Sample records for marker-based motion capture

  1. Motion capture for human motion measuring by using single camera with triangle markers

    NASA Astrophysics Data System (ADS)

    Takahashi, Hidenori; Tanaka, Takayuki; Kaneko, Shun'ichi

    2005-12-01

    This study aims to realize a motion capture for measuring 3D human motions by using single camera. Although motion capture by using multiple cameras is widely used in sports field, medical field, engineering field and so on, optical motion capture method with one camera is not established. In this paper, the authors achieved a 3D motion capture by using one camera, named as Mono-MoCap (MMC), on the basis of two calibration methods and triangle markers which each length of side is given. The camera calibration methods made 3D coordinates transformation parameter and a lens distortion parameter with Modified DLT method. The triangle markers enabled to calculate a coordinate value of a depth direction on a camera coordinate. Experiments of 3D position measurement by using the MMC on a measurement space of cubic 2 m on each side show an average error of measurement of a center of gravity of a triangle marker was less than 2 mm. As compared with conventional motion capture method by using multiple cameras, the MMC has enough accuracy for 3D measurement. Also, by putting a triangle marker on each human joint, the MMC was able to capture a walking motion, a standing-up motion and a bending and stretching motion. In addition, a method using a triangle marker together with conventional spherical markers was proposed. Finally, a method to estimate a position of a marker by measuring the velocity of the marker was proposed in order to improve the accuracy of MMC.

  2. Marker optimization for facial motion acquisition and deformation.

    PubMed

    Le, Binh H; Zhu, Mingyang; Deng, Zhigang

    2013-11-01

    A long-standing problem in marker-based facial motion capture is what are the optimal facial mocap marker layouts. Despite its wide range of potential applications, this problem has not yet been systematically explored to date. This paper describes an approach to compute optimized marker layouts for facial motion acquisition as optimization of characteristic control points from a set of high-resolution, ground-truth facial mesh sequences. Specifically, the thin-shell linear deformation model is imposed onto the example pose reconstruction process via optional hard constraints such as symmetry and multiresolution constraints. Through our experiments and comparisons, we validate the effectiveness, robustness, and accuracy of our approach. Besides guiding minimal yet effective placement of facial mocap markers, we also describe and demonstrate its two selected applications: marker-based facial mesh skinning and multiresolution facial performance capture.

  3. A Study of Vicon System Positioning Performance.

    PubMed

    Merriaux, Pierre; Dupuis, Yohan; Boutteau, Rémi; Vasseur, Pascal; Savatier, Xavier

    2017-07-07

    Motion capture setups are used in numerous fields. Studies based on motion capture data can be found in biomechanical, sport or animal science. Clinical science studies include gait analysis as well as balance, posture and motor control. Robotic applications encompass object tracking. Today's life applications includes entertainment or augmented reality. Still, few studies investigate the positioning performance of motion capture setups. In this paper, we study the positioning performance of one player in the optoelectronic motion capture based on markers: Vicon system. Our protocol includes evaluations of static and dynamic performances. Mean error as well as positioning variabilities are studied with calibrated ground truth setups that are not based on other motion capture modalities. We introduce a new setup that enables directly estimating the absolute positioning accuracy for dynamic experiments contrary to state-of-the art works that rely on inter-marker distances. The system performs well on static experiments with a mean absolute error of 0.15 mm and a variability lower than 0.025 mm. Our dynamic experiments were carried out at speeds found in real applications. Our work suggests that the system error is less than 2 mm. We also found that marker size and Vicon sampling rate must be carefully chosen with respect to the speed encountered in the application in order to reach optimal positioning performance that can go to 0.3 mm for our dynamic study.

  4. A Novel Method to Compute Breathing Volumes via Motion Capture Systems: Design and Experimental Trials.

    PubMed

    Massaroni, Carlo; Cassetta, Eugenio; Silvestri, Sergio

    2017-10-01

    Respiratory assessment can be carried out by using motion capture systems. A geometrical model is mandatory in order to compute the breathing volume as a function of time from the markers' trajectories. This study describes a novel model to compute volume changes and calculate respiratory parameters by using a motion capture system. The novel method, ie, prism-based method, computes the volume enclosed within the chest by defining 82 prisms from the 89 markers attached to the subject chest. Volumes computed with this method are compared to spirometry volumes and to volumes computed by a conventional method based on the tetrahedron's decomposition of the chest wall and integrated in a commercial motion capture system. Eight healthy volunteers were enrolled and 30 seconds of quiet breathing data collected from each of them. Results show a better agreement between volumes computed by the prism-based method and the spirometry (discrepancy of 2.23%, R 2  = .94) compared to the agreement between volumes computed by the conventional method and the spirometry (discrepancy of 3.56%, R 2  = .92). The proposed method also showed better performances in the calculation of respiratory parameters. Our findings open up prospects for the further use of the new method in the breathing assessment via motion capture systems.

  5. Samba: a real-time motion capture system using wireless camera sensor networks.

    PubMed

    Oh, Hyeongseok; Cha, Geonho; Oh, Songhwai

    2014-03-20

    There is a growing interest in 3D content following the recent developments in 3D movies, 3D TVs and 3D smartphones. However, 3D content creation is still dominated by professionals, due to the high cost of 3D motion capture instruments. The availability of a low-cost motion capture system will promote 3D content generation by general users and accelerate the growth of the 3D market. In this paper, we describe the design and implementation of a real-time motion capture system based on a portable low-cost wireless camera sensor network. The proposed system performs motion capture based on the data-driven 3D human pose reconstruction method to reduce the computation time and to improve the 3D reconstruction accuracy. The system can reconstruct accurate 3D full-body poses at 16 frames per second using only eight markers on the subject's body. The performance of the motion capture system is evaluated extensively in experiments.

  6. Samba: A Real-Time Motion Capture System Using Wireless Camera Sensor Networks

    PubMed Central

    Oh, Hyeongseok; Cha, Geonho; Oh, Songhwai

    2014-01-01

    There is a growing interest in 3D content following the recent developments in 3D movies, 3D TVs and 3D smartphones. However, 3D content creation is still dominated by professionals, due to the high cost of 3D motion capture instruments. The availability of a low-cost motion capture system will promote 3D content generation by general users and accelerate the growth of the 3D market. In this paper, we describe the design and implementation of a real-time motion capture system based on a portable low-cost wireless camera sensor network. The proposed system performs motion capture based on the data-driven 3D human pose reconstruction method to reduce the computation time and to improve the 3D reconstruction accuracy. The system can reconstruct accurate 3D full-body poses at 16 frames per second using only eight markers on the subject's body. The performance of the motion capture system is evaluated extensively in experiments. PMID:24658618

  7. Robust object tracking techniques for vision-based 3D motion analysis applications

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  8. Letter regarding 'Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics' by Patrizi et al. and research reproducibility.

    PubMed

    2017-04-01

    The reporting of research in a manner that allows reproduction in subsequent investigations is important for scientific progress. Several details of the recent study by Patrizi et al., 'Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics', are absent from the published manuscript and make reproduction of findings impossible. As new and complex technologies with great promise for ergonomics develop, new but surmountable challenges for reporting investigations using these technologies in a reproducible manner arise. Practitioner Summary: As with traditional methods, scientific reporting of new and complex ergonomics technologies should be performed in a manner that allows reproduction in subsequent investigations and supports scientific advancement.

  9. Toward an affordable and user-friendly visual motion capture system.

    PubMed

    Bonnet, V; Sylla, N; Cherubini, A; Gonzáles, A; Azevedo Coste, C; Fraisse, P; Venture, G

    2014-01-01

    The present study aims at designing and evaluating a low-cost, simple and portable system for arm joint angle estimation during grasping-like motions. The system is based on a single RGB-D camera and three customized markers. The automatically detected and tracked marker positions were used as inputs to an offline inverse kinematic process based on bio-mechanical constraints to reduce noise effect and handle marker occlusion. The method was validated on 4 subjects with different motions. The joint angles were estimated both with the proposed low-cost system and, a stereophotogrammetric system. Comparative analysis shows good accuracy with high correlation coefficient (r= 0.92) and low average RMS error (3.8 deg).

  10. The application of a low-cost 3D depth camera for patient set-up and respiratory motion management in radiotherapy

    NASA Astrophysics Data System (ADS)

    Tahavori, Fatemeh

    Respiratory motion induces uncertainty in External Beam Radiotherapy (EBRT), which can result in sub-optimal dose delivery to the target tissue and unwanted dose to normal tissue. The conventional approach to managing patient respiratory motion for EBRT within the area of abdominal-thoracic cancer is through the use of internal radiological imaging methods (e.g. Megavoltage imaging or Cone-Beam Computed Tomography) or via surrogate estimates of tumour position using external markers placed on the patient chest. This latter method uses tracking with video-based techniques, and relies on an assumed correlation or mathematical model, between the external surrogate signal and the internal target position. The marker's trajectory can be used in both respiratory gating techniques and real-time tracking methods. Internal radiological imaging methods bring with them limited temporal resolution, and additional radiation burden, which can be addressed by external marker-based methods that carry no such issues. Moreover, by including multiple external markers and placing them closer to the internal target organs, the effciency of correlation algorithms can be increased. However, the quality of such external monitoring methods is underpinned by the performance of the associated correlation model. Therefore, several new approaches to correlation modelling have been developed as part of this thesis and compared using publicly-available datasets. Highly competitive results have been obtained when compared against state-of-the-art methods. Marker-based methods also have the disadvantages of requiring manual set-up time for marker placement and patient positioning and potential issues with reproducibility of marker placement. This motivates the investigation of non-contact marker-free methods for use in EBRT, which is the main topic of this thesis. The Microsoft Kinect is used as an example of a low-cost consumer grade 3D depth camera for capturing and analysing external respiratory motion. This thesis makes the first presentation of detailed studies of external respiratory motion captured using such low-cost technology and demonstrates its potential in a healthcare environment. Firstly, the fundamental performance of a range of Microsoft Kinect sensors is assessed for use in radiotherapy (and potentially other healthcare applications), in terms of static and dynamic performance using both phantoms and volunteers. Then external respiratory motion is captured using the above technology from a group of 32 healthy volunteers and Principal Component Analysis (PCA) is applied to a region of interest encompassing the complete anterior surface to demonstrate breathing style. This work demonstrates that this surface motion can be compactly described by the first two PCA eigenvectors. The reproducibility of subject-specific EBRT set-up using conventional laser-based alignment and marker-based Deep Inspiration Breath Hold (DIBH) methods are also studied using the Microsoft Kinect sensor. A cohort of five healthy female volunteers is repeatedly set-up for left-sided breast cancer EBRT and multiple DIBH episodes captured over five separate sessions representing multiple fractionated radiotherapy treatment sessions, but without dose delivery. This provided an independent assessment that subjects were set-up and generally achieved variations within currently accepted margins of clinical practice. Moreover, this work demonstrated the potential role of consumer-grade 3D depth camera technology as a possible replacement for marker based set-up and DIBH management procedures. This brings with it the additional benefits of low cost, and potential through-put benefits, as patient set-up could ultimately be fully automated with this technology, and DIBH could be independently monitored without requiring preparatory manual intervention.

  11. A low cost PSD-based monocular motion capture system

    NASA Astrophysics Data System (ADS)

    Ryu, Young Kee; Oh, Choonsuk

    2007-10-01

    This paper describes a monocular PSD-based motion capture sensor to employ with commercial video game systems such as Microsoft's XBOX and Sony's Playstation II. The system is compact, low-cost, and only requires a one-time calibration at the factory. The system includes a PSD(Position Sensitive Detector) and active infrared (IR) LED markers that are placed on the object to be tracked. The PSD sensor is placed in the focal plane of a wide-angle lens. The micro-controller calculates the 3D position of the markers using only the measured intensity and the 2D position on the PSD. A series of experiments were performed to evaluate the performance of our prototype system. From the experimental results we see that the proposed system has the advantages of the compact size, the low cost, the easy installation, and the high frame rates to be suitable for high speed motion tracking in games.

  12. Validation of the Leap Motion Controller using markered motion capture technology.

    PubMed

    Smeragliuolo, Anna H; Hill, N Jeremy; Disla, Luis; Putrino, David

    2016-06-14

    The Leap Motion Controller (LMC) is a low-cost, markerless motion capture device that tracks hand, wrist and forearm position. Integration of this technology into healthcare applications has begun to occur rapidly, making validation of the LMC׳s data output an important research goal. Here, we perform a detailed evaluation of the kinematic data output from the LMC, and validate this output against gold-standard, markered motion capture technology. We instructed subjects to perform three clinically-relevant wrist (flexion/extension, radial/ulnar deviation) and forearm (pronation/supination) movements. The movements were simultaneously tracked using both the LMC and a marker-based motion capture system from Motion Analysis Corporation (MAC). Adjusting for known inconsistencies in the LMC sampling frequency, we compared simultaneously acquired LMC and MAC data by performing Pearson׳s correlation (r) and root mean square error (RMSE). Wrist flexion/extension and radial/ulnar deviation showed good overall agreement (r=0.95; RMSE=11.6°, and r=0.92; RMSE=12.4°, respectively) with the MAC system. However, when tracking forearm pronation/supination, there were serious inconsistencies in reported joint angles (r=0.79; RMSE=38.4°). Hand posture significantly influenced the quality of wrist deviation (P<0.005) and forearm supination/pronation (P<0.001), but not wrist flexion/extension (P=0.29). We conclude that the LMC is capable of providing data that are clinically meaningful for wrist flexion/extension, and perhaps wrist deviation. It cannot yet return clinically meaningful data for measuring forearm pronation/supination. Future studies should continue to validate the LMC as updated versions of their software are developed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Real-time marker-free motion capture system using blob feature analysis

    NASA Astrophysics Data System (ADS)

    Park, Chang-Joon; Kim, Sung-Eun; Kim, Hong-Seok; Lee, In-Ho

    2005-02-01

    This paper presents a real-time marker-free motion capture system which can reconstruct 3-dimensional human motions. The virtual character of the proposed system mimics the motion of an actor in real-time. The proposed system captures human motions by using three synchronized CCD cameras and detects the root and end-effectors of an actor such as a head, hands, and feet by exploiting the blob feature analysis. And then, the 3-dimensional positions of end-effectors are restored and tracked by using Kalman filter. At last, the positions of the intermediate joint are reconstructed by using anatomically constrained inverse kinematics algorithm. The proposed system was implemented under general lighting conditions and we confirmed that the proposed system could reconstruct motions of a lot of people wearing various clothes in real-time stably.

  14. Exercise Sensing and Pose Recovery Inference Tool (ESPRIT) - A Compact Stereo-based Motion Capture Solution For Exercise Monitoring

    NASA Technical Reports Server (NTRS)

    Lee, Mun Wai

    2015-01-01

    Crew exercise is important during long-duration space flight not only for maintaining health and fitness but also for preventing adverse health problems, such as losses in muscle strength and bone density. Monitoring crew exercise via motion capture and kinematic analysis aids understanding of the effects of microgravity on exercise and helps ensure that exercise prescriptions are effective. Intelligent Automation, Inc., has developed ESPRIT to monitor exercise activities, detect body markers, extract image features, and recover three-dimensional (3D) kinematic body poses. The system relies on prior knowledge and modeling of the human body and on advanced statistical inference techniques to achieve robust and accurate motion capture. In Phase I, the company demonstrated motion capture of several exercises, including walking, curling, and dead lifting. Phase II efforts focused on enhancing algorithms and delivering an ESPRIT prototype for testing and demonstration.

  15. Comparison of 3D Joint Angles Measured With the Kinect 2.0 Skeletal Tracker Versus a Marker-Based Motion Capture System.

    PubMed

    Guess, Trent M; Razu, Swithin; Jahandar, Amirhossein; Skubic, Marjorie; Huo, Zhiyu

    2017-04-01

    The Microsoft Kinect is becoming a widely used tool for inexpensive, portable measurement of human motion, with the potential to support clinical assessments of performance and function. In this study, the relative osteokinematic Cardan joint angles of the hip and knee were calculated using the Kinect 2.0 skeletal tracker. The pelvis segments of the default skeletal model were reoriented and 3-dimensional joint angles were compared with a marker-based system during a drop vertical jump and a hip abduction motion. Good agreement between the Kinect and marker-based system were found for knee (correlation coefficient = 0.96, cycle RMS error = 11°, peak flexion difference = 3°) and hip (correlation coefficient = 0.97, cycle RMS = 12°, peak flexion difference = 12°) flexion during the landing phase of the drop vertical jump and for hip abduction/adduction (correlation coefficient = 0.99, cycle RMS error = 7°, peak flexion difference = 8°) during isolated hip motion. Nonsagittal hip and knee angles did not correlate well for the drop vertical jump. When limited to activities in the optimal capture volume and with simple modifications to the skeletal model, the Kinect 2.0 skeletal tracker can provide limited 3-dimensional kinematic information of the lower limbs that may be useful for functional movement assessment.

  16. Nearly automatic motion capture system for tracking octopus arm movements in 3D space.

    PubMed

    Zelman, Ido; Galun, Meirav; Akselrod-Ballin, Ayelet; Yekutieli, Yoram; Hochner, Binyamin; Flash, Tamar

    2009-08-30

    Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most popular technique for human motion capture uses markers placed on the skin which are tracked by a dedicated system. However, this technique may be inadequate for tracking animal movements, especially when it is impossible to attach markers to the animal's body either because of its size or shape or because of the environment in which the animal performs its movements. Attaching markers to an animal's body may also alter its behavior. Here we present a nearly automatic markerless motion capture system that overcomes these problems and successfully tracks octopus arm movements in 3D space. The system is based on three successive tracking and processing stages. The first stage uses a recently presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction are especially difficult problems in the case of octopus arm movements because of the deformable, non-rigid structure of the octopus arm and the underwater environment in which it moves. Our successful results suggest that the motion-tracking system presented here may be used for tracking other elongated objects.

  17. 3D kinematic measurement of human movement using low cost fish-eye cameras

    NASA Astrophysics Data System (ADS)

    Islam, Atiqul; Asikuzzaman, Md.; Garratt, Matthew A.; Pickering, Mark R.

    2017-02-01

    3D motion capture is difficult when the capturing is performed in an outdoor environment without controlled surroundings. In this paper, we propose a new approach of using two ordinary cameras arranged in a special stereoscopic configuration and passive markers on a subject's body to reconstruct the motion of the subject. Firstly for each frame of the video, an adaptive thresholding algorithm is applied for extracting the markers on the subject's body. Once the markers are extracted, an algorithm for matching corresponding markers in each frame is applied. Zhang's planar calibration method is used to calibrate the two cameras. As the cameras use the fisheye lens, they cannot be well estimated using a pinhole camera model which makes it difficult to estimate the depth information. In this work, to restore the 3D coordinates we use a unique calibration method for fisheye lenses. The accuracy of the 3D coordinate reconstruction is evaluated by comparing with results from a commercially available Vicon motion capture system.

  18. Simultaneous estimation of human and exoskeleton motion: A simplified protocol.

    PubMed

    Alvarez, M T; Torricelli, D; Del-Ama, A J; Pinto, D; Gonzalez-Vargas, J; Moreno, J C; Gil-Agudo, A; Pons, J L

    2017-07-01

    Adequate benchmarking procedures in the area of wearable robots is gaining importance in order to compare different devices on a quantitative basis, improve them and support the standardization and regulation procedures. Performance assessment usually focuses on the execution of locomotion tasks, and is mostly based on kinematic-related measures. Typical drawbacks of marker-based motion capture systems, gold standard for measure of human limb motion, become challenging when measuring limb kinematics, due to the concomitant presence of the robot. This work answers the question of how to reliably assess the subject's body motion by placing markers over the exoskeleton. Focusing on the ankle joint, the proposed methodology showed that it is possible to reconstruct the trajectory of the subject's joint by placing markers on the exoskeleton, although foot flexibility during walking can impact the reconstruction accuracy. More experiments are needed to confirm this hypothesis, and more subjects and walking conditions are needed to better characterize the errors of the proposed methodology, although our results are promising, indicating small errors.

  19. MPCV Exercise Operational Volume Analysis

    NASA Technical Reports Server (NTRS)

    Godfrey, A.; Humphreys, B.; Funk, J.; Perusek, G.; Lewandowski, B. E.

    2017-01-01

    In order to minimize the loss of bone and muscle mass during spaceflight, the Multi-purpose Crew Vehicle (MPCV) will include an exercise device and enough free space within the cabin for astronauts to use the device effectively. The NASA Digital Astronaut Project (DAP) has been tasked with using computational modeling to aid in determining whether or not the available operational volume is sufficient for in-flight exercise.Motion capture data was acquired using a 12-camera Smart DX system (BTS Bioengineering, Brooklyn, NY), while exercisers performed 9 resistive exercises without volume restrictions in a 1g environment. Data were collected from two male subjects, one being in the 99th percentile of height and the other in the 50th percentile of height, using between 25 and 60 motion capture markers. Motion capture data was also recorded as a third subject, also near the 50th percentile in height, performed aerobic rowing during a parabolic flight. A motion capture system and algorithms developed previously and presented at last years HRP-IWS were utilized to collect and process the data from the parabolic flight [1]. These motions were applied to a scaled version of a biomechanical model within the biomechanical modeling software OpenSim [2], and the volume sweeps of the motions were visually assessed against an imported CAD model of the operational volume. Further numerical analysis was performed using Matlab (Mathworks, Natick, MA) and the OpenSim API. This analysis determined the location of every marker in space over the duration of the exercise motion, and the distance of each marker to the nearest surface of the volume. Containment of the exercise motions within the operational volume was determined on a per-exercise and per-subject basis. The orientation of the exerciser and the angle of the footplate were two important factors upon which containment was dependent. Regions where the exercise motion exceeds the bounds of the operational volume have been identified by determining which markers from the motion capture exceed the operational volume and by how much. A credibility assessment of this analysis was performed in accordance with NASA-STD-7009 prior to delivery to the MPCV program.

  20. Data Fusion Based on Optical Technology for Observation of Human Manipulation

    NASA Astrophysics Data System (ADS)

    Falco, Pietro; De Maria, Giuseppe; Natale, Ciro; Pirozzi, Salvatore

    2012-01-01

    The adoption of human observation is becoming more and more frequent within imitation learning and programming by demonstration approaches (PbD) to robot programming. For robotic systems equipped with anthropomorphic hands, the observation phase is very challenging and no ultimate solution exists. This work proposes a novel mechatronic approach to the observation of human hand motion during manipulation tasks. The strategy is based on the combined use of an optical motion capture system and a low-cost data glove equipped with novel joint angle sensors, based on optoelectronic technology. The combination of the two information sources is obtained through a sensor fusion algorithm based on the extended Kalman filter (EKF) suitably modified to tackle the problem of marker occlusions, typical of optical motion capture systems. This approach requires a kinematic model of the human hand. Another key contribution of this work is a new method to calibrate this model.

  1. Hidden marker position estimation during sit-to-stand with walker.

    PubMed

    Yoon, Sang Ho; Jun, Hong Gul; Dan, Byung Ju; Jo, Byeong Rim; Min, Byung Hoon

    2012-01-01

    Motion capture analysis of sit-to-stand task with assistive device is hard to achieve due to obstruction on reflective makers. Previously developed robotic system, Smart Mobile Walker, is used as an assistive device to perform motion capture analysis in sit-to-stand task. All lower limb markers except hip markers are invisible through whole session. The link-segment and regression method is applied to estimate the marker position during sit-to-stand. Applying a new method, the lost marker positions are restored and the biomechanical evaluation of the sit-to-stand movement with a Smart Mobile Walker could be carried out. The accuracy of the marker position estimation is verified with normal sit-to-stand data from more than 30 clinical trials. Moreover, further research on improving the link segment and regression method is addressed.

  2. Novel techniques for a wireless motion capture system for the monitoring and rehabilitation of disabled persons for application in smart buildings.

    PubMed

    Banach, Marzena; Wasilewska, Agnieszka; Dlugosz, Rafal; Pauk, Jolanta

    2018-05-18

    Due to the problem of aging societies, there is a need for smart buildings to monitor and support people with various disabilities, including rheumatoid arthritis. The aim of this paper is to elaborate on novel techniques for wireless motion capture systems for the monitoring and rehabilitation of disabled people for application in smart buildings. The proposed techniques are based on cross-verification of distance measurements between markers and transponders in an environment with highly variable parameters. To their verification, algorithms that enable comprehensive investigation of a system with different numbers of transponders and varying ambient parameters (temperature and noise) were developed. In the estimation of the real positions of markers, various linear and nonlinear filters were used. Several thousand tests were carried out for various system parameters and different marker locations. The results show that localization error may be reduced by as much as 90%. It was observed that repetition of measurement reduces localization error by as much as one order of magnitude. The proposed system, based on wireless techniques, offers a high commercial potential. However, it requires extensive cooperation between teams, including hardware and software design, system modelling, and architectural design.

  3. An automated time and hand motion analysis based on planar motion capture extended to a virtual environment

    NASA Astrophysics Data System (ADS)

    Tinoco, Hector A.; Ovalle, Alex M.; Vargas, Carlos A.; Cardona, María J.

    2015-09-01

    In the context of industrial engineering, the predetermined time systems (PTS) play an important role in workplaces because inefficiencies are found in assembly processes that require manual manipulations. In this study, an approach is proposed with the aim to analyze time and motions in a manual process using a capture motion system embedded to a virtual environment. Capture motion system tracks IR passive markers located on the hands to take the positions of each one. For our purpose, a real workplace is virtually represented by domains to create a virtual workplace based on basic geometries. Motion captured data are combined with the virtual workplace to simulate operations carried out on it, and a time and motion analysis is completed by means of an algorithm. To test the methodology of analysis, a case study was intentionally designed using and violating the principles of motion economy. In the results, it was possible to observe where the hands never crossed as well as where the hands passed by the same place. In addition, the activities done in each zone were observed and some known deficiencies were identified in the distribution of the workplace by computational analysis. Using a frequency analysis of hand velocities, errors in the chosen assembly method were revealed showing differences in the hand velocities. An opportunity is seen to classify some quantifiable aspects that are not identified easily in a traditional time and motion analysis. The automated analysis is considered as the main contribution in this study. In the industrial context, a great application is perceived in terms of monitoring the workplace to analyze repeatability, PTS, workplace and labor activities redistribution using the proposed methodology.

  4. Expressive facial animation synthesis by learning speech coarticulation and expression spaces.

    PubMed

    Deng, Zhigang; Neumann, Ulrich; Lewis, J P; Kim, Tae-Yong; Bulut, Murtaza; Narayanan, Shrikanth

    2006-01-01

    Synthesizing expressive facial animation is a very challenging topic within the graphics community. In this paper, we present an expressive facial animation synthesis system enabled by automated learning from facial motion capture data. Accurate 3D motions of the markers on the face of a human subject are captured while he/she recites a predesigned corpus, with specific spoken and visual expressions. We present a novel motion capture mining technique that "learns" speech coarticulation models for diphones and triphones from the recorded data. A Phoneme-Independent Expression Eigenspace (PIEES) that encloses the dynamic expression signals is constructed by motion signal processing (phoneme-based time-warping and subtraction) and Principal Component Analysis (PCA) reduction. New expressive facial animations are synthesized as follows: First, the learned coarticulation models are concatenated to synthesize neutral visual speech according to novel speech input, then a texture-synthesis-based approach is used to generate a novel dynamic expression signal from the PIEES model, and finally the synthesized expression signal is blended with the synthesized neutral visual speech to create the final expressive facial animation. Our experiments demonstrate that the system can effectively synthesize realistic expressive facial animation.

  5. Robotics-based synthesis of human motion.

    PubMed

    Khatib, O; Demircan, E; De Sapio, V; Sentis, L; Besier, T; Delp, S

    2009-01-01

    The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

  6. Study of human body: Kinematics and kinetics of a martial arts (Silat) performers using 3D-motion capture

    NASA Astrophysics Data System (ADS)

    Soh, Ahmad Afiq Sabqi Awang; Jafri, Mohd Zubir Mat; Azraai, Nur Zaidi

    2015-04-01

    The Interest in this studies of human kinematics goes back very far in human history drove by curiosity or need for the understanding the complexity of human body motion. To find new and accurate information about the human movement as the advance computing technology became available for human movement that can perform. Martial arts (silat) were chose and multiple type of movement was studied. This project has done by using cutting-edge technology which is 3D motion capture to characterize and to measure the motion done by the performers of martial arts (silat). The camera will detect the markers (infrared reflection by the marker) around the performer body (total of 24 markers) and will show as dot in the computer software. The markers detected were analyzing using kinematic kinetic approach and time as reference. A graph of velocity, acceleration and position at time,t (seconds) of each marker was plot. Then from the information obtain, more parameters were determined such as work done, momentum, center of mass of a body using mathematical approach. This data can be used for development of the effectiveness movement in martial arts which is contributed to the people in arts. More future works can be implemented from this project such as analysis of a martial arts competition.

  7. A novel validation and calibration method for motion capture systems based on micro-triangulation.

    PubMed

    Nagymáté, Gergely; Tuchband, Tamás; Kiss, Rita M

    2018-06-06

    Motion capture systems are widely used to measure human kinematics. Nevertheless, users must consider system errors when evaluating their results. Most validation techniques for these systems are based on relative distance and displacement measurements. In contrast, our study aimed to analyse the absolute volume accuracy of optical motion capture systems by means of engineering surveying reference measurement of the marker coordinates (uncertainty: 0.75 mm). The method is exemplified on an 18 camera OptiTrack Flex13 motion capture system. The absolute accuracy was defined by the root mean square error (RMSE) between the coordinates measured by the camera system and by engineering surveying (micro-triangulation). The original RMSE of 1.82 mm due to scaling error was managed to be reduced to 0.77 mm while the correlation of errors to their distance from the origin reduced from 0.855 to 0.209. A simply feasible but less accurate absolute accuracy compensation method using tape measure on large distances was also tested, which resulted in similar scaling compensation compared to the surveying method or direct wand size compensation by a high precision 3D scanner. The presented validation methods can be less precise in some respects as compared to previous techniques, but they address an error type, which has not been and cannot be studied with the previous validation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. 3D video-based deformation measurement of the pelvis bone under dynamic cyclic loading

    PubMed Central

    2011-01-01

    Background Dynamic three-dimensional (3D) deformation of the pelvic bones is a crucial factor in the successful design and longevity of complex orthopaedic oncological implants. The current solutions are often not very promising for the patient; thus it would be interesting to measure the dynamic 3D-deformation of the whole pelvic bone in order to get a more realistic dataset for a better implant design. Therefore we hypothesis if it would be possible to combine a material testing machine with a 3D video motion capturing system, used in clinical gait analysis, to measure the sub millimetre deformation of a whole pelvis specimen. Method A pelvis specimen was placed in a standing position on a material testing machine. Passive reflective markers, traceable by the 3D video motion capturing system, were fixed to the bony surface of the pelvis specimen. While applying a dynamic sinusoidal load the 3D-movement of the markers was recorded by the cameras and afterwards the 3D-deformation of the pelvis specimen was computed. The accuracy of the 3D-movement of the markers was verified with 3D-displacement curve with a step function using a manual driven 3D micro-motion-stage. Results The resulting accuracy of the measurement system depended on the number of cameras tracking a marker. The noise level for a marker seen by two cameras was during the stationary phase of the calibration procedure ± 0.036 mm, and ± 0.022 mm if tracked by 6 cameras. The detectable 3D-movement performed by the 3D-micro-motion-stage was smaller than the noise level of the 3D-video motion capturing system. Therefore the limiting factor of the setup was the noise level, which resulted in a measurement accuracy for the dynamic test setup of ± 0.036 mm. Conclusion This 3D test setup opens new possibilities in dynamic testing of wide range materials, like anatomical specimens, biomaterials, and its combinations. The resulting 3D-deformation dataset can be used for a better estimation of material characteristics of the underlying structures. This is an important factor in a reliable biomechanical modelling and simulation as well as in a successful design of complex implants. PMID:21762533

  9. Accuracy and Reliability of Marker-Based Approaches to Scale the Pelvis, Thigh, and Shank Segments in Musculoskeletal Models.

    PubMed

    Kainz, Hans; Hoang, Hoa X; Stockton, Chris; Boyd, Roslyn R; Lloyd, David G; Carty, Christopher P

    2017-10-01

    Gait analysis together with musculoskeletal modeling is widely used for research. In the absence of medical images, surface marker locations are used to scale a generic model to the individual's anthropometry. Studies evaluating the accuracy and reliability of different scaling approaches in a pediatric and/or clinical population have not yet been conducted and, therefore, formed the aim of this study. Magnetic resonance images (MRI) and motion capture data were collected from 12 participants with cerebral palsy and 6 typically developed participants. Accuracy was assessed by comparing the scaled model's segment measures to the corresponding MRI measures, whereas reliability was assessed by comparing the model's segments scaled with the experimental marker locations from the first and second motion capture session. The inclusion of joint centers into the scaling process significantly increased the accuracy of thigh and shank segment length estimates compared to scaling with markers alone. Pelvis scaling approaches which included the pelvis depth measure led to the highest errors compared to the MRI measures. Reliability was similar between scaling approaches with mean ICC of 0.97. The pelvis should be scaled using pelvic width and height and the thigh and shank segment should be scaled using the proximal and distal joint centers.

  10. Marker-based method to measure movement between the residual limb and a transtibial prosthetic socket.

    PubMed

    Childers, Walter Lee; Siebert, Steven

    2016-12-01

    Limb movement between the residuum and socket continues to be an underlying factor in limb health, prosthetic comfort, and gait performance yet techniques to measure this have been underdeveloped. Develop a method to measure motion between the residual limb and a transtibial prosthetic socket. Single subject, repeated measures with mathematical modeling. The gait of a participant with transtibial amputation was recorded using a motion capture system using a marker set that included arrays on the anterior distal tibia and the lateral epicondyle of the femur. The proximal or distal translation, anterior or posterior translation, and angular movements were quantified. A random Monte Carlo simulation based on the precision of the motion capture system and a model of the bone moving under the skin explored the technique's accuracy. Residual limb tissue stiffness was modeled as a linear spring based on data from Papaioannou et al. Residuum movement relative to the socket went through ~30 mm, 18 mm, and 15° range of motion. Root mean squared errors were 5.47 mm, 1.86 mm, and 0.75° when considering the modeled bone-skin movement in the proximal or distal, anterior or posterior, and angular directions, respectively. The measured movement was greater than the root mean squared error, indicating that this method can measure motion between the residuum and socket. The ability to quantify movement between the residual limb and the prosthetic socket will improve prosthetic treatment through the evaluation of different prosthetic suspensions, socket designs, and motor control of the prosthetic interface. © The International Society for Prosthetics and Orthotics 2015.

  11. Evaluation of the Microsoft Kinect for screening ACL injury.

    PubMed

    Stone, Erik E; Butler, Michael; McRuer, Aaron; Gray, Aaron; Marks, Jeffrey; Skubic, Marjorie

    2013-01-01

    A study was conducted to evaluate the use of the skeletal model generated by the Microsoft Kinect SDK in capturing four biomechanical measures during the Drop Vertical Jump test. These measures, which include: knee valgus motion from initial contact to peak flexion, frontal plane knee angle at initial contact, frontal plane knee angle at peak flexion, and knee-to-ankle separation ratio at peak flexion, have proven to be useful in screening for future knee anterior cruciate ligament (ACL) injuries among female athletes. A marker-based Vicon motion capture system was used for ground truth. Results indicate that the Kinect skeletal model likely has acceptable accuracy for use as part of a screening tool to identify elevated risk for ACL injury.

  12. Creating stimuli for the study of biological-motion perception.

    PubMed

    Dekeyser, Mathias; Verfaillie, Karl; Vanrie, Jan

    2002-08-01

    In the perception of biological motion, the stimulus information is confined to a small number of lights attached to the major joints of a moving person. Despite this drastic degradation of the stimulus information, the human visual apparatus organizes the swarm of moving dots into a vivid percept of a moving biological creature. Several techniques have been proposed to create point-light stimuli: placing dots at strategic locations on photographs or films, video recording a person with markers attached to the body, computer animation based on artificial synthesis, and computer animation based on motion-capture data. A description is given of the technique we are currently using in our laboratory to produce animated point-light figures. The technique is based on a combination of motion capture and three-dimensional animation software (Character Studio, Autodesk, Inc., 1998). Some of the advantages of our approach are that the same actions can be shown from any viewpoint, that point-light versions, as well as versions with a full-fleshed character, can be created of the same actions, and that point lights can indicate the center of a joint (thereby eliminating several disadvantages associated with other techniques).

  13. Determining the maximum diameter for holes in the shoe without compromising shoe integrity when using a multi-segment foot model.

    PubMed

    Shultz, Rebecca; Jenkyn, Thomas

    2012-01-01

    Measuring individual foot joint motions requires a multi-segment foot model, even when the subject is wearing a shoe. Each foot segment must be tracked with at least three skin-mounted markers, but for these markers to be visible to an optical motion capture system holes or 'windows' must be cut into the structure of the shoe. The holes must be sufficiently large avoiding interfering with the markers, but small enough that they do not compromise the shoe's structural integrity. The objective of this study was to determine the maximum size of hole that could be cut into a running shoe upper without significantly compromising its structural integrity or changing the kinematics of the foot within the shoe. Three shoe designs were tested: (1) neutral cushioning, (2) motion control and (3) stability shoes. Holes were cut progressively larger, with four sizes tested in all. Foot joint motions were measured: (1) hindfoot with respect to midfoot in the frontal plane, (2) forefoot twist with respect to midfoot in the frontal plane, (3) the height-to-length ratio of the medial longitudinal arch and (4) the hallux angle with respect to first metatarsal in the sagittal plane. A single subject performed level walking at her preferred pace in each of the three shoes with ten repetitions for each hole size. The largest hole that did not disrupt shoe integrity was an oval of 1.7cm×2.5cm. The smallest shoe deformations were seen with the motion control shoe. The least change in foot joint motion was forefoot twist in both the neutral shoe and stability shoe for any size hole. This study demonstrates that for a hole smaller than this size, optical motion capture with a cluster-based multi-segment foot model is feasible for measure foot in shoe kinematics in vivo. Copyright © 2011. Published by Elsevier Ltd.

  14. Using Motion Capture to Determine Marksmanship Shooting Profiles: Teaching Soldiers to Shoot Better Faster

    DTIC Science & Technology

    2008-09-01

    the wrists, feet, shoulder, spine, and sternum. It was determined that additional markers were needed to convert the data into a usable Santos . vst ... VST is the template data structure used to identify each of the individual markers used by Santos). Eighteen extra markers were used to allow for

  15. Can hip and knee kinematics be improved by eliminating thigh markers?

    PubMed Central

    Schulz, Brian W.; Kimmel, Wendy L.

    2017-01-01

    Background Marker sets developed for gait analysis are often applied to more dynamic tasks with little or no validation, despite known complications of soft tissue artifact. Methods This study presents a comparison of hip and knee kinematics as calculated by five concurrently-worn tracking marker sets during eight different tasks. The first three marker sets were based on Helen Hayes but used 1) proximal thigh wands, 2) distal thigh wands, and 3) patellar markers instead of thigh wands. The remaining two marker sets used rigid clusters on the 4) thighs and shanks and 5) only shanks. Pelvis and foot segments were shared by all marker sets. The first three tasks were maximal femoral rotations using different knee and hip positions to quantify the ability of each marker set to capture this motion. The remaining five tasks were walking, walking a 1m radius circle, running, jumping, and lunging. Findings In general, few and small differences in knee and hip flexion-extension were observed between marker sets, while many and large differences in adduction-abduction and external-internal rotations were observed. The shank-only tracking marker set was capable of detecting the greatest hip external-internal rotation, yet only did so during dynamic tasks where greater hip axial motions would be expected. All data are available as supplementary material. Interpretation Marker set selection is critical to non-sagittal hip and knee motions. The shank-only tracking marker set presented here is a viable alternative that may improve knee and hip kinematics by eliminating errors from thigh soft tissue artifact. PMID:20493599

  16. Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid.

    PubMed

    Sumida, Iori; Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshikazu; Miyamoto, Youichi; Yamazaki, Hideya; Mabuchi, Nobuhisa; Tsuda, Eimei; Ogawa, Kazuhiko

    2016-03-08

    Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film-based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers' abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one-dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers' breathing patterns, the mean tracking error range was 0.78-1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient.

  17. Utilizing Commercial Hardware and Open Source Computer Vision Software to Perform Motion Capture for Reduced Gravity Flight

    NASA Technical Reports Server (NTRS)

    Humphreys, Brad; Bellisario, Brian; Gallo, Christopher; Thompson, William K.; Lewandowski, Beth

    2016-01-01

    Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited. Therefore, compact resistance exercise device prototypes are being developed. The NASA Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) project and the National Space Biomedical Research Institute (NSBRI) funded researchers by developing computational models of exercising with these new advanced exercise device concepts. To perform validation of these models and to support the Advanced Exercise Concepts Project, several candidate devices have been flown onboard NASAs Reduced Gravity Aircraft. In terrestrial laboratories, researchers typically have available to them motion capture systems for the measurement of subject kinematics. Onboard the parabolic flight aircraft it is not practical to utilize the traditional motion capture systems due to the large working volume they require and their relatively high replacement cost if damaged. To support measuring kinematics on board parabolic aircraft, a motion capture system is being developed utilizing open source computer vision code with commercial off the shelf (COTS) video camera hardware. While the systems accuracy is lower than lab setups, it provides a means to produce quantitative comparison motion capture kinematic data. Additionally, data such as required exercise volume for small spaces such as the Orion capsule can be determined. METHODS: OpenCV is an open source computer vision library that provides the ability to perform multi-camera 3 dimensional reconstruction. Utilizing OpenCV, via the Python programming language, a set of tools has been developed to perform motion capture in confined spaces using commercial cameras. Four Sony Video Cameras were intrinsically calibrated prior to flight. Intrinsic calibration provides a set of camera specific parameters to remove geometric distortion of the lens and sensor (specific to each individual camera). A set of high contrast markers were placed on the exercising subject (safety also necessitated that they be soft in case they become detached during parabolic flight); small yarn balls were used. Extrinsic calibration, the determination of camera location and orientation parameters, is performed using fixed landmark markers shared by the camera scenes. Additionally a wand calibration, the sweeping of the camera scenes simultaneously, was also performed. Techniques have been developed to perform intrinsic calibration, extrinsic calibration, isolation of the markers in the scene, calculation of marker 2D centroids, and 3D reconstruction from multiple cameras. These methods have been tested in the laboratory side-by-side comparison to a traditional motion capture system and also on a parabolic flight.

  18. CAT & MAUS: A novel system for true dynamic motion measurement of underlying bony structures with compensation for soft tissue movement.

    PubMed

    Jia, Rui; Monk, Paul; Murray, David; Noble, J Alison; Mellon, Stephen

    2017-09-06

    Optoelectronic motion capture systems are widely employed to measure the movement of human joints. However, there can be a significant discrepancy between the data obtained by a motion capture system (MCS) and the actual movement of underlying bony structures, which is attributed to soft tissue artefact. In this paper, a computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system with an augmented globally optimal registration algorithm is presented to dynamically track the underlying bony structure during movement. The augmented registration part of CAT & MAUS was validated with a high system accuracy of 80%. The Euclidean distance between the marker-based bony landmark and the bony landmark tracked by CAT & MAUS was calculated to quantify the measurement error of an MCS caused by soft tissue artefact during movement. The average Euclidean distance between the target bony landmark measured by each of the CAT & MAUS system and the MCS alone varied from 8.32mm to 16.87mm in gait. This indicates the discrepancy between the MCS measured bony landmark and the actual underlying bony landmark. Moreover, Procrustes analysis was applied to demonstrate that CAT & MAUS reduces the deformation of the body segment shape modeled by markers during motion. The augmented CAT & MAUS system shows its potential to dynamically detect and locate actual underlying bony landmarks, which reduces the MCS measurement error caused by soft tissue artefact during movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Definition of anatomical zero positions for assessing shoulder pose with 3D motion capture during bilateral abduction of the arms.

    PubMed

    Rettig, Oliver; Krautwurst, Britta; Maier, Michael W; Wolf, Sebastian I

    2015-12-09

    Surgical interventions at the shoulder may alter function of the shoulder complex. Clinically, the outcome can be assessed by universal goniometry. Marker-based motion capture may not resemble these results due to differing angle definitions. The clinical inspection of bilateral arm abduction for assessing shoulder dysfunction is performed with a marker based 3D optical measurement method. An anatomical zero position of shoulder pose is proposed to determine absolute angles according to the Neutral-0-Method as used in orthopedic context. Static shoulder positions are documented simultaneously by 3D marker tracking and universal goniometry in 8 young and healthy volunteers. Repetitive bilateral arm abduction movements of at least 150° range of motion are monitored. Similarly a subject with gleno-humeral osteoarthritis is monitored for demonstrating the feasibility of the method and to illustrate possible shoulder dysfunction effects. With mean differences of less than 2°, the proposed anatomical zero position results in good agreement between shoulder elevation/depression angles determined by 3D marker tracking and by universal goniometry in static positions. Lesser agreement is found for shoulder pro-/retraction with systematic deviations of up to 6°. In the bilateral arm abduction movements the volunteers perform a common and specific pattern in clavicula-thoracic and gleno-humeral motion with maximum shoulder angles of 32° elevation, 5° depression and 45° protraction, respectively, whereas retraction is hardly reached. Further, they all show relevant out of (frontal) plane motion with anteversion angles of 30° in overhead position (maximum abduction). With increasing arm anteversion the shoulder is increasingly retroverted, with a maximum of 20° retroversion. The subject with gleno-humeral osteoarthritis shows overall less shoulder abduction range of motion but with increased out-of-plane movement during abduction. The proposed anatomical zero definition for shoulder pose fills the missing link for determining absolute joint angles for shoulder elevation/depression and pro-/retraction. For elevation-/depression the accuracy suits clinical expectations very well with mean differences less than 2° and limits of agreement of 8.6° whereas for pro-/retraction the accuracy in individual cases may be inferior with limits of agreement of up to 24.6°. This has critically to be kept in mind when applying this concept to shoulder intervention studies.

  20. Development of a new calibration procedure and its experimental validation applied to a human motion capture system.

    PubMed

    Royo Sánchez, Ana Cristina; Aguilar Martín, Juan José; Santolaria Mazo, Jorge

    2014-12-01

    Motion capture systems are often used for checking and analyzing human motion in biomechanical applications. It is important, in this context, that the systems provide the best possible accuracy. Among existing capture systems, optical systems are those with the highest accuracy. In this paper, the development of a new calibration procedure for optical human motion capture systems is presented. The performance and effectiveness of that new calibration procedure are also checked by experimental validation. The new calibration procedure consists of two stages. In the first stage, initial estimators of intrinsic and extrinsic parameters are sought. The camera calibration method used in this stage is the one proposed by Tsai. These parameters are determined from the camera characteristics, the spatial position of the camera, and the center of the capture volume. In the second stage, a simultaneous nonlinear optimization of all parameters is performed to identify the optimal values, which minimize the objective function. The objective function, in this case, minimizes two errors. The first error is the distance error between two markers placed in a wand. The second error is the error of position and orientation of the retroreflective markers of a static calibration object. The real co-ordinates of the two objects are calibrated in a co-ordinate measuring machine (CMM). The OrthoBio system is used to validate the new calibration procedure. Results are 90% lower than those from the previous calibration software and broadly comparable with results from a similarly configured Vicon system.

  1. SU-D-207A-05: Investigating Sparse-Sampled MRI for Motion Management in Thoracic Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabouri, P; Sawant, A; Arai, T

    Purpose: Sparse sampling and reconstruction-based MRI techniques represent an attractive strategy to achieve sufficiently high image acquisition speed while maintaining image quality for the task of radiotherapy guidance. In this study, we examine rapid dynamic MRI using a sparse sampling sequence k-t BLAST in capturing motion-induced, cycle-to-cycle variations in tumor position. We investigate the utility of long-term MRI-based motion monitoring as a means of better characterizing respiration-induced tumor motion compared to a single-cycle 4DCT. Methods: An MRI-compatible, programmable, deformable lung motion phantom with eleven 1.5 ml water marker tubes was placed inside a 3.0 T whole-body MR scanner (Philips Ingenia).more » The phantom was programmed with 10 lung tumor motion traces previously recorded using the Synchrony system. 2D+t image sequences of a coronal slice were acquired using a balanced-SSFP sequence combined with k-t BLAST (accn=3, resolution=0.66×0.66×5 mm3; acquisition time = 110 ms/slice). kV fluoroscopic (ground truth) and 4DCT imaging was performed with the same phantom setup and motion trajectories. Marker positions in all three modalities were segmented and tracked using an opensource deformable image registration package, NiftyReg. Results: Marker trajectories obtained from rapid MRI exhibited <1 mm error compared to kv Fluoro trajectories in the presence of complex motion including baseline shifts and changes in respiratory amplitude, indicating the ability of MRI to monitor motion with adequate geometric fidelity for the purpose of radiotherapy guidance. In contrast, the trajectory derived from 4DCT exhibited significant errors up to 6 mm due to cycle-to-cycle variations and baseline shifts. Consequently, 4DCT was found to underestimate the range of marker motion by as much as 50%. Conclusion: Dynamic MRI is a promising tool for radiotherapy motion management as it permits for longterm, dose-free, soft-tissue-based monitoring of motion, yielding richer and more accurate information about tumor position and motion range compared to the current state-of-the-art, 4DCT. This work was partially supported through research funding from National Institutes of Health (R01CA169102).« less

  2. Vision-based system identification technique for building structures using a motion capture system

    NASA Astrophysics Data System (ADS)

    Oh, Byung Kwan; Hwang, Jin Woo; Kim, Yousok; Cho, Tongjun; Park, Hyo Seon

    2015-11-01

    This paper presents a new vision-based system identification (SI) technique for building structures by using a motion capture system (MCS). The MCS with outstanding capabilities for dynamic response measurements can provide gage-free measurements of vibrations through the convenient installation of multiple markers. In this technique, from the dynamic displacement responses measured by MCS, the dynamic characteristics (natural frequency, mode shape, and damping ratio) of building structures are extracted after the processes of converting the displacement from MCS to acceleration and conducting SI by frequency domain decomposition. A free vibration experiment on a three-story shear frame was conducted to validate the proposed technique. The SI results from the conventional accelerometer-based method were compared with those from the proposed technique and showed good agreement, which confirms the validity and applicability of the proposed vision-based SI technique for building structures. Furthermore, SI directly employing MCS measured displacements to FDD was performed and showed identical results to those of conventional SI method.

  3. Evaluation of tracking accuracy of the CyberKnife system using a webcam and printed calibrated grid

    PubMed Central

    Shiomi, Hiroya; Higashinaka, Naokazu; Murashima, Yoshikazu; Miyamoto, Youichi; Yamazaki, Hideya; Mabuchi, Nobuhisa; Tsuda, Eimei; Ogawa, Kazuhiko

    2016-01-01

    Tracking accuracy for the CyberKnife's Synchrony system is commonly evaluated using a film‐based verification method. We have evaluated a verification system that uses a webcam and a printed calibrated grid to verify tracking accuracy over three different motion patterns. A box with an attached printed calibrated grid and four fiducial markers was attached to the motion phantom. A target marker was positioned at the grid's center. The box was set up using the other three markers. Target tracking accuracy was evaluated under three conditions: 1) stationary; 2) sinusoidal motion with different amplitudes of 5, 10, 15, and 20 mm for the same cycle of 4 s and different cycles of 2, 4, 6, and 8 s with the same amplitude of 15 mm; and 3) irregular breathing patterns in six human volunteers breathing normally. Infrared markers were placed on the volunteers’ abdomens, and their trajectories were used to simulate the target motion. All tests were performed with one‐dimensional motion in craniocaudal direction. The webcam captured the grid's motion and a laser beam was used to simulate the CyberKnife's beam. Tracking error was defined as the difference between the grid's center and the laser beam. With a stationary target, mean tracking error was measured at 0.4 mm. For sinusoidal motion, tracking error was less than 2 mm for any amplitude and breathing cycle. For the volunteers’ breathing patterns, the mean tracking error range was 0.78‐1.67 mm. Therefore, accurate lesion targeting requires individual quality assurance for each patient. PACS number(s): 87.55.D‐, 87.55.km, 87.55.Qr, 87.56.Fc PMID:27074474

  4. Markerless identification of key events in gait cycle using image flow.

    PubMed

    Vishnoi, Nalini; Duric, Zoran; Gerber, Naomi Lynn

    2012-01-01

    Gait analysis has been an interesting area of research for several decades. In this paper, we propose image-flow-based methods to compute the motion and velocities of different body segments automatically, using a single inexpensive video camera. We then identify and extract different events of the gait cycle (double-support, mid-swing, toe-off and heel-strike) from video images. Experiments were conducted in which four walking subjects were captured from the sagittal plane. Automatic segmentation was performed to isolate the moving body from the background. The head excursion and the shank motion were then computed to identify the key frames corresponding to different events in the gait cycle. Our approach does not require calibrated cameras or special markers to capture movement. We have also compared our method with the Optotrak 3D motion capture system and found our results in good agreement with the Optotrak results. The development of our method has potential use in the markerless and unencumbered video capture of human locomotion. Monitoring gait in homes and communities provides a useful application for the aged and the disabled. Our method could potentially be used as an assessment tool to determine gait symmetry or to establish the normal gait pattern of an individual.

  5. KSC-08pd1899

    NASA Image and Video Library

    2008-07-02

    CAPE CANAVERAL, Fla. – NYIT MOCAP (Motion Capture) team Project Manager Jon Squitieri attaches a retro reflective marker to a motion capture suit worn by a technician who will be assembling the Orion Crew Module mockup. The motion tracking aims to improve efficiency of assembly processes and identify potential ergonomic risks for technicians assembling the mockup. The work is being performed in United Space Alliance's Human Engineering Modeling and Performance Lab in the RLV Hangar at NASA's Kennedy Space Center. Part of NASA's Constellation Program, the Orion spacecraft will return humans to the moon and prepare for future voyages to Mars and other destinations in our solar system.

  6. A novel teaching system for industrial robots.

    PubMed

    Lin, Hsien-I; Lin, Yu-Hsiang

    2014-03-27

    The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles.

  7. A Novel Teaching System for Industrial Robots

    PubMed Central

    Lin, Hsien-I; Lin, Yu-Hsiang

    2014-01-01

    The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles. PMID:24681669

  8. The KIT Motion-Language Dataset.

    PubMed

    Plappert, Matthias; Mandery, Christian; Asfour, Tamim

    2016-12-01

    Linking human motion and natural language is of great interest for the generation of semantic representations of human activities as well as for the generation of robot activities based on natural language input. However, although there have been years of research in this area, no standardized and openly available data set exists to support the development and evaluation of such systems. We, therefore, propose the Karlsruhe Institute of Technology (KIT) Motion-Language Dataset, which is large, open, and extensible. We aggregate data from multiple motion capture databases and include them in our data set using a unified representation that is independent of the capture system or marker set, making it easy to work with the data regardless of its origin. To obtain motion annotations in natural language, we apply a crowd-sourcing approach and a web-based tool that was specifically build for this purpose, the Motion Annotation Tool. We thoroughly document the annotation process itself and discuss gamification methods that we used to keep annotators motivated. We further propose a novel method, perplexity-based selection, which systematically selects motions for further annotation that are either under-represented in our data set or that have erroneous annotations. We show that our method mitigates the two aforementioned problems and ensures a systematic annotation process. We provide an in-depth analysis of the structure and contents of our resulting data set, which, as of October 10, 2016, contains 3911 motions with a total duration of 11.23 hours and 6278 annotations in natural language that contain 52,903 words. We believe this makes our data set an excellent choice that enables more transparent and comparable research in this important area.

  9. A new method for motion capture of the scapula using an optoelectronic tracking device: a feasibility study.

    PubMed

    Šenk, Miroslav; Chèze, Laurence

    2010-06-01

    Optoelectronic tracking systems are rarely used in 3D studies examining shoulder movements including the scapula. Among the reasons is the important slippage of skin markers with respect to scapula. Methods using electromagnetic tracking devices are validated and frequently applied. Thus, the aim of this study was to develop a new method for in vivo optoelectronic scapular capture dealing with the accepted accuracy issues of validated methods. Eleven arm positions in three anatomical planes were examined using five subjects in static mode. The method was based on local optimisation, and recalculation procedures were made using a set of five scapular surface markers. The scapular rotations derived from the recalculation-based method yielded RMS errors comparable with the frequently used electromagnetic scapular methods (RMS up to 12.6° for 150° arm elevation). The results indicate that the present method can be used under careful considerations for 3D kinematical studies examining different shoulder movements.

  10. Motion Pattern Encapsulation for Data-Driven Constraint-Based Motion Editing

    NASA Astrophysics Data System (ADS)

    Carvalho, Schubert R.; Boulic, Ronan; Thalmann, Daniel

    The growth of motion capture systems have contributed to the proliferation of human motion database, mainly because human motion is important in many applications, ranging from games entertainment and films to sports and medicine. However, the captured motions normally attend specific needs. As an effort for adapting and reusing captured human motions in new tasks and environments and improving the animator's work, we present and discuss a new data-driven constraint-based animation system for interactive human motion editing. This method offers the compelling advantage that it provides faster deformations and more natural-looking motion results compared to goal-directed constraint-based methods found in the literature.

  11. Approach for gait analysis in persons with limb loss including residuum and prosthesis socket dynamics.

    PubMed

    LaPrè, A K; Price, M A; Wedge, R D; Umberger, B R; Sup, Frank C

    2018-04-01

    Musculoskeletal modeling and marker-based motion capture techniques are commonly used to quantify the motions of body segments, and the forces acting on them during human gait. However, when these techniques are applied to analyze the gait of people with lower limb loss, the clinically relevant interaction between the residual limb and prosthesis socket is typically overlooked. It is known that there is considerable motion and loading at the residuum-socket interface, yet traditional gait analysis techniques do not account for these factors due to the inability to place tracking markers on the residual limb inside of the socket. In the present work, we used a global optimization technique and anatomical constraints to estimate the motion and loading at the residuum-socket interface as part of standard gait analysis procedures. We systematically evaluated a range of parameters related to the residuum-socket interface, such as the number of degrees of freedom, and determined the configuration that yields the best compromise between faithfully tracking experimental marker positions while yielding anatomically realistic residuum-socket kinematics and loads that agree with data from the literature. Application of the present model to gait analysis for people with lower limb loss will deepen our understanding of the biomechanics of walking with a prosthesis, which should facilitate the development of enhanced rehabilitation protocols and improved assistive devices. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics.

    PubMed

    Patrizi, Alfredo; Pennestrì, Ettore; Valentini, Pier Paolo

    2016-01-01

    The paper deals with the comparison between a high-end marker-based acquisition system and a low-cost marker-less methodology for the assessment of the human posture during working tasks. The low-cost methodology is based on the use of a single Microsoft Kinect V1 device. The high-end acquisition system is the BTS SMART that requires the use of reflective markers to be placed on the subject's body. Three practical working activities involving object lifting and displacement have been investigated. The operational risk has been evaluated according to the lifting equation proposed by the American National Institute for Occupational Safety and Health. The results of the study show that the risk multipliers computed from the two acquisition methodologies are very close for all the analysed activities. In agreement to this outcome, the marker-less methodology based on the Microsoft Kinect V1 device seems very promising to promote the dissemination of computer-aided assessment of ergonomics while maintaining good accuracy and affordable costs. PRACTITIONER’S SUMMARY: The study is motivated by the increasing interest for on-site working ergonomics assessment. We compared a low-cost marker-less methodology with a high-end marker-based system. We tested them on three different working tasks, assessing the working risk of lifting loads. The two methodologies showed comparable precision in all the investigations.

  13. Example-based human motion denoising.

    PubMed

    Lou, Hui; Chai, Jinxiang

    2010-01-01

    With the proliferation of motion capture data, interest in removing noise and outliers from motion capture data has increased. In this paper, we introduce an efficient human motion denoising technique for the simultaneous removal of noise and outliers from input human motion data. The key idea of our approach is to learn a series of filter bases from precaptured motion data and use them along with robust statistics techniques to filter noisy motion data. Mathematically, we formulate the motion denoising process in a nonlinear optimization framework. The objective function measures the distance between the noisy input and the filtered motion in addition to how well the filtered motion preserves spatial-temporal patterns embedded in captured human motion data. Optimizing the objective function produces an optimal filtered motion that keeps spatial-temporal patterns in captured motion data. We also extend the algorithm to fill in the missing values in input motion data. We demonstrate the effectiveness of our system by experimenting with both real and simulated motion data. We also show the superior performance of our algorithm by comparing it with three baseline algorithms and to those in state-of-art motion capture data processing software such as Vicon Blade.

  14. Component-Level Tuning of Kinematic Features from Composite Therapist Impressions of Movement Quality

    PubMed Central

    Venkataraman, Vinay; Turaga, Pavan; Baran, Michael; Lehrer, Nicole; Du, Tingfang; Cheng, Long; Rikakis, Thanassis; Wolf, Steven L.

    2016-01-01

    In this paper, we propose a general framework for tuning component-level kinematic features using therapists’ overall impressions of movement quality, in the context of a Home-based Adaptive Mixed Reality Rehabilitation (HAMRR) system. We propose a linear combination of non-linear kinematic features to model wrist movement, and propose an approach to learn feature thresholds and weights using high-level labels of overall movement quality provided by a therapist. The kinematic features are chosen such that they correlate with the quality of wrist movements to clinical assessment scores. Further, the proposed features are designed to be reliably extracted from an inexpensive and portable motion capture system using a single reflective marker on the wrist. Using a dataset collected from ten stroke survivors, we demonstrate that the framework can be reliably used for movement quality assessment in HAMRR systems. The system is currently being deployed for large-scale evaluations, and will represent an increasingly important application area of motion capture and activity analysis. PMID:25438331

  15. Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    PubMed Central

    Cortés, Camilo; Unzueta, Luis; de los Reyes-Guzmán, Ana; Ruiz, Oscar E.; Flórez, Julián

    2016-01-01

    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR. PMID:27403044

  16. Orthogonal-blendshape-based editing system for facial motion capture data.

    PubMed

    Li, Qing; Deng, Zhigang

    2008-01-01

    The authors present a novel data-driven 3D facial motion capture data editing system using automated construction of an orthogonal blendshape face model and constrained weight propagation, aiming to bridge the popular facial motion capture technique and blendshape approach. In this work, a 3D facial-motion-capture-editing problem is transformed to a blendshape-animation-editing problem. Given a collected facial motion capture data set, we construct a truncated PCA space spanned by the greatest retained eigenvectors and a corresponding blendshape face model for each anatomical region of the human face. As such, modifying blendshape weights (PCA coefficients) is equivalent to editing their corresponding motion capture sequence. In addition, a constrained weight propagation technique allows animators to balance automation and flexible controls.

  17. High-resolution Doppler model of the human gait

    NASA Astrophysics Data System (ADS)

    Geisheimer, Jonathan L.; Greneker, Eugene F., III; Marshall, William S.

    2002-07-01

    A high resolution Doppler model of the walking human was developed for analyzing the continuous wave (CW) radar gait signature. Data for twenty subjects were collected simultaneously using an infrared motion capture system along with a two channel 10.525 GHz CW radar. The motion capture system recorded three-dimensional coordinates of infrared markers placed on the body. These body marker coordinates were used as inputs to create the theoretical Doppler output using a model constructed in MATLAB. The outputs of the model are the simulated Doppler signals due to each of the major limbs and the thorax. An estimated radar cross section for each part of the body was assigned using the Lund & Browder chart of estimated body surface area. The resultant Doppler model was then compared with the actual recorded Doppler gait signature in the frequency domain using the spectrogram. Comparison of the two sets of data has revealed several identifiable biomechanical features in the radar gait signature due to leg and body motion. The result of the research shows that a wealth of information can be unlocked from the radar gait signature, which may be useful in security and biometric applications.

  18. Three-dimensional quantification of cardiac surface motion: a newly developed three-dimensional digital motion-capture and reconstruction system for beating heart surgery.

    PubMed

    Watanabe, Toshiki; Omata, Sadao; Odamura, Motoki; Okada, Masahumi; Nakamura, Yoshihiko; Yokoyama, Hitoshi

    2006-11-01

    This study aimed to evaluate our newly developed 3-dimensional digital motion-capture and reconstruction system in an animal experiment setting and to characterize quantitatively the three regional cardiac surface motions, in the left anterior descending artery, right coronary artery, and left circumflex artery, before and after stabilization using a stabilizer. Six pigs underwent a full sternotomy. Three tiny metallic markers (diameter 2 mm) coated with a reflective material were attached on three regional cardiac surfaces (left anterior descending, right coronary, and left circumflex coronary artery regions). These markers were captured by two high-speed digital video cameras (955 frames per second) as 2-dimensional coordinates and reconstructed to 3-dimensional data points (about 480 xyz-position data per second) by a newly developed computer program. The remaining motion after stabilization ranged from 0.4 to 1.01 mm at the left anterior descending, 0.91 to 1.52 mm at the right coronary artery, and 0.53 to 1.14 mm at the left circumflex regions. Significant differences before and after stabilization were evaluated in maximum moving velocity (left anterior descending 456.7 +/- 178.7 vs 306.5 +/- 207.4 mm/s; right coronary artery 574.9 +/- 161.7 vs 446.9 +/- 170.7 mm/s; left circumflex 578.7 +/- 226.7 vs 398.9 +/- 192.6 mm/s; P < .0001) and maximum acceleration (left anterior descending 238.8 +/- 137.4 vs 169.4 +/- 132.7 m/s2; right coronary artery 315.0 +/- 123.9 vs 242.9 +/- 120.6 m/s2; left circumflex 307.9 +/- 151.0 vs 217.2 +/- 132.3 m/s2; P < .0001). This system is useful for a precise quantification of the heart surface movement. This helps us better understand the complexity of the heart, its motion, and the need for developing a better stabilizer for beating heart surgery.

  19. Vertical Jump Height Estimation Algorithm Based on Takeoff and Landing Identification Via Foot-Worn Inertial Sensing.

    PubMed

    Wang, Jianren; Xu, Junkai; Shull, Peter B

    2018-03-01

    Vertical jump height is widely used for assessing motor development, functional ability, and motor capacity. Traditional methods for estimating vertical jump height rely on force plates or optical marker-based motion capture systems limiting assessment to people with access to specialized laboratories. Current wearable designs need to be attached to the skin or strapped to an appendage which can potentially be uncomfortable and inconvenient to use. This paper presents a novel algorithm for estimating vertical jump height based on foot-worn inertial sensors. Twenty healthy subjects performed countermovement jumping trials and maximum jump height was determined via inertial sensors located above the toe and under the heel and was compared with the gold standard maximum jump height estimation via optical marker-based motion capture. Average vertical jump height estimation errors from inertial sensing at the toe and heel were -2.2±2.1 cm and -0.4±3.8 cm, respectively. Vertical jump height estimation with the presented algorithm via inertial sensing showed excellent reliability at the toe (ICC(2,1)=0.98) and heel (ICC(2,1)=0.97). There was no significant bias in the inertial sensing at the toe, but proportional bias (b=1.22) and fixed bias (a=-10.23cm) were detected in inertial sensing at the heel. These results indicate that the presented algorithm could be applied to foot-worn inertial sensors to estimate maximum jump height enabling assessment outside of traditional laboratory settings, and to avoid bias errors, the toe may be a more suitable location for inertial sensor placement than the heel.

  20. Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing †

    PubMed Central

    Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco

    2016-01-01

    Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394

  1. Motion Analysis System for Instruction of Nihon Buyo using Motion Capture

    NASA Astrophysics Data System (ADS)

    Shinoda, Yukitaka; Murakami, Shingo; Watanabe, Yuta; Mito, Yuki; Watanuma, Reishi; Marumo, Mieko

    The passing on and preserving of advanced technical skills has become an important issue in a variety of fields, and motion analysis using motion capture has recently become popular in the research of advanced physical skills. This research aims to construct a system having a high on-site instructional effect on dancers learning Nihon Buyo, a traditional dance in Japan, and to classify Nihon Buyo dancing according to style, school, and dancer's proficiency by motion analysis. We have been able to study motion analysis systems for teaching Nihon Buyo now that body-motion data can be digitized and stored by motion capture systems using high-performance computers. Thus, with the aim of developing a user-friendly instruction-support system, we have constructed a motion analysis system that displays a dancer's time series of body motions and center of gravity for instructional purposes. In this paper, we outline this instructional motion analysis system based on three-dimensional position data obtained by motion capture. We also describe motion analysis that we performed based on center-of-gravity data obtained by this system and motion analysis focusing on school and age group using this system.

  2. Pre-clinical and clinical walking kinematics in female breeding pigs with lameness: A nested case-control cohort study.

    PubMed

    Stavrakakis, S; Guy, J H; Syranidis, I; Johnson, G R; Edwards, S A

    2015-07-01

    Gait profiles were investigated in a cohort of female pigs experiencing a lameness period prevalence of 29% over 17 months. Gait alterations before and during visually diagnosed lameness were evaluated to identify the best quantitative clinical lameness indicators and early predictors for lameness. Pre-breeding gilts (n= 84) were recruited to the study over a period of 6 months, underwent motion capture every 5 weeks and, depending on their age at entry to the study, were followed for up to three successive gestations. Animals were subject to motion capture in each parity at 8 weeks of gestation and on the day of weaning (28 days postpartum). During kinematic motion capture, the pigs walked on the same concrete walkway and an array of infra-red cameras was used to collect three dimensional coordinate data of reflective skin markers attached to the head, trunk and limb anatomical landmarks. Of 24 pigs diagnosed with lameness, 19 had preclinical gait records, whilst 18 had a motion capture while lame. Depending on availability, data from one or two preclinical motion capture 1-11 months prior to lameness and on the day of lameness were analysed. Lameness was best detected and evaluated using relative spatiotemporal gait parameters, especially vertical head displacement and asymmetric stride phase timing. Irregularity in the step-to-stride length ratio was elevated (deviation  ≥ 0.03) in young pigs which presented lameness in later life (odds ratio 7.2-10.8). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Collecting Kinematic Data on a Ski Track with Optoelectronic Stereophotogrammetry: A Methodological Study Assessing the Feasibility of Bringing the Biomechanics Lab to the Field.

    PubMed

    Spörri, Jörg; Schiefermüller, Christian; Müller, Erich

    2016-01-01

    In the laboratory, optoelectronic stereophotogrammetry is one of the most commonly used motion capture systems; particularly, when position- or orientation-related analyses of human movements are intended. However, for many applied research questions, field experiments are indispensable, and it is not a priori clear whether optoelectronic stereophotogrammetric systems can be expected to perform similarly to in-lab experiments. This study aimed to assess the instrumental errors of kinematic data collected on a ski track using optoelectronic stereophotogrammetry, and to investigate the magnitudes of additional skiing-specific errors and soft tissue/suit artifacts. During a field experiment, the kinematic data of different static and dynamic tasks were captured by the use of 24 infrared-cameras. The distances between three passive markers attached to a rigid bar were stereophotogrammetrically reconstructed and, subsequently, were compared to the manufacturer-specified exact values. While at rest or skiing at low speed, the optoelectronic stereophotogrammetric system's accuracy and precision for determining inter-marker distances were found to be comparable to those known for in-lab experiments (< 1 mm). However, when measuring a skier's kinematics under "typical" skiing conditions (i.e., high speeds, inclined/angulated postures and moderate snow spraying), additional errors were found to occur for distances between equipment-fixed markers (total measurement errors: 2.3 ± 2.2 mm). Moreover, for distances between skin-fixed markers, such as the anterior hip markers, additional artifacts were observed (total measurement errors: 8.3 ± 7.1 mm). In summary, these values can be considered sufficient for the detection of meaningful position- or orientation-related differences in alpine skiing. However, it must be emphasized that the use of optoelectronic stereophotogrammetry on a ski track is seriously constrained by limited practical usability, small-sized capture volumes and the occurrence of extensive snow spraying (which results in marker obscuration). The latter limitation possibly might be overcome by the use of more sophisticated cluster-based marker sets.

  4. Kinematic discrimination of ataxia in horses is facilitated by blindfolding.

    PubMed

    Olsen, E; FouchÉ, N; Jordan, H; Pfau, T; Piercy, R J

    2018-03-01

    Agreement among experienced clinicians is poor when assessing the presence and severity of ataxia, especially when signs are mild. Consequently, objective gait measurements might be beneficial for assessment of horses with neurological diseases. To assess diagnostic criteria using motion capture to measure variability in spatial gait-characteristics and swing duration derived from ataxic and non-ataxic horses, and to assess if variability increases with blindfolding. Cross-sectional. A total of 21 horses underwent measurements in a gait laboratory and live neurological grading by multiple raters. In the gait laboratory, the horses were made to walk across a runway surrounded by a 12-camera motion capture system with a sample frequency of 240 Hz. They were made to walk normally and with a blindfold in at least three trials each. Displacements of reflective markers on head, fetlock, hoof, fourth lumbar vertebra, tuber coxae and sacrum derived from three to four consecutive strides were processed and descriptive statistics, receiver operator characteristics (ROC) to determine the diagnostic sensitivity, specificity and area under the curve (AUC), and correlation between median ataxia grade and gait parameters were determined. For horses with a median ataxia grade ≥2, coefficient of variation for the location of maximum vertical displacement of pelvic and thoracic distal limbs generated good diagnostic yield. The hoofs of the thoracic limbs yielded an AUC of 0.81 with 64% sensitivity and 90% specificity. Blindfolding exacerbated the variation for ataxic horses compared to non-ataxic horses with the hoof marker having an AUC of 0.89 with 82% sensitivity and 90% specificity. The low number of consecutive strides per horse obtained with motion capture could decrease diagnostic utility. Motion capture can objectively aid the assessment of horses with ataxia. Furthermore, blindfolding increases variation in distal pelvic limb kinematics making it a useful clinical tool. © 2017 EVJ Ltd.

  5. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  6. Evaluation of a portable markerless finger position capture device: accuracy of the Leap Motion controller in healthy adults.

    PubMed

    Tung, James Y; Lulic, Tea; Gonzalez, Dave A; Tran, Johnathan; Dickerson, Clark R; Roy, Eric A

    2015-05-01

    Although motion analysis is frequently employed in upper limb motor assessment (e.g. visually-guided reaching), they are resource-intensive and limited to laboratory settings. This study evaluated the reliability and accuracy of a new markerless motion capture device, the Leap Motion controller, to measure finger position. Testing conditions that influence reliability and agreement between the Leap and a research-grade motion capture system were examined. Nine healthy young adults pointed to 15 targets on a computer screen under two conditions: (1) touching the target (touch) and (2) 4 cm away from the target (no-touch). Leap data was compared to an Optotrak marker attached to the index finger. Across all trials, root mean square (RMS) error of the Leap system was 17.30  ±  9.56 mm (mean ± SD), sampled at 65.47  ±  21.53 Hz. The % viable trials and mean sampling rate were significantly lower in the touch condition (44% versus 64%, p < 0.001; 52.02  ±  2.93 versus 73.98  ±  4.48 Hz, p = 0.003). While linear correlations were high (horizontal: r(2) = 0.995, vertical r(2) = 0.945), the limits of agreement were large (horizontal: -22.02 to +26.80 mm, vertical: -29.41 to +30.14 mm). While not as precise as more sophisticated optical motion capture systems, the Leap Motion controller is sufficiently reliable for measuring motor performance in pointing tasks that do not require high positional accuracy (e.g. reaction time, Fitt's, trails, bimanual coordination).

  7. Automatic human body modeling for vision-based motion capture system using B-spline parameterization of the silhouette

    NASA Astrophysics Data System (ADS)

    Jaume-i-Capó, Antoni; Varona, Javier; González-Hidalgo, Manuel; Mas, Ramon; Perales, Francisco J.

    2012-02-01

    Human motion capture has a wide variety of applications, and in vision-based motion capture systems a major issue is the human body model and its initialization. We present a computer vision algorithm for building a human body model skeleton in an automatic way. The algorithm is based on the analysis of the human shape. We decompose the body into its main parts by computing the curvature of a B-spline parameterization of the human contour. This algorithm has been applied in a context where the user is standing in front of a camera stereo pair. The process is completed after the user assumes a predefined initial posture so as to identify the main joints and construct the human model. Using this model, the initialization problem of a vision-based markerless motion capture system of the human body is solved.

  8. The Accuracy of Conventional 2D Video for Quantifying Upper Limb Kinematics in Repetitive Motion Occupational Tasks

    PubMed Central

    Chen, Chia-Hsiung; Azari, David; Hu, Yu Hen; Lindstrom, Mary J.; Thelen, Darryl; Yen, Thomas Y.; Radwin, Robert G.

    2015-01-01

    Objective Marker-less 2D video tracking was studied as a practical means to measure upper limb kinematics for ergonomics evaluations. Background Hand activity level (HAL) can be estimated from speed and duty cycle. Accuracy was measured using a cross correlation template-matching algorithm for tracking a region of interest on the upper extremities. Methods Ten participants performed a paced load transfer task while varying HAL (2, 4, and 5) and load (2.2 N, 8.9 N and 17.8 N). Speed and acceleration measured from 2D video were compared against ground truth measurements using 3D infrared motion capture. Results The median absolute difference between 2D video and 3D motion capture was 86.5 mm/s for speed, and 591 mm/s2 for acceleration, and less than 93 mm/s for speed and 656 mm/s2 for acceleration when camera pan and tilt were within ±30 degrees. Conclusion Single-camera 2D video had sufficient accuracy (< 100 mm/s) for evaluating HAL. Practitioner Summary This study demonstrated that 2D video tracking had sufficient accuracy to measure HAL for ascertaining the American Conference of Government Industrial Hygienists Threshold Limit Value® for repetitive motion when the camera is located within ±30 degrees off the plane of motion when compared against 3D motion capture for a simulated repetitive motion task. PMID:25978764

  9. Effective motion planning strategy for space robot capturing targets under consideration of the berth position

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Liu, Jinguo

    2018-07-01

    Although many motion planning strategies for missions involving space robots capturing floating targets can be found in the literature, relatively little has discussed how to select the berth position where the spacecraft base hovers. In fact, the berth position is a flexible and controllable factor, and selecting a suitable berth position has a great impact on improving the efficiency of motion planning in the capture mission. Therefore, to make full use of the manoeuvrability of the space robot, this paper proposes a new viewpoint that utilizes the base berth position as an optimizable parameter to formulate a more comprehensive and effective motion planning strategy. Considering the dynamic coupling, the dynamic singularities, and the physical limitations of space robots, a unified motion planning framework based on the forward kinematics and parameter optimization technique is developed to convert the planning problem into the parameter optimization problem. For getting rid of the strict grasping position constraints in the capture mission, a new conception of grasping area is proposed to greatly simplify the difficulty of the motion planning. Furthermore, by utilizing the penalty function method, a new concise objective function is constructed. Here, the intelligent algorithm, Particle Swarm Optimization (PSO), is worked as solver to determine the free parameters. Two capturing cases, i.e., capturing a two-dimensional (2D) planar target and capturing a three-dimensional (3D) spatial target, are studied under this framework. The corresponding simulation results demonstrate that the proposed method is more efficient and effective for planning the capture missions.

  10. A Comparison of the Scorpion Load Carriage System (SLCS) to the Modular Lightweight Load Carrying Equipment (MOLLE)

    DTIC Science & Technology

    2003-07-01

    volunteer was asked to report wearing Battle Dress Uniform or Under Armor Undergarment) because the reflective markers used for motion capture needed to be...data collection sessions wearing Under Armor Undergarment, combat boots, integrated body armor and Scorpion helmet. Subjects were given time to

  11. SU-E-J-219: Quantitative Evaluation of Motion Effects On Accuracy of Image-Guided Radiotherapy with Fiducial Markers Using CT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, I; Oyewale, S; Ahmad, S

    2014-06-01

    Purpose: To investigate quantitatively patient motion effects on the localization accuracy of image-guided radiation with fiducial markers using axial CT (ACT), helical CT (HCT) and cone-beam CT (CBCT) using modeling and experimental phantom studies. Methods: Markers with different lengths (2.5 mm, 5 mm, 10 mm, and 20 mm) were inserted in a mobile thorax phantom which was imaged using ACT, HCT and CBCT. The phantom moved with sinusoidal motion with amplitudes ranging 0–20 mm and a frequency of 15 cycles-per-minute. Three parameters that include: apparent marker lengths, center position and distance between the centers of the markers were measured inmore » the different CT images of the mobile phantom. A motion mathematical model was derived to predict the variations in the previous three parameters and their dependence on the motion in the different imaging modalities. Results: In CBCT, the measured marker lengths increased linearly with increase in motion amplitude. For example, the apparent length of the 10 mm marker was about 20 mm when phantom moved with amplitude of 5 mm. Although the markers have elongated, the center position and the distance between markers remained at the same position for different motion amplitudes in CBCT. These parameters were not affected by motion frequency and phase in CBCT. In HCT and ACT, the measured marker length, center and distance between markers varied irregularly with motion parameters. The apparent lengths of the markers varied with inverse of the phantom velocity which depends on motion frequency and phase. Similarly the center position and distance between markers varied inversely with phantom speed. Conclusion: Motion may lead to variations in maker length, center position and distance between markers using CT imaging. These effects should be considered in patient setup using image-guided radiation therapy based on fiducial markers matching using 2D-radiographs or volumetric CT imaging.« less

  12. Scalable Photogrammetric Motion Capture System "mosca": Development and Application

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.

    2015-05-01

    Wide variety of applications (from industrial to entertainment) has a need for reliable and accurate 3D information about motion of an object and its parts. Very often the process of movement is rather fast as in cases of vehicle movement, sport biomechanics, animation of cartoon characters. Motion capture systems based on different physical principles are used for these purposes. The great potential for obtaining high accuracy and high degree of automation has vision-based system due to progress in image processing and analysis. Scalable inexpensive motion capture system is developed as a convenient and flexible tool for solving various tasks requiring 3D motion analysis. It is based on photogrammetric techniques of 3D measurements and provides high speed image acquisition, high accuracy of 3D measurements and highly automated processing of captured data. Depending on the application the system can be easily modified for different working areas from 100 mm to 10 m. The developed motion capture system uses from 2 to 4 technical vision cameras for video sequences of object motion acquisition. All cameras work in synchronization mode at frame rate up to 100 frames per second under the control of personal computer providing the possibility for accurate calculation of 3D coordinates of interest points. The system was used for a set of different applications fields and demonstrated high accuracy and high level of automation.

  13. Real-Time Motion Capture Toolbox (RTMocap): an open-source code for recording 3-D motion kinematics to study action-effect anticipations during motor and social interactions.

    PubMed

    Lewkowicz, Daniel; Delevoye-Turrell, Yvonne

    2016-03-01

    We present here a toolbox for the real-time motion capture of biological movements that runs in the cross-platform MATLAB environment (The MathWorks, Inc., Natick, MA). It provides instantaneous processing of the 3-D movement coordinates of up to 20 markers at a single instant. Available functions include (1) the setting of reference positions, areas, and trajectories of interest; (2) recording of the 3-D coordinates for each marker over the trial duration; and (3) the detection of events to use as triggers for external reinforcers (e.g., lights, sounds, or odors). Through fast online communication between the hardware controller and RTMocap, automatic trial selection is possible by means of either a preset or an adaptive criterion. Rapid preprocessing of signals is also provided, which includes artifact rejection, filtering, spline interpolation, and averaging. A key example is detailed, and three typical variations are developed (1) to provide a clear understanding of the importance of real-time control for 3-D motion in cognitive sciences and (2) to present users with simple lines of code that can be used as starting points for customizing experiments using the simple MATLAB syntax. RTMocap is freely available (http://sites.google.com/site/RTMocap/) under the GNU public license for noncommercial use and open-source development, together with sample data and extensive documentation.

  14. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.

    PubMed

    Peikon, Ian D; Fitzsimmons, Nathan A; Lebedev, Mikhail A; Nicolelis, Miguel A L

    2009-06-15

    Collection and analysis of limb kinematic data are essential components of the study of biological motion, including research into biomechanics, kinesiology, neurophysiology and brain-machine interfaces (BMIs). In particular, BMI research requires advanced, real-time systems capable of sampling limb kinematics with minimal contact to the subject's body. To answer this demand, we have developed an automated video tracking system for real-time tracking of multiple body parts in freely behaving primates. The system employs high-contrast markers painted on the animal's joints to continuously track the three-dimensional positions of their limbs during activity. Two-dimensional coordinates captured by each video camera are combined and converted to three-dimensional coordinates using a quadratic fitting algorithm. Real-time operation of the system is accomplished using direct memory access (DMA). The system tracks the markers at a rate of 52 frames per second (fps) in real-time and up to 100fps if video recordings are captured to be later analyzed off-line. The system has been tested in several BMI primate experiments, in which limb position was sampled simultaneously with chronic recordings of the extracellular activity of hundreds of cortical cells. During these recordings, multiple computational models were employed to extract a series of kinematic parameters from neuronal ensemble activity in real-time. The system operated reliably under these experimental conditions and was able to compensate for marker occlusions that occurred during natural movements. We propose that this system could also be extended to applications that include other classes of biological motion.

  15. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. Part I. Numerical model-based optimization.

    PubMed

    Choi, Jang-Hwan; Fahrig, Rebecca; Keil, Andreas; Besier, Thor F; Pal, Saikat; McWalter, Emily J; Beaupré, Gary S; Maier, Andreas

    2013-09-01

    Human subjects in standing positions are apt to show much more involuntary motion than in supine positions. The authors aimed to simulate a complicated realistic lower body movement using the four-dimensional (4D) digital extended cardiac-torso (XCAT) phantom. The authors also investigated fiducial marker-based motion compensation methods in two-dimensional (2D) and three-dimensional (3D) space. The level of involuntary movement-induced artifacts and image quality improvement were investigated after applying each method. An optical tracking system with eight cameras and seven retroreflective markers enabled us to track involuntary motion of the lower body of nine healthy subjects holding a squat position at 60° of flexion. The XCAT-based knee model was developed using the 4D XCAT phantom and the optical tracking data acquired at 120 Hz. The authors divided the lower body in the XCAT into six parts and applied unique affine transforms to each so that the motion (6 degrees of freedom) could be synchronized with the optical markers' location at each time frame. The control points of the XCAT were tessellated into triangles and 248 projection images were created based on intersections of each ray and monochromatic absorption. The tracking data sets with the largest motion (Subject 2) and the smallest motion (Subject 5) among the nine data sets were used to animate the XCAT knee model. The authors defined eight skin control points well distributed around the knees as pseudo-fiducial markers which functioned as a reference in motion correction. Motion compensation was done in the following ways: (1) simple projection shifting in 2D, (2) deformable projection warping in 2D, and (3) rigid body warping in 3D. Graphics hardware accelerated filtered backprojection was implemented and combined with the three correction methods in order to speed up the simulation process. Correction fidelity was evaluated as a function of number of markers used (4-12) and marker distribution in three scenarios. Average optical-based translational motion for the nine subjects was 2.14 mm (± 0.69 mm) and 2.29 mm (± 0.63 mm) for the right and left knee, respectively. In the representative central slices of Subject 2, the authors observed 20.30%, 18.30%, and 22.02% improvements in the structural similarity (SSIM) index with 2D shifting, 2D warping, and 3D warping, respectively. The performance of 2D warping improved as the number of markers increased up to 12 while 2D shifting and 3D warping were insensitive to the number of markers used. The minimum required number of markers for 2D shifting, 2D warping, and 3D warping was 4-6, 12, and 8, respectively. An even distribution of markers over the entire field of view provided robust performance for all three correction methods. The authors were able to simulate subject-specific realistic knee movement in weight-bearing positions. This study indicates that involuntary motion can seriously degrade the image quality. The proposed three methods were evaluated with the numerical knee model; 3D warping was shown to outperform the 2D methods. The methods are shown to significantly reduce motion artifacts if an appropriate marker setup is chosen.

  16. Evaluation of a video-based head motion tracking system for dedicated brain PET

    NASA Astrophysics Data System (ADS)

    Anishchenko, S.; Beylin, D.; Stepanov, P.; Stepanov, A.; Weinberg, I. N.; Schaeffer, S.; Zavarzin, V.; Shaposhnikov, D.; Smith, M. F.

    2015-03-01

    Unintentional head motion during Positron Emission Tomography (PET) data acquisition can degrade PET image quality and lead to artifacts. Poor patient compliance, head tremor, and coughing are examples of movement sources. Head motion due to patient non-compliance can be an issue with the rise of amyloid brain PET in dementia patients. To preserve PET image resolution and quantitative accuracy, head motion can be tracked and corrected in the image reconstruction algorithm. While fiducial markers can be used, a contactless approach is preferable. A video-based head motion tracking system for a dedicated portable brain PET scanner was developed. Four wide-angle cameras organized in two stereo pairs are used for capturing video of the patient's head during the PET data acquisition. Facial points are automatically tracked and used to determine the six degree of freedom head pose as a function of time. The presented work evaluated the newly designed tracking system using a head phantom and a moving American College of Radiology (ACR) phantom. The mean video-tracking error was 0.99±0.90 mm relative to the magnetic tracking device used as ground truth. Qualitative evaluation with the ACR phantom shows the advantage of the motion tracking application. The developed system is able to perform tracking with accuracy close to millimeter and can help to preserve resolution of brain PET images in presence of movements.

  17. A video-based system for hand-driven stop-motion animation.

    PubMed

    Han, Xiaoguang; Fu, Hongbo; Zheng, Hanlin; Liu, Ligang; Wang, Jue

    2013-01-01

    Stop-motion is a well-established animation technique but is often laborious and requires craft skills. A new video-based system can animate the vast majority of everyday objects in stop-motion style, more flexibly and intuitively. Animators can perform and capture motions continuously instead of breaking them into increments and shooting one still picture per increment. More important, the system permits direct hand manipulation without resorting to rigs, achieving more natural object control for beginners. The system's key component is two-phase keyframe-based capturing and processing, assisted by computer vision techniques. With this system, even amateurs can generate high-quality stop-motion animations.

  18. A new method to quantify liner deformation within a prosthetic socket for below knee amputees.

    PubMed

    Lenz, Amy L; Johnson, Katie A; Bush, Tamara Reid

    2018-06-06

    Many amputees who wear a leg prosthesis develop significant skin wounds on their residual limb. The exact cause of these wounds is unclear as little work has studied the interface between the prosthetic device and user. Our research objective was to develop a quantitative method for assessing displacement patterns of the gel liner during walking for patients with transtibial amputation. Using a reflective marker system and a custom clear socket, evaluations were conducted with a clear transparent test socket mounted over a plaster limb model and a deformable limb model. Distances between markers placed on the limb were measured with a digital caliper and then compared with data from the motion capture system. Additionally, the rigid plaster set-up was moved in the capture volume to simulate walking and evaluate if inter-marker distances changed in comparison to static data. Dynamic displacement trials were then collected to measure changes in inter-marker distance due to vertical elongation of the gel liner. Static and dynamic inter-marker distances within day and across days confirmed the ability to accurately capture displacements using this new approach. These results encourage this novel method to be applied to a sample of amputee patients during walking to assess displacements and the distribution of the liner deformation within the socket. The ability to capture changes in deformation of the gel liner will provide new data that will enable clinicians and researchers to improve design and fit of the prosthesis so the incidence of pressure ulcers can be reduced. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. When Does Tool Use Become Distinctively Human? Hammering in Young Children

    ERIC Educational Resources Information Center

    Kahrs, Björn Alexander; Jung, Wendy P.; Lockman, Jeffrey J.

    2014-01-01

    This study examines the development of hammering within an ontogenetic and evolutionary framework using motion-capture technology. Twenty-four right-handed toddlers (19-35 months) wore reflective markers while hammering a peg into a peg-board. The study focuses on the motor characteristics that make tool use uniquely human: wrist involvement,…

  20. MotionExplorer: exploratory search in human motion capture data based on hierarchical aggregation.

    PubMed

    Bernard, Jürgen; Wilhelm, Nils; Krüger, Björn; May, Thorsten; Schreck, Tobias; Kohlhammer, Jörn

    2013-12-01

    We present MotionExplorer, an exploratory search and analysis system for sequences of human motion in large motion capture data collections. This special type of multivariate time series data is relevant in many research fields including medicine, sports and animation. Key tasks in working with motion data include analysis of motion states and transitions, and synthesis of motion vectors by interpolation and combination. In the practice of research and application of human motion data, challenges exist in providing visual summaries and drill-down functionality for handling large motion data collections. We find that this domain can benefit from appropriate visual retrieval and analysis support to handle these tasks in presence of large motion data. To address this need, we developed MotionExplorer together with domain experts as an exploratory search system based on interactive aggregation and visualization of motion states as a basis for data navigation, exploration, and search. Based on an overview-first type visualization, users are able to search for interesting sub-sequences of motion based on a query-by-example metaphor, and explore search results by details on demand. We developed MotionExplorer in close collaboration with the targeted users who are researchers working on human motion synthesis and analysis, including a summative field study. Additionally, we conducted a laboratory design study to substantially improve MotionExplorer towards an intuitive, usable and robust design. MotionExplorer enables the search in human motion capture data with only a few mouse clicks. The researchers unanimously confirm that the system can efficiently support their work.

  1. Muscle forces analysis in the shoulder mechanism during wheelchair propulsion.

    PubMed

    Lin, Hwai-Ting; Su, Fong-Chin; Wu, Hong-Wen; An, Kai-Nan

    2004-01-01

    This study combines an ergometric wheelchair, a six-camera video motion capture system and a prototype computer graphics based musculoskeletal model (CGMM) to predict shoulder joint loading, muscle contraction force per muscle and the sequence of muscular actions during wheelchair propulsion, and also to provide an animated computer graphics model of the relative interactions. Five healthy male subjects with no history of upper extremity injury participated. A conventional manual wheelchair was equipped with a six-component load cell to collect three-dimensional forces and moments experienced by the wheel, allowing real-time measurement of hand/rim force applied by subjects during normal wheelchair operation. An ExpertVision six-camera video motion capture system collected trajectory data of markers attached on anatomical positions. The CGMM was used to simulate and animate muscle action by using an optimization technique combining observed muscular motions with physiological constraints to estimate muscle contraction forces during wheelchair propulsion. The CGMM provides results that satisfactorily match the predictions of previous work, disregarding minor differences which presumably result from differing experimental conditions, measurement technologies and subjects. Specifically, the CGMM shows that the supraspinatus, infraspinatus, anterior deltoid, pectoralis major and biceps long head are the prime movers during the propulsion phase. The middle and posterior deltoid and supraspinatus muscles are responsible for arm return during the recovery phase. CGMM modelling shows that the rotator cuff and pectoralis major play an important role during wheelchair propulsion, confirming the known risk of injury for these muscles during wheelchair propulsion. The CGMM successfully transforms six-camera video motion capture data into a technically useful and visually interesting animated video model of the shoulder musculoskeletal system. The CGMM further yields accurate estimates of muscular forces during motion, indicating that this prototype modelling and analysis technique will aid in study, analysis and therapy of the mechanics and underlying pathomechanics involved in various musculoskeletal overuse syndromes.

  2. Deducing the reachable space from fingertip positions.

    PubMed

    Hai-Trieu Pham; Pathirana, Pubudu N

    2015-01-01

    The reachable space of the hand has received significant interests in the past from relevant medical researchers and health professionals. The reachable space was often computed from the joint angles acquired from a motion capture system such as gloves or markers attached to each bone of the finger. However, the contact between the hand and device can cause difficulties particularly for hand with injuries, burns or experiencing certain dermatological conditions. This paper introduces an approach to find the reachable space of the hand in a non-contact measurement form utilizing the Leap Motion Controller. The approach is based on the analysis of each position in the motion path of the fingertip acquired by the Leap Motion Controller. For each position of the fingertip, the inverse kinematic problem was solved under the physiological multiple constraints of the human hand to find a set of all possible configurations of three finger joints. Subsequently, all the sets are unified to form a set of all possible configurations specific for that motion. Finally, a reachable space is computed from the configuration corresponding to the complete extension and the complete flexion of the finger joint angles in this set.

  3. Tailoring four-dimensional cone-beam CT acquisition settings for fiducial marker-based image guidance in radiation therapy.

    PubMed

    Jin, Peng; van Wieringen, Niek; Hulshof, Maarten C C M; Bel, Arjan; Alderliesten, Tanja

    2018-04-01

    Use of four-dimensional cone-beam CT (4D-CBCT) and fiducial markers for image guidance during radiation therapy (RT) of mobile tumors is challenging due to the trade-off among image quality, imaging dose, and scanning time. This study aimed to investigate different 4D-CBCT acquisition settings for good visibility of fiducial markers in 4D-CBCT. Using these 4D-CBCTs, the feasibility of marker-based 4D registration for RT setup verification and manual respiration-induced motion quantification was investigated. For this, we applied a dynamic phantom with three different breathing motion amplitudes and included two patients with implanted markers. Irrespective of the motion amplitude, for a medium field of view (FOV), marker visibility was improved by reducing the imaging dose per projection and increasing the number of projection images; however, the scanning time was 4 to 8 min. For a small FOV, the total imaging dose and the scanning time were reduced (62.5% of the dose using a medium FOV, 2.5 min) without losing marker visibility. However, the body contour could be missing for a small FOV, which is not preferred in RT. The marker-based 4D setup verification was feasible for both the phantom and patient data. Moreover, manual marker motion quantification can achieve a high accuracy with a mean error of [Formula: see text].

  4. Marker-less respiratory motion modeling using the Microsoft Kinect for Windows

    NASA Astrophysics Data System (ADS)

    Tahavori, F.; Alnowami, M.; Wells, K.

    2014-03-01

    Patient respiratory motion is a major problem during external beam radiotherapy of the thoracic and abdominal regions due to the associated organ and target motion. In addition, such motion introduces uncertainty in both radiotherapy planning and delivery and may potentially vary between the planning and delivery sessions. The aim of this work is to examine subject-specific external respiratory motion and its associated drift from an assumed average cycle which is the basis for many respiratory motion compensated applications including radiotherapy treatment planning and delivery. External respiratory motion data were acquired from a group of 20 volunteers using a marker-less 3D depth camera, Kinect for Windows. The anterior surface encompassing thoracic and abdominal regions were subject to principal component analysis (PCA) to investigate dominant variations. The first principal component typically describes more than 70% of the motion data variance in the thoracic and abdominal surfaces. Across all of the subjects used in this study, 58% of subjects demonstrate largely abdominal breathing and 33% exhibited largely thoracic dominated breathing. In most cases there is observable drift in respiratory motion during the 300s capture period, which is visually demonstrated using Kernel Density Estimation. This study demonstrates that for this cohort of apparently healthy volunteers, there is significant respiratory motion drift in most cases, in terms of amplitude and relative displacement between the thoracic and abdominal respiratory components. This has implications for the development of effective motion compensation methodology.

  5. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. Part I. Numerical model-based optimization

    PubMed Central

    Choi, Jang-Hwan; Fahrig, Rebecca; Keil, Andreas; Besier, Thor F.; Pal, Saikat; McWalter, Emily J.; Beaupré, Gary S.; Maier, Andreas

    2013-01-01

    Purpose: Human subjects in standing positions are apt to show much more involuntary motion than in supine positions. The authors aimed to simulate a complicated realistic lower body movement using the four-dimensional (4D) digital extended cardiac-torso (XCAT) phantom. The authors also investigated fiducial marker-based motion compensation methods in two-dimensional (2D) and three-dimensional (3D) space. The level of involuntary movement-induced artifacts and image quality improvement were investigated after applying each method. Methods: An optical tracking system with eight cameras and seven retroreflective markers enabled us to track involuntary motion of the lower body of nine healthy subjects holding a squat position at 60° of flexion. The XCAT-based knee model was developed using the 4D XCAT phantom and the optical tracking data acquired at 120 Hz. The authors divided the lower body in the XCAT into six parts and applied unique affine transforms to each so that the motion (6 degrees of freedom) could be synchronized with the optical markers’ location at each time frame. The control points of the XCAT were tessellated into triangles and 248 projection images were created based on intersections of each ray and monochromatic absorption. The tracking data sets with the largest motion (Subject 2) and the smallest motion (Subject 5) among the nine data sets were used to animate the XCAT knee model. The authors defined eight skin control points well distributed around the knees as pseudo-fiducial markers which functioned as a reference in motion correction. Motion compensation was done in the following ways: (1) simple projection shifting in 2D, (2) deformable projection warping in 2D, and (3) rigid body warping in 3D. Graphics hardware accelerated filtered backprojection was implemented and combined with the three correction methods in order to speed up the simulation process. Correction fidelity was evaluated as a function of number of markers used (4–12) and marker distribution in three scenarios. Results: Average optical-based translational motion for the nine subjects was 2.14 mm (±0.69 mm) and 2.29 mm (±0.63 mm) for the right and left knee, respectively. In the representative central slices of Subject 2, the authors observed 20.30%, 18.30%, and 22.02% improvements in the structural similarity (SSIM) index with 2D shifting, 2D warping, and 3D warping, respectively. The performance of 2D warping improved as the number of markers increased up to 12 while 2D shifting and 3D warping were insensitive to the number of markers used. The minimum required number of markers for 2D shifting, 2D warping, and 3D warping was 4–6, 12, and 8, respectively. An even distribution of markers over the entire field of view provided robust performance for all three correction methods. Conclusions: The authors were able to simulate subject-specific realistic knee movement in weight-bearing positions. This study indicates that involuntary motion can seriously degrade the image quality. The proposed three methods were evaluated with the numerical knee model; 3D warping was shown to outperform the 2D methods. The methods are shown to significantly reduce motion artifacts if an appropriate marker setup is chosen. PMID:24007156

  6. Collecting Kinematic Data on a Ski Track with Optoelectronic Stereophotogrammetry: A Methodological Study Assessing the Feasibility of Bringing the Biomechanics Lab to the Field

    PubMed Central

    Müller, Erich

    2016-01-01

    In the laboratory, optoelectronic stereophotogrammetry is one of the most commonly used motion capture systems; particularly, when position- or orientation-related analyses of human movements are intended. However, for many applied research questions, field experiments are indispensable, and it is not a priori clear whether optoelectronic stereophotogrammetric systems can be expected to perform similarly to in-lab experiments. This study aimed to assess the instrumental errors of kinematic data collected on a ski track using optoelectronic stereophotogrammetry, and to investigate the magnitudes of additional skiing-specific errors and soft tissue/suit artifacts. During a field experiment, the kinematic data of different static and dynamic tasks were captured by the use of 24 infrared-cameras. The distances between three passive markers attached to a rigid bar were stereophotogrammetrically reconstructed and, subsequently, were compared to the manufacturer-specified exact values. While at rest or skiing at low speed, the optoelectronic stereophotogrammetric system’s accuracy and precision for determining inter-marker distances were found to be comparable to those known for in-lab experiments (< 1 mm). However, when measuring a skier’s kinematics under “typical” skiing conditions (i.e., high speeds, inclined/angulated postures and moderate snow spraying), additional errors were found to occur for distances between equipment-fixed markers (total measurement errors: 2.3 ± 2.2 mm). Moreover, for distances between skin-fixed markers, such as the anterior hip markers, additional artifacts were observed (total measurement errors: 8.3 ± 7.1 mm). In summary, these values can be considered sufficient for the detection of meaningful position- or orientation-related differences in alpine skiing. However, it must be emphasized that the use of optoelectronic stereophotogrammetry on a ski track is seriously constrained by limited practical usability, small-sized capture volumes and the occurrence of extensive snow spraying (which results in marker obscuration). The latter limitation possibly might be overcome by the use of more sophisticated cluster-based marker sets. PMID:27560498

  7. In-vivo confirmation of the use of the dart thrower's motion during activities of daily living.

    PubMed

    Brigstocke, G H O; Hearnden, A; Holt, C; Whatling, G

    2014-05-01

    The dart thrower's motion is a wrist rotation along an oblique plane from radial extension to ulnar flexion. We report an in-vivo study to confirm the use of the dart thrower's motion during activities of daily living. Global wrist motion in ten volunteers was recorded using a three-dimensional optoelectronic motion capture system, in which digital infra-red cameras track the movement of retro-reflective marker clusters. Global wrist motion has been approximated to the dart thrower's motion when hammering a nail, throwing a ball, drinking from a glass, pouring from a jug and twisting the lid of a jar, but not when combing hair or manipulating buttons. The dart thrower's motion is the plane of global wrist motion used during most activities of daily living. Arthrodesis of the radiocarpal joint instead of the midcarpal joint will allow better wrist function during most activities of daily living by preserving the dart thrower's motion.

  8. Validation of enhanced kinect sensor based motion capturing for gait assessment

    PubMed Central

    Müller, Björn; Ilg, Winfried; Giese, Martin A.

    2017-01-01

    Optical motion capturing systems are expensive and require substantial dedicated space to be set up. On the other hand, they provide unsurpassed accuracy and reliability. In many situations however flexibility is required and the motion capturing system can only temporarily be placed. The Microsoft Kinect v2 sensor is comparatively cheap and with respect to gait analysis promising results have been published. We here present a motion capturing system that is easy to set up, flexible with respect to the sensor locations and delivers high accuracy in gait parameters comparable to a gold standard motion capturing system (VICON). Further, we demonstrate that sensor setups which track the person only from one-side are less accurate and should be replaced by two-sided setups. With respect to commonly analyzed gait parameters, especially step width, our system shows higher agreement with the VICON system than previous reports. PMID:28410413

  9. The 3D Human Motion Control Through Refined Video Gesture Annotation

    NASA Astrophysics Data System (ADS)

    Jin, Yohan; Suk, Myunghoon; Prabhakaran, B.

    In the beginning of computer and video game industry, simple game controllers consisting of buttons and joysticks were employed, but recently game consoles are replacing joystick buttons with novel interfaces such as the remote controllers with motion sensing technology on the Nintendo Wii [1] Especially video-based human computer interaction (HCI) technique has been applied to games, and the representative game is 'Eyetoy' on the Sony PlayStation 2. Video-based HCI technique has great benefit to release players from the intractable game controller. Moreover, in order to communicate between humans and computers, video-based HCI is very crucial since it is intuitive, easy to get, and inexpensive. On the one hand, extracting semantic low-level features from video human motion data is still a major challenge. The level of accuracy is really dependent on each subject's characteristic and environmental noises. Of late, people have been using 3D motion-capture data for visualizing real human motions in 3D space (e.g, 'Tiger Woods' in EA Sports, 'Angelina Jolie' in Bear-Wolf movie) and analyzing motions for specific performance (e.g, 'golf swing' and 'walking'). 3D motion-capture system ('VICON') generates a matrix for each motion clip. Here, a column is corresponding to a human's sub-body part and row represents time frames of data capture. Thus, we can extract sub-body part's motion only by selecting specific columns. Different from low-level feature values of video human motion, 3D human motion-capture data matrix are not pixel values, but is closer to human level of semantics.

  10. A Marker-less Monitoring System for Movement Analysis of Infants Using Video Images

    NASA Astrophysics Data System (ADS)

    Shima, Keisuke; Osawa, Yuko; Bu, Nan; Tsuji, Tokuo; Tsuji, Toshio; Ishii, Idaku; Matsuda, Hiroshi; Orito, Kensuke; Ikeda, Tomoaki; Noda, Shunichi

    This paper proposes a marker-less motion measurement and analysis system for infants. This system calculates eight types of evaluation indices related to the movement of an infant such as “amount of body motion” and “activity of body” from binary images that are extracted from video images using the background difference and frame difference. Thus, medical doctors can intuitively understand the movements of infants without long-term observations, and this may be helpful in supporting their diagnoses and detecting disabilities and diseases in the early stages. The distinctive feature of this system is that the movements of infants can be measured without using any markers for motion capture and thus it is expected that the natural and inherent tendencies of infants can be analyzed and evaluated. In this paper, the evaluation indices and features of movements between full-term infants (FTIs) and low birth weight infants (LBWIs) are compared using the developed prototype. We found that the amount of body motion and symmetry of upper and lower body movements of LBWIs became lower than those of FTIs. The difference between the movements of FTIs and LBWIs can be evaluated using the proposed system.

  11. AMUC: Associated Motion capture User Categories.

    PubMed

    Norman, Sally Jane; Lawson, Sian E M; Olivier, Patrick; Watson, Paul; Chan, Anita M-A; Dade-Robertson, Martyn; Dunphy, Paul; Green, Dave; Hiden, Hugo; Hook, Jonathan; Jackson, Daniel G

    2009-07-13

    The AMUC (Associated Motion capture User Categories) project consisted of building a prototype sketch retrieval client for exploring motion capture archives. High-dimensional datasets reflect the dynamic process of motion capture and comprise high-rate sampled data of a performer's joint angles; in response to multiple query criteria, these data can potentially yield different kinds of information. The AMUC prototype harnesses graphic input via an electronic tablet as a query mechanism, time and position signals obtained from the sketch being mapped to the properties of data streams stored in the motion capture repository. As well as proposing a pragmatic solution for exploring motion capture datasets, the project demonstrates the conceptual value of iterative prototyping in innovative interdisciplinary design. The AMUC team was composed of live performance practitioners and theorists conversant with a variety of movement techniques, bioengineers who recorded and processed motion data for integration into the retrieval tool, and computer scientists who designed and implemented the retrieval system and server architecture, scoped for Grid-based applications. Creative input on information system design and navigation, and digital image processing, underpinned implementation of the prototype, which has undergone preliminary trials with diverse users, allowing identification of rich potential development areas.

  12. Accuracy of an optical active-marker system to track the relative motion of rigid bodies.

    PubMed

    Maletsky, Lorin P; Sun, Junyi; Morton, Nicholas A

    2007-01-01

    The measurement of relative motion between two moving bones is commonly accomplished for in vitro studies by attaching to each bone a series of either passive or active markers in a fixed orientation to create a rigid body (RB). This work determined the accuracy of motion between two RBs using an Optotrak optical motion capture system with active infrared LEDs. The stationary noise in the system was quantified by recording the apparent change in position with the RBs stationary and found to be 0.04 degrees and 0.03 mm. Incremental 10 degrees rotations and 10-mm translations were made using a more precise tool than the Optotrak. Increasing camera distance decreased the precision or increased the range of values observed for a set motion and increased the error in rotation or bias between the measured and actual rotation. The relative positions of the RBs with respect to the camera-viewing plane had a minimal effect on the kinematics and, therefore, for a given distance in the volume less than or close to the precalibrated camera distance, any motion was similarly reliable. For a typical operating set-up, a 10 degrees rotation showed a bias of 0.05 degrees and a 95% repeatability limit of 0.67 degrees. A 10-mm translation showed a bias of 0.03 mm and a 95% repeatability limit of 0.29 mm. To achieve a high level of accuracy it is important to keep the distance between the cameras and the markers near the distance the cameras are focused to during calibration.

  13. Validation of Attitude and Heading Reference System and Microsoft Kinect for Continuous Measurement of Cervical Range of Motion Compared to the Optical Motion Capture System.

    PubMed

    Song, Young Seop; Yang, Kyung Yong; Youn, Kibum; Yoon, Chiyul; Yeom, Jiwoon; Hwang, Hyeoncheol; Lee, Jehee; Kim, Keewon

    2016-08-01

    To compare optical motion capture system (MoCap), attitude and heading reference system (AHRS) sensor, and Microsoft Kinect for the continuous measurement of cervical range of motion (ROM). Fifteen healthy adult subjects were asked to sit in front of the Kinect camera with optical markers and AHRS sensors attached to the body in a room equipped with optical motion capture camera. Subjects were instructed to independently perform axial rotation followed by flexion/extension and lateral bending. Each movement was repeated 5 times while being measured simultaneously with 3 devices. Using the MoCap system as the gold standard, the validity of AHRS and Kinect for measurement of cervical ROM was assessed by calculating correlation coefficient and Bland-Altman plot with 95% limits of agreement (LoA). MoCap and ARHS showed fair agreement (95% LoA<10°), while MoCap and Kinect showed less favorable agreement (95% LoA>10°) for measuring ROM in all directions. Intraclass correlation coefficient (ICC) values between MoCap and AHRS in -40° to 40° range were excellent for flexion/extension and lateral bending (ICC>0.9). ICC values were also fair for axial rotation (ICC>0.8). ICC values between MoCap and Kinect system in -40° to 40° range were fair for all motions. Our study showed feasibility of using AHRS to measure cervical ROM during continuous motion with an acceptable range of error. AHRS and Kinect system can also be used for continuous monitoring of flexion/extension and lateral bending in ordinary range.

  14. Real-time physics-based 3D biped character animation using an inverted pendulum model.

    PubMed

    Tsai, Yao-Yang; Lin, Wen-Chieh; Cheng, Kuangyou B; Lee, Jehee; Lee, Tong-Yee

    2010-01-01

    We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to track in dynamics simulation. Rather than using Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion tracking adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically correct full-body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that tracking motion capture data with real-time response animation can be achieved easily. In addition, physically plausible motion style editing, automatic motion transition, and motion adaptation to different limb sizes can also be generated without difficulty.

  15. Wearable Stretch Sensors for Motion Measurement of the Wrist Joint Based on Dielectric Elastomers.

    PubMed

    Huang, Bo; Li, Mingyu; Mei, Tao; McCoul, David; Qin, Shihao; Zhao, Zhanfeng; Zhao, Jianwen

    2017-11-23

    Motion capture of the human body potentially holds great significance for exoskeleton robots, human-computer interaction, sports analysis, rehabilitation research, and many other areas. Dielectric elastomer sensors (DESs) are excellent candidates for wearable human motion capture systems because of their intrinsic characteristics of softness, light weight, and compliance. In this paper, DESs were applied to measure all component motions of the wrist joints. Five sensors were mounted to different positions on the wrist, and each one is for one component motion. To find the best position to mount the sensors, the distribution of the muscles is analyzed. Even so, the component motions and the deformation of the sensors are coupled; therefore, a decoupling method was developed. By the decoupling algorithm, all component motions can be measured with a precision of 5°, which meets the requirements of general motion capture systems.

  16. The Glasgow-Maastricht foot model, evaluation of a 26 segment kinematic model of the foot.

    PubMed

    Oosterwaal, Michiel; Carbes, Sylvain; Telfer, Scott; Woodburn, James; Tørholm, Søren; Al-Munajjed, Amir A; van Rhijn, Lodewijk; Meijer, Kenneth

    2016-01-01

    Accurately measuring of intrinsic foot kinematics using skin mounted markers is difficult, limited in part by the physical dimensions of the foot. Existing kinematic foot models solve this problem by combining multiple bones into idealized rigid segments. This study presents a novel foot model that allows the motion of the 26 bones to be individually estimated via a combination of partial joint constraints and coupling the motion of separate joints using kinematic rhythms. Segmented CT data from one healthy subject was used to create a template Glasgow-Maastricht foot model (GM-model). Following this, the template was scaled to produce subject-specific models for five additional healthy participants using a surface scan of the foot and ankle. Forty-three skin mounted markers, mainly positioned around the foot and ankle, were used to capture the stance phase of the right foot of the six healthy participants during walking. The GM-model was then applied to calculate the intrinsic foot kinematics. Distinct motion patterns where found for all joints. The variability in outcome depended on the location of the joint, with reasonable results for sagittal plane motions and poor results for transverse plane motions. The results of the GM-model were comparable with existing literature, including bone pin studies, with respect to the range of motion, motion pattern and timing of the motion in the studied joints. This novel model is the most complete kinematic model to date. Further evaluation of the model is warranted.

  17. [An Introduction to A Newly-developed "Acupuncture Needle Manipulation Training-evaluation System" Based on Optical Motion Capture Technique].

    PubMed

    Zhang, Ao; Yan, Xing-Ke; Liu, An-Guo

    2016-12-25

    In the present paper, the authors introduce a newly-developed "Acupuncture Needle Manipulation Training-evaluation System" based on optical motion capture technique. It is composed of two parts, sensor and software, and overcomes some shortages of mechanical motion capture technique. This device is able to analyze the data of operations of the pressing-hand and needle-insertion hand during acupuncture performance and its software contains personal computer (PC) version, Android version, and Internetwork Operating System (IOS) Apple version. It is competent in recording and analyzing information of any ope-rator's needling manipulations, and is quite helpful for teachers in teaching, training and examining students in clinical practice.

  18. A proto-type design of a real-tissue phantom for the validation of deformation algorithms and 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Szegedi, M.; Rassiah-Szegedi, P.; Fullerton, G.; Wang, B.; Salter, B.

    2010-07-01

    The purpose of this study is to design a real-tissue phantom for use in the validation of deformation algorithms. A phantom motion controller that runs sinusoidal and non-regular patient-based breathing pattern, via a piston, was applied to porcine liver tissue. It was regulated to simulate movement ranges similar to recorded implanted liver markers from patients. 4D CT was applied to analyze deformation. The suitability of various markers in the liver and the position reproducibility of markers and of reference points were studied. The similarity of marker motion pattern in the liver phantom and in real patients was evaluated. The viability of the phantom over time and its use with electro-magnetic tracking devices were also assessed. High contrast markers, such as carbon markers, implanted in the porcine liver produced less image artifacts on CT and were well visualized compared to metallic ones. The repositionability of markers was within a measurement accuracy of ±2 mm. Similar anatomical patient motions were reproducible up to elongations of 3 cm for a time period of at least 90 min. The phantom is compatible with electro-magnetic tracking devices and 4D CT. The phantom motion is reproducible and simulates realistic patient motion and deformation. The ability to carry out voxel-based tracking allows for the evaluation of deformation algorithms in a controlled environment with recorded patient traces. The phantom is compatible with all therapy devices clinically encountered in our department.

  19. Miniature low-power inertial sensors: promising technology for implantable motion capture systems.

    PubMed

    Lambrecht, Joris M; Kirsch, Robert F

    2014-11-01

    Inertial and magnetic sensors are valuable for untethered, self-contained human movement analysis. Very recently, complete integration of inertial sensors, magnetic sensors, and processing into single packages, has resulted in miniature, low power devices that could feasibly be employed in an implantable motion capture system. We developed a wearable sensor system based on a commercially available system-in-package inertial and magnetic sensor. We characterized the accuracy of the system in measuring 3-D orientation-with and without magnetometer-based heading compensation-relative to a research grade optical motion capture system. The root mean square error was less than 4° in dynamic and static conditions about all axes. Using four sensors, recording from seven degrees-of-freedom of the upper limb (shoulder, elbow, wrist) was demonstrated in one subject during reaching motions. Very high correlation and low error was found across all joints relative to the optical motion capture system. Findings were similar to previous publications using inertial sensors, but at a fraction of the power consumption and size of the sensors. Such ultra-small, low power sensors provide exciting new avenues for movement monitoring for various movement disorders, movement-based command interfaces for assistive devices, and implementation of kinematic feedback systems for assistive interventions like functional electrical stimulation.

  20. New Lower-Limb Gait Asymmetry Indices Based on a Depth Camera

    PubMed Central

    Auvinet, Edouard; Multon, Franck; Meunier, Jean

    2015-01-01

    Background: Various asymmetry indices have been proposed to compare the spatiotemporal, kinematic and kinetic parameters of lower limbs during the gait cycle. However, these indices rely on gait measurement systems that are costly and generally require manual examination, calibration procedures and the precise placement of sensors/markers on the body of the patient. Methods: To overcome these issues, this paper proposes a new asymmetry index, which uses an inexpensive, easy-to-use and markerless depth camera (Microsoft Kinect™) output. This asymmetry index directly uses depth images provided by the Kinect™ without requiring joint localization. It is based on the longitudinal spatial difference between lower-limb movements during the gait cycle. To evaluate the relevance of this index, fifteen healthy subjects were tested on a treadmill walking normally and then via an artificially-induced gait asymmetry with a thick sole placed under one shoe. The gait movement was simultaneously recorded using a Kinect™ placed in front of the subject and a motion capture system. Results: The proposed longitudinal index distinguished asymmetrical gait (p < 0.001), while other symmetry indices based on spatiotemporal gait parameters failed using such Kinect™ skeleton measurements. Moreover, the correlation coefficient between this index measured by Kinect™ and the ground truth of this index measured by motion capture is 0.968. Conclusion: This gait asymmetry index measured with a Kinect™ is low cost, easy to use and is a promising development for clinical gait analysis. PMID:25719863

  1. Kinect Posture Reconstruction Based on a Local Mixture of Gaussian Process Models.

    PubMed

    Liu, Zhiguang; Zhou, Liuyang; Leung, Howard; Shum, Hubert P H

    2016-11-01

    Depth sensor based 3D human motion estimation hardware such as Kinect has made interactive applications more popular recently. However, it is still challenging to accurately recognize postures from a single depth camera due to the inherently noisy data derived from depth images and self-occluding action performed by the user. In this paper, we propose a new real-time probabilistic framework to enhance the accuracy of live captured postures that belong to one of the action classes in the database. We adopt the Gaussian Process model as a prior to leverage the position data obtained from Kinect and marker-based motion capture system. We also incorporate a temporal consistency term into the optimization framework to constrain the velocity variations between successive frames. To ensure that the reconstructed posture resembles the accurate parts of the observed posture, we embed a set of joint reliability measurements into the optimization framework. A major drawback of Gaussian Process is its cubic learning complexity when dealing with a large database due to the inverse of a covariance matrix. To solve the problem, we propose a new method based on a local mixture of Gaussian Processes, in which Gaussian Processes are defined in local regions of the state space. Due to the significantly decreased sample size in each local Gaussian Process, the learning time is greatly reduced. At the same time, the prediction speed is enhanced as the weighted mean prediction for a given sample is determined by the nearby local models only. Our system also allows incrementally updating a specific local Gaussian Process in real time, which enhances the likelihood of adapting to run-time postures that are different from those in the database. Experimental results demonstrate that our system can generate high quality postures even under severe self-occlusion situations, which is beneficial for real-time applications such as motion-based gaming and sport training.

  2. A new calibration methodology for thorax and upper limbs motion capture in children using magneto and inertial sensors.

    PubMed

    Ricci, Luca; Formica, Domenico; Sparaci, Laura; Lasorsa, Francesca Romana; Taffoni, Fabrizio; Tamilia, Eleonora; Guglielmelli, Eugenio

    2014-01-09

    Recent advances in wearable sensor technologies for motion capture have produced devices, mainly based on magneto and inertial measurement units (M-IMU), that are now suitable for out-of-the-lab use with children. In fact, the reduced size, weight and the wireless connectivity meet the requirement of minimum obtrusivity and give scientists the possibility to analyze children's motion in daily life contexts. Typical use of magneto and inertial measurement units (M-IMU) motion capture systems is based on attaching a sensing unit to each body segment of interest. The correct use of this setup requires a specific calibration methodology that allows mapping measurements from the sensors' frames of reference into useful kinematic information in the human limbs' frames of reference. The present work addresses this specific issue, presenting a calibration protocol to capture the kinematics of the upper limbs and thorax in typically developing (TD) children. The proposed method allows the construction, on each body segment, of a meaningful system of coordinates that are representative of real physiological motions and that are referred to as functional frames (FFs). We will also present a novel cost function for the Levenberg-Marquardt algorithm, to retrieve the rotation matrices between each sensor frame (SF) and the corresponding FF. Reported results on a group of 40 children suggest that the method is repeatable and reliable, opening the way to the extensive use of this technology for out-of-the-lab motion capture in children.

  3. Model-based extended quaternion Kalman filter to inertial orientation tracking of arbitrary kinematic chains.

    PubMed

    Szczęsna, Agnieszka; Pruszowski, Przemysław

    2016-01-01

    Inertial orientation tracking is still an area of active research, especially in the context of out-door, real-time, human motion capture. Existing systems either propose loosely coupled tracking approaches where each segment is considered independently, taking the resulting drawbacks into account, or tightly coupled solutions that are limited to a fixed chain with few segments. Such solutions have no flexibility to change the skeleton structure, are dedicated to a specific set of joints, and have high computational complexity. This paper describes the proposal of a new model-based extended quaternion Kalman filter that allows for estimation of orientation based on outputs from the inertial measurements unit sensors. The filter considers interdependencies resulting from the construction of the kinematic chain so that the orientation estimation is more accurate. The proposed solution is a universal filter that does not predetermine the degree of freedom at the connections between segments of the model. To validation the motion of 3-segments single link pendulum captured by optical motion capture system is used. The next step in the research will be to use this method for inertial motion capture with a human skeleton model.

  4. A marker placement laser device for improving repeatability in 3D-foot motion analysis.

    PubMed

    Kalkum, Eva; van Drongelen, Stefan; Mussler, Johannes; Wolf, Sebastian I; Kuni, Benita

    2016-02-01

    In 3D gait analysis, the repeated positioning of markers is associated with a high error rate, particularly when using a complex foot model with many markers. Therefore, a marker placement laser device was developed that ensures a reliable repositioning of markers. We report the development and reliability of this device for the foot at different tape conditions. In 38 subjects, markers were placed at the foot according to the Heidelberg foot measurement method. Subjects were tested barefoot and barefoot with three different tape conditions. For all conditions, a static standing trial was captured. We analyzed differences in distances between markers and the intra-class correlation coefficients (ICC). Small differences between the conditions (0.03-3.28 mm) and excellent ICCs (0.91-0.97 mm) were found for all parameters. The laser marker placement device appeared to be a reliable method to place markers on a tape at previously palpated positions and ensures an exact position. The device could find a wide application in different clinical research fields. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The long- and short-term variability of breathing induced tumor motion in lung and liver over the course of a radiotherapy treatment.

    PubMed

    Dhont, Jennifer; Vandemeulebroucke, Jef; Burghelea, Manuela; Poels, Kenneth; Depuydt, Tom; Van Den Begin, Robbe; Jaudet, Cyril; Collen, Christine; Engels, Benedikt; Reynders, Truus; Boussaer, Marlies; Gevaert, Thierry; De Ridder, Mark; Verellen, Dirk

    2018-02-01

    To evaluate the short and long-term variability of breathing induced tumor motion. 3D tumor motion of 19 lung and 18 liver lesions captured over the course of an SBRT treatment were evaluated and compared to the motion on 4D-CT. An implanted fiducial could be used for unambiguous motion information. Fast orthogonal fluoroscopy (FF) sequences, included in the treatment workflow, were used to evaluate motion during treatment. Several motion parameters were compared between different FF sequences from the same fraction to evaluate the intrafraction variability. To assess interfraction variability, amplitude and hysteresis were compared between fractions and with the 3D tumor motion registered by 4D-CT. Population based margins, necessary on top of the ITV to capture all motion variability, were calculated based on the motion captured during treatment. Baseline drift in the cranio-caudal (CC) or anterior-poster (AP) direction is significant (ie. >5 mm) for a large group of patients, in contrary to intrafraction amplitude and hysteresis variability. However, a correlation between intrafraction amplitude variability and mean motion amplitude was found (Pearson's correlation coefficient, r = 0.72, p < 10 -4 ). Interfraction variability in amplitude is significant for 46% of all lesions. As such, 4D-CT accurately captures the motion during treatment for some fractions but not for all. Accounting for motion variability during treatment increases the PTV margins in all directions, most significantly in CC from 5 mm to 13.7 mm for lung and 8.0 mm for liver. Both short-term and day-to-day tumor motion variability can be significant, especially for lesions moving with amplitudes above 7 mm. Abandoning passive motion management strategies in favor of more active ones is advised. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. An error-based micro-sensor capture system for real-time motion estimation

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Ye, Shiwei; Wang, Zhibo; Huang, Zhipei; Wu, Jiankang; Kong, Yongmei; Zhang, Li

    2017-10-01

    A wearable micro-sensor motion capture system with 16 IMUs and an error-compensatory complementary filter algorithm for real-time motion estimation has been developed to acquire accurate 3D orientation and displacement in real life activities. In the proposed filter algorithm, the gyroscope bias error, orientation error and magnetic disturbance error are estimated and compensated, significantly reducing the orientation estimation error due to sensor noise and drift. Displacement estimation, especially for activities such as jumping, has been the challenge in micro-sensor motion capture. An adaptive gait phase detection algorithm has been developed to accommodate accurate displacement estimation in different types of activities. The performance of this system is benchmarked with respect to the results of VICON optical capture system. The experimental results have demonstrated effectiveness of the system in daily activities tracking, with estimation error 0.16 ± 0.06 m for normal walking and 0.13 ± 0.11 m for jumping motions. Research supported by the National Natural Science Foundation of China (Nos. 61431017, 81272166).

  7. Patterns of intrafractional motion and uncertainties of treatment setup reference systems in accelerated partial breast irradiation for right- and left-sided breast cancer.

    PubMed

    Yue, Ning J; Goyal, Sharad; Kim, Leonard H; Khan, Atif; Haffty, Bruce G

    2014-01-01

    This study investigated the patterns of intrafractional motion and accuracy of treatment setup strategies in 3-dimensional conformal radiation therapy of accelerated partial breast irradiation (APBI) for right- and left-sided breast cancers. Sixteen right-sided and 17 left-sided breast cancer patients were enrolled in an institutional APBI trial in which gold fiducial markers were strategically sutured to the surgical cavity walls. Daily pre- and postradiation therapy kV imaging were performed and were matched to digitally reconstructed radiographs based on bony anatomy and fiducial markers, respectively, to determine the intrafractional motion. The positioning differences of the laser-tattoo and the bony anatomy-based setups with respect to the marker-based setup (benchmark) were determined to evaluate their accuracy. Statistical differences were found between the right- and left-sided APBI treatments in vector directions of intrafractional motion and treatment setup errors in the reference systems, but less in their overall magnitudes. The directional difference was more pronounced in the lateral direction. It was found that the intrafractional motion and setup reference systems tended to deviate in the right direction for the right-sided breast treatments and in the left direction for the left-sided breast treatments. It appears that the fiducial markers placed in the seroma cavity exhibit side dependent directional intrafractional motion, although additional data may be needed to further validate the conclusion. The bony anatomy-based treatment setup improves the accuracy over laser-tattoo. But it is inadequate to rely on bony anatomy to assess intrafractional target motion in both magnitude and direction. Copyright © 2014 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasari, Paul K. R.; Shazeeb, Mohammed Salman; Könik, Arda

    Purpose: Binning list-mode acquisitions as a function of a surrogate signal related to respiration has been employed to reduce the impact of respiratory motion on image quality in cardiac emission tomography (SPECT and PET). Inherent in amplitude binning is the assumption that there is a monotonic relationship between the amplitude of the surrogate signal and respiratory motion of the heart. This assumption is not valid in the presence of hysteresis when heart motion exhibits a different relationship with the surrogate during inspiration and expiration. The purpose of this study was to investigate the novel approach of using the Bouc–Wen (BW)more » model to provide a signal accounting for hysteresis when binning list-mode data with the goal of thereby improving motion correction. The study is based on the authors’ previous observations that hysteresis between chest and abdomen markers was indicative of hysteresis between abdomen markers and the internal motion of the heart. Methods: In 19 healthy volunteers, they determined the internal motion of the heart and diaphragm in the superior–inferior direction during free breathing using MRI navigators. A visual tracking system (VTS) synchronized with MRI acquisition tracked the anterior–posterior motions of external markers placed on the chest and abdomen. These data were employed to develop and test the Bouc–Wen model by inputting the VTS derived chest and abdomen motions into it and using the resulting output signals as surrogates for cardiac motion. The data of the volunteers were divided into training and testing sets. The training set was used to obtain initial values for the model parameters for all of the volunteers in the set, and for set members based on whether they were or were not classified as exhibiting hysteresis using a metric derived from the markers. These initial parameters were then employed with the testing set to estimate output signals. Pearson’s linear correlation coefficient between the abdomen, chest, average of chest and abdomen markers, and Bouc–Wen derived signals versus the true internal motion of the heart from MRI was used to judge the signals match to the heart motion. Results: The results show that the Bouc–Wen model generated signals demonstrated strong correlation with the heart motion. This correlation was slightly larger on average than that of the external surrogate signals derived from the abdomen marker, and average of the abdomen and chest markers, but was not statistically significantly different from them. Conclusions: The results suggest that the proposed model has the potential to be a unified framework for modeling hysteresis in respiratory motion in cardiac perfusion studies and beyond.« less

  9. Power estimation of martial arts movement with different physical, mood, and behavior using motion capture camera

    NASA Astrophysics Data System (ADS)

    Awang Soh, Ahmad Afiq Sabqi; Mat Jafri, Mohd Zubir; Azraai, Nur Zaidi

    2017-07-01

    In Malay world, there is a spirit traditional ritual where they use it as healing practices or for normal life. Malay martial arts (silat) also is not exceptional where some branch of silat have spirit traditional ritual where they said can help them in combat. In this paper, we will not use any ritual, instead we will use some medicinal and environment change when they are performing. There will be 2 performers (fighter) selected, one of them have an experience in martial arts training and another performer does not have experience. Motion Capture (MOCAP) camera will help observe and analyze this move. 8 cameras have been placed in the MOCAP room 2 on each side of the wall facing toward the center of the room from every angle. This will help prevent the loss detection of a marker that been stamped on the limb of a performer. Passive marker has been used where it will reflect the infrared to the camera sensor. Infrared is generated by the source around the camera lens. A 60 kg punching bag was hung on the iron bar function as the target for the performer when throws a punch. Markers also have been stamped on the punching bag so we can detect the movement how far can it swing when hit by the performer. 2 performers will perform 2 moves each with the same position and posture. For every 2 moves, we have made the environment change without the performer notice about it. The first 2 punch with normal environment, second part we have played a positive music to change the performer's mood and third part we have put a medicine (cream/oil) on the skin of the performer. This medicine will make the skin feel a little bit hot. This process repeated to another performer with no experience. The position of this marker analyzed by the Cortex Motion Analysis software where from this data, we can estimate the kinetics and kinematics of the performer. It shows that the increase of kinetics for every part because of the change in the environment, and different result for the 2 performers.

  10. A Quasi-Static Method for Determining the Characteristics of a Motion Capture Camera System in a "Split-Volume" Configuration

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Mulavara, Ajitkumar; Bloomberg, Jacob

    2001-01-01

    To confidently report any data collected from a video-based motion capture system, its functional characteristics must be determined, namely accuracy, repeatability and resolution. Many researchers have examined these characteristics with motion capture systems, but they used only two cameras, positioned 90 degrees to each other. Everaert used 4 cameras, but all were aligned along major axes (two in x, one in y and z). Richards compared the characteristics of different commercially available systems set-up in practical configurations, but all cameras viewed a single calibration volume. The purpose of this study was to determine the accuracy, repeatability and resolution of a 6-camera Motion Analysis system in a split-volume configuration using a quasistatic methodology.

  11. Optimum location of external markers using feature selection algorithms for real‐time tumor tracking in external‐beam radiotherapy: a virtual phantom study

    PubMed Central

    Nankali, Saber; Miandoab, Payam Samadi; Baghizadeh, Amin

    2016-01-01

    In external‐beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation‐based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two “Genetic” and “Ranker” searching procedures. The performance of these algorithms has been evaluated using four‐dimensional extended cardiac‐torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro‐fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F‐test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation‐based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers. PACS numbers: 87.55.km, 87.56.Fc PMID:26894358

  12. Optimum location of external markers using feature selection algorithms for real-time tumor tracking in external-beam radiotherapy: a virtual phantom study.

    PubMed

    Nankali, Saber; Torshabi, Ahmad Esmaili; Miandoab, Payam Samadi; Baghizadeh, Amin

    2016-01-08

    In external-beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation-based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two "Genetic" and "Ranker" searching procedures. The performance of these algorithms has been evaluated using four-dimensional extended cardiac-torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro-fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F-test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation-based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers.

  13. Full-motion video analysis for improved gender classification

    NASA Astrophysics Data System (ADS)

    Flora, Jeffrey B.; Lochtefeld, Darrell F.; Iftekharuddin, Khan M.

    2014-06-01

    The ability of computer systems to perform gender classification using the dynamic motion of the human subject has important applications in medicine, human factors, and human-computer interface systems. Previous works in motion analysis have used data from sensors (including gyroscopes, accelerometers, and force plates), radar signatures, and video. However, full-motion video, motion capture, range data provides a higher resolution time and spatial dataset for the analysis of dynamic motion. Works using motion capture data have been limited by small datasets in a controlled environment. In this paper, we explore machine learning techniques to a new dataset that has a larger number of subjects. Additionally, these subjects move unrestricted through a capture volume, representing a more realistic, less controlled environment. We conclude that existing linear classification methods are insufficient for the gender classification for larger dataset captured in relatively uncontrolled environment. A method based on a nonlinear support vector machine classifier is proposed to obtain gender classification for the larger dataset. In experimental testing with a dataset consisting of 98 trials (49 subjects, 2 trials per subject), classification rates using leave-one-out cross-validation are improved from 73% using linear discriminant analysis to 88% using the nonlinear support vector machine classifier.

  14. 4D cone-beam CT imaging for guidance in radiation therapy: setup verification by use of implanted fiducial markers

    NASA Astrophysics Data System (ADS)

    Jin, Peng; van Wieringen, Niek; Hulshof, Maarten C. C. M.; Bel, Arjan; Alderliesten, Tanja

    2016-03-01

    The use of 4D cone-beam computed tomography (CBCT) and fiducial markers for guidance during radiation therapy of mobile tumors is challenging due to the trade-off between image quality, imaging dose, and scanning time. We aimed to investigate the visibility of markers and the feasibility of marker-based 4D registration and manual respiration-induced marker motion quantification for different CBCT acquisition settings. A dynamic thorax phantom and a patient with implanted gold markers were included. For both the phantom and patient, the peak-to-peak amplitude of marker motion in the cranial-caudal direction ranged from 5.3 to 14.0 mm, which did not affect the marker visibility and the associated marker-based registration feasibility. While using a medium field of view (FOV) and the same total imaging dose as is applied for 3D CBCT scanning in our clinic, it was feasible to attain an improved marker visibility by reducing the imaging dose per projection and increasing the number of projection images. For a small FOV with a shorter rotation arc but similar total imaging dose, streak artifacts were reduced due to using a smaller sampling angle. Additionally, the use of a small FOV allowed reducing total imaging dose and scanning time (~2.5 min) without losing the marker visibility. In conclusion, by using 4D CBCT with identical or lower imaging dose and a reduced gantry speed, it is feasible to attain sufficient marker visibility for marker-based 4D setup verification. Moreover, regardless of the settings, manual marker motion quantification can achieve a high accuracy with the error <1.2 mm.

  15. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Tatsuya J.; Nofiele, Joris; Yuan, Qing

    Purpose: Sparse-sampling and reconstruction techniques represent an attractive strategy to achieve faster image acquisition speeds, while maintaining adequate spatial resolution and signal-to-noise ratio in rapid magnetic resonance imaging (MRI). The authors investigate the use of one such sequence, broad-use linear acquisition speed-up technique (k-t BLAST) in monitoring tumor motion for thoracic and abdominal radiotherapy and examine the potential trade-off between increased sparsification (to increase imaging speed) and the potential loss of “true” information due to greater reliance on a priori information. Methods: Lung tumor motion trajectories in the superior–inferior direction, previously recorded from ten lung cancer patients, were replayed usingmore » a motion phantom module driven by an MRI-compatible motion platform. Eppendorf test tubes filled with water which serve as fiducial markers were placed in the phantom. The modeled rigid and deformable motions were collected in a coronal image slice using balanced fast field echo in conjunction with k-t BLAST. Root mean square (RMS) error was used as a metric of spatial accuracy as measured trajectories were compared to input data. The loss of spatial information was characterized for progressively increasing acceleration factor from 1 to 16; the resultant sampling frequency was increased approximately from 2.5 to 19 Hz when the principal direction of the motion was set along frequency encoding direction. In addition to the phantom study, respiration-induced tumor motions were captured from two patients (kidney tumor and lung tumor) at 13 Hz over 49 s to demonstrate the impact of high speed motion monitoring over multiple breathing cycles. For each subject, the authors compared the tumor centroid trajectory as well as the deformable motion during free breathing. Results: In the rigid and deformable phantom studies, the RMS error of target tracking at the acquisition speed of 19 Hz was approximately 0.3–0.4 mm, which was smaller than the reconstructed pixel resolution of 0.67 mm. In the patient study, the dynamic 2D MRI enabled the monitoring of cycle-to-cycle respiratory variability present in the tumor position. It was seen that the range of centroid motion as well as the area covered due to target motion during each individual respiratory cycle was underestimated compared to the entire motion range observed over multiple breathing cycles. Conclusions: The authors’ initial results demonstrate that sparse-sampling- and reconstruction-based dynamic MRI can be used to achieve adequate image acquisition speeds without significant information loss for the task of radiotherapy guidance. Such monitoring can yield spatial and temporal information superior to conventional offline and online motion capture methods used in thoracic and abdominal radiotherapy.« less

  16. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy.

    PubMed

    Arai, Tatsuya J; Nofiele, Joris; Madhuranthakam, Ananth J; Yuan, Qing; Pedrosa, Ivan; Chopra, Rajiv; Sawant, Amit

    2016-06-01

    Sparse-sampling and reconstruction techniques represent an attractive strategy to achieve faster image acquisition speeds, while maintaining adequate spatial resolution and signal-to-noise ratio in rapid magnetic resonance imaging (MRI). The authors investigate the use of one such sequence, broad-use linear acquisition speed-up technique (k-t BLAST) in monitoring tumor motion for thoracic and abdominal radiotherapy and examine the potential trade-off between increased sparsification (to increase imaging speed) and the potential loss of "true" information due to greater reliance on a priori information. Lung tumor motion trajectories in the superior-inferior direction, previously recorded from ten lung cancer patients, were replayed using a motion phantom module driven by an MRI-compatible motion platform. Eppendorf test tubes filled with water which serve as fiducial markers were placed in the phantom. The modeled rigid and deformable motions were collected in a coronal image slice using balanced fast field echo in conjunction with k-t BLAST. Root mean square (RMS) error was used as a metric of spatial accuracy as measured trajectories were compared to input data. The loss of spatial information was characterized for progressively increasing acceleration factor from 1 to 16; the resultant sampling frequency was increased approximately from 2.5 to 19 Hz when the principal direction of the motion was set along frequency encoding direction. In addition to the phantom study, respiration-induced tumor motions were captured from two patients (kidney tumor and lung tumor) at 13 Hz over 49 s to demonstrate the impact of high speed motion monitoring over multiple breathing cycles. For each subject, the authors compared the tumor centroid trajectory as well as the deformable motion during free breathing. In the rigid and deformable phantom studies, the RMS error of target tracking at the acquisition speed of 19 Hz was approximately 0.3-0.4 mm, which was smaller than the reconstructed pixel resolution of 0.67 mm. In the patient study, the dynamic 2D MRI enabled the monitoring of cycle-to-cycle respiratory variability present in the tumor position. It was seen that the range of centroid motion as well as the area covered due to target motion during each individual respiratory cycle was underestimated compared to the entire motion range observed over multiple breathing cycles. The authors' initial results demonstrate that sparse-sampling- and reconstruction-based dynamic MRI can be used to achieve adequate image acquisition speeds without significant information loss for the task of radiotherapy guidance. Such monitoring can yield spatial and temporal information superior to conventional offline and online motion capture methods used in thoracic and abdominal radiotherapy.

  17. Characterizing spatiotemporal information loss in sparse-sampling-based dynamic MRI for monitoring respiration-induced tumor motion in radiotherapy

    PubMed Central

    Arai, Tatsuya J.; Nofiele, Joris; Madhuranthakam, Ananth J.; Yuan, Qing; Pedrosa, Ivan; Chopra, Rajiv; Sawant, Amit

    2016-01-01

    Purpose: Sparse-sampling and reconstruction techniques represent an attractive strategy to achieve faster image acquisition speeds, while maintaining adequate spatial resolution and signal-to-noise ratio in rapid magnetic resonance imaging (MRI). The authors investigate the use of one such sequence, broad-use linear acquisition speed-up technique (k-t BLAST) in monitoring tumor motion for thoracic and abdominal radiotherapy and examine the potential trade-off between increased sparsification (to increase imaging speed) and the potential loss of “true” information due to greater reliance on a priori information. Methods: Lung tumor motion trajectories in the superior–inferior direction, previously recorded from ten lung cancer patients, were replayed using a motion phantom module driven by an MRI-compatible motion platform. Eppendorf test tubes filled with water which serve as fiducial markers were placed in the phantom. The modeled rigid and deformable motions were collected in a coronal image slice using balanced fast field echo in conjunction with k-t BLAST. Root mean square (RMS) error was used as a metric of spatial accuracy as measured trajectories were compared to input data. The loss of spatial information was characterized for progressively increasing acceleration factor from 1 to 16; the resultant sampling frequency was increased approximately from 2.5 to 19 Hz when the principal direction of the motion was set along frequency encoding direction. In addition to the phantom study, respiration-induced tumor motions were captured from two patients (kidney tumor and lung tumor) at 13 Hz over 49 s to demonstrate the impact of high speed motion monitoring over multiple breathing cycles. For each subject, the authors compared the tumor centroid trajectory as well as the deformable motion during free breathing. Results: In the rigid and deformable phantom studies, the RMS error of target tracking at the acquisition speed of 19 Hz was approximately 0.3–0.4 mm, which was smaller than the reconstructed pixel resolution of 0.67 mm. In the patient study, the dynamic 2D MRI enabled the monitoring of cycle-to-cycle respiratory variability present in the tumor position. It was seen that the range of centroid motion as well as the area covered due to target motion during each individual respiratory cycle was underestimated compared to the entire motion range observed over multiple breathing cycles. Conclusions: The authors’ initial results demonstrate that sparse-sampling- and reconstruction-based dynamic MRI can be used to achieve adequate image acquisition speeds without significant information loss for the task of radiotherapy guidance. Such monitoring can yield spatial and temporal information superior to conventional offline and online motion capture methods used in thoracic and abdominal radiotherapy. PMID:27277029

  18. Marker-less multi-frame motion tracking and compensation in PET-brain imaging

    NASA Astrophysics Data System (ADS)

    Lindsay, C.; Mukherjee, J. M.; Johnson, K.; Olivier, P.; Song, X.; Shao, L.; King, M. A.

    2015-03-01

    In PET brain imaging, patient motion can contribute significantly to the degradation of image quality potentially leading to diagnostic and therapeutic problems. To mitigate the image artifacts resulting from patient motion, motion must be detected and tracked then provided to a motion correction algorithm. Existing techniques to track patient motion fall into one of two categories: 1) image-derived approaches and 2) external motion tracking (EMT). Typical EMT requires patients to have markers in a known pattern on a rigid too attached to their head, which are then tracked by expensive and bulky motion tracking camera systems or stereo cameras. This has made marker-based EMT unattractive for routine clinical application. Our main contributions are the development of a marker-less motion tracking system that uses lowcost, small depth-sensing cameras which can be installed in the bore of the imaging system. Our motion tracking system does not require anything to be attached to the patient and can track the rigid transformation (6-degrees of freedom) of the patient's head at a rate 60 Hz. We show that our method can not only be used in with Multi-frame Acquisition (MAF) PET motion correction, but precise timing can be employed to determine only the necessary frames needed for correction. This can speeds up reconstruction by eliminating the unnecessary subdivision of frames.

  19. Low-cost human motion capture system for postural analysis onboard ships

    NASA Astrophysics Data System (ADS)

    Nocerino, Erica; Ackermann, Sebastiano; Del Pizzo, Silvio; Menna, Fabio; Troisi, Salvatore

    2011-07-01

    The study of human equilibrium, also known as postural stability, concerns different research sectors (medicine, kinesiology, biomechanics, robotics, sport) and is usually performed employing motion analysis techniques for recording human movements and posture. A wide range of techniques and methodologies has been developed, but the choice of instrumentations and sensors depends on the requirement of the specific application. Postural stability is a topic of great interest for the maritime community, since ship motions can make demanding and difficult the maintenance of the upright stance with hazardous consequences for the safety of people onboard. The need of capturing the motion of an individual standing on a ship during its daily service does not permit to employ optical systems commonly used for human motion analysis. These sensors are not designed for operating in disadvantageous environmental conditions (water, wetness, saltiness) and with not optimal lighting. The solution proposed in this study consists in a motion acquisition system that could be easily usable onboard ships. It makes use of two different methodologies: (I) motion capture with videogrammetry and (II) motion measurement with Inertial Measurement Unit (IMU). The developed image-based motion capture system, made up of three low-cost, light and compact video cameras, was validated against a commercial optical system and then used for testing the reliability of the inertial sensors. In this paper, the whole process of planning, designing, calibrating, and assessing the accuracy of the motion capture system is reported and discussed. Results from the laboratory tests and preliminary campaigns in the field are presented.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, H; Medin, P; Jiang, S

    Purpose: In-treatment tumor localization is critical for the management of tumor motion in lung cancer radiotherapy. Conventional tumor-tracking methods using a kV or MV x-ray projection has limited contrast. To facilitate real-time, marker-less and low-dose in-treatment image tumor tracking, we propose a novel scheme using Compton scatter imaging. This study reports Monte Carlo (MC) simulations on this scheme for the purpose of proof-of-principle. Methods: A slit x-ray beam along the patient superior-inferior (SI) direction is directed to the patient, intersecting the patient lung at a 2D plane containing majority part of the tumor motion trajectory. X-ray photons are scattered duemore » to Compton effect from this plane, which are spatially collimated by, e.g., a pinhole, on one side of the plane and then captured by a detector behind it. The captured image, after correcting for x-ray attenuation and scatter angle variation, reflects the electron density, which allows visualization of the instantaneous anatomy on this plane. We performed MC studies on a phantom and a patient case for the initial test of this proposed method. Results: In the phantom case, the contrast-resolution calculated using tumor/lung as foreground/background for kV fluoroscopy, cone-beam CT, and scattering image were 0.0625, 0.6993, and 0.5290, respectively. In the patient case, tumor motion can be clearly observed in the scatter images. Compared to fluoroscopy, scattering imaging also significantly reduced imaging dose because of its narrower beam design. Conclusion: MC simulation studies demonstrated the potential of the proposed scheme in terms of capturing the instantaneous anatomy of a patient on a 2D plane. Clear visualization of the tumor will probably facilitate ‘marker-less’ and ‘real-time’ tumor tracking with low imaging dose. NIH (1R01CA154747-01, 1R21CA178787-01A1 and 1R21EB017978-01A1)« less

  1. Motion capture based identification of the human body inertial parameters.

    PubMed

    Venture, Gentiane; Ayusawa, Ko; Nakamura, Yoshihiko

    2008-01-01

    Identification of body inertia, masses and center of mass is an important data to simulate, monitor and understand dynamics of motion, to personalize rehabilitation programs. This paper proposes an original method to identify the inertial parameters of the human body, making use of motion capture data and contact forces measurements. It allows in-vivo painless estimation and monitoring of the inertial parameters. The method is described and then obtained experimental results are presented and discussed.

  2. Lower limb estimation from sparse landmarks using an articulated shape model.

    PubMed

    Zhang, Ju; Fernandez, Justin; Hislop-Jambrich, Jacqui; Besier, Thor F

    2016-12-08

    Rapid generation of lower limb musculoskeletal models is essential for clinically applicable patient-specific gait modeling. Estimation of muscle and joint contact forces requires accurate representation of bone geometry and pose, as well as their muscle attachment sites, which define muscle moment arms. Motion-capture is a routine part of gait assessment but contains relatively sparse geometric information. Standard methods for creating customized models from motion-capture data scale a reference model without considering natural shape variations. We present an articulated statistical shape model of the left lower limb with embedded anatomical landmarks and muscle attachment regions. This model is used in an automatic workflow, implemented in an easy-to-use software application, that robustly and accurately estimates realistic lower limb bone geometry, pose, and muscle attachment regions from seven commonly used motion-capture landmarks. Estimated bone models were validated on noise-free marker positions to have a lower (p=0.001) surface-to-surface root-mean-squared error of 4.28mm, compared to 5.22mm using standard isotropic scaling. Errors at a variety of anatomical landmarks were also lower (8.6mm versus 10.8mm, p=0.001). We improve upon standard lower limb model scaling methods with shape model-constrained realistic bone geometries, regional muscle attachment sites, and higher accuracy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A Virtual Reality Dance Training System Using Motion Capture Technology

    ERIC Educational Resources Information Center

    Chan, J. C. P.; Leung, H.; Tang, J. K. T.; Komura, T.

    2011-01-01

    In this paper, a new dance training system based on the motion capture and virtual reality (VR) technologies is proposed. Our system is inspired by the traditional way to learn new movements-imitating the teacher's movements and listening to the teacher's feedback. A prototype of our proposed system is implemented, in which a student can imitate…

  4. IMU-Based Joint Angle Measurement for Gait Analysis

    PubMed Central

    Seel, Thomas; Raisch, Jorg; Schauer, Thomas

    2014-01-01

    This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods that may cope with this challenge, we present a set of new methods for: (1) joint axis and position identification; and (2) flexion/extension joint angle measurement. In particular, we propose methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field. We provide results from gait trials of a transfemoral amputee in which we compare the inertial measurement unit (IMU)-based methods to an optical 3D motion capture system. Unlike most authors, we place the optical markers on anatomical landmarks instead of attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles are found to be less than 1° on the prosthesis and about 3° on the human leg. For the plantar/dorsiflexion of the ankle, both deviations are about 1°. PMID:24743160

  5. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle

    PubMed Central

    Atallah, Vincent; Escarmant, Patrick; Vinh‐Hung, Vincent

    2016-01-01

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in‐house‐made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real‐time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high‐contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep‐breathing patterns. This low‐cost, computer‐vision system for real‐time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion. PACS number(s): 87.55.km PMID:27685116

  6. Technical Note: A respiratory monitoring and processing system based on computer vision: prototype and proof of principle.

    PubMed

    Leduc, Nicolas; Atallah, Vincent; Escarmant, Patrick; Vinh-Hung, Vincent

    2016-09-08

    Monitoring and controlling respiratory motion is a challenge for the accuracy and safety of therapeutic irradiation of thoracic tumors. Various commercial systems based on the monitoring of internal or external surrogates have been developed but remain costly. In this article we describe and validate Madibreast, an in-house-made respiratory monitoring and processing device based on optical tracking of external markers. We designed an optical apparatus to ensure real-time submillimetric image resolution at 4 m. Using OpenCv libraries, we optically tracked high-contrast markers set on patients' breasts. Validation of spatial and time accuracy was performed on a mechanical phantom and on human breast. Madibreast was able to track motion of markers up to a 5 cm/s speed, at a frame rate of 30 fps, with submillimetric accuracy on mechanical phantom and human breasts. Latency was below 100 ms. Concomitant monitoring of three different locations on the breast showed discrepancies in axial motion up to 4 mm for deep-breathing patterns. This low-cost, computer-vision system for real-time motion monitoring of the irradiation of breast cancer patients showed submillimetric accuracy and acceptable latency. It allowed the authors to highlight differences in surface motion that may be correlated to tumor motion.v. © 2016 The Authors.

  7. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery.

    PubMed

    Rottmann, Joerg; Keall, Paul; Berbeco, Ross

    2013-09-01

    To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm. The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time.

  8. 4D computed tomography scans for conformal thoracic treatment planning: is a single scan sufficient to capture thoracic tumor motion?

    NASA Astrophysics Data System (ADS)

    Tseng, Yolanda D.; Wootton, Landon; Nyflot, Matthew; Apisarnthanarax, Smith; Rengan, Ramesh; Bloch, Charles; Sandison, George; St. James, Sara

    2018-01-01

    Four dimensional computed tomography (4DCT) scans are routinely used in radiation therapy to determine the internal treatment volume for targets that are moving (e.g. lung tumors). The use of these studies has allowed clinicians to create target volumes based upon the motion of the tumor during the imaging study. The purpose of this work is to determine if a target volume based on a single 4DCT scan at simulation is sufficient to capture thoracic motion. Phantom studies were performed to determine expected differences between volumes contoured on 4DCT scans and those on the evaluation CT scans (slow scans). Evaluation CT scans acquired during treatment of 11 patients were compared to the 4DCT scans used for treatment planning. The images were assessed to determine if the target remained within the target volume determined during the first 4DCT scan. A total of 55 slow scans were compared to the 11 planning 4DCT scans. Small differences were observed in phantom between the 4DCT volumes and the slow scan volumes, with a maximum of 2.9%, that can be attributed to minor differences in contouring and the ability of the 4DCT scan to adequately capture motion at the apex and base of the motion trajectory. Larger differences were observed in the patients studied, up to a maximum volume difference of 33.4%. These results demonstrate that a single 4DCT scan is not adequate to capture all thoracic motion throughout treatment.

  9. Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.

    PubMed

    Karakolis, Thomas; Callaghan, Jack P

    2015-01-01

    Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates.

  10. Power estimation of martial arts movement using 3D motion capture camera

    NASA Astrophysics Data System (ADS)

    Azraai, Nur Zaidi; Awang Soh, Ahmad Afiq Sabqi; Mat Jafri, Mohd Zubir

    2017-06-01

    Motion capture camera (MOCAP) has been widely used in many areas such as biomechanics, physiology, animation, arts, etc. This project is done by approaching physics mechanics and the extended of MOCAP application through sports. Most researchers will use a force plate, but this will only can measure the force of impact, but for us, we are keen to observe the kinematics of the movement. Martial arts is one of the sports that uses more than one part of the human body. For this project, martial art `Silat' was chosen because of its wide practice in Malaysia. 2 performers have been selected, one of them has an experienced in `Silat' practice and another one have no experience at all so that we can compare the energy and force generated by the performers. Every performer will generate a punching with same posture which in this project, two types of punching move were selected. Before the measuring start, a calibration has been done so the software knows the area covered by the camera and reduce the error when analyze by using the T stick that have been pasted with a marker. A punching bag with mass 60 kg was hung on an iron bar as a target. The use of this punching bag is to determine the impact force of a performer when they punch. This punching bag also will be stuck with the optical marker so we can observe the movement after impact. 8 cameras have been used and placed with 2 cameras at every side of the wall with different angle in a rectangular room 270 ft2 and the camera covered approximately 50 ft2. We covered only a small area so less noise will be detected and make the measurement more accurate. A Marker has been pasted on the limb of the entire hand that we want to observe and measure. A passive marker used in this project has a characteristic to reflect the infrared that being generated by the camera. The infrared will reflected to the camera sensor so the marker position can be detected and show in software. The used of many cameras is to increase the precision and improve the accuracy of the marker. Performer movement was recorded and analyzed using software Cortex motion analysis where velocity and acceleration of a performer movement can be measured. With classical mechanics approach we have estimated the power and force of impact and shows that an experienced performer produces more power and force of impact is higher than the inexperienced performer.

  11. Integration of time as a factor in ergonomic simulation.

    PubMed

    Walther, Mario; Muñoz, Begoña Toledo

    2012-01-01

    The paper describes the application of a simulation based ergonomic evaluation. Within a pilot project, the algorithms of the screening method of the European Assembly Worksheet were transferred into an existing digital human model. Movement data was recorded with an especially developed hybrid Motion Capturing system. A prototype of the system was built and is currently being tested at the Volkswagen Group. First results showed the feasibility of the simulation based ergonomic evaluation with Motion Capturing.

  12. Feasibility study on image guided patient positioning for stereotactic body radiation therapy of liver malignancies guided by liver motion.

    PubMed

    Heinz, Christian; Gerum, Sabine; Freislederer, Philipp; Ganswindt, Ute; Roeder, Falk; Corradini, Stefanie; Belka, Claus; Niyazi, Maximilian

    2016-06-27

    Fiducial markers are the superior method to compensate for interfractional motion in liver SBRT. However this method is invasive and thereby limits its application range. In this retrospective study, the compensation method for the interfractional motion using fiducial markers (gold standard) was compared to a new non-invasive approach, which does rely on the organ motion of the liver and the relative tumor position within this volume. We analyzed six patients (3 m, 3f) treated with SBRT in 2014. After fiducial marker implantation, all patients received a treatment CT (free breathing, without abdominal compression) and a 4D-CT (consisting of 10 respiratory phases). For all patients the gross tumor volumes (GTVs), internal target volume (ITV), planning target volume (PTV), internal marker target volumes (IMTVs) and the internal liver target volume (ILTV) were delineated based on the CT and 4D-CT images. CBCT imaging was used for the standard treatment setup based on the fiducial markers. According to the patient coordinates the 3 translational compensation values (t x , t y , t z ) for the interfractional motion were calculated by matching the blurred fiducial markers with the corresponding IMTV structures. 4 observers were requested to recalculate the translational compensation values for each CBCT (31) based on the ILTV structures. The differences of the translational compensation values between the IMTV and ILTV approach were analyzed. The magnitude of the mean absolute 3D registration error with regard to the gold standard overall patients and observers was 0.50 cm ± 0.28 cm. Individual registration errors up to 1.3 cm were observed. There was no significant overall linear correlation between the respiratory motion and the registration error of the ILTV approach. Two different methods to calculate the translational compensation values for interfractional motion in stereotactic liver therapy were evaluated. The registration accuracy of the ILTV approach is mainly limited by the non-rigid behavior of the liver and the individual registration experience of the observer. The ILTV approach lacks the accuracy that would be desired for stereotactic radiotherapy of the liver.

  13. Passive in-home measurement of stride-to-stride gait variability comparing vision and Kinect sensing.

    PubMed

    Stone, Erik E; Skubic, Marjorie

    2011-01-01

    We present an analysis of measuring stride-to-stride gait variability passively, in a home setting using two vision based monitoring techniques: anonymized video data from a system of two web-cameras, and depth imagery from a single Microsoft Kinect. Millions of older adults fall every year. The ability to assess the fall risk of elderly individuals is essential to allowing them to continue living safely in independent settings as they age. Studies have shown that measures of stride-to-stride gait variability are predictive of falls in older adults. For this analysis, a set of participants were asked to perform a number of short walks while being monitored by the two vision based systems, along with a marker based Vicon motion capture system for ground truth. Measures of stride-to-stride gait variability were computed using each of the systems and compared against those obtained from the Vicon.

  14. A Novel Methodology for the Simulation of Athletic Tasks on Cadaveric Knee Joints with Respect to In Vivo Kinematics

    PubMed Central

    Bates, Nathaniel A.; Nesbitt, Rebecca J.; Shearn, Jason T.; Myer, Gregory D.; Hewett, Timothy E.

    2015-01-01

    Six degree of freedom (6-DOF) robotic manipulators have simulated clinical tests and gait on cadaveric knees to examine knee biomechanics. However, these activities do not necessarily emulate the kinematics and kinetics that lead to anterior cruciate ligament (ACL) rupture. The purpose of this study was to determine the techniques needed to derive reproducible, in vitro simulations from in vivo skin-marker kinematics recorded during simulated athletic tasks. Input of raw, in vivo, skin-marker-derived motion capture kinematics consistently resulted in specimen failure. The protocol described in this study developed an in-depth methodology to adapt in vivo kinematic recordings into 6-DOF knee motion simulations for drop vertical jumps and sidestep cutting. Our simulation method repeatably produced kinetics consistent with vertical ground reaction patterns while preserving specimen integrity. Athletic task simulation represents an advancement that allows investigators to examine ACL-intact and graft biomechanics during motions that generate greater kinetics, and the athletic tasks are more representative of documented cases of ligament rupture. Establishment of baseline functional mechanics within the knee joint during athletic tasks will serve to advance the prevention, repair and rehabilitation of ACL injuries. PMID:25869454

  15. Reference equations of motion for automatic rendezvous and capture

    NASA Technical Reports Server (NTRS)

    Henderson, David M.

    1992-01-01

    The analysis presented in this paper defines the reference coordinate frames, equations of motion, and control parameters necessary to model the relative motion and attitude of spacecraft in close proximity with another space system during the Automatic Rendezvous and Capture phase of an on-orbit operation. The relative docking port target position vector and the attitude control matrix are defined based upon an arbitrary spacecraft design. These translation and rotation control parameters could be used to drive the error signal input to the vehicle flight control system. Measurements for these control parameters would become the bases for an autopilot or feedback control system (FCS) design for a specific spacecraft.

  16. The feasibility of a modified shoe for multi-segment foot motion analysis: a preliminary study.

    PubMed

    Halstead, J; Keenan, A M; Chapman, G J; Redmond, A C

    2016-01-01

    The majority of multi-segment kinematic foot studies have been limited to barefoot conditions, because shod conditions have the potential for confounding surface-mounted markers. The aim of this study was to investigate whether a shoe modified with a webbed upper can accommodate multi-segment foot marker sets without compromising kinematic measurements under barefoot and shod conditions. Thirty participants (15 controls and 15 participants with midfoot pain) underwent gait analysis in two conditions; barefoot and wearing a shoe (shod) in a random order. The shod condition employed a modified shoe (rubber plimsoll) with a webbed upper, allowing skin mounted reflective markers to be visualised through slits in the webbed material. Three dimensional foot kinematics were captured using the Oxford multi-segment foot model whilst participants walked at a self-selected speed. The foot pain group showed greater hindfoot eversion and less hindfoot dorsiflexion than controls in the barefoot condition and these differences were maintained when measured in the shod condition. Differences between the foot pain and control participants were also observed for walking speed in the barefoot and in the shod conditions. No significant differences between foot pain and control groups were demonstrated at the forefoot in either condition. Subtle differences between pain and control groups, which were found during barefoot walking are retained when wearing the modified shoe. The novel properties of the modified shoe offers a potential solution for the use of passive infrared based motion analysis for shod applications, for instance to investigate the kinematic effect of foot orthoses.

  17. Example-Based Automatic Music-Driven Conventional Dance Motion Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Songhua; Fan, Rukun; Geng, Weidong

    We introduce a novel method for synthesizing dance motions that follow the emotions and contents of a piece of music. Our method employs a learning-based approach to model the music to motion mapping relationship embodied in example dance motions along with those motions' accompanying background music. A key step in our method is to train a music to motion matching quality rating function through learning the music to motion mapping relationship exhibited in synchronized music and dance motion data, which were captured from professional human dance performance. To generate an optimal sequence of dance motion segments to match with amore » piece of music, we introduce a constraint-based dynamic programming procedure. This procedure considers both music to motion matching quality and visual smoothness of a resultant dance motion sequence. We also introduce a two-way evaluation strategy, coupled with a GPU-based implementation, through which we can execute the dynamic programming process in parallel, resulting in significant speedup. To evaluate the effectiveness of our method, we quantitatively compare the dance motions synthesized by our method with motion synthesis results by several peer methods using the motions captured from professional human dancers' performance as the gold standard. We also conducted several medium-scale user studies to explore how perceptually our dance motion synthesis method can outperform existing methods in synthesizing dance motions to match with a piece of music. These user studies produced very positive results on our music-driven dance motion synthesis experiments for several Asian dance genres, confirming the advantages of our method.« less

  18. Mathematical Modeling and Evaluation of Human Motions in Physical Therapy Using Mixture Density Neural Networks

    PubMed Central

    Vakanski, A; Ferguson, JM; Lee, S

    2016-01-01

    Objective The objective of the proposed research is to develop a methodology for modeling and evaluation of human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient’s exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the analysis results to the patient’s physician with recommendations for improvement. Methods The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data using a mixture of Gaussian distributions. Results The proposed neural network architecture produced a model for sets of human motions represented with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in evaluating the consistency of a subject’s performance relative to the reference dataset of motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method. Conclusion The article presents a novel approach for modeling and evaluation of human motions with a potential application in home-based physical therapy and rehabilitation. The described approach employs the recent progress in the field of machine learning and neural networks in developing a parametric model of human motions, by exploiting the representational power of these algorithms to encode nonlinear input-output dependencies over long temporal horizons. PMID:28111643

  19. Mathematical Modeling and Evaluation of Human Motions in Physical Therapy Using Mixture Density Neural Networks.

    PubMed

    Vakanski, A; Ferguson, J M; Lee, S

    2016-12-01

    The objective of the proposed research is to develop a methodology for modeling and evaluation of human motions, which will potentially benefit patients undertaking a physical rehabilitation therapy (e.g., following a stroke or due to other medical conditions). The ultimate aim is to allow patients to perform home-based rehabilitation exercises using a sensory system for capturing the motions, where an algorithm will retrieve the trajectories of a patient's exercises, will perform data analysis by comparing the performed motions to a reference model of prescribed motions, and will send the analysis results to the patient's physician with recommendations for improvement. The modeling approach employs an artificial neural network, consisting of layers of recurrent neuron units and layers of neuron units for estimating a mixture density function over the spatio-temporal dependencies within the human motion sequences. Input data are sequences of motions related to a prescribed exercise by a physiotherapist to a patient, and recorded with a motion capture system. An autoencoder subnet is employed for reducing the dimensionality of captured sequences of human motions, complemented with a mixture density subnet for probabilistic modeling of the motion data using a mixture of Gaussian distributions. The proposed neural network architecture produced a model for sets of human motions represented with a mixture of Gaussian density functions. The mean log-likelihood of observed sequences was employed as a performance metric in evaluating the consistency of a subject's performance relative to the reference dataset of motions. A publically available dataset of human motions captured with Microsoft Kinect was used for validation of the proposed method. The article presents a novel approach for modeling and evaluation of human motions with a potential application in home-based physical therapy and rehabilitation. The described approach employs the recent progress in the field of machine learning and neural networks in developing a parametric model of human motions, by exploiting the representational power of these algorithms to encode nonlinear input-output dependencies over long temporal horizons.

  20. Genomic selection in plant breeding.

    PubMed

    Newell, Mark A; Jannink, Jean-Luc

    2014-01-01

    Genomic selection (GS) is a method to predict the genetic value of selection candidates based on the genomic estimated breeding value (GEBV) predicted from high-density markers positioned throughout the genome. Unlike marker-assisted selection, the GEBV is based on all markers including both minor and major marker effects. Thus, the GEBV may capture more of the genetic variation for the particular trait under selection.

  1. Leap motion controlled videogame-based therapy for rehabilitation of elderly patients with subacute stroke: a feasibility pilot study.

    PubMed

    Iosa, Marco; Morone, Giovanni; Fusco, Augusto; Castagnoli, Marcello; Fusco, Francesca Romana; Pratesi, Luca; Paolucci, Stefano

    2015-08-01

    The leap motion controller (LMC) is a new optoelectronic system for capturing motion of both hands and controlling a virtual environment. Differently from previous devices, it optoelectronically tracks the fine movements of fingers neither using glows nor markers. This pilot study explored the feasibility of adapting the LMC, developed for videogames, to neurorehabilitation of elderly with subacute stroke. Four elderly patients (71.50 ± 4.51 years old) affected by stroke in subacute phase were enrolled and tested in a cross-over pilot trial in which six sessions of 30 minutes of LMC videogame-based therapy were added on conventional therapy. Measurements involved participation to the sessions, evaluated by means of the Pittsburgh Rehabilitation Participation Scale, hand ability and grasp force evaluated respectively by means of the Abilhand Scale and by means of the dynamometer. Neither adverse effects nor spasticity increments were observed during LMC training. Participation to the sessions was excellent in three patients and very good in one patient during the LMC trial. In this period, patients showed a significantly higher improvement in hand abilities (P = 0.028) and grasp force (P = 0.006). This feasibility pilot study was the first one using leap motion controller for conducting a videogame-based therapy. This study provided a proof of concept that LMC can be a suitable tool even for elderly patients with subacute stroke. LMC training was in fact performed with a high level of active participation, without adverse effects, and contributed to increase the recovery of hand abilities.

  2. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worm, Esben S., E-mail: esbeworm@rm.dk; Department of Medical Physics, Aarhus University Hospital, Aarhus; Hoyer, Morten

    2012-05-01

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensionalmore » marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of trajectory estimation from CBCT projections for precise setup in stereotactic body radiotherapy was demonstrated. Uncertainty in the conventional CBCT-based setup procedure was eliminated with the new method.« less

  3. Inferential modeling and predictive feedback control in real-time motion compensation using the treatment couch during radiotherapy

    NASA Astrophysics Data System (ADS)

    Qiu, Peng; D'Souza, Warren D.; McAvoy, Thomas J.; Liu, K. J. Ray

    2007-09-01

    Tumor motion induced by respiration presents a challenge to the reliable delivery of conformal radiation treatments. Real-time motion compensation represents the technologically most challenging clinical solution but has the potential to overcome the limitations of existing methods. The performance of a real-time couch-based motion compensation system is mainly dependent on two aspects: the ability to infer the internal anatomical position and the performance of the feedback control system. In this paper, we propose two novel methods for the two aspects respectively, and then combine the proposed methods into one system. To accurately estimate the internal tumor position, we present partial-least squares (PLS) regression to predict the position of the diaphragm using skin-based motion surrogates. Four radio-opaque markers were placed on the abdomen of patients who underwent fluoroscopic imaging of the diaphragm. The coordinates of the markers served as input variables and the position of the diaphragm served as the output variable. PLS resulted in lower prediction errors compared with standard multiple linear regression (MLR). The performance of the feedback control system depends on the system dynamics and dead time (delay between the initiation and execution of the control action). While the dynamics of the system can be inverted in a feedback control system, the dead time cannot be inverted. To overcome the dead time of the system, we propose a predictive feedback control system by incorporating forward prediction using least-mean-square (LMS) and recursive least square (RLS) filtering into the couch-based control system. Motion data were obtained using a skin-based marker. The proposed predictive feedback control system was benchmarked against pure feedback control (no forward prediction) and resulted in a significant performance gain. Finally, we combined the PLS inference model and the predictive feedback control to evaluate the overall performance of the feedback control system. Our results show that, with the tumor motion unknown but inferred by skin-based markers through the PLS model, the predictive feedback control system was able to effectively compensate intra-fraction motion.

  4. A Tool for the Automated Collection of Space Utilization Data: Three Dimensional Space Utilization Monitor

    NASA Technical Reports Server (NTRS)

    Vos, Gordon A.; Fink, Patrick; Ngo, Phong H.; Morency, Richard; Simon, Cory; Williams, Robert E.; Perez, Lance C.

    2017-01-01

    Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP) and the Behavioral Health and Performance (BHP) Element are conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within the volume. NASA needs methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods exist yet many are obtrusive and require significant post-processing. ?Examplesused in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multi-camera methods ?Due to constraints of space operations many such methods are infeasible. Inertial tracking systems typically rely upon a gravity vector to normalize sensor readings,and traditional IR systems are large and require extensive calibration. ?However, multiple technologies have not been applied to space operations for these purposes. Two of these include: 3D Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) ?Depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR)

  5. Musculoskeletal Simulation Model Generation from MRI Data Sets and Motion Capture Data

    NASA Astrophysics Data System (ADS)

    Schmid, Jérôme; Sandholm, Anders; Chung, François; Thalmann, Daniel; Delingette, Hervé; Magnenat-Thalmann, Nadia

    Today computer models and computer simulations of the musculoskeletal system are widely used to study the mechanisms behind human gait and its disorders. The common way of creating musculoskeletal models is to use a generic musculoskeletal model based on data derived from anatomical and biomechanical studies of cadaverous specimens. To adapt this generic model to a specific subject, the usual approach is to scale it. This scaling has been reported to introduce several errors because it does not always account for subject-specific anatomical differences. As a result, a novel semi-automatic workflow is proposed that creates subject-specific musculoskeletal models from magnetic resonance imaging (MRI) data sets and motion capture data. Based on subject-specific medical data and a model-based automatic segmentation approach, an accurate modeling of the anatomy can be produced while avoiding the scaling operation. This anatomical model coupled with motion capture data, joint kinematics information, and muscle-tendon actuators is finally used to create a subject-specific musculoskeletal model.

  6. Validation of XMALab software for marker-based XROMM.

    PubMed

    Knörlein, Benjamin J; Baier, David B; Gatesy, Stephen M; Laurence-Chasen, J D; Brainerd, Elizabeth L

    2016-12-01

    Marker-based XROMM requires software tools for: (1) correcting fluoroscope distortion; (2) calibrating X-ray cameras; (3) tracking radio-opaque markers; and (4) calculating rigid body motion. In this paper we describe and validate XMALab, a new open-source software package for marker-based XROMM (C++ source and compiled versions on Bitbucket). Most marker-based XROMM studies to date have used XrayProject in MATLAB. XrayProject can produce results with excellent accuracy and precision, but it is somewhat cumbersome to use and requires a MATLAB license. We have designed XMALab to accelerate the XROMM process and to make it more accessible to new users. Features include the four XROMM steps (listed above) in one cohesive user interface, real-time plot windows for detecting errors, and integration with an online data management system, XMAPortal. Accuracy and precision of XMALab when tracking markers in a machined object are ±0.010 and ±0.043 mm, respectively. Mean precision for nine users tracking markers in a tutorial dataset of minipig feeding was ±0.062 mm in XMALab and ±0.14 mm in XrayProject. Reproducibility of 3D point locations across nine users was 10-fold greater in XMALab than in XrayProject, and six degree-of-freedom bone motions calculated with a joint coordinate system were 3- to 6-fold more reproducible in XMALab. XMALab is also suitable for tracking white or black markers in standard light videos with optional checkerboard calibration. We expect XMALab to increase both the quality and quantity of animal motion data available for comparative biomechanics research. © 2016. Published by The Company of Biologists Ltd.

  7. Feasibility of Using Low-Cost Motion Capture for Automated Screening of Shoulder Motion Limitation after Breast Cancer Surgery.

    PubMed

    Gritsenko, Valeriya; Dailey, Eric; Kyle, Nicholas; Taylor, Matt; Whittacre, Sean; Swisher, Anne K

    2015-01-01

    To determine if a low-cost, automated motion analysis system using Microsoft Kinect could accurately measure shoulder motion and detect motion impairments in women following breast cancer surgery. Descriptive study of motion measured via 2 methods. Academic cancer center oncology clinic. 20 women (mean age = 60 yrs) were assessed for active and passive shoulder motions during a routine post-operative clinic visit (mean = 18 days after surgery) following mastectomy (n = 4) or lumpectomy (n = 16) for breast cancer. Participants performed 3 repetitions of active and passive shoulder motions on the side of the breast surgery. Arm motion was recorded using motion capture by Kinect for Windows sensor and on video. Goniometric values were determined from video recordings, while motion capture data were transformed to joint angles using 2 methods (body angle and projection angle). Correlation of motion capture with goniometry and detection of motion limitation. Active shoulder motion measured with low-cost motion capture agreed well with goniometry (r = 0.70-0.80), while passive shoulder motion measurements did not correlate well. Using motion capture, it was possible to reliably identify participants whose range of shoulder motion was reduced by 40% or more. Low-cost, automated motion analysis may be acceptable to screen for moderate to severe motion impairments in active shoulder motion. Automatic detection of motion limitation may allow quick screening to be performed in an oncologist's office and trigger timely referrals for rehabilitation.

  8. Real-time soft tissue motion estimation for lung tumors during radiotherapy delivery

    PubMed Central

    Rottmann, Joerg; Keall, Paul; Berbeco, Ross

    2013-01-01

    Purpose: To provide real-time lung tumor motion estimation during radiotherapy treatment delivery without the need for implanted fiducial markers or additional imaging dose to the patient. Methods: 2D radiographs from the therapy beam's-eye-view (BEV) perspective are captured at a frame rate of 12.8 Hz with a frame grabber allowing direct RAM access to the image buffer. An in-house developed real-time soft tissue localization algorithm is utilized to calculate soft tissue displacement from these images in real-time. The system is tested with a Varian TX linear accelerator and an AS-1000 amorphous silicon electronic portal imaging device operating at a resolution of 512 × 384 pixels. The accuracy of the motion estimation is verified with a dynamic motion phantom. Clinical accuracy was tested on lung SBRT images acquired at 2 fps. Results: Real-time lung tumor motion estimation from BEV images without fiducial markers is successfully demonstrated. For the phantom study, a mean tracking error <1.0 mm [root mean square (rms) error of 0.3 mm] was observed. The tracking rms accuracy on BEV images from a lung SBRT patient (≈20 mm tumor motion range) is 1.0 mm. Conclusions: The authors demonstrate for the first time real-time markerless lung tumor motion estimation from BEV images alone. The described system can operate at a frame rate of 12.8 Hz and does not require prior knowledge to establish traceable landmarks for tracking on the fly. The authors show that the geometric accuracy is similar to (or better than) previously published markerless algorithms not operating in real-time. PMID:24007146

  9. Human silhouette matching based on moment invariants

    NASA Astrophysics Data System (ADS)

    Sun, Yong-Chao; Qiu, Xian-Jie; Xia, Shi-Hong; Wang, Zhao-Qi

    2005-07-01

    This paper aims to apply the method of silhouette matching based on moment invariants to infer the human motion parameters from video sequences of single monocular uncalibrated camera. Currently, there are two ways of tracking human motion: Marker and Markerless. While a hybrid framework is introduced in this paper to recover the input video contents. A standard 3D motion database is built up by marker technique in advance. Given a video sequences, human silhouettes are extracted as well as the viewpoint information of the camera which would be utilized to project the standard 3D motion database onto the 2D one. Therefore, the video recovery problem is formulated as a matching issue of finding the most similar body pose in standard 2D library with the one in video image. The framework is applied to the special trampoline sport where we can obtain the complicated human motion parameters in the single camera video sequences, and a lot of experiments are demonstrated that this approach is feasible in the field of monocular video-based 3D motion reconstruction.

  10. Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes

    PubMed Central

    Nakamura, Tomoaki; Nagai, Takayuki; Mochihashi, Daichi; Kobayashi, Ichiro; Asoh, Hideki; Kaneko, Masahide

    2017-01-01

    Humans divide perceived continuous information into segments to facilitate recognition. For example, humans can segment speech waves into recognizable morphemes. Analogously, continuous motions are segmented into recognizable unit actions. People can divide continuous information into segments without using explicit segment points. This capacity for unsupervised segmentation is also useful for robots, because it enables them to flexibly learn languages, gestures, and actions. In this paper, we propose a Gaussian process-hidden semi-Markov model (GP-HSMM) that can divide continuous time series data into segments in an unsupervised manner. Our proposed method consists of a generative model based on the hidden semi-Markov model (HSMM), the emission distributions of which are Gaussian processes (GPs). Continuous time series data is generated by connecting segments generated by the GP. Segmentation can be achieved by using forward filtering-backward sampling to estimate the model's parameters, including the lengths and classes of the segments. In an experiment using the CMU motion capture dataset, we tested GP-HSMM with motion capture data containing simple exercise motions; the results of this experiment showed that the proposed GP-HSMM was comparable with other methods. We also conducted an experiment using karate motion capture data, which is more complex than exercise motion capture data; in this experiment, the segmentation accuracy of GP-HSMM was 0.92, which outperformed other methods. PMID:29311889

  11. Concurrent validation of Xsens MVN measurement of lower limb joint angular kinematics.

    PubMed

    Zhang, Jun-Tian; Novak, Alison C; Brouwer, Brenda; Li, Qingguo

    2013-08-01

    This study aims to validate a commercially available inertial sensor based motion capture system, Xsens MVN BIOMECH using its native protocols, against a camera-based motion capture system for the measurement of joint angular kinematics. Performance was evaluated by comparing waveform similarity using range of motion, mean error and a new formulation of the coefficient of multiple correlation (CMC). Three dimensional joint angles of the lower limbs were determined for ten healthy subjects while they performed three daily activities: level walking, stair ascent, and stair descent. Under all three walking conditions, the Xsens system most accurately determined the flexion/extension joint angle (CMC > 0.96) for all joints. The joint angle measurements associated with the other two joint axes had lower correlation including complex CMC values. The poor correlation in the other two joint axes is most likely due to differences in the anatomical frame definition of limb segments used by the Xsens and Optotrak systems. Implementation of a protocol to align these two systems is necessary when comparing joint angle waveforms measured by the Xsens and other motion capture systems.

  12. Validation of an inertial measurement unit for the measurement of jump count and height.

    PubMed

    MacDonald, Kerry; Bahr, Roald; Baltich, Jennifer; Whittaker, Jackie L; Meeuwisse, Willem H

    2017-05-01

    To validate the use of an inertial measurement unit (IMU) for the collection of total jump count and assess the validity of an IMU for the measurement of jump height against 3-D motion analysis. Cross sectional validation study. 3D motion-capture laboratory and field based settings. Thirteen elite adolescent volleyball players. Participants performed structured drills, played a 4 set volleyball match and performed twelve counter movement jumps. Jump counts from structured drills and match play were validated against visual count from recorded video. Jump height during the counter movement jumps was validated against concurrent 3-D motion-capture data. The IMU device captured more total jumps (1032) than visual inspection (977) during match play. During structured practice, device jump count sensitivity was strong (96.8%) while specificity was perfect (100%). The IMU underestimated jump height compared to 3D motion-capture with mean differences for maximal and submaximal jumps of 2.5 cm (95%CI: 1.3 to 3.8) and 4.1 cm (3.1-5.1), respectively. The IMU offers a valid measuring tool for jump count. Although the IMU underestimates maximal and submaximal jump height, our findings demonstrate its practical utility for field-based measurement of jump load. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.

    PubMed

    Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems.

  14. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis

    PubMed Central

    Cerveri, Pietro; Barros, Ricardo M. L.; Marins, João C. B.; Silvatti, Amanda P.

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems. PMID:27513846

  15. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion

    PubMed Central

    Filippeschi, Alessandro; Schmitz, Norbert; Miezal, Markus; Bleser, Gabriele; Ruffaldi, Emanuele; Stricker, Didier

    2017-01-01

    Motion tracking based on commercial inertial measurements units (IMUs) has been widely studied in the latter years as it is a cost-effective enabling technology for those applications in which motion tracking based on optical technologies is unsuitable. This measurement method has a high impact in human performance assessment and human-robot interaction. IMU motion tracking systems are indeed self-contained and wearable, allowing for long-lasting tracking of the user motion in situated environments. After a survey on IMU-based human tracking, five techniques for motion reconstruction were selected and compared to reconstruct a human arm motion. IMU based estimation was matched against motion tracking based on the Vicon marker-based motion tracking system considered as ground truth. Results show that all but one of the selected models perform similarly (about 35 mm average position estimation error). PMID:28587178

  16. Metrics for Performance Evaluation of Patient Exercises during Physical Therapy.

    PubMed

    Vakanski, Aleksandar; Ferguson, Jake M; Lee, Stephen

    2017-06-01

    The article proposes a set of metrics for evaluation of patient performance in physical therapy exercises. Taxonomy is employed that classifies the metrics into quantitative and qualitative categories, based on the level of abstraction of the captured motion sequences. Further, the quantitative metrics are classified into model-less and model-based metrics, in reference to whether the evaluation employs the raw measurements of patient performed motions, or whether the evaluation is based on a mathematical model of the motions. The reviewed metrics include root-mean square distance, Kullback Leibler divergence, log-likelihood, heuristic consistency, Fugl-Meyer Assessment, and similar. The metrics are evaluated for a set of five human motions captured with a Kinect sensor. The metrics can potentially be integrated into a system that employs machine learning for modelling and assessment of the consistency of patient performance in home-based therapy setting. Automated performance evaluation can overcome the inherent subjectivity in human performed therapy assessment, and it can increase the adherence to prescribed therapy plans, and reduce healthcare costs.

  17. Movement amplitude and tempo change in piano performance

    NASA Astrophysics Data System (ADS)

    Palmer, Caroline

    2004-05-01

    Music performance places stringent temporal and cognitive demands on individuals that should yield large speed/accuracy tradeoffs. Skilled piano performance, however, shows consistently high accuracy across a wide variety of rates. Movement amplitude may affect the speed/accuracy tradeoff, so that high accuracy can be obtained even at very fast tempi. The contribution of movement amplitude changes in rate (tempo) is investigated with motion capture. Cameras recorded pianists with passive markers on hands and fingers, who performed on an electronic (MIDI) keyboard. Pianists performed short melodies at faster and faster tempi until they made errors (altering the speed/accuracy function). Variability of finger movements in the three motion planes indicated most change in the plane perpendicular to the keyboard across tempi. Surprisingly, peak amplitudes of motion before striking the keys increased as tempo increased. Increased movement amplitudes at faster rates may reduce or compensate for speed/accuracy tradeoffs. [Work supported by Canada Research Chairs program, HIMH R01 45764.

  18. Assessment method of digital Chinese dance movements based on virtual reality technology

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Shao, Shuyuan; Wang, Shumin

    2008-03-01

    Virtual reality has played an increasing role in such areas as medicine, architecture, aviation, engineering science and advertising. However, in the art fields, virtual reality is still in its infancy in the representation of human movements. Based on the techniques of motion capture and reuse of motion capture data in virtual reality environment, this paper presents an assessment method in order to evaluate the quantification of dancers' basic Arm Position movements in Chinese traditional dance. In this paper, the data for quantifying traits of dance motions are defined and measured on dancing which performed by an expert and two beginners, with results indicating that they are beneficial for evaluating dance skills and distinctiveness, and the assessment method of digital Chinese dance movements based on virtual reality technology is validity and feasibility.

  19. Model-Based Reinforcement of Kinect Depth Data for Human Motion Capture Applications

    PubMed Central

    Calderita, Luis Vicente; Bandera, Juan Pedro; Bustos, Pablo; Skiadopoulos, Andreas

    2013-01-01

    Motion capture systems have recently experienced a strong evolution. New cheap depth sensors and open source frameworks, such as OpenNI, allow for perceiving human motion on-line without using invasive systems. However, these proposals do not evaluate the validity of the obtained poses. This paper addresses this issue using a model-based pose generator to complement the OpenNI human tracker. The proposed system enforces kinematics constraints, eliminates odd poses and filters sensor noise, while learning the real dimensions of the performer's body. The system is composed by a PrimeSense sensor, an OpenNI tracker and a kinematics-based filter and has been extensively tested. Experiments show that the proposed system improves pure OpenNI results at a very low computational cost. PMID:23845933

  20. Identification of pre-impact conditions of a cyclist involved in a vehicle-bicycle accident using an optimized MADYMO reconstruction combined with motion capture.

    PubMed

    Sun, Jie; Li, Zhengdong; Pan, Shaoyou; Feng, Hao; Shao, Yu; Liu, Ningguo; Huang, Ping; Zou, Donghua; Chen, Yijiu

    2018-05-01

    The aim of the present study was to develop an improved method, using MADYMO multi-body simulation software combined with an optimization method and three-dimensional (3D) motion capture, for identifying the pre-impact conditions of a cyclist (walking or cycling) involved in a vehicle-bicycle accident. First, a 3D motion capture system was used to analyze coupled motions of a volunteer while walking and cycling. The motion capture results were used to define the posture of the human model during walking and cycling simulations. Then, cyclist, bicycle and vehicle models were developed. Pre-impact parameters of the models were treated as unknown design variables. Finally, a multi-objective genetic algorithm, the nondominated sorting genetic algorithm II, was used to find optimal solutions. The objective functions of the walk parameter were significantly lower than cycle parameter; thus, the cyclist was more likely to have been walking with the bicycle than riding the bicycle. In the most closely matched result found, all observed contact points matched and the injury parameters correlated well with the real injuries sustained by the cyclist. Based on the real accident reconstruction, the present study indicates that MADYMO multi-body simulation software, combined with an optimization method and 3D motion capture, can be used to identify the pre-impact conditions of a cyclist involved in a vehicle-bicycle accident. Copyright © 2018. Published by Elsevier Ltd.

  1. Fixation not required: characterizing oculomotor attention capture for looming stimuli.

    PubMed

    Lewis, Joanna E; Neider, Mark B

    2015-10-01

    A stimulus moving toward us, such as a ball being thrown in our direction or a vehicle braking suddenly in front of ours, often represents a stimulus that requires a rapid response. Using a visual search task in which target and distractor items were systematically associated with a looming object, we explored whether this sort of looming motion captures attention, the nature of such capture using eye movement measures (overt/covert), and the extent to which such capture effects are more closely tied to motion onset or the motion itself. We replicated previous findings indicating that looming motion induces response time benefits and costs during visual search Lin, Franconeri, & Enns(Psychological Science 19(7): 686-693, 2008). These differences in response times were independent of fixation, indicating that these capture effects did not necessitate overt attentional shifts to a looming object for search benefits or costs to occur. Interestingly, we found no differences in capture benefits and costs associated with differences in looming motion type. Combined, our results suggest that capture effects associated with looming motion are more likely subserved by covert attentional mechanisms rather than overt mechanisms, and attention capture for looming motion is likely related to motion itself rather than the onset of motion.

  2. Correcting bulk in-plane motion artifacts in MRI using the point spread function.

    PubMed

    Lin, Wei; Wehrli, Felix W; Song, Hee Kwon

    2005-09-01

    A technique is proposed for correcting both translational and rotational motion artifacts in magnetic resonance imaging without the need to collect additional navigator data or to perform intensive postprocessing. The method is based on measuring the point spread function (PSF) by attaching one or two point-sized markers to the main imaging object. Following the isolation of a PSF marker from the acquired image, translational motion could be corrected directly from the modulation transfer function, without the need to determine the object's positions during the scan, although the shifts could be extracted if desired. Rotation is detected by analyzing the relative displacements of two such markers. The technique was evaluated with simulations, phantom and in vivo experiments.

  3. Smart Sensor-Based Motion Detection System for Hand Movement Training in Open Surgery.

    PubMed

    Sun, Xinyao; Byrns, Simon; Cheng, Irene; Zheng, Bin; Basu, Anup

    2017-02-01

    We introduce a smart sensor-based motion detection technique for objective measurement and assessment of surgical dexterity among users at different experience levels. The goal is to allow trainees to evaluate their performance based on a reference model shared through communication technology, e.g., the Internet, without the physical presence of an evaluating surgeon. While in the current implementation we used a Leap Motion Controller to obtain motion data for analysis, our technique can be applied to motion data captured by other smart sensors, e.g., OptiTrack. To differentiate motions captured from different participants, measurement and assessment in our approach are achieved using two strategies: (1) low level descriptive statistical analysis, and (2) Hidden Markov Model (HMM) classification. Based on our surgical knot tying task experiment, we can conclude that finger motions generated from users with different surgical dexterity, e.g., expert and novice performers, display differences in path length, number of movements and task completion time. In order to validate the discriminatory ability of HMM for classifying different movement patterns, a non-surgical task was included in our analysis. Experimental results demonstrate that our approach had 100 % accuracy in discriminating between expert and novice performances. Our proposed motion analysis technique applied to open surgical procedures is a promising step towards the development of objective computer-assisted assessment and training systems.

  4. Computational simulation of extravehicular activity dynamics during a satellite capture attempt.

    PubMed

    Schaffner, G; Newman, D J; Robinson, S K

    2000-01-01

    A more quantitative approach to the analysis of astronaut extravehicular activity (EVA) tasks is needed because of their increasing complexity, particularly in preparation for the on-orbit assembly of the International Space Station. Existing useful EVA computer analyses produce either high-resolution three-dimensional computer images based on anthropometric representations or empirically derived predictions of astronaut strength based on lean body mass and the position and velocity of body joints but do not provide multibody dynamic analysis of EVA tasks. Our physics-based methodology helps fill the current gap in quantitative analysis of astronaut EVA by providing a multisegment human model and solving the equations of motion in a high-fidelity simulation of the system dynamics. The simulation work described here improves on the realism of previous efforts by including three-dimensional astronaut motion, incorporating joint stops to account for the physiological limits of range of motion, and incorporating use of constraint forces to model interaction with objects. To demonstrate the utility of this approach, the simulation is modeled on an actual EVA task, namely, the attempted capture of a spinning Intelsat VI satellite during STS-49 in May 1992. Repeated capture attempts by an EVA crewmember were unsuccessful because the capture bar could not be held in contact with the satellite long enough for the capture latches to fire and successfully retrieve the satellite.

  5. Markerless motion estimation for motion-compensated clinical brain imaging

    NASA Astrophysics Data System (ADS)

    Kyme, Andre Z.; Se, Stephen; Meikle, Steven R.; Fulton, Roger R.

    2018-05-01

    Motion-compensated brain imaging can dramatically reduce the artifacts and quantitative degradation associated with voluntary and involuntary subject head motion during positron emission tomography (PET), single photon emission computed tomography (SPECT) and computed tomography (CT). However, motion-compensated imaging protocols are not in widespread clinical use for these modalities. A key reason for this seems to be the lack of a practical motion tracking technology that allows for smooth and reliable integration of motion-compensated imaging protocols in the clinical setting. We seek to address this problem by investigating the feasibility of a highly versatile optical motion tracking method for PET, SPECT and CT geometries. The method requires no attached markers, relying exclusively on the detection and matching of distinctive facial features. We studied the accuracy of this method in 16 volunteers in a mock imaging scenario by comparing the estimated motion with an accurate marker-based method used in applications such as image guided surgery. A range of techniques to optimize performance of the method were also studied. Our results show that the markerless motion tracking method is highly accurate (<2 mm discrepancy against a benchmarking system) on an ethnically diverse range of subjects and, moreover, exhibits lower jitter and estimation of motion over a greater range than some marker-based methods. Our optimization tests indicate that the basic pose estimation algorithm is very robust but generally benefits from rudimentary background masking. Further marginal gains in accuracy can be achieved by accounting for non-rigid motion of features. Efficiency gains can be achieved by capping the number of features used for pose estimation provided that these features adequately sample the range of head motion encountered in the study. These proof-of-principle data suggest that markerless motion tracking is amenable to motion-compensated brain imaging and holds good promise for a practical implementation in clinical PET, SPECT and CT systems.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, W; Hrycushko, B; Yan, Y

    Purpose: Traditional external beam radiotherapy for cervical cancer requires setup by external skin marks. In order to improve treatment accuracy and reduce planning margin for more conformal therapy, it is essential to monitor tumor positions interfractionally and intrafractionally. We demonstrate feasibility of monitoring cervical tumor motion online using EPID imaging from Beam’s Eye View. Methods: Prior to treatment, 1∼2 cylindrical radio opaque markers were implanted into inferior aspect of cervix tumor. During external beam treatments on a Varian 2100C by 4-field 3D plans, treatment beam images were acquired continuously by an EPID. A Matlab program was developed to locate internalmore » markers on MV images. Based on 2D marker positions obtained from different treatment fields, their 3D positions were estimated for every treatment fraction. Results: There were 398 images acquired during different treatment fractions of three cervical cancer patients. Markers were successfully located on every frame of image at an analysis speed of about 1 second per frame. Intrafraction motions were evaluated by comparing marker positions relative to the position on the first frame of image. The maximum intrafraction motion of the markers was 1.6 mm. Interfraction motions were evaluated by comparing 3D marker positions at different treatment fractions. The maximum interfraction motion was up to 10 mm. Careful comparison found that this is due to patient positioning since the bony structures shifted with the markers. Conclusion: This method provides a cost-free and simple solution for online tumor tracking for cervical cancer treatment since it is feasible to acquire and export EPID images with fast analysis in real time. This method does not need any extra equipment or deliver extra dose to patients. The online tumor motion information will be very useful to reduce planning margins and improve treatment accuracy, which is particularly important for SBRT treatment with long delivery time.« less

  7. Motion data classification on the basis of dynamic time warping with a cloud point distance measure

    NASA Astrophysics Data System (ADS)

    Switonski, Adam; Josinski, Henryk; Zghidi, Hafedh; Wojciechowski, Konrad

    2016-06-01

    The paper deals with the problem of classification of model free motion data. The nearest neighbors classifier which is based on comparison performed by Dynamic Time Warping transform with cloud point distance measure is proposed. The classification utilizes both specific gait features reflected by a movements of subsequent skeleton joints and anthropometric data. To validate proposed approach human gait identification challenge problem is taken into consideration. The motion capture database containing data of 30 different humans collected in Human Motion Laboratory of Polish-Japanese Academy of Information Technology is used. The achieved results are satisfactory, the obtained accuracy of human recognition exceeds 90%. What is more, the applied cloud point distance measure does not depend on calibration process of motion capture system which results in reliable validation.

  8. Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator.

    PubMed

    King, A P; Buerger, C; Tsoumpas, C; Marsden, P K; Schaeffter, T

    2012-01-01

    Respiratory motion models have potential application for estimating and correcting the effects of motion in a wide range of applications, for example in PET-MR imaging. Given that motion cycles caused by breathing are only approximately repeatable, an important quality of such models is their ability to capture and estimate the intra- and inter-cycle variability of the motion. In this paper we propose and describe a technique for free-form nonrigid respiratory motion correction in the thorax. Our model is based on a principal component analysis of the motion states encountered during different breathing patterns, and is formed from motion estimates made from dynamic 3-D MRI data. We apply our model using a data-driven technique based on a 2-D MRI image navigator. Unlike most previously reported work in the literature, our approach is able to capture both intra- and inter-cycle motion variability. In addition, the 2-D image navigator can be used to estimate how applicable the current motion model is, and hence report when more imaging data is required to update the model. We also use the motion model to decide on the best positioning for the image navigator. We validate our approach using MRI data acquired from 10 volunteers and demonstrate improvements of up to 40.5% over other reported motion modelling approaches, which corresponds to 61% of the overall respiratory motion present. Finally we demonstrate one potential application of our technique: MRI-based motion correction of real-time PET data for simultaneous PET-MRI acquisition. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. On a PCA-based lung motion model

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Jia, Xun; Zhao, Tianyu; Liu, Weifeng; Wuenschel, Sara; Lamb, James; Yang, Deshan; Low, Daniel A.; Jiang, Steve B.

    2011-09-01

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772-81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921-9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1 mm (0.7 ± 0.1 mm). When a single artificial internal marker was used to derive the lung motion, the average 3D error was found to be within 2 mm (1.8 ± 0.3 mm) through comprehensive statistical analysis. The optimal number of PCA coefficients needs to be determined on a patient-by-patient basis and two PCA coefficients seem to be sufficient for accurate modeling of the lung motion for most patients. In conclusion, we have presented thorough theoretical analysis and clinical validation of the PCA lung motion model. The feasibility of deriving the entire lung motion using a single marker has also been demonstrated on clinical data using a simulation approach.

  10. Interfractional variability of respiration-induced esophageal tumor motion quantified using fiducial markers and four-dimensional cone-beam computed tomography.

    PubMed

    Jin, Peng; Hulshof, Maarten C C M; van Wieringen, Niek; Bel, Arjan; Alderliesten, Tanja

    2017-07-01

    To investigate the interfractional variability of respiration-induced esophageal tumor motion using fiducial markers and four-dimensional cone-beam computed tomography (4D-CBCT) and assess if a 4D-CT is sufficient for predicting the motion during the treatment. Twenty-four patients with 63 markers visible in the retrospectively reconstructed 4D-CBCTs were included. For each marker, we calculated the amplitude and trajectory of the respiration-induced motion. Possible time trends of the amplitude over the treatment course and the interfractional variability of amplitudes and trajectory shapes were assessed. Further, the amplitudes measured in the 4D-CT were compared to those in the 4D-CBCTs. The amplitude was largest in the cranial-caudal direction of the distal esophagus (mean: 7.1mm) and proximal stomach (mean: 7.8mm). No time trend was observed in the amplitude over the treatment course. The interfractional variability of amplitudes and trajectory shapes was limited (mean: ≤1.4mm). Moreover, small and insignificant deviation was found between the amplitudes quantified in the 4D-CT and in the 4D-CBCT (mean absolute difference: ≤1.0mm). The limited interfractional variability of amplitudes and trajectory shapes and small amplitude difference between 4D-CT-based and 4D-CBCT-based measurements imply that a single 4D-CT would be sufficient for predicting the respiration-induced esophageal tumor motion during the treatment course. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Analysis of facial motion patterns during speech using a matrix factorization algorithm

    PubMed Central

    Lucero, Jorge C.; Munhall, Kevin G.

    2008-01-01

    This paper presents an analysis of facial motion during speech to identify linearly independent kinematic regions. The data consists of three-dimensional displacement records of a set of markers located on a subject’s face while producing speech. A QR factorization with column pivoting algorithm selects a subset of markers with independent motion patterns. The subset is used as a basis to fit the motion of the other facial markers, which determines facial regions of influence of each of the linearly independent markers. Those regions constitute kinematic “eigenregions” whose combined motion produces the total motion of the face. Facial animations may be generated by driving the independent markers with collected displacement records. PMID:19062866

  12. General rigid motion correction for computed tomography imaging based on locally linear embedding

    NASA Astrophysics Data System (ADS)

    Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge

    2018-02-01

    The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.

  13. A New Multi-Sensor Fusion Scheme to Improve the Accuracy of Knee Flexion Kinematics for Functional Rehabilitation Movements.

    PubMed

    Tannous, Halim; Istrate, Dan; Benlarbi-Delai, Aziz; Sarrazin, Julien; Gamet, Didier; Ho Ba Tho, Marie Christine; Dao, Tien Tuan

    2016-11-15

    Exergames have been proposed as a potential tool to improve the current practice of musculoskeletal rehabilitation. Inertial or optical motion capture sensors are commonly used to track the subject's movements. However, the use of these motion capture tools suffers from the lack of accuracy in estimating joint angles, which could lead to wrong data interpretation. In this study, we proposed a real time quaternion-based fusion scheme, based on the extended Kalman filter, between inertial and visual motion capture sensors, to improve the estimation accuracy of joint angles. The fusion outcome was compared to angles measured using a goniometer. The fusion output shows a better estimation, when compared to inertial measurement units and Kinect outputs. We noted a smaller error (3.96°) compared to the one obtained using inertial sensors (5.04°). The proposed multi-sensor fusion system is therefore accurate enough to be applied, in future works, to our serious game for musculoskeletal rehabilitation.

  14. Motion onset does not capture attention when subsequent motion is "smooth".

    PubMed

    Sunny, Meera Mary; von Mühlenen, Adrian

    2011-12-01

    Previous research on the attentional effects of moving objects has shown that motion per se does not capture attention. However, in later studies it was argued that the onset of motion does capture attention. Here, we show that this motion-onset effect critically depends on motion jerkiness--that is, the rate at which the moving stimulus is refreshed. Experiment 1 used search displays with a static, a motion-onset, and an abrupt-onset stimulus, while systematically varying the refresh rate of the moving stimulus. The results showed that motion onset only captures attention when subsequent motion is jerky (8 and 17 Hz), not when it is smooth (33 and 100 Hz). Experiment 2 replaced motion onset with continuous motion, showing that motion jerkiness does not affect how continuous motion is processed. These findings do not support accounts that assume a special role for motion onset, but they are in line with the more general unique-event account.

  15. Discomfort Evaluation of Truck Ingress/Egress Motions Based on Biomechanical Analysis

    PubMed Central

    Choi, Nam-Chul; Lee, Sang Hun

    2015-01-01

    This paper presents a quantitative discomfort evaluation method based on biomechanical analysis results for human body movement, as well as its application to an assessment of the discomfort for truck ingress and egress. In this study, the motions of a human subject entering and exiting truck cabins with different types, numbers, and heights of footsteps were first measured using an optical motion capture system and load sensors. Next, the maximum voluntary contraction (MVC) ratios of the muscles were calculated through a biomechanical analysis of the musculoskeletal human model for the captured motion. Finally, the objective discomfort was evaluated using the proposed discomfort model based on the MVC ratios. To validate this new discomfort assessment method, human subject experiments were performed to investigate the subjective discomfort levels through a questionnaire for comparison with the objective discomfort levels. The validation results showed that the correlation between the objective and subjective discomforts was significant and could be described by a linear regression model. PMID:26067194

  16. Development of a robust and cost-effective 3D respiratory motion monitoring system using the kinect device: Accuracy comparison with the conventional stereovision navigation system.

    PubMed

    Bae, Myungsoo; Lee, Sangmin; Kim, Namkug

    2018-07-01

    To develop and validate a robust and cost-effective 3D respiratory monitoring system based on a Kinect device with a custom-made simple marker. A 3D respiratory monitoring system comprising the simple marker and the Microsoft Kinect v2 device was developed. The marker was designed for simple and robust detection, and the tracking algorithm was developed using the depth, RGB, and infra-red images acquired from the Kinect sensor. A Kalman filter was used to suppress movement noises. The major movements of the marker attached to the four different locations of body surface were determined from the initially collected tracking points of the marker while breathing. The signal level of respiratory motion with the tracking point was estimated along the major direction vector. The accuracy of the results was evaluated through a comparison with those of the conventional stereovision navigation system (NDI Polaris Spectra). Sixteen normal volunteers were enrolled to evaluate the accuracy of this system. The correlation coefficients between the respiratory motion signal from the Kinect device and conventional navigation system ranged from 0.970 to 0.999 and from 0.837 to 0.995 at the abdominal and thoracic surfaces, respectively. The respiratory motion signal from this system was obtained at 27-30 frames/s. This system with the Kinect v2 device and simple marker could be used for cost-effective, robust and accurate 3D respiratory motion monitoring. In addition, this system is as reliable for respiratory motion signal generation and as practically useful as the conventional stereovision navigation system and is less sensitive to patient posture. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Optimisation of shape kernel and threshold in image-processing motion analysers.

    PubMed

    Pedrocchi, A; Baroni, G; Sada, S; Marcon, E; Pedotti, A; Ferrigno, G

    2001-09-01

    The aim of the work is to optimise the image processing of a motion analyser. This is to improve accuracy, which is crucial for neurophysiological and rehabilitation applications. A new motion analyser, ELITE-S2, for installation on the International Space Station is described, with the focus on image processing. Important improvements are expected in the hardware of ELITE-S2 compared with ELITE and previous versions (ELITE-S and Kinelite). The core algorithm for marker recognition was based on the current ELITE version, using the cross-correlation technique. This technique was based on the matching of the expected marker shape, the so-called kernel, with image features. Optimisation of the kernel parameters was achieved using a genetic algorithm, taking into account noise rejection and accuracy. Optimisation was achieved by performing tests on six highly precise grids (with marker diameters ranging from 1.5 to 4 mm), representing all allowed marker image sizes, and on a noise image. The results of comparing the optimised kernels and the current ELITE version showed a great improvement in marker recognition accuracy, while noise rejection characteristics were preserved. An average increase in marker co-ordinate accuracy of +22% was achieved, corresponding to a mean accuracy of 0.11 pixel in comparison with 0.14 pixel, measured over all grids. An improvement of +37%, corresponding to an improvement from 0.22 pixel to 0.14 pixel, was observed over the grid with the biggest markers.

  18. A Tool for the Automated Collection of Space Utilization Data: Three Dimensional Space Utilization Monitor

    NASA Technical Reports Server (NTRS)

    Vos, Gordon A.; Fink, Patrick; Ngo, Phong H.; Morency, Richard; Simon, Cory; Williams, Robert E.; Perez, Lance C.

    2015-01-01

    Space Human Factors and Habitability (SHFH) Element within the Human Research Program (HRP), in collaboration with the Behavioral Health and Performance (BHP) Element, is conducting research regarding Net Habitable Volume (NHV), the internal volume within a spacecraft or habitat that is available to crew for required activities, as well as layout and accommodations within that volume. NASA is looking for innovative methods to unobtrusively collect NHV data without impacting crew time. Data required includes metrics such as location and orientation of crew, volume used to complete tasks, internal translation paths, flow of work, and task completion times. In less constrained environments methods for collecting such data exist yet many are obtrusive and require significant post-processing. Example technologies used in terrestrial settings include infrared (IR) retro-reflective marker based motion capture, GPS sensor tracking, inertial tracking, and multiple camera filmography. However due to constraints of space operations many such methods are infeasible, such as inertial tracking systems which typically rely upon a gravity vector to normalize sensor readings, and traditional IR systems which are large and require extensive calibration. However multiple technologies have not yet been applied to space operations for these explicit purposes. Two of these include 3-Dimensional Radio Frequency Identification Real-Time Localization Systems (3D RFID-RTLS) and depth imaging systems which allow for 3D motion capture and volumetric scanning (such as those using IR-depth cameras like the Microsoft Kinect or Light Detection and Ranging / Light-Radar systems, referred to as LIDAR).

  19. Restoration of motion blurred images

    NASA Astrophysics Data System (ADS)

    Gaxiola, Leopoldo N.; Juarez-Salazar, Rigoberto; Diaz-Ramirez, Victor H.

    2017-08-01

    Image restoration is a classic problem in image processing. Image degradations can occur due to several reasons, for instance, imperfections of imaging systems, quantization errors, atmospheric turbulence, relative motion between camera or objects, among others. Motion blur is a typical degradation in dynamic imaging systems. In this work, we present a method to estimate the parameters of linear motion blur degradation from a captured blurred image. The proposed method is based on analyzing the frequency spectrum of a captured image in order to firstly estimate the degradation parameters, and then, to restore the image with a linear filter. The performance of the proposed method is evaluated by processing synthetic and real-life images. The obtained results are characterized in terms of accuracy of image restoration given by an objective criterion.

  20. Error analysis on spinal motion measurement using skin mounted sensors.

    PubMed

    Yang, Zhengyi; Ma, Heather Ting; Wang, Deming; Lee, Raymond

    2008-01-01

    Measurement errors of skin-mounted sensors in measuring forward bending movement of the lumbar spines are investigated. In this investigation, radiographic images capturing the entire lumbar spines' positions were acquired and used as a 'gold' standard. Seventeen young male volunteers (21 (SD 1) years old) agreed to participate in the study. Light-weight miniature sensors of the electromagnetic tracking systems-Fastrak were attached to the skin overlying the spinous processes of the lumbar spine. With the sensors attached, the subjects were requested to take lateral radiographs in two postures: neutral upright and full flexion. The ranges of motions of lumbar spine were calculated from two sets of digitized data: the bony markers of vertebral bodies and the sensors and compared. The differences between the two sets of results were then analyzed. The relative movement between sensor and vertebrae was decomposed into sensor sliding and titling, from which sliding error and titling error were introduced. Gross motion range of forward bending of lumbar spine measured from bony markers of vertebrae is 67.8 degrees (SD 10.6 degrees ) and that from sensors is 62.8 degrees (SD 12.8 degrees ). The error and absolute error for gross motion range were 5.0 degrees (SD 7.2 degrees ) and 7.7 degrees (SD 3.9 degrees ). The contributions of sensors placed on S1 and L1 to the absolute error were 3.9 degrees (SD 2.9 degrees ) and 4.4 degrees (SD 2.8 degrees ), respectively.

  1. In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency.

    PubMed

    Tashman, Scott; Anderst, William

    2003-04-01

    Dynamic assessment of three-dimensional (3D) skeletal kinematics is essential for understanding normal joint function as well as the effects of injury or disease. This paper presents a novel technique for measuring in-vivo skeletal kinematics that combines data collected from high-speed biplane radiography and static computed tomography (CT). The goals of the present study were to demonstrate that highly precise measurements can be obtained during dynamic movement studies employing high frame-rate biplane video-radiography, to develop a method for expressing joint kinematics in an anatomically relevant coordinate system and to demonstrate the application of this technique by calculating canine tibio-femoral kinematics during dynamic motion. The method consists of four components: the generation and acquisition of high frame rate biplane radiographs, identification and 3D tracking of implanted bone markers, CT-based coordinate system determination, and kinematic analysis routines for determining joint motion in anatomically based coordinates. Results from dynamic tracking of markers inserted in a phantom object showed the system bias was insignificant (-0.02 mm). The average precision in tracking implanted markers in-vivo was 0.064 mm for the distance between markers and 0.31 degree for the angles between markers. Across-trial standard deviations for tibio-femoral translations were similar for all three motion directions, averaging 0.14 mm (range 0.08 to 0.20 mm). Variability in tibio-femoral rotations was more dependent on rotation axis, with across-trial standard deviations averaging 1.71 degrees for flexion/extension, 0.90 degree for internal/external rotation, and 0.40 degree for varus/valgus rotation. Advantages of this technique over traditional motion analysis methods include the elimination of skin motion artifacts, improved tracking precision and the ability to present results in a consistent anatomical reference frame.

  2. FlyCap: Markerless Motion Capture Using Multiple Autonomous Flying Cameras.

    PubMed

    Xu, Lan; Liu, Yebin; Cheng, Wei; Guo, Kaiwen; Zhou, Guyue; Dai, Qionghai; Fang, Lu

    2017-07-18

    Aiming at automatic, convenient and non-instrusive motion capture, this paper presents a new generation markerless motion capture technique, the FlyCap system, to capture surface motions of moving characters using multiple autonomous flying cameras (autonomous unmanned aerial vehicles(UAVs) each integrated with an RGBD video camera). During data capture, three cooperative flying cameras automatically track and follow the moving target who performs large-scale motions in a wide space. We propose a novel non-rigid surface registration method to track and fuse the depth of the three flying cameras for surface motion tracking of the moving target, and simultaneously calculate the pose of each flying camera. We leverage the using of visual-odometry information provided by the UAV platform, and formulate the surface tracking problem in a non-linear objective function that can be linearized and effectively minimized through a Gaussian-Newton method. Quantitative and qualitative experimental results demonstrate the plausible surface and motion reconstruction results.

  3. Technical aspects of real time positron emission tracking for gated radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberland, Marc; Xu, Tong, E-mail: txu@physics.carleton.ca; McEwen, Malcolm R.

    2016-02-15

    Purpose: Respiratory motion can lead to treatment errors in the delivery of radiotherapy treatments. Respiratory gating can assist in better conforming the beam delivery to the target volume. We present a study of the technical aspects of a real time positron emission tracking system for potential use in gated radiotherapy. Methods: The tracking system, called PeTrack, uses implanted positron emission markers and position sensitive gamma ray detectors to track breathing motion in real time. PeTrack uses an expectation–maximization algorithm to track the motion of fiducial markers. A normalized least mean squares adaptive filter predicts the location of the markers amore » short time ahead to account for system response latency. The precision and data collection efficiency of a prototype PeTrack system were measured under conditions simulating gated radiotherapy. The lung insert of a thorax phantom was translated in the inferior–superior direction with regular sinusoidal motion and simulated patient breathing motion (maximum amplitude of motion ±10 mm, period 4 s). The system tracked the motion of a {sup 22}Na fiducial marker (0.34 MBq) embedded in the lung insert every 0.2 s. The position of the was marker was predicted 0.2 s ahead. For sinusoidal motion, the equation used to model the motion was fitted to the data. The precision of the tracking was estimated as the standard deviation of the residuals. Software was also developed to communicate with a Linac and toggle beam delivery. In a separate experiment involving a Linac, 500 monitor units of radiation were delivered to the phantom with a 3 × 3 cm photon beam and with 6 and 10 MV accelerating potential. Radiochromic films were inserted in the phantom to measure spatial dose distribution. In this experiment, the period of motion was set to 60 s to account for beam turn-on latency. The beam was turned off when the marker moved outside of a 5-mm gating window. Results: The precision of the tracking in the IS direction was 0.53 mm for a sinusoidally moving target, with an average count rate ∼250 cps. The average prediction error was 1.1 ± 0.6 mm when the marker moved according to irregular patient breathing motion. Across all beam deliveries during the radiochromic film measurements, the average prediction error was 0.8 ± 0.5 mm. The maximum error was 2.5 mm and the 95th percentile error was 1.5 mm. Clear improvement of the dose distribution was observed between gated and nongated deliveries. The full-width at halfmaximum of the dose profiles of gated deliveries differed by 3 mm or less than the static reference dose distribution. Monitoring of the beam on/off times showed synchronization with the location of the marker within the latency of the system. Conclusions: PeTrack can track the motion of internal fiducial positron emission markers with submillimeter precision. The system can be used to gate the delivery of a Linac beam based on the position of a moving fiducial marker. This highlights the potential of the system for use in respiratory-gated radiotherapy.« less

  4. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture

    PubMed Central

    Karatsidis, Angelos; Bellusci, Giovanni; Schepers, H. Martin; de Zee, Mark; Andersen, Michael S.; Veltink, Peter H.

    2016-01-01

    Ground reaction forces and moments (GRF&M) are important measures used as input in biomechanical analysis to estimate joint kinetics, which often are used to infer information for many musculoskeletal diseases. Their assessment is conventionally achieved using laboratory-based equipment that cannot be applied in daily life monitoring. In this study, we propose a method to predict GRF&M during walking, using exclusively kinematic information from fully-ambulatory inertial motion capture (IMC). From the equations of motion, we derive the total external forces and moments. Then, we solve the indeterminacy problem during double stance using a distribution algorithm based on a smooth transition assumption. The agreement between the IMC-predicted and reference GRF&M was categorized over normal walking speed as excellent for the vertical (ρ = 0.992, rRMSE = 5.3%), anterior (ρ = 0.965, rRMSE = 9.4%) and sagittal (ρ = 0.933, rRMSE = 12.4%) GRF&M components and as strong for the lateral (ρ = 0.862, rRMSE = 13.1%), frontal (ρ = 0.710, rRMSE = 29.6%), and transverse GRF&M (ρ = 0.826, rRMSE = 18.2%). Sensitivity analysis was performed on the effect of the cut-off frequency used in the filtering of the input kinematics, as well as the threshold velocities for the gait event detection algorithm. This study was the first to use only inertial motion capture to estimate 3D GRF&M during gait, providing comparable accuracy with optical motion capture prediction. This approach enables applications that require estimation of the kinetics during walking outside the gait laboratory. PMID:28042857

  5. Quantifying skin motion artifact error of the hindfoot and forefoot marker clusters with the optical tracking of a multi-segment foot model using single-plane fluoroscopy.

    PubMed

    Shultz, R; Kedgley, A E; Jenkyn, T R

    2011-05-01

    The trajectories of skin-mounted markers tracked with optical motion capture are assumed to be an adequate representation of the underlying bone motions. However, it is well known that soft tissue artifact (STA) exists between marker and bone. This study quantifies the STA associated with the hindfoot and midfoot marker clusters of a multi-segment foot model. To quantify STA of the hindfoot and midfoot marker clusters with respect to the calcaneus and navicular respectively, fluoroscopic images were collected on 27 subjects during four quasi-static positions, (1) quiet standing (non-weight bearing), (2) at heel strike (weight-bearing), (3) at midstance (weight-bearing) and (4) at toe-off (weight-bearing). The translation and rotation components of STA were calculated in the sagittal plane. Translational STA at the calcaneus varied from 5.9±7.3mm at heel-strike to 12.1±0.3mm at toe-off. For the navicular the translational STA ranged from 7.6±7.6mm at heel strike to 16.4±16.7mm at toe-off. Rotational STA was relatively smaller for both bones at all foot positions. For the calcaneus they varied between 0.1±2.2° at heel-strike to 0.2±0.6° at toe-off. For the navicular, the rotational STA ranged from 0.6±0.9° at heel-strike to 0.7±0.7° at toe-off. The largest translational STA found in this study (16mm for the navicular) was smaller than those reported in the literature for the thigh and the lower leg, but was larger than the STA of individual spherical markers affixed to the foot. The largest errors occurred at toe-off position for all subjects for both the hindfoot and midfoot clusters. Future studies are recommended to quantify true three-dimensional STA of the entire foot during gait. Copyright © 2011. Published by Elsevier B.V.

  6. Marker-free motion correction in weight-bearing cone-beam CT of the knee joint.

    PubMed

    Berger, M; Müller, K; Aichert, A; Unberath, M; Thies, J; Choi, J-H; Fahrig, R; Maier, A

    2016-03-01

    To allow for a purely image-based motion estimation and compensation in weight-bearing cone-beam computed tomography of the knee joint. Weight-bearing imaging of the knee joint in a standing position poses additional requirements for the image reconstruction algorithm. In contrast to supine scans, patient motion needs to be estimated and compensated. The authors propose a method that is based on 2D/3D registration of left and right femur and tibia segmented from a prior, motion-free reconstruction acquired in supine position. Each segmented bone is first roughly aligned to the motion-corrupted reconstruction of a scan in standing or squatting position. Subsequently, a rigid 2D/3D registration is performed for each bone to each of K projection images, estimating 6 × 4 × K motion parameters. The motion of individual bones is combined into global motion fields using thin-plate-spline extrapolation. These can be incorporated into a motion-compensated reconstruction in the backprojection step. The authors performed visual and quantitative comparisons between a state-of-the-art marker-based (MB) method and two variants of the proposed method using gradient correlation (GC) and normalized gradient information (NGI) as similarity measure for the 2D/3D registration. The authors evaluated their method on four acquisitions under different squatting positions of the same patient. All methods showed substantial improvement in image quality compared to the uncorrected reconstructions. Compared to NGI and MB, the GC method showed increased streaking artifacts due to misregistrations in lateral projection images. NGI and MB showed comparable image quality at the bone regions. Because the markers are attached to the skin, the MB method performed better at the surface of the legs where the authors observed slight streaking of the NGI and GC methods. For a quantitative evaluation, the authors computed the universal quality index (UQI) for all bone regions with respect to the motion-free reconstruction. The authors quantitative evaluation over regions around the bones yielded a mean UQI of 18.4 for no correction, 53.3 and 56.1 for the proposed method using GC and NGI, respectively, and 53.7 for the MB reference approach. In contrast to the authors registration-based corrections, the MB reference method caused slight nonrigid deformations at bone outlines when compared to a motion-free reference scan. The authors showed that their method based on the NGI similarity measure yields reconstruction quality close to the MB reference method. In contrast to the MB method, the proposed method does not require any preparation prior to the examination which will improve the clinical workflow and patient comfort. Further, the authors found that the MB method causes small, nonrigid deformations at the bone outline which indicates that markers may not accurately reflect the internal motion close to the knee joint. Therefore, the authors believe that the proposed method is a promising alternative to MB motion management.

  7. Marker-free motion correction in weight-bearing cone-beam CT of the knee joint

    PubMed Central

    Berger, M.; Müller, K.; Aichert, A.; Unberath, M.; Thies, J.; Choi, J.-H.; Fahrig, R.; Maier, A.

    2016-01-01

    Purpose: To allow for a purely image-based motion estimation and compensation in weight-bearing cone-beam computed tomography of the knee joint. Methods: Weight-bearing imaging of the knee joint in a standing position poses additional requirements for the image reconstruction algorithm. In contrast to supine scans, patient motion needs to be estimated and compensated. The authors propose a method that is based on 2D/3D registration of left and right femur and tibia segmented from a prior, motion-free reconstruction acquired in supine position. Each segmented bone is first roughly aligned to the motion-corrupted reconstruction of a scan in standing or squatting position. Subsequently, a rigid 2D/3D registration is performed for each bone to each of K projection images, estimating 6 × 4 × K motion parameters. The motion of individual bones is combined into global motion fields using thin-plate-spline extrapolation. These can be incorporated into a motion-compensated reconstruction in the backprojection step. The authors performed visual and quantitative comparisons between a state-of-the-art marker-based (MB) method and two variants of the proposed method using gradient correlation (GC) and normalized gradient information (NGI) as similarity measure for the 2D/3D registration. Results: The authors evaluated their method on four acquisitions under different squatting positions of the same patient. All methods showed substantial improvement in image quality compared to the uncorrected reconstructions. Compared to NGI and MB, the GC method showed increased streaking artifacts due to misregistrations in lateral projection images. NGI and MB showed comparable image quality at the bone regions. Because the markers are attached to the skin, the MB method performed better at the surface of the legs where the authors observed slight streaking of the NGI and GC methods. For a quantitative evaluation, the authors computed the universal quality index (UQI) for all bone regions with respect to the motion-free reconstruction. The authors quantitative evaluation over regions around the bones yielded a mean UQI of 18.4 for no correction, 53.3 and 56.1 for the proposed method using GC and NGI, respectively, and 53.7 for the MB reference approach. In contrast to the authors registration-based corrections, the MB reference method caused slight nonrigid deformations at bone outlines when compared to a motion-free reference scan. Conclusions: The authors showed that their method based on the NGI similarity measure yields reconstruction quality close to the MB reference method. In contrast to the MB method, the proposed method does not require any preparation prior to the examination which will improve the clinical workflow and patient comfort. Further, the authors found that the MB method causes small, nonrigid deformations at the bone outline which indicates that markers may not accurately reflect the internal motion close to the knee joint. Therefore, the authors believe that the proposed method is a promising alternative to MB motion management. PMID:26936708

  8. An externally and internally deformable, programmable lung motion phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Yam; Sawant, Amit, E-mail: amit.sawant@utsouthwestern.edu

    Purpose: Most clinically deployed strategies for respiratory motion management in lung radiotherapy (e.g., gating and tracking) use external markers that serve as surrogates for tumor motion. However, typical lung phantoms used to validate these strategies are based on a rigid exterior and a rigid or a deformable-interior. Such designs do not adequately represent respiration because the thoracic anatomy deforms internally as well as externally. In order to create a closer approximation of respiratory motion, the authors describe the construction and experimental testing of an externally as well as internally deformable, programmable lung phantom. Methods: The outer shell of a commerciallymore » available lung phantom (RS-1500, RSD, Inc.) was used. The shell consists of a chest cavity with a flexible anterior surface, and embedded vertebrae, rib-cage and sternum. A custom-made insert was designed using a piece of natural latex foam block. A motion platform was programmed with sinusoidal and ten patient-recorded lung tumor trajectories. The platform was used to drive a rigid foam “diaphragm” that compressed/decompressed the phantom interior. Experimental characterization comprised of determining the reproducibility and the external–internal correlation of external and internal marker trajectories extracted from kV x-ray fluoroscopy. Experiments were conducted to illustrate three example applications of the phantom—(i) validating the geometric accuracy of the VisionRT surface photogrammetry system; (ii) validating an image registration tool, NiftyReg; and (iii) quantifying the geometric error due to irregular motion in four-dimensional computed tomography (4DCT). Results: The phantom correctly reproduced sinusoidal and patient-derived motion, as well as realistic respiratory motion-related effects such as hysteresis. The reproducibility of marker trajectories over multiple runs for sinusoidal as well as patient traces, as characterized by fluoroscopy, was within 0.25 mm RMS error. The motion trajectories of internal and external radio-opaque markers as measured by fluoroscopy were found to be highly correlated (R > 0.95). Using the phantom, it was demonstrated that the motion trajectories of regions-of-interest on the surface as measured by VisionRT are highly consistent with corresponding fluoroscopically acquired surface marker trajectories, with RMS errors within 0.26 mm. Furthermore, it was shown that the trajectories of external and internal marker trajectories derived from NiftyReg deformation vector fields were within 1 mm root mean square errors comparing to trajectories obtained by segmenting markers from individual fluoro frames. Finally, it was shown that while 4DCT can be used to localize internal markers for sinusoidal motion with reasonable accuracy, the localization error increases significantly (by a factor of ∼2) in the presence of cycle-to-cycle variations that are observed in patient-derived respiratory motion. Conclusions: The authors have developed a realistic externally and internally deformable, programmable lung phantom that will serve as a valuable tool for clinical and investigational motion management studies in thoracic and abdominal radiation therapies.« less

  9. Computational cameras for moving iris recognition

    NASA Astrophysics Data System (ADS)

    McCloskey, Scott; Venkatesha, Sharath

    2015-05-01

    Iris-based biometric identification is increasingly used for facility access and other security applications. Like all methods that exploit visual information, however, iris systems are limited by the quality of captured images. Optical defocus due to a small depth of field (DOF) is one such challenge, as is the acquisition of sharply-focused iris images from subjects in motion. This manuscript describes the application of computational motion-deblurring cameras to the problem of moving iris capture, from the underlying theory to system considerations and performance data.

  10. Applied research of embedded WiFi technology in the motion capture system

    NASA Astrophysics Data System (ADS)

    Gui, Haixia

    2012-04-01

    Embedded wireless WiFi technology is one of the current wireless hot spots in network applications. This paper firstly introduces the definition and characteristics of WiFi. With the advantages of WiFi such as using no wiring, simple operation and stable transmission, this paper then gives a system design for the application of embedded wireless WiFi technology in the motion capture system. Also, it verifies the effectiveness of design in the WiFi-based wireless sensor hardware and software program.

  11. Incremental inverse kinematics based vision servo for autonomous robotic capture of non-cooperative space debris

    NASA Astrophysics Data System (ADS)

    Dong, Gangqi; Zhu, Z. H.

    2016-04-01

    This paper proposed a new incremental inverse kinematics based vision servo approach for robotic manipulators to capture a non-cooperative target autonomously. The target's pose and motion are estimated by a vision system using integrated photogrammetry and EKF algorithm. Based on the estimated pose and motion of the target, the instantaneous desired position of the end-effector is predicted by inverse kinematics and the robotic manipulator is moved incrementally from its current configuration subject to the joint speed limits. This approach effectively eliminates the multiple solutions in the inverse kinematics and increases the robustness of the control algorithm. The proposed approach is validated by a hardware-in-the-loop simulation, where the pose and motion of the non-cooperative target is estimated by a real vision system. The simulation results demonstrate the effectiveness and robustness of the proposed estimation approach for the target and the incremental control strategy for the robotic manipulator.

  12. Tracking and characterizing the head motion of unanaesthetized rats in positron emission tomography

    PubMed Central

    Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger

    2012-01-01

    Positron emission tomography (PET) is an important in vivo molecular imaging technique for translational research. Imaging unanaesthetized rats using motion-compensated PET avoids the confounding impact of anaesthetic drugs and enables animals to be imaged during normal or evoked behaviour. However, there is little published data on the nature of rat head motion to inform the design of suitable marker-based motion-tracking set-ups for brain imaging—specifically, set-ups that afford close to uninterrupted tracking. We performed a systematic study of rat head motion parameters for unanaesthetized tube-bound and freely moving rats with a view to designing suitable motion-tracking set-ups in each case. For tube-bound rats, using a single appropriately placed binocular tracker, uninterrupted tracking was possible greater than 95 per cent of the time. For freely moving rats, simulations and measurements of a live subject indicated that two opposed binocular trackers are sufficient (less than 10% interruption to tracking) for a wide variety of behaviour types. We conclude that reliable tracking of head pose can be achieved with marker-based optical-motion-tracking systems for both tube-bound and freely moving rats undergoing PET studies without sedation. PMID:22718992

  13. The Role of Near-Fault Relief in Creating and Maintaining Strike-Slip Landscape Features

    NASA Astrophysics Data System (ADS)

    Harbert, S.; Duvall, A. R.; Tucker, G. E.

    2016-12-01

    Geomorphic landforms, such as shutter ridges, offset river terraces, and deflected stream channels, are often used to assess the activity and slip rates of strike-slip faults. However, in some systems, such as parts of the Marlborough Fault System (South Island, NZ), an active strike-slip fault does not leave a strong landscape signature. Here we explore the factors that dampen or enhance the landscape signature of strike-slip faulting using the Channel-Hillslope Integrated Landscape Development model (CHILD). We focus on variables affecting the length of channel offsets, which enhance the signature of strike-slip motion, and the frequency of stream captures, which eliminate offsets and reduce this signature. We model a strike-slip fault that passes through a mountain ridge, offsetting streams that drain across this fault. We use this setup to test the response of channel offset length and capture frequency to fault characteristics, such as slip rate and ratio of lateral to vertical motion, and to landscape characteristics, such as relief contrasts controlled by erodibility. Our experiments show that relief downhill of the fault, whether generated by differential uplift across the fault or by an erodibility contrast, has the strongest effect on offset length and capture frequency. This relief creates shutter ridges, which block and divert streams while being advected along a fault. Shutter ridges and the streams they divert have long been recognized as markers of strike-slip motion. Our results show specifically that the height of shutter ridges is most responsible for the degree to which they create long channel offsets by preventing stream captures. We compare these results to landscape metrics in the Marlborough Fault System, where shutter ridges are common and often lithologically controlled. We compare shutter ridge length and height to channel offset length in order to assess the influence of relief on offset channel features in a real landscape. Based on our model and field results, we conclude that vertical relief is important for generating and preserving offset features that are viewed as characteristic of a strike-slip fault. Therefore, the geomorphic expression of a fault may be dependent on characteristics of the surrounding landscape rather than primarily a function of the nature of slip on the fault.

  14. Multi-Sensor Methods for Mobile Radar Motion Capture and Compensation

    NASA Astrophysics Data System (ADS)

    Nakata, Robert

    Remote sensing has many applications, including surveying and mapping, geophysics exploration, military surveillance, search and rescue and counter-terrorism operations. Remote sensor systems typically use visible image, infrared or radar sensors. Camera based image sensors can provide high spatial resolution but are limited to line-of-sight capture during daylight. Infrared sensors have lower resolution but can operate during darkness. Radar sensors can provide high resolution motion measurements, even when obscured by weather, clouds and smoke and can penetrate walls and collapsed structures constructed with non-metallic materials up to 1 m to 2 m in depth depending on the wavelength and transmitter power level. However, any platform motion will degrade the target signal of interest. In this dissertation, we investigate alternative methodologies to capture platform motion, including a Body Area Network (BAN) that doesn't require external fixed location sensors, allowing full mobility of the user. We also investigated platform stabilization and motion compensation techniques to reduce and remove the signal distortion introduced by the platform motion. We evaluated secondary ultrasonic and radar sensors to stabilize the platform resulting in an average 5 dB of Signal to Interference Ratio (SIR) improvement. We also implemented a Digital Signal Processing (DSP) motion compensation algorithm that improved the SIR by 18 dB on average. These techniques could be deployed on a quadcopter platform and enable the detection of respiratory motion using an onboard radar sensor.

  15. On a PCA-based lung motion model

    PubMed Central

    Li, Ruijiang; Lewis, John H; Jia, Xun; Zhao, Tianyu; Liu, Weifeng; Wuenschel, Sara; Lamb, James; Yang, Deshan; Low, Daniel A; Jiang, Steve B

    2014-01-01

    Respiration-induced organ motion is one of the major uncertainties in lung cancer radiotherapy and is crucial to be able to accurately model the lung motion. Most work so far has focused on the study of the motion of a single point (usually the tumor center of mass), and much less work has been done to model the motion of the entire lung. Inspired by the work of Zhang et al (2007 Med. Phys. 34 4772–81), we believe that the spatiotemporal relationship of the entire lung motion can be accurately modeled based on principle component analysis (PCA) and then a sparse subset of the entire lung, such as an implanted marker, can be used to drive the motion of the entire lung (including the tumor). The goal of this work is twofold. First, we aim to understand the underlying reason why PCA is effective for modeling lung motion and find the optimal number of PCA coefficients for accurate lung motion modeling. We attempt to address the above important problems both in a theoretical framework and in the context of real clinical data. Second, we propose a new method to derive the entire lung motion using a single internal marker based on the PCA model. The main results of this work are as follows. We derived an important property which reveals the implicit regularization imposed by the PCA model. We then studied the model using two mathematical respiratory phantoms and 11 clinical 4DCT scans for eight lung cancer patients. For the mathematical phantoms with cosine and an even power (2n) of cosine motion, we proved that 2 and 2n PCA coefficients and eigenvectors will completely represent the lung motion, respectively. Moreover, for the cosine phantom, we derived the equivalence conditions for the PCA motion model and the physiological 5D lung motion model (Low et al 2005 Int. J. Radiat. Oncol. Biol. Phys. 63 921–9). For the clinical 4DCT data, we demonstrated the modeling power and generalization performance of the PCA model. The average 3D modeling error using PCA was within 1 mm (0.7 ± 0.1 mm). When a single artificial internal marker was used to derive the lung motion, the average 3D error was found to be within 2 mm (1.8 ± 0.3 mm) through comprehensive statistical analysis. The optimal number of PCA coefficients needs to be determined on a patient-by-patient basis and two PCA coefficients seem to be sufficient for accurate modeling of the lung motion for most patients. In conclusion, we have presented thorough theoretical analysis and clinical validation of the PCA lung motion model. The feasibility of deriving the entire lung motion using a single marker has also been demonstrated on clinical data using a simulation approach. PMID:21865624

  16. Human body motion capture from multi-image video sequences

    NASA Astrophysics Data System (ADS)

    D'Apuzzo, Nicola

    2003-01-01

    In this paper is presented a method to capture the motion of the human body from multi image video sequences without using markers. The process is composed of five steps: acquisition of video sequences, calibration of the system, surface measurement of the human body for each frame, 3-D surface tracking and tracking of key points. The image acquisition system is currently composed of three synchronized progressive scan CCD cameras and a frame grabber which acquires a sequence of triplet images. Self calibration methods are applied to gain exterior orientation of the cameras, the parameters of internal orientation and the parameters modeling the lens distortion. From the video sequences, two kinds of 3-D information are extracted: a three-dimensional surface measurement of the visible parts of the body for each triplet and 3-D trajectories of points on the body. The approach for surface measurement is based on multi-image matching, using the adaptive least squares method. A full automatic matching process determines a dense set of corresponding points in the triplets. The 3-D coordinates of the matched points are then computed by forward ray intersection using the orientation and calibration data of the cameras. The tracking process is also based on least squares matching techniques. Its basic idea is to track triplets of corresponding points in the three images through the sequence and compute their 3-D trajectories. The spatial correspondences between the three images at the same time and the temporal correspondences between subsequent frames are determined with a least squares matching algorithm. The results of the tracking process are the coordinates of a point in the three images through the sequence, thus the 3-D trajectory is determined by computing the 3-D coordinates of the point at each time step by forward ray intersection. Velocities and accelerations are also computed. The advantage of this tracking process is twofold: it can track natural points, without using markers; and it can track local surfaces on the human body. In the last case, the tracking process is applied to all the points matched in the region of interest. The result can be seen as a vector field of trajectories (position, velocity and acceleration). The last step of the process is the definition of selected key points of the human body. A key point is a 3-D region defined in the vector field of trajectories, whose size can vary and whose position is defined by its center of gravity. The key points are tracked in a simple way: the position at the next time step is established by the mean value of the displacement of all the trajectories inside its region. The tracked key points lead to a final result comparable to the conventional motion capture systems: 3-D trajectories of key points which can be afterwards analyzed and used for animation or medical purposes.

  17. Target capture enrichment of nuclear SNP markers for massively parallel sequencing of degraded and mixed samples.

    PubMed

    Bose, Nikhil; Carlberg, Katie; Sensabaugh, George; Erlich, Henry; Calloway, Cassandra

    2018-05-01

    DNA from biological forensic samples can be highly fragmented and present in limited quantity. When DNA is highly fragmented, conventional PCR based Short Tandem Repeat (STR) analysis may fail as primer binding sites may not be present on a single template molecule. Single Nucleotide Polymorphisms (SNPs) can serve as an alternative type of genetic marker for analysis of degraded samples because the targeted variation is a single base. However, conventional PCR based SNP analysis methods still require intact primer binding sites for target amplification. Recently, probe capture methods for targeted enrichment have shown success in recovering degraded DNA as well as DNA from ancient bone samples using next-generation sequencing (NGS) technologies. The goal of this study was to design and test a probe capture assay targeting forensically relevant nuclear SNP markers for clonal and massively parallel sequencing (MPS) of degraded and limited DNA samples as well as mixtures. A set of 411 polymorphic markers totaling 451 nuclear SNPs (375 SNPs and 36 microhaplotype markers) was selected for the custom probe capture panel. The SNP markers were selected for a broad range of forensic applications including human individual identification, kinship, and lineage analysis as well as for mixture analysis. Performance of the custom SNP probe capture NGS assay was characterized by analyzing read depth and heterozygote allele balance across 15 samples at 25 ng input DNA. Performance thresholds were established based on read depth ≥500X and heterozygote allele balance within ±10% deviation from 50:50, which was observed for 426 out of 451 SNPs. These 426 SNPs were analyzed in size selected samples (at ≤75 bp, ≤100 bp, ≤150 bp, ≤200 bp, and ≤250 bp) as well as mock degraded samples fragmented to an average of 150 bp. Samples selected for ≤75 bp exhibited 99-100% reportable SNPs across varied DNA amounts and as low as 0.5 ng. Mock degraded samples at 1 ng and 10 ng exhibited >90% reportable SNPs. Finally, two-person male-male mixtures were tested at 10 ng in contributor varying ratios. Overall, 85-100% of alleles unique to the minor contributor were observed at all mixture ratios. Results from these studies using the SNP probe capture NGS system demonstrates proof of concept for application to forensically relevant degraded and mixed DNA samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Automated video-based assessment of surgical skills for training and evaluation in medical schools.

    PubMed

    Zia, Aneeq; Sharma, Yachna; Bettadapura, Vinay; Sarin, Eric L; Ploetz, Thomas; Clements, Mark A; Essa, Irfan

    2016-09-01

    Routine evaluation of basic surgical skills in medical schools requires considerable time and effort from supervising faculty. For each surgical trainee, a supervisor has to observe the trainees in person. Alternatively, supervisors may use training videos, which reduces some of the logistical overhead. All these approaches however are still incredibly time consuming and involve human bias. In this paper, we present an automated system for surgical skills assessment by analyzing video data of surgical activities. We compare different techniques for video-based surgical skill evaluation. We use techniques that capture the motion information at a coarser granularity using symbols or words, extract motion dynamics using textural patterns in a frame kernel matrix, and analyze fine-grained motion information using frequency analysis. We were successfully able to classify surgeons into different skill levels with high accuracy. Our results indicate that fine-grained analysis of motion dynamics via frequency analysis is most effective in capturing the skill relevant information in surgical videos. Our evaluations show that frequency features perform better than motion texture features, which in-turn perform better than symbol-/word-based features. Put succinctly, skill classification accuracy is positively correlated with motion granularity as demonstrated by our results on two challenging video datasets.

  19. Instant axis of rotation of L4-5 motion segment--a biomechanical study on cadaver lumbar spine.

    PubMed

    Sengupta, Dilip K; Demetropoulos, Constantine K; Herkowitz, Harry N

    2011-06-01

    The instant axis of rotation (IAR) is an important kinematic property to characterise of lumbar spine motion. The goal of this biomechanical study on cadaver lumbar spine was to determine the excursion of the IAR for flexion (FE), lateral bending (LB) and axial rotation (AR) motion at L4-5 segment. Ten cadaver lumbar spine specimens were tested in a 6 degrees-of-freedom spine tester with continuous clyclical loading using pure moment and follower pre-load, to produce physiological motion. The specimens were x-rayed and CT scanned prior to testing to identify marker position. Continuous motion tracking was done by Optotrak motion capture device. A continuous tracking of the IAR excursion was calculated from the continuous motions capturedata using a computer programme. IAR translates forward in flexion and backwards in extension with mean excursion of 26.5 mm (+/- 5.6 SD). During LB motion, IAR translates laterally in the same direction, and the mean excursion was 15.35 mm (+/- 8.75 SD). During axial rotation the IAR translates in the horizontal plane in a semicircular arc, around the centre of the vertebral body, but the IAR translates in the opposite direction of rotation. The IAR excursion was faster and larger during neutral zone motion in FE and LB, but uniform for AR motion. This is the first published data on the continuous excursion of IAR of a lumbar motion segment. The methodology is accurate and precise, but not practicable for in vivo testing.

  20. How Different Marker Sets Affect Joint Angles in Inverse Kinematics Framework.

    PubMed

    Mantovani, Giulia; Lamontagne, Mario

    2017-04-01

    The choice of marker set is a source of variability in motion analysis. Studies exist which assess the performance of marker sets when direct kinematics is used, but these results cannot be extrapolated to the inverse kinematic framework. Therefore, the purpose of this study was to examine the sensitivity of kinematic outcomes to inter-marker set variability in an inverse kinematic framework. The compared marker sets were plug-in-gait, University of Ottawa motion analysis model and a three-marker-cluster marker set. Walking trials of 12 participants were processed in opensim. The coefficient of multiple correlations was very good for sagittal (>0.99) and transverse (>0.92) plane angles, but worsened for the transverse plane (0.72). Absolute reliability indices are also provided for comparison among studies: minimum detectable change values ranged from 3 deg for the hip sagittal range of motion to 16.6 deg of the hip transverse range of motion. Ranges of motion of hip and knee abduction/adduction angles and hip and ankle rotations were significantly different among the three marker configurations (P < 0.001), with plug-in-gait producing larger ranges of motion. Although the same model was used for all the marker sets, the resulting minimum detectable changes were high and clinically relevant, which warns for caution when comparing studies that use different marker configurations, especially if they differ in the joint-defining markers.

  1. Validation of distal limb mounted inertial measurement unit sensors for stride detection in Warmblood horses at walk and trot.

    PubMed

    Bragança, F M; Bosch, S; Voskamp, J P; Marin-Perianu, M; Van der Zwaag, B J; Vernooij, J C M; van Weeren, P R; Back, W

    2017-07-01

    Inertial measurement unit (IMU) sensor-based techniques are becoming more popular in horses as a tool for objective locomotor assessment. To describe, evaluate and validate a method of stride detection and quantification at walk and trot using distal limb mounted IMU sensors. Prospective validation study comparing IMU sensors and motion capture with force plate data. A total of seven Warmblood horses equipped with metacarpal/metatarsal IMU sensors and reflective markers for motion capture were hand walked and trotted over a force plate. Using four custom built algorithms hoof-on/hoof-off timing over the force plate were calculated for each trial from the IMU data. Accuracy of the computed parameters was calculated as the mean difference in milliseconds between the IMU or motion capture generated data and the data from the force plate, precision as the s.d. of these differences and percentage of error with accuracy of the calculated parameter as a percentage of the force plate stance duration. Accuracy, precision and percentage of error of the best performing IMU algorithm for stance duration at walk were 28.5, 31.6 ms and 3.7% for the forelimbs and -5.5, 20.1 ms and -0.8% for the hindlimbs, respectively. At trot the best performing algorithm achieved accuracy, precision and percentage of error of -27.6/8.8 ms/-8.4% for the forelimbs and 6.3/33.5 ms/9.1% for the hindlimbs. The described algorithms have not been assessed on different surfaces. Inertial measurement unit technology can be used to determine temporal kinematic stride variables at walk and trot justifying its use in gait and performance analysis. However, precision of the method may not be sufficient to detect all possible lameness-related changes. These data seem promising enough to warrant further research to evaluate whether this approach will be useful for appraising the majority of clinically relevant gait changes encountered in practice. © 2016 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.

  2. SU-E-J-133: Evaluation of Inter- and Intra-Fractional Pancreas Tumor Residual Motions with Abdominal Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y; Shi, F; Tian, Z

    2014-06-01

    Purpose: Abdominal compression (AC) has been widely used to reduce pancreas motion due to respiration for pancreatic cancer patients undergoing stereotactic body radiotherapy (SBRT). However, the inter-fractional and intra-fractional patient motions may degrade the treatment. The purpose of this work is to study daily CBCT projections and 4DCT to evaluate the inter-fractional and intra-fractional pancreatic motions. Methods: As a standard of care at our institution, 4D CT scan was performed for treatment planning. At least two CBCT scans were performed for daily treatment. Retrospective studies were performed on patients with implanted internal fiducial markers or surgical clips. The initial motionmore » pattern was obtained by extracting marker positions on every phase of 4D CT images. Daily motions were presented by marker positions on CBCT scan projection images. An adaptive threshold segmentation algorithm was used to extract maker positions. Both marker average positions and motion ranges were compared among three sets of scans, 4D CT, positioning CBCT, and conformal CBCT, for inter-fractional and intra-fractional motion variations. Results: Data from four pancreatic cancer patients were analyzed. These patients had three fiducial markers implanted. All patients were treated by an Elekta Synergy with single fraction SBRT. CBCT projections were acquired by XVI. Markers were successfully detected on most of the projection images. The inter-fractional changes were determined by 4D CT and the first CBCT while the intra-fractional changes were determined by multiple CBCT scans. It is found that the average motion range variations are within 2 mm, however, the average marker positions may drift by 6.5 mm. Conclusion: The patients respiratory motion variation for pancreas SBRT with AC was evaluated by detecting markers from CBCT projections and 4DCT, both the inter-fraction and intra-fraction motion range change is small but the drift of marker positions may be comparable to motion ranges.« less

  3. Two-character motion analysis and synthesis.

    PubMed

    Kwon, Taesoo; Cho, Young-Sang; Park, Sang Il; Shin, Sung Yong

    2008-01-01

    In this paper, we deal with the problem of synthesizing novel motions of standing-up martial arts such as Kickboxing, Karate, and Taekwondo performed by a pair of human-like characters while reflecting their interactions. Adopting an example-based paradigm, we address three non-trivial issues embedded in this problem: motion modeling, interaction modeling, and motion synthesis. For the first issue, we present a semi-automatic motion labeling scheme based on force-based motion segmentation and learning-based action classification. We also construct a pair of motion transition graphs each of which represents an individual motion stream. For the second issue, we propose a scheme for capturing the interactions between two players. A dynamic Bayesian network is adopted to build a motion transition model on top of the coupled motion transition graph that is constructed from an example motion stream. For the last issue, we provide a scheme for synthesizing a novel sequence of coupled motions, guided by the motion transition model. Although the focus of the present work is on martial arts, we believe that the framework of the proposed approach can be conveyed to other two-player motions as well.

  4. Lumbar joint torque estimation based on simplified motion measurement using multiple inertial sensors.

    PubMed

    Miyajima, Saori; Tanaka, Takayuki; Imamura, Yumeko; Kusaka, Takashi

    2015-01-01

    We estimate lumbar torque based on motion measurement using only three inertial sensors. First, human motion is measured by a 6-axis motion tracking device that combines a 3-axis accelerometer and a 3-axis gyroscope placed on the shank, thigh, and back. Next, the lumbar joint torque during the motion is estimated by kinematic musculoskeletal simulation. The conventional method for estimating joint torque uses full body motion data measured by an optical motion capture system. However, in this research, joint torque is estimated by using only three link angles of the body, thigh, and shank. The utility of our method was verified by experiments. We measured motion of bendung knee and waist simultaneously. As the result, we were able to estimate the lumbar joint torque from measured motion.

  5. Commercial Motion Sensor Based Low-Cost and Convenient Interactive Treadmill.

    PubMed

    Kim, Jonghyun; Gravunder, Andrew; Park, Hyung-Soon

    2015-09-17

    Interactive treadmills were developed to improve the simulation of overground walking when compared to conventional treadmills. However, currently available interactive treadmills are expensive and inconvenient, which limits their use. We propose a low-cost and convenient version of the interactive treadmill that does not require expensive equipment and a complicated setup. As a substitute for high-cost sensors, such as motion capture systems, a low-cost motion sensor was used to recognize the subject's intention for speed changing. Moreover, the sensor enables the subject to make a convenient and safe stop using gesture recognition. For further cost reduction, the novel interactive treadmill was based on an inexpensive treadmill platform and a novel high-level speed control scheme was applied to maximize performance for simulating overground walking. Pilot tests with ten healthy subjects were conducted and results demonstrated that the proposed treadmill achieves similar performance to a typical, costly, interactive treadmill that contains a motion capture system and an instrumented treadmill, while providing a convenient and safe method for stopping.

  6. Apparent diffusive motion of centrin foci in living cells: implications for diffusion-based motion in centriole duplication

    NASA Astrophysics Data System (ADS)

    Rafelski, Susanne M.; Keller, Lani C.; Alberts, Jonathan B.; Marshall, Wallace F.

    2011-04-01

    The degree to which diffusion contributes to positioning cellular structures is an open question. Here we investigate the question of whether diffusive motion of centrin granules would allow them to interact with the mother centriole. The role of centrin granules in centriole duplication remains unclear, but some proposed functions of these granules, for example, in providing pre-assembled centriole subunits, or by acting as unstable 'pre-centrioles' that need to be captured by the mother centriole (La Terra et al 2005 J. Cell Biol. 168 713-22), require the centrin foci to reach the mother. To test whether diffusive motion could permit such interactions in the necessary time scale, we measured the motion of centrin-containing foci in living human U2OS cells. We found that these centrin foci display apparently diffusive undirected motion. Using the apparent diffusion constant obtained from these measurements, we calculated the time scale required for diffusion to capture by the mother centrioles and found that it would greatly exceed the time available in the cell cycle. We conclude that mechanisms invoking centrin foci capture by the mother, whether as a pre-centriole or as a source of components to support later assembly, would require a form of directed motility of centrin foci that has not yet been observed.

  7. Ubiquitous human upper-limb motion estimation using wearable sensors.

    PubMed

    Zhang, Zhi-Qiang; Wong, Wai-Choong; Wu, Jian-Kang

    2011-07-01

    Human motion capture technologies have been widely used in a wide spectrum of applications, including interactive game and learning, animation, film special effects, health care, navigation, and so on. The existing human motion capture techniques, which use structured multiple high-resolution cameras in a dedicated studio, are complicated and expensive. With the rapid development of microsensors-on-chip, human motion capture using wearable microsensors has become an active research topic. Because of the agility in movement, upper-limb motion estimation has been regarded as the most difficult problem in human motion capture. In this paper, we take the upper limb as our research subject and propose a novel ubiquitous upper-limb motion estimation algorithm, which concentrates on modeling the relationship between upper-arm movement and forearm movement. A link structure with 5 degrees of freedom (DOF) is proposed to model the human upper-limb skeleton structure. Parameters are defined according to Denavit-Hartenberg convention, forward kinematics equations are derived, and an unscented Kalman filter is deployed to estimate the defined parameters. The experimental results have shown that the proposed upper-limb motion capture and analysis algorithm outperforms other fusion methods and provides accurate results in comparison to the BTS optical motion tracker.

  8. Estimating Physical Activity Energy Expenditure with the Kinect Sensor in an Exergaming Environment

    PubMed Central

    Nathan, David; Huynh, Du Q.; Rubenson, Jonas; Rosenberg, Michael

    2015-01-01

    Active video games that require physical exertion during game play have been shown to confer health benefits. Typically, energy expended during game play is measured using devices attached to players, such as accelerometers, or portable gas analyzers. Since 2010, active video gaming technology incorporates marker-less motion capture devices to simulate human movement into game play. Using the Kinect Sensor and Microsoft SDK this research aimed to estimate the mechanical work performed by the human body and estimate subsequent metabolic energy using predictive algorithmic models. Nineteen University students participated in a repeated measures experiment performing four fundamental movements (arm swings, standing jumps, body-weight squats, and jumping jacks). Metabolic energy was captured using a Cortex Metamax 3B automated gas analysis system with mechanical movement captured by the combined motion data from two Kinect cameras. Estimations of the body segment properties, such as segment mass, length, centre of mass position, and radius of gyration, were calculated from the Zatsiorsky-Seluyanov's equations of de Leva, with adjustment made for posture cost. GPML toolbox implementation of the Gaussian Process Regression, a locally weighted k-Nearest Neighbour Regression, and a linear regression technique were evaluated for their performance on predicting the metabolic cost from new feature vectors. The experimental results show that Gaussian Process Regression outperformed the other two techniques by a small margin. This study demonstrated that physical activity energy expenditure during exercise, using the Kinect camera as a motion capture system, can be estimated from segmental mechanical work. Estimates for high-energy activities, such as standing jumps and jumping jacks, can be made accurately, but for low-energy activities, such as squatting, the posture of static poses should be considered as a contributing factor. When translated into the active video gaming environment, the results could be incorporated into game play to more accurately control the energy expenditure requirements. PMID:26000460

  9. A motion-compensated image filter for low-dose fluoroscopy in a real-time tumor-tracking radiotherapy system

    PubMed Central

    Miyamoto, Naoki; Ishikawa, Masayori; Sutherland, Kenneth; Suzuki, Ryusuke; Matsuura, Taeko; Toramatsu, Chie; Takao, Seishin; Nihongi, Hideaki; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki

    2015-01-01

    In the real-time tumor-tracking radiotherapy system, a surrogate fiducial marker inserted in or near the tumor is detected by fluoroscopy to realize respiratory-gated radiotherapy. The imaging dose caused by fluoroscopy should be minimized. In this work, an image processing technique is proposed for tracing a moving marker in low-dose imaging. The proposed tracking technique is a combination of a motion-compensated recursive filter and template pattern matching. The proposed image filter can reduce motion artifacts resulting from the recursive process based on the determination of the region of interest for the next frame according to the current marker position in the fluoroscopic images. The effectiveness of the proposed technique and the expected clinical benefit were examined by phantom experimental studies with actual tumor trajectories generated from clinical patient data. It was demonstrated that the marker motion could be traced in low-dose imaging by applying the proposed algorithm with acceptable registration error and high pattern recognition score in all trajectories, although some trajectories were not able to be tracked with the conventional spatial filters or without image filters. The positional accuracy is expected to be kept within ±2 mm. The total computation time required to determine the marker position is a few milliseconds. The proposed image processing technique is applicable for imaging dose reduction. PMID:25129556

  10. A manipulative instrument with simultaneous gesture and end-effector trajectory planning and controlling

    NASA Astrophysics Data System (ADS)

    Lin, Hsien-I.; Nguyen, Xuan-Anh

    2017-05-01

    To operate a redundant manipulator to accomplish the end-effector trajectory planning and simultaneously control its gesture in online programming, incorporating the human motion is a useful and flexible option. This paper focuses on a manipulative instrument that can simultaneously control its arm gesture and end-effector trajectory via human teleoperation. The instrument can be classified by two parts; first, for the human motion capture and data processing, marker systems are proposed to capture human gesture. Second, the manipulator kinematics control is implemented by an augmented multi-tasking method, and forward and backward reaching inverse kinematics, respectively. Especially, the local-solution and divergence problems of a multi-tasking method are resolved by the proposed augmented multi-tasking method. Computer simulations and experiments with a 7-DOF (degree of freedom) redundant manipulator were used to validate the proposed method. Comparison among the single-tasking, original multi-tasking, and augmented multi-tasking algorithms were performed and the result showed that the proposed augmented method had a good end-effector position accuracy and the most similar gesture to the human gesture. Additionally, the experimental results showed that the proposed instrument was realized online.

  11. WE-D-303-02: Applications of Volumetric Images Generated with a Respiratory Motion Model Based On An External Surrogate Signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurwitz, M; Williams, C; Dhou, S

    Purpose: Respiratory motion can vary significantly over the course of simulation and treatment. Our goal is to use volumetric images generated with a respiratory motion model to improve the definition of the internal target volume (ITV) and the estimate of delivered dose. Methods: Ten irregular patient breathing patterns spanning 35 seconds each were incorporated into a digital phantom. Ten images over the first five seconds of breathing were used to emulate a 4DCT scan, build the ITV, and generate a patient-specific respiratory motion model which correlated the measured trajectories of markers placed on the patients’ chests with the motion ofmore » the internal anatomy. This model was used to generate volumetric images over the subsequent thirty seconds of breathing. The increase in the ITV taking into account the full 35 seconds of breathing was assessed with ground-truth and model-generated images. For one patient, a treatment plan based on the initial ITV was created and the delivered dose was estimated using images from the first five seconds as well as ground-truth and model-generated images from the next 30 seconds. Results: The increase in the ITV ranged from 0.2 cc to 6.9 cc for the ten patients based on ground-truth information. The model predicted this increase in the ITV with an average error of 0.8 cc. The delivered dose to the tumor (D95) changed significantly from 57 Gy to 41 Gy when estimated using 5 seconds and 30 seconds, respectively. The model captured this effect, giving an estimated D95 of 44 Gy. Conclusion: A respiratory motion model generating volumetric images of the internal patient anatomy could be useful in estimating the increase in the ITV due to irregular breathing during simulation and in assessing delivered dose during treatment. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc. and Radiological Society of North America Research Scholar Grant #RSCH1206.« less

  12. Efficient subtle motion detection from high-speed video for sound recovery and vibration analysis using singular value decomposition-based approach

    NASA Astrophysics Data System (ADS)

    Zhang, Dashan; Guo, Jie; Jin, Yi; Zhu, Chang'an

    2017-09-01

    High-speed cameras provide full field measurement of structure motions and have been applied in nondestructive testing and noncontact structure monitoring. Recently, a phase-based method has been proposed to extract sound-induced vibrations from phase variations in videos, and this method provides insights into the study of remote sound surveillance and material analysis. An efficient singular value decomposition (SVD)-based approach is introduced to detect sound-induced subtle motions from pixel intensities in silent high-speed videos. A high-speed camera is initially applied to capture a video of the vibrating objects stimulated by sound fluctuations. Then, subimages collected from a small region on the captured video are reshaped into vectors and reconstructed to form a matrix. Orthonormal image bases (OIBs) are obtained from the SVD of the matrix; available vibration signal can then be obtained by projecting subsequent subimages onto specific OIBs. A simulation test is initiated to validate the effectiveness and efficiency of the proposed method. Two experiments are conducted to demonstrate the potential applications in sound recovery and material analysis. Results show that the proposed method efficiently detects subtle motions from the video.

  13. Evaluation of the microsoft kinect skeletal versus depth data analysis for timed-up and go and figure of 8 walk tests.

    PubMed

    Hotrabhavananda, Benjamin; Mishra, Anup K; Skubic, Marjorie; Hotrabhavananda, Nijaporn; Abbott, Carmen

    2016-08-01

    We compared the performance of the Kinect skeletal data with the Kinect depth data in capturing different gait parameters during the Timed-up and Go Test (TUG) and Figure of 8 Walk Test (F8W). The gait parameters considered were stride length, stride time, and walking speed for the TUG, and number of steps and completion time for the F8W. A marker-based Vicon motion capture system was used for the ground-truth measurements. Five healthy participants were recruited for the experiment and were asked to perform three trials of each task. Results show that depth data analysis yields stride length and stride time measures with significantly low percentile errors as compared to the skeletal data analysis. However, the skeletal and depth data performed similar with less than 3% of absolute mean percentile error in determining the walking speed for the TUG and both parameters of F8W. The results show potential capabilities of Kinect depth data analysis in computing many gait parameters, whereas, the Kinect skeletal data can also be used for walking speed in TUG and F8W gait parameters.

  14. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. II. Experiment.

    PubMed

    Choi, Jang-Hwan; Maier, Andreas; Keil, Andreas; Pal, Saikat; McWalter, Emily J; Beaupré, Gary S; Gold, Garry E; Fahrig, Rebecca

    2014-06-01

    A C-arm CT system has been shown to be capable of scanning a single cadaver leg under loaded conditions by virtue of its highly flexible acquisition trajectories. In Part I of this study, using the 4D XCAT-based numerical simulation, the authors predicted that the involuntary motion in the lower body of subjects in weight-bearing positions would seriously degrade image quality and the authors suggested three motion compensation methods by which the reconstructions could be corrected to provide diagnostic image quality. Here, the authors demonstrate that a flat-panel angiography system is appropriate for scanning both legs of subjects in vivo under weight-bearing conditions and further evaluate the three motion-correction algorithms using in vivo data. The geometry of a C-arm CT system for a horizontal scan trajectory was calibrated using the PDS-2 phantom. The authors acquired images of two healthy volunteers while lying supine on a table, standing, and squatting at several knee flexion angles. In order to identify the involuntary motion of the lower body, nine 1-mm-diameter tantalum fiducial markers were attached around the knee. The static mean marker position in 3D, a reference for motion compensation, was estimated by back-projecting detected markers in multiple projections using calibrated projection matrices and identifying the intersection points in 3D of the back-projected rays. Motion was corrected using three different methods (described in detail previously): (1) 2D projection shifting, (2) 2D deformable projection warping, and (3) 3D rigid body warping. For quantitative image quality analysis, SSIM indices for the three methods were compared using the supine data as a ground truth. A 2D Euclidean distance-based metric of subjects' motion ranged from 0.85 mm (±0.49 mm) to 3.82 mm (±2.91 mm) (corresponding to 2.76 to 12.41 pixels) resulting in severe motion artifacts in 3D reconstructions. Shifting in 2D, 2D warping, and 3D warping improved the SSIM in the central slice by 20.22%, 16.83%, and 25.77% in the data with the largest motion among the five datasets (SCAN5); improvement in off-center slices was 18.94%, 29.14%, and 36.08%, respectively. The authors showed that C-arm CT control can be implemented for nonstandard horizontal trajectories which enabled us to scan and successfully reconstruct both legs of volunteers in weight-bearing positions. As predicted using theoretical models, the proposed motion correction methods improved image quality by reducing motion artifacts in reconstructions; 3D warping performed better than the 2D methods, especially in off-center slices.

  15. Fiducial marker-based correction for involuntary motion in weight-bearing C-arm CT scanning of knees. II. Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jang-Hwan; Maier, Andreas; Keil, Andreas

    2014-06-15

    Purpose: A C-arm CT system has been shown to be capable of scanning a single cadaver leg under loaded conditions by virtue of its highly flexible acquisition trajectories. In Part I of this study, using the 4D XCAT-based numerical simulation, the authors predicted that the involuntary motion in the lower body of subjects in weight-bearing positions would seriously degrade image quality and the authors suggested three motion compensation methods by which the reconstructions could be corrected to provide diagnostic image quality. Here, the authors demonstrate that a flat-panel angiography system is appropriate for scanning both legs of subjectsin vivo undermore » weight-bearing conditions and further evaluate the three motion-correction algorithms using in vivo data. Methods: The geometry of a C-arm CT system for a horizontal scan trajectory was calibrated using the PDS-2 phantom. The authors acquired images of two healthy volunteers while lying supine on a table, standing, and squatting at several knee flexion angles. In order to identify the involuntary motion of the lower body, nine 1-mm-diameter tantalum fiducial markers were attached around the knee. The static mean marker position in 3D, a reference for motion compensation, was estimated by back-projecting detected markers in multiple projections using calibrated projection matrices and identifying the intersection points in 3D of the back-projected rays. Motion was corrected using three different methods (described in detail previously): (1) 2D projection shifting, (2) 2D deformable projection warping, and (3) 3D rigid body warping. For quantitative image quality analysis, SSIM indices for the three methods were compared using the supine data as a ground truth. Results: A 2D Euclidean distance-based metric of subjects’ motion ranged from 0.85 mm (±0.49 mm) to 3.82 mm (±2.91 mm) (corresponding to 2.76 to 12.41 pixels) resulting in severe motion artifacts in 3D reconstructions. Shifting in 2D, 2D warping, and 3D warping improved the SSIM in the central slice by 20.22%, 16.83%, and 25.77% in the data with the largest motion among the five datasets (SCAN5); improvement in off-center slices was 18.94%, 29.14%, and 36.08%, respectively. Conclusions: The authors showed that C-arm CT control can be implemented for nonstandard horizontal trajectories which enabled us to scan and successfully reconstruct both legs of volunteers in weight-bearing positions. As predicted using theoretical models, the proposed motion correction methods improved image quality by reducing motion artifacts in reconstructions; 3D warping performed better than the 2D methods, especially in off-center slices.« less

  16. System and method for generating motion corrected tomographic images

    DOEpatents

    Gleason, Shaun S [Knoxville, TN; Goddard, Jr., James S.

    2012-05-01

    A method and related system for generating motion corrected tomographic images includes the steps of illuminating a region of interest (ROI) to be imaged being part of an unrestrained live subject and having at least three spaced apart optical markers thereon. Simultaneous images are acquired from a first and a second camera of the markers from different angles. Motion data comprising 3D position and orientation of the markers relative to an initial reference position is then calculated. Motion corrected tomographic data obtained from the ROI using the motion data is then obtained, where motion corrected tomographic images obtained therefrom.

  17. WE-G-BRD-02: Characterizing Information Loss in a Sparse-Sampling-Based Dynamic MRI Sequence (k-T BLAST) for Lung Motion Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, T; Nofiele, J; Sawant, A

    2015-06-15

    Purpose: Rapid MRI is an attractive, non-ionizing tool for soft-tissue-based monitoring of respiratory motion in thoracic and abdominal radiotherapy. One big challenge is to achieve high temporal resolution while maintaining adequate spatial resolution. K-t BLAST, sparse-sampling and reconstruction sequence based on a-priori information represents a potential solution. In this work, we investigated how much “true” motion information is lost as a-priori information is progressively added for faster imaging. Methods: Lung tumor motions in superior-inferior direction obtained from ten individuals were replayed into an in-house, MRI-compatible, programmable motion platform (50Hz refresh and 100microns precision). Six water-filled 1.5ml tubes were placed onmore » it as fiducial markers. Dynamic marker motion within a coronal slice (FOV: 32×32cm{sup 2}, resolution: 0.67×0.67mm{sup 2}, slice-thickness: 5mm) was collected on 3.0T body scanner (Ingenia, Philips). Balanced-FFE (TE/TR: 1.3ms/2.5ms, flip-angle: 40degrees) was used in conjunction with k-t BLAST. Each motion was repeated four times as four k-t acceleration factors 1, 2, 5, and 16 (corresponding frame rates were 2.5, 4.7, 9.8, and 19.1Hz, respectively) were compared. For each image set, one average motion trajectory was computed from six marker displacements. Root mean square error (RMS) was used as a metric of spatial accuracy where measured trajectories were compared to original data. Results: Tumor motion was approximately 10mm. The mean(standard deviation) of respiratory rates over ten patients was 0.28(0.06)Hz. Cumulative distributions of tumor motion frequency spectra (0–25Hz) obtained from the patients showed that 90% of motion fell on 3.88Hz or less. Therefore, the frame rate must be a double or higher for accurate monitoring. The RMS errors over patients for k-t factors of 1, 2, 5, and 16 were.10(.04),.17(.04), .21(.06) and.26(.06)mm, respectively. Conclusions: K-t factor of 5 or higher can cover the high frequency component of tumor respiratory motion, while the estimated error of spatial accuracy was approximately.2mm.« less

  18. Dance-the-Music: an educational platform for the modeling, recognition and audiovisual monitoring of dance steps using spatiotemporal motion templates

    NASA Astrophysics Data System (ADS)

    Maes, Pieter-Jan; Amelynck, Denis; Leman, Marc

    2012-12-01

    In this article, a computational platform is presented, entitled "Dance-the-Music", that can be used in a dance educational context to explore and learn the basics of dance steps. By introducing a method based on spatiotemporal motion templates, the platform facilitates to train basic step models from sequentially repeated dance figures performed by a dance teacher. Movements are captured with an optical motion capture system. The teachers' models can be visualized from a first-person perspective to instruct students how to perform the specific dance steps in the correct manner. Moreover, recognition algorithms-based on a template matching method-can determine the quality of a student's performance in real time by means of multimodal monitoring techniques. The results of an evaluation study suggest that the Dance-the-Music is effective in helping dance students to master the basics of dance figures.

  19. Fast instantaneous center of rotation estimation algorithm for a skied-steered robot

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2015-05-01

    Skid-steered robots are widely used as mobile platforms for machine vision systems. However it is hard to achieve a stable motion of such robots along desired trajectory due to an unpredictable wheel slip. It is possible to compensate the unpredictable wheel slip and stabilize the motion of the robot using visual odometry. This paper presents a fast optical flow based algorithm for estimation of instantaneous center of rotation, angular and longitudinal speed of the robot. The proposed algorithm is based on Horn-Schunck variational optical flow estimation method. The instantaneous center of rotation and motion of the robot is estimated by back projection of optical flow field to the ground surface. The developed algorithm was tested using skid-steered mobile robot. The robot is based on a mobile platform that includes two pairs of differential driven motors and a motor controller. Monocular visual odometry system consisting of a singleboard computer and a low cost webcam is mounted on the mobile platform. A state-space model of the robot was derived using standard black-box system identification. The input (commands) and the output (motion) were recorded using a dedicated external motion capture system. The obtained model was used to control the robot without visual odometry data. The paper is concluded with the algorithm quality estimation by comparison of the trajectories estimated by the algorithm with the data from motion capture system.

  20. Prospective motion correction using inductively coupled wireless RF coils.

    PubMed

    Ooi, Melvyn B; Aksoy, Murat; Maclaren, Julian; Watkins, Ronald D; Bammer, Roland

    2013-09-01

    A novel prospective motion correction technique for brain MRI is presented that uses miniature wireless radio-frequency coils, or "wireless markers," for position tracking. Each marker is free of traditional cable connections to the scanner. Instead, its signal is wirelessly linked to the MR receiver via inductive coupling with the head coil. Real-time tracking of rigid head motion is performed using a pair of glasses integrated with three wireless markers. A tracking pulse-sequence, combined with knowledge of the markers' unique geometrical arrangement, is used to measure their positions. Tracking data from the glasses is then used to prospectively update the orientation and position of the image-volume so that it follows the motion of the head. Wireless-marker position measurements were comparable to measurements using traditional wired radio-frequency tracking coils, with the standard deviation of the difference < 0.01 mm over the range of positions measured inside the head coil. Wireless-marker safety was verified with B1 maps and temperature measurements. Prospective motion correction was demonstrated in a 2D spin-echo scan while the subject performed a series of deliberate head rotations. Prospective motion correction using wireless markers enables high quality images to be acquired even during bulk motions. Wireless markers are small, avoid radio-frequency safety risks from electrical cables, are not hampered by mechanical connections to the scanner, and require minimal setup times. These advantages may help to facilitate adoption in the clinic. Copyright © 2013 Wiley Periodicals, Inc.

  1. Validation of a new method for finding the rotational axes of the knee using both marker-based roentgen stereophotogrammetric analysis and 3D video-based motion analysis for kinematic measurements.

    PubMed

    Roland, Michelle; Hull, M L; Howell, S M

    2011-05-01

    In a previous paper, we reported the virtual axis finder, which is a new method for finding the rotational axes of the knee. The virtual axis finder was validated through simulations that were subject to limitations. Hence, the objective of the present study was to perform a mechanical validation with two measurement modalities: 3D video-based motion analysis and marker-based roentgen stereophotogrammetric analysis (RSA). A two rotational axis mechanism was developed, which simulated internal-external (or longitudinal) and flexion-extension (FE) rotations. The actual axes of rotation were known with respect to motion analysis and RSA markers within ± 0.0006 deg and ± 0.036 mm and ± 0.0001 deg and ± 0.016 mm, respectively. The orientation and position root mean squared errors for identifying the longitudinal rotation (LR) and FE axes with video-based motion analysis (0.26 deg, 0.28 m, 0.36 deg, and 0.25 mm, respectively) were smaller than with RSA (1.04 deg, 0.84 mm, 0.82 deg, and 0.32 mm, respectively). The random error or precision in the orientation and position was significantly better (p=0.01 and p=0.02, respectively) in identifying the LR axis with video-based motion analysis (0.23 deg and 0.24 mm) than with RSA (0.95 deg and 0.76 mm). There was no significant difference in the bias errors between measurement modalities. In comparing the mechanical validations to virtual validations, the virtual validations produced comparable errors to those of the mechanical validation. The only significant difference between the errors of the mechanical and virtual validations was the precision in the position of the LR axis while simulating video-based motion analysis (0.24 mm and 0.78 mm, p=0.019). These results indicate that video-based motion analysis with the equipment used in this study is the superior measurement modality for use with the virtual axis finder but both measurement modalities produce satisfactory results. The lack of significant differences between validation techniques suggests that the virtual sensitivity analysis previously performed was appropriately modeled. Thus, the virtual axis finder can be applied with a thorough understanding of its errors in a variety of test conditions.

  2. Validation of gait analysis with dynamic radiostereometric analysis (RSA) in patients operated with total hip arthroplasty.

    PubMed

    Zügner, Roland; Tranberg, Roy; Lisovskaja, Vera; Shareghi, Bita; Kärrholm, Johan

    2017-07-01

    We simultaneously examined 14 patients with OTS and dynamic radiostereometric analysis (RSA) to evaluate the accuracy of both skin- and a cluster-marker models. The mean differences between the OTS and RSA system in hip flexion, abduction, and rotation varied up to 9.5° for the skin-marker and up to 11.3° for the cluster-marker models, respectively. Both models tended to underestimate the amount of flexion and abduction, but a significant systematic difference between the marker and RSA evaluations could only be established for recordings of hip abduction using cluster markers (p = 0.04). The intra-class correlation coefficient (ICC) was 0.7 or higher during flexion for both models and during abduction using skin markers, but decreased to 0.5-0.6 when abduction motion was studied with cluster markers. During active hip rotation, the two marker models tended to deviate from the RSA recordings in different ways with poor correlations at the end of the motion (ICC ≤0.4). During active hip motions soft tissue displacements occasionally induced considerable differences when compared to skeletal motions. The best correlation between RSA recordings and the skin- and cluster-marker model was found for studies of hip flexion and abduction with the skin-marker model. Studies of hip abduction with use of cluster markers were associated with a constant underestimation of the motion. Recordings of skeletal motions with use of skin or cluster markers during hip rotation were associated with high mean errors amounting up to about 10° at certain positions. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1515-1522, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Evaluation of a Gait Assessment Module Using 3D Motion Capture Technology

    PubMed Central

    Baskwill, Amanda J.; Belli, Patricia; Kelleher, Leila

    2017-01-01

    Background Gait analysis is the study of human locomotion. In massage therapy, this observation is part of an assessment process that informs treatment planning. Massage therapy students must apply the theory of gait assessment to simulated patients. At Humber College, the gait assessment module traditionally consists of a textbook reading and a three-hour, in-class session in which students perform gait assessment on each other. In 2015, Humber College acquired a three-dimensional motion capture system. Purpose The purpose was to evaluate the use of 3D motion capture in a gait assessment module compared to the traditional gait assessment module. Participants Semester 2 massage therapy students who were enrolled in Massage Theory 2 (n = 38). Research Design Quasi-experimental, wait-list comparison study. Intervention The intervention group participated in an in-class session with a Qualisys motion capture system. Main Outcome Measure(s) The outcomes included knowledge and application of gait assessment theory as measured by quizzes, and students’ satisfaction as measured through a questionnaire. Results There were no statistically significant differences in baseline and post-module knowledge between both groups (pre-module: p = .46; post-module: p = .63). There was also no difference between groups on the final application question (p = .13). The intervention group enjoyed the in-class session because they could visualize the content, whereas the comparison group enjoyed the interactivity of the session. The intervention group recommended adding the assessment of gait on their classmates to their experience. Both groups noted more time was needed for the gait assessment module. Conclusions Based on the results of this study, it is recommended that the gait assessment module combine both the traditional in-class session and the 3D motion capture system. PMID:28293329

  4. Mobile Motion Capture--MiMiC.

    PubMed

    Harbert, Simeon D; Jaiswal, Tushar; Harley, Linda R; Vaughn, Tyler W; Baranak, Andrew S

    2013-01-01

    The low cost, simple, robust, mobile, and easy to use Mobile Motion Capture (MiMiC) system is presented and the constraints which guided the design of MiMiC are discussed. The MiMiC Android application allows motion data to be captured from kinematic modules such as Shimmer 2r sensors over Bluetooth. MiMiC is cost effective and can be used for an entire day in a person's daily routine without being intrusive. MiMiC is a flexible motion capture system which can be used for many applications including fall detection, detection of fatigue in industry workers, and analysis of individuals' work patterns in various environments.

  5. Digital stereophotogrammetry based on circular markers and zooming cameras: evaluation of a method for 3D analysis of small motions in orthopaedic research

    PubMed Central

    2011-01-01

    Background Orthopaedic research projects focusing on small displacements in a small measurement volume require a radiation free, three dimensional motion analysis system. A stereophotogrammetrical motion analysis system can track wireless, small, light-weight markers attached to the objects. Thereby the disturbance of the measured objects through the marker tracking can be kept at minimum. The purpose of this study was to develop and evaluate a non-position fixed compact motion analysis system configured for a small measurement volume and able to zoom while tracking small round flat markers in respect to a fiducial marker which was used for the camera pose estimation. Methods The system consisted of two web cameras and the fiducial marker placed in front of them. The markers to track were black circles on a white background. The algorithm to detect a centre of the projected circle on the image plane was described and applied. In order to evaluate the accuracy (mean measurement error) and precision (standard deviation of the measurement error) of the optical measurement system, two experiments were performed: 1) inter-marker distance measurement and 2) marker displacement measurement. Results The first experiment of the 10 mm distances measurement showed a total accuracy of 0.0086 mm and precision of ± 0.1002 mm. In the second experiment, translations from 0.5 mm to 5 mm were measured with total accuracy of 0.0038 mm and precision of ± 0.0461 mm. The rotations of 2.25° amount were measured with the entire accuracy of 0.058° and the precision was of ± 0.172°. Conclusions The description of the non-proprietary measurement device with very good levels of accuracy and precision may provide opportunities for new, cost effective applications of stereophotogrammetrical analysis in musculoskeletal research projects, focusing on kinematics of small displacements in a small measurement volume. PMID:21284867

  6. Inference of Population Structure using Dense Haplotype Data

    PubMed Central

    Lawson, Daniel John; Hellenthal, Garrett

    2012-01-01

    The advent of genome-wide dense variation data provides an opportunity to investigate ancestry in unprecedented detail, but presents new statistical challenges. We propose a novel inference framework that aims to efficiently capture information on population structure provided by patterns of haplotype similarity. Each individual in a sample is considered in turn as a recipient, whose chromosomes are reconstructed using chunks of DNA donated by the other individuals. Results of this “chromosome painting” can be summarized as a “coancestry matrix,” which directly reveals key information about ancestral relationships among individuals. If markers are viewed as independent, we show that this matrix almost completely captures the information used by both standard Principal Components Analysis (PCA) and model-based approaches such as STRUCTURE in a unified manner. Furthermore, when markers are in linkage disequilibrium, the matrix combines information across successive markers to increase the ability to discern fine-scale population structure using PCA. In parallel, we have developed an efficient model-based approach to identify discrete populations using this matrix, which offers advantages over PCA in terms of interpretability and over existing clustering algorithms in terms of speed, number of separable populations, and sensitivity to subtle population structure. We analyse Human Genome Diversity Panel data for 938 individuals and 641,000 markers, and we identify 226 populations reflecting differences on continental, regional, local, and family scales. We present multiple lines of evidence that, while many methods capture similar information among strongly differentiated groups, more subtle population structure in human populations is consistently present at a much finer level than currently available geographic labels and is only captured by the haplotype-based approach. The software used for this article, ChromoPainter and fineSTRUCTURE, is available from http://www.paintmychromosomes.com/. PMID:22291602

  7. Biomechanics of Step Initiation After Balance Recovery With Implications for Humanoid Robot Locomotion.

    PubMed

    Miller Buffinton, Christine; Buffinton, Elise M; Bieryla, Kathleen A; Pratt, Jerry E

    2016-03-01

    Balance-recovery stepping is often necessary for both a human and humanoid robot to avoid a fall by taking a single step or multiple steps after an external perturbation. The determination of where to step to come to a complete stop has been studied, but little is known about the strategy for initiation of forward motion from the static position following such a step. The goal of this study was to examine the human strategy for stepping by moving the back foot forward from a static, double-support position, comparing parameters from normal step length (SL) to those from increasing SLs to the point of step failure, to provide inspiration for a humanoid control strategy. Healthy young adults instrumented with joint reflective markers executed a prescribed-length step from rest while marker positions and ground reaction forces (GRFs) were measured. The participants were scaled to the Gait2354 model in opensim software to calculate body kinematic and joint kinetic parameters, with further post-processing in matlab. With increasing SL, participants reduced both static and push-off back-foot GRF. Body center of mass (CoM) lowered and moved forward, with additional lowering at the longer steps, and followed a path centered within the initial base of support (BoS). Step execution was successful if participants gained enough forward momentum at toe-off to move the instantaneous capture point (ICP) to within the BoS defined by the final position of both feet on the front force plate. All lower extremity joint torques increased with SL except ankle joint. Front knee work increased dramatically with SL, accompanied by decrease in back-ankle work. As SL increased, the human strategy changed, with participants shifting their CoM forward and downward before toe-off, thus gaining forward momentum, while using less propulsive work from the back ankle and engaging the front knee to straighten the body. The results have significance for human motion, suggesting the upper limit of the SL that can be completed with back-ankle push-off before additional knee flexion and torque is needed. For biped control, the results support stability based on capture-point dynamics and suggest strategy for center-of-mass trajectory and distribution of ground force reactions that can be compared with robot controllers for initiation of gait after recovery steps.

  8. Using dynamic programming to improve fiducial marker localization

    NASA Astrophysics Data System (ADS)

    Wan, Hanlin; Ge, Jiajia; Parikh, Parag

    2014-04-01

    Fiducial markers are used in a wide range of medical imaging applications. In radiation therapy, they are often implanted near tumors and used as motion surrogates that are tracked with fluoroscopy. We propose a novel and robust method based on dynamic programming (DP) for retrospectively localizing radiopaque fiducial markers in fluoroscopic images. Our method was compared to template matching (TM) algorithms on 407 data sets from 24 patients. We found that the performance of TM varied dramatically depending on the template used (ranging from 47% to 92% of data sets with a mean error <1 mm). DP by itself requires no template and performed as well as the best TM method, localizing the markers in 91% of the data sets with a mean error <1 mm. Finally, by combining DP and TM, we were able to localize the markers in 99% of the data sets with a mean error <1 mm, regardless of the template used. Our results show that DP can be a powerful tool for analyzing tumor motion, capable of accurately locating fiducial markers in fluoroscopic images regardless of marker type, shape, and size.

  9. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.

    PubMed

    Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H

    2018-04-27

    Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. PredPsych: A toolbox for predictive machine learning-based approach in experimental psychology research.

    PubMed

    Koul, Atesh; Becchio, Cristina; Cavallo, Andrea

    2017-12-12

    Recent years have seen an increased interest in machine learning-based predictive methods for analyzing quantitative behavioral data in experimental psychology. While these methods can achieve relatively greater sensitivity compared to conventional univariate techniques, they still lack an established and accessible implementation. The aim of current work was to build an open-source R toolbox - "PredPsych" - that could make these methods readily available to all psychologists. PredPsych is a user-friendly, R toolbox based on machine-learning predictive algorithms. In this paper, we present the framework of PredPsych via the analysis of a recently published multiple-subject motion capture dataset. In addition, we discuss examples of possible research questions that can be addressed with the machine-learning algorithms implemented in PredPsych and cannot be easily addressed with univariate statistical analysis. We anticipate that PredPsych will be of use to researchers with limited programming experience not only in the field of psychology, but also in that of clinical neuroscience, enabling computational assessment of putative bio-behavioral markers for both prognosis and diagnosis.

  11. Ex vivo kinematic studies of a canine unlinked semi-constrained hybrid total elbow arthroplasty system.

    PubMed

    Lorenz, N D; Channon, S; Pettitt, R; Smirthwaite, P; Innes, J F

    2015-01-01

    Introduction of the Sirius® canine total elbow arthroplasty system, and presentation of the results of a passive range-of-motion analysis based on ex vivo kinematic studies pre-and post-implantation. Thoracic limbs (n = 4) of medium sized dogs were harvested by forequarter amputation. Plain orthogonal radiographs of each limb were obtained pre- and post-implantation. Limbs were prepared by placement of external fixator pins and Kirschner wires into the humerus and radius. Each limb was secured into a custom-made box frame and retro-reflective markers were placed on the exposed ends of the pins and wires. Each elbow was manually moved through five ranges-of-motion manoeuvres. Data collected included six trials of i) full extension to full flexion and ii) pronation and supination in 90° flexion; a three-dimensional motion capture system was used to collect and analyse the data. The Sirius elbow prosthesis was subsequently implanted and the same measurements were repeated. Data sets were tested for normality. Paired t-tests were used for comparison of pre- and post-implantation motion parameters. Kinematic analysis showed that the range-of-motion (mean and SD) for flexion and extension pre-implantation was 115° ± 6 (range: 25° to 140°). The range-of-motion in the sagittal plane post-implantation was 90° ± 4 (range: 36° to 130°) and this reduction was significant (p = 0.0001). The ranges-of-motion (mean and SD) for supination and pronation at 90° were 50° ± 5, whereas the corresponding mean ranges-of-motion post-implantation were 38° ± 6 (p = 0.0188). Compared to a normal elbow, the range-of-motion was reduced. Post-implantation, supination and pronation range-of-motion was significantly reduced at 90° over pre-implantation values. These results provide valuable information regarding the effect of the Sirius system on ex vivo kinematics of the normal canine elbow joint. Further, this particular ex vivo model allowed for satisfactory and repeatable kinematic analysis.

  12. An experimental protocol for the definition of upper limb anatomical frames on children using magneto-inertial sensors.

    PubMed

    Ricci, L; Formica, D; Tamilia, E; Taffoni, F; Sparaci, L; Capirci, O; Guglielmelli, E

    2013-01-01

    Motion capture based on magneto-inertial sensors is a technology enabling data collection in unstructured environments, allowing "out of the lab" motion analysis. This technology is a good candidate for motion analysis of children thanks to the reduced weight and size as well as the use of wireless communication that has improved its wearability and reduced its obtrusivity. A key issue in the application of such technology for motion analysis is its calibration, i.e. a process that allows mapping orientation information from each sensor to a physiological reference frame. To date, even if there are several calibration procedures available for adults, no specific calibration procedures have been developed for children. This work addresses this specific issue presenting a calibration procedure for motion capture of thorax and upper limbs on healthy children. Reported results suggest comparable performance with similar studies on adults and emphasize some critical issues, opening the way to further improvements.

  13. Development of esMOCA Biomechanic, Motion Capture Instrumentation for Biomechanics Analysis

    NASA Astrophysics Data System (ADS)

    Arendra, A.; Akhmad, S.

    2018-01-01

    This study aims to build motion capture instruments using inertial measurement unit sensors to assist in the analysis of biomechanics. Sensors used are accelerometer and gyroscope. Estimation of orientation sensors is done by digital motion processing in each sensor nodes. There are nine sensor nodes attached to the upper limbs. This sensor is connected to the pc via a wireless sensor network. The development of kinematics and inverse dynamamic models of the upper limb is done in simulink simmechanic. The kinematic model receives streaming data of sensor nodes mounted on the limbs. The output of the kinematic model is the pose of each limbs and visualized on display. The dynamic inverse model outputs the reaction force and reaction moment of each joint based on the limb motion input. Model validation in simulink with mathematical model of mechanical analysis showed results that did not differ significantly

  14. Continuous relative phase variability during an exhaustive run in runners with a history of iliotibial band syndrome.

    PubMed

    Miller, Ross H; Meardon, Stacey A; Derrick, Timothy R; Gillette, Jason C

    2008-08-01

    Previous research has proposed that a lack of variability in lower extremity coupling during running is associated with pathology. The purpose of the study was to evaluate lower extremity coupling variability in runners with and without a history of iliotibial band syndrome (ITBS) during an exhaustive run. Sixteen runners ran to voluntary exhaustion on a motorized treadmill while a motion capture system recorded reflective marker locations. Eight runners had a history of ITBS. At the start and end of the run, continuous relative phase (CRP) angles and CRP variability between strides were calculated for key lower extremity kinematic couplings. The ITBS runners demonstrated less CRP variability than controls in several couplings between segments that have been associated with knee pain and ITBS symptoms, including tibia rotation-rearfoot motion and rearfoot motion-thigh ad/abduction, but more variability in knee flexion/extension-foot ad/abduction. The ITBS runners also demonstrated low variability at heel strike in coupling between rearfoot motion-tibia rotation. The results suggest that runners prone to ITBS use abnormal segmental coordination patterns, particular in couplings involving thigh ad/abduction and tibia internal/external rotation. Implications for variability in injury etiology are suggested.

  15. Local Dynamic Stability Assessment of Motion Impaired Elderly Using Electronic Textile Pants.

    PubMed

    Liu, Jian; Lockhart, Thurmon E; Jones, Mark; Martin, Tom

    2008-10-01

    A clear association has been demonstrated between gait stability and falls in the elderly. Integration of wearable computing and human dynamic stability measures into home automation systems may help differentiate fall-prone individuals in a residential environment. The objective of the current study was to evaluate the capability of a pair of electronic textile (e-textile) pants system to assess local dynamic stability and to differentiate motion-impaired elderly from their healthy counterparts. A pair of e-textile pants comprised of numerous e-TAGs at locations corresponding to lower extremity joints was developed to collect acceleration, angular velocity and piezoelectric data. Four motion-impaired elderly together with nine healthy individuals (both young and old) participated in treadmill walking with a motion capture system simultaneously collecting kinematic data. Local dynamic stability, characterized by maximum Lyapunov exponent, was computed based on vertical acceleration and angular velocity at lower extremity joints for the measurements from both e-textile and motion capture systems. Results indicated that the motion-impaired elderly had significantly higher maximum Lyapunov exponents (computed from vertical acceleration data) than healthy individuals at the right ankle and hip joints. In addition, maximum Lyapunov exponents assessed by the motion capture system were found to be significantly higher than those assessed by the e-textile system. Despite the difference between these measurement techniques, attaching accelerometers at the ankle and hip joints was shown to be an effective sensor configuration. It was concluded that the e-textile pants system, via dynamic stability assessment, has the potential to identify motion-impaired elderly.

  16. Motion prediction of a non-cooperative space target

    NASA Astrophysics Data System (ADS)

    Zhou, Bang-Zhao; Cai, Guo-Ping; Liu, Yun-Meng; Liu, Pan

    2018-01-01

    Capturing a non-cooperative space target is a tremendously challenging research topic. Effective acquisition of motion information of the space target is the premise to realize target capture. In this paper, motion prediction of a free-floating non-cooperative target in space is studied and a motion prediction algorithm is proposed. In order to predict the motion of the free-floating non-cooperative target, dynamic parameters of the target must be firstly identified (estimated), such as inertia, angular momentum and kinetic energy and so on; then the predicted motion of the target can be acquired by substituting these identified parameters into the Euler's equations of the target. Accurate prediction needs precise identification. This paper presents an effective method to identify these dynamic parameters of a free-floating non-cooperative target. This method is based on two steps, (1) the rough estimation of the parameters is computed using the motion observation data to the target, and (2) the best estimation of the parameters is found by an optimization method. In the optimization problem, the objective function is based on the difference between the observed and the predicted motion, and the interior-point method (IPM) is chosen as the optimization algorithm, which starts at the rough estimate obtained in the first step and finds a global minimum to the objective function with the guidance of objective function's gradient. So the speed of IPM searching for the global minimum is fast, and an accurate identification can be obtained in time. The numerical results show that the proposed motion prediction algorithm is able to predict the motion of the target.

  17. The use of EEG to measure cerebral changes during computer-based motion-sickness-inducing tasks

    NASA Astrophysics Data System (ADS)

    Strychacz, Christopher; Viirre, Erik; Wing, Shawn

    2005-05-01

    Motion sickness (MS) is a stressor commonly attributed with causing serious navigational and performance errors. The distinct nature of MS suggests this state may have distinct neural markers distinguishable from other states known to affect performance (e.g., stress, fatigue, sleep deprivation, high workload). This pilot study used new high-resolution electro-encephalograph (EEG) technologies to identify distinct neuronal activation changes that occur during MS. Brain EEG activity was monitored while subjects performed a ball-tracking task and viewed stimuli on a projection screen intended to induce motion sickness/spatial disorientation. Results show the presence of EEG spectral changes in all subjects who developed motion sickness when compared to baseline levels. These changes included: 1) low frequency (1 to 10 Hz) changes that may reflect oculomotor movements rather than intra-cerebral sources; 2) increased spectral power across all frequencies (attributable to increased scalp conductivity related to sweating), 3) local increases of power spectra in the 20-50 Hz range (likely attributable to external muscles on the skull) and; 4) a central posterior (occipital) independent component that shows suppression of a 20 Hz peak in the MS condition when compared to baseline. Further research is necessary to refine neural markers, characterize their origin and physiology, to distinguish between motion sickness and other states and to enable markers to be used for operator state monitoring and the designing of interventions for motion sickness.

  18. Capturing Revolute Motion and Revolute Joint Parameters with Optical Tracking

    NASA Astrophysics Data System (ADS)

    Antonya, C.

    2017-12-01

    Optical tracking of users and various technical systems are becoming more and more popular. It consists of analysing sequence of recorded images using video capturing devices and image processing algorithms. The returned data contains mainly point-clouds, coordinates of markers or coordinates of point of interest. These data can be used for retrieving information related to the geometry of the objects, but also to extract parameters for the analytical model of the system useful in a variety of computer aided engineering simulations. The parameter identification of joints deals with extraction of physical parameters (mainly geometric parameters) for the purpose of constructing accurate kinematic and dynamic models. The input data are the time-series of the marker’s position. The least square method was used for fitting the data into different geometrical shapes (ellipse, circle, plane) and for obtaining the position and orientation of revolute joins.

  19. Active contour-based visual tracking by integrating colors, shapes, and motions.

    PubMed

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.

  20. Automatic online and real-time tumour motion monitoring during stereotactic liver treatments on a conventional linac by combined optical and sparse monoscopic imaging with kilovoltage x-rays (COSMIK)

    NASA Astrophysics Data System (ADS)

    Bertholet, Jenny; Toftegaard, Jakob; Hansen, Rune; Worm, Esben S.; Wan, Hanlin; Parikh, Parag J.; Weber, Britta; Høyer, Morten; Poulsen, Per R.

    2018-03-01

    The purpose of this study was to develop, validate and clinically demonstrate fully automatic tumour motion monitoring on a conventional linear accelerator by combined optical and sparse monoscopic imaging with kilovoltage x-rays (COSMIK). COSMIK combines auto-segmentation of implanted fiducial markers in cone-beam computed tomography (CBCT) projections and intra-treatment kV images with simultaneous streaming of an external motion signal. A pre-treatment CBCT is acquired with simultaneous recording of the motion of an external marker block on the abdomen. The 3-dimensional (3D) marker motion during the CBCT is estimated from the auto-segmented positions in the projections and used to optimize an external correlation model (ECM) of internal motion as a function of external motion. During treatment, the ECM estimates the internal motion from the external motion at 20 Hz. KV images are acquired every 3 s, auto-segmented, and used to update the ECM for baseline shifts between internal and external motion. The COSMIK method was validated using Calypso-recorded internal tumour motion with simultaneous camera-recorded external motion for 15 liver stereotactic body radiotherapy (SBRT) patients. The validation included phantom experiments and simulations hereof for 12 fractions and further simulations for 42 fractions. The simulations compared the accuracy of COSMIK with ECM-based monitoring without model updates and with model updates based on stereoscopic imaging as well as continuous kilovoltage intrafraction monitoring (KIM) at 10 Hz without an external signal. Clinical real-time tumour motion monitoring with COSMIK was performed offline for 14 liver SBRT patients (41 fractions) and online for one patient (two fractions). The mean 3D root-mean-square error for the four monitoring methods was 1.61 mm (COSMIK), 2.31 mm (ECM without updates), 1.49 mm (ECM with stereoscopic updates) and 0.75 mm (KIM). COSMIK is the first combined kV/optical real-time motion monitoring method used clinically online on a conventional accelerator. COSMIK gives less imaging dose than KIM and is in addition applicable when the kV imager cannot be deployed such as during non-coplanar fields.

  1. Centralized Networks to Generate Human Body Motions.

    PubMed

    Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan; Weber, Andres

    2017-12-14

    We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons' states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers' trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings.

  2. Accurate visible speech synthesis based on concatenating variable length motion capture data.

    PubMed

    Ma, Jiyong; Cole, Ron; Pellom, Bryan; Ward, Wayne; Wise, Barbara

    2006-01-01

    We present a novel approach to synthesizing accurate visible speech based on searching and concatenating optimal variable-length units in a large corpus of motion capture data. Based on a set of visual prototypes selected on a source face and a corresponding set designated for a target face, we propose a machine learning technique to automatically map the facial motions observed on the source face to the target face. In order to model the long distance coarticulation effects in visible speech, a large-scale corpus that covers the most common syllables in English was collected, annotated and analyzed. For any input text, a search algorithm to locate the optimal sequences of concatenated units for synthesis is desrcribed. A new algorithm to adapt lip motions from a generic 3D face model to a specific 3D face model is also proposed. A complete, end-to-end visible speech animation system is implemented based on the approach. This system is currently used in more than 60 kindergarten through third grade classrooms to teach students to read using a lifelike conversational animated agent. To evaluate the quality of the visible speech produced by the animation system, both subjective evaluation and objective evaluation are conducted. The evaluation results show that the proposed approach is accurate and powerful for visible speech synthesis.

  3. A marker-free system for the analysis of movement disabilities.

    PubMed

    Legrand, L; Marzani, F; Dusserre, L

    1998-01-01

    A major step toward improving the treatments of disabled persons may be achieved by using motion analysis equipment. We are developing such a system. It allows the analysis of plane human motion (e.g. gait) without using the tracking of markers. The system is composed of one fixed camera which acquires an image sequence of a human in motion. Then the treatment is divided into two steps: first, a large number of pixels belonging to the boundaries of the human body are extracted at each acquisition time. Secondly, a two-dimensional model of the human body, based on tapered superquadrics, is successively matched with the sets of pixels previously extracted; a specific fuzzy clustering process is used for this purpose. Moreover, an optical flow procedure gives a prediction of the model location at each acquisition time from its location at the previous time. Finally we present some results of this process applied to a leg in motion.

  4. Clinically acceptable agreement between the ViMove wireless motion sensor system and the Vicon motion capture system when measuring lumbar region inclination motion in the sagittal and coronal planes.

    PubMed

    Mjøsund, Hanne Leirbekk; Boyle, Eleanor; Kjaer, Per; Mieritz, Rune Mygind; Skallgård, Tue; Kent, Peter

    2017-03-21

    Wireless, wearable, inertial motion sensor technology introduces new possibilities for monitoring spinal motion and pain in people during their daily activities of work, rest and play. There are many types of these wireless devices currently available but the precision in measurement and the magnitude of measurement error from such devices is often unknown. This study investigated the concurrent validity of one inertial motion sensor system (ViMove) for its ability to measure lumbar inclination motion, compared with the Vicon motion capture system. To mimic the variability of movement patterns in a clinical population, a sample of 34 people were included - 18 with low back pain and 16 without low back pain. ViMove sensors were attached to each participant's skin at spinal levels T12 and S2, and Vicon surface markers were attached to the ViMove sensors. Three repetitions of end-range flexion inclination, extension inclination and lateral flexion inclination to both sides while standing were measured by both systems concurrently with short rest periods in between. Measurement agreement through the whole movement range was analysed using a multilevel mixed-effects regression model to calculate the root mean squared errors and the limits of agreement were calculated using the Bland Altman method. We calculated root mean squared errors (standard deviation) of 1.82° (±1.00°) in flexion inclination, 0.71° (±0.34°) in extension inclination, 0.77° (±0.24°) in right lateral flexion inclination and 0.98° (±0.69°) in left lateral flexion inclination. 95% limits of agreement ranged between -3.86° and 4.69° in flexion inclination, -2.15° and 1.91° in extension inclination, -2.37° and 2.05° in right lateral flexion inclination and -3.11° and 2.96° in left lateral flexion inclination. We found a clinically acceptable level of agreement between these two methods for measuring standing lumbar inclination motion in these two cardinal movement planes. Further research should investigate the ViMove system's ability to measure lumbar motion in more complex 3D functional movements and to measure changes of movement patterns related to treatment effects.

  5. TH-EF-BRB-08: Robotic Motion Compensation for Radiation Therapy: A 6DOF Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belcher, AH; Liu, X; Wiersma, R

    Purpose: The high accuracy of frame-based stereotactic radiosurgery (SRS), which uses a rigid frame fixed to the patient’s skull, is offset by potential drawbacks of poor patient compliance and clinical workflow restrictions. Recent research into frameless SRS has so far resulted in reduced accuracy. In this study, we investigate the use of a novel 6 degree-of-freedom (6DOF) robotic head motion cancellation system that continuously detects and compensates for patient head motions during a SRS delivery. This approach has the potential to reduce invasiveness while still achieving accuracies better or equal to traditional frame-based SRS. Methods: A 6DOF parallel kinematics roboticsmore » stage was constructed, and controlled using an inverse kinematics-based motion compensation algorithm. A 6DOF stereoscopic infrared (IR) marker tracking system was used to monitor real-time motions at sub-millimeter and sub-degree levels. A novel 6DOF calibration technique was first applied to properly orient the camera coordinate frame to match that of the LINAC and robotic control frames. Simulated head motions were measured by the system, and the robotic stage responded to these 6DOF motions automatically, returning the reflective marker coordinate frame to its original position. Results: After the motions were introduced to the system in the phantom-based study, the robotic stage automatically and rapidly returned the phantom to LINAC isocenter. When errors exceeded the compensation lower threshold of 0.25 mm or 0.25 degrees, the system registered the 6DOF error and generated a cancellation trajectory. The system responded in less than 0.5 seconds and returned all axes to less than 0.1 mm and 0.1 degree after the 6DOF compensation was performed. Conclusion: The 6DOF real-time motion cancellation system was found to be effective at compensating for translational and rotational motions to current SRS requirements. This system can improve frameless SRS by automatically returning patients to isocenter with high 6DOF accuracy.« less

  6. Using Xbox kinect motion capture technology to improve clinical rehabilitation outcomes for balance and cardiovascular health in an individual with chronic TBI.

    PubMed

    Chanpimol, Shane; Seamon, Bryant; Hernandez, Haniel; Harris-Love, Michael; Blackman, Marc R

    2017-01-01

    Motion capture virtual reality-based rehabilitation has become more common. However, therapists face challenges to the implementation of virtual reality (VR) in clinical settings. Use of motion capture technology such as the Xbox Kinect may provide a useful rehabilitation tool for the treatment of postural instability and cardiovascular deconditioning in individuals with chronic severe traumatic brain injury (TBI). The primary purpose of this study was to evaluate the effects of a Kinect-based VR intervention using commercially available motion capture games on balance outcomes for an individual with chronic TBI. The secondary purpose was to assess the feasibility of this intervention for eliciting cardiovascular adaptations. A single system experimental design ( n = 1) was utilized, which included baseline, intervention, and retention phases. Repeated measures were used to evaluate the effects of an 8-week supervised exercise intervention using two Xbox One Kinect games. Balance was characterized using the dynamic gait index (DGI), functional reach test (FRT), and Limits of Stability (LOS) test on the NeuroCom Balance Master. The LOS assesses end-point excursion (EPE), maximal excursion (MXE), and directional control (DCL) during weight-shifting tasks. Cardiovascular and activity measures were characterized by heart rate at the end of exercise (HRe), total gameplay time (TAT), and time spent in a therapeutic heart rate (TTR) during the Kinect intervention. Chi-square and ANOVA testing were used to analyze the data. Dynamic balance, characterized by the DGI, increased during the intervention phase χ 2 (1, N = 12) = 12, p = .001. Static balance, characterized by the FRT showed no significant changes. The EPE increased during the intervention phase in the backward direction χ 2 (1, N = 12) = 5.6, p = .02, and notable improvements of DCL were demonstrated in all directions. HRe ( F (2,174) = 29.65, p = < .001) and time in a TTR ( F (2, 12) = 4.19, p = .04) decreased over the course of the intervention phase. Use of a supervised Kinect-based program that incorporated commercial games improved dynamic balance for an individual post severe TBI. Additionally, moderate cardiovascular activity was achieved through motion capture gaming. Further studies appear warranted to determine the potential therapeutic utility of commercial VR games in this patient population. Clinicaltrial.gov ID - NCT02889289.

  7. A motion capture library for the study of identity, gender, and emotion perception from biological motion.

    PubMed

    Ma, Yingliang; Paterson, Helena M; Pollick, Frank E

    2006-02-01

    We present the methods that were used in capturing a library of human movements for use in computer-animated displays of human movement. The library is an attempt to systematically tap into and represent the wide range of personal properties, such as identity, gender, and emotion, that are available in a person's movements. The movements from a total of 30 nonprofessional actors (15 of them female) were captured while they performed walking, knocking, lifting, and throwing actions, as well as their combination in angry, happy, neutral, and sad affective styles. From the raw motion capture data, a library of 4,080 movements was obtained, using techniques based on Character Studio (plug-ins for 3D Studio MAX, AutoDesk, Inc.), MATLAB The MathWorks, Inc.), or a combination of these two. For the knocking, lifting, and throwing actions, 10 repetitions of the simple action unit were obtained for each affect, and for the other actions, two longer movement recordings were obtained for each affect. We discuss the potential use of the library for computational and behavioral analyses of movement variability, of human character animation, and of how gender, emotion, and identity are encoded and decoded from human movement.

  8. Markerless motion capture systems as training device in neurological rehabilitation: a systematic review of their use, application, target population and efficacy.

    PubMed

    Knippenberg, Els; Verbrugghe, Jonas; Lamers, Ilse; Palmaers, Steven; Timmermans, Annick; Spooren, Annemie

    2017-06-24

    Client-centred task-oriented training is important in neurological rehabilitation but is time consuming and costly in clinical practice. The use of technology, especially motion capture systems (MCS) which are low cost and easy to apply in clinical practice, may be used to support this kind of training, but knowledge and evidence of their use for training is scarce. The present review aims to investigate 1) which motion capture systems are used as training devices in neurological rehabilitation, 2) how they are applied, 3) in which target population, 4) what the content of the training and 5) efficacy of training with MCS is. A computerised systematic literature review was conducted in four databases (PubMed, Cinahl, Cochrane Database and IEEE). The following MeSH terms and key words were used: Motion, Movement, Detection, Capture, Kinect, Rehabilitation, Nervous System Diseases, Multiple Sclerosis, Stroke, Spinal Cord, Parkinson Disease, Cerebral Palsy and Traumatic Brain Injury. The Van Tulder's Quality assessment was used to score the methodological quality of the selected studies. The descriptive analysis is reported by MCS, target population, training parameters and training efficacy. Eighteen studies were selected (mean Van Tulder score = 8.06 ± 3.67). Based on methodological quality, six studies were selected for analysis of training efficacy. Most commonly used MCS was Microsoft Kinect, training was mostly conducted in upper limb stroke rehabilitation. Training programs varied in intensity, frequency and content. None of the studies reported an individualised training program based on client-centred approach. Motion capture systems are training devices with potential in neurological rehabilitation to increase the motivation during training and may assist improvement on one or more International Classification of Functioning, Disability and Health (ICF) levels. Although client-centred task-oriented training is important in neurological rehabilitation, the client-centred approach was not included. Future technological developments should take up the challenge to combine MCS with the principles of a client-centred task-oriented approach and prove efficacy using randomised controlled trials with long-term follow-up. Prospero registration number 42016035582 .

  9. The biomechanics of upper extremity kinematic and kinetic modeling: applications to rehabilitation engineering.

    PubMed

    Slavens, Brooke A; Harris, Gerald F

    2008-01-01

    Human motion analysis has evolved from the lower extremity to the upper extremity. Rehabilitation engineering is reliant upon three-dimensional biome-chanical models for a thorough understanding of upper body motions and forces in order to improve treatment methods, rehabilitation strategies and to prevent injury. Due to the complex nature of upper body movements, a standard biomechanical model does not exist. This paper reviews several kinematic and kinetic rehabilitation engineering models from the literature. These models may capture a single joint; multijoints such as the shoulder, elbow and wrist; or a combination of joints and an ambulatory aid, which serves as the extension of the upper arm. With advances in software and hardware, new models continuously arise due to the clinical questions at hand. When designing a biomechanical upper extremity model, several key components must be determined. These include deciding on the anatomic segments of the model, the number of markers and placement on bony landmarks, the definition of joint coordinate systems, and the description of the joint motions. It is critical to apply the proper model to further our understanding of pathologic populations.

  10. Geometric Brownian Motion with Tempered Stable Waiting Times

    NASA Astrophysics Data System (ADS)

    Gajda, Janusz; Wyłomańska, Agnieszka

    2012-08-01

    One of the earliest system that was used to asset prices description is Black-Scholes model. It is based on geometric Brownian motion and was used as a tool for pricing various financial instruments. However, when it comes to data description, geometric Brownian motion is not capable to capture many properties of present financial markets. One can name here for instance periods of constant values. Therefore we propose an alternative approach based on subordinated tempered stable geometric Brownian motion which is a combination of the popular geometric Brownian motion and inverse tempered stable subordinator. In this paper we introduce the mentioned process and present its main properties. We propose also the estimation procedure and calibrate the analyzed system to real data.

  11. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.

    PubMed

    Hu, Zhenkai; Yoon, Chae-Hyun; Park, Samuel Byeongjun; Jo, Yung-Ho

    2016-07-01

    We propose a portable haptic device providing grasp (kinesthetic) and push-pull (cutaneous) sensations for optical-motion-capture master interfaces. Although optical-motion-capture master interfaces for surgical robot systems can overcome the stiffness, friction, and coupling problems of mechanical master interfaces, it is difficult to add haptic feedback to an optical-motion-capture master interface without constraining the free motion of the operator's hands. Therefore, we utilized a Bowden cable-driven mechanism to provide the grasp and push-pull sensation while retaining the free hand motion of the optical-motion capture master interface. To evaluate the haptic device, we construct a 2-DOF force sensing/force feedback system. We compare the sensed force and the reproduced force of the haptic device. Finally, a needle insertion test was done to evaluate the performance of the haptic interface in the master-slave system. The results demonstrate that both the grasp force feedback and the push-pull force feedback provided by the haptic interface closely matched with the sensed forces of the slave robot. We successfully apply our haptic interface in the optical-motion-capture master-slave system. The results of the needle insertion test showed that our haptic feedback can provide more safety than merely visual observation. We develop a suitable haptic device to produce both kinesthetic grasp force feedback and cutaneous push-pull force feedback. Our future research will include further objective performance evaluations of the optical-motion-capture master-slave robot system with our haptic interface in surgical scenarios.

  12. An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.

    PubMed

    Rañó, Iñaki

    2012-07-01

    Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.

  13. MOSHFIT: algorithms for occlusion-tolerant mean shape and rigid motion from 3D movement data.

    PubMed

    Mitchelson, Joel R

    2013-09-03

    This work addresses the use of 3D point data to measure rigid motions, in the presence of occlusion and without reference to a prior model of relative point locations. This is a problem where cluster-based measurement techniques are used (e.g. for measuring limb movements) and no static calibration trial is available. The same problem arises when performing the task known as roving capture, in which a mobile 3D movement analysis system is moved through a volume with static markers in unknown locations and the ego-motion of the system is required in order to understand biomechanical activity in the environment. To provide a solution for both of these applications, the new concept of a visibility graph is introduced, and is combined with a generalised procrustes method adapted from ones used by the biological shape statistics and computer graphics communities. Recent results on shape space manifolds are applied to show sufficient conditions for convergence to unique solution. Algorithm source code is available and referenced here. Processing speed and rate of convergence are demonstrated using simulated data. Positional and angular accuracy are shown to be equivalent to approaches which require full calibration, to within a small fraction of input resolution. Typical processing times for sub-micron convergence are found to be fractions of a second, so the method is suitable for workflows where there may be time pressure such as in sports science and clinical analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Method for measuring tri-axial lumbar motion angles using wearable sheet stretch sensors

    PubMed Central

    Nakamoto, Hiroyuki; Yamaji, Tokiya; Ootaka, Hideo; Bessho, Yusuke; Nakamura, Ryo; Ono, Rei

    2017-01-01

    Background Body movements, such as trunk flexion and rotation, are risk factors for low back pain in occupational settings, especially in healthcare workers. Wearable motion capture systems are potentially useful to monitor lower back movement in healthcare workers to help avoid the risk factors. In this study, we propose a novel system using sheet stretch sensors and investigate the system validity for estimating lower back movement. Methods Six volunteers (female:male = 1:1, mean age: 24.8 ± 4.0 years, height 166.7 ± 5.6 cm, weight 56.3 ± 7.6 kg) participated in test protocols that involved executing seven types of movements. The movements were three uniaxial trunk movements (i.e., trunk flexion-extension, trunk side-bending, and trunk rotation) and four multiaxial trunk movements (i.e., flexion + rotation, flexion + side-bending, side-bending + rotation, and moving around the cranial–caudal axis). Each trial lasted for approximately 30 s. Four stretch sensors were attached to each participant’s lower back. The lumbar motion angles were estimated using simple linear regression analysis based on the stretch sensor outputs and compared with those obtained by the optical motion capture system. Results The estimated lumbar motion angles showed a good correlation with the actual angles, with correlation values of r = 0.68 (SD = 0.35), r = 0.60 (SD = 0.19), and r = 0.72 (SD = 0.18) for the flexion-extension, side bending, and rotation movements, respectively (all P < 0.05). The estimation errors in all three directions were less than 3°. Conclusion The stretch sensors mounted on the back provided reasonable estimates of the lumbar motion angles. The novel motion capture system provided three directional angles without capture space limits. The wearable system possessed great potential to monitor the lower back movement in healthcare workers and helping prevent low back pain. PMID:29020053

  15. Projectile Motion on an Inclined Misty Surface: I. Capturing and Analysing the Trajectory

    ERIC Educational Resources Information Center

    Ho, S. Y.; Foong, S. K.; Lim, C. H.; Lim, C. C.; Lin, K.; Kuppan, L.

    2009-01-01

    Projectile motion is usually the first non-uniform two-dimensional motion that students will encounter in a pre-university physics course. In this article, we introduce a novel technique for capturing the trajectory of projectile motion on an inclined Perspex plane. This is achieved by coating the Perspex with a thin layer of fine water droplets…

  16. Three-Dimensional Kinematic Gait Analysis of Doberman Pinschers with and without Cervical Spondylomyelopathy

    PubMed Central

    Foss, K.; da Costa, R.C.; Moore, S.

    2014-01-01

    Background The optimal treatment of cervical spondylomyelopathy (CSM) is controversial, with the owner’s and clinician’s perception of gait improvement often being used as outcome measures. These methods are subjective and suffer from observer bias. Objectives To establish kinematic gait parameters utilizing digital motion capture in normal Doberman Pinschers and compare them with CSM-affected Dobermans. Animals Nineteen Doberman Pinschers; 10 clinically normal and 9 with CSM. Methods All dogs were enrolled prospectively and fitted with a Lycra® body suit, and motion capture was performed and used to reconstruct a 3-D stick diagram representation of each dog based on 32 reflective markers, from which several parameters were measured. These included stride duration, length, and height; maximal and minimal spinal angles; elbow and stifle flexion and extension; and maximum and minimum distances between the thoracic and pelvic limbs. A random-effects linear regression model was used to compare parameters between groups. Results Significant differences between groups included smaller minimum (mean = 116 mm; P = .024) and maximum (mean = 184 mm; P = .001) distance between the thoracic limbs in CSM-affected dogs. Additionally, thoracic limb stride duration was also smaller (P = .009) in CSM-affected dogs (mean = 0.7 seconds) when compared with normal dogs (mean = 0.8 seconds). In the pelvic limbs, the average stifle flexion (mean = 100°; P = .048) and extension (mean = 136°; P = .009), as well as number of strides (mean = 2.7 strides; P = .033) were different between groups. Conclusions and Clinical Importance Our findings suggest that computerized gait analysis reveals more consistent kinematic differences in the thoracic limbs, which can be used as future objective outcome measures. PMID:23194100

  17. Soft tissue artifact compensation in knee kinematics by multi-body optimization: Performance of subject-specific knee joint models.

    PubMed

    Clément, Julien; Dumas, Raphaël; Hagemeister, Nicola; de Guise, Jaques A

    2015-11-05

    Soft tissue artifact (STA) distort marker-based knee kinematics measures and make them difficult to use in clinical practice. None of the current methods designed to compensate for STA is suitable, but multi-body optimization (MBO) has demonstrated encouraging results and can be improved. The goal of this study was to develop and validate the performance of knee joint models, with anatomical and subject-specific kinematic constraints, used in MBO to reduce STA errors. Twenty subjects were recruited: 10 healthy and 10 osteoarthritis (OA) subjects. Subject-specific knee joint models were evaluated by comparing dynamic knee kinematics recorded by a motion capture system (KneeKG™) and optimized with MBO to quasi-static knee kinematics measured by a low-dose, upright, biplanar radiographic imaging system (EOS(®)). Errors due to STA ranged from 1.6° to 22.4° for knee rotations and from 0.8 mm to 14.9 mm for knee displacements in healthy and OA subjects. Subject-specific knee joint models were most effective in compensating for STA in terms of abduction-adduction, inter-external rotation and antero-posterior displacement. Root mean square errors with subject-specific knee joint models ranged from 2.2±1.2° to 6.0±3.9° for knee rotations and from 2.4±1.1 mm to 4.3±2.4 mm for knee displacements in healthy and OA subjects, respectively. Our study shows that MBO can be improved with subject-specific knee joint models, and that the quality of the motion capture calibration is critical. Future investigations should focus on more refined knee joint models to reproduce specific OA knee geometry and physiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. fMRI brain mapping during motion capture and FES induced motor tasks: signal to noise ratio assessment.

    PubMed

    Gandolla, Marta; Ferrante, Simona; Casellato, Claudia; Ferrigno, Giancarlo; Molteni, Franco; Martegani, Alberto; Frattini, Tiziano; Pedrocchi, Alessandra

    2011-10-01

    Functional Electrical Stimulation (FES) is a well known clinical rehabilitation procedure, however the neural mechanisms that underlie this treatment at Central Nervous System (CNS) level are still not completely understood. Functional magnetic resonance imaging (fMRI) is a suitable tool to investigate effects of rehabilitative treatments on brain plasticity. Moreover, monitoring the effective executed movement is needed to correctly interpret activation maps, most of all in neurological patients where required motor tasks could be only partially accomplished. The proposed experimental set-up includes a 1.5 T fMRI scanner, a motion capture system to acquire kinematic data, and an electro-stimulation device. The introduction of metallic devices and of stimulation current in the MRI room could affect fMRI acquisitions so as to prevent a reliable activation maps analysis. What we are interested in is that the Blood Oxygenation Level Dependent (BOLD) signal, marker of neural activity, could be detected within a given experimental condition and set-up. In this paper we assess temporal Signal to Noise Ratio (SNR) as image quality index. BOLD signal change is about 1-2% as revealed by a 1.5 T scanner. This work demonstrates that, with this innovative set-up, in the main cortical sensorimotor regions 1% BOLD signal change can be detected at least in the 93% of the sub-volumes, and almost 100% of the sub-volumes are suitable for 2% signal change detection. The integrated experimental set-up will therefore allows to detect FES induced movements fMRI maps simultaneously with kinematic acquisitions so as to investigate FES-based rehabilitation treatments contribution at CNS level. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. Concurrent validity and reliability of using ground reaction force and center of pressure parameters in the determination of leg movement initiation during single leg lift.

    PubMed

    Aldabe, Daniela; de Castro, Marcelo Peduzzi; Milosavljevic, Stephan; Bussey, Melanie Dawn

    2016-09-01

    Postural adjustment evaluations during single leg lift requires the initiation of heel lift (T1) identification. T1 measured by means of motion analyses system is the most reliable approach. However, this method involves considerable workspace, expensive cameras, and time processing data and setting up laboratory. The use of ground reaction forces (GRF) and centre of pressure (COP) data is an alternative method as its data processing and setting up is less time consuming. Further, kinetic data is normally collected using frequency samples higher than 1000Hz whereas kinematic data are commonly captured using 50-200Hz. This study describes the concurrent-validity and reliability of GRF and COP measurements in determining T1, using a motion analysis system as reference standard. Kinematic and kinetic data during single leg lift were collected from ten participants. GRF and COP data were collected using one and two force plates. Displacement of a single heel marker was captured by means of ten Vicon(©) cameras. Kinetic and kinematic data were collected using a sample frequency of 1000Hz. Data were analysed in two stages: identification of key events in the kinetic data, and assessing concurrent validity of T1 based on the chosen key events with T1 provided by the kinematic data. The key event presenting the least systematic bias, along with a narrow 95% CI and limits of agreement against the reference standard T1, was the Baseline COPy event. Baseline COPy event was obtained using one force plate and presented excellent between-tester reliability. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. A new 4-dimensional imaging system for jaw tracking.

    PubMed

    Lauren, Mark

    2014-01-01

    A non-invasive 4D imaging system that produces high resolution time-based 3D surface data has been developed to capture jaw motion. Fluorescent microspheres are brushed onto both tooth and soft-tissue areas of the upper and lower arches to be imaged. An extraoral hand-held imaging device, operated about 12 cm from the mouth, captures a time-based set of perspective image triplets of the patch areas. Each triplet, containing both upper and lower arch data, is converted to a high-resolution 3D point mesh using photogrammetry, providing the instantaneous relative jaw position. Eight 3D positions per second are captured. Using one of the 3D frames as a reference, a 4D model can be constructed to describe the incremental free body motion of the mandible. The surface data produced by this system can be registered to conventional 3D models of the dentition, allowing them to be animated. Applications include integration into prosthetic CAD and CBCT data.

  1. FUNCTIONAL ASSESSMENT OF A CAMERA PHONE-BASED WAYFINDING SYSTEM OPERATED BY BLIND AND VISUALLY IMPAIRED USERS

    PubMed Central

    COUGHLAN, JAMES; MANDUCHI, ROBERTO

    2009-01-01

    We describe a wayfinding system for blind and visually impaired persons that uses a camera phone to determine the user's location with respect to color markers, posted at locations of interest (such as offices), which are automatically detected by the phone. The color marker signs are specially designed to be detected in real time in cluttered environments using computer vision software running on the phone; a novel segmentation algorithm quickly locates the borders of the color marker in each image, which allows the system to calculate how far the marker is from the phone. We present a model of how the user's scanning strategy (i.e. how he/she pans the phone left and right to find color markers) affects the system's ability to detect color markers given the limitations imposed by motion blur, which is always a possibility whenever a camera is in motion. Finally, we describe experiments with our system tested by blind and visually impaired volunteers, demonstrating their ability to reliably use the system to find locations designated by color markers in a variety of indoor and outdoor environments, and elucidating which search strategies were most effective for users. PMID:19960101

  2. FUNCTIONAL ASSESSMENT OF A CAMERA PHONE-BASED WAYFINDING SYSTEM OPERATED BY BLIND AND VISUALLY IMPAIRED USERS.

    PubMed

    Coughlan, James; Manduchi, Roberto

    2009-06-01

    We describe a wayfinding system for blind and visually impaired persons that uses a camera phone to determine the user's location with respect to color markers, posted at locations of interest (such as offices), which are automatically detected by the phone. The color marker signs are specially designed to be detected in real time in cluttered environments using computer vision software running on the phone; a novel segmentation algorithm quickly locates the borders of the color marker in each image, which allows the system to calculate how far the marker is from the phone. We present a model of how the user's scanning strategy (i.e. how he/she pans the phone left and right to find color markers) affects the system's ability to detect color markers given the limitations imposed by motion blur, which is always a possibility whenever a camera is in motion. Finally, we describe experiments with our system tested by blind and visually impaired volunteers, demonstrating their ability to reliably use the system to find locations designated by color markers in a variety of indoor and outdoor environments, and elucidating which search strategies were most effective for users.

  3. A moving fluoroscope to capture tibiofemoral kinematics during complete cycles of free level and downhill walking as well as stair descent.

    PubMed

    List, Renate; Postolka, Barbara; Schütz, Pascal; Hitz, Marco; Schwilch, Peter; Gerber, Hans; Ferguson, Stephen J; Taylor, William R

    2017-01-01

    Videofluoroscopy has been shown to provide essential information in the evaluation of the functionality of total knee arthroplasties. However, due to the limitation in the field of view, most systems can only assess knee kinematics during highly restricted movements. To avoid the limitations of a static image intensifier, a moving fluoroscope has been presented as a standalone system that allows tracking of the knee during multiple complete cycles of level- and downhill-walking, as well as stair descent, in combination with the synchronous assessment of ground reaction forces and whole body skin marker measurements. Here, we assess the ability of the system to keep the knee in the field of view of the image intensifier. By measuring ten total knee arthroplasty subjects, we demonstrate that it is possible to maintain the knee to within 1.8 ± 1.4 cm vertically and 4.0 ± 2.6 cm horizontally of the centre of the intensifier throughout full cycles of activities of daily living. Since control of the system is based on real-time feedback of a wire sensor, the system is not dependent on repeatable gait patterns, but is rather able to capture pathological motion patterns with low inter-trial repeatability.

  4. A moving fluoroscope to capture tibiofemoral kinematics during complete cycles of free level and downhill walking as well as stair descent

    PubMed Central

    Postolka, Barbara; Schütz, Pascal; Hitz, Marco; Schwilch, Peter; Gerber, Hans

    2017-01-01

    Videofluoroscopy has been shown to provide essential information in the evaluation of the functionality of total knee arthroplasties. However, due to the limitation in the field of view, most systems can only assess knee kinematics during highly restricted movements. To avoid the limitations of a static image intensifier, a moving fluoroscope has been presented as a standalone system that allows tracking of the knee during multiple complete cycles of level- and downhill-walking, as well as stair descent, in combination with the synchronous assessment of ground reaction forces and whole body skin marker measurements. Here, we assess the ability of the system to keep the knee in the field of view of the image intensifier. By measuring ten total knee arthroplasty subjects, we demonstrate that it is possible to maintain the knee to within 1.8 ± 1.4 cm vertically and 4.0 ± 2.6 cm horizontally of the centre of the intensifier throughout full cycles of activities of daily living. Since control of the system is based on real-time feedback of a wire sensor, the system is not dependent on repeatable gait patterns, but is rather able to capture pathological motion patterns with low inter-trial repeatability. PMID:29016647

  5. Method for Estimating Three-Dimensional Knee Rotations Using Two Inertial Measurement Units: Validation with a Coordinate Measurement Machine

    PubMed Central

    Vitali, Rachel V.; Cain, Stephen M.; Zaferiou, Antonia M.; Ojeda, Lauro V.; Perkins, Noel C.

    2017-01-01

    Three-dimensional rotations across the human knee serve as important markers of knee health and performance in multiple contexts including human mobility, worker safety and health, athletic performance, and warfighter performance. While knee rotations can be estimated using optical motion capture, that method is largely limited to the laboratory and small capture volumes. These limitations may be overcome by deploying wearable inertial measurement units (IMUs). The objective of this study is to present a new IMU-based method for estimating 3D knee rotations and to benchmark the accuracy of the results using an instrumented mechanical linkage. The method employs data from shank- and thigh-mounted IMUs and a vector constraint for the medial-lateral axis of the knee during periods when the knee joint functions predominantly as a hinge. The method is carefully validated using data from high precision optical encoders in a mechanism that replicates 3D knee rotations spanning (1) pure flexion/extension, (2) pure internal/external rotation, (3) pure abduction/adduction, and (4) combinations of all three rotations. Regardless of the movement type, the IMU-derived estimates of 3D knee rotations replicate the truth data with high confidence (RMS error < 4° and correlation coefficient r≥0.94). PMID:28846613

  6. Technical note: Correlation of respiratory motion between external patient surface and internal anatomical landmarks

    PubMed Central

    Fayad, Hadi; Pan, Tinsu; Clément, Jean-François; Visvikis, Dimitris

    2011-01-01

    Purpose Current respiratory motion monitoring devices used for motion synchronization in medical imaging and radiotherapy provide either 1D respiratory signals over a specific region or 3D information based on few external or internal markers. On the other hand, newer technology may offer the potential to monitor the entire patient external surface in real time. The main objective of this study was to assess the motion correlation between such an external patient surface and internal anatomical landmarks motion. Methods Four dimensional Computed Tomography (4D CT) volumes for ten patients were used in this study. Anatomical landmarks were manually selected in the thoracic region across the 4D CT datasets by two experts. The landmarks included normal structures as well as the tumour location. In addition, a distance map representing the entire external patient surface, which corresponds to surfaces acquired by a Time of Flight (ToF) camera or similar devices, was created by segmenting the skin of all 4D CT volumes using a thresholding algorithm. Finally, the correlation between the internal landmarks and external surface motion was evaluated for different regions (placement and size) throughout a patient’s surface. Results Significant variability was observed in the motion of the different parts of the external patient surface. The larger motion magnitude was consistently measured in the central regions of the abdominal and the thoracic areas for the different patient datasets considered. The highest correlation coefficients were observed between the motion of these external surface areas and internal landmarks such as the diaphragm and mediastinum structures as well as the tumour location landmarks (0.8 ± 0.18 and 0.72 ± 0.12 for the abdominal and the thoracic regions respectively). Worse correlation was observed when one considered landmarks not significantly influenced by respiratory motion such as the apex and the sternum. Discussion and conclusions There were large differences in the motion correlation observed considering different regions of interest placed over a patients’ external surface and internal anatomical landmarks. The positioning of current devices used for respiratory motion synchronization may reduce such correlation by averaging the motion over correlated and poorly correlated external regions. The potential of capturing in real-time the motion of the complete external patient surface as well as choosing the area of the surface that correlates best with the internal motion should allow reducing such variability and associated errors in both respiratory motion synchronization and subsequent motion modeling processes. PMID:21815390

  7. Physics-based Simulation of Human Posture Using 3D Whole Body Scanning Technology for Astronaut Space Suit Evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Jung

    2005-01-01

    Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.

  8. A novel method to replicate the kinematics of the carpus using a six degree-of-freedom robot.

    PubMed

    Fraysse, François; Costi, John J; Stanley, Richard M; Ding, Boyin; McGuire, Duncan; Eng, Kevin; Bain, Gregory I; Thewlis, Dominic

    2014-03-21

    Understanding the kinematics of the carpus is essential to the understanding and treatment of wrist pathologies. However, many of the previous techniques presented are limited by non-functional motion or the interpolation of points from static images at different postures. We present a method that has the capability of replicating the kinematics of the wrist during activities of daily living using a unique mechanical testing system. To quantify the kinematics of the carpal bones, we used bone pin-mounted markers and optical motion capture methods. In this paper, we present a hammering motion as an example of an activity of daily living. However, the method can be applied to a wide variety of movements. Our method showed good accuracy (1.0-2.6°) of in vivo movement reproduction in our ex vivo model. Most carpal motion during wrist flexion-extension occurs at the radiocarpal level while in ulnar deviation the motion is more equally shared between radiocarpal and midcarpal joints, and in radial deviation the motion happens mainly at the midcarpal joint. For all rotations, there was more rotation of the midcarpal row relative to the lunate than relative to the scaphoid or triquetrum. For the functional motion studied (hammering), there was more midcarpal motion in wrist extension compared to pure wrist extension while radioulnar deviation patterns were similar to those observed in pure wrist radioulnar deviation. Finally, it was found that for the amplitudes studied the amount of carpal rotations was proportional to global wrist rotations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity

    PubMed Central

    Nicholas, Kevin; Sparkes, Valerie; Sheeran, Liba; Davies, Jennifer L

    2018-01-01

    The aim of this study was to investigate the reliability and concurrent validity of a commercially available Xsens MVN BIOMECH inertial-sensor-based motion capture system during clinically relevant functional activities. A clinician with no prior experience of motion capture technologies and an experienced clinical movement scientist each assessed 26 healthy participants within each of two sessions using a camera-based motion capture system and the MVN BIOMECH system. Participants performed overground walking, squatting, and jumping. Sessions were separated by 4 ± 3 days. Reliability was evaluated using intraclass correlation coefficient and standard error of measurement, and validity was evaluated using the coefficient of multiple correlation and the linear fit method. Day-to-day reliability was generally fair-to-excellent in all three planes for hip, knee, and ankle joint angles in all three tasks. Within-day (between-rater) reliability was fair-to-excellent in all three planes during walking and squatting, and poor-to-high during jumping. Validity was excellent in the sagittal plane for hip, knee, and ankle joint angles in all three tasks and acceptable in frontal and transverse planes in squat and jump activity across joints. Our results suggest that the MVN BIOMECH system can be used by a clinician to quantify lower-limb joint angles in clinically relevant movements. PMID:29495600

  10. A Single Camera Motion Capture System for Human-Computer Interaction

    NASA Astrophysics Data System (ADS)

    Okada, Ryuzo; Stenger, Björn

    This paper presents a method for markerless human motion capture using a single camera. It uses tree-based filtering to efficiently propagate a probability distribution over poses of a 3D body model. The pose vectors and associated shapes are arranged in a tree, which is constructed by hierarchical pairwise clustering, in order to efficiently evaluate the likelihood in each frame. Anew likelihood function based on silhouette matching is proposed that improves the pose estimation of thinner body parts, i. e. the limbs. The dynamic model takes self-occlusion into account by increasing the variance of occluded body-parts, thus allowing for recovery when the body part reappears. We present two applications of our method that work in real-time on a Cell Broadband Engine™: a computer game and a virtual clothing application.

  11. Exploiting Motion Capture to Enhance Avoidance Behaviour in Games

    NASA Astrophysics Data System (ADS)

    van Basten, Ben J. H.; Jansen, Sander E. M.; Karamouzas, Ioannis

    Realistic simulation of interacting virtual characters is essential in computer games, training and simulation applications. The problem is very challenging since people are accustomed to real-world situations and thus, they can easily detect inconsistencies and artifacts in the simulations. Over the past twenty years several models have been proposed for simulating individuals, groups and crowds of characters. However, little effort has been made to actually understand how humans solve interactions and avoid inter-collisions in real-life. In this paper, we exploit motion capture data to gain more insights into human-human interactions. We propose four measures to describe the collision-avoidance behavior. Based on these measures, we extract simple rules that can be applied on top of existing agent and force based approaches, increasing the realism of the resulting simulations.

  12. Benchmarking Foot Trajectory Estimation Methods for Mobile Gait Analysis

    PubMed Central

    Ollenschläger, Malte; Roth, Nils; Klucken, Jochen

    2017-01-01

    Mobile gait analysis systems based on inertial sensing on the shoe are applied in a wide range of applications. Especially for medical applications, they can give new insights into motor impairment in, e.g., neurodegenerative disease and help objectify patient assessment. One key component in these systems is the reconstruction of the foot trajectories from inertial data. In literature, various methods for this task have been proposed. However, performance is evaluated on a variety of datasets due to the lack of large, generally accepted benchmark datasets. This hinders a fair comparison of methods. In this work, we implement three orientation estimation and three double integration schemes for use in a foot trajectory estimation pipeline. All methods are drawn from literature and evaluated against a marker-based motion capture reference. We provide a fair comparison on the same dataset consisting of 735 strides from 16 healthy subjects. As a result, the implemented methods are ranked and we identify the most suitable processing pipeline for foot trajectory estimation in the context of mobile gait analysis. PMID:28832511

  13. Autonomous landing and ingress of micro-air-vehicles in urban environments based on monocular vision

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-06-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  14. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  15. A Kinematic Description of the Temporal Characteristics of Jaw Motion for Early Chewing: Preliminary Findings

    ERIC Educational Resources Information Center

    Wilson, Erin M.; Green, Jordan R.; Weismer, Gary

    2012-01-01

    Purpose: The purpose of this investigation was to describe age- and consistency-related changes in the temporal characteristics of chewing in typically developing children between the ages of 4 and 35 months and adults using high-resolution optically based motion capture technology. Method: Data were collected from 60 participants (48 children, 12…

  16. Efficient Generation of Dancing Animation Synchronizing with Music Based on Meta Motion Graphs

    NASA Astrophysics Data System (ADS)

    Xu, Jianfeng; Takagi, Koichi; Sakazawa, Shigeyuki

    This paper presents a system for automatic generation of dancing animation that is synchronized with a piece of music by re-using motion capture data. Basically, the dancing motion is synthesized according to the rhythm and intensity features of music. For this purpose, we propose a novel meta motion graph structure to embed the necessary features including both rhythm and intensity, which is constructed on the motion capture database beforehand. In this paper, we consider two scenarios for non-streaming music and streaming music, where global search and local search are required respectively. In the case of the former, once a piece of music is input, the efficient dynamic programming algorithm can be employed to globally search a best path in the meta motion graph, where an objective function is properly designed by measuring the quality of beat synchronization, intensity matching, and motion smoothness. In the case of the latter, the input music is stored in a buffer in a streaming mode, then an efficient search method is presented for a certain amount of music data (called a segment) in the buffer with the same objective function, resulting in a segment-based search approach. For streaming applications, we define an additional property in the above meta motion graph to deal with the unpredictable future music, which guarantees that there is some motion to match the unknown remaining music. A user study with totally 60 subjects demonstrates that our system outperforms the stat-of-the-art techniques in both scenarios. Furthermore, our system improves the synthesis speed greatly (maximal speedup is more than 500 times), which is essential for mobile applications. We have implemented our system on commercially available smart phones and confirmed that it works well on these mobile phones.

  17. Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations.

    PubMed

    Borbély, Bence J; Szolgay, Péter

    2017-01-17

    Model based analysis of human upper limb movements has key importance in understanding the motor control processes of our nervous system. Various simulation software packages have been developed over the years to perform model based analysis. These packages provide computationally intensive-and therefore off-line-solutions to calculate the anatomical joint angles from motion captured raw measurement data (also referred as inverse kinematics). In addition, recent developments in inertial motion sensing technology show that it may replace large, immobile and expensive optical systems with small, mobile and cheaper solutions in cases when a laboratory-free measurement setup is needed. The objective of the presented work is to extend the workflow of measurement and analysis of human arm movements with an algorithm that allows accurate and real-time estimation of anatomical joint angles for a widely used OpenSim upper limb kinematic model when inertial sensors are used for movement recording. The internal structure of the selected upper limb model is analyzed and used as the underlying platform for the development of the proposed algorithm. Based on this structure, a prototype marker set is constructed that facilitates the reconstruction of model-based joint angles using orientation data directly available from inertial measurement systems. The mathematical formulation of the reconstruction algorithm is presented along with the validation of the algorithm on various platforms, including embedded environments. Execution performance tables of the proposed algorithm show significant improvement on all tested platforms. Compared to OpenSim's Inverse Kinematics tool 50-15,000x speedup is achieved while maintaining numerical accuracy. The proposed algorithm is capable of real-time reconstruction of standardized anatomical joint angles even in embedded environments, establishing a new way for complex applications to take advantage of accurate and fast model-based inverse kinematics calculations.

  18. Binaries in Transneptunian Resonances: Evidence for Slow Migration of Neptune?

    NASA Technical Reports Server (NTRS)

    Noll, Keith

    2012-01-01

    A distinguishing feature of trans neptunian objects (TNO) is the high fraction that arc binary. This is particularly true for the Cold Classicals (CC), objects in lowe and low i orbits concentrated between the 3:2 and 2: 1 mean-motion resonances. CCs have other physical markers: red colors, high albedos, and equal-mass binaries. The CCs appear to be a coherent and physically distinct population of planetesimals that has survived to the present with their physical properties relatively unaltered. Their spatial concentration between 39.4 and 47.7 AU has made identification of the CCs as a physical group possible. However, objects that started out as CCs arc almost certainly 1101 limited to this one dynamical niche. We can, therefore, use the measurable physical properties of CCs as tracers of Neptune-driven dynamical mixing in the Kuiper Belt. As Neptune migrated, its mean-motion resonances preceded it into the planetesimal disk. The efficiency of capture into mean motion resonances depends on the smoothness of Neptune's migration and the local population available to be captured. The two strongest resonances, the 3:2 at 39.4 AU and 2: 1 at 47.7 AU, straddle the core repository of the physically distinct CCs, providing a unique opportunity to test the details of Neptune's migration. Smooth migration should result in a measurable difference between the 3:2 and 2:1 with low inclination 2:1s having a red, binary population mirroring that of the CC itself while the 3:2 will be less contaminated. Alternative models with rapid migration would generate a more homogeneous result.

  19. Inertial Motion Capture Costume Design Study

    PubMed Central

    Szczęsna, Agnieszka; Skurowski, Przemysław; Lach, Ewa; Pruszowski, Przemysław; Pęszor, Damian; Paszkuta, Marcin; Słupik, Janusz; Lebek, Kamil; Janiak, Mateusz; Polański, Andrzej; Wojciechowski, Konrad

    2017-01-01

    The paper describes a scalable, wearable multi-sensor system for motion capture based on inertial measurement units (IMUs). Such a unit is composed of accelerometer, gyroscope and magnetometer. The final quality of an obtained motion arises from all the individual parts of the described system. The proposed system is a sequence of the following stages: sensor data acquisition, sensor orientation estimation, system calibration, pose estimation and data visualisation. The construction of the system’s architecture with the dataflow programming paradigm makes it easy to add, remove and replace the data processing steps. The modular architecture of the system allows an effortless introduction of a new sensor orientation estimation algorithms. The original contribution of the paper is the design study of the individual components used in the motion capture system. The two key steps of the system design are explored in this paper: the evaluation of sensors and algorithms for the orientation estimation. The three chosen algorithms have been implemented and investigated as part of the experiment. Due to the fact that the selection of the sensor has a significant impact on the final result, the sensor evaluation process is also explained and tested. The experimental results confirmed that the choice of sensor and orientation estimation algorithm affect the quality of the final results. PMID:28304337

  20. Perceived shifts of flashed stimuli by visible and invisible object motion.

    PubMed

    Watanabe, Katsumi; Sato, Takashi R; Shimojo, Shinsuke

    2003-01-01

    Perceived positions of flashed stimuli can be altered by motion signals in the visual field-position capture (Whitney and Cavanagh, 2000 Nature Neuroscience 3 954-959). We examined whether position capture of flashed stimuli depends on the spatial relationship between moving and flashed stimuli, and whether the phenomenal permanence of a moving object behind an occluding surface (tunnel effect; Michotte 1950 Acta Psychologica 7 293-322) can produce position capture. Observers saw two objects (circles) moving vertically in opposite directions, one in each visual hemifield. Two horizontal bars were simultaneously flashed at horizontally collinear positions with the fixation point at various timings. When the movement of the object was fully visible, the flashed bar appeared shifted in the motion direction of the circle. But this position-capture effect occurred only when the bar was presented ahead of or on the moving circle. Even when the motion trajectory was covered by an opaque surface and the bar was flashed after complete occlusion of the circle, the position-capture effect was still observed, though the positional asymmetry was less clear. These results show that movements of both visible and 'hidden' objects can modulate the perception of positions of flashed stimuli and suggest that a high-level representation of 'objects in motion' plays an important role in the position-capture effect.

  1. Plenoptic Image Motion Deblurring.

    PubMed

    Chandramouli, Paramanand; Jin, Meiguang; Perrone, Daniele; Favaro, Paolo

    2018-04-01

    We propose a method to remove motion blur in a single light field captured with a moving plenoptic camera. Since motion is unknown, we resort to a blind deconvolution formulation, where one aims to identify both the blur point spread function and the latent sharp image. Even in the absence of motion, light field images captured by a plenoptic camera are affected by a non-trivial combination of both aliasing and defocus, which depends on the 3D geometry of the scene. Therefore, motion deblurring algorithms designed for standard cameras are not directly applicable. Moreover, many state of the art blind deconvolution algorithms are based on iterative schemes, where blurry images are synthesized through the imaging model. However, current imaging models for plenoptic images are impractical due to their high dimensionality. We observe that plenoptic cameras introduce periodic patterns that can be exploited to obtain highly parallelizable numerical schemes to synthesize images. These schemes allow extremely efficient GPU implementations that enable the use of iterative methods. We can then cast blind deconvolution of a blurry light field image as a regularized energy minimization to recover a sharp high-resolution scene texture and the camera motion. Furthermore, the proposed formulation can handle non-uniform motion blur due to camera shake as demonstrated on both synthetic and real light field data.

  2. Reliability of functional and predictive methods to estimate the hip joint centre in human motion analysis in healthy adults.

    PubMed

    Kainz, Hans; Hajek, Martin; Modenese, Luca; Saxby, David J; Lloyd, David G; Carty, Christopher P

    2017-03-01

    In human motion analysis predictive or functional methods are used to estimate the location of the hip joint centre (HJC). It has been shown that the Harrington regression equations (HRE) and geometric sphere fit (GSF) method are the most accurate predictive and functional methods, respectively. To date, the comparative reliability of both approaches has not been assessed. The aims of this study were to (1) compare the reliability of the HRE and the GSF methods, (2) analyse the impact of the number of thigh markers used in the GSF method on the reliability, (3) evaluate how alterations to the movements that comprise the functional trials impact HJC estimations using the GSF method, and (4) assess the influence of the initial guess in the GSF method on the HJC estimation. Fourteen healthy adults were tested on two occasions using a three-dimensional motion capturing system. Skin surface marker positions were acquired while participants performed quite stance, perturbed and non-perturbed functional trials, and walking trials. Results showed that the HRE were more reliable in locating the HJC than the GSF method. However, comparison of inter-session hip kinematics during gait did not show any significant difference between the approaches. Different initial guesses in the GSF method did not result in significant differences in the final HJC location. The GSF method was sensitive to the functional trial performance and therefore it is important to standardize the functional trial performance to ensure a repeatable estimate of the HJC when using the GSF method. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Determination of repeatability of kinect sensor.

    PubMed

    Bonnechère, Bruno; Sholukha, Victor; Jansen, Bart; Omelina, Lubos; Rooze, Marcel; Van Sint Jan, Serge

    2014-05-01

    The Kinect™ (Microsoft™, Redmond, WA) sensor, originally developed for gaming purposes, may have interesting possibilities for other fields such as posture and motion assessment. The ability of the Kinect sensor to perform biomechanical measurements has previously been studied and shows promising results. However, interday repeatability of the device is still not known. This study assessed the intra- and interday repeatability of the Kinect sensor compared with a standard stereophotogrammetric device during posture assessment for measuring segment lengths. Forty subjects took part in the study. Five motionless captures were performed in one session to assess posture. Data were simultaneously recorded with both devices. Similar intraclass correlations coefficient (ICC) values were found for intraday (ICC=0.94 for the Kinect device and 0.98 for the stereophotogrammetric device) and interday (ICC=0.88 and 0.87, respectively) repeatability. Results of this study suggest that a cost-effective, easy-to-use, and portable single markerless camera offers the same repeatability during posture assessment as an expensive, time-consuming, and nontransportable marker-based device.

  4. Enhanced data consistency of a portable gait measurement system.

    PubMed

    Lin, Hsien-I; Chiang, Y P

    2013-11-01

    A gait measurement system is a useful tool for rehabilitation applications. Such a system is used to conduct gait experiments in large workplaces such as laboratories where gait measurement equipment can be permanently installed. However, a gait measurement system should be portable if it is to be used in clinics or community centers for aged people. In a portable gait measurement system, the workspace is limited and landmarks on a subject may not be visible to the cameras during experiments. Thus, we propose a virtual-marker function to obtain positions of unseen landmarks for maintaining data consistency. This work develops a portable clinical gait measurement system consisting of lightweight motion capture devices, force plates, and a walkway assembled from plywood boards. We evaluated the portable clinic gait system with 11 normal subjects in three consecutive days in a limited experimental space. Results of gait analysis based on the verification of within-day and between-day coefficients of multiple correlations show that the proposed portable gait system is reliable.

  5. Enhanced data consistency of a portable gait measurement system

    NASA Astrophysics Data System (ADS)

    Lin, Hsien-I.; Chiang, Y. P.

    2013-11-01

    A gait measurement system is a useful tool for rehabilitation applications. Such a system is used to conduct gait experiments in large workplaces such as laboratories where gait measurement equipment can be permanently installed. However, a gait measurement system should be portable if it is to be used in clinics or community centers for aged people. In a portable gait measurement system, the workspace is limited and landmarks on a subject may not be visible to the cameras during experiments. Thus, we propose a virtual-marker function to obtain positions of unseen landmarks for maintaining data consistency. This work develops a portable clinical gait measurement system consisting of lightweight motion capture devices, force plates, and a walkway assembled from plywood boards. We evaluated the portable clinic gait system with 11 normal subjects in three consecutive days in a limited experimental space. Results of gait analysis based on the verification of within-day and between-day coefficients of multiple correlations show that the proposed portable gait system is reliable.

  6. Development of real-time motion verification system using in-room optical images for respiratory-gated radiotherapy.

    PubMed

    Park, Yang-Kyun; Son, Tae-geun; Kim, Hwiyoung; Lee, Jaegi; Sung, Wonmo; Kim, Il Han; Lee, Kunwoo; Bang, Young-bong; Ye, Sung-Joon

    2013-09-06

    Phase-based respiratory-gated radiotherapy relies on the reproducibility of patient breathing during the treatment. To monitor the positional reproducibility of patient breathing against a 4D CT simulation, we developed a real-time motion verification system (RMVS) using an optical tracking technology. The system in the treatment room was integrated with a real-time position management system. To test the system, an anthropomorphic phantom that was mounted on a motion platform moved on a programmed breathing pattern and then underwent a 4D CT simulation with RPM. The phase-resolved anterior surface lines were extracted from the 4D CT data to constitute 4D reference lines. In the treatment room, three infrared reflective markers were attached on the superior, middle, and inferior parts of the phantom along with the body midline and then RMVS could track those markers using an optical camera system. The real-time phase information extracted from RPM was delivered to RMVS via in-house network software. Thus, the real-time anterior-posterior positions of the markers were simultaneously compared with the 4D reference lines. The technical feasibility of RMVS was evaluated by repeating the above procedure under several scenarios such as ideal case (with identical motion parameters between simulation and treatment), cycle change, baseline shift, displacement change, and breathing type changes (abdominal or chest breathing). The system capability for operating under irregular breathing was also investigated using real patient data. The evaluation results showed that RMVS has a competence to detect phase-matching errors between patient's motion during the treatment and 4D CT simulation. Thus, we concluded that RMVS could be used as an online quality assurance tool for phase-based gating treatments.

  7. Global velocity constrained cloud motion prediction for short-term solar forecasting

    NASA Astrophysics Data System (ADS)

    Chen, Yanjun; Li, Wei; Zhang, Chongyang; Hu, Chuanping

    2016-09-01

    Cloud motion is the primary reason for short-term solar power output fluctuation. In this work, a new cloud motion estimation algorithm using a global velocity constraint is proposed. Compared to the most used Particle Image Velocity (PIV) algorithm, which assumes the homogeneity of motion vectors, the proposed method can capture the accurate motion vector for each cloud block, including both the motional tendency and morphological changes. Specifically, global velocity derived from PIV is first calculated, and then fine-grained cloud motion estimation can be achieved by global velocity based cloud block researching and multi-scale cloud block matching. Experimental results show that the proposed global velocity constrained cloud motion prediction achieves comparable performance to the existing PIV and filtered PIV algorithms, especially in a short prediction horizon.

  8. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion.

    PubMed

    Yang, Y X; Teo, S-K; Van Reeth, E; Tan, C H; Tham, I W K; Poh, C L

    2015-08-01

    Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors' proposed approach. A novel hybrid approach based on deformable image registration (DIR) and finite element method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors' proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.

  9. Accuracy of human motion capture systems for sport applications; state-of-the-art review.

    PubMed

    van der Kruk, Eline; Reijne, Marco M

    2018-05-09

    Sport research often requires human motion capture of an athlete. It can, however, be labour-intensive and difficult to select the right system, while manufacturers report on specifications which are determined in set-ups that largely differ from sport research in terms of volume, environment and motion. The aim of this review is to assist researchers in the selection of a suitable motion capture system for their experimental set-up for sport applications. An open online platform is initiated, to support (sport)researchers in the selection of a system and to enable them to contribute and update the overview. systematic review; Method: Electronic searches in Scopus, Web of Science and Google Scholar were performed, and the reference lists of the screened articles were scrutinised to determine human motion capture systems used in academically published studies on sport analysis. An overview of 17 human motion capture systems is provided, reporting the general specifications given by the manufacturer (weight and size of the sensors, maximum capture volume, environmental feasibilities), and calibration specifications as determined in peer-reviewed studies. The accuracy of each system is plotted against the measurement range. The overview and chart can assist researchers in the selection of a suitable measurement system. To increase the robustness of the database and to keep up with technological developments, we encourage researchers to perform an accuracy test prior to their experiment and to add to the chart and the system overview (online, open access).

  10. Motion visualization and estimation for flapping wing systems

    NASA Astrophysics Data System (ADS)

    Hsu, Tzu-Sheng Shane; Fitzgerald, Timothy; Nguyen, Vincent Phuc; Patel, Trisha; Balachandran, Balakumar

    2017-04-01

    Studies of fluid-structure interactions associated with flexible structures such as flapping wings require the capture and quantification of large motions of bodies that may be opaque. As a case study, motion capture of a free flying Manduca sexta, also known as hawkmoth, is considered by using three synchronized high-speed cameras. A solid finite element (FE) representation is used as a reference body and successive snapshots in time of the displacement fields are reconstructed via an optimization procedure. One of the original aspects of this work is the formulation of an objective function and the use of shadow matching and strain-energy regularization. With this objective function, the authors penalize the projection differences between silhouettes of the captured images and the FE representation of the deformed body. The process and procedures undertaken to go from high-speed videography to motion estimation are discussed, and snapshots of representative results are presented. Finally, the captured free-flight motion is also characterized and quantified.

  11. SU-E-J-181: Effect of Prostate Motion On Combined Brachytherapy and External Beam Dose Based On Daily Motion of the Prostate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayana, V; McLaughlin, P; University of Michigan, Ann Arbor, MI

    2015-06-15

    Purpose: In this study, the adequacy of target expansions on the combined external beam and implant dose was examined based on the measured daily motion of the prostate. Methods: Thirty patients received an I–125 prostate implant prescribed to dose of 90Gy. This was followed by external beam to deliver a dose of 90Gyeq (external beam equivalent) to the prostate over 25 to 30 fractions. An ideal IMRT plan was developed by optimizing the external beam dose based on the delivered implant dose. The implant dose was converted to an equivalent external beam dose using the linear quadratic model. Patients weremore » set up on the treatment table by daily orthogonal imaging and aligning the marker seeds in the prostate. Orthogonal images were obtained at the end of treatment to assess prostate intrafraction motion. Based on the observed motion of the markers between the initial and final images, 5 individual plans showing the actual dose delivered to the patient were calculated. A final true dose distribution was established based on summing the implant dose and the 5 external beam plans. Dose to the prostate, seminal vesicles, lymphnodes and normal tissues, rectal wall, urethra and lower sphincter were calculated and compared to ideal. On 18 patients who were sexually active, dose to the corpus cavernosum and internal pudendal artery was also calculated. Results: The average prostate motion in 3 orthogonal directions was less than 1 mm with a standard deviation of less than +2 mm. Dose and volume parameters showed that there was no decrease in dose to the targets and a marginal decrease in dose to in normal tissues. Conclusion: Dose delivered by seed implant moves with the prostate, decreasing the impact of intrafractions dose movement on actual dose delivered. Combined brachytherapy and external beam dose delivered to the prostate was not sensitive to prostate motion.« less

  12. Optical Indoor Positioning System Based on TFT Technology.

    PubMed

    Gőzse, István

    2015-12-24

    A novel indoor positioning system is presented in the paper. Similarly to the camera-based solutions, it is based on visual detection, but it conceptually differs from the classical approaches. First, the objects are marked by LEDs, and second, a special sensing unit is applied, instead of a camera, to track the motion of the markers. This sensing unit realizes a modified pinhole camera model, where the light-sensing area is fixed and consists of a small number of sensing elements (photodiodes), and it is the hole that can be moved. The markers are tracked by controlling the motion of the hole, such that the light of the LEDs always hits the photodiodes. The proposed concept has several advantages: Apart from its low computational demands, it is insensitive to the disturbing ambient light. Moreover, as every component of the system can be realized by simple and inexpensive elements, the overall cost of the system can be kept low.

  13. An efficient intensity-based ready-to-use X-ray image stitcher.

    PubMed

    Wang, Junchen; Zhang, Xiaohui; Sun, Zhen; Yuan, Fuzhen

    2018-06-14

    The limited field of view of the X-ray image intensifier makes it difficult to cover a large target area with a single X-ray image. X-ray image stitching techniques have been proposed to produce a panoramic X-ray image. This paper presents an efficient intensity-based X-ray image stitcher, which does not rely on accurate C-arm motion control or auxiliary devices and hence is ready to use in clinic. The stitcher consumes sequentially captured X-ray images with overlap areas and automatically produces a panoramic image. The gradient information for optimization of image alignment is obtained using a back-propagation scheme so that it is convenient to adopt various image warping models. The proposed stitcher has the following advantages over existing methods: (1) no additional hardware modification or auxiliary markers are needed; (2) it is robust against feature-based approaches; (3) arbitrary warping models and shapes of the region of interest are supported; (4) seamless stitching is achieved using multi-band blending. Experiments have been performed to confirm the effectiveness of the proposed method. The proposed X-ray image stitcher is efficient, accurate and ready to use in clinic. Copyright © 2018 John Wiley & Sons, Ltd.

  14. A reduced basis method for molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Vincent-Finley, Rachel Elisabeth

    In this dissertation, we develop a method for molecular simulation based on principal component analysis (PCA) of a molecular dynamics trajectory and least squares approximation of a potential energy function. Molecular dynamics (MD) simulation is a computational tool used to study molecular systems as they evolve through time. With respect to protein dynamics, local motions, such as bond stretching, occur within femtoseconds, while rigid body and large-scale motions, occur within a range of nanoseconds to seconds. To capture motion at all levels, time steps on the order of a femtosecond are employed when solving the equations of motion and simulations must continue long enough to capture the desired large-scale motion. To date, simulations of solvated proteins on the order of nanoseconds have been reported. It is typically the case that simulations of a few nanoseconds do not provide adequate information for the study of large-scale motions. Thus, the development of techniques that allow longer simulation times can advance the study of protein function and dynamics. In this dissertation we use principal component analysis (PCA) to identify the dominant characteristics of an MD trajectory and to represent the coordinates with respect to these characteristics. We augment PCA with an updating scheme based on a reduced representation of a molecule and consider equations of motion with respect to the reduced representation. We apply our method to butane and BPTI and compare the results to standard MD simulations of these molecules. Our results indicate that the molecular activity with respect to our simulation method is analogous to that observed in the standard MD simulation with simulations on the order of picoseconds.

  15. Inertial motion capture system for biomechanical analysis in pressure suits

    NASA Astrophysics Data System (ADS)

    Di Capua, Massimiliano

    A non-invasive system has been developed at the University of Maryland Space System Laboratory with the goal of providing a new capability for quantifying the motion of the human inside a space suit. Based on an array of six microprocessors and eighteen microelectromechanical (MEMS) inertial measurement units (IMUs), the Body Pose Measurement System (BPMS) allows the monitoring of the kinematics of the suit occupant in an unobtrusive, self-contained, lightweight and compact fashion, without requiring any external equipment such as those necessary with modern optical motion capture systems. BPMS measures and stores the accelerations, angular rates and magnetic fields acting upon each IMU, which are mounted on the head, torso, and each segment of each limb. In order to convert the raw data into a more useful form, such as a set of body segment angles quantifying pose and motion, a series of geometrical models and a non-linear complimentary filter were implemented. The first portion of this works focuses on assessing system performance, which was measured by comparing the BPMS filtered data against rigid body angles measured through an external VICON optical motion capture system. This type of system is the industry standard, and is used here for independent measurement of body pose angles. By comparing the two sets of data, performance metrics such as BPMS system operational conditions, accuracy, and drift were evaluated and correlated against VICON data. After the system and models were verified and their capabilities and limitations assessed, a series of pressure suit evaluations were conducted. Three different pressure suits were used to identify the relationship between usable range of motion and internal suit pressure. In addition to addressing range of motion, a series of exploration tasks were also performed, recorded, and analysed in order to identify different motion patterns and trajectories as suit pressure is increased and overall suit mobility is reduced. The focus of these evaluations was to quantify the reduction in mobility when operating in any of the evaluated pressure suits. This data should be of value in defining new low cost alternatives for pressure suit performance verification and evaluation. This work demonstrates that the BPMS technology is a viable alternative or companion to optical motion capture; while BPMS is the first motion capture system that has been designed specifically to measure the kinematics of a human in a pressure suit, its capabilities are not constrained to just being a measurement tool. The last section of the manuscript is devoted to future possible uses for the system, with a specific focus on pressure suit applications such in the use of BPMS as a master control interface for robot teleoperation, as well as an input interface for future robotically augmented pressure suits.

  16. A motion sensing-based framework for robotic manipulation.

    PubMed

    Deng, Hao; Xia, Zeyang; Weng, Shaokui; Gan, Yangzhou; Fang, Peng; Xiong, Jing

    2016-01-01

    To data, outside of the controlled environments, robots normally perform manipulation tasks operating with human. This pattern requires the robot operators with high technical skills training for varied teach-pendant operating system. Motion sensing technology, which enables human-machine interaction in a novel and natural interface using gestures, has crucially inspired us to adopt this user-friendly and straightforward operation mode on robotic manipulation. Thus, in this paper, we presented a motion sensing-based framework for robotic manipulation, which recognizes gesture commands captured from motion sensing input device and drives the action of robots. For compatibility, a general hardware interface layer was also developed in the framework. Simulation and physical experiments have been conducted for preliminary validation. The results have shown that the proposed framework is an effective approach for general robotic manipulation with motion sensing control.

  17. Nonlinear finite element analysis of liquid sloshing in complex vehicle motion scenarios

    NASA Astrophysics Data System (ADS)

    Nicolsen, Brynne; Wang, Liang; Shabana, Ahmed

    2017-09-01

    The objective of this investigation is to develop a new total Lagrangian continuum-based liquid sloshing model that can be systematically integrated with multibody system (MBS) algorithms in order to allow for studying complex motion scenarios. The new approach allows for accurately capturing the effect of the sloshing forces during curve negotiation, rapid lane change, and accelerating and braking scenarios. In these motion scenarios, the liquid experiences large displacements and significant changes in shape that can be captured effectively using the finite element (FE) absolute nodal coordinate formulation (ANCF). ANCF elements are used in this investigation to describe complex mesh geometries, to capture the change in inertia due to the change in the fluid shape, and to accurately calculate the centrifugal forces, which for flexible bodies do not take the simple form used in rigid body dynamics. A penalty formulation is used to define the contact between the rigid tank walls and the fluid. A fully nonlinear MBS truck model that includes a suspension system and Pacejka's brush tire model is developed. Specified motion trajectories are used to examine the vehicle dynamics in three different scenarios - deceleration during straight-line motion, rapid lane change, and curve negotiation. It is demonstrated that the liquid sloshing changes the contact forces between the tires and the ground - increasing the forces on certain wheels and decreasing the forces on other wheels. In cases of extreme sloshing, this dynamic behavior can negatively impact the vehicle stability by increasing the possibility of wheel lift and vehicle rollover.

  18. Capture by colour: evidence for dimension-specific singleton capture.

    PubMed

    Harris, Anthony M; Becker, Stefanie I; Remington, Roger W

    2015-10-01

    Previous work on attentional capture has shown the attentional system to be quite flexible in the stimulus properties it can be set to respond to. Several different attentional "modes" have been identified. Feature search mode allows attention to be set for specific features of a target (e.g., red). Singleton detection mode sets attention to respond to any discrepant item ("singleton") in the display. Relational search sets attention for the relative properties of the target in relation to the distractors (e.g., redder, larger). Recently, a new attentional mode was proposed that sets attention to respond to any singleton within a particular feature dimension (e.g., colour; Folk & Anderson, 2010). We tested this proposal against the predictions of previously established attentional modes. In a spatial cueing paradigm, participants searched for a colour target that was randomly either red or green. The nature of the attentional control setting was probed by presenting an irrelevant singleton cue prior to the target display and assessing whether it attracted attention. In all experiments, the cues were red, green, blue, or a white stimulus rapidly rotated (motion cue). The results of three experiments support the existence of a "colour singleton set," finding that all colour cues captured attention strongly, while motion cues captured attention only weakly or not at all. Notably, we also found that capture by motion cues in search for colour targets was moderated by their frequency; rare motion cues captured attention (weakly), while frequent motion cues did not.

  19. Statistics of Storm Updraft Velocities from TWP-ICE Including Verification with Profiling Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collis, Scott; Protat, Alain; May, Peter T.

    2013-08-01

    Comparisons between direct measurements and modeled values of vertical air motions in precipitating systems are complicated by differences in temporal and spatial scales. On one hand, vertically profiling radars more directly measure the vertical air motion but do not adequately capture full storm dynamics. On the other hand, vertical air motions retrieved from two or more scanning Doppler radars capture the full storm dynamics but require model constraints that may not capture all updraft features because of inadequate sampling, resolution, numerical constraints, and the fact that the storm is evolving as it is scanned by the radars. To investigate themore » veracity of radar-based retrievals, which can be used to verify numerically modeled vertical air motions, this article presents several case studies from storm events around Darwin, Northern Territory, Australia, in which measurements from a dual-frequency radar profiler system and volumetric radar-based wind retrievals are compared. While a direct comparison was not possible because of instrumentation location, an indirect comparison shows promising results, with volume retrievals comparing well to those obtained from the profiling system. This prompted a statistical analysis of an extended period of an active monsoon period during the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Results show less vigorous deep convective cores with maximum updraft velocities occurring at lower heights than some cloudresolving modeling studies suggest. 1. Introduction The regionalization of global climate models has been a driver of demand for more complex convective parameterization schemes. A key readjustment of the modeled atmosphere« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Y; Rezaeian, N Hassan; Hannan, R

    Purpose: Intra-fractional prostate motion leads uncertainty on delivered dose in radiotherapy and may cause significant dose deviation from the planned dose distribution. This is especially a concern in scenarios with a high dose per fraction and hence a long delivery time, e.g. stereotactic body radiotherapy. Knowledge about intra-fractional prostate motion is valuable to address this problem, e.g. by reconstructing delivered dose and performing adaptation. This study proposes a new approach to determine intra-fractional prostate motion in VMAT via 2D/3D maker registration. Methods: At our institution, each patient has three markers implanted in the prostate. During treatment delivery, kV triggered imagesmore » were taken every three seconds to acquire 2D projection of 3D anatomy at the direction orthogonal to the therapeutic beam. Projected marker locations were identified on each projection image using template matching with geometric constraints. 3D prostate translation and rotation for each triggered image were obtained by solving an optimization problem, such that the calculated marker locations match the measured ones. Inter-image motion smoothness was employed as a constraint. We tested this method in simulation studies with five realistic prostate motion trajectories acquired via Calypso and in real phantom experiments. Results: For the simulation case, the motion range for these patients was 0.5∼6.0 mm. Root mean square (RMS) error of calculated motion along left-right (LR), anterior-posterior (AP) and cranial-caudal (CC) directions were 0.26mm, 0.36mm, and 0.016mm, respectively. The motion range in the phantom study along LR, AP, and CC directions were 15mm, 20mm and 10mm. The mean RMS errors along these directions were 1.99mm, 1.37mm and 0.22mm. Conclusion: A new prostate motion tracking algorithm based on kV triggered images has been developed and validated. Clinically acceptable accuracy has been achieved.« less

  1. Quantitative framework for prospective motion correction evaluation.

    PubMed

    Pannetier, Nicolas A; Stavrinos, Theano; Ng, Peter; Herbst, Michael; Zaitsev, Maxim; Young, Karl; Matson, Gerald; Schuff, Norbert

    2016-02-01

    Establishing a framework to evaluate performances of prospective motion correction (PMC) MRI considering motion variability between MRI scans. A framework was developed to obtain quantitative comparisons between different motion correction setups, considering that varying intrinsic motion patterns between acquisitions can induce bias. Intrinsic motion was considered by replaying in a phantom experiment the recorded motion trajectories from subjects. T1-weighted MRI on five volunteers and two different marker fixations (mouth guard and nose bridge fixations) were used to test the framework. Two metrics were investigated to quantify the improvement of the image quality with PMC. Motion patterns vary between subjects as well as between repeated scans within a subject. This variability can be approximated by replaying the motion in a distinct phantom experiment and used as a covariate in models comparing motion corrections. We show that considering the intrinsic motion alters the statistical significance in comparing marker fixations. As an example, two marker fixations, a mouth guard and a nose bridge, were evaluated in terms of their effectiveness for PMC. A mouth guard achieved better PMC performance. Intrinsic motion patterns can bias comparisons between PMC configurations and must be considered for robust evaluations. A framework for evaluating intrinsic motion patterns in PMC is presented. © 2015 Wiley Periodicals, Inc.

  2. Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting

    PubMed Central

    Hwang, Seonhong; Kim, Youngeun; Kim, Youngho

    2009-01-01

    Background In this study, kinematics and kinetics of the lower extremity joint and the lumbar lordosis during two different symmetrical lifting techniques(squat and stoop) were examined using the three-dimensional motion analysis. Methods Twenty-six young male volunteers were selected for the subjects in this study. While they lifted boxes weighing 5, 10 and 15 kg by both squat and stoop lifting techniques, their motions were captured and analyzed using the 3D motion analysis system which was synchronized with two forceplates and the electromyographic system. Joint kinematics was determined by the forty-three reflective markers which were attached on the anatomical locations based on the VICON Plug-in-Gait marker placement protocol. Joint kinetics was analyzed by using the inverse dynamics. Paired t-test and Kruskal-Wallis test was used to compare the differences of variables between two techniques, and among three different weights. Correlation coefficient was calculated to explain the role of lower limb joint motion in relation to the lumbar lordosis. Results There were not significant differences in maximum lumbar joint moments between two techniques. The hip and ankle contributed the most part of the support moment during squat lifting, and the knee flexion moment played an important role in stoop lifting. The hip, ankle and lumbar joints generated power and only the knee joint absorbed power in the squat lifting. The knee and ankle joints absorbed power, the hip and lumbar joints generated power in the stoop lifting. The bi-articular antagonist muscles' co-contraction around the knee joint during the squat lifting and the eccentric co-contraction of the gastrocnemius and the biceps femoris were found important for maintaining the straight leg during the stoop lifting. At the time of lordotic curvature appearance in the squat lifting, there were significant correlations in all three lower extremity joint moments with the lumbar joint. Differently, only the hip moment had significant correlation with the lumbar joint in the stoop lifting. Conclusion In conclusion, the knee extension which is prominent kinematics during the squat lifting was produced by the contributions of the kinetic factors from the hip and ankle joints(extensor moment and power generation) and the lumbar extension which is prominent kinematics during the stoop lifting could be produced by the contributions of the knee joint kinetic factors(flexor moment, power absorption, bi-articular muscle function). PMID:19183507

  3. Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting.

    PubMed

    Hwang, Seonhong; Kim, Youngeun; Kim, Youngho

    2009-02-02

    In this study, kinematics and kinetics of the lower extremity joint and the lumbar lordosis during two different symmetrical lifting techniques(squat and stoop) were examined using the three-dimensional motion analysis. Twenty-six young male volunteers were selected for the subjects in this study. While they lifted boxes weighing 5, 10 and 15 kg by both squat and stoop lifting techniques, their motions were captured and analyzed using the 3D motion analysis system which was synchronized with two forceplates and the electromyographic system. Joint kinematics was determined by the forty-three reflective markers which were attached on the anatomical locations based on the VICON Plug-in-Gait marker placement protocol. Joint kinetics was analyzed by using the inverse dynamics. Paired t-test and Kruskal-Wallis test was used to compare the differences of variables between two techniques, and among three different weights. Correlation coefficient was calculated to explain the role of lower limb joint motion in relation to the lumbar lordosis. There were not significant differences in maximum lumbar joint moments between two techniques. The hip and ankle contributed the most part of the support moment during squat lifting, and the knee flexion moment played an important role in stoop lifting. The hip, ankle and lumbar joints generated power and only the knee joint absorbed power in the squat lifting. The knee and ankle joints absorbed power, the hip and lumbar joints generated power in the stoop lifting. The bi-articular antagonist muscles' co-contraction around the knee joint during the squat lifting and the eccentric co-contraction of the gastrocnemius and the biceps femoris were found important for maintaining the straight leg during the stoop lifting. At the time of lordotic curvature appearance in the squat lifting, there were significant correlations in all three lower extremity joint moments with the lumbar joint. Differently, only the hip moment had significant correlation with the lumbar joint in the stoop lifting. In conclusion, the knee extension which is prominent kinematics during the squat lifting was produced by the contributions of the kinetic factors from the hip and ankle joints(extensor moment and power generation) and the lumbar extension which is prominent kinematics during the stoop lifting could be produced by the contributions of the knee joint kinetic factors(flexor moment, power absorption, bi-articular muscle function).

  4. Centralized Networks to Generate Human Body Motions

    PubMed Central

    Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan

    2017-01-01

    We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons’ states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers’ trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings. PMID:29240694

  5. The efficacy of interactive, motion capture-based rehabilitation on functional outcomes in an inpatient stroke population: a randomized controlled trial.

    PubMed

    Cannell, John; Jovic, Emelyn; Rathjen, Amy; Lane, Kylie; Tyson, Anna M; Callisaya, Michele L; Smith, Stuart T; Ahuja, Kiran Dk; Bird, Marie-Louise

    2018-02-01

    To compare the efficacy of novel interactive, motion capture-rehabilitation software to usual care stroke rehabilitation on physical function. Randomized controlled clinical trial. Two subacute hospital rehabilitation units in Australia. In all, 73 people less than six months after stroke with reduced mobility and clinician determined capacity to improve. Both groups received functional retraining and individualized programs for up to an hour, on weekdays for 8-40 sessions (dose matched). For the intervention group, this individualized program used motivating virtual reality rehabilitation and novel gesture controlled interactive motion capture software. For usual care, the individualized program was delivered in a group class on one unit and by rehabilitation assistant 1:1 on the other. Primary outcome was standing balance (functional reach). Secondary outcomes were lateral reach, step test, sitting balance, arm function, and walking. Participants (mean 22 days post-stroke) attended mean 14 sessions. Both groups improved (mean (95% confidence interval)) on primary outcome functional reach (usual care 3.3 (0.6 to 5.9), intervention 4.1 (-3.0 to 5.0) cm) with no difference between groups ( P = 0.69) on this or any secondary measures. No differences between the rehabilitation units were seen except in lateral reach (less affected side) ( P = 0.04). No adverse events were recorded during therapy. Interactive, motion capture rehabilitation for inpatients post stroke produced functional improvements that were similar to those achieved by usual care stroke rehabilitation, safely delivered by either a physical therapist or a rehabilitation assistant.

  6. Asynchronous beating of cilia enhances particle capture rate

    NASA Astrophysics Data System (ADS)

    Ding, Yang; Kanso, Eva

    2014-11-01

    Many aquatic micro-organisms use beating cilia to generate feeding currents and capture particles in surrounding fluids. One of the capture strategies is to ``catch up'' with particles when a cilium is beating towards the overall flow direction (effective stroke) and intercept particles on the downstream side of the cilium. Here, we developed a 3D computational model of a cilia band with prescribed motion in a viscous fluid and calculated the trajectories of the particles with different sizes in the fluid. We found an optimal particle diameter that maximizes the capture rate. The flow field and particle motion indicate that the low capture rate of smaller particles is due to the laminar flow in the neighbor of the cilia, whereas larger particles have to move above the cilia tips to get advected downstream which decreases their capture rate. We then analyzed the effect of beating coordination between neighboring cilia on the capture rate. Interestingly, we found that asynchrony of the beating of the cilia can enhance the relative motion between a cilium and the particles near it and hence increase the capture rate.

  7. The adaptation of GDL motion recognition system to sport and rehabilitation techniques analysis.

    PubMed

    Hachaj, Tomasz; Ogiela, Marek R

    2016-06-01

    The main novelty of this paper is presenting the adaptation of Gesture Description Language (GDL) methodology to sport and rehabilitation data analysis and classification. In this paper we showed that Lua language can be successfully used for adaptation of the GDL classifier to those tasks. The newly applied scripting language allows easily extension and integration of classifier with other software technologies and applications. The obtained execution speed allows using the methodology in the real-time motion capture data processing where capturing frequency differs from 100 Hz to even 500 Hz depending on number of features or classes to be calculated and recognized. Due to this fact the proposed methodology can be used to the high-end motion capture system. We anticipate that using novel, efficient and effective method will highly help both sport trainers and physiotherapist in they practice. The proposed approach can be directly applied to motion capture data kinematics analysis (evaluation of motion without regard to the forces that cause that motion). The ability to apply pattern recognition methods for GDL description can be utilized in virtual reality environment and used for sport training or rehabilitation treatment.

  8. Prospective Motion Correction using Inductively-Coupled Wireless RF Coils

    PubMed Central

    Ooi, Melvyn B.; Aksoy, Murat; Maclaren, Julian; Watkins, Ronald D.; Bammer, Roland

    2013-01-01

    Purpose A novel prospective motion correction technique for brain MRI is presented that uses miniature wireless radio-frequency (RF) coils, or “wireless markers”, for position tracking. Methods Each marker is free of traditional cable connections to the scanner. Instead, its signal is wirelessly linked to the MR receiver via inductive coupling with the head coil. Real-time tracking of rigid head motion is performed using a pair of glasses integrated with three wireless markers. A tracking pulse-sequence, combined with knowledge of the markers’ unique geometrical arrangement, is used to measure their positions. Tracking data from the glasses is then used to prospectively update the orientation and position of the image-volume so that it follows the motion of the head. Results Wireless-marker position measurements were comparable to measurements using traditional wired RF tracking coils, with the standard deviation of the difference < 0.01 mm over the range of positions measured inside the head coil. RF safety was verified with B1 maps and temperature measurements. Prospective motion correction was demonstrated in a 2D spin-echo scan while the subject performed a series of deliberate head rotations. Conclusion Prospective motion correction using wireless markers enables high quality images to be acquired even during bulk motions. Wireless markers are small, avoid RF safety risks from electrical cables, are not hampered by mechanical connections to the scanner, and require minimal setup times. These advantages may help to facilitate adoption in the clinic. PMID:23813444

  9. Towards fluoroscopic respiratory gating for lung tumours without radiopaque markers

    NASA Astrophysics Data System (ADS)

    Berbeco, Ross I.; Mostafavi, Hassan; Sharp, Gregory C.; Jiang, Steve B.

    2005-10-01

    Due to the risk of pneumothorax, many clinicians are reluctant to implant radiopaque markers within patients' lungs for the purpose of radiographic or fluoroscopic tumour localization. We propose a method of gated therapy using fluoroscopic information without the implantation of radiopaque markers. The method presented here does not rely on any external motion signal either. Breathing phase information is found by analysing the fluoroscopic intensity fluctuations in the lung. As the lungs fill/empty, the radiological pathlength through them shortens/lengthens, giving brighter/darker fluoroscopic intensities. The phase information is combined with motion-enhanced template matching to turn the beam on when the tumour is in the desired location. A study based on patient data is presented to demonstrate the feasibility of this procedure. The resulting beam-on pattern is similar to that produced by an external gating system. The only discrepancies occur briefly and at the gate edges.

  10. Quantification of respiration-induced esophageal tumor motion using fiducial markers and four-dimensional computed tomography.

    PubMed

    Jin, Peng; Hulshof, Maarten C C M; de Jong, Rianne; van Hooft, Jeanin E; Bel, Arjan; Alderliesten, Tanja

    2016-03-01

    Respiration-induced tumor motion is an important geometrical uncertainty in esophageal cancer radiation therapy. The aim of this study was to quantify this motion using fiducial markers and four-dimensional computed tomography (4DCT). Twenty esophageal cancer patients underwent endoscopy-guided marker implantation in the tumor volume and 4DCT acquisition. The 4DCT data were sorted into 10 breathing phases and the end-of-inhalation phase was selected as reference. We quantified for each visible marker (n=60) the motion in each phase and derived the peak-to-peak motion magnitude throughout the breathing cycle. The motion was quantified and analyzed for four different regions and in three orthogonal directions. The median(interquartile range) of the peak-to-peak magnitudes of the respiration-induced marker motion (left-right/anterior-posterior/cranial-caudal) was 1.5(0.5)/1.6(0.5)/2.9(1.4) mm for the proximal esophagus (n=6), 1.5(1.4)/1.4(1.3)/3.7(2.6) mm for the middle esophagus (n=12), 2.6(1.3)/3.3(1.8)/5.4(2.9) mm for the distal esophagus (n=25), and 3.7(2.1)/5.3(1.8)/8.2(3.1) mm for the proximal stomach (n=17). The variations in the results between the three directions, four regions, and patients suggest the need of individualized region-dependent anisotropic internal margins. Therefore, we recommend using markers with 4DCT to patient-specifically adapt the internal target volume (ITV). Without 4DCT, 3DCTs at the end-of-inhalation and end-of-exhalation phases could be alternatively applied for ITV individualization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. An effective attentional set for a specific colour does not prevent capture by infrequently presented motion distractors.

    PubMed

    Retell, James D; Becker, Stefanie I; Remington, Roger W

    2016-01-01

    An organism's survival depends on the ability to rapidly orient attention to unanticipated events in the world. Yet, the conditions needed to elicit such involuntary capture remain in doubt. Especially puzzling are spatial cueing experiments, which have consistently shown that involuntary shifts of attention to highly salient distractors are not determined by stimulus properties, but instead are contingent on attentional control settings induced by task demands. Do we always need to be set for an event to be captured by it, or is there a class of events that draw attention involuntarily even when unconnected to task goals? Recent results suggest that a task-irrelevant event will capture attention on first presentation, suggesting that salient stimuli that violate contextual expectations might automatically capture attention. Here, we investigated the role of contextual expectation by examining whether an irrelevant motion cue that was presented only rarely (∼3-6% of trials) would capture attention when observers had an active set for a specific target colour. The motion cue had no effect when presented frequently, but when rare produced a pattern of interference consistent with attentional capture. The critical dependence on the frequency with which the irrelevant motion singleton was presented is consistent with early theories of involuntary orienting to novel stimuli. We suggest that attention will be captured by salient stimuli that violate expectations, whereas top-down goals appear to modulate capture by stimuli that broadly conform to contextual expectations.

  12. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    PubMed

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  13. Application Of Three-Dimensional Videography To Human Motion Studies: Constraints, Assumptions, And Mathematics

    NASA Astrophysics Data System (ADS)

    Rab, George T.

    1988-02-01

    Three-dimensional human motion analysis has been used for complex kinematic description of abnormal gait in children with neuromuscular disease. Multiple skin markers estimate skeletal segment position, and a sorting and smoothing routine provides marker trajectories. The position and orientation of the moving skeleton in space are derived mathematically from the marker positions, and joint motions are calculated from the Eulerian transformation matrix between linked proximal and distal skeletal segments. Reproduceability has been excellent, and the technique has proven to be a useful adjunct to surgical planning.

  14. Balance in non-hydrostatic rotating stratified turbulence

    NASA Astrophysics Data System (ADS)

    McKiver, William J.; Dritschel, David G.

    It is now well established that two distinct types of motion occur in geophysical turbulence: slow motions associated with potential vorticity advection and fast oscillations due to inertiamaster variable this is known as balance. In real geophysical flows, deviations from balance in the form of inertiaimbalance|N/f) where optimal potential vorticity balancenonlinear quasi-geostrophic balance’ procedure expands the equations of motion to second order in Rossby number but retains the exact (unexpanded) definition of potential vorticity. This proves crucial for obtaining an accurate estimate of balanced motions. In the analysis of rotating stratified turbulence at Ro1 and N/f1, this procedure captures a significantly greater fraction of the underlying balance than standard (linear) quasi-geostrophic balance (which is based on the linearized equations about a state of rest). Nonlinear quasi-geostrophic balance also compares well with optimal potential vorticity balance, which captures the greatest fraction of the underlying balance overall.More fundamentally, the results of these analyses indicate that balance dominates in carefully initialized simulations of freely decaying rotating stratified turbulence up to O(1) Rossby numbers when N/f1. The fluid motion exhibits important quasi-geostrophic features with, in particular, typical height-to-width scale ratios remaining comparable to f/N.

  15. A Soft Sensor-Based Three-Dimensional (3-D) Finger Motion Measurement System

    PubMed Central

    Park, Wookeun; Ro, Kyongkwan; Kim, Suin; Bae, Joonbum

    2017-01-01

    In this study, a soft sensor-based three-dimensional (3-D) finger motion measurement system is proposed. The sensors, made of the soft material Ecoflex, comprise embedded microchannels filled with a conductive liquid metal (EGaln). The superior elasticity, light weight, and sensitivity of soft sensors allows them to be embedded in environments in which conventional sensors cannot. Complicated finger joints, such as the carpometacarpal (CMC) joint of the thumb are modeled to specify the location of the sensors. Algorithms to decouple the signals from soft sensors are proposed to extract the pure flexion, extension, abduction, and adduction joint angles. The performance of the proposed system and algorithms are verified by comparison with a camera-based motion capture system. PMID:28241414

  16. Satellite attitude motion models for capture and retrieval investigations

    NASA Technical Reports Server (NTRS)

    Cochran, John E., Jr.; Lahr, Brian S.

    1986-01-01

    The primary purpose of this research is to provide mathematical models which may be used in the investigation of various aspects of the remote capture and retrieval of uncontrolled satellites. Emphasis has been placed on analytical models; however, to verify analytical solutions, numerical integration must be used. Also, for satellites of certain types, numerical integration may be the only practical or perhaps the only possible method of solution. First, to provide a basis for analytical and numerical work, uncontrolled satellites were categorized using criteria based on: (1) orbital motions, (2) external angular momenta, (3) internal angular momenta, (4) physical characteristics, and (5) the stability of their equilibrium states. Several analytical solutions for the attitude motions of satellite models were compiled, checked, corrected in some minor respects and their short-term prediction capabilities were investigated. Single-rigid-body, dual-spin and multi-rotor configurations are treated. To verify the analytical models and to see how the true motion of a satellite which is acted upon by environmental torques differs from its corresponding torque-free motion, a numerical simulation code was developed. This code contains a relatively general satellite model and models for gravity-gradient and aerodynamic torques. The spacecraft physical model for the code and the equations of motion are given. The two environmental torque models are described.

  17. Comparing non-invasive scapular tracking methods across elevation angles, planes of elevation and humeral axial rotations.

    PubMed

    Grewal, T-J; Cudlip, A C; Dickerson, C R

    2017-12-01

    Altered scapular motions premeditate shoulder impingement and other musculoskeletal disorders. Divergent experimental conditions in previous research precludes rigorous comparisons of non-invasive scapular tracking techniques. This study evaluated scapular orientation measurement methods across an expanded range of humeral postures. Scapular medial/lateral rotation, anterior/posterior tilt and protraction/retraction was measured using an acromion marker cluster (AMC), a scapular locator, and a reference stylus. Motion was captured using reflective markers on the upper body, as well as on the AMC, locator and stylus. A combination of 5 arm elevation angles, 3 arm elevation planes and 3 arm axial rotations was examined. Measurement method interacted with elevation angle and plane of elevation for all three scapular orientation directions (p < 0.01). Method of measurement interacted with axial rotation in anterior/posterior tilt and protraction/retraction (p < 0.01). The AMC had strong agreement with the reference stylus than the locator for the majority of humeral elevations, planes and axial rotations. The AMC underestimated lateral rotation, with the largest difference of ∼2° at 0° elevation. Both the locator and AMC overestimated posterior tilt at high arm elevation by up to 7.4°. Misestimations from using the locator could be enough to potentially obscure meaningful differences in scapular rotations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A Novel Marker Based Method to Teeth Alignment in MRI

    NASA Astrophysics Data System (ADS)

    Luukinen, Jean-Marc; Aalto, Daniel; Malinen, Jarmo; Niikuni, Naoko; Saunavaara, Jani; Jääsaari, Päivi; Ojalammi, Antti; Parkkola, Riitta; Soukka, Tero; Happonen, Risto-Pekka

    2018-04-01

    Magnetic resonance imaging (MRI) can precisely capture the anatomy of the vocal tract. However, the crowns of teeth are not visible in standard MRI scans. In this study, a marker-based teeth alignment method is presented and evaluated. Ten patients undergoing orthognathic surgery were enrolled. Supraglottal airways were imaged preoperatively using structural MRI. MRI visible markers were developed, and they were attached to maxillary teeth and corresponding locations on the dental casts. Repeated measurements of intermarker distances in MRI and in a replica model was compared using linear regression analysis. Dental cast MRI and corresponding caliper measurements did not differ significantly. In contrast, the marker locations in vivo differed somewhat from the dental cast measurements likely due to marker placement inaccuracies. The markers were clearly visible in MRI and allowed for dental models to be aligned to head and neck MRI scans.

  19. The Effects of Filter Cutoff Frequency on Musculoskeletal Simulations of High-Impact Movements.

    PubMed

    Tomescu, Sebastian; Bakker, Ryan; Beach, Tyson A C; Chandrashekar, Naveen

    2018-02-12

    Estimation of muscle forces through musculoskeletal simulation is important in understanding human movement and injury. Unmatched filter frequencies used to low-pass filter marker and force platform data can create artifacts during inverse dynamics analysis, but their effects on muscle force calculations are unknown. The objective of this study was to determine the effects of filter cutoff frequency on simulation parameters and magnitudes of lower extremity muscle and resultant joint contact forces during a high-impact maneuver. Eight participants performed a single leg jump-landing. Kinematics were captured with a 3D motion capture system and ground reaction forces were recorded with a force platform. The marker and force platform data were filtered using two matched filter frequencies (10-10Hz, 15-15Hz) and two unmatched frequencies (10-50Hz, 15-50Hz). Musculoskeletal simulations using Computed Muscle Control were performed in OpenSim. The results revealed significantly higher peak quadriceps (13%), hamstrings (48%), and gastrocnemius forces (69%) in the unmatched (10-50Hz, 15-50Hz) conditions than in the matched (10-10Hz, 15-15Hz) conditions (p<0.05). Resultant joint contact forces and reserve (non-physiologic) moments were similarly larger in the unmatched filter categories (p<0.05). This study demonstrated that artifacts created from filtering with unmatched filter cutoffs result in altered muscle forces and dynamics which are not physiologic.

  20. Virtual Character Animation Based on Affordable Motion Capture and Reconfigurable Tangible Interfaces.

    PubMed

    Lamberti, Fabrizio; Paravati, Gianluca; Gatteschi, Valentina; Cannavo, Alberto; Montuschi, Paolo

    2018-05-01

    Software for computer animation is generally characterized by a steep learning curve, due to the entanglement of both sophisticated techniques and interaction methods required to control 3D geometries. This paper proposes a tool designed to support computer animation production processes by leveraging the affordances offered by articulated tangible user interfaces and motion capture retargeting solutions. To this aim, orientations of an instrumented prop are recorded together with animator's motion in the 3D space and used to quickly pose characters in the virtual environment. High-level functionalities of the animation software are made accessible via a speech interface, thus letting the user control the animation pipeline via voice commands while focusing on his or her hands and body motion. The proposed solution exploits both off-the-shelf hardware components (like the Lego Mindstorms EV3 bricks and the Microsoft Kinect, used for building the tangible device and tracking animator's skeleton) and free open-source software (like the Blender animation tool), thus representing an interesting solution also for beginners approaching the world of digital animation for the first time. Experimental results in different usage scenarios show the benefits offered by the designed interaction strategy with respect to a mouse & keyboard-based interface both for expert and non-expert users.

  1. Joint Video Stitching and Stabilization from Moving Cameras.

    PubMed

    Guo, Heng; Liu, Shuaicheng; He, Tong; Zhu, Shuyuan; Zeng, Bing; Gabbouj, Moncef

    2016-09-08

    In this paper, we extend image stitching to video stitching for videos that are captured for the same scene simultaneously by multiple moving cameras. In practice, videos captured under this circumstance often appear shaky. Directly applying image stitching methods for shaking videos often suffers from strong spatial and temporal artifacts. To solve this problem, we propose a unified framework in which video stitching and stabilization are performed jointly. Specifically, our system takes several overlapping videos as inputs. We estimate both inter motions (between different videos) and intra motions (between neighboring frames within a video). Then, we solve an optimal virtual 2D camera path from all original paths. An enlarged field of view along the virtual path is finally obtained by a space-temporal optimization that takes both inter and intra motions into consideration. Two important components of this optimization are that (1) a grid-based tracking method is designed for an improved robustness, which produces features that are distributed evenly within and across multiple views, and (2) a mesh-based motion model is adopted for the handling of the scene parallax. Some experimental results are provided to demonstrate the effectiveness of our approach on various consumer-level videos and a Plugin, named "Video Stitcher" is developed at Adobe After Effects CC2015 to show the processed videos.

  2. Real-Time External Respiratory Motion Measuring Technique Using an RGB-D Camera and Principal Component Analysis †

    PubMed Central

    Wijenayake, Udaya; Park, Soon-Yong

    2017-01-01

    Accurate tracking and modeling of internal and external respiratory motion in the thoracic and abdominal regions of a human body is a highly discussed topic in external beam radiotherapy treatment. Errors in target/normal tissue delineation and dose calculation and the increment of the healthy tissues being exposed to high radiation doses are some of the unsolicited problems caused due to inaccurate tracking of the respiratory motion. Many related works have been introduced for respiratory motion modeling, but a majority of them highly depend on radiography/fluoroscopy imaging, wearable markers or surgical node implanting techniques. We, in this article, propose a new respiratory motion tracking approach by exploiting the advantages of an RGB-D camera. First, we create a patient-specific respiratory motion model using principal component analysis (PCA) removing the spatial and temporal noise of the input depth data. Then, this model is utilized for real-time external respiratory motion measurement with high accuracy. Additionally, we introduce a marker-based depth frame registration technique to limit the measuring area into an anatomically consistent region that helps to handle the patient movements during the treatment. We achieved a 0.97 correlation comparing to a spirometer and 0.53 mm average error considering a laser line scanning result as the ground truth. As future work, we will use this accurate measurement of external respiratory motion to generate a correlated motion model that describes the movements of internal tumors. PMID:28792468

  3. The use of CT density changes at internal tissue interfaces to correlate internal organ motion with an external surrogate

    NASA Astrophysics Data System (ADS)

    Gaede, Stewart; Carnes, Gregory; Yu, Edward; Van Dyk, Jake; Battista, Jerry; Lee, Ting-Yim

    2009-01-01

    The purpose of this paper is to describe a non-invasive method to monitor the motion of internal organs affected by respiration without using external markers or spirometry, to test the correlation with external markers, and to calculate any time shift between the datasets. Ten lung cancer patients were CT scanned with a GE LightSpeed Plus 4-Slice CT scanner operating in a ciné mode. We retrospectively reconstructed the raw CT data to obtain consecutive 0.5 s reconstructions at 0.1 s intervals to increase image sampling. We defined regions of interest containing tissue interfaces, including tumour/lung interfaces that move due to breathing on multiple axial slices and measured the mean CT number versus respiratory phase. Tumour motion was directly correlated with external marker motion, acquired simultaneously, using the sample coefficient of determination, r2. Only three of the ten patients showed correlation higher than r2 = 0.80 between tumour motion and external marker position. However, after taking into account time shifts (ranging between 0 s and 0.4 s) between the two data sets, all ten patients showed correlation better than r2 = 0.8. This non-invasive method for monitoring the motion of internal organs is an effective tool that can assess the use of external markers for 4D-CT imaging and respiratory-gated radiotherapy on a patient-specific basis.

  4. The use of CT density changes at internal tissue interfaces to correlate internal organ motion with an external surrogate.

    PubMed

    Gaede, Stewart; Carnes, Gregory; Yu, Edward; Van Dyk, Jake; Battista, Jerry; Lee, Ting-Yim

    2009-01-21

    The purpose of this paper is to describe a non-invasive method to monitor the motion of internal organs affected by respiration without using external markers or spirometry, to test the correlation with external markers, and to calculate any time shift between the datasets. Ten lung cancer patients were CT scanned with a GE LightSpeed Plus 4-Slice CT scanner operating in a ciné mode. We retrospectively reconstructed the raw CT data to obtain consecutive 0.5 s reconstructions at 0.1 s intervals to increase image sampling. We defined regions of interest containing tissue interfaces, including tumour/lung interfaces that move due to breathing on multiple axial slices and measured the mean CT number versus respiratory phase. Tumour motion was directly correlated with external marker motion, acquired simultaneously, using the sample coefficient of determination, r(2). Only three of the ten patients showed correlation higher than r(2) = 0.80 between tumour motion and external marker position. However, after taking into account time shifts (ranging between 0 s and 0.4 s) between the two data sets, all ten patients showed correlation better than r(2) = 0.8. This non-invasive method for monitoring the motion of internal organs is an effective tool that can assess the use of external markers for 4D-CT imaging and respiratory-gated radiotherapy on a patient-specific basis.

  5. Scalable sensing electronics towards a motion capture suit

    NASA Astrophysics Data System (ADS)

    Xu, Daniel; Gisby, Todd A.; Xie, Shane; Anderson, Iain A.

    2013-04-01

    Being able to accurately record body motion allows complex movements to be characterised and studied. This is especially important in the film or sport coaching industry. Unfortunately, the human body has over 600 skeletal muscles, giving rise to multiple degrees of freedom. In order to accurately capture motion such as hand gestures, elbow or knee flexion and extension, vast numbers of sensors are required. Dielectric elastomer (DE) sensors are an emerging class of electroactive polymer (EAP) that is soft, lightweight and compliant. These characteristics are ideal for a motion capture suit. One challenge is to design sensing electronics that can simultaneously measure multiple sensors. This paper describes a scalable capacitive sensing device that can measure up to 8 different sensors with an update rate of 20Hz.

  6. Biomechanical analysis using Kinovea for sports application

    NASA Astrophysics Data System (ADS)

    Muaza Nor Adnan, Nor; Patar, Mohd Nor Azmi Ab; Lee, Hokyoo; Yamamoto, Shin-Ichiroh; Jong-Young, Lee; Mahmud, Jamaluddin

    2018-04-01

    This paper assesses the reliability of HD VideoCam–Kinovea as an alternative tool in conducting motion analysis and measuring knee relative angle of drop jump movement. The motion capture and analysis procedure were conducted in the Biomechanics Lab, Shibaura Institute of Technology, Omiya Campus, Japan. A healthy subject without any gait disorder (BMI of 28.60 ± 1.40) was recruited. The volunteered subject was asked to per the drop jump movement on preset platform and the motion was simultaneously recorded using an established infrared motion capture system (Hawk–Cortex) and a HD VideoCam in the sagittal plane only. The capture was repeated for 5 times. The outputs (video recordings) from the HD VideoCam were input into Kinovea (an open-source software) and the drop jump pattern was tracked and analysed. These data are compared with the drop jump pattern tracked and analysed earlier using the Hawk–Cortex system. In general, the results obtained (drop jump pattern) using the HD VideoCam–Kinovea are close to the results obtained using the established motion capture system. Basic statistical analyses show that most average variances are less than 10%, thus proving the repeatability of the protocol and the reliability of the results. It can be concluded that the integration of HD VideoCam–Kinovea has the potential to become a reliable motion capture–analysis system. Moreover, it is low cost, portable and easy to use. As a conclusion, the current study and its findings are found useful and has contributed to enhance significant knowledge pertaining to motion capture-analysis, drop jump movement and HD VideoCam–Kinovea integration.

  7. A hybrid approach for fusing 4D-MRI temporal information with 3D-CT for the study of lung and lung tumor motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y. X.; Van Reeth, E.; Poh, C. L., E-mail: clpoh@ntu.edu.sg

    2015-08-15

    Purpose: Accurate visualization of lung motion is important in many clinical applications, such as radiotherapy of lung cancer. Advancement in imaging modalities [e.g., computed tomography (CT) and MRI] has allowed dynamic imaging of lung and lung tumor motion. However, each imaging modality has its advantages and disadvantages. The study presented in this paper aims at generating synthetic 4D-CT dataset for lung cancer patients by combining both continuous three-dimensional (3D) motion captured by 4D-MRI and the high spatial resolution captured by CT using the authors’ proposed approach. Methods: A novel hybrid approach based on deformable image registration (DIR) and finite elementmore » method simulation was developed to fuse a static 3D-CT volume (acquired under breath-hold) and the 3D motion information extracted from 4D-MRI dataset, creating a synthetic 4D-CT dataset. Results: The study focuses on imaging of lung and lung tumor. Comparing the synthetic 4D-CT dataset with the acquired 4D-CT dataset of six lung cancer patients based on 420 landmarks, accurate results (average error <2 mm) were achieved using the authors’ proposed approach. Their hybrid approach achieved a 40% error reduction (based on landmarks assessment) over using only DIR techniques. Conclusions: The synthetic 4D-CT dataset generated has high spatial resolution, has excellent lung details, and is able to show movement of lung and lung tumor over multiple breathing cycles.« less

  8. Effectiveness of an automatic tracking software in underwater motion analysis.

    PubMed

    Magalhaes, Fabrício A; Sawacha, Zimi; Di Michele, Rocco; Cortesi, Matteo; Gatta, Giorgio; Fantozzi, Silvia

    2013-01-01

    Tracking of markers placed on anatomical landmarks is a common practice in sports science to perform the kinematic analysis that interests both athletes and coaches. Although different software programs have been developed to automatically track markers and/or features, none of them was specifically designed to analyze underwater motion. Hence, this study aimed to evaluate the effectiveness of a software developed for automatic tracking of underwater movements (DVP), based on the Kanade-Lucas-Tomasi feature tracker. Twenty-one video recordings of different aquatic exercises (n = 2940 markers' positions) were manually tracked to determine the markers' center coordinates. Then, the videos were automatically tracked using DVP and a commercially available software (COM). Since tracking techniques may produce false targets, an operator was instructed to stop the automatic procedure and to correct the position of the cursor when the distance between the calculated marker's coordinate and the reference one was higher than 4 pixels. The proportion of manual interventions required by the software was used as a measure of the degree of automation. Overall, manual interventions were 10.4% lower for DVP (7.4%) than for COM (17.8%). Moreover, when examining the different exercise modes separately, the percentage of manual interventions was 5.6% to 29.3% lower for DVP than for COM. Similar results were observed when analyzing the type of marker rather than the type of exercise, with 9.9% less manual interventions for DVP than for COM. In conclusion, based on these results, the developed automatic tracking software presented can be used as a valid and useful tool for underwater motion analysis. Key PointsThe availability of effective software for automatic tracking would represent a significant advance for the practical use of kinematic analysis in swimming and other aquatic sports.An important feature of automatic tracking software is to require limited human interventions and supervision, thus allowing short processing time.When tracking underwater movements, the degree of automation of the tracking procedure is influenced by the capability of the algorithm to overcome difficulties linked to the small target size, the low image quality and the presence of background clutters.The newly developed feature-tracking algorithm has shown a good automatic tracking effectiveness in underwater motion analysis with significantly smaller percentage of required manual interventions when compared to a commercial software.

  9. A clinically applicable six-segmented foot model.

    PubMed

    De Mits, Sophie; Segers, Veerle; Woodburn, Jim; Elewaut, Dirk; De Clercq, Dirk; Roosen, Philip

    2012-04-01

    We describe a multi-segmented foot model comprising lower leg, rearfoot, midfoot, lateral forefoot, medial forefoot, and hallux for routine use in a clinical setting. The Ghent Foot Model describes the kinematic patterns of functional units of the foot, especially the midfoot, to investigate patient populations where midfoot deformation or dysfunction is an important feature, for example, rheumatoid arthritis patients. Data were obtained from surface markers by a 6 camera motion capture system at 500 Hz. Ten healthy subjects walked barefoot along a 12 m walkway at self-selected speed. Joint angles (rearfoot to shank, midfoot to rearfoot, lateral and medial forefoot to midfoot, and hallux to medial forefoot) in the sagittal, frontal, and transverse plane are reported according to anatomically based reference frames. These angles were calculated and reported during the foot rollover phases in stance, detected by synchronized plantar pressure measurements. Repeated measurements of each subject revealed low intra-subject variability, varying between 0.7° and 2.3° for the minimum values, between 0.5° and 2.1° for the maximum values, and between 0.8° and 5.8° for the ROM. The described movement patterns were repeatable and consistent with biomechanical and clinical knowledge. As such, the Ghent Foot model permits intersegment, in vivo motion measurement of the foot, which is crucial for both clinical and research applications. Copyright © 2011 Orthopaedic Research Society.

  10. The inaccuracy of surface-measured model-derived tibiofemoral kinematics

    PubMed Central

    Li, Kang; Zheng, Liying; Tashman, Scott; Zhang, Xudong

    2014-01-01

    This study assessed the accuracy of surface-measured OpenSim-derived tibiofemoral kinematics in functional activities. Ten subjects with unilateral, isolated grade II PCL deficiency performed level running and stair ascent. A dynamic stereo radiography (DSX) system and a Vicon motion capture system simultaneously measured their knee or lower extremity movement. Surface marker motion data from the Vicon system were used to create subject-specific models in OpenSim and derive the tibiofemoral kinematics. The surface-measured model-derived tibiofemoral kinematics in all 6 degrees of freedom (DOFs) were then compared with those measured by the DSX as the benchmarks. The differences between surface- and DSX-measured tibiofemoral kinematics were found to be substantial: the overall mean (±SD) RMS differences during running were 9.1±3.2°, 2.0 ± 1.2°, 6.4 ± 4.5° for the flexion-extension, abduction-adduction, and internal-external rotations, and 7.1± 3.2mm, 8.8± 3.7mm, and 1.9± 1.2mm for anterior-posterior, proximal-distal, and medial-lateral translations. The differences were more pronounced in the relatively higher speed running than in stair ascent. It was also found that surface-based measures significantly underestimated the mean as well as inter-subject variability of the differences between PCL-injured and intact knees in abduction-adduction, internal-external rotation, and anterior-posterior translation. PMID:22964018

  11. Comparison of Artificial Immune System and Particle Swarm Optimization Techniques for Error Optimization of Machine Vision Based Tool Movements

    NASA Astrophysics Data System (ADS)

    Mahapatra, Prasant Kumar; Sethi, Spardha; Kumar, Amod

    2015-10-01

    In conventional tool positioning technique, sensors embedded in the motion stages provide the accurate tool position information. In this paper, a machine vision based system and image processing technique for motion measurement of lathe tool from two-dimensional sequential images captured using charge coupled device camera having a resolution of 250 microns has been described. An algorithm was developed to calculate the observed distance travelled by the tool from the captured images. As expected, error was observed in the value of the distance traversed by the tool calculated from these images. Optimization of errors due to machine vision system, calibration, environmental factors, etc. in lathe tool movement was carried out using two soft computing techniques, namely, artificial immune system (AIS) and particle swarm optimization (PSO). The results show better capability of AIS over PSO.

  12. Multiple capture locations for 3D ultrasound-guided robotic retrieval of moving bodies from a beating heart

    NASA Astrophysics Data System (ADS)

    Thienphrapa, Paul; Ramachandran, Bharat; Elhawary, Haytham; Taylor, Russell H.; Popovic, Aleksandra

    2012-02-01

    Free moving bodies in the heart pose a serious health risk as they may be released in the arteries causing blood flow disruption. These bodies may be the result of various medical conditions and trauma. The conventional approach to removing these objects involves open surgery with sternotomy, the use of cardiopulmonary bypass, and a wide resection of the heart muscle. We advocate a minimally invasive surgical approach using a flexible robotic end effector guided by 3D transesophageal echocardiography. In a phantom study, we track a moving body in a beating heart using a modified normalized cross-correlation method, with mean RMS errors of 2.3 mm. We previously found the foreign body motion to be fast and abrupt, rendering infeasible a retrieval method based on direct tracking. We proposed a strategy based on guiding a robot to the most spatially probable location of the fragment and securing it upon its reentry to said location. To improve efficacy in the context of a robotic retrieval system, we extend this approach by exploring multiple candidate capture locations. Salient locations are identified based on spatial probability, dwell time, and visit frequency; secondary locations are also examined. Aggregate results indicate that the location of highest spatial probability (50% occupancy) is distinct from the longest-dwelled location (0.84 seconds). Such metrics are vital in informing the design of a retrieval system and capture strategies, and they can be computed intraoperatively to select the best capture location based on constraints such as workspace, time, and device manipulability. Given the complex nature of fragment motion, the ability to analyze multiple capture locations is a desirable capability in an interventional system.

  13. Four-dimensional measurement of the displacement of internal fiducial and skin markers during 320-multislice computed tomography scanning of breast cancer.

    PubMed

    Yamashita, Hideomi; Okuma, Kae; Tada, Keiichiro; Shiraishi, Kenshiro; Takahashi, Wataru; Shibata-Mobayashi, Shino; Sakumi, Akira; Saotome, Naoya; Haga, Akihiro; Onoe, Tsuyoshi; Ino, Kenji; Akahane, Masaaki; Ohtomo, Kuni; Nakagawa, Keiichi

    2012-10-01

    To study the three-dimensional movement of internal tumor bed fiducial and breast skin markers, using 320-multislice computed tomography (CT); and to analyze intrafractional errors for breast cancer patients undergoing breast irradiation. This study examined 280 markers on the skin of the breast (200 markers) and on the primary tumor bed (80 markers) of 20 patients treated by external-beam photon radiotherapy. Motion assessment was analyzed in 41 respiratory phases during 20 s of cine CT in the radiotherapy position. To assess intrafractional errors resulting from respiratory motion, four-dimensional CT scans were acquired for 20 patients. Motion in the anterior-posterior (A/P) and superior-inferior (S/I) directions showed a strong correlation (|r| > 0.7) with the respiratory curve for most markers (79% and 70%, respectively). The average marker displacements between maximum and minimum value during 20 s for the 200 breast skin metal markers were 1.1 ± 0.3 mm, 2.1 ± 0.6 mm, and 1.6 ± 0.4 mm in the left-right, A/P, and S/I directions, respectively. For the 80 tumor bed clips, displacements were 0.9 ± 0.2 mm in left-right, 1.7 ± 0.5 mm in A/P, and 1.1 ± 0.3 mm in S/I. There was no significant difference in the motion between breast quadrant regions or between the primary site and the other regions. Motion in primary breast tumors was evaluated with 320-multislice CT. Very little change was detected during individual radiation treatment fractions. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. A vision-based automated guided vehicle system with marker recognition for indoor use.

    PubMed

    Lee, Jeisung; Hyun, Chang-Ho; Park, Mignon

    2013-08-07

    We propose an intelligent vision-based Automated Guided Vehicle (AGV) system using fiduciary markers. In this paper, we explore a low-cost, efficient vehicle guiding method using a consumer grade web camera and fiduciary markers. In the proposed method, the system uses fiduciary markers with a capital letter or triangle indicating direction in it. The markers are very easy to produce, manipulate, and maintain. The marker information is used to guide a vehicle. We use hue and saturation values in the image to extract marker candidates. When the known size fiduciary marker is detected by using a bird's eye view and Hough transform, the positional relation between the marker and the vehicle can be calculated. To recognize the character in the marker, a distance transform is used. The probability of feature matching was calculated by using a distance transform, and a feature having high probability is selected as a captured marker. Four directional signals and 10 alphabet features are defined and used as markers. A 98.87% recognition rate was achieved in the testing phase. The experimental results with the fiduciary marker show that the proposed method is a solution for an indoor AGV system.

  15. Kinematic differences between optical motion capture and biplanar videoradiography during a jump-cut maneuver

    PubMed Central

    Miranda, Daniel L; Rainbow, Michael J; Crisco, Joseph J; Fleming, Braden C

    2012-01-01

    Jumping and cutting activities are investigated in many laboratories attempting to better understand the biomechanics associated with non-contact ACL injury. Optical motion capture is widely used; however, it is subject to soft tissue artifact (STA). Biplanar videoradiography offers a unique approach to collecting skeletal motion without STA. The goal of this study was to compare how STA affects the six-degree-of-freedom motion of the femur and tibia during a jump-cut maneuver associated with non-contact ACL injury. Ten volunteers performed a jump-cut maneuver while their landing leg was imaged using optical motion capture (OMC) and biplanar videoradiography. The within-bone motion differences were compared using anatomical coordinate systems for the femur and tibia, respectively. The knee joint kinematic measurements were compared during two periods: before and after ground contact. Over the entire activity, the within-bone motion differences between the two motion capture techniques were significantly lower for the tibia than the femur for two of the rotational axes (flexion/extension, internal/external) and the origin. The OMC and biplanar videoradiography knee joint kinematics were in best agreement before landing. Kinematic deviations between the two techniques increased significantly after contact. This study provides information on the kinematic discrepancies between OMC and biplanar videoradiography that can be used to optimize methods employing both technologies for studying dynamic in vivo knee kinematics and kinetics during a jump-cut maneuver. PMID:23084785

  16. Human movement analysis with image processing in real time

    NASA Astrophysics Data System (ADS)

    Fauvet, Eric; Paindavoine, Michel; Cannard, F.

    1991-04-01

    In the field of the human sciences, a lot of applications needs to know the kinematic characteristics of the human movements Psycology is associating the characteristics with the control mechanism, sport and biomechariics are associating them with the performance of the sportman or of the patient. So the trainers or the doctors can correct the gesture of the subject to obtain a better performance if he knows the motion properties. Roherton's studies show the children motion evolution2 . Several investigations methods are able to measure the human movement But now most of the studies are based on image processing. Often the systems are working at the T.V. standard (50 frame per secund ). they permit only to study very slow gesture. A human operator analyses the digitizing sequence of the film manually giving a very expensive, especially long and unprecise operation. On these different grounds many human movement analysis systems were implemented. They consist of: - markers which are fixed to the anatomical interesting points on the subject in motion, - Image compression which is the art to coding picture data. Generally the compression Is limited to the centroid coordinates calculation tor each marker. These systems differ from one other in image acquisition and markers detection.

  17. Optimizing 4DCBCT projection allocation to respiratory bins.

    PubMed

    O'Brien, Ricky T; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J

    2014-10-07

    4D cone beam computed tomography (4DCBCT) is an emerging image guidance strategy used in radiotherapy where projections acquired during a scan are sorted into respiratory bins based on the respiratory phase or displacement. 4DCBCT reduces the motion blur caused by respiratory motion but increases streaking artefacts due to projection under-sampling as a result of the irregular nature of patient breathing and the binning algorithms used. For displacement binning the streak artefacts are so severe that displacement binning is rarely used clinically. The purpose of this study is to investigate if sharing projections between respiratory bins and adjusting the location of respiratory bins in an optimal manner can reduce or eliminate streak artefacts in 4DCBCT images. We introduce a mathematical optimization framework and a heuristic solution method, which we will call the optimized projection allocation algorithm, to determine where to position the respiratory bins and which projections to source from neighbouring respiratory bins. Five 4DCBCT datasets from three patients were used to reconstruct 4DCBCT images. Projections were sorted into respiratory bins using equispaced, equal density and optimized projection allocation. The standard deviation of the angular separation between projections was used to assess streaking and the consistency of the segmented volume of a fiducial gold marker was used to assess motion blur. The standard deviation of the angular separation between projections using displacement binning and optimized projection allocation was 30%-50% smaller than conventional phase based binning and 59%-76% smaller than conventional displacement binning indicating more uniformly spaced projections and fewer streaking artefacts. The standard deviation in the marker volume was 20%-90% smaller when using optimized projection allocation than using conventional phase based binning suggesting more uniform marker segmentation and less motion blur. Images reconstructed using displacement binning and the optimized projection allocation algorithm were clearer, contained visibly fewer streak artefacts and produced more consistent marker segmentation than those reconstructed with either equispaced or equal-density binning. The optimized projection allocation algorithm significantly improves image quality in 4DCBCT images and provides, for the first time, a method to consistently generate high quality displacement binned 4DCBCT images in clinical applications.

  18. Individual Differences in the Alignment of Structural and Functional Markers of the V5/MT Complex in Primates

    PubMed Central

    Large, I.; Bridge, H.; Ahmed, B.; Clare, S.; Kolasinski, J.; Lam, W. W.; Miller, K. L.; Dyrby, T. B.; Parker, A. J.; Smith, J. E. T.; Daubney, G.; Sallet, J.; Bell, A. H.; Krug, K.

    2016-01-01

    Extrastriate visual area V5/MT in primates is defined both structurally by myeloarchitecture and functionally by distinct responses to visual motion. Myelination is directly identifiable from postmortem histology but also indirectly by image contrast with structural magnetic resonance imaging (sMRI). First, we compared the identification of V5/MT using both sMRI and histology in Rhesus macaques. A section-by-section comparison of histological slices with in vivo and postmortem sMRI for the same block of cortical tissue showed precise correspondence in localizing heavy myelination for V5/MT and neighboring MST. Thus, sMRI in macaques accurately locates histologically defined myelin within areas known to be motion selective. Second, we investigated the functionally homologous human motion complex (hMT+) using high-resolution in vivo imaging. Humans showed considerable intersubject variability in hMT+ location, when defined with myelin-weighted sMRI signals to reveal structure. When comparing sMRI markers to functional MRI in response to moving stimuli, a region of high myelin signal was generally located within the hMT+ complex. However, there were considerable differences in the alignment of structural and functional markers between individuals. Our results suggest that variation in area identification for hMT+ based on structural and functional markers reflects individual differences in human regional brain architecture. PMID:27371764

  19. Evaluation of Hands-On Clinical Exam Performance Using Marker-less Video Tracking.

    PubMed

    Azari, David; Pugh, Carla; Laufer, Shlomi; Cohen, Elaine; Kwan, Calvin; Chen, Chia-Hsiung Eric; Yen, Thomas Y; Hu, Yu Hen; Radwin, Robert

    2014-09-01

    This study investigates the potential of using marker-less video tracking of the hands for evaluating hands-on clinical skills. Experienced family practitioners attending a national conference were recruited and asked to conduct a breast examination on a simulator that simulates different clinical presentations. Videos were made of the clinician's hands during the exam and video processing software for tracking hand motion to quantify hand motion kinematics was used. Practitioner motion patterns indicated consistent behavior of participants across multiple pathologies. Different pathologies exhibited characteristic motion patterns in the aggregate at specific parts of an exam, indicating consistent inter-participant behavior. Marker-less video kinematic tracking therefore shows promise in discriminating between different examination procedures, clinicians, and pathologies.

  20. Reconstructing 3-D skin surface motion for the DIET breast cancer screening system.

    PubMed

    Botterill, Tom; Lotz, Thomas; Kashif, Amer; Chase, J Geoffrey

    2014-05-01

    Digital image-based elasto-tomography (DIET) is a prototype system for breast cancer screening. A breast is imaged while being vibrated, and the observed surface motion is used to infer the internal stiffness of the breast, hence identifying tumors. This paper describes a computer vision system for accurately measuring 3-D surface motion. A model-based segmentation is used to identify the profile of the breast in each image, and the 3-D surface is reconstructed by fitting a model to the profiles. The surface motion is measured using a modern optical flow implementation customized to the application, then trajectories of points on the 3-D surface are given by fusing the optical flow with the reconstructed surfaces. On data from human trials, the system is shown to exceed the performance of an earlier marker-based system at tracking skin surface motion. We demonstrate that the system can detect a 10 mm tumor in a silicone phantom breast.

  1. Interaction of Perceptual Grouping and Crossmodal Temporal Capture in Tactile Apparent-Motion

    PubMed Central

    Chen, Lihan; Shi, Zhuanghua; Müller, Hermann J.

    2011-01-01

    Previous studies have shown that in tasks requiring participants to report the direction of apparent motion, task-irrelevant mono-beeps can “capture” visual motion perception when the beeps occur temporally close to the visual stimuli. However, the contributions of the relative timing of multimodal events and the event structure, modulating uni- and/or crossmodal perceptual grouping, remain unclear. To examine this question and extend the investigation to the tactile modality, the current experiments presented tactile two-tap apparent-motion streams, with an SOA of 400 ms between successive, left-/right-hand middle-finger taps, accompanied by task-irrelevant, non-spatial auditory stimuli. The streams were shown for 90 seconds, and participants' task was to continuously report the perceived (left- or rightward) direction of tactile motion. In Experiment 1, each tactile stimulus was paired with an auditory beep, though odd-numbered taps were paired with an asynchronous beep, with audiotactile SOAs ranging from −75 ms to 75 ms. Perceived direction of tactile motion varied systematically with audiotactile SOA, indicative of a temporal-capture effect. In Experiment 2, two audiotactile SOAs—one short (75 ms), one long (325 ms)—were compared. The long-SOA condition preserved the crossmodal event structure (so the temporal-capture dynamics should have been similar to that in Experiment 1), but both beeps now occurred temporally close to the taps on one side (even-numbered taps). The two SOAs were found to produce opposite modulations of apparent motion, indicative of an influence of crossmodal grouping. In Experiment 3, only odd-numbered, but not even-numbered, taps were paired with auditory beeps. This abolished the temporal-capture effect and, instead, a dominant percept of apparent motion from the audiotactile side to the tactile-only side was observed independently of the SOA variation. These findings suggest that asymmetric crossmodal grouping leads to an attentional modulation of apparent motion, which inhibits crossmodal temporal-capture effects. PMID:21383834

  2. Moving metal artifact reduction in cone-beam CT scans with implanted cylindrical gold markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toftegaard, Jakob, E-mail: jaktofte@rm.dk; Fledelius, Walther; Worm, Esben S.

    2014-12-15

    Purpose: Implanted gold markers for image-guided radiotherapy lead to streaking artifacts in cone-beam CT (CBCT) scans. Several methods for metal artifact reduction (MAR) have been published, but they all fail in scans with large motion. Here the authors propose and investigate a method for automatic moving metal artifact reduction (MMAR) in CBCT scans with cylindrical gold markers. Methods: The MMAR CBCT reconstruction method has six steps. (1) Automatic segmentation of the cylindrical markers in the CBCT projections. (2) Removal of each marker in the projections by replacing the pixels within a masked area with interpolated values. (3) Reconstruction of amore » marker-free CBCT volume from the manipulated CBCT projections. (4) Reconstruction of a standard CBCT volume with metal artifacts from the original CBCT projections. (5) Estimation of the three-dimensional (3D) trajectory during CBCT acquisition for each marker based on the segmentation in Step 1, and identification of the smallest ellipsoidal volume that encompasses 95% of the visited 3D positions. (6) Generation of the final MMAR CBCT reconstruction from the marker-free CBCT volume of Step 3 by replacing the voxels in the 95% ellipsoid with the corresponding voxels of the standard CBCT volume of Step 4. The MMAR reconstruction was performed retrospectively using a half-fan CBCT scan for 29 consecutive stereotactic body radiation therapy patients with 2–3 gold markers implanted in the liver. The metal artifacts of the MMAR reconstructions were scored and compared with a standard MAR reconstruction by counting the streaks and by calculating the standard deviation of the Hounsfield units in a region around each marker. Results: The markers were found with the same autosegmentation settings in 27 CBCT scans, while two scans needed slightly changed settings to find all markers automatically in Step 1 of the MMAR method. MMAR resulted in 15 scans with no streaking artifacts, 11 scans with 1–4 streaks, and 3 scans with severe streaking artifacts. The corresponding numbers for MAR were 8 (no streaks), 1 (1–4 streaks), and 20 (severe streaking artifacts). The MMAR method was superior to MAR in scans with more than 8 mm 3D marker motion and comparable to MAR for scans with less than 8 mm motion. In addition, the MMAR method was tested on a 4D CBCT reconstruction for which it worked equally well as for the 3D case. The markers in the 4D case had very low motion blur. Conclusions: An automatic method for MMAR in CBCT scans was proposed and shown to effectively remove almost all streaking artifacts in a large set of clinical CBCT scans with implanted gold markers in the liver. Residual streaking artifacts observed in three CBCT scans may be removed with better marker segmentation.« less

  3. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods.

    PubMed

    Greening, David W; Xu, Rong; Ji, Hong; Tauro, Bow J; Simpson, Richard J

    2015-01-01

    Exosomes are 40-150 nm extracellular vesicles that are released from a multitude of cell types, and perform diverse cellular functions including intercellular communication, antigen presentation, and transfer of tumorigenic proteins, mRNA and miRNA. Exosomes are important regulators of the cellular niche, and their altered characteristics in many diseases, such as cancer, suggest their importance for diagnostic and therapeutic applications, and as drug delivery vehicles. Exosomes have been purified from biological fluids and in vitro cell cultures using a variety of strategies and techniques. In this chapter, we reveal the protocol and key insights into the isolation, purification and characterization of exosomes, distinct from shed microvesicles and apoptotic blebs. Using the colorectal cancer cell line LIM1863 as a cell model, a comprehensive evaluation of exosome isolation methods including ultracentrifugation (UC-Exos), OptiPrep™ density-based separation (DG-Exos), and immunoaffinity capture using anti-EpCAM-coated magnetic beads (IAC-Exos) were examined. All exosome isolation methodologies contained 40-150 nm vesicles based on electron microscopy, and positive for exosome markers (Alix, TSG101, HSP70) based on immunoblotting. This protocol employed a proteomic profiling approach to characterize the protein composition of exosomes, and label-free spectral counting to evaluate the effectiveness of each method in exosome isolation. Based on the number of MS/MS spectra identified for exosome markers and proteins associated with their biogenesis, trafficking, and release, IAC-Exos was shown to be the most effective method to isolate exosomes. However, the use of density-based separation (DG-Exos) provides significant advantages for exosome isolation when the use of immunoaffinity capture is limited (due to antibody availability and suitability of exosome markers).

  4. A vision-based system for measuring the displacements of large structures: Simultaneous adaptive calibration and full motion estimation

    NASA Astrophysics Data System (ADS)

    Santos, C. Almeida; Costa, C. Oliveira; Batista, J.

    2016-05-01

    The paper describes a kinematic model-based solution to estimate simultaneously the calibration parameters of the vision system and the full-motion (6-DOF) of large civil engineering structures, namely of long deck suspension bridges, from a sequence of stereo images captured by digital cameras. Using an arbitrary number of images and assuming a smooth structure motion, an Iterated Extended Kalman Filter is used to recursively estimate the projection matrices of the cameras and the structure full-motion (displacement and rotation) over time, helping to meet the structure health monitoring fulfilment. Results related to the performance evaluation, obtained by numerical simulation and with real experiments, are reported. The real experiments were carried out in indoor and outdoor environment using a reduced structure model to impose controlled motions. In both cases, the results obtained with a minimum setup comprising only two cameras and four non-coplanar tracking points, showed a high accuracy results for on-line camera calibration and structure full motion estimation.

  5. Human Actions Analysis: Templates Generation, Matching and Visualization Applied to Motion Capture of Highly-Skilled Karate Athletes

    PubMed Central

    Piekarczyk, Marcin; Ogiela, Marek R.

    2017-01-01

    The aim of this paper is to propose and evaluate the novel method of template generation, matching, comparing and visualization applied to motion capture (kinematic) analysis. To evaluate our approach, we have used motion capture recordings (MoCap) of two highly-skilled black belt karate athletes consisting of 560 recordings of various karate techniques acquired with wearable sensors. We have evaluated the quality of generated templates; we have validated the matching algorithm that calculates similarities and differences between various MoCap data; and we have examined visualizations of important differences and similarities between MoCap data. We have concluded that our algorithms works the best when we are dealing with relatively short (2–4 s) actions that might be averaged and aligned with the dynamic time warping framework. In practice, the methodology is designed to optimize the performance of some full body techniques performed in various sport disciplines, for example combat sports and martial arts. We can also use this approach to generate templates or to compare the correct performance of techniques between various top sportsmen in order to generate a knowledge base of reference MoCap videos. The motion template generated by our method can be used for action recognition purposes. We have used the DTW classifier with angle-based features to classify various karate kicks. We have performed leave-one-out action recognition for the Shorin-ryu and Oyama karate master separately. In this case, 100% actions were correctly classified. In another experiment, we used templates generated from Oyama master recordings to classify Shorin-ryu master recordings and vice versa. In this experiment, the overall recognition rate was 94.2%, which is a very good result for this type of complex action. PMID:29125560

  6. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements

    PubMed Central

    Seth, Ajay; Matias, Ricardo; Veloso, António P.; Delp, Scott L.

    2016-01-01

    The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual’s anthropometry. We compared the model to “gold standard” bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models. PMID:26734761

  7. A Biomechanical Model of the Scapulothoracic Joint to Accurately Capture Scapular Kinematics during Shoulder Movements.

    PubMed

    Seth, Ajay; Matias, Ricardo; Veloso, António P; Delp, Scott L

    2016-01-01

    The complexity of shoulder mechanics combined with the movement of skin relative to the scapula makes it difficult to measure shoulder kinematics with sufficient accuracy to distinguish between symptomatic and asymptomatic individuals. Multibody skeletal models can improve motion capture accuracy by reducing the space of possible joint movements, and models are used widely to improve measurement of lower limb kinematics. In this study, we developed a rigid-body model of a scapulothoracic joint to describe the kinematics of the scapula relative to the thorax. This model describes scapular kinematics with four degrees of freedom: 1) elevation and 2) abduction of the scapula on an ellipsoidal thoracic surface, 3) upward rotation of the scapula normal to the thoracic surface, and 4) internal rotation of the scapula to lift the medial border of the scapula off the surface of the thorax. The surface dimensions and joint axes can be customized to match an individual's anthropometry. We compared the model to "gold standard" bone-pin kinematics collected during three shoulder tasks and found modeled scapular kinematics to be accurate to within 2 mm root-mean-squared error for individual bone-pin markers across all markers and movement tasks. As an additional test, we added random and systematic noise to the bone-pin marker data and found that the model reduced kinematic variability due to noise by 65% compared to Euler angles computed without the model. Our scapulothoracic joint model can be used for inverse and forward dynamics analyses and to compute joint reaction loads. The computational performance of the scapulothoracic joint model is well suited for real-time applications; it is freely available for use with OpenSim 3.2, and is customizable and usable with other OpenSim models.

  8. Relationships of a Circular Singer Arm Gesture to Acoustical and Perceptual Measures of Singing: A Motion Capture Study

    ERIC Educational Resources Information Center

    Brunkan, Melissa C.

    2016-01-01

    The purpose of this study was to validate previous research that suggests using movement in conjunction with singing tasks can affect intonation and perception of the task. Singers (N = 49) were video and audio recorded, using a motion capture system, while singing a phrase from a familiar song, first with no motion, and then while doing a low,…

  9. Registration of Large Motion Blurred Images

    DTIC Science & Technology

    2016-05-09

    in handling the dynamics of the capturing system, for example, a drone. CMOS sensors , used in recent times, when employed in these cameras produce...handling the dynamics of the capturing system, for example, a drone. CMOS sensors , used in recent times, when employed in these cameras produce two types...blur in the captured image when there is camera motion during exposure. However, contemporary CMOS sensors employ an electronic rolling shutter (RS

  10. Development of real-time motion capture system for 3D on-line games linked with virtual character

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyeong; Ryu, Young Kee; Cho, Hyung Suck

    2004-10-01

    Motion tracking method is being issued as essential part of the entertainment, medical, sports, education and industry with the development of 3-D virtual reality. Virtual human character in the digital animation and game application has been controlled by interfacing devices; mouse, joysticks, midi-slider, and so on. Those devices could not enable virtual human character to move smoothly and naturally. Furthermore, high-end human motion capture systems in commercial market are expensive and complicated. In this paper, we proposed a practical and fast motion capturing system consisting of optic sensors, and linked the data with 3-D game character with real time. The prototype experiment setup is successfully applied to a boxing game which requires very fast movement of human character.

  11. Accuracy of Jump-Mat Systems for Measuring Jump Height.

    PubMed

    Pueo, Basilio; Lipinska, Patrycja; Jiménez-Olmedo, José M; Zmijewski, Piotr; Hopkins, Will G

    2017-08-01

    Vertical-jump tests are commonly used to evaluate lower-limb power of athletes and nonathletes. Several types of equipment are available for this purpose. To compare the error of measurement of 2 jump-mat systems (Chronojump-Boscosystem and Globus Ergo Tester) with that of a motion-capture system as a criterion and to determine the modifying effect of foot length on jump height. Thirty-one young adult men alternated 4 countermovement jumps with 4 squat jumps. Mean jump height and standard deviations representing technical error of measurement arising from each device and variability arising from the subjects themselves were estimated with a novel mixed model and evaluated via standardization and magnitude-based inference. The jump-mat systems produced nearly identical measures of jump height (differences in means and in technical errors of measurement ≤1 mm). Countermovement and squat-jump height were both 13.6 cm higher with motion capture (90% confidence limits ±0.3 cm), but this very large difference was reduced to small unclear differences when adjusted to a foot length of zero. Variability in countermovement and squat-jump height arising from the subjects was small (1.1 and 1.5 cm, respectively, 90% confidence limits ±0.3 cm); technical error of motion capture was similar in magnitude (1.7 and 1.6 cm, ±0.3 and ±0.4 cm), and that of the jump mats was similar or smaller (1.2 and 0.3 cm, ±0.5 and ±0.9 cm). The jump-mat systems provide trustworthy measurements for monitoring changes in jump height. Foot length can explain the substantially higher jump height observed with motion capture.

  12. The efficacy of interactive, motion capture-based rehabilitation on functional outcomes in an inpatient stroke population: a randomized controlled trial

    PubMed Central

    Cannell, John; Jovic, Emelyn; Rathjen, Amy; Lane, Kylie; Tyson, Anna M; Callisaya, Michele L; Smith, Stuart T; Ahuja, Kiran DK; Bird, Marie-Louise

    2017-01-01

    Objective: To compare the efficacy of novel interactive, motion capture-rehabilitation software to usual care stroke rehabilitation on physical function. Design: Randomized controlled clinical trial. Setting: Two subacute hospital rehabilitation units in Australia. Participants: In all, 73 people less than six months after stroke with reduced mobility and clinician determined capacity to improve. Interventions: Both groups received functional retraining and individualized programs for up to an hour, on weekdays for 8–40 sessions (dose matched). For the intervention group, this individualized program used motivating virtual reality rehabilitation and novel gesture controlled interactive motion capture software. For usual care, the individualized program was delivered in a group class on one unit and by rehabilitation assistant 1:1 on the other. Main measures: Primary outcome was standing balance (functional reach). Secondary outcomes were lateral reach, step test, sitting balance, arm function, and walking. Results: Participants (mean 22 days post-stroke) attended mean 14 sessions. Both groups improved (mean (95% confidence interval)) on primary outcome functional reach (usual care 3.3 (0.6 to 5.9), intervention 4.1 (−3.0 to 5.0) cm) with no difference between groups (P = 0.69) on this or any secondary measures. No differences between the rehabilitation units were seen except in lateral reach (less affected side) (P = 0.04). No adverse events were recorded during therapy. Conclusion: Interactive, motion capture rehabilitation for inpatients post stroke produced functional improvements that were similar to those achieved by usual care stroke rehabilitation, safely delivered by either a physical therapist or a rehabilitation assistant. PMID:28719977

  13. Automated Quantification of the Landing Error Scoring System With a Markerless Motion-Capture System.

    PubMed

    Mauntel, Timothy C; Padua, Darin A; Stanley, Laura E; Frank, Barnett S; DiStefano, Lindsay J; Peck, Karen Y; Cameron, Kenneth L; Marshall, Stephen W

    2017-11-01

      The Landing Error Scoring System (LESS) can be used to identify individuals with an elevated risk of lower extremity injury. The limitation of the LESS is that raters identify movement errors from video replay, which is time-consuming and, therefore, may limit its use by clinicians. A markerless motion-capture system may be capable of automating LESS scoring, thereby removing this obstacle.   To determine the reliability of an automated markerless motion-capture system for scoring the LESS.   Cross-sectional study.   United States Military Academy.   A total of 57 healthy, physically active individuals (47 men, 10 women; age = 18.6 ± 0.6 years, height = 174.5 ± 6.7 cm, mass = 75.9 ± 9.2 kg).   Participants completed 3 jump-landing trials that were recorded by standard video cameras and a depth camera. Their movement quality was evaluated by expert LESS raters (standard video recording) using the LESS rubric and by software that automates LESS scoring (depth-camera data). We recorded an error for a LESS item if it was present on at least 2 of 3 jump-landing trials. We calculated κ statistics, prevalence- and bias-adjusted κ (PABAK) statistics, and percentage agreement for each LESS item. Interrater reliability was evaluated between the 2 expert rater scores and between a consensus expert score and the markerless motion-capture system score.   We observed reliability between the 2 expert LESS raters (average κ = 0.45 ± 0.35, average PABAK = 0.67 ± 0.34; percentage agreement = 0.83 ± 0.17). The markerless motion-capture system had similar reliability with consensus expert scores (average κ = 0.48 ± 0.40, average PABAK = 0.71 ± 0.27; percentage agreement = 0.85 ± 0.14). However, reliability was poor for 5 LESS items in both LESS score comparisons.   A markerless motion-capture system had the same level of reliability as expert LESS raters, suggesting that an automated system can accurately assess movement. Therefore, clinicians can use the markerless motion-capture system to reliably score the LESS without being limited by the time requirements of manual LESS scoring.

  14. Derivation of capture probabilities for the corotation eccentric mean motion resonances

    NASA Astrophysics Data System (ADS)

    El Moutamid, Maryame; Sicardy, Bruno; Renner, Stéfan

    2017-08-01

    We study in this paper the capture of a massless particle into an isolated, first-order corotation eccentric resonance (CER), in the framework of the planar, eccentric and restricted three-body problem near a m + 1: m mean motion commensurability (m integer). While capture into Lindblad eccentric resonances (where the perturber's orbit is circular) has been investigated years ago, capture into CER (where the perturber's orbit is elliptic) has not yet been investigated in detail. Here, we derive the generic equations of motion near a CER in the general case where both the perturber and the test particle migrate. We derive the probability of capture in that context, and we examine more closely two particular cases: (I) if only the perturber is migrating, capture is possible only if the migration is outward from the primary. Notably, the probability of capture is independent of the way the perturber migrates outward; (II) if only the test particle is migrating, then capture is possible only if the algebraic value of its migration rate is a decreasing function of orbital radius. In this case, the probability of capture is proportional to the radial gradient of migration. These results differ from the capture into Lindblad eccentric resonance (LER), where it is necessary that the orbits of the perturber and the test particle converge for capture to be possible.

  15. Predictive local receptive fields based respiratory motion tracking for motion-adaptive radiotherapy.

    PubMed

    Yubo Wang; Tatinati, Sivanagaraja; Liyu Huang; Kim Jeong Hong; Shafiq, Ghufran; Veluvolu, Kalyana C; Khong, Andy W H

    2017-07-01

    Extracranial robotic radiotherapy employs external markers and a correlation model to trace the tumor motion caused by the respiration. The real-time tracking of tumor motion however requires a prediction model to compensate the latencies induced by the software (image data acquisition and processing) and hardware (mechanical and kinematic) limitations of the treatment system. A new prediction algorithm based on local receptive fields extreme learning machines (pLRF-ELM) is proposed for respiratory motion prediction. All the existing respiratory motion prediction methods model the non-stationary respiratory motion traces directly to predict the future values. Unlike these existing methods, the pLRF-ELM performs prediction by modeling the higher-level features obtained by mapping the raw respiratory motion into the random feature space of ELM instead of directly modeling the raw respiratory motion. The developed method is evaluated using the dataset acquired from 31 patients for two horizons in-line with the latencies of treatment systems like CyberKnife. Results showed that pLRF-ELM is superior to that of existing prediction methods. Results further highlight that the abstracted higher-level features are suitable to approximate the nonlinear and non-stationary characteristics of respiratory motion for accurate prediction.

  16. Refraction-compensated motion tracking of unrestrained small animals in positron emission tomography.

    PubMed

    Kyme, Andre; Meikle, Steven; Baldock, Clive; Fulton, Roger

    2012-08-01

    Motion-compensated radiotracer imaging of fully conscious rodents represents an important paradigm shift for preclinical investigations. In such studies, if motion tracking is performed through a transparent enclosure containing the awake animal, light refraction at the interface will introduce errors in stereo pose estimation. We have performed a thorough investigation of how this impacts the accuracy of pose estimates and the resulting motion correction, and developed an efficient method to predict and correct for refraction-based error. The refraction model underlying this study was validated using a state-of-the-art motion tracking system. Refraction-based error was shown to be dependent on tracking marker size, working distance, and interface thickness and tilt. Correcting for refraction error improved the spatial resolution and quantitative accuracy of motion-corrected positron emission tomography images. Since the methods are general, they may also be useful in other contexts where data are corrupted by refraction effects. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  17. Validity of clinical outcome measures to evaluate ankle range of motion during the weight-bearing lunge test.

    PubMed

    Hall, Emily A; Docherty, Carrie L

    2017-07-01

    To determine the concurrent validity of standard clinical outcome measures compared to laboratory outcome measure while performing the weight-bearing lunge test (WBLT). Cross-sectional study. Fifty participants performed the WBLT to determine dorsiflexion ROM using four different measurement techniques: dorsiflexion angle with digital inclinometer at 15cm distal to the tibial tuberosity (°), dorsiflexion angle with inclinometer at tibial tuberosity (°), maximum lunge distance (cm), and dorsiflexion angle using a 2D motion capture system (°). Outcome measures were recorded concurrently during each trial. To establish concurrent validity, Pearson product-moment correlation coefficients (r) were conducted, comparing each dependent variable to the 2D motion capture analysis (identified as the reference standard). A higher correlation indicates strong concurrent validity. There was a high correlation between each measurement technique and the reference standard. Specifically the correlation between the inclinometer placement at 15cm below the tibial tuberosity (44.9°±5.5°) and the motion capture angle (27.0°±6.0°) was r=0.76 (p=0.001), between the inclinometer placement at the tibial tuberosity angle (39.0°±4.6°) and the motion capture angle was r=0.71 (p=0.001), and between the distance from the wall clinical measure (10.3±3.0cm) to the motion capture angle was r=0.74 (p=0.001). This study determined that the clinical measures used during the WBLT have a high correlation with the reference standard for assessing dorsiflexion range of motion. Therefore, obtaining maximum lunge distance and inclinometer angles are both valid assessments during the weight-bearing lunge test. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Scene-aware joint global and local homographic video coding

    NASA Astrophysics Data System (ADS)

    Peng, Xiulian; Xu, Jizheng; Sullivan, Gary J.

    2016-09-01

    Perspective motion is commonly represented in video content that is captured and compressed for various applications including cloud gaming, vehicle and aerial monitoring, etc. Existing approaches based on an eight-parameter homography motion model cannot deal with this efficiently, either due to low prediction accuracy or excessive bit rate overhead. In this paper, we consider the camera motion model and scene structure in such video content and propose a joint global and local homography motion coding approach for video with perspective motion. The camera motion is estimated by a computer vision approach, and camera intrinsic and extrinsic parameters are globally coded at the frame level. The scene is modeled as piece-wise planes, and three plane parameters are coded at the block level. Fast gradient-based approaches are employed to search for the plane parameters for each block region. In this way, improved prediction accuracy and low bit costs are achieved. Experimental results based on the HEVC test model show that up to 9.1% bit rate savings can be achieved (with equal PSNR quality) on test video content with perspective motion. Test sequences for the example applications showed a bit rate savings ranging from 3.7 to 9.1%.

  19. Capture of visual direction in dynamic vergence is reduced with flashed monocular lines.

    PubMed

    Jaschinski, Wolfgang; Jainta, Stephanie; Schürer, Michael

    2006-08-01

    The visual direction of a continuously presented monocular object is captured by the visual direction of a closely adjacent binocular object, which questions the reliability of nonius lines for measuring vergence. This was shown by Erkelens, C. J., and van Ee, R. (1997a,b) [Capture of the visual direction: An unexpected phenomenon in binocular vision. Vision Research, 37, 1193-1196; Capture of the visual direction of monocular objects by adjacent binocular objects. Vision Research, 37, 1735-1745] stimulating dynamic vergence by a counter phase oscillation of two square random-dot patterns (one to each eye) that contained a smaller central dot-free gap (of variable width) with a vertical monocular line oscillating in phase with the random-dot pattern of the respective eye; subjects adjusted the motion-amplitude of the line until it was perceived as (nearly) stationary. With a continuously presented monocular line, we replicated capture of visual direction provided the dot-free gap was narrow: the adjusted motion-amplitude of the line was similar as the motion-amplitude of the random-dot pattern, although large vergence errors occurred. However, when we flashed the line for 67 ms at the moments of maximal and minimal disparity of the vergence stimulus, we found that the adjusted motion-amplitude of the line was smaller; thus, the capture effect appeared to be reduced with flashed nonius lines. Accordingly, we found that the objectively measured vergence gain was significantly correlated (r=0.8) with the motion-amplitude of the flashed monocular line when the separation between the line and the fusion contour was at least 32 min arc. In conclusion, if one wishes to estimate the dynamic vergence response with psychophysical methods, effects of capture of visual direction can be reduced by using flashed nonius lines.

  20. Pixel-wise deblurring imaging system based on active vision for structural health monitoring at a speed of 100 km/h

    NASA Astrophysics Data System (ADS)

    Hayakawa, Tomohiko; Moko, Yushi; Morishita, Kenta; Ishikawa, Masatoshi

    2018-04-01

    In this paper, we propose a pixel-wise deblurring imaging (PDI) system based on active vision for compensation of the blur caused by high-speed one-dimensional motion between a camera and a target. The optical axis is controlled by back-and-forth motion of a galvanometer mirror to compensate the motion. High-spatial-resolution image captured by our system in high-speed motion is useful for efficient and precise visual inspection, such as visually judging abnormal parts of a tunnel surface to prevent accidents; hence, we applied the PDI system for structural health monitoring. By mounting the system onto a vehicle in a tunnel, we confirmed significant improvement in image quality for submillimeter black-and-white stripes and real tunnel-surface cracks at a speed of 100 km/h.

  1. Optical Indoor Positioning System Based on TFT Technology

    PubMed Central

    Gőzse, István

    2015-01-01

    A novel indoor positioning system is presented in the paper. Similarly to the camera-based solutions, it is based on visual detection, but it conceptually differs from the classical approaches. First, the objects are marked by LEDs, and second, a special sensing unit is applied, instead of a camera, to track the motion of the markers. This sensing unit realizes a modified pinhole camera model, where the light-sensing area is fixed and consists of a small number of sensing elements (photodiodes), and it is the hole that can be moved. The markers are tracked by controlling the motion of the hole, such that the light of the LEDs always hits the photodiodes. The proposed concept has several advantages: Apart from its low computational demands, it is insensitive to the disturbing ambient light. Moreover, as every component of the system can be realized by simple and inexpensive elements, the overall cost of the system can be kept low. PMID:26712753

  2. Human motion retrieval from hand-drawn sketch.

    PubMed

    Chao, Min-Wen; Lin, Chao-Hung; Assa, Jackie; Lee, Tong-Yee

    2012-05-01

    The rapid growth of motion capture data increases the importance of motion retrieval. The majority of the existing motion retrieval approaches are based on a labor-intensive step in which the user browses and selects a desired query motion clip from the large motion clip database. In this work, a novel sketching interface for defining the query is presented. This simple approach allows users to define the required motion by sketching several motion strokes over a drawn character, which requires less effort and extends the users’ expressiveness. To support the real-time interface, a specialized encoding of the motions and the hand-drawn query is required. Here, we introduce a novel hierarchical encoding scheme based on a set of orthonormal spherical harmonic (SH) basis functions, which provides a compact representation, and avoids the CPU/processing intensive stage of temporal alignment used by previous solutions. Experimental results show that the proposed approach can well retrieve the motions, and is capable of retrieve logically and numerically similar motions, which is superior to previous approaches. The user study shows that the proposed system can be a useful tool to input motion query if the users are familiar with it. Finally, an application of generating a 3D animation from a hand-drawn comics strip is demonstrated.

  3. Potential and Pitfalls of High-Rate GPS

    NASA Astrophysics Data System (ADS)

    Smalley, R.

    2008-12-01

    With completion of the Plate Boundary Observatory (PBO), we are poised to capture a dense sampling of strong motion displacement time series from significant earthquakes in western North America with High-Rate GPS (HRGPS) data collected at 1 and 5 Hz. These data will provide displacement time series at potentially zero epicentral distance that, if valid, have great potential to contribute to understanding earthquake rupture processes. The caveat relates to whether or not the data are aliased: is the sampling rate fast enough to accurately capture the displacement's temporal history? Using strong motion recordings in the immediate epicentral area of several 6.77.5 events, which can be reasonably expected in the PBO footprint, even the 5 Hz data may be aliased. Some sort of anti-alias processing, currently not applied, will therefore necessary at the closest stations to guarantee the veracity of the displacement time series. We discuss several solutions based on a-priori knowledge of the expected ground motion and practicality of implementation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huguet, Florence; Department of Radiation Oncology, Hôpitaux Universitaires Paris Est, Hôpital Tenon, University Paris VI, Paris; Yorke, Ellen D.

    Purpose: To assess intrafractional positional variations of pancreatic tumors using 4-dimensional computed tomography (4D-CT), their impact on gross tumor volume (GTV) coverage, the reliability of biliary stent, fiducial seeds, and the real-time position management (RPM) external marker as tumor surrogates for setup of respiratory gated treatment, and to build a correlative model of tumor motion. Methods and Materials: We analyzed the respiration-correlated 4D-CT images acquired during simulation of 36 patients with either a biliary stent (n=16) or implanted fiducials (n=20) who were treated with RPM respiratory gated intensity modulated radiation therapy for locally advanced pancreatic cancer. Respiratory displacement relative to end-exhalationmore » was measured for the GTV, the biliary stent, or fiducial seeds, and the RPM marker. The results were compared between the full respiratory cycle and the gating interval. Linear mixed model was used to assess the correlation of GTV motion with the potential surrogate markers. Results: The average ± SD GTV excursions were 0.3 ± 0.2 cm in the left-right direction, 0.6 ± 0.3 cm in the anterior-posterior direction, and 1.3 ± 0.7 cm in the superior-inferior direction. Gating around end-exhalation reduced GTV motion by 46% to 60%. D95% was at least the prescribed 56 Gy in 76% of patients. GTV displacement was associated with the RPM marker, the biliary stent, and the fiducial seeds. The correlation was better with fiducial seeds and with biliary stent. Conclusions: Respiratory gating reduced the margin necessary for radiation therapy for pancreatic tumors. GTV motion was well correlated with biliary stent or fiducial seed displacements, validating their use as surrogates for daily assessment of GTV position during treatment. A patient-specific internal target volume based on 4D-CT is recommended both for gated and not-gated treatment; otherwise, our model can be used to predict the degree of GTV motion.« less

  5. Argon Bubble Transport and Capture in Continuous Casting with an External Magnetic Field Using GPU-Based Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Jin, Kai

    Continuous casting produces over 95% of steel in the world today, hence even small improvements to this important industrial process can have large economic impact. In the continuous casting of steel process, argon gas is usually injected at the slide gate or stopper rod to prevent clogging, but entrapped bubbles may cause defects in the final product. Many defects in this process are related to the transient fluid flow in the mold region of the caster. Electromagnetic braking (EMBr) device is often used at high casting speed to modify the mold flow, reduce the surface velocity and fluctuation. This work studies the physics in continuous casting process including effects of EMBr on the motion of fluid flow in the mold region, and transport and capture of bubbles in the solidification processes. A computational effective Reynolds-averaged Navier-Stokes (RANS) model and a high fidelity Large Eddy Simulation (LES) model are used to understand the motion of the molten steel flow. A general purpose multi-GPU Navier-Stokes solver, CUFLOW, is developed. A Coherent-Structure Smagorinsky LES model is implemented to model the turbulent flow. A two-way coupled Lagrangian particle tracking model is added to track the motion of argon bubbles. A particle/bubble capture model based on force balance at dendrite tips is validated and used to study the capture of argon bubbles by the solidifying steel shell. To investigate the effects of EMBr on the turbulent molten steel flow and bubble transport, an electrical potential method is implemented to solve the magnetohydrodynamics equations. Volume of Fluid (VOF) simulations are carried out to understand the additional resistance force on moving argon bubbles caused by adding transverse magnetic field. A modified drag coefficient is extrapolated from the results and used in the two-way coupled Eulerian-Lagrangian model to predict the argon bubble transport in a caster with EMBr. A hook capture model is developed to understand the effects of hooks on argon bubble capture.

  6. Impact of Sensor Misplacement on Dynamic Time Warping Based Human Activity Recognition using Wearable Computers.

    PubMed

    Kale, Nimish; Lee, Jaeseong; Lotfian, Reza; Jafari, Roozbeh

    2012-10-01

    Daily living activity monitoring is important for early detection of the onset of many diseases and for improving quality of life especially in elderly. A wireless wearable network of inertial sensor nodes can be used to observe daily motions. Continuous stream of data generated by these sensor networks can be used to recognize the movements of interest. Dynamic Time Warping (DTW) is a widely used signal processing method for time-series pattern matching because of its robustness to variations in time and speed as opposed to other template matching methods. Despite this flexibility, for the application of activity recognition, DTW can only find the similarity between the template of a movement and the incoming samples, when the location and orientation of the sensor remains unchanged. Due to this restriction, small sensor misplacements can lead to a decrease in the classification accuracy. In this work, we adopt DTW distance as a feature for real-time detection of human daily activities like sit to stand in the presence of sensor misplacement. To measure this performance of DTW, we need to create a large number of sensor configurations while the sensors are rotated or misplaced. Creating a large number of closely spaced sensors is impractical. To address this problem, we use the marker based optical motion capture system and generate simulated inertial sensor data for different locations and orientations on the body. We study the performance of the DTW under these conditions to determine the worst-case sensor location variations that the algorithm can accommodate.

  7. Physical activity classification using time-frequency signatures of motion artifacts in multi-channel electrical impedance plethysmographs.

    PubMed

    Khan, Hassan Aqeel; Gore, Amit; Ashe, Jeff; Chakrabartty, Shantanu

    2017-07-01

    Physical activities are known to introduce motion artifacts in electrical impedance plethysmographic (EIP) sensors. Existing literature considers motion artifacts as a nuisance and generally discards the artifact containing portion of the sensor output. This paper examines the notion of exploiting motion artifacts for detecting the underlying physical activities which give rise to the artifacts in question. In particular, we investigate whether the artifact pattern associated with a physical activity is unique; and does it vary from one human-subject to another? Data was recorded from 19 adult human-subjects while conducting 5 distinct, artifact inducing, activities. A set of novel features based on the time-frequency signatures of the sensor outputs are then constructed. Our analysis demonstrates that these features enable high accuracy detection of the underlying physical activity. Using an SVM classifier we are able to differentiate between 5 distinct physical activities (coughing, reaching, walking, eating and rolling-on-bed) with an average accuracy of 85.46%. Classification is performed solely using features designed specifically to capture the time-frequency signatures of different physical activities. This enables us to measure both respiratory and motion information using only one type of sensor. This is in contrast to conventional approaches to physical activity monitoring; which rely on additional hardware such as accelerometers to capture activity information.

  8. Performance analysis of visual tracking algorithms for motion-based user interfaces on mobile devices

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan; Rangaswamy, Karthik; Tedjokusumo, Jefry; Zhou, ZhiYing

    2008-02-01

    Determining the self-motion of a camera is useful for many applications. A number of visual motion-tracking algorithms have been developed till date, each with their own advantages and restrictions. Some of them have also made their foray into the mobile world, powering augmented reality-based applications on phones with inbuilt cameras. In this paper, we compare the performances of three feature or landmark-guided motion tracking algorithms, namely marker-based tracking with MXRToolkit, face tracking based on CamShift, and MonoSLAM. We analyze and compare the complexity, accuracy, sensitivity, robustness and restrictions of each of the above methods. Our performance tests are conducted over two stages: The first stage of testing uses video sequences created with simulated camera movements along the six degrees of freedom in order to compare accuracy in tracking, while the second stage analyzes the robustness of the algorithms by testing for manipulative factors like image scaling and frame-skipping.

  9. Quantitative analysis of arm movement smoothness

    NASA Astrophysics Data System (ADS)

    Szczesna, Agnieszka; Błaszczyszyn, Monika

    2017-07-01

    The paper deals with the problem of motion data quantitative smoothness analysis. We investigated values of movement unit, fluidity and jerk for healthy and paralyzed arm of patients with hemiparesis after stroke. Patients were performing drinking task. To validate the approach, movement of 24 patients were captured using optical motion capture system.

  10. Implementation of Free-Formulation-Based Flat Shell Elements into NASA Comet Code and Development of Nonlinear Shallow Shell Element

    NASA Technical Reports Server (NTRS)

    Barut, A.; Madenci, Erdogan; Tessler, A.

    1997-01-01

    This study presents a transient nonlinear finite element analysis within the realm of a multi-body dynamics formulation for determining the dynamic response of a moderately thick laminated shell undergoing a rapid and large rotational motion and nonlinear elastic deformations. Nonlinear strain measure and rotation, as well as 'the transverse shear deformation, are explicitly included in the formulation in order to capture the proper motion-induced stiffness of the laminate. The equations of motion are derived from the virtual work principle. The analysis utilizes a shear deformable shallow shell element along with the co-rotational form of the updated Lagrangian formulation. The shallow shell element formulation is based on the Reissner-Mindlin and Marguerre theory.

  11. Assessment of planarity of the golf swing based on the functional swing plane of the clubhead and motion planes of the body points.

    PubMed

    Kwon, Young-Hoo; Como, Christopher S; Singhal, Kunal; Lee, Sangwoo; Han, Ki Hoon

    2012-06-01

    The purposes of this study were (1) to determine the functional swing plane (FSP) of the clubhead and the motion planes (MPs) of the shoulder/arm points and (2) to assess planarity of the golf swing based on the FSP and the MPs. The swing motions of 14 male skilled golfers (mean handicap = -0.5 +/- 2.0) using three different clubs (driver, 5-iron, and pitching wedge) were captured by an optical motion capture system (250Hz). The FSP and MPs along with their slope/relative inclination and direction/direction of inclination were obtained using a new trajectory-plane fitting method. The slope and direction of the FSP revealed a significant club effect (p < 0.001). The relative inclination and direction of inclination of the MP showed significant point (p < 0.001) and club (p < 0.001) effects and interaction (p < 0.001). Maximum deviations of the points from the FSP revealed a significant point effect (p < 0.001) and point-club interaction (p < 0.001). It was concluded that skilled golfers exhibited well-defined and consistent FSP and MPs, and the shoulder/arm points moved on vastly different MPs and exhibited large deviations from the FSP. Skilled golfers in general exhibited semi-planar downswings with two distinct phases: a transition phase and a planar execution phase.

  12. Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet.

    PubMed

    Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang

    2015-12-01

    As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.

  13. SU-G-BRA-12: Development of An Intra-Fractional Motion Tracking and Dose Reconstruction System for Adaptive Stereotactic Body Radiation Therapy in High-Risk Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezaeian, N Hassan; Chi, Y; Tian, Z

    Purpose: A clinical trial on stereotactic body radiation therapy (SBRT) for high-risk prostate cancer is undergoing at our institution. In addition to escalating dose to the prostate, we have increased dose to intra-prostatic lesions. Intra-fractional prostate motion deteriorates well planned radiation dose, especially for the small intra-prostatic lesions. To solve this problem, we have developed a motion tracking and 4D dose-reconstruction system to facilitate adaptive re-planning. Methods: Patients in the clinical trial were treated with VMAT using four arcs and 10 FFF beam. KV triggered x-ray projections were taken every 3 sec during delivery to acquire 2D projections of 3Dmore » anatomy at the direction orthogonal to the therapeutic beam. Each patient had three implanted prostate markers. Our developed system first determined 2D projection locations of these markers and then 3D prostate translation and rotation via 2D/3D registration of the markers. Using delivery log files, our GPU-based Monte Carlo tool (goMC) reconstructed dose corresponding to each triggered image. The calculated 4D dose distributions were further aggregated to yield the delivered dose. Results: We first tested each module in our system. MC dose engine were commissioned to our treatment planning system with dose difference of <0.5%. For motion tracking, 1789 kV projections from 7 patients were acquired. The 2D marker location error was <1 mm. For 3D motion tracking, root mean square (RMS) errors along LR, AP, and CC directions were 0.26mm, 0.36mm, and 0.01mm respectively in simulation studies and 1.99mm, 1.37mm, and 0.22mm in phantom studies. We also tested the entire system workflow. Our system was able to reconstruct delivered dose. Conclusion: We have developed a functional intra-fractional motion tracking and 4D dose re-construction system to support our clinical trial on adaptive high-risk prostate cancer SBRT. Comprehensive evaluations have shown the capability and accuracy of our system.« less

  14. Are recent empirical directivity models sufficient in capturing near-fault directivity effect?

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Shin; Cotton, Fabrice; Pagani, Marco; Weatherill, Graeme; Reshi, Owais; Mai, Martin

    2017-04-01

    It has been widely observed that the ground motion variability in the near field can be significantly higher than that commonly reported in published GMPEs, and this has been suggested to be a consequence of directivity. To capture the spatial variation in ground motion amplitude and frequency caused by the near-fault directivity effect, several models for engineering applications have been developed using empirical or, more recently, the combination of empirical and simulation data. Many research works have indicated that the large velocity pulses mainly observed in the near-field are primarily related to slip heterogeneity (i.e., asperities), suggesting that the slip heterogeneity is a more dominant controlling factor than the rupture velocity or source rise time function. The first generation of broadband directivity models for application in ground motion prediction do not account for heterogeneity of slip and rupture speed. With the increased availability of strong motion recordings (e.g., NGA-West 2 database) in the near-fault region, the directivity models moved from broadband to narrowband models to include the magnitude dependence of the period of the rupture directivity pulses, wherein the pulses are believed to be closely related to the heterogeneity of slip distribution. After decades of directivity models development, does the latest generation of models - i.e. the one including narrowband directivity models - better capture the near-fault directivity effects, particularly in presence of strong slip heterogeneity? To address this question, a set of simulated motions for an earthquake rupture scenario, with various kinematic slip models and hypocenter locations, are used as a basis for a comparison with the directivity models proposed by the NGA-West 2 project for application with ground motion prediction equations incorporating a narrowband directivity model. The aim of this research is to gain better insights on the accuracy of narrowband directivity models under conditions commonly encountered in the real world. Our preliminary result shows that empirical models including directivity factors better predict physics based ground-motion and their spatial variability than classical empirical models. However, the results clearly indicate that it is still a challenge for the directivity models to capture the strong directivity effect if a high level of slip heterogeneity is involved during the source rupture process.

  15. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset.

    PubMed

    Chen, Xinlin; Xiao, Guangzong; Luo, Hui; Xiong, Wei; Yang, Kaiyong

    2016-04-04

    A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems.

  16. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    NASA Astrophysics Data System (ADS)

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  17. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling.

    PubMed

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-02-07

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp-Davis-Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations.

  18. 4D cone-beam CT reconstruction using multi-organ meshes for sliding motion modeling

    PubMed Central

    Zhong, Zichun; Gu, Xuejun; Mao, Weihua; Wang, Jing

    2016-01-01

    A simultaneous motion estimation and image reconstruction (SMEIR) strategy was proposed for 4D cone-beam CT (4D-CBCT) reconstruction and showed excellent results in both phantom and lung cancer patient studies. In the original SMEIR algorithm, the deformation vector field (DVF) was defined on voxel grid and estimated by enforcing a global smoothness regularization term on the motion fields. The objective of this work is to improve the computation efficiency and motion estimation accuracy of SMEIR for 4D-CBCT through developing a multi-organ meshing model. Feature-based adaptive meshes were generated to reduce the number of unknowns in the DVF estimation and accurately capture the organ shapes and motion. Additionally, the discontinuity in the motion fields between different organs during respiration was explicitly considered in the multi-organ mesh model. This will help with the accurate visualization and motion estimation of the tumor on the organ boundaries in 4D-CBCT. To further improve the computational efficiency, a GPU-based parallel implementation was designed. The performance of the proposed algorithm was evaluated on a synthetic sliding motion phantom, a 4D NCAT phantom, and four lung cancer patients. The proposed multi-organ mesh based strategy outperformed the conventional Feldkamp–Davis–Kress, iterative total variation minimization, original SMEIR and single meshing method based on both qualitative and quantitative evaluations. PMID:26758496

  19. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    PubMed Central

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-01-01

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868

  20. Motion field estimation for a dynamic scene using a 3D LiDAR.

    PubMed

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  1. Biofidelic Human Activity Modeling and Simulation with Large Variability

    DTIC Science & Technology

    2014-11-25

    A systematic approach was developed for biofidelic human activity modeling and simulation by using body scan data and motion capture data to...replicate a human activity in 3D space. Since technologies for simultaneously capturing human motion and dynamic shapes are not yet ready for practical use, a...that can replicate a human activity in 3D space with the true shape and true motion of a human. Using this approach, a model library was built to

  2. Motion representation of the long fingers: a proposal for the definitions of new anatomical frames.

    PubMed

    Coupier, Jérôme; Moiseev, Fédor; Feipel, Véronique; Rooze, Marcel; Van Sint Jan, Serge

    2014-04-11

    Despite the availability of the International Society of Biomechanics (ISB) recommendations for the orientation of anatomical frames, no consensus exists about motion representations related to finger kinematics. This paper proposes novel anatomical frames for motion representation of the phalangeal segments of the long fingers. A three-dimensional model of a human forefinger was acquired from a non-pathological fresh-frozen hand. Medical imaging was used to collect phalangeal discrete positions. Data processing was performed using a customized software interface ("lhpFusionBox") to create a specimen-specific model and to reconstruct the discrete motion path. Five examiners virtually palpated two sets of landmarks. These markers were then used to build anatomical frames following two methods: a reference method following ISB recommendations and a newly-developed method based on the mean helical axis (HA). Motion representations were obtained and compared between examiners. Virtual palpation precision was around 1mm, which is comparable to results from the literature. The comparison of the two methods showed that the helical axis method seemed more reproducible between examiners especially for secondary, or accessory, motions. Computed Root Mean Square distances comparing methods showed that the ISB method displayed a variability 10 times higher than the HA method. The HA method seems to be suitable for finger motion representation using discrete positions from medical imaging. Further investigations are required before being able to use the methodology with continuous tracking of markers set on the subject's hand. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Joint Center Estimation Using Single-Frame Optimization: Part 1: Numerical Simulation.

    PubMed

    Frick, Eric; Rahmatalla, Salam

    2018-04-04

    The biomechanical models used to refine and stabilize motion capture processes are almost invariably driven by joint center estimates, and any errors in joint center calculation carry over and can be compounded when calculating joint kinematics. Unfortunately, accurate determination of joint centers is a complex task, primarily due to measurements being contaminated by soft-tissue artifact (STA). This paper proposes a novel approach to joint center estimation implemented via sequential application of single-frame optimization (SFO). First, the method minimizes the variance of individual time frames’ joint center estimations via the developed variance minimization method to obtain accurate overall initial conditions. These initial conditions are used to stabilize an optimization-based linearization of human motion that determines a time-varying joint center estimation. In this manner, the complex and nonlinear behavior of human motion contaminated by STA can be captured as a continuous series of unique rigid-body realizations without requiring a complex analytical model to describe the behavior of STA. This article intends to offer proof of concept, and the presented method must be further developed before it can be reasonably applied to human motion. Numerical simulations were introduced to verify and substantiate the efficacy of the proposed methodology. When directly compared with a state-of-the-art inertial method, SFO reduced the error due to soft-tissue artifact in all cases by more than 45%. Instead of producing a single vector value to describe the joint center location during a motion capture trial as existing methods often do, the proposed method produced time-varying solutions that were highly correlated ( r > 0.82) with the true, time-varying joint center solution.

  4. Accuracy and Reliability of the Kinect Version 2 for Clinical Measurement of Motor Function

    PubMed Central

    Kayser, Bastian; Mansow-Model, Sebastian; Verrel, Julius; Paul, Friedemann; Brandt, Alexander U.; Schmitz-Hübsch, Tanja

    2016-01-01

    Background The introduction of low cost optical 3D motion tracking sensors provides new options for effective quantification of motor dysfunction. Objective The present study aimed to evaluate the Kinect V2 sensor against a gold standard motion capture system with respect to accuracy of tracked landmark movements and accuracy and repeatability of derived clinical parameters. Methods Nineteen healthy subjects were concurrently recorded with a Kinect V2 sensor and an optical motion tracking system (Vicon). Six different movement tasks were recorded with 3D full-body kinematics from both systems. Tasks included walking in different conditions, balance and adaptive postural control. After temporal and spatial alignment, agreement of movements signals was described by Pearson’s correlation coefficient and signal to noise ratios per dimension. From these movement signals, 45 clinical parameters were calculated, including ranges of motions, torso sway, movement velocities and cadence. Accuracy of parameters was described as absolute agreement, consistency agreement and limits of agreement. Intra-session reliability of 3 to 5 measurement repetitions was described as repeatability coefficient and standard error of measurement for each system. Results Accuracy of Kinect V2 landmark movements was moderate to excellent and depended on movement dimension, landmark location and performed task. Signal to noise ratio provided information about Kinect V2 landmark stability and indicated larger noise behaviour in feet and ankles. Most of the derived clinical parameters showed good to excellent absolute agreement (30 parameters showed ICC(3,1) > 0.7) and consistency (38 parameters showed r > 0.7) between both systems. Conclusion Given that this system is low-cost, portable and does not require any sensors to be attached to the body, it could provide numerous advantages when compared to established marker- or wearable sensor based system. The Kinect V2 has the potential to be used as a reliable and valid clinical measurement tool. PMID:27861541

  5. Non-invasive 3D geometry extraction and robotic modeling of a Sea lion foreflipper

    NASA Astrophysics Data System (ADS)

    Patel, R. K.; Leftwich, M. C.; Friedman, C.

    2016-02-01

    California Sea Lions are very agile swimmers and unlike many marine animals, they use their fore flipper rather than their hind flipper undulations to generate high thrust values. To date there exist limited amount of qualitative studies for sea lions swimming that show the flippers are used for thrust, stability, and control during swimming motions. Quantitative studies mainly measured drag used for cost of transport, and analyzed banked turn performance. Recently, the kinematics of a California sea lion flipper during the thrust phase was extracted using video tracking in two dimensions. This work extends the tracking ability to three dimensions using a non-invasive Direct Linear Transformation (DLT) technique employed on non-research sea lions at the Smithsonian National Zoological Park. The flippers are therefore marker-less and tracking is carried out manually in post processing after capturing complete dorsal-ventral flipper motions. Two cameras are used (3840 × 2160 pixels resolution) and calibrated in space using a calibration target inserted into the sea lion habitat. They are synchronized in time using a simple light flash. The fluid flow and forces generated by a sea lion clap is also being explored. Recently, a sea lion flipper from a deceased subject was externally scanned in high detail for fluid dynamics research. The flipper's geometry is being used in this work to design and build an articulate flipper model that is approximately 60% of the full size span. The model is actuated by servo motors and is designed to mimic a sea lion flipper clap motion based on the previously extracted kinematics from above. The model incorporates three axles, simulating the movements of the sea lion's elbow, wrist, and knuckles. The flipper tip speed is designed to match typical Reynolds numbers for the full-scale flipper for an acceleration from rest maneuver. The model will be tested in a water flume to obtain the forces during the thrust production phase of the flipper motion.

  6. Development of a real-time internal and external marker tracking system for particle therapy: a phantom study using patient tumor trajectory data.

    PubMed

    Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul; Han, Youngyih

    2017-09-01

    Target motion-induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  7. Flow analysis of individual blood extracellular vesicles in acute coronary syndrome.

    PubMed

    Vagida, Murad; Arakelyan, Anush; Lebedeva, Anna; Grivel, Jean-Charles; Shpektor, Alexander; Vasilieva, Elena; Margolis, Leonid

    2017-03-01

    A diverse population of small extracellular vesicles (EVs) that are released by various cells has been characterized predominantly in bulk, a procedure whereby the individual characteristics of EVs are lost. Here, we used a new nanotechnology-based flow cytometric analysis to characterize the antigenic composition of individual EVs in patients with acute coronary syndrome (ACS). Plasma EVs were captured with 15-nm magnetic nanoparticles coupled to antibodies against CD31 (predominantly an endothelial marker), CD41a (a marker for platelets), and CD63 or MHC class I (common EV markers). The total amounts of EVs were higher in the ACS patients than in the controls, predominantly due to the contribution of patients with acute myocardial infarction. For all captured fractions, the differences in the EV amounts were restricted to CD41a + EVs. The increase in the numbers of EVs in the ACS patients, predominantly of platelet origin, probably reflects platelet activation and may indicate disease progression.

  8. Assembly Mechanism of the Contractile Ring for Cytokinesis by Fission Yeast

    NASA Astrophysics Data System (ADS)

    Vavylonis, Dimitrios; Wu, Jian-Qiu; Huang, Xiaolei; O'Shaughnessy, Ben; Pollard, Thomas

    2008-03-01

    Animals and fungi assemble a contractile ring of actin filaments and the motor protein myosin to separate into individual daughter cells during cytokinesis. We studied the mechanism of contractile ring assembly in fission yeast with high time resolution confocal microscopy, computational image analysis methods, and numerical simulations. Approximately 63 nodes containing myosin, broadly distributed around the cell equator, assembled into a ring through stochastic motions, making many starts, stops, and changes of direction as they condense into a ring. Estimates of node friction coefficients from the mean square displacement of stationary nodes imply forces for node movement are greater than ˜ 4 pN, similarly to forces by a few molecular motors. Skeletonization and topology analysis of images of cells expressing fluorescent actin filament markers showed transient linear elements extending in all directions from myosin nodes and establishing connections among them. We propose a model with traction between nodes depending on transient connections established by stochastic search and capture (``search, capture, pull and release''). Numerical simulations of the model using parameter values obtained from experiment succesfully condense nodes into a continuous ring.

  9. Standardization proposal of soft tissue artefact description for data sharing in human motion measurements.

    PubMed

    Cereatti, Andrea; Bonci, Tecla; Akbarshahi, Massoud; Aminian, Kamiar; Barré, Arnaud; Begon, Mickael; Benoit, Daniel L; Charbonnier, Caecilia; Dal Maso, Fabien; Fantozzi, Silvia; Lin, Cheng-Chung; Lu, Tung-Wu; Pandy, Marcus G; Stagni, Rita; van den Bogert, Antonie J; Camomilla, Valentina

    2017-09-06

    Soft tissue artefact (STA) represents one of the main obstacles for obtaining accurate and reliable skeletal kinematics from motion capture. Many studies have addressed this issue, yet there is no consensus on the best available bone pose estimator and the expected errors associated with relevant results. Furthermore, results obtained by different authors are difficult to compare due to the high variability and specificity of the phenomenon and the different metrics used to represent these data. Therefore, the aim of this study was twofold: firstly, to propose standards for description of STA; and secondly, to provide illustrative STA data samples for body segments in the upper and lower extremities and for a range of motor tasks specifically, level walking, stair ascent, sit-to-stand, hip- and knee-joint functional movements, cutting motion, running, hopping, arm elevation and functional upper-limb movements. The STA dataset includes motion of the skin markers measured in vivo and ex vivo using stereophotogrammetry as well as motion of the underlying bones measured using invasive or bio-imaging techniques (i.e., X-ray fluoroscopy or MRI). The data are accompanied by a detailed description of the methods used for their acquisition, with information given about their quality as well as characterization of the STA using the proposed standards. The availability of open-access and standard-format STA data will be useful for the evaluation and development of bone pose estimators thus contributing to the advancement of three-dimensional human movement analysis and its translation into the clinical practice and other applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Three dimensional motion capture applied to violin playing: A study on feasibility and characterization of the motor strategy.

    PubMed

    Ancillao, Andrea; Savastano, Bernardo; Galli, Manuela; Albertini, Giorgio

    2017-10-01

    Playing string instruments requires advanced motor skills and a long training that is often spent in uncomfortable postures that may lead to injuries or musculoskeletal disorders. Thus, it is interesting to objectively characterize the motor strategy adopted by the players. In this work, we implemented a method for the quantitative analysis of the motor performance of a violin player. The proposed protocol takes advantage of an optoelectronic system and some infra-red reflecting markers in order to track player's motion. The method was tested on a professional violin player performing a legato bowing task. The biomechanical strategy of the upper limb and bow positioning were described by means of quantitative parameters and motion profiles. Measured quantities were: bow trajectory, angles, tracks, velocity, acceleration and jerk. A good repeatability of the bowing motion (CV < 2%) and high smoothness (jerk < 5 m/s 3 ) were observed. Motion profiles of shoulder, elbow and wrist were repeatable (CV < 7%) and comparable to the curves observed in other studies. Jerk and acceleration profiles demonstrated high smoothness in the ascending and descending phases of bowing. High variability was instead observed for the neck angle (CV ∼56%). "Quantitative" measurements, instead of "qualitative" observation, can support the diagnosis of motor disorders and the accurate evaluation of musicians' skills. The proposed protocol is a powerful tool for the description of musician's performance, that may be useful to document improvements in playing abilities and to adjust training strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Varus Thrust and Knee Frontal Plane Dynamic Motion in Persons with Knee Osteoarthritis

    PubMed Central

    Chang, Alison H.; Chmiel, Joan S.; Moisio, Kirsten C.; Almagor, Orit; Zhang, Yunhui; Cahue, September; Sharma, Leena

    2013-01-01

    Objective Varus thrust visualized during walking is associated with a greater medial knee and an increased risk of medial knee osteoarthritis (OA) progression. Little is known about varus thrust presence determined by visual observation relates to quantitative gait kinematic We hypothesized that varus thrust presence is associated with greater knee frontal plane dynamic movement during the stance phase of gait. Methods Participants had knee OA in at least one knee. Trained examiners assessed participants for varus thrust presence during ambulation. Frontal plane knee motion during ambulation captured using external passive reflective markers and an 8-camera motion analysis system. To examine the cross-sectional relationship between varus thrust and frontal plane knee motion, used multivariable regression models with the quantitative motion measures as dependent variables and varus thrust (present/absent) as predictor; models were adjusted for age, gender, BMI, gait speed, and knee static alignment. Results 236 persons [mean BMI: 28.5 kg/m2 (SD 5.5), mean age: 64.9 years (SD 10.4), 75.8% women] contributing 440 knees comprised the study sample. 82 knees (18.6%) had definite varus thrust. Knees with varus thrust had greater peak varus angle and greater peak varus angular velocity during stance than knees without varus thrust (mean differences 0.90° and 6.65°/sec, respectively). These patterns remained significant after adjusting for age, gender, BMI, gait speed, and knee static alignment. Conclusion Visualized varus thrust during walking was associated with a greater peak knee varus angular velocity and a greater peak knee varus angle during stance phase of gait. PMID:23948980

  12. Development of a real-time internal and external marker tracking system for particle therapy: a phantom study using patient tumor trajectory data

    PubMed Central

    Cho, Junsang; Cheon, Wonjoong; Ahn, Sanghee; Jung, Hyunuk; Sheen, Heesoon; Park, Hee Chul

    2017-01-01

    Abstract Target motion–induced uncertainty in particle therapy is more complicated than that in X-ray therapy, requiring more accurate motion management. Therefore, a hybrid motion-tracking system that can track internal tumor motion and as well as an external surrogate of tumor motion was developed. Recently, many correlation tests between internal and external markers in X-ray therapy have been developed; however, the accuracy of such internal/external marker tracking systems, especially in particle therapy, has not yet been sufficiently tested. In this article, the process of installing an in-house hybrid internal/external motion-tracking system is described and the accuracy level of tracking system was acquired. Our results demonstrated that the developed in-house external/internal combined tracking system has submillimeter accuracy, and can be clinically used as a particle therapy system as well as a simulation system for moving tumor treatment. PMID:28201522

  13. Differential Motion Between Mediastinal Lymph Nodes and Primary Tumor in Radically Irradiated Lung Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaake, Eva E.; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam; Rossi, Maddalena M.G.

    2014-11-15

    Purpose/Objective: In patients with locally advanced lung cancer, planning target volume margins for mediastinal lymph nodes and tumor after a correction protocol based on bony anatomy registration typically range from 1 to 1.5 cm. Detailed information about lymph node motion variability and differential motion with the primary tumor, however, is lacking from large series. In this study, lymph node and tumor position variability were analyzed in detail and correlated to the main carina to evaluate possible margin reduction. Methods and Materials: Small gold fiducial markers (0.35 × 5 mm) were placed in the mediastinal lymph nodes of 51 patients with non-small cell lung cancermore » during routine diagnostic esophageal or bronchial endoscopic ultrasonography. Four-dimensional (4D) planning computed tomographic (CT) and daily 4D cone beam (CB) CT scans were acquired before and during radical radiation therapy (66 Gy in 24 fractions). Each CBCT was registered in 3-dimensions (bony anatomy) and 4D (tumor, marker, and carina) to the planning CT scan. Subsequently, systematic and random residual misalignments of the time-averaged lymph node and tumor position relative to the bony anatomy and carina were determined. Additionally, tumor and lymph node respiratory amplitude variability was quantified. Finally, required margins were quantified by use of a recipe for dual targets. Results: Relative to the bony anatomy, systematic and random errors ranged from 0.16 to 0.32 cm for the markers and from 0.15 to 0.33 cm for the tumor, but despite similar ranges there was limited correlation (0.17-0.71) owing to differential motion. A large variability in lymph node amplitude between patients was observed, with an average motion of 0.56 cm in the cranial-caudal direction. Margins could be reduced by 10% (left-right), 27% (cranial-caudal), and 10% (anteroposterior) for the lymph nodes and −2%, 15%, and 7% for the tumor if an online carina registration protocol replaced a protocol based on bony anatomy registration. Conclusions: Detailed analysis revealed considerable lymph node position variability, differential motion, and respiratory motion. Planning target volume margins can be reduced up to 27% in lung cancer patients when the carina registration replaces bony anatomy registration.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Nguyen, D; O’Brien, R

    Purpose: Kilovoltage intrafraction monitoring (KIM) scheme has been successfully used to simultaneously monitor 3D tumor motion during radiotherapy. Recently, an iterative closest point (ICP) algorithm was implemented in KIM to also measure rotations about three axes, enabling real-time tracking of tumor motion in six degrees-of-freedom (DoF). This study aims to evaluate the accuracy of the six DoF motion estimates of KIM by comparing it with the corresponding motion (i) measured by the Calypso; and (ii) derived from kV/MV triangulation. Methods: (i) Various motions (static and dynamic) were applied to a CIRS phantom with three embedded electromagnetic transponders (Calypso Medical) usingmore » a 5D motion platform (HexaMotion) and a rotating treatment couch while both KIM and Calypso were used to concurrently track the phantom motion in six DoF. (ii) KIM was also used to retrospectively estimate six DoF motion from continuous sets of kV projections of a prostate, implanted with three gold fiducial markers (2 patients with 80 fractions in total), acquired during the treatment. Corresponding motion was obtained from kV/MV triangulation using a closed form least squares method based on three markers’ positions. Only the frames where all three markers were present were used in the analysis. The mean differences between the corresponding motion estimates were calculated for each DoF. Results: Experimental results showed that the mean of absolute differences in six DoF phantom motion measured by Calypso and KIM were within 1.1° and 0.7 mm. kV/MV triangulation derived six DoF prostate tumor better agreed with KIM estimated motion with the mean (s.d.) difference of up to 0.2° (1.36°) and 0.2 (0.25) mm for rotation and translation, respectively. Conclusion: These results suggest that KIM can provide an accurate six DoF intrafraction tumor during radiotherapy.« less

  15. Marker-based reconstruction of the kinematics of a chain of segments: a new method that incorporates joint kinematic constraints.

    PubMed

    Klous, Miriam; Klous, Sander

    2010-07-01

    The aim of skin-marker-based motion analysis is to reconstruct the motion of a kinematical model from noisy measured motion of skin markers. Existing kinematic models for reconstruction of chains of segments can be divided into two categories: analytical methods that do not take joint constraints into account and numerical global optimization methods that do take joint constraints into account but require numerical optimization of a large number of degrees of freedom, especially when the number of segments increases. In this study, a new and largely analytical method for a chain of rigid bodies is presented, interconnected in spherical joints (chain-method). In this method, the number of generalized coordinates to be determined through numerical optimization is three, irrespective of the number of segments. This new method is compared with the analytical method of Veldpaus et al. [1988, "A Least-Squares Algorithm for the Equiform Transformation From Spatial Marker Co-Ordinates," J. Biomech., 21, pp. 45-54] (Veldpaus-method, a method of the first category) and the numerical global optimization method of Lu and O'Connor [1999, "Bone Position Estimation From Skin-Marker Co-Ordinates Using Global Optimization With Joint Constraints," J. Biomech., 32, pp. 129-134] (Lu-method, a method of the second category) regarding the effects of continuous noise simulating skin movement artifacts and regarding systematic errors in joint constraints. The study is based on simulated data to allow a comparison of the results of the different algorithms with true (noise- and error-free) marker locations. Results indicate a clear trend that accuracy for the chain-method is higher than the Veldpaus-method and similar to the Lu-method. Because large parts of the equations in the chain-method can be solved analytically, the speed of convergence in this method is substantially higher than in the Lu-method. With only three segments, the average number of required iterations with the chain-method is 3.0+/-0.2 times lower than with the Lu-method when skin movement artifacts are simulated by applying a continuous noise model. When simulating systematic errors in joint constraints, the number of iterations for the chain-method was almost a factor 5 lower than the number of iterations for the Lu-method. However, the Lu-method performs slightly better than the chain-method. The RMSD value between the reconstructed and actual marker positions is approximately 57% of the systematic error on the joint center positions for the Lu-method compared with 59% for the chain-method.

  16. Optimal Configuration of Human Motion Tracking Systems: A Systems Engineering Approach

    NASA Technical Reports Server (NTRS)

    Henderson, Steve

    2005-01-01

    Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.

  17. A protocol for monitoring soft tissue motion under compression garments during drop landings.

    PubMed

    Mills, Chris; Scurr, Joanna; Wood, Louise

    2011-06-03

    This study used a single-subject design to establish a valid and reliable protocol for monitoring soft tissue motion under compression garments during drop landings. One male participant performed six 40 cm drop landings onto a force platform, in three compression conditions (none, medium high). Five reflective markers placed on the thigh under the compression garment and five over the garment were filmed using two cameras (1000 Hz). Following manual digitisation, marker coordinates were reconstructed and their resultant displacements and maximum change in separation distance between skin and garment markers were calculated. To determine reliability of marker application, 35 markers were attached to the thigh over the high compression garment and filmed. Markers were then removed and re-applied on three occasions; marker separation and distance to thigh centre of gravity were calculated. Results showed similar ground reaction forces during landing trials. Significant reductions in the maximum change in separation distance between markers from no compression to high compression landings were reported. Typical errors in marker movement under and over the garment were 0.1mm in medium and high compression landings. Re-application of markers showed mean typical errors of 1mm in marker separation and <3mm relative to thigh centre of gravity. This paper presents a novel protocol that demonstrates sufficient sensitivity to detect reductions in soft tissue motion during landings in high compression garments compared to no compression. Additionally, markers placed under or over the garment demonstrate low variance in movement, and the protocol reports good reliability in marker re-application. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Developing and Evaluating Creativity Gamification Rehabilitation System: The Application of PCA-ANFIS Based Emotions Model

    ERIC Educational Resources Information Center

    Su, Chung-Ho; Cheng, Ching-Hsue

    2016-01-01

    This study aims to explore the factors in a patient's rehabilitation achievement after a total knee replacement (TKR) patient exercises, using a PCA-ANFIS emotion model-based game rehabilitation system, which combines virtual reality (VR) and motion capture technology. The researchers combine a principal component analysis (PCA) and an adaptive…

  19. Virtual reality: Avatars in human spaceflight training

    NASA Astrophysics Data System (ADS)

    Osterlund, Jeffrey; Lawrence, Brad

    2012-02-01

    With the advancements in high spatial and temporal resolution graphics, along with advancements in 3D display capabilities to model, simulate, and analyze human-to-machine interfaces and interactions, the world of virtual environments is being used to develop everything from gaming, movie special affects and animations to the design of automobiles. The use of multiple object motion capture technology and digital human tools in aerospace has demonstrated to be a more cost effective alternative to the cost of physical prototypes, provides a more efficient, flexible and responsive environment to changes in the design and training, and provides early human factors considerations concerning the operation of a complex launch vehicle or spacecraft. United Space Alliance (USA) has deployed this technique and tool under Research and Development (R&D) activities on both spacecraft assembly and ground processing operations design and training on the Orion Crew Module. USA utilizes specialized products that were chosen based on functionality, including software and fixed based hardware (e.g., infrared and visible red cameras), along with cyber gloves to ensure fine motor dexterity of the hands. The key findings of the R&D were: mock-ups should be built to not obstruct cameras from markers being tracked; a mock-up toolkit be assembled to facilitate dynamic design changes; markers should be placed in accurate positions on humans and flight hardware to help with tracking; 3D models used in the virtual environment be striped of non-essential data; high computational capable workstations are required to handle the large model data sets; and Technology Interchange Meetings with vendors and other industries also utilizing virtual reality applications need to occur on a continual basis enabling USA to maintain its leading edge within this technology. Parameters of interest and benefit in human spaceflight simulation training that utilizes virtual reality technologies are to familiarize and assess operational processes, allow the ability to train virtually, experiment with "what if" scenarios, and expedite immediate changes to validate the design implementation are all parameters of interest in human spaceflight. Training benefits encompass providing 3D animation for post-training assessment, placement of avatars within 3D replicated work environments in assembling or processing hardware, offering various viewpoints of processes viewed and assessed giving the evaluators the ability to assess task feasibility and identify potential support equipment needs; and provide human factors determinations, such as reach, visibility, and accessibility. Multiple object motion capture technology provides an effective tool to train and assess ergonomic risks, simulations for determination of negative interactions between technicians and their proposed workspaces, and evaluation of spaceflight systems prior to, and as part of, the design process to contain costs and reduce schedule delays.

  20. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.

    PubMed

    Faber, G S; Chang, C C; Kingma, I; Dennerlein, J T; van Dieën, J H

    2016-04-11

    Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Marker-based or model-based RSA for evaluation of hip resurfacing arthroplasty? A clinical validation and 5-year follow-up.

    PubMed

    Lorenzen, Nina Dyrberg; Stilling, Maiken; Jakobsen, Stig Storgaard; Gustafson, Klas; Søballe, Kjeld; Baad-Hansen, Thomas

    2013-11-01

    The stability of implants is vital to ensure a long-term survival. RSA determines micro-motions of implants as a predictor of early implant failure. RSA can be performed as a marker- or model-based analysis. So far, CAD and RE model-based RSA have not been validated for use in hip resurfacing arthroplasty (HRA). A phantom study determined the precision of marker-based and CAD and RE model-based RSA on a HRA implant. In a clinical study, 19 patients were followed with stereoradiographs until 5 years after surgery. Analysis of double-examination migration results determined the clinical precision of marker-based and CAD model-based RSA, and at the 5-year follow-up, results of the total translation (TT) and the total rotation (TR) for marker- and CAD model-based RSA were compared. The phantom study showed that comparison of the precision (SDdiff) in marker-based RSA analysis was more precise than model-based RSA analysis in TT (p CAD < 0.001; p RE = 0.04) and TR (p CAD = 0.01; p RE < 0.001). The clinical precision (double examination in 8 patients) comparing the precision SDdiff was better evaluating the TT using the marker-based RSA analysis (p = 0.002), but showed no difference between the marker- and CAD model-based RSA analysis regarding the TR (p = 0.91). Comparing the mean signed values regarding the TT and the TR at the 5-year follow-up in 13 patients, the TT was lower (p = 0.03) and the TR higher (p = 0.04) in the marker-based RSA compared to CAD model-based RSA. The precision of marker-based RSA was significantly better than model-based RSA. However, problems with occluded markers lead to exclusion of many patients which was not a problem with model-based RSA. HRA were stable at the 5-year follow-up. The detection limit was 0.2 mm TT and 1° TR for marker-based and 0.5 mm TT and 1° TR for CAD model-based RSA for HRA.

  2. Integration of smartphones and webcam for the measure of spatio-temporal gait parameters.

    PubMed

    Barone, V; Maranesi, E; Fioretti, S

    2014-01-01

    A very low cost prototype has been made for the spatial and temporal analysis of human movement using an integrated system of last generation smartphones and a highdefinition webcam, controlled by a laptop. The system can be used to analyze mainly planar motions in non-structured environments. In this paper, the accelerometer signal as captured by the 3D sensor embedded in one smartphone, and the position of colored markers derived by the webcam frames, are used for the computation of spatial-temporal parameters of gait. Accuracy of results is compared with that obtainable by a gold-standard instrumentation. The system is characterized by a very low cost and by a very high level of automation. It has been thought to be used by non-expert users in ambulatory settings.

  3. When does tool use become distinctively human?: Hammering in young children

    PubMed Central

    Kahrs, Björn; Lockman, Jeffrey J.; Jung, Wendy

    2013-01-01

    This study examines the development of hammering within an ontogenetic and evolutionary framework using motion-capture technology. Twenty-four right-handed toddlers (19–35 months) wore reflective markers while hammering a peg into a peg-board. The study focuses on the motor characteristics that make tool use uniquely human: wrist involvement, lateralization, and handle use. Older children showed more distally controlled movements, characterized by relatively more reliance on the wrist, but only when hammering with their right hand. Greater age, use of the right hand, and more wrist involvement were associated with higher accuracy; handle use did not systematically change with age. Collectively, the results provide new insights about the emergence of hammering in young children and when hammering begins to manifest distinctively human characteristics. PMID:24128178

  4. Effects of respiration depth on human body radar cross section Using 2.4GHz continuous wave radar.

    PubMed

    Lee, Alexander; Xiaomeng Gao; Jia Xu; Boric-Lubecke, Olga

    2017-07-01

    In this study, it was tested whether deep and shallow breathing has an effect on the cardiopulmonary radar cross-section (RCS). Continuous wave radar with quadrature architecture at 2.4GHz was used to test 2 human subjects breathing deep and shallow for 30 seconds each while seated 2 meters away from the radar. A retro-reflective marker was placed on the sternum of each subject and measured by infrared motion capture cameras to accurately track displacement of the chest. The quadrature radar outputs were processed to find the radius of the arc on the IQ plot using a circle-fitting algorithm. Results showed that the effective RCS ratio of deep to shallow breathing for subjects 1 and 2 was 6.99 and 2.24 respectively.

  5. Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions

    NASA Astrophysics Data System (ADS)

    Khoury, Mehdi; Liu, Honghai

    This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.

  6. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion

    PubMed Central

    2012-01-01

    Background The rear-wheel camber, defined as the inclination of the rear wheels, is usually used in wheelchair sports, but it is becoming increasingly employed in daily propulsion. Although the rear-wheel camber can increase stability, it alters physiological performance during propulsion. The purpose of the study is to investigate the effects of rear-wheel cambers on temporal-spatial parameters, joint angles, and propulsion patterns. Methods Twelve inexperienced subjects (22.3±1.6 yr) participated in the study. None had musculoskeletal disorders in their upper extremities. An eight-camera motion capture system was used to collect the three-dimensional trajectory data of markers attached to the wheelchair-user system during propulsion. All participants propelled the same wheelchair, which had an instrumented wheel with cambers of 0°, 9°, and 15°, respectively, at an average velocity of 1 m/s. Results The results show that the rear-wheel camber significantly affects the average acceleration, maximum end angle, trunk movement, elbow joint movement, wrist joint movement, and propulsion pattern. The effects are especially significant between 0° and 15°. For a 15° camber, the average acceleration and joint peak angles significantly increased (p < 0.01). A single loop pattern (SLOP) was adopted by most of the subjects. Conclusions The rear-wheel camber affects propulsion patterns and joint range of motion. When choosing a wheelchair with camber adjustment, the increase of joint movements and the base of support should be taken into consideration. PMID:23173938

  7. The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion.

    PubMed

    Tsai, Chung-Ying; Lin, Chien-Ju; Huang, Yueh-Chu; Lin, Po-Chou; Su, Fong-Chin

    2012-11-22

    The rear-wheel camber, defined as the inclination of the rear wheels, is usually used in wheelchair sports, but it is becoming increasingly employed in daily propulsion. Although the rear-wheel camber can increase stability, it alters physiological performance during propulsion. The purpose of the study is to investigate the effects of rear-wheel cambers on temporal-spatial parameters, joint angles, and propulsion patterns. Twelve inexperienced subjects (22.3±1.6 yr) participated in the study. None had musculoskeletal disorders in their upper extremities. An eight-camera motion capture system was used to collect the three-dimensional trajectory data of markers attached to the wheelchair-user system during propulsion. All participants propelled the same wheelchair, which had an instrumented wheel with cambers of 0°, 9°, and 15°, respectively, at an average velocity of 1 m/s. The results show that the rear-wheel camber significantly affects the average acceleration, maximum end angle, trunk movement, elbow joint movement, wrist joint movement, and propulsion pattern. The effects are especially significant between 0° and 15°. For a 15° camber, the average acceleration and joint peak angles significantly increased (p < 0.01). A single loop pattern (SLOP) was adopted by most of the subjects. The rear-wheel camber affects propulsion patterns and joint range of motion. When choosing a wheelchair with camber adjustment, the increase of joint movements and the base of support should be taken into consideration.

  8. The inaccuracy of surface-measured model-derived tibiofemoral kinematics.

    PubMed

    Li, Kang; Zheng, Liying; Tashman, Scott; Zhang, Xudong

    2012-10-11

    This study assessed the accuracy of surface-measured OpenSim-derived tibiofemoral kinematics in functional activities. Ten subjects with unilateral, isolated grade II PCL deficiency performed level running and stair ascent. A dynamic stereo radiography (DSX) system and a Vicon motion capture system simultaneously measured their knee or lower extremity movement. Surface marker motion data from the Vicon system were used to create subject-specific models in OpenSim and derive the tibiofemoral kinematics. The surface-measured model-derived tibiofemoral kinematics in all six degrees of freedom (DOFs) were then compared with those measured by the DSX as the benchmarks. The differences between surface- and DSX-measured tibiofemoral kinematics were found to be substantial: the overall mean (±SD) RMS differences during running were 9.1±3.2°, 2.0±1.2°, and 6.4±4.5° for the flexion-extension, abduction-adduction, and internal-external rotations, respectively, and 7.1±3.2 mm, 8.8±3.7 mm, and 1.9±1.2 mm for anterior-posterior, proximal-distal, and medial-lateral translations, respectively. The differences were more pronounced in relatively higher speed running than in stair ascent. It was also found that surface-based measures significantly underestimated the mean as well as inter-subject variability of the differences between PCL-injured and intact knees in abduction-adduction, internal-external rotations, and anterior-posterior translation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Pyxis handheld polarimetric imager

    NASA Astrophysics Data System (ADS)

    Chenault, David B.; Pezzaniti, J. Larry; Vaden, Justin P.

    2016-05-01

    The instrumentation for measuring infrared polarization signatures has seen significant advancement over the last decade. Previous work has shown the value of polarimetric imagery for a variety of target detection scenarios including detection of manmade targets in clutter and detection of ground and maritime targets while recent work has shown improvements in contrast for aircraft detection and biometric markers. These data collection activities have generally used laboratory or prototype systems with limitations on the allowable amount of target motion or the sensor platform and usually require an attached computer for data acquisition and processing. Still, performance and sensitivity have been steadily getting better while size, weight, and power requirements have been getting smaller enabling polarimetric imaging for a greater or real world applications. In this paper, we describe Pyxis®, a microbolometer based imaging polarimeter that produces live polarimetric video of conventional, polarimetric, and fused image products. A polarization microgrid array integrated in the optical system captures all polarization states simultaneously and makes the system immune to motion artifacts of either the sensor or the scene. The system is battery operated, rugged, and weighs about a quarter pound, and can be helmet mounted or handheld. On board processing of polarization and fused image products enable the operator to see polarimetric signatures in real time. Both analog and digital outputs are possible with sensor control available through a tablet interface. A top level description of Pyxis® is given followed by performance characteristics and representative data.

  10. A common framework for the analysis of complex motion? Standstill and capture illusions

    PubMed Central

    Dürsteler, Max R.

    2014-01-01

    A series of illusions was created by presenting stimuli, which consisted of two overlapping surfaces each defined by textures of independent visual features (i.e., modulation of luminance, color, depth, etc.). When presented concurrently with a stationary 2-D luminance texture, observers often fail to perceive the motion of an overlapping stereoscopically defined depth-texture. This illusory motion standstill arises due to a failure to represent two independent surfaces (one for luminance and one for depth textures) and motion transparency (the ability to perceive motion of both surfaces simultaneously). Instead the stimulus is represented as a single non-transparent surface taking on the stationary nature of the luminance-defined texture. By contrast, if it is the 2D-luminance defined texture that is in motion, observers often perceive the stationary depth texture as also moving. In this latter case, the failure to represent the motion transparency of the two textures gives rise to illusionary motion capture. Our past work demonstrated that the illusions of motion standstill and motion capture can occur for depth-textures that are rotating, or expanding / contracting, or else spiraling. Here I extend these findings to include stereo-shearing. More importantly, it is the motion (or lack thereof) of the luminance texture that determines how the motion of the depth will be perceived. This observation is strongly in favor of a single pathway for complex motion that operates on luminance-defines texture motion signals only. In addition, these complex motion illusions arise with chromatically-defined textures with smooth transitions between their colors. This suggests that in respect to color motion perception the complex motions' pathway is only able to accurately process signals from isoluminant colored textures with sharp transitions between colors, and/or moving at high speeds, which is conceivable if it relies on inputs from a hypothetical dual opponent color pathway. PMID:25566023

  11. Validation of 2 noninvasive, markerless reconstruction techniques in biplane high-speed fluoroscopy for 3-dimensional research of bovine distal limb kinematics.

    PubMed

    Weiss, M; Reich, E; Grund, S; Mülling, C K W; Geiger, S M

    2017-10-01

    Lameness severely impairs cattle's locomotion, and it is among the most important threats to animal welfare, performance, and productivity in the modern dairy industry. However, insight into the pathological alterations of claw biomechanics leading to lameness and an understanding of the biomechanics behind development of claw lesions causing lameness are limited. Biplane high-speed fluoroscopic kinematography is a new approach for the analysis of skeletal motion. Biplane high-speed videos in combination with bone scans can be used for 3-dimensional (3D) animations of bones moving in 3D space. The gold standard, marker-based animation, requires implantation of radio-opaque markers into bones, which impairs the practicability for lameness research in live animals. Therefore, the purpose of this study was to evaluate the comparative accuracy of 2 noninvasive, markerless animation techniques (semi-automatic and manual) in 3D animation of the bovine distal limb. Tantalum markers were implanted into each of the distal, middle, and proximal phalanges of 5 isolated bovine distal forelimbs, and biplane high-speed x-ray videos of each limb were recorded to capture the simulation of one step. The limbs were scanned by computed tomography to create bone models of the 6 digital bones, and 3D animation of the bones' movements were subsequently reconstructed using the marker-based, the semi-automatic, and the manual animation techniques. Manual animation translational bias and precision varied from 0.63 ± 0.26 mm to 0.80 ± 0.49 mm, and rotational bias and precision ranged from 2.41 ± 1.43° to 6.75 ± 4.67°. Semi-automatic translational values for bias and precision ranged from 1.26 ± 1.28 mm to 2.75 ± 2.17 mm, and rotational values varied from 3.81 ± 2.78° to 11.7 ± 8.11°. In our study, we demonstrated the successful application of biplane high-speed fluoroscopic kinematography to gait analysis of bovine distal limb. Using the manual animation technique, kinematics can be measured with sub-millimeter accuracy without the need for invasive marker implantation. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. SU-C-BRF-05: Design and Geometric Validation of An Externally and Internally Deformable, Programmable Lung Motion Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Y; Sawant, A

    Purpose: Most clinically-deployed strategies for respiratory motion management in lung radiotherapy (e.g., gating, tracking) use external markers that serve as surrogates for tumor motion. However, typical lung phantoms used to validate these strategies are rigid-exterior+rigid-interior or rigid-exterior+deformable-interior. Neither class adequately represents the human anatomy, which is deformable internally as well as externally. We describe the construction and experimental validation of a more realistic, externally- and internally-deformable, programmable lung phantom. Methods: The outer shell of a commercially-available lung phantom (RS- 1500, RSD Inc.) was used. The shell consists of a chest cavity with a flexible anterior surface, and embedded vertebrae, rib-cagemore » and sternum. A 3-axis platform was programmed with sinusoidal and six patient-recorded lung tumor trajectories. The platform was used to drive a rigid foam ‘diaphragm’ that compressed/decompressed the phantom interior. Experimental characterization comprised of mapping the superior-inferior (SI) and anterior-posterior (AP) trajectories of external and internal radioopaque markers with kV x-ray fluoroscopy and correlating these with optical surface monitoring using the in-room VisionRT system. Results: The phantom correctly reproduced the programmed motion as well as realistic effects such as hysteresis. The reproducibility of marker trajectories over multiple runs for sinusoidal as well as patient traces, as characterized by fluoroscopy, was within 0.4 mm RMS error for internal as well as external markers. The motion trajectories of internal and external markers as measured by fluoroscopy were found to be highly correlated (R=0.97). Furthermore, motion trajectories of arbitrary points on the deforming phantom surface, as recorded by the VisionRT system also showed a high correlation with respect to the fluoroscopically-measured trajectories of internal markers (R=0.92). Conclusion: We have developed a realistic externally- and internally-deformable lung phantom that will serve as a valuable tool for clinical QA and motion management research. This work was supported through funding from the NIH and VisionRT Ltd. Amit Sawant has research funding from Varian Medical Systems, VisionRT and Elekta.« less

  13. Effect of Trunk Sagittal Attitude on Shoulder, Thorax and Pelvis Three-Dimensional Kinematics in Able-Bodied Subjects during Gait

    PubMed Central

    Leardini, Alberto; Berti, Lisa; Begon, Mickaël; Allard, Paul

    2013-01-01

    It has been shown that an original attitude in forward or backward inclination of the trunk is maintained at gait initiation and during locomotion, and that this affects lower limb loading patterns. However, no studies have shown the extent to which shoulder, thorax and pelvis three-dimensional kinematics are modified during gait due to this sagittal inclination attitude. Thirty young healthy volunteers were analyzed during level walking with video-based motion analysis. Reflecting markers were mounted on anatomical landmarks to form a two-marker shoulder line segment, and a four-marker thorax and pelvis segments. Absolute and relative spatial rotations were calculated, for a total of 11 degrees of freedom. The subjects were divided into two groups of 15 according to the median of mean thorax inclination angle over the gait cycle. Preliminary MANOVA analysis assessed whether gender was an independent variable. Then two-factor nested ANOVA was used to test the possible effect of thorax inclination on body segments, planes of motion and gait periods, separately. There was no significant difference in all anthropometric and spatio-temporal parameters between the two groups, except for subject mass. The three-dimensional kinematics of the thorax and pelvis were not affected by gender. Nested ANOVA revealed group effect in all segment rotations apart those at the pelvis, in the sagittal and frontal planes, and at the push-off. Attitudes in sagittal thorax inclination altered trunk segments kinematics during gait. Subjects with a backward thorax showed less thorax-to-pelvis motion, but more shoulder-to-thorax and thorax-to-laboratory motion, less motion in flexion/extension and in lateral bending, and also less motion during push-off. This contributes to the understanding of forward propulsion and sideways load transfer mechanisms, fundamental for the maintenance of balance and the risk of falling. PMID:24204763

  14. Effect of trunk sagittal attitude on shoulder, thorax and pelvis three-dimensional kinematics in able-bodied subjects during gait.

    PubMed

    Leardini, Alberto; Berti, Lisa; Begon, Mickaël; Allard, Paul

    2013-01-01

    It has been shown that an original attitude in forward or backward inclination of the trunk is maintained at gait initiation and during locomotion, and that this affects lower limb loading patterns. However, no studies have shown the extent to which shoulder, thorax and pelvis three-dimensional kinematics are modified during gait due to this sagittal inclination attitude. Thirty young healthy volunteers were analyzed during level walking with video-based motion analysis. Reflecting markers were mounted on anatomical landmarks to form a two-marker shoulder line segment, and a four-marker thorax and pelvis segments. Absolute and relative spatial rotations were calculated, for a total of 11 degrees of freedom. The subjects were divided into two groups of 15 according to the median of mean thorax inclination angle over the gait cycle. Preliminary MANOVA analysis assessed whether gender was an independent variable. Then two-factor nested ANOVA was used to test the possible effect of thorax inclination on body segments, planes of motion and gait periods, separately. There was no significant difference in all anthropometric and spatio-temporal parameters between the two groups, except for subject mass. The three-dimensional kinematics of the thorax and pelvis were not affected by gender. Nested ANOVA revealed group effect in all segment rotations apart those at the pelvis, in the sagittal and frontal planes, and at the push-off. Attitudes in sagittal thorax inclination altered trunk segments kinematics during gait. Subjects with a backward thorax showed less thorax-to-pelvis motion, but more shoulder-to-thorax and thorax-to-laboratory motion, less motion in flexion/extension and in lateral bending, and also less motion during push-off. This contributes to the understanding of forward propulsion and sideways load transfer mechanisms, fundamental for the maintenance of balance and the risk of falling.

  15. Data-driven event-by-event respiratory motion correction using TOF PET list-mode centroid of distribution

    NASA Astrophysics Data System (ADS)

    Ren, Silin; Jin, Xiao; Chan, Chung; Jian, Yiqiang; Mulnix, Tim; Liu, Chi; E Carson, Richard

    2017-06-01

    Data-driven respiratory gating techniques were developed to correct for respiratory motion in PET studies, without the help of external motion tracking systems. Due to the greatly increased image noise in gated reconstructions, it is desirable to develop a data-driven event-by-event respiratory motion correction method. In this study, using the Centroid-of-distribution (COD) algorithm, we established a data-driven event-by-event respiratory motion correction technique using TOF PET list-mode data, and investigated its performance by comparing with an external system-based correction method. Ten human scans with the pancreatic β-cell tracer 18F-FP-(+)-DTBZ were employed. Data-driven respiratory motions in superior-inferior (SI) and anterior-posterior (AP) directions were first determined by computing the centroid of all radioactive events during each short time frame with further processing. The Anzai belt system was employed to record respiratory motion in all studies. COD traces in both SI and AP directions were first compared with Anzai traces by computing the Pearson correlation coefficients. Then, respiratory gated reconstructions based on either COD or Anzai traces were performed to evaluate their relative performance in capturing respiratory motion. Finally, based on correlations of displacements of organ locations in all directions and COD information, continuous 3D internal organ motion in SI and AP directions was calculated based on COD traces to guide event-by-event respiratory motion correction in the MOLAR reconstruction framework. Continuous respiratory correction results based on COD were compared with that based on Anzai, and without motion correction. Data-driven COD traces showed a good correlation with Anzai in both SI and AP directions for the majority of studies, with correlation coefficients ranging from 63% to 89%. Based on the determined respiratory displacements of pancreas between end-expiration and end-inspiration from gated reconstructions, there was no significant difference between COD-based and Anzai-based methods. Finally, data-driven COD-based event-by-event respiratory motion correction yielded comparable results to that based on Anzai respiratory traces, in terms of contrast recovery and reduced motion-induced blur. Data-driven event-by-event respiratory motion correction using COD showed significant image quality improvement compared with reconstructions with no motion correction, and gave comparable results to the Anzai-based method.

  16. Data-driven event-by-event respiratory motion correction using TOF PET list-mode centroid of distribution.

    PubMed

    Ren, Silin; Jin, Xiao; Chan, Chung; Jian, Yiqiang; Mulnix, Tim; Liu, Chi; Carson, Richard E

    2017-06-21

    Data-driven respiratory gating techniques were developed to correct for respiratory motion in PET studies, without the help of external motion tracking systems. Due to the greatly increased image noise in gated reconstructions, it is desirable to develop a data-driven event-by-event respiratory motion correction method. In this study, using the Centroid-of-distribution (COD) algorithm, we established a data-driven event-by-event respiratory motion correction technique using TOF PET list-mode data, and investigated its performance by comparing with an external system-based correction method. Ten human scans with the pancreatic β-cell tracer 18 F-FP-(+)-DTBZ were employed. Data-driven respiratory motions in superior-inferior (SI) and anterior-posterior (AP) directions were first determined by computing the centroid of all radioactive events during each short time frame with further processing. The Anzai belt system was employed to record respiratory motion in all studies. COD traces in both SI and AP directions were first compared with Anzai traces by computing the Pearson correlation coefficients. Then, respiratory gated reconstructions based on either COD or Anzai traces were performed to evaluate their relative performance in capturing respiratory motion. Finally, based on correlations of displacements of organ locations in all directions and COD information, continuous 3D internal organ motion in SI and AP directions was calculated based on COD traces to guide event-by-event respiratory motion correction in the MOLAR reconstruction framework. Continuous respiratory correction results based on COD were compared with that based on Anzai, and without motion correction. Data-driven COD traces showed a good correlation with Anzai in both SI and AP directions for the majority of studies, with correlation coefficients ranging from 63% to 89%. Based on the determined respiratory displacements of pancreas between end-expiration and end-inspiration from gated reconstructions, there was no significant difference between COD-based and Anzai-based methods. Finally, data-driven COD-based event-by-event respiratory motion correction yielded comparable results to that based on Anzai respiratory traces, in terms of contrast recovery and reduced motion-induced blur. Data-driven event-by-event respiratory motion correction using COD showed significant image quality improvement compared with reconstructions with no motion correction, and gave comparable results to the Anzai-based method.

  17. SU-F-I-11: Software Development for 4D-CBCT Research of Real-Time-Image Gated Spot Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, T; Fujii, Y; Shimizu, S

    Purpose: To acquire correct information for inside the body in patient positioning of Real-time-image Gated spot scanning Proton Therapy (RGPT), utilization of tomographic image at exhale phase of patient respiration obtained from 4-dimensional Cone beam CT (4D-CBCT) has been desired. We developed software named “Image Analysis Platform” for 4D-CBCT researches which has technique to segment projection-images based on 3D marker position in the body. The 3D marker position can be obtained by using two axes CBCT system at Hokkaido University Hospital Proton Therapy Center. Performance verification of the software was implemented. Methods: The software calculates 3D marker position retrospectively bymore » using matching positions on pair projection-images obtained by two axes fluoroscopy mode of CBCT system. Log data of 3D marker tracking are outputted after the tracking. By linking the Log data and gantry-angle file of projection-image, all projection-images are equally segmented to spatial five-phases according to marker 3D position of SI direction and saved to specified phase folder. Segmented projection-images are used for CBCT reconstruction of each phase. As performance verification of the software, test of segmented projection-images was implemented for sample CT phantom (Catphan) image acquired by two axes fluoroscopy mode of CBCT. Dummy marker was added on the images. Motion of the marker was modeled to move in 3D space. Motion type of marker is sin4 wave function has amplitude 10.0 mm/5.0 mm/0 mm, cycle 4 s/4 s/0 s for SI/AP/RL direction. Results: The marker was tracked within 0.58 mm accuracy in 3D for all images, and it was confirmed that all projection-images were segmented and saved to each phase folder correctly. Conclusion: We developed software for 4D-CBCT research which can segment projection-image based on 3D marker position. It will be helpful to create high quality of 4D-CBCT reconstruction image for RGPT.« less

  18. Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?

    PubMed

    Baghaie, Ahmadreza; Yu, Zeyun; D'Souza, Roshan M

    2017-04-01

    In this paper, we review state-of-the-art techniques to correct eye motion artifacts in Optical Coherence Tomography (OCT) imaging. The methods for eye motion artifact reduction can be categorized into two major classes: (1) hardware-based techniques and (2) software-based techniques. In the first class, additional hardware is mounted onto the OCT scanner to gather information about the eye motion patterns during OCT data acquisition. This information is later processed and applied to the OCT data for creating an anatomically correct representation of the retina, either in an offline or online manner. In software based techniques, the motion patterns are approximated either by comparing the acquired data to a reference image, or by considering some prior assumptions about the nature of the eye motion. Careful investigations done on the most common methods in the field provides invaluable insight regarding future directions of the research in this area. The challenge in hardware-based techniques lies in the implementation aspects of particular devices. However, the results of these techniques are superior to those obtained from software-based techniques because they are capable of capturing secondary data related to eye motion during OCT acquisition. Software-based techniques on the other hand, achieve moderate success and their performance is highly dependent on the quality of the OCT data in terms of the amount of motion artifacts contained in them. However, they are still relevant to the field since they are the sole class of techniques with the ability to be applied to legacy data acquired using systems that do not have extra hardware to track eye motion. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Genetic Control of Water and Nitrate Capture and Their Use Efficiency in Lettuce (Lactuca sativa L.)

    PubMed Central

    Kerbiriou, Pauline J.; Maliepaard, Chris A.; Stomph, Tjeerd Jan; Koper, Martin; Froissart, Dorothee; Roobeek, Ilja; Lammerts Van Bueren, Edith T.; Struik, Paul C.

    2016-01-01

    Robustness in lettuce, defined as the ability to produce stable yields across a wide range of environments, may be associated with below-ground traits such as water and nitrate capture. In lettuce, research on the role of root traits in resource acquisition has been rather limited. Exploring genetic variation for such traits and shoot performance in lettuce across environments can contribute to breeding for robustness. A population of 142 lettuce cultivars was evaluated during two seasons (spring and summer) in two different locations under organic cropping conditions, and water and nitrate capture below-ground and accumulation in the shoots were assessed at two sampling dates. Resource capture in each soil layer was measured using a volumetric method based on fresh and dry weight difference in the soil for soil moisture, and using an ion-specific electrode for nitrate. We used these results to carry out an association mapping study based on 1170 single nucleotide polymorphism markers. We demonstrated that our indirect, high-throughput phenotyping methodology was reliable and capable of quantifying genetic variation in resource capture. QTLs for below-ground traits were not detected at early sampling. Significant marker-trait associations were detected across trials for below-ground and shoot traits, in number and position varying with trial, highlighting the importance of the growing environment on the expression of the traits measured. The difficulty of identifying general patterns in the expression of the QTLs for below-ground traits across different environments calls for a more in-depth analysis of the physiological mechanisms at root level allowing sustained shoot growth. PMID:27064203

  20. SU-D-207-05: Real-Time Intrafractional Motion Tracking During VMAT Delivery Using a Conventional Elekta CBCT System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Yang-Kyun; Sharp, Gregory C.; Gierga, David P.

    2015-06-15

    Purpose: Real-time kV projection streaming capability has become recently available for Elekta XVI version 5.0. This study aims to investigate the feasibility and accuracy of real-time fiducial marker tracking during CBCT acquisition with or without simultaneous VMAT delivery using a conventional Elekta linear accelerator. Methods: A client computer was connected to an on-board kV imaging system computer, and receives and processes projection images immediately after image acquisition. In-house marker tracking software based on FFT normalized cross-correlation was developed and installed in the client computer. Three gold fiducial markers with 3 mm length were implanted in a pelvis-shaped phantom with 36more » cm width. The phantom was placed on a programmable motion platform oscillating in anterior-posterior and superior-inferior directions simultaneously. The marker motion was tracked in real-time for (1) a kV-only CBCT scan with treatment beam off and (2) a kV CBCT scan during a 6-MV VMAT delivery. The exposure parameters per projection were 120 kVp and 1.6 mAs. Tracking accuracy was assessed by comparing superior-inferior positions between the programmed and tracked trajectories. Results: The projection images were successfully transferred to the client computer at a frequency of about 5 Hz. In the kV-only scan, highly accurate marker tracking was achieved over the entire range of cone-beam projection angles (detection rate / tracking error were 100.0% / 0.6±0.5 mm). In the kV-VMAT scan, MV-scatter degraded image quality, particularly for lateral projections passing through the thickest part of the phantom (kV source angle ranging 70°-110° and 250°-290°), resulting in a reduced detection rate (90.5%). If the lateral projections are excluded, tracking performance was comparable to the kV-only case (detection rate / tracking error were 100.0% / 0.8±0.5 mm). Conclusion: Our phantom study demonstrated a promising Result for real-time motion tracking using a conventional Elekta linear accelerator. MV-scatter suppression is needed to improve tracking accuracy during MV delivery. This research is funded by Motion Management Research Grant from Elekta.« less

  1. Effect of tumor amplitude and frequency on 4D modeling of Vero4DRT system.

    PubMed

    Miura, Hideharu; Ozawa, Shuichi; Hayata, Masahiro; Tsuda, Shintaro; Yamada, Kiyoshi; Nagata, Yasushi

    2017-01-01

    An important issue in indirect dynamic tumor tracking with the Vero4DRT system is the accuracy of the model predictions of the internal target position based on surrogate infrared (IR) marker measurement. We investigated the predictive uncertainty of 4D modeling using an external IR marker, focusing on the effect of the target and surrogate amplitudes and periods. A programmable respiratory motion table was used to simulate breathing induced organ motion. Sinusoidal motion sequences were produced by a dynamic phantom with different amplitudes and periods. To investigate the 4D modeling error, the following amplitudes (peak-to-peak: 10-40 mm) and periods (2-8 s) were considered. The 95th percentile 4D modeling error (4D- E 95% ) between the detected and predicted target position ( μ  + 2SD) was calculated to investigate the 4D modeling error. 4D- E 95% was linearly related to the target motion amplitude with a coefficient of determination R 2  = 0.99 and ranged from 0.21 to 0.88 mm. The 4D modeling error ranged from 1.49 to 0.14 mm and gradually decreased with increasing target motion period. We analyzed the predictive error in 4D modeling and the error due to the amplitude and period of target. 4D modeling error substantially increased with increasing amplitude and decreasing period of the target motion.

  2. Modeling of genetic gain for single traits from marker-assisted seedling selection in clonally propagated crops

    PubMed Central

    Ru, Sushan; Hardner, Craig; Carter, Patrick A; Evans, Kate; Main, Dorrie; Peace, Cameron

    2016-01-01

    Seedling selection identifies superior seedlings as candidate cultivars based on predicted genetic potential for traits of interest. Traditionally, genetic potential is determined by phenotypic evaluation. With the availability of DNA tests for some agronomically important traits, breeders have the opportunity to include DNA information in their seedling selection operations—known as marker-assisted seedling selection. A major challenge in deploying marker-assisted seedling selection in clonally propagated crops is a lack of knowledge in genetic gain achievable from alternative strategies. Existing models based on additive effects considering seed-propagated crops are not directly relevant for seedling selection of clonally propagated crops, as clonal propagation captures all genetic effects, not just additive. This study modeled genetic gain from traditional and various marker-based seedling selection strategies on a single trait basis through analytical derivation and stochastic simulation, based on a generalized seedling selection scheme of clonally propagated crops. Various trait-test scenarios with a range of broad-sense heritability and proportion of genotypic variance explained by DNA markers were simulated for two populations with different segregation patterns. Both derived and simulated results indicated that marker-based strategies tended to achieve higher genetic gain than phenotypic seedling selection for a trait where the proportion of genotypic variance explained by marker information was greater than the broad-sense heritability. Results from this study provides guidance in optimizing genetic gain from seedling selection for single traits where DNA tests providing marker information are available. PMID:27148453

  3. Motion estimation using point cluster method and Kalman filter.

    PubMed

    Senesh, M; Wolf, A

    2009-05-01

    The most frequently used method in a three dimensional human gait analysis involves placing markers on the skin of the analyzed segment. This introduces a significant artifact, which strongly influences the bone position and orientation and joint kinematic estimates. In this study, we tested and evaluated the effect of adding a Kalman filter procedure to the previously reported point cluster technique (PCT) in the estimation of a rigid body motion. We demonstrated the procedures by motion analysis of a compound planar pendulum from indirect opto-electronic measurements of markers attached to an elastic appendage that is restrained to slide along the rigid body long axis. The elastic frequency is close to the pendulum frequency, as in the biomechanical problem, where the soft tissue frequency content is similar to the actual movement of the bones. Comparison of the real pendulum angle to that obtained by several estimation procedures--PCT, Kalman filter followed by PCT, and low pass filter followed by PCT--enables evaluation of the accuracy of the procedures. When comparing the maximal amplitude, no effect was noted by adding the Kalman filter; however, a closer look at the signal revealed that the estimated angle based only on the PCT method was very noisy with fluctuation, while the estimated angle based on the Kalman filter followed by the PCT was a smooth signal. It was also noted that the instantaneous frequencies obtained from the estimated angle based on the PCT method is more dispersed than those obtained from the estimated angle based on Kalman filter followed by the PCT method. Addition of a Kalman filter to the PCT method in the estimation procedure of rigid body motion results in a smoother signal that better represents the real motion, with less signal distortion than when using a digital low pass filter. Furthermore, it can be concluded that adding a Kalman filter to the PCT procedure substantially reduces the dispersion of the maximal and minimal instantaneous frequencies.

  4. Electrochemical detection of DNA hybridization based on signal DNA probe modified with Au and apoferritin nanoparticles.

    PubMed

    Yu, Fengli; Li, Gang; Qu, Bin; Cao, Wei

    2010-11-15

    A novel and ultrasensitive electrochemical approach for sequence-specific DNA detection based on signal dual-amplification with Au NPs and marker-loaded apoferritin NPs was reported. Target DNA was sandwiched between capture DNA coupled to magnetic beads and signal DNA self-assembled on Au NPs which were incorporated with marker-loaded apoferritin NPs. Subsequent electrochemical stripping analysis of the electroactive markers released from apoferritin NPs in acidic buffers provided a means to quantify the concentration of target DNA. In this means, one target signal could be transformed into multiple redox signals of the markers since a single Au NP could be loaded with dozens of apoferritin NPs, and an apoferritin NP could be loaded with thousands of markers. Under the optimum conditions, the linear range was from 2.0 × 10(-16) to 1.0 × 10(-14)M and the detection limit was 5.1 × 10(-17)M by using the cadmium as a model marker. The proposed DNA biosensor not only exhibited excellent sensitivity but also had good reproducibility and selectivity against two-base mismatched DNA. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Relative effects of posture and activity on human height estimation from surveillance footage.

    PubMed

    Ramstrand, Nerrolyn; Ramstrand, Simon; Brolund, Per; Norell, Kristin; Bergström, Peter

    2011-10-10

    Height estimations based on security camera footage are often requested by law enforcement authorities. While valid and reliable techniques have been established to determine vertical distances from video frames, there is a discrepancy between a person's true static height and their height as measured when assuming different postures or when in motion (e.g., walking). The aim of the research presented in this report was to accurately record the height of subjects as they performed a variety of activities typically observed in security camera footage and compare results to height recorded using a standard height measuring device. Forty-six able bodied adults participated in this study and were recorded using a 3D motion analysis system while performing eight different tasks. Height measurements captured using the 3D motion analysis system were compared to static height measurements in order to determine relative differences. It is anticipated that results presented in this report can be used by forensic image analysis experts as a basis for correcting height estimations of people captured on surveillance footage. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. SU-C-209-02: 3D Fluoroscopic Image Generation From Patient-Specific 4DCBCT-Based Motion Models Derived From Clinical Patient Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhou, S; Cai, W; Hurwitz, M

    Purpose: We develop a method to generate time varying volumetric images (3D fluoroscopic images) using patient-specific motion models derived from four-dimensional cone-beam CT (4DCBCT). Methods: Motion models are derived by selecting one 4DCBCT phase as a reference image, and registering the remaining images to it. Principal component analysis (PCA) is performed on the resultant displacement vector fields (DVFs) to create a reduced set of PCA eigenvectors that capture the majority of respiratory motion. 3D fluoroscopic images are generated by optimizing the weights of the PCA eigenvectors iteratively through comparison of measured cone-beam projections and simulated projections generated from the motionmore » model. This method was applied to images from five lung-cancer patients. The spatial accuracy of this method is evaluated by comparing landmark positions in the 3D fluoroscopic images to manually defined ground truth positions in the patient cone-beam projections. Results: 4DCBCT motion models were shown to accurately generate 3D fluoroscopic images when the patient cone-beam projections contained clearly visible structures moving with respiration (e.g., the diaphragm). When no moving anatomical structure was clearly visible in the projections, the 3D fluoroscopic images generated did not capture breathing deformations, and reverted to the reference image. For the subset of 3D fluoroscopic images generated from projections with visibly moving anatomy, the average tumor localization error and the 95th percentile were 1.6 mm and 3.1 mm respectively. Conclusion: This study showed that 4DCBCT-based 3D fluoroscopic images can accurately capture respiratory deformations in a patient dataset, so long as the cone-beam projections used contain visible structures that move with respiration. For clinical implementation of 3D fluoroscopic imaging for treatment verification, an imaging field of view (FOV) that contains visible structures moving with respiration should be selected. If no other appropriate structures are visible, the images should include the diaphragm. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc, Palo Alto, CA.« less

  7. Effect of vision and stance width on human body motion when standing: implications for afferent control of lateral sway.

    PubMed

    Day, B L; Steiger, M J; Thompson, P D; Marsden, C D

    1993-09-01

    1. Measurements of human upright body movements in three dimensions have been made on thirty-five male subjects attempting to stand still with various stance widths and with eyes closed or open. Body motion was inferred from movements of eight markers fixed to specific sites on the body from the shoulders to the ankles. Motion of these markers was recorded together with motion of the point of application of the resultant of the ground reaction forces (centre of pressure). 2. The speed of the body (average from eight sites) was increased by closing the eyes or narrowing the stance width and there was an interaction between these two factors such that vision reduced body speed more effectively when the feet were closer together. Similar relationships were found for components of velocity both in the frontal and sagittal planes although stance width exerted a much greater influence on the lateral velocity component. 3. Fluctuations in position of the body were also increased by eye closure or narrowing of stance width. Again, the effect of stance width was more potent for lateral than for anteroposterior movements. In contrast to the velocity measurements, there was no interaction between vision and stance width. 4. There was a progressive increase in the amplitude of position and velocity fluctuations from markers placed higher on the body. The fluctuations in the position of the centre of pressure were similar in magnitude to those of the markers placed near the hip. The fluctuations in velocity of centre of pressure, however, were greater than of any site on the body. 5. Analysis of the amplitude of angular motion between adjacent straight line segments joining the markers suggests that the inverted pendulum model of body sway is incomplete. Motion about the ankle joint was dominant only for lateral movement in the frontal plane with narrow stance widths (< 8 cm). For all other conditions most angular motion occurred between the trunk and leg. 6. The large reduction in lateral body motion with increasing stance width was mainly due to a disproportionate reduction in the angular motion about the ankles and feet. A mathematical model of the skeletal structure has been constructed which offers some explanation for this specific reduction in joint motion.(ABSTRACT TRUNCATED AT 400 WORDS)

  8. A robust vision-based sensor fusion approach for real-time pose estimation.

    PubMed

    Assa, Akbar; Janabi-Sharifi, Farrokh

    2014-02-01

    Object pose estimation is of great importance to many applications, such as augmented reality, localization and mapping, motion capture, and visual servoing. Although many approaches based on a monocular camera have been proposed, only a few works have concentrated on applying multicamera sensor fusion techniques to pose estimation. Higher accuracy and enhanced robustness toward sensor defects or failures are some of the advantages of these schemes. This paper presents a new Kalman-based sensor fusion approach for pose estimation that offers higher accuracy and precision, and is robust to camera motion and image occlusion, compared to its predecessors. Extensive experiments are conducted to validate the superiority of this fusion method over currently employed vision-based pose estimation algorithms.

  9. How many atoms are required to characterize accurately trajectory fluctuations of a protein?

    NASA Astrophysics Data System (ADS)

    Cukier, Robert I.

    2010-06-01

    Large molecules, whose thermal fluctuations sample a complex energy landscape, exhibit motions on an extended range of space and time scales. Principal component analysis (PCA) is often used to extract dominant motions that in proteins are typically domain motions. These motions are captured in the large eigenvalue (leading) principal components. There is also information in the small eigenvalues, arising from approximate linear dependencies among the coordinates. These linear dependencies suggest that instead of using all the atom coordinates to represent a trajectory, it should be possible to use a reduced set of coordinates with little loss in the information captured by the large eigenvalue principal components. In this work, methods that can monitor the correlation (overlap) between a reduced set of atoms and any number of retained principal components are introduced. For application to trajectory data generated by simulations, where the overall translational and rotational motion needs to be eliminated before PCA is carried out, some difficulties with the overlap measures arise and methods are developed to overcome them. The overlap measures are evaluated for a trajectory generated by molecular dynamics for the protein adenylate kinase, which consists of a stable, core domain, and two more mobile domains, referred to as the LID domain and the AMP-binding domain. The use of reduced sets corresponding, for the smallest set, to one-eighth of the alpha carbon (CA) atoms relative to using all the CA atoms is shown to predict the dominant motions of adenylate kinase. The overlap between using all the CA atoms and all the backbone atoms is essentially unity for a sum over PCA modes that effectively capture the exact trajectory. A reduction to a few atoms (three in the LID and three in the AMP-binding domain) shows that at least the first principal component, characterizing a large part of the LID-binding and AMP-binding motion, is well described. Based on these results, the overlap criterion should be applicable as a guide to postulating and validating coarse-grained descriptions of generic biomolecular assemblies.

  10. Validity and reliability of simple measurement device to assess the velocity of the barbell during squats.

    PubMed

    Lorenzetti, Silvio; Lamparter, Thomas; Lüthy, Fabian

    2017-12-06

    The velocity of a barbell can provide important insights on the performance of athletes during strength training. The aim of this work was to assess the validity and reliably of four simple measurement devices that were compared to 3D motion capture measurements during squatting. Nine participants were assessed when performing 2 × 5 traditional squats with a weight of 70% of the 1 repetition maximum and ballistic squats with a weight of 25 kg. Simultaneously, data was recorded from three linear position transducers (T-FORCE, Tendo Power and GymAware), an accelerometer based system (Myotest) and a 3D motion capture system (Vicon) as the Gold Standard. Correlations between the simple measurement devices and 3D motion capture of the mean and the maximal velocity of the barbell, as well as the time to maximal velocity, were calculated. The correlations during traditional squats were significant and very high (r = 0.932, 0.990, p < 0.01) and significant and moderate to high (r = 0.552, 0.860, p < 0.01). The Myotest could only be used during the ballistic squats and was less accurate. All the linear position transducers were able to assess squat performance, particularly during traditional squats and especially in terms of mean velocity and time to maximal velocity.

  11. Hand VR Exergame for Occupational Health Care.

    PubMed

    Ortiz, Saskia; Uribe-Quevedo, Alvaro; Kapralos, Bill

    2016-01-01

    The widespread use and ubiquity of mobile computing technologies such as smartphones, tablets, laptops and portable gaming consoles has led to an increase in musculoskeletal disorders due to overuse, bad posture, repetitive movements, fixed postures and physical de-conditioning caused by low muscular demands while using (and over-using) these devices. In this paper we present the development of a hand motion-based virtual reality-based exergame for occupational health purposes that allows the user to perform simple exercises using a cost-effective non-invasive motion capture device to help overcome and prevent some of the muskoloskeletal problems associated with the over-use of keyboards and mobile devices.

  12. Multileaf collimator tracking integrated with a novel x-ray imaging system and external surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2012-04-01

    We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking with x-ray imaging in the in-line geometry and demonstrated highly accurate respiratory motion tracking.

  13. Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing

    PubMed Central

    Taylor, K.A.; Terry, M.E.; Utturkar, G.M.; Spritzer, C.E.; Queen, R.M.; Irribarra, L.A.; Garrett, W.E.; DeFrate, L.E.

    2011-01-01

    Despite recent attention in the literature, anterior cruciate ligament (ACL) injury mechanisms are controversial and incidence rates remain high. One explanation is limited data on in vivo ACL strain during high-risk, dynamic movements. The objective of this study was to quantify ACL strain during jump landing. Marker-based motion analysis techniques were integrated with fluoroscopic and magnetic resonance (MR) imaging techniques to measure dynamic ACL strain non-invasively. First, eight subjects’ knees were imaged using MR. From these images, the cortical bone and ACL attachment sites of the tibia and femur were outlined to create 3D models. Subjects underwent motion analysis while jump landing using reflective markers placed directly on the skin around the knee. Next, biplanar fluoroscopic images were taken with the markers in place so that the relative positions of each marker to the underlying bone could be quantified. Numerical optimization allowed jumping kinematics to be superimposed on the knee model, thus reproducing the dynamic in vivo joint motion. ACL length, knee flexion, and ground reaction force were measured. During jump landing, average ACL strain peaked 55 ± 14 ms (mean and 95% confidence interval) prior to ground impact, when knee flexion angles were lowest. The peak ACL strain, measured relative to its length during MR imaging, was 12 ± 7%. The observed trends were consistent with previously described neuromuscular patterns. Unrestricted by field of view or low sampling rate, this novel approach provides a means to measure kinematic patterns that elevate ACL strains and that provide new insights into ACL injury mechanisms. PMID:21092960

  14. Upper limb rehabilitation after spinal cord injury: a treatment based on a data glove and an immersive virtual reality environment.

    PubMed

    Dimbwadyo-Terrer, Iris; Trincado-Alonso, Fernando; de Los Reyes-Guzmán, Ana; Aznar, Miguel A; Alcubilla, Cesar; Pérez-Nombela, Soraya; Del Ama-Espinosa, Antonio; Polonio-López, Begoña; Gil-Agudo, Ángel

    2016-08-01

    Purpose state: The aim of this preliminary study was to test a data glove, CyberTouch™, combined with a virtual reality (VR) environment, for using in therapeutic training of reaching movements after spinal cord injury (SCI). Nine patients with thoracic SCI were selected to perform a pilot study by comparing two treatments: patients in the intervention group (IG) conducted a VR training based on the use of a data glove, CyberTouch™ for 2 weeks, while patients in the control group (CG) only underwent the traditional rehabilitation. Furthermore, two functional parameters were implemented in order to assess patient's performance of the sessions: normalized trajectory lengths and repeatability. Although no statistical significance was found, the data glove group seemed to obtain clinical changes in the muscle balance (MB) and functional parameters, and in the dexterity, coordination and fine grip tests. Moreover, every patient showed variations in at least one of the functional parameters, either along Y-axis trajectory or Z-axis trajectory. This study might be a step forward for the investigation of new uses of motion capture systems in neurorehabilitation, making it possible to train activities of daily living (ADLs) in motivational environments while measuring objectively the patient's functional evolution. Implications for Rehabilitation Key findings: A motion capture application based on a data glove is presented, for being used as a virtual reality tool for rehabilitation. This application has provided objective data about patient's functional performance. What the study has added: (1) This study allows to open new areas of research based on the use of different motion capture systems as rehabilitation tools, making it possible to train Activities of Daily Living in motivational environments. (2) Furthermore, this study could be a contribution for the development of clinical protocols to identify which types of patients will benefit most from the VR treatments, which interfaces are more suitable to be used in neurorehabilitation, and what types of virtual exercises will work best.

  15. Real-time tumor motion estimation using respiratory surrogate via memory-based learning

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Berbeco, Ross I.; Xing, Lei

    2012-08-01

    Respiratory tumor motion is a major challenge in radiation therapy for thoracic and abdominal cancers. Effective motion management requires an accurate knowledge of the real-time tumor motion. External respiration monitoring devices (optical, etc) provide a noninvasive, non-ionizing, low-cost and practical approach to obtain the respiratory signal. Due to the highly complex and nonlinear relations between tumor and surrogate motion, its ultimate success hinges on the ability to accurately infer the tumor motion from respiratory surrogates. Given their widespread use in the clinic, such a method is critically needed. We propose to use a powerful memory-based learning method to find the complex relations between tumor motion and respiratory surrogates. The method first stores the training data in memory and then finds relevant data to answer a particular query. Nearby data points are assigned high relevance (or weights) and conversely distant data are assigned low relevance. By fitting relatively simple models to local patches instead of fitting one single global model, it is able to capture highly nonlinear and complex relations between the internal tumor motion and external surrogates accurately. Due to the local nature of weighting functions, the method is inherently robust to outliers in the training data. Moreover, both training and adapting to new data are performed almost instantaneously with memory-based learning, making it suitable for dynamically following variable internal/external relations. We evaluated the method using respiratory motion data from 11 patients. The data set consists of simultaneous measurement of 3D tumor motion and 1D abdominal surface (used as the surrogate signal in this study). There are a total of 171 respiratory traces, with an average peak-to-peak amplitude of ∼15 mm and average duration of ∼115 s per trace. Given only 5 s (roughly one breath) pretreatment training data, the method achieved an average 3D error of 1.5 mm and 95th percentile error of 3.4 mm on unseen test data. The average 3D error was further reduced to 1.4 mm when the model was tuned to its optimal setting for each respiratory trace. In one trace where a few outliers are present in the training data, the proposed method achieved an error reduction of as much as ∼50% compared with the best linear model (1.0 mm versus 2.1 mm). The memory-based learning technique is able to accurately capture the highly complex and nonlinear relations between tumor and surrogate motion in an efficient manner (a few milliseconds per estimate). Furthermore, the algorithm is particularly suitable to handle situations where the training data are contaminated by large errors or outliers. These desirable properties make it an ideal candidate for accurate and robust tumor gating/tracking using respiratory surrogates.

  16. Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: characterization, optimization and downstream analysis.

    PubMed

    Thege, Fredrik I; Lannin, Timothy B; Saha, Trisha N; Tsai, Shannon; Kochman, Michael L; Hollingsworth, Michael A; Rhim, Andrew D; Kirby, Brian J

    2014-05-21

    We have developed and optimized a microfluidic device platform for the capture and analysis of circulating pancreatic cells (CPCs) and pancreatic circulating tumor cells (CTCs). Our platform uses parallel anti-EpCAM and cancer-specific mucin 1 (MUC1) immunocapture in a silicon microdevice. Using a combination of anti-EpCAM and anti-MUC1 capture in a single device, we are able to achieve efficient capture while extending immunocapture beyond single marker recognition. We also have detected a known oncogenic KRAS mutation in cells spiked in whole blood using immunocapture, RNA extraction, RT-PCR and Sanger sequencing. To allow for downstream single-cell genetic analysis, intact nuclei were released from captured cells by using targeted membrane lysis. We have developed a staining protocol for clinical samples, including standard CTC markers; DAPI, cytokeratin (CK) and CD45, and a novel marker of carcinogenesis in CPCs, mucin 4 (MUC4). We have also demonstrated a semi-automated approach to image analysis and CPC identification, suitable for clinical hypothesis generation. Initial results from immunocapture of a clinical pancreatic cancer patient sample show that parallel capture may capture more of the heterogeneity of the CPC population. With this platform, we aim to develop a diagnostic biomarker for early pancreatic carcinogenesis and patient risk stratification.

  17. An interdimensional correlation framework for real-time estimation of six degree of freedom target motion using a single x-ray imager during radiotherapy

    NASA Astrophysics Data System (ADS)

    Nguyen, D. T.; Bertholet, J.; Kim, J.-H.; O'Brien, R.; Booth, J. T.; Poulsen, P. R.; Keall, P. J.

    2018-01-01

    Increasing evidence suggests that intrafraction tumour motion monitoring needs to include both 3D translations and 3D rotations. Presently, methods to estimate the rotation motion require the 3D translation of the target to be known first. However, ideally, translation and rotation should be estimated concurrently. We present the first method to directly estimate six-degree-of-freedom (6DoF) motion from the target’s projection on a single rotating x-ray imager in real-time. This novel method is based on the linear correlations between the superior-inferior translations and the motion in the other five degrees-of-freedom. The accuracy of the method was evaluated in silico with 81 liver tumour motion traces from 19 patients with three implanted markers. The ground-truth motion was estimated using the current gold standard method where each marker’s 3D position was first estimated using a Gaussian probability method, and the 6DoF motion was then estimated from the 3D positions using an iterative method. The 3D position of each marker was projected onto a gantry-mounted imager with an imaging rate of 11 Hz. After an initial 110° gantry rotation (200 images), a correlation model between the superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. The proposed algorithm had an accuracy (±precision) of  -0.03  ±  0.32 mm, -0.01  ±  0.13 mm and 0.03  ±  0.52 mm for translations in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07  ±  1.18°, 0.07  ±  1.00° and 0.06  ±  1.32° for rotations around the LR, SI and AP axes respectively on the dataset. The first method to directly estimate real-time 6DoF target motion from segmented marker positions on a 2D imager was devised. The algorithm was evaluated using 81 motion traces from 19 liver patients and was found to have sub-mm and sub-degree accuracy.

  18. Real-time animation software for customized training to use motor prosthetic systems.

    PubMed

    Davoodi, Rahman; Loeb, Gerald E

    2012-03-01

    Research on control of human movement and development of tools for restoration and rehabilitation of movement after spinal cord injury and amputation can benefit greatly from software tools for creating precisely timed animation sequences of human movement. Despite their ability to create sophisticated animation and high quality rendering, existing animation software are not adapted for application to neural prostheses and rehabilitation of human movement. We have developed a software tool known as MSMS (MusculoSkeletal Modeling Software) that can be used to develop models of human or prosthetic limbs and the objects with which they interact and to animate their movement using motion data from a variety of offline and online sources. The motion data can be read from a motion file containing synthesized motion data or recordings from a motion capture system. Alternatively, motion data can be streamed online from a real-time motion capture system, a physics-based simulation program, or any program that can produce real-time motion data. Further, animation sequences of daily life activities can be constructed using the intuitive user interface of Microsoft's PowerPoint software. The latter allows expert and nonexpert users alike to assemble primitive movements into a complex motion sequence with precise timing by simply arranging the order of the slides and editing their properties in PowerPoint. The resulting motion sequence can be played back in an open-loop manner for demonstration and training or in closed-loop virtual reality environments where the timing and speed of animation depends on user inputs. These versatile animation utilities can be used in any application that requires precisely timed animations but they are particularly suited for research and rehabilitation of movement disorders. MSMS's modeling and animation tools are routinely used in a number of research laboratories around the country to study the control of movement and to develop and test neural prostheses for patients with paralysis or amputations.

  19. A universal approach to determine footfall timings from kinematics of a single foot marker in hoofed animals

    PubMed Central

    Clayton, Hilary M.

    2015-01-01

    The study of animal movement commonly requires the segmentation of continuous data streams into individual strides. The use of forceplates and foot-mounted accelerometers readily allows the detection of the foot-on and foot-off events that define a stride. However, when relying on optical methods such as motion capture, there is lack of validated robust, universally applicable stride event detection methods. To date, no method has been validated for movement on a circle, while algorithms are commonly specific to front/hind limbs or gait. In this study, we aimed to develop and validate kinematic stride segmentation methods applicable to movement on straight line and circle at walk and trot, which exclusively rely on a single, dorsal hoof marker. The advantage of such marker placement is the robustness to marker loss and occlusion. Eight horses walked and trotted on a straight line and in a circle over an array of multiple forceplates. Kinetic events were detected based on the vertical force profile and used as the reference values. Kinematic events were detected based on displacement, velocity or acceleration signals of the dorsal hoof marker depending on the algorithm using (i) defined thresholds associated with derived movement signals and (ii) specific events in the derived movement signals. Method comparison was performed by calculating limits of agreement, accuracy, between-horse precision and within-horse precision based on differences between kinetic and kinematic event. In addition, we examined the effect of force thresholds ranging from 50 to 150 N on the timings of kinetic events. The two approaches resulted in very good and comparable performance: of the 3,074 processed footfall events, 95% of individual foot on and foot off events differed by no more than 26 ms from the kinetic event, with average accuracy between −11 and 10 ms and average within- and between horse precision ≤8 ms. While the event-based method may be less likely to suffer from scaling effects, on soft ground the threshold-based method may prove more valuable. While we found that use of velocity thresholds for foot on detection results in biased event estimates for the foot on the inside of the circle at trot, adjusting thresholds for this condition negated the effect. For the final four algorithms, we found no noteworthy bias between conditions or between front- and hind-foot timings. Different force thresholds in the range of 50 to 150 N had the greatest systematic effect on foot-off estimates in the hind limbs (up to on average 16 ms per condition), being greater than the effect on foot-on estimates or foot-off estimates in the forelimbs (up to on average ±7 ms per condition). PMID:26157641

  20. Stochastic Earthquake Rupture Modeling Using Nonparametric Co-Regionalization

    NASA Astrophysics Data System (ADS)

    Lee, Kyungbook; Song, Seok Goo

    2017-09-01

    Accurate predictions of the intensity and variability of ground motions are essential in simulation-based seismic hazard assessment. Advanced simulation-based ground motion prediction methods have been proposed to complement the empirical approach, which suffers from the lack of observed ground motion data, especially in the near-source region for large events. It is important to quantify the variability of the earthquake rupture process for future events and to produce a number of rupture scenario models to capture the variability in simulation-based ground motion predictions. In this study, we improved the previously developed stochastic earthquake rupture modeling method by applying the nonparametric co-regionalization, which was proposed in geostatistics, to the correlation models estimated from dynamically derived earthquake rupture models. The nonparametric approach adopted in this study is computationally efficient and, therefore, enables us to simulate numerous rupture scenarios, including large events ( M > 7.0). It also gives us an opportunity to check the shape of true input correlation models in stochastic modeling after being deformed for permissibility. We expect that this type of modeling will improve our ability to simulate a wide range of rupture scenario models and thereby predict ground motions and perform seismic hazard assessment more accurately.

  1. Head Motion Modeling for Human Behavior Analysis in Dyadic Interaction

    PubMed Central

    Xiao, Bo; Georgiou, Panayiotis; Baucom, Brian; Narayanan, Shrikanth S.

    2015-01-01

    This paper presents a computational study of head motion in human interaction, notably of its role in conveying interlocutors’ behavioral characteristics. Head motion is physically complex and carries rich information; current modeling approaches based on visual signals, however, are still limited in their ability to adequately capture these important properties. Guided by the methodology of kinesics, we propose a data driven approach to identify typical head motion patterns. The approach follows the steps of first segmenting motion events, then parametrically representing the motion by linear predictive features, and finally generalizing the motion types using Gaussian mixture models. The proposed approach is experimentally validated using video recordings of communication sessions from real couples involved in a couples therapy study. In particular we use the head motion model to classify binarized expert judgments of the interactants’ specific behavioral characteristics where entrainment in head motion is hypothesized to play a role: Acceptance, Blame, Positive, and Negative behavior. We achieve accuracies in the range of 60% to 70% for the various experimental settings and conditions. In addition, we describe a measure of motion similarity between the interaction partners based on the proposed model. We show that the relative change of head motion similarity during the interaction significantly correlates with the expert judgments of the interactants’ behavioral characteristics. These findings demonstrate the effectiveness of the proposed head motion model, and underscore the promise of analyzing human behavioral characteristics through signal processing methods. PMID:26557047

  2. Health Problems Discovery from Motion-Capture Data of Elderly

    NASA Astrophysics Data System (ADS)

    Pogorelc, B.; Gams, M.

    Rapid aging of the population of the developed countries could exceed the society's capacity for taking care for them. In order to help solving this problem, we propose a system for automatic discovery of health problems from motion-capture data of gait of elderly. The gait of the user is captured with the motion capture system, which consists of tags attached to the body and sensors situated in the apartment. Position of the tags is acquired by the sensors and the resulting time series of position coordinates are analyzed with machine learning algorithms in order to identify the specific health problem. We propose novel features for training a machine learning classifier that classifies the user's gait into: i) normal, ii) with hemiplegia, iii) with Parkinson's disease, iv) with pain in the back and v) with pain in the leg. Results show that naive Bayes needs more tags and less noise to reach classification accuracy of 98 % than support vector machines for 99 %.

  3. Motion detection using extended fractional Fourier transform and digital speckle photography.

    PubMed

    Bhaduri, Basanta; Tay, C J; Quan, C; Sheppard, Colin J R

    2010-05-24

    Digital speckle photography is a useful tool for measuring the motion of optically rough surfaces from the speckle shift that takes place at the recording plane. A simple correlation based digital speckle photographic system has been proposed that implements two simultaneous optical extended fractional Fourier transforms (EFRTs) of different orders using only a single lens and detector to simultaneously detect both the magnitude and direction of translation and tilt by capturing only two frames: one before and another after the object motion. The dynamic range and sensitivity of the measurement can be varied readily by altering the position of the mirror/s used in the optical setup. Theoretical analysis and experiment results are presented.

  4. Target position uncertainty during visually guided deep-inspiration breath-hold radiotherapy in locally advanced lung cancer.

    PubMed

    Scherman Rydhög, Jonas; Riisgaard de Blanck, Steen; Josipovic, Mirjana; Irming Jølck, Rasmus; Larsen, Klaus Richter; Clementsen, Paul; Lars Andersen, Thomas; Poulsen, Per Rugaard; Fredberg Persson, Gitte; Munck Af Rosenschold, Per

    2017-04-01

    The purpose of this study was to estimate the uncertainty in voluntary deep-inspiration breath-hold (DIBH) radiotherapy for locally advanced non-small cell lung cancer (NSCLC) patients. Perpendicular fluoroscopic movies were acquired in free breathing (FB) and DIBH during a course of visually guided DIBH radiotherapy of nine patients with NSCLC. Patients had liquid markers injected in mediastinal lymph nodes and primary tumours. Excursion, systematic- and random errors, and inter-breath-hold position uncertainty were investigated using an image based tracking algorithm. A mean reduction of 2-6mm in marker excursion in DIBH versus FB was seen in the anterior-posterior (AP), left-right (LR) and cranio-caudal (CC) directions. Lymph node motion during DIBH originated from cardiac motion. The systematic- (standard deviation (SD) of all the mean marker positions) and random errors (root-mean-square of the intra-BH SD) during DIBH were 0.5 and 0.3mm (AP), 0.5 and 0.3mm (LR), 0.8 and 0.4mm (CC), respectively. The mean inter-breath-hold shifts were -0.3mm (AP), -0.2mm (LR), and -0.2mm (CC). Intra- and inter-breath-hold uncertainty of tumours and lymph nodes were small in visually guided breath-hold radiotherapy of NSCLC. Target motion could be substantially reduced, but not eliminated, using visually guided DIBH. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A device for testing the dynamic performance of in situ force plates.

    PubMed

    East, Rebecca H; Noble, Jonathan J; Arscott, Richard A; Shortland, Adam P

    2017-09-01

    Force plates are often incorporated into motion capture systems for the calculation of joint kinetic variables and other data. This project aimed to create a system that could be used to check the dynamic performance of force plate in situ. The proposed solution involved the design and development of an eccentrically loaded wheel mounted on a weighted frame. The frame was designed to hold a wheel mounted in two orthogonal positions. The wheel was placed on the force plate and spun. A VICON™ motion analysis system captured the positional data of the markers placed around the rim of the wheel which was used to create a simulated force profile, and the force profile was dependent on spin speed. The root mean square error between the simulated force profile and the force plate measurement was calculated. For nine trials conducted, the root mean square error between the two simultaneous measures of force was calculated. The difference between the force profiles in the x- and y-directions is approximately 2%. The difference in the z-direction was under 0.5%. The eccentrically loaded wheel produced a predictable centripetal force in the plane of the wheel which varied in direction as the wheel was spun and magnitude dependent on the spin speed. There are three important advantages to the eccentrically loaded wheel: (1) it does not rely on force measurements made from other devices, (2) the tests require only 15 min to complete per force plate and (3) the forces exerted on the plate are similar to those of paediatric gait.

  6. Quantitative anatomical analysis of facial expression using a 3D motion capture system: Application to cosmetic surgery and facial recognition technology.

    PubMed

    Lee, Jae-Gi; Jung, Su-Jin; Lee, Hyung-Jin; Seo, Jung-Hyuk; Choi, You-Jin; Bae, Hyun-Sook; Park, Jong-Tae; Kim, Hee-Jin

    2015-09-01

    The topography of the facial muscles differs between males and females and among individuals of the same gender. To explain the unique expressions that people can make, it is important to define the shapes of the muscle, their associations with the skin, and their relative functions. Three-dimensional (3D) motion-capture analysis, often used to study facial expression, was used in this study to identify characteristic skin movements in males and females when they made six representative basic expressions. The movements of 44 reflective markers (RMs) positioned on anatomical landmarks were measured. Their mean displacement was large in males [ranging from 14.31 mm (fear) to 41.15 mm (anger)], and 3.35-4.76 mm smaller in females [ranging from 9.55 mm (fear) to 37.80 mm (anger)]. The percentages of RMs involved in the ten highest mean maximum displacement values in making at least one expression were 47.6% in males and 61.9% in females. The movements of the RMs were larger in males than females but were more limited. Expanding our understanding of facial expression requires morphological studies of facial muscles and studies of related complex functionality. Conducting these together with quantitative analyses, as in the present study, will yield data valuable for medicine, dentistry, and engineering, for example, for surgical operations on facial regions, software for predicting changes in facial features and expressions after corrective surgery, and the development of face-mimicking robots. © 2015 Wiley Periodicals, Inc.

  7. SU-E-J-42: Evaluation of Fiducial Markers for Ultrasound and X-Ray Images Used for Motion Tracking in Pancreas SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, SK; Armour, E; Su, L

    Purpose Ultrasound tracking of target motion relies on visibility of vascular and/or anatomical landmark. However this is challenging when the target is located far from vascular structures or in organs that lack ultrasound landmark structure, such as in the case of pancreas cancer. The purpose of this study is to evaluate visibility, artifacts and distortions of fusion coils and solid gold markers in ultrasound, CT, CBCT and kV images to identify markers suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment. Methods Two fusion coils (1mm × 5mm and 1mm × 10 mm) and a solid goldmore » marker (0.8mm × 10mm) were embedded in a tissue–like ultrasound phantom. The phantom (5cm × 12cm × 20cm) was prepared using water, gelatin and psyllium-hydrophilic-mucilloid fiber. Psylliumhydrophilic mucilloid acts as scattering medium to produce echo texture that simulates sonographic appearance of human tissue in ultrasound images while maintaining electron density close to that of water in CT images. Ultrasound images were acquired using 3D-ultrasound system with markers embedded at 5, 10 and 15mm depth from phantom surface. CT images were acquired using Philips Big Bore CT while CBCT and kV images were acquired with XVI-system (Elexta). Visual analysis was performed to compare visibility of the markers and visibility score (1 to 3) were assigned. Results All markers embedded at various depths are clearly visible (score of 3) in ultrasound images. Good visibility of all markers is observed in CT, CBCT and kV images. The degree of artifact produced by the markers in CT and CBCT images are indistinguishable. No distortion is observed in images from any modalities. Conclusion All markers are visible in images across all modalities in this homogenous tissue-like phantom. Human subject data is necessary to confirm the marker type suitable for real-time ultrasound tracking of tumor motion in SBRT pancreas treatment.« less

  8. Varus thrust and knee frontal plane dynamic motion in persons with knee osteoarthritis.

    PubMed

    Chang, A H; Chmiel, J S; Moisio, K C; Almagor, O; Zhang, Y; Cahue, S; Sharma, L

    2013-11-01

    Varus thrust visualized during walking is associated with a greater medial knee load and an increased risk of medial knee osteoarthritis (OA) progression. Little is known about how varus thrust presence determined by visual observation relates to quantitative gait kinematic data. We hypothesized that varus thrust presence is associated with greater knee frontal plane dynamic movement during the stance phase of gait. Participants had knee OA in at least one knee. Trained examiners assessed participants for varus thrust presence during ambulation. Frontal plane knee motion during ambulation was captured using external passive reflective markers and an 8-camera motion analysis system. To examine the cross-sectional relationship between varus thrust and frontal plane knee motion, we used multivariable regression models with the quantitative motion measures as dependent variables and varus thrust (present/absent) as predictor; models were adjusted for age, gender, body mass index (BMI), gait speed, and knee static alignment. 236 persons [mean BMI: 28.5 kg/m(2) (standard deviation (SD) 5.5), mean age: 64.9 years (SD 10.4), 75.8% women] contributing 440 knees comprised the study sample. 82 knees (18.6%) had definite varus thrust. Knees with varus thrust had greater peak varus angle and greater peak varus angular velocity during stance than knees without varus thrust (mean differences 0.90° and 6.65°/s, respectively). These patterns remained significant after adjusting for age, gender, BMI, gait speed, and knee static alignment. Visualized varus thrust during walking was associated with a greater peak knee varus angular velocity and a greater peak knee varus angle during stance phase of gait. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  9. CASPER: computer-aided segmentation of imperceptible motion-a learning-based tracking of an invisible needle in ultrasound.

    PubMed

    Beigi, Parmida; Rohling, Robert; Salcudean, Septimiu E; Ng, Gary C

    2017-11-01

    This paper presents a new micro-motion-based approach to track a needle in ultrasound images captured by a handheld transducer. We propose a novel learning-based framework to track a handheld needle by detecting microscale variations of motion dynamics over time. The current state of the art on using motion analysis for needle detection uses absolute motion and hence work well only when the transducer is static. We have introduced and evaluated novel spatiotemporal and spectral features, obtained from the phase image, in a self-supervised tracking framework to improve the detection accuracy in the subsequent frames using incremental training. Our proposed tracking method involves volumetric feature selection and differential flow analysis to incorporate the neighboring pixels and mitigate the effects of the subtle tremor motion of a handheld transducer. To evaluate the detection accuracy, the method is tested on porcine tissue in-vivo, during the needle insertion in the biceps femoris muscle. Experimental results show the mean, standard deviation and root-mean-square errors of [Formula: see text], [Formula: see text] and [Formula: see text] in the insertion angle, and 0.82, 1.21, 1.47 mm, in the needle tip, respectively. Compared to the appearance-based detection approaches, the proposed method is especially suitable for needles with ultrasonic characteristics that are imperceptible in the static image and to the naked eye.

  10. 3D reconstruction based on light field images

    NASA Astrophysics Data System (ADS)

    Zhu, Dong; Wu, Chunhong; Liu, Yunluo; Fu, Dongmei

    2018-04-01

    This paper proposed a method of reconstructing three-dimensional (3D) scene from two light field images capture by Lytro illium. The work was carried out by first extracting the sub-aperture images from light field images and using the scale-invariant feature transform (SIFT) for feature registration on the selected sub-aperture images. Structure from motion (SFM) algorithm is further used on the registration completed sub-aperture images to reconstruct the three-dimensional scene. 3D sparse point cloud was obtained in the end. The method shows that the 3D reconstruction can be implemented by only two light field camera captures, rather than at least a dozen times captures by traditional cameras. This can effectively solve the time-consuming, laborious issues for 3D reconstruction based on traditional digital cameras, to achieve a more rapid, convenient and accurate reconstruction.

  11. Multivariate analysis for the estimation of target localization errors in fiducial marker-based radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamiya, Masanori; Nakamura, Mitsuhiro, E-mail: m-nkmr@kuhp.kyoto-u.ac.jp; Akimoto, Mami

    Purpose: To assess the target localization error (TLE) in terms of the distance between the target and the localization point estimated from the surrogates (|TMD|), the average of respiratory motion for the surrogates and the target (|aRM|), and the number of fiducial markers used for estimating the target (n). Methods: This study enrolled 17 lung cancer patients who subsequently underwent four fractions of real-time tumor tracking irradiation. Four or five fiducial markers were implanted around the lung tumor. The three-dimensional (3D) distance between the tumor and markers was at maximum 58.7 mm. One of the markers was used as themore » target (P{sub t}), and those markers with a 3D |TMD{sub n}| ≤ 58.7 mm at end-exhalation were then selected. The estimated target position (P{sub e}) was calculated from a localization point consisting of one to three markers except P{sub t}. Respiratory motion for P{sub t} and P{sub e} was defined as the root mean square of each displacement, and |aRM| was calculated from the mean value. TLE was defined as the root mean square of each difference between P{sub t} and P{sub e} during the monitoring of each fraction. These procedures were performed repeatedly using the remaining markers. To provide the best guidance on the answer with n and |TMD|, fiducial markers with a 3D |aRM ≥ 10 mm were selected. Finally, a total of 205, 282, and 76 TLEs that fulfilled the 3D |TMD| and 3D |aRM| criteria were obtained for n = 1, 2, and 3, respectively. Multiple regression analysis (MRA) was used to evaluate TLE as a function of |TMD| and |aRM| in each n. Results: |TMD| for n = 1 was larger than that for n = 3. Moreover, |aRM| was almost constant for all n, indicating a similar scale for the marker’s motion near the lung tumor. MRA showed that |aRM| in the left–right direction was the major cause of TLE; however, the contribution made little difference to the 3D TLE because of the small amount of motion in the left–right direction. The TLE calculated from the MRA ({sup MRA}TLE) increased as |TMD| and |aRM| increased and adversely decreased with each increment of n. The median 3D {sup MRA}TLE was 2.0 mm (range, 0.6–4.3 mm) for n = 1, 1.8 mm (range, 0.4–4.0 mm) for n = 2, and 1.6 mm (range, 0.3–3.7 mm) for n = 3. Although statistical significance between n = 1 and n = 3 was observed in all directions, the absolute average difference and the standard deviation of the {sup MRA}TLE between n = 1 and n = 3 were 0.5 and 0.2 mm, respectively. Conclusions: A large |TMD| and |aRM| increased the differences in TLE between each n; however, the difference in 3D {sup MRA}TLEs was, at most, 0.6 mm. Thus, the authors conclude that it is acceptable to continue fiducial marker-based radiotherapy as long as |TMD| is maintained at ≤58.7 mm for a 3D |aRM|  ≥  10 mm.« less

  12. CCL3L1-CCR5 genotype improves the assessment of AIDS Risk in HIV-1-infected individuals.

    PubMed

    Kulkarni, Hemant; Agan, Brian K; Marconi, Vincent C; O'Connell, Robert J; Camargo, Jose F; He, Weijing; Delmar, Judith; Phelps, Kenneth R; Crawford, George; Clark, Robert A; Dolan, Matthew J; Ahuja, Sunil K

    2008-09-08

    Whether vexing clinical decision-making dilemmas can be partly addressed by recent advances in genomics is unclear. For example, when to initiate highly active antiretroviral therapy (HAART) during HIV-1 infection remains a clinical dilemma. This decision relies heavily on assessing AIDS risk based on the CD4+ T cell count and plasma viral load. However, the trajectories of these two laboratory markers are influenced, in part, by polymorphisms in CCR5, the major HIV coreceptor, and the gene copy number of CCL3L1, a potent CCR5 ligand and HIV-suppressive chemokine. Therefore, we determined whether accounting for both genetic and laboratory markers provided an improved means of assessing AIDS risk. In a prospective, single-site, ethnically-mixed cohort of 1,132 HIV-positive subjects, we determined the AIDS risk conveyed by the laboratory and genetic markers separately and in combination. Subjects were assigned to a low, moderate or high genetic risk group (GRG) based on variations in CCL3L1 and CCR5. The predictive value of the CCL3L1-CCR5 GRGs, as estimated by likelihood ratios, was equivalent to that of the laboratory markers. GRG status also predicted AIDS development when the laboratory markers conveyed a contrary risk. Additionally, in two separate and large groups of HIV+ subjects from a natural history cohort, the results from additive risk-scoring systems and classification and regression tree (CART) analysis revealed that the laboratory and CCL3L1-CCR5 genetic markers together provided more prognostic information than either marker alone. Furthermore, GRGs independently predicted the time interval from seroconversion to CD4+ cell count thresholds used to guide HAART initiation. The combination of the laboratory and genetic markers captures a broader spectrum of AIDS risk than either marker alone. By tracking a unique aspect of AIDS risk distinct from that captured by the laboratory parameters, CCL3L1-CCR5 genotypes may have utility in HIV clinical management. These findings illustrate how genomic information might be applied to achieve practical benefits of personalized medicine.

  13. A Dual-Mode Human Computer Interface Combining Speech and Tongue Motion for People with Severe Disabilities

    PubMed Central

    Huo, Xueliang; Park, Hangue; Kim, Jeonghee; Ghovanloo, Maysam

    2015-01-01

    We are presenting a new wireless and wearable human computer interface called the dual-mode Tongue Drive System (dTDS), which is designed to allow people with severe disabilities to use computers more effectively with increased speed, flexibility, usability, and independence through their tongue motion and speech. The dTDS detects users’ tongue motion using a magnetic tracer and an array of magnetic sensors embedded in a compact and ergonomic wireless headset. It also captures the users’ voice wirelessly using a small microphone embedded in the same headset. Preliminary evaluation results based on 14 able-bodied subjects and three individuals with high level spinal cord injuries at level C3–C5 indicated that the dTDS headset, combined with a commercially available speech recognition (SR) software, can provide end users with significantly higher performance than either unimodal forms based on the tongue motion or speech alone, particularly in completing tasks that require both pointing and text entry. PMID:23475380

  14. Gyroscope-reduced inertial navigation system for flight vehicle motion estimation

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Xiao, Lu

    2017-01-01

    In this paper, a novel configuration of strategically distributed accelerometer sensors with the aid of one gyro to infer a flight vehicle's angular motion is presented. The MEMS accelerometer and gyro sensors are integrated to form a gyroscope-reduced inertial measurement unit (GR-IMU). The motivation for gyro aided accelerometers array is to have direct measurements of angular rates, which is an improvement to the traditional gyroscope-free inertial system that employs only direct measurements of specific force. Some technical issues regarding error calibration in accelerometers and gyro in GR-IMU are put forward. The GR-IMU based inertial navigation system can be used to find a complete attitude solution for flight vehicle motion estimation. Results of numerical simulation are given to illustrate the effectiveness of the proposed configuration. The gyroscope-reduced inertial navigation system based on distributed accelerometer sensors can be developed into a cost effective solution for a fast reaction, MEMS based motion capture system. Future work will include the aid from external navigation references (e.g. GPS) to improve long time mission performance.

  15. High-resolution motion-compensated imaging photoplethysmography for remote heart rate monitoring

    NASA Astrophysics Data System (ADS)

    Chung, Audrey; Wang, Xiao Yu; Amelard, Robert; Scharfenberger, Christian; Leong, Joanne; Kulinski, Jan; Wong, Alexander; Clausi, David A.

    2015-03-01

    We present a novel non-contact photoplethysmographic (PPG) imaging system based on high-resolution video recordings of ambient reflectance of human bodies that compensates for body motion and takes advantage of skin erythema fluctuations to improve measurement reliability for the purpose of remote heart rate monitoring. A single measurement location for recording the ambient reflectance is automatically identified on an individual, and the motion for the location is determined over time via measurement location tracking. Based on the determined motion information motion-compensated reflectance measurements at different wavelengths for the measurement location can be acquired, thus providing more reliable measurements for the same location on the human over time. The reflectance measurement is used to determine skin erythema fluctuations over time, resulting in the capture of a PPG signal with a high signal-to-noise ratio. To test the efficacy of the proposed system, a set of experiments involving human motion in a front-facing position were performed under natural ambient light. The experimental results demonstrated that skin erythema fluctuations can achieve noticeably improved average accuracy in heart rate measurement when compared to previously proposed non-contact PPG imaging systems.

  16. External radioactive markers for PET data-driven respiratory gating in positron emission tomography.

    PubMed

    Büther, Florian; Ernst, Iris; Hamill, James; Eich, Hans T; Schober, Otmar; Schäfers, Michael; Schäfers, Klaus P

    2013-04-01

    Respiratory gating is an established approach to overcoming respiration-induced image artefacts in PET. Of special interest in this respect are raw PET data-driven gating methods which do not require additional hardware to acquire respiratory signals during the scan. However, these methods rely heavily on the quality of the acquired PET data (statistical properties, data contrast, etc.). We therefore combined external radioactive markers with data-driven respiratory gating in PET/CT. The feasibility and accuracy of this approach was studied for [(18)F]FDG PET/CT imaging in patients with malignant liver and lung lesions. PET data from 30 patients with abdominal or thoracic [(18)F]FDG-positive lesions (primary tumours or metastases) were included in this prospective study. The patients underwent a 10-min list-mode PET scan with a single bed position following a standard clinical whole-body [(18)F]FDG PET/CT scan. During this scan, one to three radioactive point sources (either (22)Na or (18)F, 50-100 kBq) in a dedicated holder were attached the patient's abdomen. The list mode data acquired were retrospectively analysed for respiratory signals using established data-driven gating approaches and additionally by tracking the motion of the point sources in sinogram space. Gated reconstructions were examined qualitatively, in terms of the amount of respiratory displacement and in respect of changes in local image intensity in the gated images. The presence of the external markers did not affect whole-body PET/CT image quality. Tracking of the markers led to characteristic respiratory curves in all patients. Applying these curves for gated reconstructions resulted in images in which motion was well resolved. Quantitatively, the performance of the external marker-based approach was similar to that of the best intrinsic data-driven methods. Overall, the gain in measured tumour uptake from the nongated to the gated images indicating successful removal of respiratory motion was correlated with the magnitude of the respiratory displacement of the respective tumour lesion, but not with lesion size. Respiratory information can be assessed from list-mode PET/CT through PET data-derived tracking of external radioactive markers. This information can be successfully applied to respiratory gating to reduce motion-related image blurring. In contrast to other previously described PET data-driven approaches, the external marker approach is independent of tumour uptake and thereby applicable even in patients with poor uptake and small tumours.

  17. FuryExplorer: visual-interactive exploration of horse motion capture data

    NASA Astrophysics Data System (ADS)

    Wilhelm, Nils; Vögele, Anna; Zsoldos, Rebeka; Licka, Theresia; Krüger, Björn; Bernard, Jürgen

    2015-01-01

    The analysis of equine motion has a long tradition in the past of mankind. Equine biomechanics aims at detecting characteristics of horses indicative of good performance. Especially, veterinary medicine gait analysis plays an important role in diagnostics and in the emerging research of long-term effects of athletic exercises. More recently, the incorporation of motion capture technology contributed to an easier and faster analysis, with a trend from mere observation of horses towards the analysis of multivariate time-oriented data. However, due to the novelty of this topic being raised within an interdisciplinary context, there is yet a lack of visual-interactive interfaces to facilitate time series data analysis and information discourse for the veterinary and biomechanics communities. In this design study, we bring visual analytics technology into the respective domains, which, to our best knowledge, was never approached before. Based on requirements developed in the domain characterization phase, we present a visual-interactive system for the exploration of horse motion data. The system provides multiple views which enable domain experts to explore frequent poses and motions, but also to drill down to interesting subsets, possibly containing unexpected patterns. We show the applicability of the system in two exploratory use cases, one on the comparison of different gait motions, and one on the analysis of lameness recovery. Finally, we present the results of a summative user study conducted in the environment of the domain experts. The overall outcome was a significant improvement in effectiveness and efficiency in the analytical workflow of the domain experts.

  18. 3D Human Motion Editing and Synthesis: A Survey

    PubMed Central

    Wang, Xin; Chen, Qiudi; Wang, Wanliang

    2014-01-01

    The ways to compute the kinematics and dynamic quantities of human bodies in motion have been studied in many biomedical papers. This paper presents a comprehensive survey of 3D human motion editing and synthesis techniques. Firstly, four types of methods for 3D human motion synthesis are introduced and compared. Secondly, motion capture data representation, motion editing, and motion synthesis are reviewed successively. Finally, future research directions are suggested. PMID:25045395

  19. Exploration of reticulate evolution in Amaryllidaceae tribe Hippeastreae (Asparagales) using sequence capture and NGS of low-copy nuclear markers

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract Amaryllidaceae tribe Hippeastreae constitute a horticulturally valuable group of approximately 180 species of American petaloid monocots, characterized by dysploidy and polyploidy. A recent hypothesis based on ITS and chloroplast sequence data states that Hippeastreae experienced ...

  20. GN/C translation and rotation control parameters for AR/C (category 2)

    NASA Technical Reports Server (NTRS)

    Henderson, David M.

    1991-01-01

    Detailed analysis of the Automatic Rendezvous and Capture problem indicate a need for three different regions of mathematical description for the GN&C algorithms: (1) multi-vehicle orbital mechanics to the rendezvous interface point, i.e., within 100 n.; (2) relative motion solutions (such as Clohessy-Wiltshire type) from the far-field to the near-field interface, i.e., within 1 nm; and (3) close proximity motion, the nearfield motion where the relative differences in the gravitational and orbit inertial accelerations can be neglected from the equations of motion. This paper defines the reference coordinate frames and control parameters necessary to model the relative motion and attitude of spacecraft in the close proximity of another space system (Region 2 and 3) during the Automatic Rendezvous and Capture phase of an orbit operation.

  1. Alert Response to Motion Onset in the Retina

    PubMed Central

    Chen, Eric Y.; Marre, Olivier; Fisher, Clark; Schwartz, Greg; Levy, Joshua; da Silveira, Rava Azeredo

    2013-01-01

    Previous studies have shown that motion onset is very effective at capturing attention and is more salient than smooth motion. Here, we find that this salience ranking is present already in the firing rate of retinal ganglion cells. By stimulating the retina with a bar that appears, stays still, and then starts moving, we demonstrate that a subset of salamander retinal ganglion cells, fast OFF cells, responds significantly more strongly to motion onset than to smooth motion. We refer to this phenomenon as an alert response to motion onset. We develop a computational model that predicts the time-varying firing rate of ganglion cells responding to the appearance, onset, and smooth motion of a bar. This model, termed the adaptive cascade model, consists of a ganglion cell that receives input from a layer of bipolar cells, represented by individual rectified subunits. Additionally, both the bipolar and ganglion cells have separate contrast gain control mechanisms. This model captured the responses to our different motion stimuli over a wide range of contrasts, speeds, and locations. The alert response to motion onset, together with its computational model, introduces a new mechanism of sophisticated motion processing that occurs early in the visual system. PMID:23283327

  2. WE-EF-303-02: BEST IN PHYSICS (JOINT IMAGING- THERAPY): A Comprehensive Simulation of Image Guided Beam Gating for Liver Tumor Treatments Using Scanned Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y; Knopf, A; Weber, D

    2015-06-15

    Purpose: To evaluate the effectiveness of image guided beam gating for PBS liver treatments under realistic breathing conditions. Methods: We have previously proposed a Beams’ Eye View (BEV) X-ray image system as an online motion monitoring device for deriving a gating signal for PBS proton therapy. Using dedicated 4D dose calculations (4DDC), in this work we have simulated gated liver treatments using three amplitude-based gating windows (10/5/3mm) based on motion extracted from BEV imaging of fiducial markers or the diaphragm. In order to improve motion mitigation, BEV guided gating has also been combined with either volumetric (VS) or layered (LS)more » rescanning. Nine 4DCT(MRI) liver data-sets have been used for the investigation, which not only consider realistic patient geometries but also motion variations between different breathing cycles. All 4D plans have been quantified in terms of plan homogeneity in the PTV (D5-D95), the total estimated treatment time and the beam-on duty cycle. Results: Neither gating nor rescanning can fully retrieve a comparable plan homogeneity to the static case, and considerable reductions of the duty cycle (<10%) were observed as a Result motion variations when small gating windows are used. However, once combined with rescanning, dose homogeneity within 1% of the static plan could be achieved with reasonable prolongation of the treatment time for all 9 subjects. No differences were observed between the efficacy of layered or volumetric re-scanning, or of gating signals extracted from fiducial or diaphragm motions. However, layered rescanning may be preferred over volumetric rescanning when performed in combination with gating as it is generally more time-efficient and dosimetrically robust to patient and motion variations Conclusion Combining BEV beam gating with rescanning is an efficient and effective approach to treating mobile liver tumours, and is equally effective if either the diaphragm or fiducial markers are used as motion surrogates.« less

  3. Real-time 3D motion tracking for small animal brain PET

    NASA Astrophysics Data System (ADS)

    Kyme, A. Z.; Zhou, V. W.; Meikle, S. R.; Fulton, R. R.

    2008-05-01

    High-resolution positron emission tomography (PET) imaging of conscious, unrestrained laboratory animals presents many challenges. Some form of motion correction will normally be necessary to avoid motion artefacts in the reconstruction. The aim of the current work was to develop and evaluate a motion tracking system potentially suitable for use in small animal PET. This system is based on the commercially available stereo-optical MicronTracker S60 which we have integrated with a Siemens Focus-220 microPET scanner. We present measured performance limits of the tracker and the technical details of our implementation, including calibration and synchronization of the system. A phantom study demonstrating motion tracking and correction was also performed. The system can be calibrated with sub-millimetre accuracy, and small lightweight markers can be constructed to provide accurate 3D motion data. A marked reduction in motion artefacts was demonstrated in the phantom study. The techniques and results described here represent a step towards a practical method for rigid-body motion correction in small animal PET. There is scope to achieve further improvements in the accuracy of synchronization and pose measurements in future work.

  4. SU-F-J-138: An Extension of PCA-Based Respiratory Deformation Modeling Via Multi-Linear Decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliopoulos, AS; Sun, X; Pitsianis, N

    Purpose: To address and lift the limited degree of freedom (DoF) of globally bilinear motion components such as those based on principal components analysis (PCA), for encoding and modeling volumetric deformation motion. Methods: We provide a systematic approach to obtaining a multi-linear decomposition (MLD) and associated motion model from deformation vector field (DVF) data. We had previously introduced MLD for capturing multi-way relationships between DVF variables, without being restricted by the bilinear component format of PCA-based models. PCA-based modeling is commonly used for encoding patient-specific deformation as per planning 4D-CT images, and aiding on-board motion estimation during radiotherapy. However, themore » bilinear space-time decomposition inherently limits the DoF of such models by the small number of respiratory phases. While this limit is not reached in model studies using analytical or digital phantoms with low-rank motion, it compromises modeling power in the presence of relative motion, asymmetries and hysteresis, etc, which are often observed in patient data. Specifically, a low-DoF model will spuriously couple incoherent motion components, compromising its adaptability to on-board deformation changes. By the multi-linear format of extracted motion components, MLD-based models can encode higher-DoF deformation structure. Results: We conduct mathematical and experimental comparisons between PCA- and MLD-based models. A set of temporally-sampled analytical trajectories provides a synthetic, high-rank DVF; trajectories correspond to respiratory and cardiac motion factors, including different relative frequencies and spatial variations. Additionally, a digital XCAT phantom is used to simulate a lung lesion deforming incoherently with respect to the body, which adheres to a simple respiratory trend. In both cases, coupling of incoherent motion components due to a low model DoF is clearly demonstrated. Conclusion: Multi-linear decomposition can enable decoupling of distinct motion factors in high-rank DVF measurements. This may improve motion model expressiveness and adaptability to on-board deformation, aiding model-based image reconstruction for target verification. NIH Grant No. R01-184173.« less

  5. Estimating Animal Abundance in Ground Beef Batches Assayed with Molecular Markers

    PubMed Central

    Hu, Xin-Sheng; Simila, Janika; Platz, Sindey Schueler; Moore, Stephen S.; Plastow, Graham; Meghen, Ciaran N.

    2012-01-01

    Estimating animal abundance in industrial scale batches of ground meat is important for mapping meat products through the manufacturing process and for effectively tracing the finished product during a food safety recall. The processing of ground beef involves a potentially large number of animals from diverse sources in a single product batch, which produces a high heterogeneity in capture probability. In order to estimate animal abundance through DNA profiling of ground beef constituents, two parameter-based statistical models were developed for incidence data. Simulations were applied to evaluate the maximum likelihood estimate (MLE) of a joint likelihood function from multiple surveys, showing superiority in the presence of high capture heterogeneity with small sample sizes, or comparable estimation in the presence of low capture heterogeneity with a large sample size when compared to other existing models. Our model employs the full information on the pattern of the capture-recapture frequencies from multiple samples. We applied the proposed models to estimate animal abundance in six manufacturing beef batches, genotyped using 30 single nucleotide polymorphism (SNP) markers, from a large scale beef grinding facility. Results show that between 411∼1367 animals were present in six manufacturing beef batches. These estimates are informative as a reference for improving recall processes and tracing finished meat products back to source. PMID:22479559

  6. Image registration for multi-exposed HDRI and motion deblurring

    NASA Astrophysics Data System (ADS)

    Lee, Seok; Wey, Ho-Cheon; Lee, Seong-Deok

    2009-02-01

    In multi-exposure based image fusion task, alignment is an essential prerequisite to prevent ghost artifact after blending. Compared to usual matching problem, registration is more difficult when each image is captured under different photographing conditions. In HDR imaging, we use long and short exposure images, which have different brightness and there exist over/under satuated regions. In motion deblurring problem, we use blurred and noisy image pair and the amount of motion blur varies from one image to another due to the different exposure times. The main difficulty is that luminance levels of the two images are not in linear relationship and we cannot perfectly equalize or normalize the brightness of each image and this leads to unstable and inaccurate alignment results. To solve this problem, we applied probabilistic measure such as mutual information to represent similarity between images after alignment. In this paper, we discribed about the characteristics of multi-exposed input images in the aspect of registration and also analyzed the magnitude of camera hand shake. By exploiting the independence of luminance of mutual information, we proposed a fast and practically useful image registration technique in multiple capturing. Our algorithm can be applied to extreme HDR scenes and motion blurred scenes with over 90% success rate and its simplicity enables to be embedded in digital camera and mobile camera phone. The effectiveness of our registration algorithm is examined by various experiments on real HDR or motion deblurring cases using hand-held camera.

  7. Motion Artifact Quantification and Sensor Fusion for Unobtrusive Health Monitoring.

    PubMed

    Hoog Antink, Christoph; Schulz, Florian; Leonhardt, Steffen; Walter, Marian

    2017-12-25

    Sensors integrated into objects of everyday life potentially allow unobtrusive health monitoring at home. However, since the coupling of sensors and subject is not as well-defined as compared to a clinical setting, the signal quality is much more variable and can be disturbed significantly by motion artifacts. One way of tackling this challenge is the combined evaluation of multiple channels via sensor fusion. For robust and accurate sensor fusion, analyzing the influence of motion on different modalities is crucial. In this work, a multimodal sensor setup integrated into an armchair is presented that combines capacitively coupled electrocardiography, reflective photoplethysmography, two high-frequency impedance sensors and two types of ballistocardiography sensors. To quantify motion artifacts, a motion protocol performed by healthy volunteers is recorded with a motion capture system, and reference sensors perform cardiorespiratory monitoring. The shape-based signal-to-noise ratio SNR S is introduced and used to quantify the effect on motion on different sensing modalities. Based on this analysis, an optimal combination of sensors and fusion methodology is developed and evaluated. Using the proposed approach, beat-to-beat heart-rate is estimated with a coverage of 99.5% and a mean absolute error of 7.9 ms on 425 min of data from seven volunteers in a proof-of-concept measurement scenario.

  8. Quantification of lung tumor rotation with automated landmark extraction using orthogonal cine MRI images

    NASA Astrophysics Data System (ADS)

    Paganelli, Chiara; Lee, Danny; Greer, Peter B.; Baroni, Guido; Riboldi, Marco; Keall, Paul

    2015-09-01

    The quantification of tumor motion in sites affected by respiratory motion is of primary importance to improve treatment accuracy. To account for motion, different studies analyzed the translational component only, without focusing on the rotational component, which was quantified in a few studies on the prostate with implanted markers. The aim of our study was to propose a tool able to quantify lung tumor rotation without the use of internal markers, thus providing accurate motion detection close to critical structures such as the heart or liver. Specifically, we propose the use of an automatic feature extraction method in combination with the acquisition of fast orthogonal cine MRI images of nine lung patients. As a preliminary test, we evaluated the performance of the feature extraction method by applying it on regions of interest around (i) the diaphragm and (ii) the tumor and comparing the estimated motion with that obtained by (i) the extraction of the diaphragm profile and (ii) the segmentation of the tumor, respectively. The results confirmed the capability of the proposed method in quantifying tumor motion. Then, a point-based rigid registration was applied to the extracted tumor features between all frames to account for rotation. The median lung rotation values were  -0.6   ±   2.3° and  -1.5   ±   2.7° in the sagittal and coronal planes respectively, confirming the need to account for tumor rotation along with translation to improve radiotherapy treatment.

  9. Animation control of surface motion capture.

    PubMed

    Tejera, Margara; Casas, Dan; Hilton, Adrian

    2013-12-01

    Surface motion capture (SurfCap) of actor performance from multiple view video provides reconstruction of the natural nonrigid deformation of skin and clothing. This paper introduces techniques for interactive animation control of SurfCap sequences which allow the flexibility in editing and interactive manipulation associated with existing tools for animation from skeletal motion capture (MoCap). Laplacian mesh editing is extended using a basis model learned from SurfCap sequences to constrain the surface shape to reproduce natural deformation. Three novel approaches for animation control of SurfCap sequences, which exploit the constrained Laplacian mesh editing, are introduced: 1) space–time editing for interactive sequence manipulation; 2) skeleton-driven animation to achieve natural nonrigid surface deformation; and 3) hybrid combination of skeletal MoCap driven and SurfCap sequence to extend the range of movement. These approaches are combined with high-level parametric control of SurfCap sequences in a hybrid surface and skeleton-driven animation control framework to achieve natural surface deformation with an extended range of movement by exploiting existing MoCap archives. Evaluation of each approach and the integrated animation framework are presented on real SurfCap sequences for actors performing multiple motions with a variety of clothing styles. Results demonstrate that these techniques enable flexible control for interactive animation with the natural nonrigid surface dynamics of the captured performance and provide a powerful tool to extend current SurfCap databases by incorporating new motions from MoCap sequences.

  10. Human Motion Capture Data Tailored Transform Coding.

    PubMed

    Junhui Hou; Lap-Pui Chau; Magnenat-Thalmann, Nadia; Ying He

    2015-07-01

    Human motion capture (mocap) is a widely used technique for digitalizing human movements. With growing usage, compressing mocap data has received increasing attention, since compact data size enables efficient storage and transmission. Our analysis shows that mocap data have some unique characteristics that distinguish themselves from images and videos. Therefore, directly borrowing image or video compression techniques, such as discrete cosine transform, does not work well. In this paper, we propose a novel mocap-tailored transform coding algorithm that takes advantage of these features. Our algorithm segments the input mocap sequences into clips, which are represented in 2D matrices. Then it computes a set of data-dependent orthogonal bases to transform the matrices to frequency domain, in which the transform coefficients have significantly less dependency. Finally, the compression is obtained by entropy coding of the quantized coefficients and the bases. Our method has low computational cost and can be easily extended to compress mocap databases. It also requires neither training nor complicated parameter setting. Experimental results demonstrate that the proposed scheme significantly outperforms state-of-the-art algorithms in terms of compression performance and speed.

  11. NESDI FY10 Year in Review Report: The Case For Success 2010

    DTIC Science & Technology

    2010-01-01

    36 CASE STUDY: Motion Assisted Environmental Enclosure for Capturing Paint Overspray in Dry Docks...and to outline a means to assess its environmental impact. 8. Motion Assisted Environmental Enclosure for Capturing Paint Overspray in Dry Docks...in dry docks. 9. Cleaning Solvents for the 21st Century. As part of the Department of Defense’s (DoD) response to eliminating the use of volatile

  12. A synthetic GMPE based on deterministic simulated ground motion data obtained from dynamic rupture models

    NASA Astrophysics Data System (ADS)

    Dalguer, L. A.; Baumann, C.; Cauzzi, C.

    2013-12-01

    Empirical ground motion prediction in the very near-field and for large magnitudes is often based on extrapolation of ground motion prediction equations (GMPEs) outside the range where they are well constrained by recorded data. With empirical GMPEs it is also difficult to capture source-dominated ground motion patterns, such as the effects of velocity pulses induced by subshear and supershear rupture directivity, buried and surface-rupturing, hanging-wall and foot-wall, weak shallow layers, complex geometry faults and stress drop. A way to cope at least in part with these shortcomings is to augment the calibration datasets with synthetic ground motions. To this aim, physics-based dynamic rupture models - where the physical bases involved in the fault rupture are explicitly considered - appear to be a suitable approach to produce synthetic ground motions. In this contribution, we first perform an assessment of a database of synthetic ground motions generated by a suite of dynamic rupture simulations to verify compatibility of the peak ground amplitudes with current GMPEs. The synthetic data-set is composed by 360 earthquake scenarios with moment magnitudes in the range of 5.5-7, for three mechanisms of faulting (reverse, normal and strike-slip) and for both buried faults and surface rupturing faults. Second, we parameterise the synthetic dataset through a GMPE. For this purpose, we identify the basic functional forms by analyzing the variation of the synthetic peak ground motions and spectral ordinates as a function of different explanatory variables related to the earthquake source characteristics, in order to account for some of the source effects listed above. We argue that this study provides basic guidelines for the developments of future GMPEs including data from physics-based numerical simulations.

  13. Quantum hydrodynamics: capturing a reactive scattering resonance.

    PubMed

    Derrickson, Sean W; Bittner, Eric R; Kendrick, Brian K

    2005-08-01

    The hydrodynamic equations of motion associated with the de Broglie-Bohm formulation of quantum mechanics are solved using a meshless method based upon a moving least-squares approach. An arbitrary Lagrangian-Eulerian frame of reference and a regridding algorithm which adds and deletes computational points are used to maintain a uniform and nearly constant interparticle spacing. The methodology also uses averaged fields to maintain unitary time evolution. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. A new and more robust artificial viscosity algorithm is presented which gives accurate scattering results and is capable of capturing quantum resonances. The methodology is applied to a one-dimensional model chemical reaction that is known to exhibit a quantum resonance. The correlation function approach is used to compute the reactive scattering matrix, reaction probability, and time delay as a function of energy. Excellent agreement is obtained between the scattering results based upon the quantum hydrodynamic approach and those based upon standard quantum mechanics. This is the first clear demonstration of the ability of moving grid approaches to accurately and robustly reproduce resonance structures in a scattering system.

  14. Multi-segment foot kinematics and ground reaction forces during gait of individuals with plantar fasciitis.

    PubMed

    Chang, Ryan; Rodrigues, Pedro A; Van Emmerik, Richard E A; Hamill, Joseph

    2014-08-22

    Clinically, plantar fasciitis (PF) is believed to be a result and/or prolonged by overpronation and excessive loading, but there is little biomechanical data to support this assertion. The purpose of this study was to determine the differences between healthy individuals and those with PF in (1) rearfoot motion, (2) medial forefoot motion, (3) first metatarsal phalangeal joint (FMPJ) motion, and (4) ground reaction forces (GRF). We recruited healthy (n=22) and chronic PF individuals (n=22, symptomatic over three months) of similar age, height, weight, and foot shape (p>0.05). Retro-reflective skin markers were fixed according to a multi-segment foot and shank model. Ground reaction forces and three dimensional kinematics of the shank, rearfoot, medial forefoot, and hallux segment were captured as individuals walked at 1.35 ms(-1). Despite similarities in foot anthropometrics, when compared to healthy individuals, individuals with PF exhibited significantly (p<0.05) (1) greater total rearfoot eversion, (2) greater forefoot plantar flexion at initial contact, (3) greater total sagittal plane forefoot motion, (4) greater maximum FMPJ dorsiflexion, and (5) decreased vertical GRF during propulsion. These data suggest that compared to healthy individuals, individuals with PF exhibit significant differences in foot kinematics and kinetics. Consistent with the theoretical injury mechanisms of PF, we found these individuals to have greater total rearfoot eversion and peak FMPJ dorsiflexion, which may put undue loads on the plantar fascia. Meanwhile, increased medial forefoot plantar flexion at initial contact and decreased propulsive GRF are suggestive of compensatory responses, perhaps to manage pain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A comparison of the use of bony anatomy and internal markers for offline verification and an evaluation of the potential benefit of online and offline verification protocols for prostate radiotherapy.

    PubMed

    McNair, Helen A; Hansen, Vibeke N; Parker, Christopher C; Evans, Phil M; Norman, Andrew; Miles, Elizabeth; Harris, Emma J; Del-Acroix, Louise; Smith, Elizabeth; Keane, Richard; Khoo, Vincent S; Thompson, Alan C; Dearnaley, David P

    2008-05-01

    To evaluate the utility of intraprostatic markers in the treatment verification of prostate cancer radiotherapy. Specific aims were: to compare the effectiveness of offline correction protocols, either using gold markers or bony anatomy; to estimate the potential benefit of online correction protocol's using gold markers; to determine the presence and effect of intrafraction motion. Thirty patients with three gold markers inserted had pretreatment and posttreatment images acquired and were treated using an offline correction protocol and gold markers. Retrospectively, an offline protocol was applied using bony anatomy and an online protocol using gold markers. The systematic errors were reduced from 1.3, 1.9, and 2.5 mm to 1.1, 1.1, and 1.5 mm in the right-left (RL), superoinferior (SI), and anteroposterior (AP) directions, respectively, using the offline correction protocol and gold markers instead of bony anatomy. The subsequent decrease in margins was 1.7, 3.3, and 4 mm in the RL, SI, and AP directions, respectively. An offline correction protocol combined with an online correction protocol in the first four fractions reduced random errors further to 0.9, 1.1, and 1.0 mm in the RL, SI, and AP directions, respectively. A daily online protocol reduced all errors to <1 mm. Intrafraction motion had greater impact on the effectiveness of the online protocol than the offline protocols. An offline protocol using gold markers is effective in reducing the systematic error. The value of online protocols is reduced by intrafraction motion.

  16. The model for Fundamentals of Endovascular Surgery (FEVS) successfully defines the competent endovascular surgeon.

    PubMed

    Duran, Cassidy; Estrada, Sean; O'Malley, Marcia; Sheahan, Malachi G; Shames, Murray L; Lee, Jason T; Bismuth, Jean

    2015-12-01

    Fundamental skills testing is now required for certification in general surgery. No model for assessing fundamental endovascular skills exists. Our objective was to develop a model that tests the fundamental endovascular skills and differentiates competent from noncompetent performance. The Fundamentals of Endovascular Surgery model was developed in silicon and virtual-reality versions. Twenty individuals (with a range of experience) performed four tasks on each model in three separate sessions. Tasks on the silicon model were performed under fluoroscopic guidance, and electromagnetic tracking captured motion metrics for catheter tip position. Image processing captured tool tip position and motion on the virtual model. Performance was evaluated using a global rating scale, blinded video assessment of error metrics, and catheter tip movement and position. Motion analysis was based on derivations of speed and position that define proficiency of movement (spectral arc length, duration of submovement, and number of submovements). Performance was significantly different between competent and noncompetent interventionalists for the three performance measures of motion metrics, error metrics, and global rating scale. The mean error metric score was 6.83 for noncompetent individuals and 2.51 for the competent group (P < .0001). Median global rating scores were 2.25 for the noncompetent group and 4.75 for the competent users (P < .0001). The Fundamentals of Endovascular Surgery model successfully differentiates competent and noncompetent performance of fundamental endovascular skills based on a series of objective performance measures. This model could serve as a platform for skills testing for all trainees. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  17. Detecting taxonomic and phylogenetic signals in equid cheek teeth: towards new palaeontological and archaeological proxies

    NASA Astrophysics Data System (ADS)

    Cucchi, T.; Mohaseb, A.; Peigné, S.; Debue, K.; Orlando, L.; Mashkour, M.

    2017-04-01

    The Plio-Pleistocene evolution of Equus and the subsequent domestication of horses and donkeys remains poorly understood, due to the lack of phenotypic markers capable of tracing this evolutionary process in the palaeontological/archaeological record. Using images from 345 specimens, encompassing 15 extant taxa of equids, we quantified the occlusal enamel folding pattern in four mandibular cheek teeth with a single geometric morphometric protocol. We initially investigated the protocol accuracy by assigning each tooth to its correct anatomical position and taxonomic group. We then contrasted the phylogenetic signal present in each tooth shape with an exome-wide phylogeny from 10 extant equine species. We estimated the strength of the phylogenetic signal using a Brownian motion model of evolution with multivariate K statistic, and mapped the dental shape along the molecular phylogeny using an approach based on squared-change parsimony. We found clear evidence for the relevance of dental phenotypes to accurately discriminate all modern members of the genus Equus and capture their phylogenetic relationships. These results are valuable for both palaeontologists and zooarchaeologists exploring the spatial and temporal dynamics of the evolutionary history of the horse family, up to the latest domestication trajectories of horses and donkeys.

  18. Detecting taxonomic and phylogenetic signals in equid cheek teeth: towards new palaeontological and archaeological proxies

    PubMed Central

    Mohaseb, A.; Peigné, S.; Debue, K.; Orlando, L.; Mashkour, M.

    2017-01-01

    The Plio–Pleistocene evolution of Equus and the subsequent domestication of horses and donkeys remains poorly understood, due to the lack of phenotypic markers capable of tracing this evolutionary process in the palaeontological/archaeological record. Using images from 345 specimens, encompassing 15 extant taxa of equids, we quantified the occlusal enamel folding pattern in four mandibular cheek teeth with a single geometric morphometric protocol. We initially investigated the protocol accuracy by assigning each tooth to its correct anatomical position and taxonomic group. We then contrasted the phylogenetic signal present in each tooth shape with an exome-wide phylogeny from 10 extant equine species. We estimated the strength of the phylogenetic signal using a Brownian motion model of evolution with multivariate K statistic, and mapped the dental shape along the molecular phylogeny using an approach based on squared-change parsimony. We found clear evidence for the relevance of dental phenotypes to accurately discriminate all modern members of the genus Equus and capture their phylogenetic relationships. These results are valuable for both palaeontologists and zooarchaeologists exploring the spatial and temporal dynamics of the evolutionary history of the horse family, up to the latest domestication trajectories of horses and donkeys. PMID:28484618

  19. The relationship between body movements and qualities of social interaction between a boy with severe developmental disabilities and his caregiver.

    PubMed

    Dammeyer, Jesper; Køppe, Simo

    2013-06-01

    Research in social interaction and nonverbal communication among individuals with severe developmental disabilities also includes the study of body movements. Advances in analytical technology give new possibilities for measuring body movements more accurately and reliably. One such advance is the Qualisys Motion Capture System (QMCS), which utilizes optical markers to capture body movements. The aim of this study was to explore the practicality of measuring body movements in the nonverbal communication of a child with severe developmental disabilities. A preliminary case study has been undertaken. The social interaction between a boy with developmental disabilities and his teacher was analyzed (1) using observer ratings on psychological aspects of the social interaction and (2) measuring body positions, velocity, and angles of body movements using the QMCS. Associations between observer ratings and measured body movements were examined. This preliminary case study has indicated that emotional response and attention level during the social interaction corresponded with local, synchronized movements and face-to-face orientation. Measurement of motor behavior is suggested as being a potentially useful methodological approach to studying social interaction and communication development.

  20. Recent Progress on the Second Generation CMORPH: LEO-IR Based Precipitation Estimates and Cloud Motion Vector

    NASA Astrophysics Data System (ADS)

    Xie, Pingping; Joyce, Robert; Wu, Shaorong

    2015-04-01

    As reported at the EGU General Assembly of 2014, a prototype system was developed for the second generation CMORPH to produce global analyses of 30-min precipitation on a 0.05olat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. Key to the success of the 2nd generation CMORPH, among a couple of other elements, are the development of a LEO-IR based precipitation estimation to fill in the polar gaps and objectively analyzed cloud motion vectors to capture the cloud movements of various spatial scales over the entire globe. In this presentation, we report our recent work on the refinement for these two important algorithm components. The prototype algorithm for the LEO IR precipitation estimation is refined to achieve improved quantitative accuracy and consistency with PMW retrievals. AVHRR IR TBB data from all LEO satellites are first remapped to a 0.05olat/lon grid over the entire globe and in a 30-min interval. Temporally and spatially co-located data pairs of the LEO TBB and inter-calibrated combined satellite PMW retrievals (MWCOMB) are then collected to construct tables. Precipitation at a grid box is derived from the TBB through matching the PDF tables for the TBB and the MWCOMB. This procedure is implemented for different season, latitude band and underlying surface types to account for the variations in the cloud - precipitation relationship. At the meantime, a sub-system is developed to construct analyzed fields of cloud motion vectors from the GEO/LEO IR based precipitation estimates and the CFS Reanalysis (CFSR) precipitation fields. Motion vectors are first derived separately from the satellite IR based precipitation estimates and the CFSR precipitation fields. These individually derived motion vectors are then combined through a 2D-VAR technique to form an analyzed field of cloud motion vectors over the entire globe. Error function is experimented to best reflect the performance of the satellite IR based estimates and the CFSR in capturing the movements of precipitating cloud systems over different regions and for different seasons. Quantitative experiments are conducted to optimize the LEO IR based precipitation estimation technique and the 2D-VAR based motion vector analysis system. Detailed results will be reported at the EGU.

  1. Investigation of the optimum location of external markers for patient setup accuracy enhancement at external beam radiotherapy

    PubMed Central

    Torshabi, Ahmad Esmaili; Nankali, Saber

    2016-01-01

    In external beam radiotherapy, one of the most common and reliable methods for patient geometrical setup and/or predicting the tumor location is use of external markers. In this study, the main challenging issue is increasing the accuracy of patient setup by investigating external markers location. Since the location of each external marker may yield different patient setup accuracy, it is important to assess different locations of external markers using appropriate selective algorithms. To do this, two commercially available algorithms entitled a) canonical correlation analysis (CCA) and b) principal component analysis (PCA) were proposed as input selection algorithms. They work on the basis of maximum correlation coefficient and minimum variance between given datasets. The proposed input selection algorithms work in combination with an adaptive neuro‐fuzzy inference system (ANFIS) as a correlation model to give patient positioning information as output. Our proposed algorithms provide input file of ANFIS correlation model accurately. The required dataset for this study was prepared by means of a NURBS‐based 4D XCAT anthropomorphic phantom that can model the shape and structure of complex organs in human body along with motion information of dynamic organs. Moreover, a database of four real patients undergoing radiation therapy for lung cancers was utilized in this study for validation of proposed strategy. Final analyzed results demonstrate that input selection algorithms can reasonably select specific external markers from those areas of the thorax region where root mean square error (RMSE) of ANFIS model has minimum values at that given area. It is also found that the selected marker locations lie closely in those areas where surface point motion has a large amplitude and a high correlation. PACS number(s): 87.55.km, 87.55.N PMID:27929479

  2. Magnetic Resonance Imaging–Guided versus Surrogate-Based Motion Tracking in Liver Radiation Therapy: A Prospective Comparative Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paganelli, Chiara, E-mail: chiara.paganelli@polimi.it; Seregni, Matteo; Fattori, Giovanni

    Purpose: This study applied automatic feature detection on cine–magnetic resonance imaging (MRI) liver images in order to provide a prospective comparison between MRI-guided and surrogate-based tracking methods for motion-compensated liver radiation therapy. Methods and Materials: In a population of 30 subjects (5 volunteers plus 25 patients), 2 oblique sagittal slices were acquired across the liver at high temporal resolution. An algorithm based on scale invariant feature transform (SIFT) was used to extract and track multiple features throughout the image sequence. The position of abdominal markers was also measured directly from the image series, and the internal motion of each featuremore » was quantified through multiparametric analysis. Surrogate-based tumor tracking with a state-of-the-art external/internal correlation model was simulated. The geometrical tracking error was measured, and its correlation with external motion parameters was also investigated. Finally, the potential gain in tracking accuracy relying on MRI guidance was quantified as a function of the maximum allowed tracking error. Results: An average of 45 features was extracted for each subject across the whole liver. The multi-parametric motion analysis reported relevant inter- and intrasubject variability, highlighting the value of patient-specific and spatially-distributed measurements. Surrogate-based tracking errors (relative to the motion amplitude) were were in the range 7% to 23% (1.02-3.57mm) and were significantly influenced by external motion parameters. The gain of MRI guidance compared to surrogate-based motion tracking was larger than 30% in 50% of the subjects when considering a 1.5-mm tracking error tolerance. Conclusions: Automatic feature detection applied to cine-MRI allows detailed liver motion description to be obtained. Such information was used to quantify the performance of surrogate-based tracking methods and to provide a prospective comparison with respect to MRI-guided radiation therapy, which could support the definition of patient-specific optimal treatment strategies.« less

  3. SU-E-J-191: Motion Prediction Using Extreme Learning Machine in Image Guided Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, J; Cao, R; Pei, X

    Purpose: Real-time motion tracking is a critical issue in image guided radiotherapy due to the time latency caused by image processing and system response. It is of great necessity to fast and accurately predict the future position of the respiratory motion and the tumor location. Methods: The prediction of respiratory position was done based on the positioning and tracking module in ARTS-IGRT system which was developed by FDS Team (www.fds.org.cn). An approach involving with the extreme learning machine (ELM) was adopted to predict the future respiratory position as well as the tumor’s location by training the past trajectories. For themore » training process, a feed-forward neural network with one single hidden layer was used for the learning. First, the number of hidden nodes was figured out for the single layered feed forward network (SLFN). Then the input weights and hidden layer biases of the SLFN were randomly assigned to calculate the hidden neuron output matrix. Finally, the predicted movement were obtained by applying the output weights and compared with the actual movement. Breathing movement acquired from the external infrared markers was used to test the prediction accuracy. And the implanted marker movement for the prostate cancer was used to test the implementation of the tumor motion prediction. Results: The accuracy of the predicted motion and the actual motion was tested. Five volunteers with different breathing patterns were tested. The average prediction time was 0.281s. And the standard deviation of prediction accuracy was 0.002 for the respiratory motion and 0.001 for the tumor motion. Conclusion: The extreme learning machine method can provide an accurate and fast prediction of the respiratory motion and the tumor location and therefore can meet the requirements of real-time tumor-tracking in image guided radiotherapy.« less

  4. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles

    PubMed Central

    Koliha, Nina; Wiencek, Yvonne; Heider, Ute; Jüngst, Christian; Kladt, Nikolay; Krauthäuser, Susanne; Johnston, Ian C. D.; Bosio, Andreas; Schauss, Astrid; Wild, Stefan

    2016-01-01

    The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample. The combination of capture antibody beads with fluorescently labelled detection antibodies allows the analysis of EVs that carry surface markers recognized by both antibodies. This new method enables an easy screening of surface markers on populations of EVs. By combining different capture and detection antibodies, additional information on relative expression levels and potential vesicle subpopulations is gained. We also established a protocol to visualize individual EVs by stimulated emission depletion (STED) microscopy. Thereby, markers on single EVs can be detected by fluorophore-conjugated antibodies. We used the multiplex platform and STED microscopy to show for the first time that NK cell–derived EVs and platelet-derived EVs are devoid of CD9 or CD81, respectively, and that EVs isolated from activated B cells comprise different EV subpopulations. We speculate that, according to our STED data, tetraspanins might not be homogenously distributed but may mostly appear as clusters on EV subpopulations. Finally, we demonstrate that EV mixtures can be separated by magnetic beads and analysed subsequently with the multiplex platform. Both the multiplex bead-based platform and STED microscopy revealed subpopulations of EVs that have been indistinguishable by most analysis tools used so far. We expect that an in-depth view on EV heterogeneity will contribute to our understanding of different EVs and functions. PMID:26901056

  5. Bifurcation Analysis of an Electrostatically Actuated Nano-Beam Based on Modified Couple Stress Theory

    NASA Astrophysics Data System (ADS)

    Rezaei Kivi, Araz; Azizi, Saber; Norouzi, Peyman

    2017-12-01

    In this paper, the nonlinear size-dependent static and dynamic behavior of an electrostatically actuated nano-beam is investigated. A fully clamped nano-beam is considered for the modeling of the deformable electrode of the NEMS. The governing differential equation of the motion is derived using Hamiltonian principle based on couple stress theory; a non-classical theory for considering length scale effects. The nonlinear partial differential equation of the motion is discretized to a nonlinear Duffing type ODE's using Galerkin method. Static and dynamic pull-in instabilities obtained by both classical theory and MCST are compared. At the second stage of analysis, shooting technique is utilized to obtain the frequency response curve, and to capture the periodic solutions of the motion; the stability of the periodic solutions are gained by Floquet theory. The nonlinear dynamic behavior of the deformable electrode due to the AC harmonic accompanied with size dependency is investigated.

  6. A four-dimensional motion field atlas of the tongue from tagged and cine magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Xing, Fangxu; Prince, Jerry L.; Stone, Maureen; Wedeen, Van J.; El Fakhri, Georges; Woo, Jonghye

    2017-02-01

    Representation of human tongue motion using three-dimensional vector fields over time can be used to better understand tongue function during speech, swallowing, and other lingual behaviors. To characterize the inter-subject variability of the tongue's shape and motion of a population carrying out one of these functions it is desirable to build a statistical model of the four-dimensional (4D) tongue. In this paper, we propose a method to construct a spatio-temporal atlas of tongue motion using magnetic resonance (MR) images acquired from fourteen healthy human subjects. First, cine MR images revealing the anatomical features of the tongue are used to construct a 4D intensity image atlas. Second, tagged MR images acquired to capture internal motion are used to compute a dense motion field at each time frame using a phase-based motion tracking method. Third, motion fields from each subject are pulled back to the cine atlas space using the deformation fields computed during the cine atlas construction. Finally, a spatio-temporal motion field atlas is created to show a sequence of mean motion fields and their inter-subject variation. The quality of the atlas was evaluated by deforming cine images in the atlas space. Comparison between deformed and original cine images showed high correspondence. The proposed method provides a quantitative representation to observe the commonality and variability of the tongue motion field for the first time, and shows potential in evaluation of common properties such as strains and other tensors based on motion fields.

  7. A Four-dimensional Motion Field Atlas of the Tongue from Tagged and Cine Magnetic Resonance Imaging.

    PubMed

    Xing, Fangxu; Prince, Jerry L; Stone, Maureen; Wedeen, Van J; Fakhri, Georges El; Woo, Jonghye

    2017-01-01

    Representation of human tongue motion using three-dimensional vector fields over time can be used to better understand tongue function during speech, swallowing, and other lingual behaviors. To characterize the inter-subject variability of the tongue's shape and motion of a population carrying out one of these functions it is desirable to build a statistical model of the four-dimensional (4D) tongue. In this paper, we propose a method to construct a spatio-temporal atlas of tongue motion using magnetic resonance (MR) images acquired from fourteen healthy human subjects. First, cine MR images revealing the anatomical features of the tongue are used to construct a 4D intensity image atlas. Second, tagged MR images acquired to capture internal motion are used to compute a dense motion field at each time frame using a phase-based motion tracking method. Third, motion fields from each subject are pulled back to the cine atlas space using the deformation fields computed during the cine atlas construction. Finally, a spatio-temporal motion field atlas is created to show a sequence of mean motion fields and their inter-subject variation. The quality of the atlas was evaluated by deforming cine images in the atlas space. Comparison between deformed and original cine images showed high correspondence. The proposed method provides a quantitative representation to observe the commonality and variability of the tongue motion field for the first time, and shows potential in evaluation of common properties such as strains and other tensors based on motion fields.

  8. Kinematic analysis of basic rhythmic movements of hip-hop dance: motion characteristics common to expert dancers.

    PubMed

    Sato, Nahoko; Nunome, Hiroyuki; Ikegami, Yasuo

    2015-02-01

    In hip-hop dance contests, a procedure for evaluating performances has not been clearly defined, and objective criteria for evaluation are necessary. It is assumed that most hip-hop dance techniques have common motion characteristics by which judges determine the dancer's skill level. This study aimed to extract motion characteristics that may be linked to higher evaluations by judges. Ten expert and 12 nonexpert dancers performed basic rhythmic movements at a rate of 100 beats per minute. Their movements were captured using a motion capture system, and eight judges evaluated the performances. Four kinematic parameters, including the amplitude of the body motions and the phase delay, which indicates the phase difference between two joint angles, were calculated. The two groups showed no significant differences in terms of the amplitudes of the body motions. In contrast, the phase delay between the head motion and the other body parts' motions of expert dancers who received higher scores from the judges, which was approximately a quarter cycle, produced a loop-shaped motion of the head. It is suggested that this slight phase delay was related to the judges' evaluations and that these findings may help in constructing an objective evaluation system.

  9. Extraction of human gait signatures: an inverse kinematic approach using Groebner basis theory applied to gait cycle analysis

    NASA Astrophysics Data System (ADS)

    Barki, Anum; Kendricks, Kimberly; Tuttle, Ronald F.; Bunker, David J.; Borel, Christoph C.

    2013-05-01

    This research highlights the results obtained from applying the method of inverse kinematics, using Groebner basis theory, to the human gait cycle to extract and identify lower extremity gait signatures. The increased threat from suicide bombers and the force protection issues of today have motivated a team at Air Force Institute of Technology (AFIT) to research pattern recognition in the human gait cycle. The purpose of this research is to identify gait signatures of human subjects and distinguish between subjects carrying a load to those subjects without a load. These signatures were investigated via a model of the lower extremities based on motion capture observations, in particular, foot placement and the joint angles for subjects affected by carrying extra load on the body. The human gait cycle was captured and analyzed using a developed toolkit consisting of an inverse kinematic motion model of the lower extremity and a graphical user interface. Hip, knee, and ankle angles were analyzed to identify gait angle variance and range of motion. Female subjects exhibited the most knee angle variance and produced a proportional correlation between knee flexion and load carriage.

  10. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models

    PubMed Central

    Dhou, Salam; Hurwitz, Martina; Mishra, Pankaj; Cai, Weixing; Rottmann, Joerg; Li, Ruijiang; Williams, Christopher; Wagar, Matthew; Berbeco, Ross; Ionascu, Dan; Lewis, John H.

    2015-01-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we develop and perform initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and use these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparing to ground truth digital and physical phantom images. The performance of 4DCBCT- and 4DCT- based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms, and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. PMID:25905722

  11. Evaluation of Simulated Clinical Breast Exam Motion Patterns Using Marker-Less Video Tracking

    PubMed Central

    Azari, David P.; Pugh, Carla M.; Laufer, Shlomi; Kwan, Calvin; Chen, Chia-Hsiung; Yen, Thomas Y.; Hu, Yu Hen; Radwin, Robert G.

    2016-01-01

    Objective This study investigates using marker-less video tracking to evaluate hands-on clinical skills during simulated clinical breast examinations (CBEs). Background There are currently no standardized and widely accepted CBE screening techniques. Methods Experienced physicians attending a national conference conducted simulated CBEs presenting different pathologies with distinct tumorous lesions. Single hand exam motion was recorded and analyzed using marker-less video tracking. Four kinematic measures were developed to describe temporal (time pressing and time searching) and spatial (area covered and distance explored) patterns. Results Mean differences between time pressing, area covered, and distance explored varied across the simulated lesions. Exams were objectively categorized as either sporadic, localized, thorough, or efficient for both temporal and spatial categories based on spatiotemporal characteristics. The majority of trials were temporally or spatially thorough (78% and 91%), exhibiting proportionally greater time pressing and time searching (temporally thorough) and greater area probed with greater distance explored (spatially thorough). More efficient exams exhibited proportionally more time pressing with less time searching (temporally efficient) and greater area probed with less distance explored (spatially efficient). Just two (5.9 %) of the trials exhibited both high temporal and spatial efficiency. Conclusions Marker-less video tracking was used to discriminate different examination techniques and measure when an exam changes from general searching to specific probing. The majority of participants exhibited more thorough than efficient patterns. Application Marker-less video kinematic tracking may be useful for quantifying clinical skills for training and assessment. PMID:26546381

  12. Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers

    NASA Astrophysics Data System (ADS)

    Cui, Ying; Dy, Jennifer G.; Sharp, Gregory C.; Alexander, Brian; Jiang, Steve B.

    2007-10-01

    Precise lung tumor localization in real time is particularly important for some motion management techniques, such as respiratory gating or beam tracking with a dynamic multi-leaf collimator, due to the reduced clinical tumor volume (CTV) to planning target volume (PTV) margin and/or the escalated dose. There might be large uncertainties in deriving tumor position from external respiratory surrogates. While tracking implanted fiducial markers has sufficient accuracy, this procedure may not be widely accepted due to the risk of pneumothorax. Previously, we have developed a technique to generate gating signals from fluoroscopic images without implanted fiducial markers using a template matching method (Berbeco et al 2005 Phys. Med. Biol. 50 4481-90, Cui et al 2007 Phys. Med. Biol. 52 741-55). In this paper, we present an extension of this method to multiple-template matching for directly tracking the lung tumor mass in fluoroscopy video. The basic idea is as follows: (i) during the patient setup session, a pair of orthogonal fluoroscopic image sequences are taken and processed off-line to generate a set of reference templates that correspond to different breathing phases and tumor positions; (ii) during treatment delivery, fluoroscopic images are continuously acquired and processed; (iii) the similarity between each reference template and the processed incoming image is calculated; (iv) the tumor position in the incoming image is then estimated by combining the tumor centroid coordinates in reference templates with proper weights based on the measured similarities. With different handling of image processing and similarity calculation, two such multiple-template tracking techniques have been developed: one based on motion-enhanced templates and Pearson's correlation score while the other based on eigen templates and mean-squared error. The developed techniques have been tested on six sequences of fluoroscopic images from six lung cancer patients against the reference tumor positions manually determined by a radiation oncologist. The tumor centroid coordinates automatically detected using both methods agree well with the manually marked reference locations. The eigenspace tracking method performs slightly better than the motion-enhanced method, with average localization errors less than 2 pixels (1 mm) and the error at a 95% confidence level of about 2-4 pixels (1-2 mm). This work demonstrates the feasibility of direct tracking of a lung tumor mass in fluoroscopic images without implanted fiducial markers using multiple reference templates.

  13. Identifying Markers of Dignity-Conserving Care in Long-Term Care: A Modified Delphi Study

    PubMed Central

    Thompson, Genevieve N.; McArthur, Jennifer; Doupe, Malcolm

    2016-01-01

    Ensuring that people living in nursing homes (NHs) are afforded with dignity in their daily lives is an essential and humane concern. Promoting dignity-conserving care is fundamentally important. By nature, however, this care is all-encompassing and holistic, and from current knowledge it is challenging to create explicit strategies for measuring dignity-conserving care. In practice the majority of current NH indicators of quality care are derived from information that is routinely collected on NH residents using the RAI-Minimum Data Set (MDS). In this regard, issues that are more tangible to resident dignity such as being treated with respect, compassion, and having opportunities to engage with others are not adequately captured in current NH quality of care indicators. An initial set of markers was created by conducting an integrative literature review of existing markers and indicators of dignity in the NH setting. A modified Delphi process was used to prioritize essential dignity-conserving care markers for use by NH providers, based on factors such as the importance to fostering a culture of dignity, the impact it may have on the residents, and how achievable it is in practice. Through this consensus building technique, we were able to develop a comprehensive set of markers that capture the range and diversity of important dignity-conserving care strategies for use in NHs. The final 10 markers were judged as having high face validity by experts in the field and have explicit implications for enhancing the provision of daily dignified care to NH residents. These markers make an important addition to the traditional quality indicators used in the NH setting and as such, bridge an important gap in addressing the psychosocial and the less easily quantified needs of NH residents. PMID:27304853

  14. Children's Understanding of Large-Scale Mapping Tasks: An Analysis of Talk, Drawings, and Gesture

    ERIC Educational Resources Information Center

    Kotsopoulos, Donna; Cordy, Michelle; Langemeyer, Melanie

    2015-01-01

    This research examined how children represent motion in large-scale mapping tasks that we referred to as "motion maps". The underlying mathematical content was transformational geometry. In total, 19 children, 8- to 10-year-old, created motion maps and captured their motion maps with accompanying verbal description digitally. Analysis of…

  15. Multimodal transport and dispersion of organelles in narrow tubular cells

    NASA Astrophysics Data System (ADS)

    Mogre, Saurabh S.; Koslover, Elena F.

    2018-04-01

    Intracellular components explore the cytoplasm via active motor-driven transport in conjunction with passive diffusion. We model the motion of organelles in narrow tubular cells using analytical techniques and numerical simulations to study the efficiency of different transport modes in achieving various cellular objectives. Our model describes length and time scales over which each transport mode dominates organelle motion, along with various metrics to quantify exploration of intracellular space. For organelles that search for a specific target, we obtain the average capture time for given transport parameters and show that diffusion and active motion contribute to target capture in the biologically relevant regime. Because many organelles have been found to tether to microtubules when not engaged in active motion, we study the interplay between immobilization due to tethering and increased probability of active transport. We derive parameter-dependent conditions under which tethering enhances long-range transport and improves the target capture time. These results shed light on the optimization of intracellular transport machinery and provide experimentally testable predictions for the effects of transport regulation mechanisms such as tethering.

  16. Motion cues that make an impression: Predicting perceived personality by minimal motion information.

    PubMed

    Koppensteiner, Markus

    2013-11-01

    The current study presents a methodology to analyze first impressions on the basis of minimal motion information. In order to test the applicability of the approach brief silent video clips of 40 speakers were presented to independent observers (i.e., did not know speakers) who rated them on measures of the Big Five personality traits. The body movements of the speakers were then captured by placing landmarks on the speakers' forehead, one shoulder and the hands. Analysis revealed that observers ascribe extraversion to variations in the speakers' overall activity, emotional stability to the movements' relative velocity, and variation in motion direction to openness. Although ratings of openness and conscientiousness were related to biographical data of the speakers (i.e., measures of career progress), measures of body motion failed to provide similar results. In conclusion, analysis of motion behavior might be done on the basis of a small set of landmarks that seem to capture important parts of relevant nonverbal information.

  17. Performance-Driven Hybrid Full-Body Character Control for Navigation and Interaction in Virtual Environments

    NASA Astrophysics Data System (ADS)

    Mousas, Christos; Anagnostopoulos, Christos-Nikolaos

    2017-06-01

    This paper presents a hybrid character control interface that provides the ability to synthesize in real-time a variety of actions based on the user's performance capture. The proposed methodology enables three different performance interaction modules: the performance animation control that enables the direct mapping of the user's pose to the character, the motion controller that synthesizes the desired motion of the character based on an activity recognition methodology, and the hybrid control that lies within the performance animation and the motion controller. With the methodology presented, the user will have the freedom to interact within the virtual environment, as well as the ability to manipulate the character and to synthesize a variety of actions that cannot be performed directly by him/her, but which the system synthesizes. Therefore, the user is able to interact with the virtual environment in a more sophisticated fashion. This paper presents examples of different scenarios based on the three different full-body character control methodologies.

  18. String flash-boiling in gasoline direct injection simulations with transient needle motion

    DOE PAGES

    Baldwin, Eli T.; Grover, Jr., Ronald O.; Parrish, Scott E.; ...

    2016-09-06

    A computational study was performed to investigate the influence of transient needle motion on gasoline direct injection (GDI) internal nozzle flow and near-field sprays. Simulations were conducted with a compressible Eulerian flow solver modeling liquid, vapor, and non-condensable gas phases with a diffuse interface. Variable rate generation and condensation of fuel vapor were captured using the homogeneous relaxation model (HRM). The non-flashing (spray G) and flashing (spray G2) conditions specified by the Engine Combustion Network were modeled using the nominal spray G nozzle geometry and transient needle lift and wobble were based upon ensemble averaged x-ray imaging preformed at Argonnemore » National Lab. The minimum needle lift simulated was 5 μm and dynamic mesh motion was achieved with Laplacian smoothing. The results were qualitatively validated against experimental imaging and the experimental rate of injection profile was captured accurately using pressure boundary conditions and needle motion to actu- ate the injection. Needle wobble was found to have no measurable effect on the flow. Low needle lift is shown to result in vapor generation as fuel rushes past the needle. In conclusion, the internal injector flow is shown to contain many transient and interacting vortices which cause perturbations in the spray angle, fluctuations in the mass flux, and frequently result in string flash-boiling.« less

  19. String flash-boiling in gasoline direct injection simulations with transient needle motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, Eli T.; Grover, Jr., Ronald O.; Parrish, Scott E.

    A computational study was performed to investigate the influence of transient needle motion on gasoline direct injection (GDI) internal nozzle flow and near-field sprays. Simulations were conducted with a compressible Eulerian flow solver modeling liquid, vapor, and non-condensable gas phases with a diffuse interface. Variable rate generation and condensation of fuel vapor were captured using the homogeneous relaxation model (HRM). The non-flashing (spray G) and flashing (spray G2) conditions specified by the Engine Combustion Network were modeled using the nominal spray G nozzle geometry and transient needle lift and wobble were based upon ensemble averaged x-ray imaging preformed at Argonnemore » National Lab. The minimum needle lift simulated was 5 μm and dynamic mesh motion was achieved with Laplacian smoothing. The results were qualitatively validated against experimental imaging and the experimental rate of injection profile was captured accurately using pressure boundary conditions and needle motion to actu- ate the injection. Needle wobble was found to have no measurable effect on the flow. Low needle lift is shown to result in vapor generation as fuel rushes past the needle. In conclusion, the internal injector flow is shown to contain many transient and interacting vortices which cause perturbations in the spray angle, fluctuations in the mass flux, and frequently result in string flash-boiling.« less

  20. Perspectives in flow-based microfluidic gradient generators for characterizing bacterial chemotaxis

    PubMed Central

    Wolfram, Christopher J.; Rubloff, Gary W.; Luo, Xiaolong

    2016-01-01

    Chemotaxis is a phenomenon which enables cells to sense concentrations of certain chemical species in their microenvironment and move towards chemically favorable regions. Recent advances in microbiology have engineered the chemotactic properties of bacteria to perform novel functions, but traditional methods of characterizing chemotaxis do not fully capture the associated cell motion, making it difficult to infer mechanisms that link the motion to the microbiology which induces it. Microfluidics offers a potential solution in the form of gradient generators. Many of the gradient generators studied to date for this application are flow-based, where a chemical species diffuses across the laminar flow interface between two solutions moving through a microchannel. Despite significant research efforts, flow-based gradient generators have achieved mixed success at accurately capturing the highly subtle chemotactic responses exhibited by bacteria. Here we present an analysis encompassing previously published versions of flow-based gradient generators, the theories that govern their gradient-generating properties, and new, more practical considerations that result from experimental factors. We conclude that flow-based gradient generators present a challenge inherent to their design in that the residence time and gradient decay must be finely balanced, and that this significantly narrows the window for reliable observation and quantification of chemotactic motion. This challenge is compounded by the effects of shear on an ellipsoidal bacterium that causes it to preferentially align with the direction of flow and subsequently suppresses the cross-flow chemotactic response. These problems suggest that a static, non-flowing gradient generator may be a more suitable platform for chemotaxis studies in the long run, despite posing greater difficulties in design and fabrication. PMID:27917249

Top