenolic content as well as some individual phenols from the two different matrices. The environmental effect on phenolic compounds was also significant in both fruit and oil, although the low genotype × environment interaction allowed similar ranking of genotypes on the different environments. In summary, the high genotypic variance and the simplified procedure of the proposed methodology for fruit phenol evaluation seems to be convenient for breeding programs aiming at obtaining new cultivars with improved phenolic profile. PMID:29535752

  18. Fruit Phenolic Profiling: A New Selection Criterion in Olive Breeding Programs.

    PubMed

    Pérez, Ana G; León, Lorenzo; Sanz, Carlos; de la Rosa, Raúl

    2018-01-01

    Olive growing is mainly based on traditional varieties selected by the growers across the centuries. The few attempts so far reported to obtain new varieties by systematic breeding have been mainly focused on improving the olive adaptation to different growing systems, the productivity and the oil content. However, the improvement of oil quality has rarely been considered as selection criterion and only in the latter stages of the breeding programs. Due to their health promoting and organoleptic properties, phenolic compounds are one of the most important quality markers for Virgin olive oil (VOO) although they are not commonly used as quality traits in olive breeding programs. This is mainly due to the difficulties for evaluating oil phenolic composition in large number of samples and the limited knowledge on the genetic and environmental factors that may influence phenolic composition. In the present work, we propose a high throughput methodology to include the phenolic composition as a selection criterion in olive breeding programs. For that purpose, the phenolic profile has been determined in fruits and oils of several breeding selections and two varieties ("Picual" and "Arbequina") used as control. The effect of three different environments, typical for olive growing in Andalusia, Southern Spain, was also evaluated. A high genetic effect was observed on both fruit and oil phenolic profile. In particular, the breeding selection UCI2-68 showed an optimum phenolic profile, which sums up to a good agronomic performance previously reported. A high correlation was found between fruit and oil total phenolic content as well as some individual phenols from the two different matrices. The environmental effect on phenolic compounds was also significant in both fruit and oil, although the low genotype × environment interaction allowed similar ranking of genotypes on the different environments. In summary, the high genotypic variance and the simplified procedure of the proposed methodology for fruit phenol evaluation seems to be convenient for breeding programs aiming at obtaining new cultivars with improved phenolic profile.

  19. Development of COS-SNP and HRM markers for high-throughput and reliable haplotype-based detection of Lr14a in durum wheat (Triticum durum Desf.).

    PubMed

    Terracciano, Irma; Maccaferri, Marco; Bassi, Filippo; Mantovani, Paola; Sanguineti, Maria C; Salvi, Silvio; Simková, Hana; Doležel, Jaroslav; Massi, Andrea; Ammar, Karim; Kolmer, James; Tuberosa, Roberto

    2013-04-01

    Leaf rust (Puccinia triticina Eriks. & Henn.) is a major disease affecting durum wheat production. The Lr14a-resistant gene present in the durum wheat cv. Creso and its derivative cv. Colosseo is one of the best characterized leaf-rust resistance sources deployed in durum wheat breeding. Lr14a has been mapped close to the simple sequence repeat markers gwm146, gwm344 and wmc10 in the distal portion of the chromosome arm 7BL, a gene-dense region. The objectives of this study were: (1) to enrich the Lr14a region with single nucleotide polymorphisms (SNPs) and high-resolution melting (HRM)-based markers developed from conserved ortholog set (COS) genes and from sequenced Diversity Array Technology (DArT(®)) markers; (2) to further investigate the gene content and colinearity of this region with the Brachypodium and rice genomes. Ten new COS-SNP and five HRM markers were mapped within an 8.0 cM interval spanning Lr14a. Two HRM markers pinpointed the locus in an interval of <1.0 cM and eight COS-SNPs were mapped 2.1-4.1 cM distal to Lr14a. Each marker was tested for its capacity to predict the state of Lr14a alleles (in particular, Lr14-Creso associated to resistance) in a panel of durum wheat elite germplasm including 164 accessions. Two of the most informative markers were converted into KASPar(®) markers. Single assay markers ubw14 and wPt-4038-HRM designed for agarose gel electrophoresis/KASPar(®) assays and high-resolution melting analysis, respectively, as well as the double-marker combinations ubw14/ubw18, ubw14/ubw35 and wPt-4038-HRM-ubw35 will be useful for germplasm haplotyping and for molecular-assisted breeding.

  20. DGAT1 K232A polymorphism in Brazilian cattle breeds.

    PubMed

    Lacorte, G A; Machado, M A; Martinez, M L; Campos, A L; Maciel, R P; Verneque, R S; Teodoro, R L; Peixoto, M G C D; Carvalho, M R S; Fonseca, C G

    2006-08-31

    Recent reports identified DGAT1 (EC 2.3.1.20) harboring a lysine to alanine substitution (K232A) as a candidate gene with a strong effect on milk production traits. Our objective was to estimate the frequency of the DGAT1 K232A polymorphism in the main Zebu and Taurine breeds in Brazil as well as in Zebu x Taurine crossbreds as a potential QTL for marker-assisted selection. Samples of 331 animals from the main Brazilian breeds, Nellore, Guzerat, Red Sindhi, Gyr, Holstein, and Gyr x Holstein F1 were genotyped for DGAT1 K232A polymorphism (A and K alleles) using the PCR-RFLP technique. The highest frequency of the A allele was found in the Holstein sample (73%) followed by Gyr x Holstein F1 (39%). Gyr and Red Sindhi showed low frequencies of A alleles (4 and 2.5%, respectively). The A allele was not found in the Nellore and Guzerat samples. Our results could be used to guide association studies between this locus and milk traits in these breeds.

  1. Accelerating plant breeding.

    PubMed

    De La Fuente, Gerald N; Frei, Ursula K; Lübberstedt, Thomas

    2013-12-01

    The growing demand for food with limited arable land available necessitates that the yield of major food crops continues to increase over time. Advances in marker technology, predictive statistics, and breeding methodology have allowed for continued increases in crop performance through genetic improvement. However, one major bottleneck is the generation time of plants, which is biologically limited and has not been improved since the introduction of doubled haploid technology. In this opinion article, we propose to implement in vitro nurseries, which could substantially shorten generation time through rapid cycles of meiosis and mitosis. This could prove a useful tool for speeding up future breeding programs with the aim of sustainable food production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research.

    PubMed

    Abdelrahman, Hisham; ElHady, Mohamed; Alcivar-Warren, Acacia; Allen, Standish; Al-Tobasei, Rafet; Bao, Lisui; Beck, Ben; Blackburn, Harvey; Bosworth, Brian; Buchanan, John; Chappell, Jesse; Daniels, William; Dong, Sheng; Dunham, Rex; Durland, Evan; Elaswad, Ahmed; Gomez-Chiarri, Marta; Gosh, Kamal; Guo, Ximing; Hackett, Perry; Hanson, Terry; Hedgecock, Dennis; Howard, Tiffany; Holland, Leigh; Jackson, Molly; Jin, Yulin; Khalil, Karim; Kocher, Thomas; Leeds, Tim; Li, Ning; Lindsey, Lauren; Liu, Shikai; Liu, Zhanjiang; Martin, Kyle; Novriadi, Romi; Odin, Ramjie; Palti, Yniv; Peatman, Eric; Proestou, Dina; Qin, Guyu; Reading, Benjamin; Rexroad, Caird; Roberts, Steven; Salem, Mohamed; Severin, Andrew; Shi, Huitong; Shoemaker, Craig; Stiles, Sheila; Tan, Suxu; Tang, Kathy F J; Thongda, Wilawan; Tiersch, Terrence; Tomasso, Joseph; Prabowo, Wendy Tri; Vallejo, Roger; van der Steen, Hein; Vo, Khoi; Waldbieser, Geoff; Wang, Hanping; Wang, Xiaozhu; Xiang, Jianhai; Yang, Yujia; Yant, Roger; Yuan, Zihao; Zeng, Qifan; Zhou, Tao

    2017-02-20

    Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.

  3. Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat.

    PubMed

    Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2013-03-28

    Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.

  4. The potential of open learning in animal breeding.

    PubMed

    Lohuis, M M; Lohuis, C T; Petrongolo, R A

    1999-07-01

    Animal breeding education is presently facing many challenges. These include rapid changes in breeding knowledge and technology, resource and funding restrictions, and altering demographics of the learner and the animal breeding industry. These challenges can be met via an open learning educational format. This nontraditional approach is based on the needs of individual learners, not the interests of the teacher or the institution. An important feature of open learning is its appropriateness for the professional development audience. Delivery methods include interactive distance courses on the Web, computer-assisted learning, and team-based study. The Canadian dairy breeding industry has expressed the need for ongoing professional development to understand and adopt new animal breeding technologies. The University of Guelph responded by delivering a series of animal breeding short courses (Executive Certificate Program in Animal Breeding) to industry decision makers in 1997. A version modified specifically for farmers and breeding industry personnel was offered in 1998. Through the collaboration of experts from various agricultural institutions and the use of a learner-centered format, this professional development initiative was a pedagogical and financial success. This paper describes how the open learning approach differs from traditional university teaching. Using the University of Guelph example in animal breeding professional development, the framework for a successful open learning program will be examined. The best practices for effective adult education will also be identified and discussed within this case study.

  5. Comparison of Models and Whole-Genome Profiling Approaches for Genomic-Enabled Prediction of Septoria Tritici Blotch, Stagonospora Nodorum Blotch, and Tan Spot Resistance in Wheat.

    PubMed

    Juliana, Philomin; Singh, Ravi P; Singh, Pawan K; Crossa, Jose; Rutkoski, Jessica E; Poland, Jesse A; Bergstrom, Gary C; Sorrells, Mark E

    2017-07-01

    The leaf spotting diseases in wheat that include Septoria tritici blotch (STB) caused by , Stagonospora nodorum blotch (SNB) caused by , and tan spot (TS) caused by pose challenges to breeding programs in selecting for resistance. A promising approach that could enable selection prior to phenotyping is genomic selection that uses genome-wide markers to estimate breeding values (BVs) for quantitative traits. To evaluate this approach for seedling and/or adult plant resistance (APR) to STB, SNB, and TS, we compared the predictive ability of least-squares (LS) approach with genomic-enabled prediction models including genomic best linear unbiased predictor (GBLUP), Bayesian ridge regression (BRR), Bayes A (BA), Bayes B (BB), Bayes Cπ (BC), Bayesian least absolute shrinkage and selection operator (BL), and reproducing kernel Hilbert spaces markers (RKHS-M), a pedigree-based model (RKHS-P) and RKHS markers and pedigree (RKHS-MP). We observed that LS gave the lowest prediction accuracies and RKHS-MP, the highest. The genomic-enabled prediction models and RKHS-P gave similar accuracies. The increase in accuracy using genomic prediction models over LS was 48%. The mean genomic prediction accuracies were 0.45 for STB (APR), 0.55 for SNB (seedling), 0.66 for TS (seedling) and 0.48 for TS (APR). We also compared markers from two whole-genome profiling approaches: genotyping by sequencing (GBS) and diversity arrays technology sequencing (DArTseq) for prediction. While, GBS markers performed slightly better than DArTseq, combining markers from the two approaches did not improve accuracies. We conclude that implementing GS in breeding for these diseases would help to achieve higher accuracies and rapid gains from selection. Copyright © 2017 Crop Science Society of America.

  6. Transposable element junctions in marker development and genomic characterization of barley

    USDA-ARS?s Scientific Manuscript database

    Barley is a model plant in genomic studies of Triticeae species. A complete barley genome sequence will facilitate not only barley breeding programs, but also those for related species. However, the large genome size and high repetitive sequence content complicate the barley genome assembly. The ma...

  7. Tracking the genetic stability of a honeybee breeding program with genetic markers

    USDA-ARS?s Scientific Manuscript database

    A genetic stock identification (GSI) assay was developed in 2008 to distinguish Russian honey bees from other honey bee stocks that are commercially produced in the United States. Probability of assignment (POA) values have been collected and maintained since the stock release in 2008 to the Russian...

  8. The JH1 Haplotype-a newly discovered marker for infertility in the jersy breed

    USDA-ARS?s Scientific Manuscript database

    The focus on production traits in genetic selection programs with little consideration for traits associated with reproduction has contributed to the decline in reproductive function. Moreover, there is a negative genetic correlation between milk yield and reproduction so that selection for yield ca...

  9. Preliminary evidence for associations between molecular markers and quantitative traits in a set of bread wheat (Triticum aestivum L.) cultivars and breeding lines.

    PubMed

    Abdollahi Mandoulakani, Babak; Nasri, Shilan; Dashchi, Sahar; Arzhang, Sorour; Bernousi, Iraj; Abbasi Holasou, Hossein

    The identification of polymorphic markers associated with various quantitative traits allows us to test their performance for the exploitation of the extensive quantitative variation maintained in gene banks. In the current study, a set of 97 wheat germplasm accessions including 48 cultivars and 49 breeding lines were evaluated for 18 agronomic traits. The accessions were also genotyped with 23 ISSR, nine IRAP and 20 REMAP markers, generating a total of 658 clear and scorable bands, 86% of which were polymorphic. Both neighbor-joining dendrogram and Bayesian analysis of clustering of individuals revealed that the accessions could be divided into four genetically distinct groups, indicating the presence of a population structure in current wheat germplasm. Associations between molecular markers and 18 agronomic traits were analyzed using the mixed linear model (MLM) approach. A total of 94 loci were found to be significantly associated with agronomic traits (P≤0.01). The highest number of bands significantly associated with the 18 traits varied from 11 for number of spikelets spike -1 (NSS) to two for grain yield in row (GRY). Loci ISSR16-9 and REMAP13-10 were associated with three different traits. The results of the current study provide useful information about the performance of retrotransposon-based and ISSR molecular markers that could be helpful in selecting potentially elite gene bank samples for wheat-breeding programs. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  10. Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes

    USDA-ARS?s Scientific Manuscript database

    The Breeding and Genetics Symposium titled “Systems Biology in Animal Breeding: Identifying relationships among markers, genes, and phenotypes” was held at the Joint Annual Meeting of the American Dairy Science Association and the American Society of Animal Science in Phoenix, AZ, July 15 to 19, 201...

  11. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao

    PubMed Central

    Livingstone, Donald; Royaert, Stefan; Stack, Conrad; Mockaitis, Keithanne; May, Greg; Farmer, Andrew; Saski, Christopher; Schnell, Ray; Kuhn, David; Motamayor, Juan Carlos

    2015-01-01

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ∼4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification project was undertaken using RNAseq data from 16 diverse cacao cultivars. RNA sequences were aligned to the assembled transcriptome of the cultivar Matina 1-6, and 330,000 SNPs within coding regions were identified. From these SNPs, a subset of 6,000 high-quality SNPs were selected for inclusion on an Illumina Infinium SNP array: the Cacao6kSNP array. Using Cacao6KSNP array data from over 1,000 cacao samples, we demonstrate that our custom array produces a saturated genetic map and can be used to distinguish among even closely related genotypes. Our study enhances and expands the genetic resources available to the cacao research community, and provides the genome-scale set of tools that are critical for advancing breeding with molecular markers in an agricultural species with high genetic diversity. PMID:26070980

  12. Advances in QTL Mapping in Pigs

    PubMed Central

    Rothschild, Max F.; Hu, Zhi-liang; Jiang, Zhihua

    2007-01-01

    Over the past 15 years advances in the porcine genetic linkage map and discovery of useful candidate genes have led to valuable gene and trait information being discovered. Early use of exotic breed crosses and now commercial breed crosses for quantitative trait loci (QTL) scans and candidate gene analyses have led to 110 publications which have identified 1,675 QTL. Additionally, these studies continue to identify genes associated with economically important traits such as growth rate, leanness, feed intake, meat quality, litter size, and disease resistance. A well developed QTL database called PigQTLdb is now as a valuable tool for summarizing and pinpointing in silico regions of interest to researchers. The commercial pig industry is actively incorporating these markers in marker-assisted selection along with traditional performance information to improve traits of economic performance. The long awaited sequencing efforts are also now beginning to provide sequence available for both comparative genomics and large scale single nucleotide polymorphism (SNP) association studies. While these advances are all positive, development of useful new trait families and measurement of new or underlying traits still limits future discoveries. A review of these developments is presented. PMID:17384738

  13. Major advances in globalization and consolidation of the artificial insemination industry.

    PubMed

    Funk, D A

    2006-04-01

    The artificial insemination (AI) industry in the United States has gone through many consolidations, mergers, and acquisitions over the past 25 yr. There are 5 major AI companies in the United States today: 3 large cooperatives, 1 private company, and 1 public company. The latter 2 have majority ownership outside of the United States. The AI industry in the United States progeny-tests more than 1,000 Holstein young sires per year. Because healthy, mature dairy bulls are capable of producing well over 100,000 straws of frozen semen per year, only a relatively small number of bulls are needed to breed the world's population of dairy cows. Most AI companies in the United States do not own many, if any, females and tend to utilize the same maternal families in their breeding programs. Little differences exist among the selection programs of the AI companies in the United States. The similarity of breeding programs and the extreme semen-production capabilities of bulls have contributed to difficulties the AI companies have had in developing genetically different product lines. Exports of North American Holstein genetics increased steadily from the 1970s into the 1990s because of the perceived superiority of North American Holsteins for dairy traits compared with European strains, especially for production. The breeding industry moved towards international genetic evaluations of bulls in the 1990s, with the International Bull Evaluation Service (Interbull) in Sweden coordinating the evaluations. The extensive exchange of elite genetics has led to a global dairy genetics industry with bulls that are closely related, and the average inbreeding level for the major dairy breeds continues to increase. Genetic markers have been used extensively and successfully by the industry for qualitative traits, especially for recessive genetic disorders, but markers have had limited impact for quantitative traits. Selection emphasis continues to migrate away from production traits and towards nonproduction traits, especially towards health and fitness traits. Specifically, fertility has arguably become the major breeding and management issue facing dairy farmers today. Some producers have implemented crossbreeding programs in an effort to capitalize on heterosis, and crossbreeding will almost certainly need to be a bigger part of the AI companies business in the years ahead.

  14. Verification of STS markers for leaf rust resistance genes of wheat by seven European laboratories.

    PubMed

    Błaszczyk, Lidia; Chełkowski, Jerzy; Korzun, Victor; Kraic, Jan; Ordon, Frank; Ovesná, Jaroslava; Purnhauser, Laszlo; Tar, Melinda; Vida, Gyula

    2004-01-01

    A set of Thatcher near-isogenic lines and two breeding lines were used to examine sequence tagged site (STS) markers linked to leaf rust resistance genes Lr9, Lr10, Lr19, Lr24, Lr28, Lr29, Lr35, and a simple sequenced repeat (SSR) marker for Lr39. The selected STS markers for resistance genes Lr9, Lr10, Lr19, Lr24 and Lr28 were identified in seven accessions by seven European laboratories. Near-isogenic lines of the spring wheat Thatcher were used as positive controls. Markers for resistance genes Lr9, Lr10, Lr19, Lr24 were identified in all seven laboratories as amplification products of 1100 bp, 310 bp, 130 bp and 310 bp, respectively. The STS markers linked to resistance genes Lr9, Lr10, Lr19, Lr24, Lr29, Lr35 and the SSR marker for Lr39 were robust and highly specific for these genes and will be useful in marker-assisted selection in wheat. However, the amplification product of 378 bp that corresponded with resistance gene Lr28 was detected in all accessions including genotypes lacking this gene in all seven laboratories. This marker needs to be improved.

  15. Breed traceability of buffalo meat using microsatellite genotyping technique.

    PubMed

    Kannur, Bheemashankar H; Fairoze, Md Nadeem; Girish, P S; Karabasanavar, Nagappa; Rudresh, B H

    2017-02-01

    Although buffalo has emerged as a major meat producing animal in Asia, major research on breed traceability has so far been focused on cattle (beef). This research gap on buffalo breed traceability has impelled development and validation of buffalo breed traceability using a set of eight microsatellite (STR) markers in seven Indian buffalo breeds (Bhadawari, Jaffaarabadi, Murrah, Mehsana, Nagpuri, Pandharpuri and Surti). Probability of sharing same profile by two individuals at a specific locus was computed considering different STR numbers, allele pooling in breed and population. Match probabilities per breed were considered and six most polymorphic loci were genotyped. Out of eight microsatellite markers studied, markers CSSMO47, DRB3 and CSSM060 were found most polymorphic. Developed technique was validated with known and unknown, blood and meat samples; wherein, samples were genetically traced in 24 out of 25 samples tested. Results of this study showed potential applications of the methodology and encourage other researchers to address the problem of buffalo traceability so as to create a world-wide archive of breed specific genotypes. This work is the first report of breed traceability of buffalo meat utilizing microsatellite genotyping technique.

  16. Combining US and Brazilian microsatellite data for a meta-analysis of sheep (Ovis aries) breed diversity: facilitating the FAO Global Plan of Action for Conserving Animal Genetic Resources.

    PubMed

    Paiva, Samuel Rezende; Mariante, Arthur da Silva; Blackburn, Harvey D

    2011-01-01

    Microsatellites are commonly used to understand genetic diversity among livestock populations. Nevertheless, most studies have involved the processing of samples in one laboratory or with common standards across laboratories. Our objective was to identify an approach to facilitate the merger of microsatellite data for cross-country comparison of genetic resources when samples were not evaluated in a single laboratory. Eleven microsatellites were included in the analysis of 13 US and 9 Brazilian sheep breeds (N = 706). A Bayesian approach was selected and evaluated with and without a shared set of samples analyzed by each country. All markers had a posterior probability of greater than 0.5, which was higher than predicted as reasonable by the software used. Sensitivity analysis indicated no difference between results with or without shared samples. Cluster analysis showed breeds to be partitioned by functional groups of hair, meat, or wool types (K = 7 and 12 of STRUCTURE). Cross-country comparison of hair breeds indicated substantial genetic distances and within breed variability. The selected approach can facilitate the merger and analysis of microsatellite data for cross-country comparison and extend the utility of previously collected molecular markers. In addition, the result of this type of analysis can be used in new and existing conservation programs.

  17. Predicting Quantitative Traits With Regression Models for Dense Molecular Markers and Pedigree

    PubMed Central

    de los Campos, Gustavo; Naya, Hugo; Gianola, Daniel; Crossa, José; Legarra, Andrés; Manfredi, Eduardo; Weigel, Kent; Cotes, José Miguel

    2009-01-01

    The availability of genomewide dense markers brings opportunities and challenges to breeding programs. An important question concerns the ways in which dense markers and pedigrees, together with phenotypic records, should be used to arrive at predictions of genetic values for complex traits. If a large number of markers are included in a regression model, marker-specific shrinkage of regression coefficients may be needed. For this reason, the Bayesian least absolute shrinkage and selection operator (LASSO) (BL) appears to be an interesting approach for fitting marker effects in a regression model. This article adapts the BL to arrive at a regression model where markers, pedigrees, and covariates other than markers are considered jointly. Connections between BL and other marker-based regression models are discussed, and the sensitivity of BL with respect to the choice of prior distributions assigned to key parameters is evaluated using simulation. The proposed model was fitted to two data sets from wheat and mouse populations, and evaluated using cross-validation methods. Results indicate that inclusion of markers in the regression further improved the predictive ability of models. An R program that implements the proposed model is freely available. PMID:19293140

  18. Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding.

    PubMed

    Ellur, Ranjith K; Khanna, Apurva; Yadav, Ashutosh; Pathania, Sandeep; Rajashekara, H; Singh, Vikas K; Gopala Krishnan, S; Bhowmick, Prolay K; Nagarajan, M; Vinod, K K; Prakash, G; Mondal, Kalyan K; Singh, Nagendra K; Vinod Prabhu, K; Singh, Ashok K

    2016-01-01

    Marker assisted backcross breeding was employed to incorporate the blast resistance genes, Pi2 and Pi54 and bacterial blight (BB) resistance genes xa13 and Xa21 into the genetic background of Pusa Basmati 1121 (PB1121) and Pusa Basmati 6. Foreground selection for target gene(s) was followed by arduous phenotypic and background selection which fast-tracked the recovery of recurrent parent genome (RPG) to an extent of 95.8% in one of the near-isogenic lines (NILs) namely, Pusa 1728-23-33-31-56, which also showed high degree of resemblance to recurrent parent, PB6 in phenotype. The phenotypic selection prior to background selection provided an additional opportunity for identifying the novel recombinants viz., Pusa 1884-9-12-14 and Pusa 1884-3-9-175, superior to parental lines in terms of early maturity, higher yield and improved quality parameters. There was no significant difference between the RPG recovery estimated based on SSR or SNP markers, however, the panel of SNPs markers was considered as the better choice for background selection as it provided better genome coverage and included SNPs in the genic regions. Multi-location evaluation of NILs depicted their stable and high mean performance in comparison to the respective recurrent parents. The Pi2+Pi54 carrying NILs were effective in combating a pan-India panel of Magnaporthe oryzae isolates with high level of field resistance in northern, eastern and southern parts of India. Alongside, the PB1121-NILs and PB6-NILs carrying BB resistance genes xa13+Xa21 were resistant against Xanthomonas oryzae pv. oryzae races of north-western, southern and eastern parts of the country. Three of NILs developed in this study, have been promoted to final stage of testing during the ​Kharif 2015 in the Indian National Basmati Trial. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Analysis of the skin transcriptome in two oujiang color varieties of common carp.

    PubMed

    Wang, Chenghui; Wachholtz, Michael; Wang, Jun; Liao, Xiaolin; Lu, Guoqing

    2014-01-01

    Body color and coloration patterns are important phenotypic traits to maintain survival and reproduction activities. The Oujiang color varieties of common carp (Cyprinus carpio var. color), with a narrow distribution in Zhejiang Province of China and a history of aquaculture for over 1,200 years, consistently exhibit a variety of body color patterns. The molecular mechanism underlying diverse color patterns in these variants is unknown. To the practical end, it is essential to develop molecular markers that can distinguish different phenotypes and assist selective breeding. In this exploratory study, we conducted Roche 454 transcriptome sequencing of two pooled skin tissue samples of Oujiang common carp, which correspond to distinct color patterns, red with big black spots (RB) and whole white (WW), and a total of 737,525 sequence reads were generated. The reads obtained in this study were co-assembled jointly with common carp Roche 454 sequencing reads downloaded from NCBI SRA database, resulting in 43,923 isotigs and 546,676 singletons. Over 31 thousand (31,445; 71.6%) isotigs were found with significant BLAST matches (E<1e-10) to the nr protein database, which corresponds to 12,597 annotated zebrafish genes. A total of 70,947 isotigs and singletons (transcripts) were annotated with Gene Ontology, and 60,221 transcripts were found with corresponding EC numbers. Out of 145 zebrafish pigmentation genes, orthologs for 117 were recovered in Oujiang color carp transcriptome, including 18 found only among singletons. Our transcriptome analysis revealed over 52,902 SNPs in Oujiang common carp, and identified 63 SNP markers that are putatively unique either for RB or WW. The transcriptome of Oujiang color varieties of common carp obtained through this study, along with the pigmentation genes recovered and the color pattern-specific molecular markers developed, will facilitate future research on the molecular mechanism of color patterns and promote aquaculture of Oujiang color varieties of common carp through molecular marker assisted-selective breeding.

  20. Selection for avian immune response: a commercial breeding company challenge.

    PubMed

    Fulton, J E

    2004-04-01

    Selection for immune function in the commercial breeding environment is a challenging proposition for commercial breeding companies. Immune response is only one of many traits that are under intensive selection, thus selection pressure needs to be carefully balanced across multiple traits. The selection environment (single bird cages, biosecure facilities, controlled environment) is a very different environment than the commercial production facilities (multiple bird cages, potential disease exposure, variable environment) in which birds are to produce. The testing of individual birds is difficult, time consuming, and expensive. It is essential that the results of any tests be relevant to actual disease or environmental challenge in the commercial environment. The use of genetic markers as indicators of immune function is being explored by breeding companies. Use of genetic markers would eliminate many of the limitations in enhancing immune function currently encountered by commercial breeding companies. Information on genetic markers would allow selection to proceed without subjecting breeding stock to disease conditions and could be done before production traits are measured. These markers could be candidate genes with known interaction or involvement with disease pathology or DNA markers that are closely linked to genetic regions that influence the immune response. The current major limitation to this approach is the paucity of mapped chicken immune response genes and the limited number of DNA markers mapped on the chicken genome. These limitations should be eliminated once the chicken genome is sequenced.

  1. The Program for Regional and International Shorebird Monitoring (PRISM)

    USGS Publications Warehouse

    Bart, J.; Andres, B.; Brown, S.; Donaldson, G.; Harrington, B.; Johnston, V.; Jones, S.; Morrison, R.I.G.; Skagen, S.K.

    2005-01-01

    This report describes the "Program for Regional and International Shorebird Monitoring" (PRISM). PRISM is being implemented by a Canada-United States Shorebird Monitoring and Assessment Committee formed in 2001 by the Canadian Shorebird Working Group and the U.S. Shorebird Council. PRISM provides a single blueprint for implementing the shorebird conservation plans recently completed in Canada and the United States. The goals of PRISM are to (1) estimate the size of breeding population of 74 shorebird taxa in North America; (2) describe the distribution, abundance, and habitat relationships for each of these taxa; (3) monitor trends in shorebird population size; (4) monitor shorebird numbers at stopover locations, and; (5) assist local managers in meeting their shorebird conservation goals. PRISM has four main components: arctic and boreal breeding surveys, temperate breeding surveys, temperate non-breeding surveys, and neotropical surveys. Progress on, and action items for, each major component are described. The more important major tasks for immediate action are carrying out the northern surveys, conducting regional analyses to design the program of migration counts, and evaluating aerial photographic surveys for migration and winter counts.

  2. Mapping of angular leaf spot resistance QTL in common bean (Phaseolus vulgaris L.) under different environments

    PubMed Central

    2012-01-01

    Background Common bean (Phaseolus vulgaris L.) is the most important grain legume for human diet worldwide and the angular leaf spot (ALS) is one of the most devastating diseases of this crop, leading to yield losses as high as 80%. In an attempt to breed resistant cultivars, it is important to first understand the inheritance mode of resistance and to develop tools that could be used in assisted breeding. Therefore, the aim of this study was to identify quantitative trait loci (QTL) controlling resistance to ALS under natural infection conditions in the field and under inoculated conditions in the greenhouse. Results QTL analyses were made using phenotypic data from 346 recombinant inbreed lines from the IAC-UNA x CAL 143 cross, gathered in three experiments, two of which were conducted in the field in different seasons and one in the greenhouse. Joint composite interval mapping analysis of QTL x environment interaction was performed. In all, seven QTLs were mapped on five linkage groups. Most of them, with the exception of two, were significant in all experiments. Among these, ALS10.1DG,UC presented major effects (R2 between 16% - 22%). This QTL was found linked to the GATS11b marker of linkage group B10, which was consistently amplified across a set of common bean lines and was associated with the resistance. Four new QTLs were identified. Between them the ALS5.2 showed an important effect (9.4%) under inoculated conditions in the greenhouse. ALS4.2 was another major QTL, under natural infection in the field, explaining 10.8% of the variability for resistance reaction. The other QTLs showed minor effects on resistance. Conclusions The results indicated a quantitative inheritance pattern of ALS resistance in the common bean line CAL 143. QTL x environment interactions were observed. Moreover, the major QTL identified on linkage group B10 could be important for bean breeding, as it was stable in all the environments. Thereby, the GATS11b marker is a potential tool for marker assisted selection for ALS resistance. PMID:22738188

  3. Final Report DE-SC0006634. Quantifying phenotypic and genetic diversity of Miscanthus sinensis as a resource for knowledge-based improvement of M. ×giganteus (M. sinensis × M. sacchariflorus)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacks, Erik

    Miscanthus is especially attractive as a bioenergy crop for temperate environments because it produces high yields, needs few inputs, and grows well during the cool weather of early spring and late fall when few warm-season grasses can. However, Miscanthus feedstock production for the emerging U.S. bioenergy industry and for existing demand in Europe is based on a single sterile, vegetatively propagated variety of M. ×giganteus. M. ×giganteus is an interspecific hybrid of the parental species M. sinensis and M. sacchariflorus. Prior to the current study, little information existed about the genetic diversity and breeding potential of either M. ×giganteus parentalmore » species. In the current project, we studied more than 600 accessions of M. sinensis from throughout its native range in China, Japan, and Korea, in addition to ornamental cultivars and U.S. naturalized populations. Using thousands of DNA markers, we identified seven geographically distinct genetic groups of M. sinensis. Notably, we found that the ornamental cultivars and U.S. naturalized populations were derived from only a subset of the Southern Japan group, indicating that our study greatly increased the genetic diversity available for breeding new biomass cultivars. Additionally, this new understanding of M. sinensis population structure could be used to predict which crosses may produce progeny with the greatest hybrid vigor. Replicated field trials were also established at multiple locations in North America and Asia. Data on traits of importance for biomass productivity, such as flowering time, yield and height, were taken. Analyses of the phenotypic data from the field trials along with the DNA markers allowed us to identify many marker-trait associations. These results will enable marker-assisted breeding, which will allow selection at the seedling stage rather than waiting two to three years to obtain phenotypic data. Thus, this study is expected to greatly increase the efficiency of breeding Miscanthus for improved adaptation and biomass yield.« less

  4. Manipulation of Metabolic Pathways to Develop Vitamin-Enriched Crops for Human Health

    PubMed Central

    Jiang, Ling; Wang, Weixuan; Lian, Tong; Zhang, Chunyi

    2017-01-01

    Vitamin deficiencies are major forms of micronutrient deficiencies, and are associated with huge economic losses as well as severe physical and intellectual damages to humans. Much evidence has demonstrated that biofortification plays an important role in combating vitamin deficiencies due to its economical and effective delivery of nutrients to populations in need. Biofortification enables food plants to be enriched with vitamins through conventional breeding and/or biotechnology. Here, we focus on the progress in the manipulation of the vitamin metabolism, an essential part of biofortification, by the genetic modification or by the marker-assisted selection to understand mechanisms underlying metabolic improvement in food plants. We also propose to integrate new breeding technologies with metabolic pathway modification to facilitate biofortification in food plants and, thereby, to benefit human health. PMID:28634484

  5. Development of SSR Markers Linked to Low Hydrocyanic Acid Content in Sorghum-Sudan Grass Hybrid Based on BSA Method.

    PubMed

    Xiao-Xia, Yu; Zhi-Hua, Liu; Zhuo, Yu; Yue, Shi; Xiao-Yu, Li

    2016-01-01

    Sorghum-Sudan grass hybrid containing high hydrocyanic acid content can cause hydrocyanic acid poisoning to the livestock and limit the popularization of this forage crop. Molecular markers associated with low hydrocyanic acid content can speed up the process of identification of genotypes with low hydrocyanic acid content. In the present study, 11 polymorphic SSR primers were screened and used for bulked segregant analysis and single marker analysis. Three SSR markers Xtxp7230, Xtxp7375 and Bnlg667960 associated with low hydrocyanic acid content were rapidly identified by BSA. In single marker analysis, six markers Xtxp7230, Xtxp7375, Bnlg667960, Xtxp67-11, Xtxp295-7 and Xtxp12-9 were linked to low hydrocyanic acid content, which explained the proportion of phenotypic variation from 7.6 % to 41.2 %. The markers identified by BSA were also verified by single marker analysis. The three SSR marker bands were then cloned and sequenced for sequence homology analysis in NCBI. It is the first report on the development of molecular markers associated with low hydrocyanic acid content in sorghum- Sudan grass hybrid. These markers will be useful for genetic improvement of low hydrocyanic acid sorghum-Sudan grass hybrid by marker-assisted breeding.

  6. CARD15 Gene Polymorphisms Are Associated with Tuberculosis Susceptibility in Chinese Holstein Cows

    PubMed Central

    Liu, Tong; Tu, Wenji; Li, Wengui; Dong, Guodong; Xu, Cong; Qin, Bo; Liu, Kaihua; Yang, Jie; Chai, Jun; Shi, Xianwei; Zhang, Yifang

    2015-01-01

    Bovine tuberculosis (BTB) is a significant veterinary and financial problem in many parts of the world. Associations between specific host genes and susceptibility to mycobacterial infections, such as tuberculosis, have been reported in several species. The objective of this study was to identify and evaluate the relationship of single-nucleotide polymorphisms (SNPs) in the CARD15 gene with susceptibility to BTB in Chinese Holstein cows. DNA samples from 201 Chinese Holstein cows (103 cases and 98 controls) were collected from Kunming City, Yuxi City, and Dali City in China. SNPs in the CARD15 gene were assessed using polymerase chain reaction (PCR) and restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR). Case-control association testing and statistical analysis identified six SNPs associated with susceptibility to BTB in Chinese Holstein cows. The frequency of genotypes C/T, A/G, A/G, A/G, C/T, and A/G in E4 (-37), 208, 1644, 1648, 1799, and E10 (+107), respectively, was significantly higher in cases than in controls, and also the alleles C, A, A, G, T, and A, respectively, were associated with a greater relative risk in cases than in controls. The distribution of two haplotypes, TGGACA and CAGACA, was significantly different between cases and controls. Overall, this case-control study suggested that E4 (-37)(C/T), 208(A/G), 1644(A/G), 1648(A/G), 1799(C/T), and E10 (+107)(A/G) in the CARD15 gene were significantly associated with susceptibility to BTB in Chinese Holstein cows and that haplotypes TGGACA and CAGACA could be used as genetic markers in marker-assisted breeding programs for breeding cows with high resistance to BTB. PMID:26244859

  7. Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice.

    PubMed

    Suh, Jung-Pil; Jeung, Ji-Ung; Noh, Tae-Hwan; Cho, Young-Chan; Park, So-Hyun; Park, Hyun-Su; Shin, Mun-Sik; Kim, Chung-Kon; Jena, Kshirod K

    2013-02-08

    The development of resistant cultivars has been the most effective and economical strategy to control bacterial leaf blight (BB) disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Molecular markers have made it possible to identify and pyramid valuable genes of agronomic importance in resistance rice breeding. In this study, three resistance genes (Xa4 + xa5 + Xa21) were transferred from an indica donor (IRBB57), using a marker-assisted backcrossing (MAB) breeding strategy, into a BB-susceptible elite japonica rice cultivar, Mangeumbyeo, which is high yielding with good grain quality. Our analysis led to the development of three elite advanced backcross breeding lines (ABL) with three resistance genes by foreground and phenotypic selection in a japonica genetic background without linkage drag. The background genome recovery of the ABL expressed more than 92.1% using genome-wide SSR marker analysis. The pathogenicity assays of three resistance-gene-derived ABL were conducted under glasshouse conditions with the 18 isolates of Xoo prevalent in Korea. The ABL exhibited very small lesion lengths, indicating a hypersensitive reaction to all 18 isolates of Xoo, with agronomic and grain quality traits similar to those of the recurrent parent. Pyramiding the resistance genes Xa4, xa5 and Xa21 provided a higher resistance to Xoo than the introduction of the individual resistance genes. Additionally, the combination of two dominant and one recessive BB resistance gene did not express any negative effect on agronomic traits in the ABL. The strategy of simultaneous foreground and phenotypic selection to introduce multiple R genes is very useful to reduce the cost and the time required for the isolation of desirable recombinants with target resistance genes in rice. The resistance-gene-derived ABL have practical breeding value without a yield penalty by providing broad-spectrum resistance against most of the existing isolates of BB in South Korea and will have a high impact on the yield stability and sustainability of rice productivity.

  8. Effects of parental number and duration of the breeding period on the effective population size and genetic diversity of a captive population of the endangered Tokyo bitterling Tanakia tanago (Teleostei: Cyprinidae).

    PubMed

    Kubota, Hitoshi; Watanabe, Katsutoshi

    2012-01-01

    The maintenance of genetic diversity is one of the chief concerns in the captive breeding of endangered species. Using microsatellite and mtDNA markers, we examined the effects of two key variables (parental number and duration of breeding period) on effective population size (N(e) ) and genetic diversity of offspring in an experimental breeding program for the endangered Tokyo bitterling, Tanakia tanago. Average heterozygosity and number of alleles of offspring estimated from microsatellite data increased with parental number in a breeding aquarium, and exhibited higher values for a long breeding period treatment (9 weeks) compared with a short breeding period (3 weeks). Haplotype diversity in mtDNA of offspring decreased with the reduction in parental number, and this tendency was greater for the short breeding period treatment. Genetic estimates of N(e) obtained with two single-sample estimation methods were consistently higher for the long breeding period treatment with the same number of parental fish. Average N(e) /N ratios were ranged from 0.5 to 1.4, and were high especially in the long breeding period with small and medium parental number treatments. Our results suggest that the spawning intervals of females and alternative mating behaviors of males influence the effective size and genetic diversity of offspring in bitterling. To maintain the genetic diversity of captive T. tanago, we recommend that captive breeding programs should be conducted for a sufficiently long period with an optimal level of parental density, as well as using an adequate number of parents. © 2011 Wiley Periodicals, Inc.

  9. Analysis of conservation priorities of Iberoamerican cattle based on autosomal microsatellite markers

    PubMed Central

    2013-01-01

    Background Determining the value of livestock breeds is essential to define conservation priorities, manage genetic diversity and allocate funds. Within- and between-breed genetic diversity need to be assessed to preserve the highest intra-specific variability. Information on genetic diversity and risk status is still lacking for many Creole cattle breeds from the Americas, despite their distinct evolutionary trajectories and adaptation to extreme environmental conditions. Methods A comprehensive genetic analysis of 67 Iberoamerican cattle breeds was carried out with 19 FAO-recommended microsatellites to assess conservation priorities. Contributions to global diversity were investigated using alternative methods, with different weights given to the within- and between-breed components of genetic diversity. Information on Iberoamerican plus 15 worldwide cattle breeds was used to investigate the contribution of geographical breed groups to global genetic diversity. Results Overall, Creole cattle breeds showed a high level of genetic diversity with the highest level found in breeds admixed with zebu cattle, which were clearly differentiated from all other breeds. Within-breed kinships revealed seven highly inbred Creole breeds for which measures are needed to avoid further genetic erosion. However, if contribution to heterozygosity was the only criterion considered, some of these breeds had the lowest priority for conservation decisions. The Weitzman approach prioritized highly differentiated breeds, such as Guabalá, Romosinuano, Cr. Patagonico, Siboney and Caracú, while kinship-based methods prioritized mainly zebu-related breeds. With the combined approaches, breed ranking depended on the weights given to the within- and between-breed components of diversity. Overall, the Creole groups of breeds were generally assigned a higher priority for conservation than the European groups of breeds. Conclusions Conservation priorities differed significantly according to the weight given to within- and between-breed genetic diversity. Thus, when establishing conservation programs, it is necessary to also take into account other features. Creole cattle and local isolated breeds retain a high level of genetic diversity. The development of sustainable breeding and crossbreeding programs for Creole breeds, and the added value resulting from their products should be taken into consideration to ensure their long-term survival. PMID:24079454

  10. Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs.

    PubMed

    Rajaram, Vengaldas; Nepolean, Thirunavukkarasu; Senthilvel, Senapathy; Varshney, Rajeev K; Vadez, Vincent; Srivastava, Rakesh K; Shah, Trushar M; Supriya, Ambawat; Kumar, Sushil; Ramana Kumari, Basava; Bhanuprakash, Amindala; Narasu, Mangamoori Lakshmi; Riera-Lizarazu, Oscar; Hash, Charles Thomas

    2013-03-09

    Pearl millet [Pennisetum glaucum (L.) R. Br.] is a widely cultivated drought- and high-temperature tolerant C4 cereal grown under dryland, rainfed and irrigated conditions in drought-prone regions of the tropics and sub-tropics of Africa, South Asia and the Americas. It is considered an orphan crop with relatively few genomic and genetic resources. This study was undertaken to increase the EST-based microsatellite marker and genetic resources for this crop to facilitate marker-assisted breeding. Newly developed EST-SSR markers (99), along with previously mapped EST-SSR (17), genomic SSR (53) and STS (2) markers, were used to construct linkage maps of four F7 recombinant inbred populations (RIP) based on crosses ICMB 841-P3 × 863B-P2 (RIP A), H 77/833-2 × PRLT 2/89-33 (RIP B), 81B-P6 × ICMP 451-P8 (RIP C) and PT 732B-P2 × P1449-2-P1 (RIP D). Mapped loci numbers were greatest for RIP A (104), followed by RIP B (78), RIP C (64) and RIP D (59). Total map lengths (Haldane) were 615 cM, 690 cM, 428 cM and 276 cM, respectively. A total of 176 loci detected by 171 primer pairs were mapped among the four crosses. A consensus map of 174 loci (899 cM) detected by 169 primer pairs was constructed using MergeMap to integrate the individual linkage maps. Locus order in the consensus map was well conserved for nearly all linkage groups. Eighty-nine EST-SSR marker loci from this consensus map had significant BLAST hits (top hits with e-value ≤ 1E-10) on the genome sequences of rice, foxtail millet, sorghum, maize and Brachypodium with 35, 88, 58, 48 and 38 loci, respectively. The consensus map developed in the present study contains the largest set of mapped SSRs reported to date for pearl millet, and represents a major consolidation of existing pearl millet genetic mapping information. This study increased numbers of mapped pearl millet SSR markers by >50%, filling important gaps in previously published SSR-based linkage maps for this species and will greatly facilitate SSR-based QTL mapping and applied marker-assisted selection programs.

  11. Using DNA Markers to Distinguish Among Chestnut Species and Hybrids

    Treesearch

    Thomas L. Kubisiak

    1999-01-01

    Identification of American chestnut trees in the wild for inclusion in breeding programs is currently done using morphological traits. Distinguishing traits include leafshape, stipule size, presence or absence of leaf and stem trichomes, and stem color. Application of these traits is reasonably clear if the trees are pure American chestnut, but identitication of...

  12. Toward The Identification Of Candidate Genes Involved In Black Pod Disease Resistance In Theobroma cacao L.

    USDA-ARS?s Scientific Manuscript database

    Black Pod (Phytophthora sp.) has a devastating effect on the worldwide cacao (Theobroma cacao) yield and incorporating resistance into production fields has been an ongoing effort of breeding programs. Previous meta-QTL analysis of genetic maps created with a variety of molecular markers identified...

  13. Toward the identification of candidate genes involved In black pod disease resistance in Theobroma cacao L.

    USDA-ARS?s Scientific Manuscript database

    Black Pod (Phytophthora sp.) has a devastating effect on the worldwide cacao (Theobroma cacao) yield and incorporating resistance into production fields has been an ongoing effort of breeding programs. Previous meta-QTL analysis of genetic maps created with a variety of molecular markers identified...

  14. Molecular identification and genetic diversity analysis of Chinese sugarcane (Saccharum spp. hybrids) varieties using SSR markers

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum spp. hybrids) is an important sugar and renewable bioenergy crop. However, its complex aneupolyploidy genome and vegetative mode of propagation often cause difficulty in selection and some variety identity issues in a breeding program. Therefore, the present study was set up to ...

  15. A microsatellite linkage map of striped bass (Morone saxatilis) reveals conserved synteny with the hree-spined stickleback (Gasterosteus aculeatus)

    USDA-ARS?s Scientific Manuscript database

    Background: The striped bass (Morone saxatilis) and its relatives (genus Morone) are of great importance to fisheries and aquaculture in North America. As part of a collaborative effort to employ molecular genetic technologies in striped bass breeding programs, nearly 500 microsatellite markers were...

  16. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.).

    PubMed

    Allen, Alexandra M; Barker, Gary L A; Berry, Simon T; Coghill, Jane A; Gwilliam, Rhian; Kirby, Susan; Robinson, Phil; Brenchley, Rachel C; D'Amore, Rosalinda; McKenzie, Neil; Waite, Darren; Hall, Anthony; Bevan, Michael; Hall, Neil; Edwards, Keith J

    2011-12-01

    Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker-assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single-nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single-nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next-generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single-nucleotide polymorphisms in hexaploid bread wheat using competitive allele-specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross-section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single-nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  17. Genome-wide association mapping of quantitative traits in a breeding population of sugarcane.

    PubMed

    Racedo, Josefina; Gutiérrez, Lucía; Perera, María Francisca; Ostengo, Santiago; Pardo, Esteban Mariano; Cuenya, María Inés; Welin, Bjorn; Castagnaro, Atilio Pedro

    2016-06-24

    Molecular markers associated with relevant agronomic traits could significantly reduce the time and cost involved in developing new sugarcane varieties. Previous sugarcane genome-wide association analyses (GWAS) have found few molecular markers associated with relevant traits at plant-cane stage. The aim of this study was to establish an appropriate GWAS to find molecular markers associated with yield related traits consistent across harvesting seasons in a breeding population. Sugarcane clones were genotyped with DArT (Diversity Array Technology) and TRAP (Target Region Amplified Polymorphism) markers, and evaluated for cane yield (CY) and sugar content (SC) at two locations during three successive crop cycles. GWAS mapping was applied within a novel mixed-model framework accounting for population structure with Principal Component Analysis scores as random component. A total of 43 markers significantly associated with CY in plant-cane, 42 in first ratoon, and 41 in second ratoon were detected. Out of these markers, 20 were associated with CY in 2 years. Additionally, 38 significant associations for SC were detected in plant-cane, 34 in first ratoon, and 47 in second ratoon. For SC, one marker-trait association was found significant for the 3 years of the study, while twelve markers presented association for 2 years. In the multi-QTL model several markers with large allelic substitution effect were found. Sequences of four DArT markers showed high similitude and e-value with coding sequences of Sorghum bicolor, confirming the high gene microlinearity between sorghum and sugarcane. In contrast with other sugarcane GWAS studies reported earlier, the novel methodology to analyze multi-QTLs through successive crop cycles used in the present study allowed us to find several markers associated with relevant traits. Combining existing phenotypic trial data and genotypic DArT and TRAP marker characterizations within a GWAS approach including population structure as random covariates may prove to be highly successful. Moreover, sequences of DArT marker associated with the traits of interest were aligned in chromosomal regions where sorghum QTLs has previously been reported. This approach could be a valuable tool to assist the improvement of sugarcane and better supply sugarcane demand that has been projected for the upcoming decades.

  18. Increasing crop yield and resilience with trehalose 6-phosphate: targeting a feast-famine mechanism in cereals for better source-sink optimization.

    PubMed

    Paul, Matthew J; Oszvald, Maria; Jesus, Claudia; Rajulu, Charukesi; Griffiths, Cara A

    2017-07-20

    Food security is a pressing global issue. New approaches are required to break through a yield ceiling that has developed in recent years for the major crops. As important as increasing yield potential is the protection of yield from abiotic stresses in an increasingly variable and unpredictable climate. Current strategies to improve yield include conventional breeding, marker-assisted breeding, quantitative trait loci (QTLs), mutagenesis, creation of hybrids, genetic modification (GM), emerging genome-editing technologies, and chemical approaches. A regulatory mechanism amenable to three of these approaches has great promise for large yield improvements. Trehalose 6-phosphate (T6P) synthesized in the low-flux trehalose biosynthetic pathway signals the availability of sucrose in plant cells as part of a whole-plant sucrose homeostatic mechanism. Modifying T6P content by GM, marker-assisted selection, and novel chemistry has improved yield in three major cereals under a range of water availabilities from severe drought through to flooding. Yield improvements have been achieved by altering carbon allocation and how carbon is used. Targeting T6P both temporally and spatially offers great promise for large yield improvements in productive (up to 20%) and marginal environments (up to 120%). This opinion paper highlights this important breakthrough in fundamental science for crop improvement. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Evaluating Agronomic Performance and Investigating Molecular Structure of Drought and Heat Tolerant Wild Alfalfa (Medicago sativa L.) Collection from the Southeastern Turkey.

    PubMed

    Basbag, Mehmet; Aydin, Ali; Sakiroglu, Muhammet

    2017-02-01

    Drought is a major stress factor for agricultural production including alfalfa production. One way to counterbalance the yield losses is the introgression of drought tolerant germplasm into breeding programs. As an effort to exploit such germplasm, 16 individual plants were selected from the Southeastern Turkey from their natural habitat and clonally propagated in field trials with an ultimate goal to use the germplasm as parents for releasing a synthetic cultivar. Forage yield and forage quality traits were evaluated and molecular genetic diversity among genotypes were determined using inter simple sequence repeat markers. Genotypes showed a variation from growth habit to yield and quality traits indicating sufficient phenotypic variation for diverse breeding efforts (for grazing or harvesting) and long term selection schemes. A large amount of genetic variation was observed even with a limited number of marker and genotypes. However, no pattern of spatial genetic structure was observed for the scale of the study when genetic variation is linked to the geographic origin. We conclude that ex situ natural variation provides a wealth of germplasm that could be incorporated into breeding programs aiming to improve drought tolerance. We also suggest an extensive collection of seeds/plant tissue from unique plants with desirable traits rather than putting more efforts to create a spatial germplasm sampling efforts in narrow regions.

  20. Molecular markers: a potential resource for ginger genetic diversity studies.

    PubMed

    Ismail, Nor Asiah; Rafii, M Y; Mahmud, T M M; Hanafi, M M; Miah, Gous

    2016-12-01

    Ginger is an economically important and valuable plant around the world. Ginger is used as a food, spice, condiment, medicine and ornament. There is available information on biochemical aspects of ginger, but few studies have been reported on its molecular aspects. The main objective of this review is to accumulate the available molecular marker information and its application in diverse ginger studies. This review article was prepared by combing material from published articles and our own research. Molecular markers allow the identification and characterization of plant genotypes through direct access to hereditary material. In crop species, molecular markers are applied in different aspects and are useful in breeding programs. In ginger, molecular markers are commonly used to identify genetic variation and classify the relatedness among varieties, accessions, and species. Consequently, it provides important input in determining resourceful management strategies for ginger improvement programs. Alternatively, a molecular marker could function as a harmonizing tool for documenting species. This review highlights the application of molecular markers (isozyme, RAPD, AFLP, SSR, ISSR and others such as RFLP, SCAR, NBS and SNP) in genetic diversity studies of ginger species. Some insights on the advantages of the markers are discussed. The detection of genetic variation among promising cultivars of ginger has significance for ginger improvement programs. This update of recent literature will help researchers and students select the appropriate molecular markers for ginger-related research.

  1. Prospects and Potential Uses of Genomic Prediction of Key Performance Traits in Tetraploid Potato.

    PubMed

    Stich, Benjamin; Van Inghelandt, Delphine

    2018-01-01

    Genomic prediction is a routine tool in breeding programs of most major animal and plant species. However, its usefulness for potato breeding has not yet been evaluated in detail. The objectives of this study were to (i) examine the prospects of genomic prediction of key performance traits in a diversity panel of tetraploid potato modeling additive, dominance, and epistatic effects, (ii) investigate the effects of size and make up of training set, number of test environments and molecular markers on prediction accuracy, and (iii) assess the effect of including markers from candidate genes on the prediction accuracy. With genomic best linear unbiased prediction (GBLUP), BayesA, BayesCπ, and Bayesian LASSO, four different prediction methods were used for genomic prediction of relative area under disease progress curve after a Phytophthora infestans infection, plant maturity, maturity corrected resistance, tuber starch content, tuber starch yield (TSY), and tuber yield (TY) of 184 tetraploid potato clones or subsets thereof genotyped with the SolCAP 8.3k SNP array. The cross-validated prediction accuracies with GBLUP and the three Bayesian approaches for the six evaluated traits ranged from about 0.5 to about 0.8. For traits with a high expected genetic complexity, such as TSY and TY, we observed an 8% higher prediction accuracy using a model with additive and dominance effects compared with a model with additive effects only. Our results suggest that for oligogenic traits in general and when diagnostic markers are available in particular, the use of Bayesian methods for genomic prediction is highly recommended and that the diagnostic markers should be modeled as fixed effects. The evaluation of the relative performance of genomic prediction vs. phenotypic selection indicated that the former is superior, assuming cycle lengths and selection intensities that are possible to realize in commercial potato breeding programs.

  2. Prospects and Potential Uses of Genomic Prediction of Key Performance Traits in Tetraploid Potato

    PubMed Central

    Stich, Benjamin; Van Inghelandt, Delphine

    2018-01-01

    Genomic prediction is a routine tool in breeding programs of most major animal and plant species. However, its usefulness for potato breeding has not yet been evaluated in detail. The objectives of this study were to (i) examine the prospects of genomic prediction of key performance traits in a diversity panel of tetraploid potato modeling additive, dominance, and epistatic effects, (ii) investigate the effects of size and make up of training set, number of test environments and molecular markers on prediction accuracy, and (iii) assess the effect of including markers from candidate genes on the prediction accuracy. With genomic best linear unbiased prediction (GBLUP), BayesA, BayesCπ, and Bayesian LASSO, four different prediction methods were used for genomic prediction of relative area under disease progress curve after a Phytophthora infestans infection, plant maturity, maturity corrected resistance, tuber starch content, tuber starch yield (TSY), and tuber yield (TY) of 184 tetraploid potato clones or subsets thereof genotyped with the SolCAP 8.3k SNP array. The cross-validated prediction accuracies with GBLUP and the three Bayesian approaches for the six evaluated traits ranged from about 0.5 to about 0.8. For traits with a high expected genetic complexity, such as TSY and TY, we observed an 8% higher prediction accuracy using a model with additive and dominance effects compared with a model with additive effects only. Our results suggest that for oligogenic traits in general and when diagnostic markers are available in particular, the use of Bayesian methods for genomic prediction is highly recommended and that the diagnostic markers should be modeled as fixed effects. The evaluation of the relative performance of genomic prediction vs. phenotypic selection indicated that the former is superior, assuming cycle lengths and selection intensities that are possible to realize in commercial potato breeding programs. PMID:29563919

  3. Mapping of the Gynoecy in Bitter Gourd (Momordica charantia) Using RAD-Seq Analysis

    PubMed Central

    Matsumura, Hideo; Miyagi, Norimichi; Taniai, Naoki; Fukushima, Mai; Tarora, Kazuhiko; Shudo, Ayano; Urasaki, Naoya

    2014-01-01

    Momordica charantia is a monoecious plant of the Cucurbitaceae family that has both male and female unisexual flowers. Its unique gynoecious line, OHB61-5, is essential as a maternal parent in the production of F1 cultivars. To identify the DNA markers for this gynoecy, a RAD-seq (restriction-associated DNA tag sequencing) analysis was employed to reveal genome-wide DNA polymorphisms and to genotype the F2 progeny from a cross between OHB61-5 and a monoecious line. Based on a RAD-seq analysis of F2 individuals, a linkage map was constructed using 552 co-dominant markers. In addition, after analyzing the pooled genomic DNA from monoecious or gynoecious F2 plants, several SNP loci that are genetically linked to gynoecy were identified. GTFL-1, the closest SNP locus to the putative gynoecious locus, was converted to a conventional DNA marker using invader assay technology, which is applicable to the marker-assisted selection of gynoecy in M. charantia breeding. PMID:24498029

  4. Mapping of the apple scab-resistance gene Vb.

    PubMed

    Erdin, N; Tartarini, S; Broggini, G A L; Gennari, F; Sansavini, S; Gessler, C; Patocchi, A

    2006-10-01

    Apple scab, caused by the fungus Venturia inaequalis, is the major production constraint in temperate zones with humid springs. Normally, its control relies on frequent and regular fungicide applications. Because this control strategy has come under increasing criticism, major efforts are being directed toward the breeding of scab-resistant apple cultivars. Modern apple breeding programs include the use of molecular markers, making it possible to combine several different scab-resistance genes in 1 apple cultivar (pyramiding) and to speed up the breeding process. The apple scab-resistance gene Vb is derived from the Siberian crab apple 'Hansen's baccata #2', and is 1 of the 6 "historical" major apple scab-resistance genes (Vf, Va, Vr, Vbj, Vm, and Vb). Molecular markers have been published for all these genes, except Vr. In testcross experiments conducted in the 1960s, it was reported that Vb segregated independently from 3 other major resistance genes, including Vf. Recently, however, Vb and Vf have both been mapped on linkage group 1, a result that contrasts with the findings from former testcross experiments. In this study, simple sequence repeat (SSR) markers were used to identify the precise position of Vb in a cross of 'Golden Delicious' (vbvb) and 'Hansen's baccata #2' (Vbvb). A genome scanning approach, a fast method already used to map apple scab-resistance genes Vr2 and Vm, was used, and the Vb locus was identified on linkage group 12, between the SSR markers Hi02d05 and Hi07f01. This finding confirms the independent segregation of Vb from Vf. With the identification of SSR markers linked to Vb, another major apple scab-resistance gene has become available; breeders can use it to develop durable resistant cultivars with several different resistance genes.

  5. An Expressed Sequence Tag (EST)-enriched genetic map of turbot (Scophthalmus maximus): a useful framework for comparative genomics across model and farmed teleosts

    PubMed Central

    2012-01-01

    Background The turbot (Scophthalmus maximus) is a relevant species in European aquaculture. The small turbot genome provides a source for genomics strategies to use in order to understand the genetic basis of productive traits, particularly those related to sex, growth and pathogen resistance. Genetic maps represent essential genomic screening tools allowing to localize quantitative trait loci (QTL) and to identify candidate genes through comparative mapping. This information is the backbone to develop marker-assisted selection (MAS) programs in aquaculture. Expressed sequenced tag (EST) resources have largely increased in turbot, thus supplying numerous type I markers suitable for extending the previous linkage map, which was mostly based on anonymous loci. The aim of this study was to construct a higher-resolution turbot genetic map using EST-linked markers, which will turn out to be useful for comparative mapping studies. Results A consensus gene-enriched genetic map of the turbot was constructed using 463 SNP and microsatellite markers in nine reference families. This map contains 438 markers, 180 EST-linked, clustered at 24 linkage groups. Linkage and comparative genomics evidences suggested additional linkage group fusions toward the consolidation of turbot map according to karyotype information. The linkage map showed a total length of 1402.7 cM with low average intermarker distance (3.7 cM; ~2 Mb). A global 1.6:1 female-to-male recombination frequency (RF) ratio was observed, although largely variable among linkage groups and chromosome regions. Comparative sequence analysis revealed large macrosyntenic patterns against model teleost genomes, significant hits decreasing from stickleback (54%) to zebrafish (20%). Comparative mapping supported particular chromosome rearrangements within Acanthopterygii and aided to assign unallocated markers to specific turbot linkage groups. Conclusions The new gene-enriched high-resolution turbot map represents a useful genomic tool for QTL identification, positional cloning strategies, and future genome assembling. This map showed large synteny conservation against model teleost genomes. Comparative genomics and data mining from landmarks will provide straightforward access to candidate genes, which will be the basis for genetic breeding programs and evolutionary studies in this species. PMID:22747677

  6. Tracking the Genetic Stability of a Honey Bee (Hymenoptera: Apidae) Breeding Program With Genetic Markers.

    PubMed

    Bourgeois, Lelania; Beaman, Lorraine

    2017-08-01

    A genetic stock identification (GSI) assay was developed in 2008 to distinguish Russian honey bees from other honey bee stocks that are commercially produced in the United States. Probability of assignment (POA) values have been collected and maintained since the stock release in 2008 to the Russian Honey Bee Breeders Association. These data were used to assess stability of the breeding program and the diversity levels of the contemporary breeding stock through comparison of POA values and genetic diversity parameters from the initial release to current values. POA values fluctuated throughout 2010-2016, but have recovered to statistically similar levels in 2016 (POA(2010) = 0.82, POA(2016) = 0.74; P = 0.33). Genetic diversity parameters (i.e., allelic richness and gene diversity) in 2016 also remained at similar levels when compared to those in 2010. Estimates of genetic structure revealed stability (FST(2009/2016) = 0.0058) with a small increase in the estimate of the inbreeding coefficient (FIS(2010) = 0.078, FIS(2016) = 0.149). The relationship among breeding lines, based on genetic distance measurement, was similar in 2008 and 2016 populations, but with increased homogeneity among lines (i.e., decreased genetic distance). This was expected based on the closed breeding system used for Russian honey bees. The successful application of the GSI assay in a commercial breeding program demonstrates the utility and stability of such technology to contribute to and monitor the genetic integrity of a breeding stock of an insect species. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  7. CmMDb: a versatile database for Cucumis melo microsatellite markers and other horticulture crop research.

    PubMed

    Bhawna; Chaduvula, Pavan K; Bonthala, Venkata S; Manjusha, Verma; Siddiq, Ebrahimali A; Polumetla, Ananda K; Prasad, Gajula M N V

    2015-01-01

    Cucumis melo L. that belongs to Cucurbitaceae family ranks among one of the highest valued horticulture crops being cultivated across the globe. Besides its economical and medicinal importance, Cucumis melo L. is a valuable resource and model system for the evolutionary studies of cucurbit family. However, very limited numbers of molecular markers were reported for Cucumis melo L. so far that limits the pace of functional genomic research in melon and other similar horticulture crops. We developed the first whole genome based microsatellite DNA marker database of Cucumis melo L. and comprehensive web resource that aids in variety identification and physical mapping of Cucurbitaceae family. The Cucumis melo L. microsatellite database (CmMDb: http://65.181.125.102/cmmdb2/index.html) encompasses 39,072 SSR markers along with its motif repeat, motif length, motif sequence, marker ID, motif type and chromosomal locations. The database is featured with novel automated primer designing facility to meet the needs of wet lab researchers. CmMDb is a freely available web resource that facilitates the researchers to select the most appropriate markers for marker-assisted selection in melons and to improve breeding strategies.

  8. Characterization of the Kenaf (Hibiscus cannabinus) Global Transcriptome Using Illumina Paired-End Sequencing and Development of EST-SSR Markers

    PubMed Central

    Li, Hui; Li, Defang; Chen, Anguo; Tang, Huijuan; Li, Jianjun; Huang, Siqi

    2016-01-01

    Kenaf (Hibiscus cannabinus L.) is an economically important natural fiber crop grown worldwide. However, only 20 expressed tag sequences (ESTs) for kenaf are available in public databases. The aim of this study was to develop large-scale simple sequence repeat (SSR) markers to lay a solid foundation for the construction of genetic linkage maps and marker-assisted breeding in kenaf. We used Illumina paired-end sequencing technology to generate new EST-simple sequences and MISA software to mine SSR markers. We identified 71,318 unigenes with an average length of 1143 nt and annotated these unigenes using four different protein databases. Overall, 9324 complementary pairs were designated as EST-SSR markers, and their quality was validated using 100 randomly selected SSR markers. In total, 72 primer pairs reproducibly amplified target amplicons, and 61 of these primer pairs detected significant polymorphism among 28 kenaf accessions. Thus, in this study, we have developed large-scale SSR markers for kenaf, and this new resource will facilitate construction of genetic linkage maps, investigation of fiber growth and development in kenaf, and also be of value to novel gene discovery and functional genomic studies. PMID:26960153

  9. Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm

    PubMed Central

    Scalabrin, Simone; Gilmore, Barbara; Lawley, Cynthia T.; Gasic, Ksenija; Micheletti, Diego; Rosyara, Umesh R.; Cattonaro, Federica; Vendramin, Elisa; Main, Dorrie; Aramini, Valeria; Blas, Andrea L.; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Troggio, Michela; Sosinski, Bryon; Aranzana, Maria José; Arús, Pere; Iezzoni, Amy; Morgante, Michele; Peace, Cameron

    2012-01-01

    Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs. The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species. PMID:22536421

  10. An ABC estimate of pedigree error rate: application in dog, sheep and cattle breeds.

    PubMed

    Leroy, G; Danchin-Burge, C; Palhiere, I; Baumung, R; Fritz, S; Mériaux, J C; Gautier, M

    2012-06-01

    On the basis of correlations between pairwise individual genealogical kinship coefficients and allele sharing distances computed from genotyping data, we propose an approximate Bayesian computation (ABC) approach to assess pedigree file reliability through gene-dropping simulations. We explore the features of the method using simulated data sets and show precision increases with the number of markers. An application is further made with five dog breeds, four sheep breeds and one cattle breed raised in France and displaying various characteristics and population sizes, using microsatellite or SNP markers. Depending on the breeds, pedigree error estimations range between 1% and 9% in dog breeds, 1% and 10% in sheep breeds and 4% in cattle breeds. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  11. Marker-based linkage map of Andean common bean (Phaseolus vulgaris L.) and mapping of QTLs underlying popping ability traits

    PubMed Central

    2012-01-01

    Background Nuña bean is a type of ancient common bean (Phaseolus vulgaris L.) native to the Andean region of South America, whose seeds possess the unusual property of popping. The nutritional features of popped seeds make them a healthy low fat and high protein snack. However, flowering of nuña bean only takes place under short-day photoperiod conditions, which means a difficulty to extend production to areas where such conditions do not prevail. Therefore, breeding programs of adaptation traits will facilitate the diversification of the bean crops and the development of new varieties with enhanced healthy properties. Although the popping trait has been profusely studied in maize (popcorn), little is known about the biology and genetic basis of the popping ability in common bean. To obtain insights into the genetics of popping ability related traits of nuña bean, a comprehensive quantitative trait loci (QTL) analysis was performed to detect single-locus and epistatic QTLs responsible for the phenotypic variance observed in these traits. Results A mapping population of 185 recombinant inbred lines (RILs) derived from a cross between two Andean common bean genotypes was evaluated for three popping related traits, popping dimension index (PDI), expansion coefficient (EC), and percentage of unpopped seeds (PUS), in five different environmental conditions. The genetic map constructed included 193 loci across 12 linkage groups (LGs), covering a genetic distance of 822.1 cM, with an average of 4.3 cM per marker. Individual and multi-environment QTL analyses detected a total of nineteen single-locus QTLs, highlighting among them the co-localized QTLs for the three popping ability traits placed on LGs 3, 5, 6, and 7, which together explained 24.9, 14.5, and 25.3% of the phenotypic variance for PDI, EC, and PUS, respectively. Interestingly, epistatic interactions among QTLs have been detected, which could have a key role in the genetic control of popping. Conclusions The QTLs here reported constitute useful tools for marker assisted selection breeding programs aimed at improving nuña bean cultivars, as well as for extending our knowledge of the genetic determinants and genotype x environment interaction involved in the popping ability traits of this bean crop. PMID:22873566

  12. Conservation Genetics of Threatened Hippocampus guttulatus in Vulnerable Habitats in NW Spain: Temporal and Spatial Stability of Wild Populations with Flexible Polygamous Mating System in Captivity

    PubMed Central

    López, Almudena; Vera, Manuel; Planas, Miquel; Bouza, Carmen

    2015-01-01

    This study was focused on conservation genetics of threatened Hippocampus guttulatus on the Atlantic coast of NW Iberian Peninsula. Information about spatial structure and temporal stability of wild populations was obtained based on microsatellite markers, and used for monitoring a captive breeding program firstly initiated in this zone at the facilities of the Institute of Marine Research (Vigo, Spain). No significant major genetic structure was observed regarding the biogeographical barrier of Cape Finisterre. However, two management units under continuous gene flow are proposed based on the allelic differentiation between South-Atlantic and Cantabrian subpopulations, with small to moderate contemporary effective size based on single-sample methods. Temporal stability was observed in South-Atlantic population samples of H. guttulatus for the six-year period studied, suggesting large enough effective population size to buffer the effects of genetic drift within the time frame of three generations. Genetic analysis of wild breeders and offspring in captivity since 2009 allowed us to monitor the breeding program founded in 2006 in NW Spain for this species. Similar genetic diversity in the renewed and founder broodstock, regarding the wild population of origin, supports suitable renewal and rearing processes to maintain genetic variation in captivity. Genetic parentage proved single-brood monogamy in the wild and in captivity, but flexible short- and long-term mating system under captive conditions, from strict monogamy to polygamy within and/or among breeding seasons. Family analysis showed high reproductive success in captivity under genetic management assisted by molecular relatedness estimates to avoid inbreeding. This study provides genetic information about H. guttulatus in the wild and captivity within an uncovered geographical range for this data deficient species, to be taken into account for management and conservation purposes. PMID:25646777

  13. High-throughput genotyping-by-sequencing facilitates molecular tagging of a novel rust resistance gene, R 15 , in sunflower (Helianthus annuus L.).

    PubMed

    Ma, G J; Song, Q J; Markell, S G; Qi, L L

    2018-07-01

    A novel rust resistance gene, R 15 , derived from the cultivated sunflower HA-R8 was assigned to linkage group 8 of the sunflower genome using a genotyping-by-sequencing approach. SNP markers closely linked to R 15 were identified, facilitating marker-assisted selection of resistance genes. The rust virulence gene is co-evolving with the resistance gene in sunflower, leading to the emergence of new physiologic pathotypes. This presents a continuous threat to the sunflower crop necessitating the development of resistant sunflower hybrids providing a more efficient, durable, and environmentally friendly host plant resistance. The inbred line HA-R8 carries a gene conferring resistance to all known races of the rust pathogen in North America and can be used as a broad-spectrum resistance resource. Based on phenotypic assessments of 140 F 2 individuals derived from a cross of HA 89 with HA-R8, rust resistance in the population was found to be conferred by a single dominant gene (R 15 ) originating from HA-R8. Genotypic analysis with the currently available SSR markers failed to find any association between rust resistance and any markers. Therefore, we used genotyping-by-sequencing (GBS) analysis to achieve better genomic coverage. The GBS data showed that R 15 was located at the top end of linkage group (LG) 8. Saturation with 71 previously mapped SNP markers selected within this region further showed that it was located in a resistance gene cluster on LG8, and mapped to a 1.0-cM region between three co-segregating SNP makers SFW01920, SFW00128, and SFW05824 as well as the NSA_008457 SNP marker. These closely linked markers will facilitate marker-assisted selection and breeding in sunflower.

  14. Genetic Diversity Analysis of Medicinally Important Horticultural Crop Aegle marmelos by ISSR Markers.

    PubMed

    Mujeeb, Farina; Bajpai, Preeti; Pathak, Neelam; Verma, Smita Rastogi

    2017-01-01

    Inter simple sequence repeat (ISSR) markers help in identifying and determining the extent of genetic diversity in cultivars. Here, we describe their application in determining the genetic diversity of bael (Aegle marmelos Corr.). Universal ISSR primers are selected and their marker characteristics such as polymorphism information content, effective multiplex ratio and marker index have been evaluated. ISSR-PCR is then performed using universal ISSR primers to generate polymorphic bands. This information is used to determine the degree of genetic similarity among the bael varieties/accessions by cluster analysis using unweighted pair-group method with arithmetic averages (UPGMA). This technology is valuable for biodiversity conservation and for making an efficient choice of parents in breeding programs.

  15. Microsatellite loci analysis for the genetic variability and the parentage test of five dog breeds in South Korea.

    PubMed

    Kang, Byeong-Teck; Kim, Kyung-Seok; Min, Mi-Sook; Chae, Young-Jin; Kang, Jung-Won; Yoon, Junghee; Choi, Jihye; Seong, Je-Kyung; Park, Han-Chan; An, Junghwa; Lee, Mun-Han; Park, Hee-Myung; Lee, Hang

    2009-06-01

    To investigate the population structure of five dog breeds in South Korea and to validate polymorphic microsatellite markers for the parentage test, microsatellite loci analyses were conducted for two Korean native dog breeds, Poongsan and Jindo, and three imported dog breeds, German Shepherd, Beagle and Greyhound. Overall genetic diversity was high across all dog breeds (expected heterozygosity range: 0.71 to 0.85), although breeds differed in deviations from Hardy-Weinberg equilibrium (HWE). Significant reduction of heterozygosity in the Poongsan and Greyhound breeds was caused by non-random mating and population substructure within these breeds (the Wahlund effects). The close relationship and high degree of genetic diversity for two Korean native dog breeds were substantial. The mean polymorphism information content value was highest in Jindos (0.82) and Poongsans (0.81), followed by Beagles (0.74), Greyhounds (0.72), and German Shepherds (0.66). Accumulated exclusion power values, as an indication of marker validity for parentage tests, were varied but very high across breeds, 0.9999 for Jindos, Poongsans, and Beagles, 0.9997 for Greyhounds, and 0.9995 for German Shepherds. Taken together, the microsatellite loci investigated in this study can serve as suitable markers for the parentage test and as individual identification to establish a reliable pedigree verification system of dog breeds in South Korea. This study also stresses that the population subdivision within breeds can become an important cause of deviation from HWE in dog breeds.

  16. Selective sweep mapping of genes with large phenotypic effects.

    PubMed

    Pollinger, John P; Bustamante, Carlos D; Fledel-Alon, Adi; Schmutz, Sheila; Gray, Melissa M; Wayne, Robert K

    2005-12-01

    Many domestic dog breeds have originated through fixation of discrete mutations by intense artificial selection. As a result of this process, markers in the proximity of genes influencing breed-defining traits will have reduced variation (a selective sweep) and will show divergence in allele frequency. Consequently, low-resolution genomic scans can potentially be used to identify regions containing genes that have a major influence on breed-defining traits. We model the process of breed formation and show that the probability of two or three adjacent marker loci showing a spurious signal of selection within at least one breed (i.e., Type I error or false-positive rate) is low if highly variable and moderately spaced markers are utilized. We also use simulations with selection to demonstrate that even a moderately spaced set of highly polymorphic markers (e.g., one every 0.8 cM) has high power to detect regions targeted by strong artificial selection in dogs. Further, we show that a gene responsible for black coat color in the Large Munsterlander has a 40-Mb region surrounding the gene that is very low in heterozygosity for microsatellite markers. Similarly, we survey 302 microsatellite markers in the Dachshund and find three linked monomorphic microsatellite markers all within a 10-Mb region on chromosome 3. This region contains the FGFR3 gene, which is responsible for achondroplasia in humans, but not in dogs. Consequently, our results suggest that the causative mutation is a gene or regulatory region closely linked to FGFR3.

  17. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica.

    PubMed

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the "candidate genes" and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops.

  18. Molecular breeding in Brassica for salt tolerance: importance of microsatellite (SSR) markers for molecular breeding in Brassica

    PubMed Central

    Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong

    2015-01-01

    Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the “candidate genes” and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops. PMID:26388887

  19. An update on VitisGen: recent advances in using DNA marker technologies in U.S. grape breeding programs

    USDA-ARS?s Scientific Manuscript database

    The USDA-NIFA VitisGen project involves a multidisciplinary team of 25 co-PIs at 11 institutions aiming to optimize grape cultivar improvement. To this end, an impressive collection of phenotypic data and high-resolution genetic maps has been developed for seventeen F1 families. Here, we will prese...

  20. Genetic diversity in a collection of Saccharum spontaneum genotypes and their contribution to the Louisiana commercial breeding program as revealed using AFLP markers

    USDA-ARS?s Scientific Manuscript database

    Saccharum spontaneum has been the most important source of wild germpalsm for sugarcane cultivar development in Louisiana, particularly in improving traits such as mosaic virus resistance, vigor, ratooning ability and cold tolerance. A collection of 51 S. spontaneum genotypes maintained at the Sugar...

  1. Transcriptome and Complexity-Reduced, DNA-Based Identification of Intraspecies Single-Nucleotide Polymorphisms in the Polyploid Gossypium hirsutum L.

    PubMed Central

    Zhu, Qian-Hao; Spriggs, Andrew; Taylor, Jennifer M.; Llewellyn, Danny; Wilson, Iain

    2014-01-01

    Varietal single nucleotide polymorphisms (SNPs) are the differences within one of the two subgenomes between different tetraploid cotton varieties and have not been practically used in cotton genetics and breeding because they are difficult to identify due to low genetic diversity and very high sequence identity between homeologous genes in cotton. We have used transcriptome and restriction site−associated DNA sequencing to identify varietal SNPs among 18 G. hirsutum varieties based on the rationale that varietal SNPs can be more confidently called when flanked by subgenome-specific SNPs. Using transcriptome data, we successfully identified 37,413 varietal SNPs and, of these, 22,121 did not have an additional varietal SNP within their 20-bp flanking regions so can be used in most SNP genotyping assays. From restriction site−associated DNA sequencing data, we identified an additional 3090 varietal SNPs between two of the varieties. Of the 1583 successful SNP assays achieved using different genotyping platforms, 1363 were verified. Many of the SNPs behaved as dominant markers because of coamplification from homeologous loci, but the number of SNPs acting as codominant markers increased when one or more subgenome-specific SNP(s) were incorporated in their assay primers, giving them greater utility for breeding applications. A G. hirsutum genetic map with 1244 SNP markers was constructed covering 5557.42 centiMorgan and used to map qualitative and quantitative traits. This collection of G. hirsutum varietal SNPs complements existing intra-specific SNPs and provides the cotton community with a valuable marker resource applicable to genetic analyses and breeding programs. PMID:25106949

  2. Incorporation of Bacterial Blight Resistance Genes Into Lowland Rice Cultivar Through Marker-Assisted Backcross Breeding.

    PubMed

    Pradhan, Sharat Kumar; Nayak, Deepak Kumar; Pandit, Elssa; Behera, Lambodar; Anandan, Annamalai; Mukherjee, Arup Kumar; Lenka, Srikanta; Barik, Durga Prasad

    2016-07-01

    Bacterial blight (BB) of rice caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in many rice growing countries. Pyramided lines carrying two BB resistance gene combinations (Xa21+xa13 and Xa21+xa5) were developed in a lowland cultivar Jalmagna background through backcross breeding by integrating molecular markers. In each backcross generation, markers closely linked to the disease resistance genes were used to select plants possessing the target genes. Background selection was continued in those plants carrying resistant genes until BC(3) generation. Plants having the maximum contribution from the recurrent parent genome were selected in each generation and hybridized with the recipient parent. The BB-pyramided line having the maximum recipient parent genome recovery of 95% was selected among BC3F1 plants and selfed to isolate homozygous BC(3)F(2) plants with different combinations of BB resistance genes. Twenty pyramided lines with two resistance gene combinations exhibited high levels of tolerance against the BB pathogen. In order to confirm the resistance, the pyramided lines were inoculated with different X. oryzae pv. oryzae strains of Odisha for bioassay. The genotypes with combination of two BB resistance genes conferred high levels of resistance to the predominant X. oryzae pv. oryzae isolates prevalent in the region. The pyramided lines showed similarity with the recipient parent with respect to major agro-morphologic traits.

  3. QTL validation and stability for volatile organic compounds (VOCs) in apple.

    PubMed

    Costa, Fabrizio; Cappellin, Luca; Zini, Elena; Patocchi, Andrea; Kellerhals, Markus; Komjanc, Matteo; Gessler, Cesare; Biasioli, Franco

    2013-10-01

    The aroma trait in apple is a key factor for fruit quality strongly affecting the consumer appreciation, and its detection and analysis is often an extremely laborious and time consuming procedure. Molecular markers associated to this trait can to date represent a valuable selection tool to overcome these limitations. QTL mapping is the first step in the process of targeting valuable molecular markers to be employed in marker-assisted breeding programmes (MAB). However, a validation step is usually required before a newly identified molecular marker can be implemented in marker-assisted selection. In this work the position of a set of QTLs associated to volatile organic compounds (VOCs) was confirmed and validated in three different environments in Switzerland, namely Wädenswil, Conthey and Cadenazzo, where the progeny 'Fiesta×Discovery' was replicated. For both QTL identification and validation, the phenotypic data were represented by VOCs produced by mature apple fruit and assessed with a Proton Transfer Reaction-Mass Spectrometer (PTR-MS) instrument. The QTL-VOC combined analysis performed among these three locations validated the presence of important QTLs in three specific genomic regions, two located in the linkage group 2 and one in linkage group 15, respectively, for compounds related to esters (m/z 43, 61 and 131) and to the hormone ethylene (m/z 28). The QTL set presented here confirmed that in apple some compounds are highly genetically regulated and stable across environments. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Determination of genetic polymorphism in Guney Karaman local Turkish sheep breed by using STR markers

    NASA Astrophysics Data System (ADS)

    Karslı, Taki; Balcıoǧlu, Murat Soner

    2017-04-01

    The objective of this study was to assess genetic diversity of Güney Karaman Turkish local sheep breed. A total of 29 samples were genotyped by using 14 STR markers. All markers were polymorphic. The number of alleles in Güney Karaman sheep breed ranged from 3 to 11 per locus, with a mean of 7.42. The average observed and expected heterozygosity was 0.659 and 0.794, respectively. Mean inbreeding coefficient (Fis) value was found 0.175. The PIC values ranged from 0.569 to 0.860 with a mean of 0.743. The findings of this research demonstrate at moderate level gene diversity and heterozygosity with lower inbreeding in Güney Karaman sheep breed.

  5. The extent of linkage disequilibrium in beef cattle breeds using high-density SNP genotypes.

    PubMed

    Porto-Neto, Laercio R; Kijas, James W; Reverter, Antonio

    2014-03-24

    The extent of linkage disequilibrium (LD) between molecular markers impacts genome-wide association studies and implementation of genomic selection. The availability of high-density single nucleotide polymorphism (SNP) genotyping platforms makes it possible to investigate LD at an unprecedented resolution. In this work, we characterised LD decay in breeds of beef cattle of taurine, indicine and composite origins and explored its variation across autosomes and the X chromosome. In each breed, LD decayed rapidly and r2 was less than 0.2 for marker pairs separated by 50 kb. The LD decay curves clustered into three groups of similar LD decay that distinguished the three main cattle types. At short distances between markers (<10 kb), taurine breeds showed higher LD (r2=0.45) than their indicine (r2=0.25) and composite (r2=0.32) counterparts. This higher LD in taurine breeds was attributed to a smaller effective population size and a stronger bottleneck during breed formation. Using all SNPs on only the X chromosome, the three cattle types could still be distinguished. However for taurine breeds, the LD decay on the X chromosome was much faster and the background level much lower than for indicine breeds and composite populations. When using only SNPs that were polymorphic in all breeds, the analysis of the X chromosome mimicked that of the autosomes. The pattern of LD mirrored some aspects of the history of breed populations and showed a sharp decay with increasing physical distance between markers. We conclude that the availability of the HD chip can be used to detect association signals that remained hidden when using lower density genotyping platforms, since LD dropped below 0.2 at distances of 50 kb.

  6. Trends in genome-wide and region-specific genetic diversity in the Dutch-Flemish Holstein-Friesian breeding program from 1986 to 2015.

    PubMed

    Doekes, Harmen P; Veerkamp, Roel F; Bijma, Piter; Hiemstra, Sipke J; Windig, Jack J

    2018-04-11

    In recent decades, Holstein-Friesian (HF) selection schemes have undergone profound changes, including the introduction of optimal contribution selection (OCS; around 2000), a major shift in breeding goal composition (around 2000) and the implementation of genomic selection (GS; around 2010). These changes are expected to have influenced genetic diversity trends. Our aim was to evaluate genome-wide and region-specific diversity in HF artificial insemination (AI) bulls in the Dutch-Flemish breeding program from 1986 to 2015. Pedigree and genotype data (~ 75.5 k) of 6280 AI-bulls were used to estimate rates of genome-wide inbreeding and kinship and corresponding effective population sizes. Region-specific inbreeding trends were evaluated using regions of homozygosity (ROH). Changes in observed allele frequencies were compared to those expected under pure drift to identify putative regions under selection. We also investigated the direction of changes in allele frequency over time. Effective population size estimates for the 1986-2015 period ranged from 69 to 102. Two major breakpoints were observed in genome-wide inbreeding and kinship trends. Around 2000, inbreeding and kinship levels temporarily dropped. From 2010 onwards, they steeply increased, with pedigree-based, ROH-based and marker-based inbreeding rates as high as 1.8, 2.1 and 2.8% per generation, respectively. Accumulation of inbreeding varied substantially across the genome. A considerable fraction of markers showed changes in allele frequency that were greater than expected under pure drift. Putative selected regions harboured many quantitative trait loci (QTL) associated to a wide range of traits. In consecutive 5-year periods, allele frequencies changed more often in the same direction than in opposite directions, except when comparing the 1996-2000 and 2001-2005 periods. Genome-wide and region-specific diversity trends reflect major changes in the Dutch-Flemish HF breeding program. Introduction of OCS and the shift in breeding goal were followed by a drop in inbreeding and kinship and a shift in the direction of changes in allele frequency. After introduction of GS, rates of inbreeding and kinship increased substantially while allele frequencies continued to change in the same direction as before GS. These results provide insight in the effect of breeding practices on genomic diversity and emphasize the need for efficient management of genetic diversity in GS schemes.

  7. Whole-genome regression and prediction methods applied to plant and animal breeding.

    PubMed

    de Los Campos, Gustavo; Hickey, John M; Pong-Wong, Ricardo; Daetwyler, Hans D; Calus, Mario P L

    2013-02-01

    Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade.

  8. Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding

    PubMed Central

    de los Campos, Gustavo; Hickey, John M.; Pong-Wong, Ricardo; Daetwyler, Hans D.; Calus, Mario P. L.

    2013-01-01

    Genomic-enabled prediction is becoming increasingly important in animal and plant breeding and is also receiving attention in human genetics. Deriving accurate predictions of complex traits requires implementing whole-genome regression (WGR) models where phenotypes are regressed on thousands of markers concurrently. Methods exist that allow implementing these large-p with small-n regressions, and genome-enabled selection (GS) is being implemented in several plant and animal breeding programs. The list of available methods is long, and the relationships between them have not been fully addressed. In this article we provide an overview of available methods for implementing parametric WGR models, discuss selected topics that emerge in applications, and present a general discussion of lessons learned from simulation and empirical data analysis in the last decade. PMID:22745228

  9. Evaluation of methods and marker Systems in Genomic Selection of oil palm (Elaeis guineensis Jacq.).

    PubMed

    Kwong, Qi Bin; Teh, Chee Keng; Ong, Ai Ling; Chew, Fook Tim; Mayes, Sean; Kulaveerasingam, Harikrishna; Tammi, Martti; Yeoh, Suat Hui; Appleton, David Ross; Harikrishna, Jennifer Ann

    2017-12-11

    Genomic selection (GS) uses genome-wide markers as an attempt to accelerate genetic gain in breeding programs of both animals and plants. This approach is particularly useful for perennial crops such as oil palm, which have long breeding cycles, and for which the optimal method for GS is still under debate. In this study, we evaluated the effect of different marker systems and modeling methods for implementing GS in an introgressed dura family derived from a Deli dura x Nigerian dura (Deli x Nigerian) with 112 individuals. This family is an important breeding source for developing new mother palms for superior oil yield and bunch characters. The traits of interest selected for this study were fruit-to-bunch (F/B), shell-to-fruit (S/F), kernel-to-fruit (K/F), mesocarp-to-fruit (M/F), oil per palm (O/P) and oil-to-dry mesocarp (O/DM). The marker systems evaluated were simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). RR-BLUP, Bayesian A, B, Cπ, LASSO, Ridge Regression and two machine learning methods (SVM and Random Forest) were used to evaluate GS accuracy of the traits. The kinship coefficient between individuals in this family ranged from 0.35 to 0.62. S/F and O/DM had the highest genomic heritability, whereas F/B and O/P had the lowest. The accuracies using 135 SSRs were low, with accuracies of the traits around 0.20. The average accuracy of machine learning methods was 0.24, as compared to 0.20 achieved by other methods. The trait with the highest mean accuracy was F/B (0.28), while the lowest were both M/F and O/P (0.18). By using whole genomic SNPs, the accuracies for all traits, especially for O/DM (0.43), S/F (0.39) and M/F (0.30) were improved. The average accuracy of machine learning methods was 0.32, compared to 0.31 achieved by other methods. Due to high genomic resolution, the use of whole-genome SNPs improved the efficiency of GS dramatically for oil palm and is recommended for dura breeding programs. Machine learning slightly outperformed other methods, but required parameters optimization for GS implementation.

  10. Exploiting a wheat EST database to assess genetic diversity

    PubMed Central

    2010-01-01

    Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F2 individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29%) contigs and 96 (10%) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01. PMID:21637582

  11. Exploiting a wheat EST database to assess genetic diversity.

    PubMed

    Karakas, Ozge; Gurel, Filiz; Uncuoglu, Ahu Altinkut

    2010-10-01

    Expressed sequence tag (EST) markers have been used to assess variety and genetic diversity in wheat (Triticum aestivum). In this study, 1549 ESTs from wheat infested with yellow rust were used to examine the genetic diversity of six susceptible and resistant wheat cultivars. The aim of using these cultivars was to improve the competitiveness of public wheat breeding programs through the intensive use of modern, particularly marker-assisted, selection technologies. The F(2) individuals derived from cultivar crosses were screened for resistance to yellow rust at the seedling stage in greenhouses and adult stage in the field to identify DNA markers genetically linked to resistance. Five hundred and sixty ESTs were assembled into 136 contigs and 989 singletons. BlastX search results showed that 39 (29%) contigs and 96 (10%) singletons were homologous to wheat genes. The database-matched contigs and singletons were assigned to eight functional groups related to protein synthesis, photosynthesis, metabolism and energy, stress proteins, transporter proteins, protein breakdown and recycling, cell growth and division and reactive oxygen scavengers. PCR analyses with primers based on the contigs and singletons showed that the most polymorphic functional categories were photosynthesis (contigs) and metabolism and energy (singletons). EST analysis revealed considerable genetic variability among the Turkish wheat cultivars resistant and susceptible to yellow rust disease and allowed calculation of the mean genetic distance between cultivars, with the greatest similarity (0.725) being between Harmankaya99 and Sönmez2001, and the lowest (0.622) between Aytin98 and Izgi01.

  12. Advances in Dendrobium molecular research: Applications in genetic variation, identification and breeding.

    PubMed

    Teixeira da Silva, Jaime A; Jin, Xiaohua; Dobránszki, Judit; Lu, Jiangjie; Wang, Huizhong; Zotz, Gerhard; Cardoso, Jean Carlos; Zeng, Songjun

    2016-02-01

    Orchids of the genus Dendrobium are of great economic importance in global horticultural trade and in Asian traditional medicine. For both areas, research yielding solid information on taxonomy, phylogeny, and breeding of this genus are essential. Traditional morphological and cytological characterization are used in combination with molecular results in classification and identification. Markers may be useful when used alone but are not always reliable in identification. The number of species studied and identified by molecular markers is small at present. Conventional breeding methods are time-consuming and laborious. In the past two decades, promising advances have been made in taxonomy, phylogeny and breeding of Dendrobium species due to the intensive use of molecular markers. In this review, we focus on the main molecular techniques used in 121 published studies and discuss their importance and possibilities in speeding up the breeding of new cultivars and hybrids. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers.

    PubMed

    Van Inghelandt, Delphine; Melchinger, Albrecht E; Lebreton, Claude; Stich, Benjamin

    2010-05-01

    Information about the genetic diversity and population structure in elite breeding material is of fundamental importance for the improvement of crops. The objectives of our study were to (a) examine the population structure and the genetic diversity in elite maize germplasm based on simple sequence repeat (SSR) markers, (b) compare these results with those obtained from single nucleotide polymorphism (SNP) markers, and (c) compare the coancestry coefficient calculated from pedigree records with genetic distance estimates calculated from SSR and SNP markers. Our study was based on 1,537 elite maize inbred lines genotyped with 359 SSR and 8,244 SNP markers. The average number of alleles per locus, of group specific alleles, and the gene diversity (D) were higher for SSRs than for SNPs. Modified Roger's distance (MRD) estimates and membership probabilities of the STRUCTURE matrices were higher for SSR than for SNP markers but the germplasm organization in four heterotic pools was consistent with STRUCTURE results based on SSRs and SNPs. MRD estimates calculated for the two marker systems were highly correlated (0.87). Our results suggested that the same conclusions regarding the structure and the diversity of heterotic pools could be drawn from both markers types. Furthermore, although our results suggested that the ratio of the number of SSRs and SNPs required to obtain MRD or D estimates with similar precision is not constant across the various precision levels, we propose that between 7 and 11 times more SNPs than SSRs should be used for analyzing population structure and genetic diversity.

  14. The Architecture of the Pollen Hoarding Syndrome in Honey Bees: Implications for Understanding Social Evolution, Behavioral Syndromes, and Selective Breeding

    PubMed Central

    Rueppell, Olav

    2014-01-01

    Social evolution has influenced every aspect of contemporary honey bee biology, but the details are difficult to reconstruct. The reproductive ground plan hypothesis of social evolution proposes that central regulators of the gonotropic cycle of solitary insects have been coopted to coordinate social complexity in honey bees, such as the division of labor among workers. The predicted trait associations between reproductive physiology and social behavior have been identified in the context of the pollen hoarding syndrome, a larger suite of interrelated traits. The genetic architecture of this syndrome is characterized by a partially overlapping genetic architecture with several consistent, pleiotropic QTL. Despite these central QTL and an integrated hormonal regulation, separate aspects of the pollen hoarding syndrome may evolve independently due to peripheral QTL and additionally segregating genetic variance. The characterization of the pollen hoarding syndrome has also demonstrated that this syndrome involves many non-behavioral traits, which may be the case for numerous “behavioral” syndromes. Furthermore, the genetic architecture of the pollen hoarding syndrome has implications for breeding programs for improving honey health and other desirable traits: If these traits are comparable to the pollen hoarding syndrome, consistent pleiotropic QTL will enable marker assisted selection, while sufficient additional genetic variation may permit the dissociation of trade-offs for efficient multiple trait selection. PMID:25506100

  15. The Architecture of the Pollen Hoarding Syndrome in Honey Bees: Implications for Understanding Social Evolution, Behavioral Syndromes, and Selective Breeding.

    PubMed

    Rueppell, Olav

    2014-05-01

    Social evolution has influenced every aspect of contemporary honey bee biology, but the details are difficult to reconstruct. The reproductive ground plan hypothesis of social evolution proposes that central regulators of the gonotropic cycle of solitary insects have been coopted to coordinate social complexity in honey bees, such as the division of labor among workers. The predicted trait associations between reproductive physiology and social behavior have been identified in the context of the pollen hoarding syndrome, a larger suite of interrelated traits. The genetic architecture of this syndrome is characterized by a partially overlapping genetic architecture with several consistent, pleiotropic QTL. Despite these central QTL and an integrated hormonal regulation, separate aspects of the pollen hoarding syndrome may evolve independently due to peripheral QTL and additionally segregating genetic variance. The characterization of the pollen hoarding syndrome has also demonstrated that this syndrome involves many non-behavioral traits, which may be the case for numerous "behavioral" syndromes. Furthermore, the genetic architecture of the pollen hoarding syndrome has implications for breeding programs for improving honey health and other desirable traits: If these traits are comparable to the pollen hoarding syndrome, consistent pleiotropic QTL will enable marker assisted selection, while sufficient additional genetic variation may permit the dissociation of trade-offs for efficient multiple trait selection.

  16. A genetic linkage map of black raspberry (Rubus occidentalis) and the mapping of Ag(4) conferring resistance to the aphid Amphorophora agathonica.

    PubMed

    Bushakra, Jill M; Bryant, Douglas W; Dossett, Michael; Vining, Kelly J; VanBuren, Robert; Gilmore, Barbara S; Lee, Jungmin; Mockler, Todd C; Finn, Chad E; Bassil, Nahla V

    2015-08-01

    We have constructed a densely populated, saturated genetic linkage map of black raspberry and successfully placed a locus for aphid resistance. Black raspberry (Rubus occidentalis L.) is a high-value crop in the Pacific Northwest of North America with an international marketplace. Few genetic resources are readily available and little improvement has been achieved through breeding efforts to address production challenges involved in growing this crop. Contributing to its lack of improvement is low genetic diversity in elite cultivars and an untapped reservoir of genetic diversity from wild germplasm. In the Pacific Northwest, where most production is centered, the current standard commercial cultivar is highly susceptible to the aphid Amphorophora agathonica Hottes, which is a vector for the Raspberry mosaic virus complex. Infection with the virus complex leads to a rapid decline in plant health resulting in field replacement after only 3-4 growing seasons. Sources of aphid resistance have been identified in wild germplasm and are used to develop mapping populations to study the inheritance of these valuable traits. We have constructed a genetic linkage map using single-nucleotide polymorphism and transferable (primarily simple sequence repeat) markers for F1 population ORUS 4305 consisting of 115 progeny that segregate for aphid resistance. Our linkage map of seven linkage groups representing the seven haploid chromosomes of black raspberry consists of 274 markers on the maternal map and 292 markers on the paternal map including a morphological locus for aphid resistance. This is the first linkage map of black raspberry and will aid in developing markers for marker-assisted breeding, comparative mapping with other Rubus species, and enhancing the black raspberry genome assembly.

  17. Association Studies and Legume Synteny Reveal Haplotypes Determining Seed Size in Vigna unguiculata.

    PubMed

    Lucas, Mitchell R; Huynh, Bao-Lam; da Silva Vinholes, Patricia; Cisse, Ndiaga; Drabo, Issa; Ehlers, Jeffrey D; Roberts, Philip A; Close, Timothy J

    2013-01-01

    Highly specific seed market classes for cowpea and other grain legumes exist because grain is most commonly cooked and consumed whole. Size, shape, color, and texture are critical features of these market classes and breeders target development of cultivars for market acceptance. Resistance to biotic and abiotic stresses that are absent from elite breeding material are often introgressed through crosses to landraces or wild relatives. When crosses are made between parents with different grain quality characteristics, recovery of progeny with acceptable or enhanced grain quality is problematic. Thus genetic markers for grain quality traits can help in pyramiding genes needed for specific market classes. Allelic variation dictating the inheritance of seed size can be tagged and used to assist the selection of large seeded lines. In this work we applied 1,536-plex SNP genotyping and knowledge of legume synteny to characterize regions of the cowpea genome associated with seed size. These marker-trait associations will enable breeders to use marker-based selection approaches to increase the frequency of progeny with large seed. For 804 individuals derived from eight bi-parental populations, QTL analysis was used to identify markers linked to 10 trait determinants. In addition, the population structure of 171 samples from the USDA core collection was identified and incorporated into a genome-wide association study which supported more than half of the trait-associated regions important in the bi-parental populations. Seven of the total 10 QTLs were supported based on synteny to seed size associated regions identified in the related legume soybean. In addition to delivering markers linked to major trait determinants in the context of modern breeding, we provide an analysis of the diversity of the USDA core collection of cowpea to identify genepools, migrants, admixture, and duplicates.

  18. Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus.

    PubMed

    Wang, Xiaodong; Wang, Hao; Long, Yan; Li, Dianrong; Yin, Yongtai; Tian, Jianhua; Chen, Li; Liu, Liezhao; Zhao, Weiguo; Zhao, Yajun; Yu, Longjiang; Li, Maoteng

    2013-01-01

    Increasing seed oil content is one of the most important goals in breeding of rapeseed (B. napus L.). To dissect the genetic basis of oil content in B. napus, a large and new double haploid (DH) population containing 348 lines was obtained from a cross between 'KenC-8' and 'N53-2', two varieties with >10% difference in seed oil content, and this population was named the KN DH population. A genetic linkage map consisting of 403 markers was constructed, which covered a total length of 1783.9 cM with an average marker interval of 4.4 cM. The KN DH population was phenotyped in eight natural environments and subjected to quantitative trait loci (QTL) analysis for oil content. A total of 63 identified QTLs explaining 2.64-17.88% of the phenotypic variation were identified, and these QTLs were further integrated into 24 consensus QTLs located on 11 chromosomes using meta-analysis. A high-density consensus map with 1335 marker loci was constructed by combining the KN DH map with seven other published maps based on the common markers. Of the 24 consensus QTLs in the KN DH population, 14 were new QTLs including five new QTLs in A genome and nine in C genome. The analysis revealed that a larger population with significant differences in oil content gave a higher power detecting new QTLs for oil content, and the construction of the consensus map provided a new clue for comparing the QTLs detected in different populations. These findings enriched our knowledge of QTLs for oil content and should be a potential in marker-assisted breeding of B. napus.

  19. Identification of QTLs Associated with Oil Content in a High-Oil Brassica napus Cultivar and Construction of a High-Density Consensus Map for QTLs Comparison in B. napus

    PubMed Central

    Long, Yan; Li, Dianrong; Yin, Yongtai; Tian, Jianhua; Chen, Li; Liu, Liezhao; Zhao, Weiguo; Zhao, Yajun; Yu, Longjiang; Li, Maoteng

    2013-01-01

    Increasing seed oil content is one of the most important goals in breeding of rapeseed (B. napus L.). To dissect the genetic basis of oil content in B. napus, a large and new double haploid (DH) population containing 348 lines was obtained from a cross between ‘KenC-8’ and ‘N53-2’, two varieties with >10% difference in seed oil content, and this population was named the KN DH population. A genetic linkage map consisting of 403 markers was constructed, which covered a total length of 1783.9 cM with an average marker interval of 4.4 cM. The KN DH population was phenotyped in eight natural environments and subjected to quantitative trait loci (QTL) analysis for oil content. A total of 63 identified QTLs explaining 2.64–17.88% of the phenotypic variation were identified, and these QTLs were further integrated into 24 consensus QTLs located on 11 chromosomes using meta-analysis. A high-density consensus map with 1335 marker loci was constructed by combining the KN DH map with seven other published maps based on the common markers. Of the 24 consensus QTLs in the KN DH population, 14 were new QTLs including five new QTLs in A genome and nine in C genome. The analysis revealed that a larger population with significant differences in oil content gave a higher power detecting new QTLs for oil content, and the construction of the consensus map provided a new clue for comparing the QTLs detected in different populations. These findings enriched our knowledge of QTLs for oil content and should be a potential in marker-assisted breeding of B. napus. PMID:24312482

  20. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.

    PubMed

    Livingstone, Donald; Royaert, Stefan; Stack, Conrad; Mockaitis, Keithanne; May, Greg; Farmer, Andrew; Saski, Christopher; Schnell, Ray; Kuhn, David; Motamayor, Juan Carlos

    2015-08-01

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ∼4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification project was undertaken using RNAseq data from 16 diverse cacao cultivars. RNA sequences were aligned to the assembled transcriptome of the cultivar Matina 1-6, and 330,000 SNPs within coding regions were identified. From these SNPs, a subset of 6,000 high-quality SNPs were selected for inclusion on an Illumina Infinium SNP array: the Cacao6kSNP array. Using Cacao6KSNP array data from over 1,000 cacao samples, we demonstrate that our custom array produces a saturated genetic map and can be used to distinguish among even closely related genotypes. Our study enhances and expands the genetic resources available to the cacao research community, and provides the genome-scale set of tools that are critical for advancing breeding with molecular markers in an agricultural species with high genetic diversity. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  1. Quantitative trait loci mapping of heat tolerance in broccoli (Brassica oleracea var. italica) using genotyping-by-sequencing.

    PubMed

    Branham, Sandra E; Stansell, Zachary J; Couillard, David M; Farnham, Mark W

    2017-03-01

    Five quantitative trait loci and one epistatic interaction were associated with heat tolerance in a doubled haploid population of broccoli evaluated in three summer field trials. Predicted rising global temperatures due to climate change have generated a demand for crops that are resistant to yield and quality losses from heat stress. Broccoli (Brassica oleracea var. italica) is a cool weather crop with high temperatures during production decreasing both head quality and yield. Breeding for heat tolerance in broccoli has potential to both expand viable production areas and extend the growing season but breeding efficiency is constrained by limited genetic information. A doubled haploid (DH) broccoli population segregating for heat tolerance was evaluated for head quality in three summer fields in Charleston, SC, USA. Multiple quantitative trait loci (QTL) mapping of 1,423 single nucleotide polymorphisms developed through genotyping-by-sequencing identified five QTL and one positive epistatic interaction that explained 62.1% of variation in heat tolerance. The QTL identified here can be used to develop markers for marker-assisted selection and to increase our understanding of the molecular mechanisms underlying plant response to heat stress.

  2. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef).

    PubMed

    Cannarozzi, Gina; Plaza-Wüthrich, Sonia; Esfeld, Korinna; Larti, Stéphanie; Wilson, Yi Song; Girma, Dejene; de Castro, Edouard; Chanyalew, Solomon; Blösch, Regula; Farinelli, Laurent; Lyons, Eric; Schneider, Michel; Falquet, Laurent; Kuhlemeier, Cris; Assefa, Kebebew; Tadele, Zerihun

    2014-07-09

    Tef (Eragrostis tef), an indigenous cereal critical to food security in the Horn of Africa, is rich in minerals and protein, resistant to many biotic and abiotic stresses and safe for diabetics as well as sufferers of immune reactions to wheat gluten. We present the genome of tef, the first species in the grass subfamily Chloridoideae and the first allotetraploid assembled de novo. We sequenced the tef genome for marker-assisted breeding, to shed light on the molecular mechanisms conferring tef's desirable nutritional and agronomic properties, and to make its genome publicly available as a community resource. The draft genome contains 672 Mbp representing 87% of the genome size estimated from flow cytometry. We also sequenced two transcriptomes, one from a normalized RNA library and another from unnormalized RNASeq data. The normalized RNA library revealed around 38000 transcripts that were then annotated by the SwissProt group. The CoGe comparative genomics platform was used to compare the tef genome to other genomes, notably sorghum. Scaffolds comprising approximately half of the genome size were ordered by syntenic alignment to sorghum producing tef pseudo-chromosomes, which were sorted into A and B genomes as well as compared to the genetic map of tef. The draft genome was used to identify novel SSR markers, investigate target genes for abiotic stress resistance studies, and understand the evolution of the prolamin family of proteins that are responsible for the immune response to gluten. It is highly plausible that breeding targets previously identified in other cereal crops will also be valuable breeding targets in tef. The draft genome and transcriptome will be of great use for identifying these targets for genetic improvement of this orphan crop that is vital for feeding 50 million people in the Horn of Africa.

  3. Targeted Proteomics Approach for Precision Plant Breeding.

    PubMed

    Chawade, Aakash; Alexandersson, Erik; Bengtsson, Therese; Andreasson, Erik; Levander, Fredrik

    2016-02-05

    Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that enables precise quantitation of hundreds of peptides in a single run. This technique provides new opportunities for multiplexed protein biomarker measurements. For precision plant breeding, DNA-based markers have been used extensively, but the potential of protein biomarkers has not been exploited. In this work, we developed an SRM marker panel with assays for 104 potato (Solanum tuberosum) peptides selected using univariate and multivariate statistics. Thereafter, using random forest classification, the prediction markers were identified for Phytopthora infestans resistance in leaves, P. infestans resistance in tubers, and plant yield in potato leaf secretome samples. The results suggest that the marker panel has the predictive potential for three traits, two of which have no commercial DNA markers so far. Furthermore, the marker panel was also tested and found to be applicable to potato clones not used during the marker development. The proposed workflow is thus a proof-of-concept for targeted proteomics as an efficient readout in accelerated breeding for complex and agronomically important traits.

  4. The construction of a high-density linkage map for identifying SNP markers that are tightly linked to a nuclear-recessive major gene for male sterility in Cryptomeria japonica D. Don

    PubMed Central

    2012-01-01

    Background High-density linkage maps facilitate the mapping of target genes and the construction of partial linkage maps around target loci to develop markers for marker-assisted selection (MAS). MAS is quite challenging in conifers because of their large, complex, and poorly-characterized genomes. Our goal was to construct a high-density linkage map to facilitate the identification of markers that are tightly linked to a major recessive male-sterile gene (ms1) for MAS in C. japonica, a species that is important in Japanese afforestation but which causes serious social pollinosis problems. Results We constructed a high-density saturated genetic linkage map for C. japonica using expressed sequence-derived co-dominant single nucleotide polymorphism (SNP) markers, most of which were genotyped using the GoldenGate genotyping assay. A total of 1261 markers were assigned to 11 linkage groups with an observed map length of 1405.2 cM and a mean distance between two adjacent markers of 1.1 cM; the number of linkage groups matched the basic chromosome number in C. japonica. Using this map, we located ms1 on the 9th linkage group and constructed a partial linkage map around the ms1 locus. This enabled us to identify a marker (hrmSNP970_sf) that is closely linked to the ms1 gene, being separated from it by only 0.5 cM. Conclusions Using the high-density map, we located the ms1 gene on the 9th linkage group and constructed a partial linkage map around the ms1 locus. The map distance between the ms1 gene and the tightly linked marker was only 0.5 cM. The identification of markers that are tightly linked to the ms1 gene will facilitate the early selection of male-sterile trees, which should expedite C. japonica breeding programs aimed at alleviating pollinosis problems without harming productivity. PMID:22424262

  5. Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed

    PubMed Central

    Serrano, Magdalena; Calvo, Jorge H; Martínez, Marta; Marcos-Carcavilla, Ane; Cuevas, Javier; González, Carmen; Jurado, Juan J; de Tejada, Paloma Díez

    2009-01-01

    Background Assessing genetic biodiversity and population structure of minor breeds through the information provided by neutral molecular markers, allows determination of their extinction risk and to design strategies for their management and conservation. Analysis of microsatellite loci is known to be highly informative in the reconstruction of the historical processes underlying the evolution and differentiation of animal populations. Guadarrama goat is a threatened Spanish breed which actual census (2008) consists of 3057 females and 203 males distributed in 22 populations more or less isolated. The aim of this work is to study the genetic status of this breed through the analysis of molecular data from 10 microsatellites typed in historic and actual live animals. Results The mean expected heterozygosity across loci within populations ranged from 0.62 to 0.77. Genetic differentiation measures were moderate, with a mean FST of 0.074, GST of 0.081 and RST of 0.085. Percentages of variation among and within populations were 7.5 and 92.5, respectively. Bayesian clustering analyses pointed out a population subdivision in 16 clusters, however, no correlation between geographical distances and genetic differences was found. Management factors such as the limited exchange of animals between farmers (estimated gene flow Nm = 3.08) mostly due to sanitary and social constraints could be the major causes affecting Guadarrama goat population subdivision. Conclusion Genetic diversity measures revealed a good status of biodiversity in the Guadarrama goat breed. Since diseases are the first cause affecting the census in this breed, population subdivision would be an advantage for its conservation. However, to maintain private alleles present at low frequencies in such small populations minimizing the inbreeding rate, it would necessitate some mating designs of animals carrying such alleles among populations. The systematic use of molecular markers will facilitate the comprehensive management of these populations, which in combination with the actual breeding program to increase milk yield, will constitute a good strategy to preserve the breed. PMID:19785776

  6. Genetic characterization of four native Italian shepherd dog breeds and analysis of their relationship to cosmopolitan dog breeds using microsatellite markers.

    PubMed

    Bigi, D; Marelli, S P; Randi, E; Polli, M

    2015-12-01

    Very little research into genetic diversity of Italian native dog breeds has been carried out so far. In this study we aimed to estimate and compare the genetic diversity of four native Italian shepherd dog breeds: the Maremma, Bergamasco, Lupino del Gigante and Oropa shepherds. Therefore, some cosmopolitan dog breeds, which have been widely raised in Italy for a long time past, have also been considered to check possible influence of these dog populations on the Italian autochthonous breeds considered here. A total of 212 individuals, belonging to 10 different dog breeds, were sampled and genotyped using 18 autosomal microsatellite loci. We analyzed the genetic diversity of these breeds, within breed diversity, breed relationship and population structure. The 10 breeds considered in this study were clearly genetically differentiated from each other, regardless of current population sizes and the onset of separate breeding history. The level of genetic diversity explained 20% of the total genetic variation. The level of H E found here is in agreement with that found by other studies. The native Italian breeds showed generally higher genetic diversity compared with the long established, well-defined cosmopolitan dog breeds. As the Border Collie seems closer to the Italian breeds than the other cosmopolitan shepherd dogs considered here, a possible utilization of this breed to improve working performance in Italian traditional working shepherd dogs cannot be ignored. The data and information found here can be utilized in the organization of conservation programs planned to reduce inbreeding and to minimize loss of genetic variability.

  7. Marker-trait association analysis of frost tolerance of 672 worldwide pea (Pisum sativum L.) collections.

    PubMed

    Liu, Rong; Fang, Li; Yang, Tao; Zhang, Xiaoyan; Hu, Jinguo; Zhang, Hongyan; Han, Wenliang; Hua, Zeke; Hao, Junjie; Zong, Xuxiao

    2017-07-19

    Frost stress is one of the major abiotic stresses causing seedling death and yield reduction in winter pea. To improve the frost tolerance of pea, field evaluation of frost tolerance was conducted on 672 diverse pea accessions at three locations in Northern China in three growing seasons from 2013 to 2016 and marker-trait association analysis of frost tolerance were performed with 267 informative SSR markers in this study. Sixteen accessions were identified as the most winter-hardy for their ability to survive in all nine field experiments with a mean survival rate of 0.57, ranging from 0.41 to 0.75. Population structure analysis revealed a structured population of two sub-populations plus some admixtures in the 672 accessions. Association analysis detected seven markers that repeatedly had associations with frost tolerance in at least two different environments with two different statistical models. One of the markers is the functional marker EST1109 on LG VI which was predicted to co-localize with a gene involved in the metabolism of glycoproteins in response to chilling stress and may provide a novel mechanism of frost tolerance in pea. These winter-hardy germplasms and frost tolerance associated markers will play a vital role in marker-assisted breeding for winter-hardy pea cultivar.

  8. Determination of fatty acid composition in seed oil of rapeseed (Brassica napus L.) by mutated alleles of the FAD3 desaturase genes.

    PubMed

    Bocianowski, Jan; Mikołajczyk, Katarzyna; Bartkowiak-Broda, Iwona

    2012-02-01

    One of the goals in oilseed rape programs is to develop genotypes producing oil with low linolenic acid content (C18:3, ≤3%). Low linolenic mutant lines of canola rapeseed were obtained via chemical mutagenesis at the Plant Breeding and Acclimatization Institute - NRI, in Poznan, Poland, and allele-specific SNP markers were designed for monitoring of two statistically important single nucleotide polymorphisms detected by SNaPshot analysis in two FAD3 desaturase genes, BnaA.FAD3 and BnaC.FAD3, respectively. Strong negative correlation between the presence of mutant alleles of the genes and linolenic acid content was revealed by analysis of variance. In this paper we present detailed characteristics of the markers by estimation of the additive and dominance effects of the FAD3 genes with respect to particular fatty acid content in seed oil, as well as by calculation of the phenotypic variation of seed oil fatty acid composition accounted by particular allele-specific marker. The obtained percentage of variation in fatty acid composition was considerable only for linolenic acid content and equaled 35.6% for BnaA.FAD3 and 39.3% for BnaC.FAD3, whereas the total percentage of variation in linolenic acid content was 53.2% when accounted for mutations in both genes simultaneously. Our results revealed high specificity of the markers for effective monitoring of the wild-type and mutated alleles of the Brassica napus FAD3 desaturase genes in the low linolenic mutant recombinants in breeding programs.

  9. Development and Evaluation of a Genome-Wide 6K SNP Array for Diploid Sweet Cherry and Tetraploid Sour Cherry

    PubMed Central

    Peace, Cameron; Bassil, Nahla; Main, Dorrie; Ficklin, Stephen; Rosyara, Umesh R.; Stegmeir, Travis; Sebolt, Audrey; Gilmore, Barbara; Lawley, Cindy; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Iezzoni, Amy

    2012-01-01

    High-throughput genome scans are important tools for genetic studies and breeding applications. Here, a 6K SNP array for use with the Illumina Infinium® system was developed for diploid sweet cherry (Prunus avium) and allotetraploid sour cherry (P. cerasus). This effort was led by RosBREED, a community initiative to enable marker-assisted breeding for rosaceous crops. Next-generation sequencing in diverse breeding germplasm provided 25 billion basepairs (Gb) of cherry DNA sequence from which were identified genome-wide SNPs for sweet cherry and for the two sour cherry subgenomes derived from sweet cherry (avium subgenome) and P. fruticosa (fruticosa subgenome). Anchoring to the peach genome sequence, recently released by the International Peach Genome Initiative, predicted relative physical locations of the 1.9 million putative SNPs detected, preliminarily filtered to 368,943 SNPs. Further filtering was guided by results of a 144-SNP subset examined with the Illumina GoldenGate® assay on 160 accessions. A 6K Infinium® II array was designed with SNPs evenly spaced genetically across the sweet and sour cherry genomes. SNPs were developed for each sour cherry subgenome by using minor allele frequency in the sour cherry detection panel to enrich for subgenome-specific SNPs followed by targeting to either subgenome according to alleles observed in sweet cherry. The array was evaluated using panels of sweet (n = 269) and sour (n = 330) cherry breeding germplasm. Approximately one third of array SNPs were informative for each crop. A total of 1825 polymorphic SNPs were verified in sweet cherry, 13% of these originally developed for sour cherry. Allele dosage was resolved for 2058 polymorphic SNPs in sour cherry, one third of these being originally developed for sweet cherry. This publicly available genomics resource represents a significant advance in cherry genome-scanning capability that will accelerate marker-locus-trait association discovery, genome structure investigation, and genetic diversity assessment in this diploid-tetraploid crop group. PMID:23284615

  10. A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes

    PubMed Central

    2012-01-01

    Background Carcass fatness is an important trait in most pig breeding programs. Following market requests, breeding plans for fresh pork consumption are usually designed to reduce carcass fat content and increase lean meat deposition. However, the Italian pig industry is mainly devoted to the production of Protected Designation of Origin dry cured hams: pigs are slaughtered at around 160 kg of live weight and the breeding goal aims at maintaining fat coverage, measured as backfat thickness to avoid excessive desiccation of the hams. This objective has shaped the genetic pool of Italian heavy pig breeds for a few decades. In this study we applied a selective genotyping approach within a population of ~ 12,000 performance tested Italian Large White pigs. Within this population, we selectively genotyped 304 pigs with extreme and divergent backfat thickness estimated breeding value by the Illumina PorcineSNP60 BeadChip and performed a genome wide association study to identify loci associated to this trait. Results We identified 4 single nucleotide polymorphisms with P≤5.0E-07 and additional 119 ones with 5.0E-07

  11. Genetic characterization of Bombyx mori (Lepidoptera: Bombycidae) breeding and hybrid lines with different geographic origins.

    PubMed

    Furdui, Emilia M; Mărghitaş, Liviu A; Dezmirean, Daniel S; Paşca, Ioan; Pop, Iulia F; Erler, Silvio; Schlüns, Ellen A

    2014-01-01

    The domesticated silkworm Bombyx mori L. comprises a large number of geographical breeds and hybrid lines. Knowing the genetic structure of those may provide information to improve the conservation of commercial lines by estimating inbreeding over generations and the consequences of excessive use of those lineages. Here, we analyzed the genetic diversity of seven breeds and eight hybrid lines from Eastern Europe and Asia using highly polymorphic microsatellites markers to determine its genetical impact on their use in global breeding programs. No consistent pattern of deviation from Hardy-Weinberg equilibrium was found for most breed and hybrids; and the absence of a linkage disequilibrium also suggests that the strains are in equilibrium. A principal coordinate analysis revealed a clear separation of two silkworm breeds from the rest: one (IBV) originated from India and the other one (RG90) from Romania/Japan. The tendency of the other breeds from different geographic origins to cluster together in a general mix might be due to similar selection pressures (climate and anthropogenic factors) in different geographic locations. Phylogenetic analyses grouped the different silkworm breeds but not the hybrids according to their geographic origin and confirmed the pattern found in the principal coordinate analysis. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  12. Genetic Characterization of Bombyx mori (Lepidoptera: Bombycidae) Breeding and Hybrid Lines With Different Geographic Origins

    PubMed Central

    Furdui, Emilia M.; Mărghitaş, Liviu A.; Dezmirean, Daniel S.; Paşca, Ioan; Pop, Iulia F.; Erler, Silvio; Schlüns, Ellen A.

    2014-01-01

    Abstract The domesticated silkworm Bombyx mori L. comprises a large number of geographical breeds and hybrid lines. Knowing the genetic structure of those may provide information to improve the conservation of commercial lines by estimating inbreeding over generations and the consequences of excessive use of those lineages. Here, we analyzed the genetic diversity of seven breeds and eight hybrid lines from Eastern Europe and Asia using highly polymorphic microsatellites markers to determine its genetical impact on their use in global breeding programs. No consistent pattern of deviation from Hardy–Weinberg equilibrium was found for most breed and hybrids; and the absence of a linkage disequilibrium also suggests that the strains are in equilibrium. A principal coordinate analysis revealed a clear separation of two silkworm breeds from the rest: one (IBV) originated from India and the other one (RG 90 ) from Romania/Japan. The tendency of the other breeds from different geographic origins to cluster together in a general mix might be due to similar selection pressures (climate and anthropogenic factors) in different geographic locations. Phylogenetic analyses grouped the different silkworm breeds but not the hybrids according to their geographic origin and confirmed the pattern found in the principal coordinate analysis. PMID:25502023

  13. Molecular characterization of high performance inbred lines of Brazilian common beans.

    PubMed

    Cardoso, P C B; Veiga, M M; de Menezes, I P P; Valdisser, P A M R; Borba, T C O; Melo, L C; Del Peloso, M J; Brondani, C; Vianello, R P

    2013-02-06

    The identification of germplasm genetic variability in breeding programs of the common bean (Phaseolus vulgaris) is essential for determining the potential of each combination of parent plants to obtain superior genotypes. The present study aimed to estimated the extent of genetic diversity in 172 lineages and cultivars of the common bean by integrating five tests of value for cultivation and use (VCU) that were conducted over the last eight years by the breeding program of Embrapa Arroz e Feijão in Brazil. Nine multilocus genotyping systems composed of 36 fluorescent microsatellite markers distributed across 11 different chromosomes of the common bean were used, of which 24 were polymorphic in all trials. One hundred and eighty-seven alleles were identified, with an average of 7.79 alleles per locus and an average gene diversity of 0.65. The combined probability of identity for all loci was 1.32 x 10(-16). Lineages that are more genetically divergent between the selection cycles were identified, allowing the breeding program to develop a crossbreed between elite genotypes with a low degree of genetic relatedness. HE values ranged from 0.31 to 0.63, with a large reduction in the genetic base over successive selection cycles. The test showed a significant degree of differentiation (FST = 0.159). Private alleles (26%) were identified and can be directly incorporated into the gene pool of cultivated germplasm, thereby contributing effectively to the expansion of genetic diversity in this bean-breeding program.

  14. Genetic variability in Brazilian wheat cultivars assessed by microsatellite markers

    PubMed Central

    2009-01-01

    Wheat (Triticum aestivum) is one of the most important food staples in the south of Brazil. Understanding genetic variability among the assortment of Brazilian wheat is important for breeding. The aim of this work was to molecularly characterize the thirty-six wheat cultivars recommended for various regions of Brazil, and to assess mutual genetic distances, through the use of microsatellite markers. Twenty three polymorphic microsatellite markers (PMM) delineated all 36 of the samples, revealing a total of 74 simple sequence repeat (SSR) alleles, i.e. an average of 3.2 alleles per locus. Polymorphic information content (PIC value) calculated to assess the informativeness of each marker ranged from 0.20 to 0.79, with a mean of 0.49. Genetic distances among the 36 cultivars ranged from 0.10 (between cultivars Ocepar 18 and BRS 207) to 0.88 (between cultivars CD 101 and Fudancep 46), the mean distance being 0.48. Twelve groups were obtained by using the unweighted pair-group method with arithmetic means analysis (UPGMA), and thirteen through the Tocher method. Both methods produced similar clusters, with one to thirteen cultivars per group. The results indicate that these tools may be used to protect intellectual property and for breeding and selection programs. PMID:21637519

  15. Improving breeding efficiency in potato using molecular and quantitative genetics.

    PubMed

    Slater, Anthony T; Cogan, Noel O I; Hayes, Benjamin J; Schultz, Lee; Dale, M Finlay B; Bryan, Glenn J; Forster, John W

    2014-11-01

    Potatoes are highly heterozygous and the conventional breeding of superior germplasm is challenging, but use of a combination of MAS and EBVs can accelerate genetic gain. Cultivated potatoes are highly heterozygous due to their outbreeding nature, and suffer acute inbreeding depression. Modern potato cultivars also exhibit tetrasomic inheritance. Due to this genetic heterogeneity, the large number of target traits and the specific requirements of commercial cultivars, potato breeding is challenging. A conventional breeding strategy applies phenotypic recurrent selection over a number of generations, a process which can take over 10 years. Recently, major advances in genetics and molecular biology have provided breeders with molecular tools to accelerate gains for some traits. Marker-assisted selection (MAS) can be effectively used for the identification of major genes and quantitative trait loci that exhibit large effects. There are also a number of complex traits of interest, such as yield, that are influenced by a large number of genes of individual small effect where MAS will be difficult to deploy. Progeny testing and the use of pedigree in the analysis can provide effective identification of the superior genetic factors that underpin these complex traits. Recently, it has been shown that estimated breeding values (EBVs) can be developed for complex potato traits. Using a combination of MAS and EBVs for simple and complex traits can lead to a significant reduction in the length of the breeding cycle for the identification of superior germplasm.

  16. Challenges facing European agriculture and possible biotechnological solutions.

    PubMed

    Ricroch, Agnès; Harwood, Wendy; Svobodová, Zdeňka; Sági, László; Hundleby, Penelope; Badea, Elena Marcela; Rosca, Ioan; Cruz, Gabriela; Salema Fevereiro, Manuel Pedro; Marfà Riera, Victoria; Jansson, Stefan; Morandini, Piero; Bojinov, Bojin; Cetiner, Selim; Custers, René; Schrader, Uwe; Jacobsen, Hans-Joerg; Martin-Laffon, Jacqueline; Boisron, Audrey; Kuntz, Marcel

    2016-10-01

    Agriculture faces many challenges to maximize yields while it is required to operate in an environmentally sustainable manner. In the present study, we analyze the major agricultural challenges identified by European farmers (primarily related to biotic stresses) in 13 countries, namely Belgium, Bulgaria, the Czech Republic, France, Germany, Hungary, Italy, Portugal, Romania, Spain, Sweden, UK and Turkey, for nine major crops (barley, beet, grapevine, maize, oilseed rape, olive, potato, sunflower and wheat). Most biotic stresses (BSs) are related to fungi or insects, but viral diseases, bacterial diseases and even parasitic plants have an important impact on yield and harvest quality. We examine how these challenges have been addressed by public and private research sectors, using either conventional breeding, marker-assisted selection, transgenesis, cisgenesis, RNAi technology or mutagenesis. Both national surveys and scientific literature analysis followed by text mining were employed to evaluate genetic engineering (GE) and non-GE approaches. This is the first report of text mining of the scientific literature on plant breeding and agricultural biotechnology research. For the nine major crops in Europe, 128 BS challenges were identified with 40% of these addressed neither in the scientific literature nor in recent European public research programs. We found evidence that the private sector was addressing only a few of these "neglected" challenges. Consequently, there are considerable gaps between farmer's needs and current breeding and biotechnology research. We also provide evidence that the current political situation in certain European countries is an impediment to GE research in order to address these agricultural challenges in the future. This study should also contribute to the decision-making process on future pertinent international consortia to fill the identified research gaps.

  17. Genetic Parameters and the Impact of Off-Types for Theobroma cacao L. in a Breeding Program in Brazil

    PubMed Central

    DuVal, Ashley; Gezan, Salvador A.; Mustiga, Guiliana; Stack, Conrad; Marelli, Jean-Philippe; Chaparro, José; Livingstone, Donald; Royaert, Stefan; Motamayor, Juan C.

    2017-01-01

    Breeding programs of cacao (Theobroma cacao L.) trees share the many challenges of breeding long-living perennial crops, and genetic progress is further constrained by both the limited understanding of the inheritance of complex traits and the prevalence of technical issues, such as mislabeled individuals (off-types). To better understand the genetic architecture of cacao, in this study, 13 years of phenotypic data collected from four progeny trials in Bahia, Brazil were analyzed jointly in a multisite analysis. Three separate analyses (multisite, single site with and without off-types) were performed to estimate genetic parameters from statistical models fitted on nine important agronomic traits (yield, seed index, pod index, % healthy pods, % pods infected with witches broom, % of pods other loss, vegetative brooms, diameter, and tree height). Genetic parameters were estimated along with variance components and heritabilities from the multisite analysis, and a trial was fingerprinted with low-density SNP markers to determine the impact of off-types on estimations. Heritabilities ranged from 0.37 to 0.64 for yield and its components and from 0.03 to 0.16 for disease resistance traits. A weighted index was used to make selections for clonal evaluation, and breeding values estimated for the parental selection and estimation of genetic gain. The impact of off-types to breeding progress in cacao was assessed for the first time. Even when present at <5% of the total population, off-types altered selections by 48%, and impacted heritability estimations for all nine of the traits analyzed, including a 41% difference in estimated heritability for yield. These results show that in a mixed model analysis, even a low level of pedigree error can significantly alter estimations of genetic parameters and selections in a breeding program. PMID:29250097

  18. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds.

    PubMed

    Yurchenko, Andrey; Yudin, Nikolay; Aitnazarov, Ruslan; Plyusnina, Alexandra; Brukhin, Vladimir; Soloshenko, Vladimir; Lhasaranov, Bulat; Popov, Ruslan; Paronyan, Ivan A; Plemyashov, Kirill V; Larkin, Denis M

    2018-01-01

    One of the most economically important areas within the Russian agricultural sector is dairy and beef cattle farming contributing about $11 billion to the Russian economy annually. Trade connections, selection and breeding have resulted in the establishment of a number of breeds that are presumably adapted to local climatic conditions. Little however is known about the ancestry and history of Russian native cattle. To address this question, we genotyped 274 individuals from 18 breeds bred in Russia and compared them to 135 additional breeds from around the world that had been genotyped previously. Our results suggest a shared ancestry between most of the Russian cattle and European taurine breeds, apart from a few breeds that shared ancestry with the Asian taurines. The Yakut cattle, belonging to the latter group, was found to be the most diverged breed in the whole combined dataset according to structure results. Haplotype sharing further suggests that the Russian cattle can be divided into four major clusters reflecting ancestral relations with other breeds. Herein, we therefore shed light on to the history of Russian cattle and identified closely related breeds to those from Russia. Our results will facilitate future research on detecting signatures of selection in cattle genomes and eventually inform future genetics-assisted livestock breeding programs in Russia and in other countries.

  19. Genetic diversity and trait genomic prediction in a pea diversity panel.

    PubMed

    Burstin, Judith; Salloignon, Pauline; Chabert-Martinello, Marianne; Magnin-Robert, Jean-Bernard; Siol, Mathieu; Jacquin, Françoise; Chauveau, Aurélie; Pont, Caroline; Aubert, Grégoire; Delaitre, Catherine; Truntzer, Caroline; Duc, Gérard

    2015-02-21

    Pea (Pisum sativum L.), a major pulse crop grown for its protein-rich seeds, is an important component of agroecological cropping systems in diverse regions of the world. New breeding challenges imposed by global climate change and new regulations urge pea breeders to undertake more efficient methods of selection and better take advantage of the large genetic diversity present in the Pisum sativum genepool. Diversity studies conducted so far in pea used Simple Sequence Repeat (SSR) and Retrotransposon Based Insertion Polymorphism (RBIP) markers. Recently, SNP marker panels have been developed that will be useful for genetic diversity assessment and marker-assisted selection. A collection of diverse pea accessions, including landraces and cultivars of garden, field or fodder peas as well as wild peas was characterised at the molecular level using newly developed SNP markers, as well as SSR markers and RBIP markers. The three types of markers were used to describe the structure of the collection and revealed different pictures of the genetic diversity among the collection. SSR showed the fastest rate of evolution and RBIP the slowest rate of evolution, pointing to their contrasted mode of evolution. SNP markers were then used to predict phenotypes -the date of flowering (BegFlo), the number of seeds per plant (Nseed) and thousand seed weight (TSW)- that were recorded for the collection. Different statistical methods were tested including the LASSO (Least Absolute Shrinkage ans Selection Operator), PLS (Partial Least Squares), SPLS (Sparse Partial Least Squares), Bayes A, Bayes B and GBLUP (Genomic Best Linear Unbiased Prediction) methods and the structure of the collection was taken into account in the prediction. Despite a limited number of 331 markers used for prediction, TSW was reliably predicted. The development of marker assisted selection has not reached its full potential in pea until now. This paper shows that the high-throughput SNP arrays that are being developed will most probably allow for a more efficient selection in this species.

  20. Fine mapping of the rice Bph1 gene, which confers resistance to the brown planthopper (Nilaparvata lugens stal), and development of STS markers for marker-assisted selection.

    PubMed

    Cha, Young-Soon; Ji, Hyeonso; Yun, Doh-Won; Ahn, Byoung-Ohg; Lee, Myung Chul; Suh, Seok-Cheol; Lee, Chun Seok; Ahn, Eok Keun; Jeon, Yong-Hee; Jin, Il-Doo; Sohn, Jae-Keun; Koh, Hee-Jong; Eun, Moo-Young

    2008-08-31

    The brown planthopper (BPH) is a major insect pest in rice, and damages these plants by sucking phloem-sap and transmitting viral diseases. Many BPH resistance genes have been identified in indica varieties and wild rice accessions, but none has yet been cloned. In the present study we report fine mapping of the region containing the Bph1 locus, which enabled us to perform marker-aided selection (MAS). We used 273 F8 recombinant inbred lines (RILs) derived from a cross between Cheongcheongbyeo, an indica type variety harboring Bph1 from Mudgo, and Hwayeongbyeo, a BPH susceptible japonica variety. By random amplification of polymorphic DNA (RAPD) analysis using 656 random 10-mer primers, three RAPD markers (OPH09, OPA10 and OPA15) linked to Bph1 were identified and converted to SCAR (sequence characterized amplified region) markers. These markers were found to be contained in two BAC clones derived from chromosome 12: OPH09 on OSJNBa0011B18, and both OPA10 and OPA15 on OSJNBa0040E10. By sequence analysis of ten additional BAC clones evenly distributed between OSJNBa0011B18 and OSJNBa0040E10, we developed 15 STS markers. Of these, pBPH4 and pBPH14 flanked Bph1 at distances of 0.2 cM and 0.8 cM, respectively. The STS markers pBPH9, pBPH19, pBPH20, and pBPH21 co-segregated with Bph1. These markers were shown to be very useful for marker-assisted selection (MAS) in breeding populations of 32 F6 RILs from a cross between Andabyeo and IR71190, and 32 F5 RILs from a cross between Andabyeo and Suwon452.

Top