DOE Office of Scientific and Technical Information (OSTI.GOV)
Inoue, Minoru; Yoshimura, Michio, E-mail: myossy@kuhp.kyoto-u.ac.jp; Sato, Sayaka
2015-04-15
Purpose: To investigate image-registration errors when using fiducial markers with a manual method and the point-based rigid-body registration (PRBR) algorithm in accelerated partial breast irradiation (APBI) patients, with accompanying fiducial deviations. Methods: Twenty-two consecutive patients were enrolled in a prospective trial examining 10-fraction APBI. Titanium clips were implanted intraoperatively around the seroma in all patients. For image-registration, the positions of the clips in daily kV x-ray images were matched to those in the planning digitally reconstructed radiographs. Fiducial and gravity registration errors (FREs and GREs, respectively), representing resulting misalignments of the edge and center of the target, respectively, were comparedmore » between the manual and algorithm-based methods. Results: In total, 218 fractions were evaluated. Although the mean FRE/GRE values for the manual and algorithm-based methods were within 3 mm (2.3/1.7 and 1.3/0.4 mm, respectively), the percentages of fractions where FRE/GRE exceeded 3 mm using the manual and algorithm-based methods were 18.8%/7.3% and 0%/0%, respectively. Manual registration resulted in 18.6% of patients with fractions of FRE/GRE exceeding 5 mm. The patients with larger clip deviation had significantly more fractions showing large FRE/GRE using manual registration. Conclusions: For image-registration using fiducial markers in APBI, the manual registration results in more fractions with considerable registration error due to loss of fiducial objectivity resulting from their deviation. The authors recommend the PRBR algorithm as a safe and effective strategy for accurate, image-guided registration and PTV margin reduction.« less
Lee, Chia-Yen; Wang, Hao-Jen; Lai, Jhih-Hao; Chang, Yeun-Chung; Huang, Chiun-Sheng
2017-01-01
Long-term comparisons of infrared image can facilitate the assessment of breast cancer tissue growth and early tumor detection, in which longitudinal infrared image registration is a necessary step. However, it is hard to keep markers attached on a body surface for weeks, and rather difficult to detect anatomic fiducial markers and match them in the infrared image during registration process. The proposed study, automatic longitudinal infrared registration algorithm, develops an automatic vascular intersection detection method and establishes feature descriptors by shape context to achieve robust matching, as well as to obtain control points for the deformation model. In addition, competitive winner-guided mechanism is developed for optimal corresponding. The proposed algorithm is evaluated in two ways. Results show that the algorithm can quickly lead to accurate image registration and that the effectiveness is superior to manual registration with a mean error being 0.91 pixels. These findings demonstrate that the proposed registration algorithm is reasonably accurate and provide a novel method of extracting a greater amount of useful data from infrared images. PMID:28145474
Wognum, S; Heethuis, S E; Rosario, T; Hoogeman, M S; Bel, A
2014-07-01
The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images of ex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Five excised porcine bladders with a grid of 30-40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100-400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. The authors found good structure accuracy without dependency on bladder volume difference for all but one algorithm, and with the best result for the structure-based algorithm. Spatial accuracy as assessed from marker errors was disappointing for all algorithms, especially for large volume differences, implying that the deformations described by the registration did not represent anatomically correct deformations. The structure-based algorithm performed the best in terms of marker error for the large volume difference (100-400 ml). In general, for the small volume difference (100-150 ml) the algorithms performed relatively similarly. The structure-based algorithm exhibited the best balance in performance between small and large volume differences, and among the intensity-based algorithms, the algorithm implemented in VelocityAI exhibited the best balance. Validation of multiple DIR algorithms on a novel physiological bladder phantom revealed that the structure accuracy was good for most algorithms, but that the spatial accuracy as assessed from markers was low for all algorithms, especially for large deformations. Hence, many of the available algorithms exhibit sufficient accuracy for contour propagation purposes, but possibly not for accurate dose accumulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wognum, S., E-mail: s.wognum@gmail.com; Heethuis, S. E.; Bel, A.
2014-07-15
Purpose: The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images ofex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Methods: Fivemore » excised porcine bladders with a grid of 30–40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100–400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. Results: The authors found good structure accuracy without dependency on bladder volume difference for all but one algorithm, and with the best result for the structure-based algorithm. Spatial accuracy as assessed from marker errors was disappointing for all algorithms, especially for large volume differences, implying that the deformations described by the registration did not represent anatomically correct deformations. The structure-based algorithm performed the best in terms of marker error for the large volume difference (100–400 ml). In general, for the small volume difference (100–150 ml) the algorithms performed relatively similarly. The structure-based algorithm exhibited the best balance in performance between small and large volume differences, and among the intensity-based algorithms, the algorithm implemented in VelocityAI exhibited the best balance. Conclusions: Validation of multiple DIR algorithms on a novel physiological bladder phantom revealed that the structure accuracy was good for most algorithms, but that the spatial accuracy as assessed from markers was low for all algorithms, especially for large deformations. Hence, many of the available algorithms exhibit sufficient accuracy for contour propagation purposes, but possibly not for accurate dose accumulation.« less
Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan; ...
2016-10-18
Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less
Evaluation of mathematical algorithms for automatic patient alignment in radiosurgery.
Williams, Kenneth M; Schulte, Reinhard W; Schubert, Keith E; Wroe, Andrew J
2015-06-01
Image registration techniques based on anatomical features can serve to automate patient alignment for intracranial radiosurgery procedures in an effort to improve the accuracy and efficiency of the alignment process as well as potentially eliminate the need for implanted fiducial markers. To explore this option, four two-dimensional (2D) image registration algorithms were analyzed: the phase correlation technique, mutual information (MI) maximization, enhanced correlation coefficient (ECC) maximization, and the iterative closest point (ICP) algorithm. Digitally reconstructed radiographs from the treatment planning computed tomography scan of a human skull were used as the reference images, while orthogonal digital x-ray images taken in the treatment room were used as the captured images to be aligned. The accuracy of aligning the skull with each algorithm was compared to the alignment of the currently practiced procedure, which is based on a manual process of selecting common landmarks, including implanted fiducials and anatomical skull features. Of the four algorithms, three (phase correlation, MI maximization, and ECC maximization) demonstrated clinically adequate (ie, comparable to the standard alignment technique) translational accuracy and improvements in speed compared to the interactive, user-guided technique; however, the ICP algorithm failed to give clinically acceptable results. The results of this work suggest that a combination of different algorithms may provide the best registration results. This research serves as the initial groundwork for the translation of automated, anatomy-based 2D algorithms into a real-world system for 2D-to-2D image registration and alignment for intracranial radiosurgery. This may obviate the need for invasive implantation of fiducial markers into the skull and may improve treatment room efficiency and accuracy. © The Author(s) 2014.
Wognum, S; Bondar, L; Zolnay, A G; Chai, X; Hulshof, M C C M; Hoogeman, M S; Bel, A
2013-02-01
Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelbe, David; Oak Ridge National Lab.; van Aardt, Jan
Terrestrial laser scanning has demonstrated increasing potential for rapid comprehensive measurement of forest structure, especially when multiple scans are spatially registered in order to reduce the limitations of occlusion. Although marker-based registration techniques (based on retro-reflective spherical targets) are commonly used in practice, a blind marker-free approach is preferable, insofar as it supports rapid operational data acquisition. To support these efforts, we extend the pairwise registration approach of our earlier work, and develop a graph-theoretical framework to perform blind marker-free global registration of multiple point cloud data sets. Pairwise pose estimates are weighted based on their estimated error, in ordermore » to overcome pose conflict while exploiting redundant information and improving precision. The proposed approach was tested for eight diverse New England forest sites, with 25 scans collected at each site. Quantitative assessment was provided via a novel embedded confidence metric, with a mean estimated root-mean-square error of 7.2 cm and 89% of scans connected to the reference node. Lastly, this paper assesses the validity of the embedded multiview registration confidence metric and evaluates the performance of the proposed registration algorithm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wognum, S.; Chai, X.; Hulshof, M. C. C. M.
2013-02-15
Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumormore » and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. Results: The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. Conclusions: The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.« less
Kirby, N; Chuang, C; Pouliot, J
2012-06-01
To objectively evaluate the accuracy of 11 different deformable registration techniques for bladder filling. The phantom represents an axial plane of the pelvic anatomy. Urethane plastic serves as the bony anatomy and urethane rubber with three levels of Hounsfield units (HU) is used to represent fat and organs, including the prostate. A plastic insert is placed into the phantom to simulate bladder filling. Nonradiopaque markers reside on the phantom surface. Optical camera images of these markers are used to measure the positions and determine the deformation from the bladder insert. Eleven different deformable registration techniques are applied to the full- and empty-bladder computed tomography images of the phantom to calculate the deformation. The applied algorithms include those from MIMVista Software and Velocity Medical Solutions and 9 different implementations from the Deformable Image Registration and Adaptive Radiotherapy Toolbox for Matlab. The distance to agreement between the measured and calculated deformations is used to evaluate algorithm error. Deformable registration warps one image to make it similar to another. The root-mean-square (RMS) difference between the HUs at the marker locations on the empty-bladder phantom and those at the calculated marker locations on the full-bladder phantom is used as a metric for image similarity. The percentage of the markers with an error larger than 3 mm ranges from 3.1% to 28.2% with the different registration techniques. This range is 1.1% to 3.7% for a 7 mm error. The least accurate algorithm at 3 mm is also the most accurate at 7 mm. Also, the least accurate algorithm at 7 mm produces the lowest RMS difference. Different deformation algorithms generate very different results and the outcome of any one algorithm can be misleading. Thus, these algorithms require quality assurance. The two-dimensional phantom is an objective tool for this purpose. © 2012 American Association of Physicists in Medicine.
A novel fully automatic scheme for fiducial marker-based alignment in electron tomography.
Han, Renmin; Wang, Liansan; Liu, Zhiyong; Sun, Fei; Zhang, Fa
2015-12-01
Although the topic of fiducial marker-based alignment in electron tomography (ET) has been widely discussed for decades, alignment without human intervention remains a difficult problem. Specifically, the emergence of subtomogram averaging has increased the demand for batch processing during tomographic reconstruction; fully automatic fiducial marker-based alignment is the main technique in this process. However, the lack of an accurate method for detecting and tracking fiducial markers precludes fully automatic alignment. In this paper, we present a novel, fully automatic alignment scheme for ET. Our scheme has two main contributions: First, we present a series of algorithms to ensure a high recognition rate and precise localization during the detection of fiducial markers. Our proposed solution reduces fiducial marker detection to a sampling and classification problem and further introduces an algorithm to solve the parameter dependence of marker diameter and marker number. Second, we propose a novel algorithm to solve the tracking of fiducial markers by reducing the tracking problem to an incomplete point set registration problem. Because a global optimization of a point set registration occurs, the result of our tracking is independent of the initial image position in the tilt series, allowing for the robust tracking of fiducial markers without pre-alignment. The experimental results indicate that our method can achieve an accurate tracking, almost identical to the current best one in IMOD with half automatic scheme. Furthermore, our scheme is fully automatic, depends on fewer parameters (only requires a gross value of the marker diameter) and does not require any manual interaction, providing the possibility of automatic batch processing of electron tomographic reconstruction. Copyright © 2015 Elsevier Inc. All rights reserved.
Altomare, Cristina; Guglielmann, Raffaella; Riboldi, Marco; Bellazzi, Riccardo; Baroni, Guido
2015-02-01
In high precision photon radiotherapy and in hadrontherapy, it is crucial to minimize the occurrence of geometrical deviations with respect to the treatment plan in each treatment session. To this end, point-based infrared (IR) optical tracking for patient set-up quality assessment is performed. Such tracking depends on external fiducial points placement. The main purpose of our work is to propose a new algorithm based on simulated annealing and augmented Lagrangian pattern search (SAPS), which is able to take into account prior knowledge, such as spatial constraints, during the optimization process. The SAPS algorithm was tested on data related to head and neck and pelvic cancer patients, and that were fitted with external surface markers for IR optical tracking applied for patient set-up preliminary correction. The integrated algorithm was tested considering optimality measures obtained with Computed Tomography (CT) images (i.e. the ratio between the so-called target registration error and fiducial registration error, TRE/FRE) and assessing the marker spatial distribution. Comparison has been performed with randomly selected marker configuration and with the GETS algorithm (Genetic Evolutionary Taboo Search), also taking into account the presence of organs at risk. The results obtained with SAPS highlight improvements with respect to the other approaches: (i) TRE/FRE ratio decreases; (ii) marker distribution satisfies both marker visibility and spatial constraints. We have also investigated how the TRE/FRE ratio is influenced by the number of markers, obtaining significant TRE/FRE reduction with respect to the random configurations, when a high number of markers is used. The SAPS algorithm is a valuable strategy for fiducial configuration optimization in IR optical tracking applied for patient set-up error detection and correction in radiation therapy, showing that taking into account prior knowledge is valuable in this optimization process. Further work will be focused on the computational optimization of the SAPS algorithm toward fast point-of-care applications. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hatt, Charles R.; Speidel, Michael A.; Raval, Amish N.
2014-03-01
We present a novel 2D/ 3D registration algorithm for fusion between transesophageal echocardiography (TEE) and X-ray fluoroscopy (XRF). The TEE probe is modeled as a subset of 3D gradient and intensity point features, which facilitates efficient 3D-to-2D perspective projection. A novel cost-function, based on a combination of intensity and edge features, evaluates the registration cost value without the need for time-consuming generation of digitally reconstructed radiographs (DRRs). Validation experiments were performed with simulations and phantom data. For simulations, in silica XRF images of a TEE probe were generated in a number of different pose configurations using a previously acquired CT image. Random misregistrations were applied and our method was used to recover the TEE probe pose and compare the result to the ground truth. Phantom experiments were performed by attaching fiducial markers externally to a TEE probe, imaging the probe with an interventional cardiac angiographic x-ray system, and comparing the pose estimated from the external markers to that estimated from the TEE probe using our algorithm. Simulations found a 3D target registration error of 1.08(1.92) mm for biplane (monoplane) geometries, while the phantom experiment found a 2D target registration error of 0.69mm. For phantom experiments, we demonstrated a monoplane tracking frame-rate of 1.38 fps. The proposed feature-based registration method is computationally efficient, resulting in near real-time, accurate image based registration between TEE and XRF.
L-split marker for augmented reality in aircraft assembly
NASA Astrophysics Data System (ADS)
Han, Pengfei; Zhao, Gang
2016-04-01
In order to improve the performance of conventional square markers widely used by marker-based augmented reality systems in aircraft assembly environments, an L-split marker is proposed. Every marker consists of four separate L-shaped parts and each of them contains partial information about the marker. Geometric features of the L-shape, which are more discriminate than the symmetrical square shape adopted by conventional markers, are used to detect proposed markers from the camera images effectively. The marker is split into four separate parts in order to improve the robustness to occlusion and curvature to some extent. The registration process can be successfully completed as long as three parts are detected (up to about 80% of the area could be occluded). Moreover, when we attach the marker on nonplanar surfaces, the curvature status of the marker can be roughly analyzed with every part's normal direction, which can be obtained since their six corners have been explicitly determined in the previous detection process. And based on the marker design, new detection and recognition algorithms are proposed and detailed. The experimental results show that the marker and the algorithms are effective.
Wee, Leonard; Hackett, Sara Lyons; Jones, Andrew; Lim, Tee Sin; Harper, Christopher Stirling
2013-01-01
This study evaluated the agreement of fiducial marker localization between two modalities — an electronic portal imaging device (EPID) and cone‐beam computed tomography (CBCT) — using a low‐dose, half‐rotation scanning protocol. Twenty‐five prostate cancer patients with implanted fiducial markers were enrolled. Before each daily treatment, EPID and half‐rotation CBCT images were acquired. Translational shifts were computed for each modality and two marker‐matching algorithms, seed‐chamfer and grey‐value, were performed for each set of CBCT images. The localization offsets, and systematic and random errors from both modalities were computed. Localization performances for both modalities were compared using Bland‐Altman limits of agreement (LoA) analysis, Deming regression analysis, and Cohen's kappa inter‐rater analysis. The differences in the systematic and random errors between the modalities were within 0.2 mm in all directions. The LoA analysis revealed a 95% agreement limit of the modalities of 2 to 3.5 mm in any given translational direction. Deming regression analysis demonstrated that constant biases existed in the shifts computed by the modalities in the superior–inferior (SI) direction, but no significant proportional biases were identified in any direction. Cohen's kappa analysis showed good agreement between the modalities in prescribing translational corrections of the couch at 3 and 5 mm action levels. Images obtained from EPID and half‐rotation CBCT showed acceptable agreement for registration of fiducial markers. The seed‐chamfer algorithm for tracking of fiducial markers in CBCT datasets yielded better agreement than the grey‐value matching algorithm with EPID‐based registration. PACS numbers: 87.55.km, 87.55.Qr PMID:23835391
The use of virtual fiducials in image-guided kidney surgery
NASA Astrophysics Data System (ADS)
Glisson, Courtenay; Ong, Rowena; Simpson, Amber; Clark, Peter; Herrell, S. D.; Galloway, Robert
2011-03-01
The alignment of image-space to physical-space lies at the heart of all image-guided procedures. In intracranial surgery, point-based registrations can be used with either skin-affixed or bone-implanted extrinsic objects called fiducial markers. The advantages of point-based registration techniques are that they are robust, fast, and have a well developed mathematical foundation for the assessment of registration quality. In abdominal image-guided procedures such techniques have not been successful. It is difficult to accurately locate sufficient homologous intrinsic points in imagespace and physical-space, and the implantation of extrinsic fiducial markers would constitute "surgery before the surgery." Image-space to physical-space registration for abdominal organs has therefore been dominated by surfacebased registration techniques which are iterative, prone to local minima, sensitive to initial pose, and sensitive to percentage coverage of the physical surface. In our work in image-guided kidney surgery we have developed a composite approach using "virtual fiducials." In an open kidney surgery, the perirenal fat is removed and the surface of the kidney is dotted using a surgical marker. A laser range scanner (LRS) is used to obtain a surface representation and matching high definition photograph. A surface to surface registration is performed using a modified iterative closest point (ICP) algorithm. The dots are extracted from the high definition image and assigned the three dimensional values from the LRS pixels over which they lie. As the surgery proceeds, we can then use point-based registrations to re-register the spaces and track deformations due to vascular clamping and surgical tractions.
NASA Astrophysics Data System (ADS)
Deng, Zhipeng; Lei, Lin; Zhou, Shilin
2015-10-01
Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.
Accurate and ergonomic method of registration for image-guided neurosurgery
NASA Astrophysics Data System (ADS)
Henderson, Jaimie M.; Bucholz, Richard D.
1994-05-01
There has been considerable interest in the development of frameless stereotaxy based upon scalp mounted fiducials. In practice we have experienced difficulty in relating markers to the image data sets in our series of 25 frameless cases, as well as inaccuracy due to scalp movement and the size of the markers. We have developed an alternative system for accurately and conveniently achieving surgical registration for image-guided neurosurgery based on alignment and matching of patient forehead contours. The system consists of a laser contour digitizer which is used in the operating room to acquire forehead contours, editing software for extracting contours from patient image data sets, and a contour-match algorithm for aligning the two contours and performing data set registration. The contour digitizer is tracked by a camera array which relates its position with respect to light emitting diodes placed on the head clamp. Once registered, surgical instrument can be tracked throughout the procedure. Contours can be extracted from either CT or MRI image datasets. The system has proven to be robust in the laboratory setting. Overall error of registration is 1 - 2 millimeters in routine use. Image to patient registration can therefore be achieved quite easily and accurately, without the need for fixation of external markers to the skull, or manually finding markers on the scalp and image datasets. The system is unobtrusive and imposes little additional effort on the neurosurgeon, broadening the appeal of image-guided surgery.
Range image registration based on hash map and moth-flame optimization
NASA Astrophysics Data System (ADS)
Zou, Li; Ge, Baozhen; Chen, Lei
2018-03-01
Over the past decade, evolutionary algorithms (EAs) have been introduced to solve range image registration problems because of their robustness and high precision. However, EA-based range image registration algorithms are time-consuming. To reduce the computational time, an EA-based range image registration algorithm using hash map and moth-flame optimization is proposed. In this registration algorithm, a hash map is used to avoid over-exploitation in registration process. Additionally, we present a search equation that is better at exploration and a restart mechanism to avoid being trapped in local minima. We compare the proposed registration algorithm with the registration algorithms using moth-flame optimization and several state-of-the-art EA-based registration algorithms. The experimental results show that the proposed algorithm has a lower computational cost than other algorithms and achieves similar registration precision.
Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werner, F., E-mail: f.werner@uke.de; Hofmann, M.; Them, K.
Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and usedmore » in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.« less
Genetic evolutionary taboo search for optimal marker placement in infrared patient setup
NASA Astrophysics Data System (ADS)
Riboldi, M.; Baroni, G.; Spadea, M. F.; Tagaste, B.; Garibaldi, C.; Cambria, R.; Orecchia, R.; Pedotti, A.
2007-09-01
In infrared patient setup adequate selection of the external fiducial configuration is required for compensating inner target displacements (target registration error, TRE). Genetic algorithms (GA) and taboo search (TS) were applied in a newly designed approach to optimal marker placement: the genetic evolutionary taboo search (GETS) algorithm. In the GETS paradigm, multiple solutions are simultaneously tested in a stochastic evolutionary scheme, where taboo-based decision making and adaptive memory guide the optimization process. The GETS algorithm was tested on a group of ten prostate patients, to be compared to standard optimization and to randomly selected configurations. The changes in the optimal marker configuration, when TRE is minimized for OARs, were specifically examined. Optimal GETS configurations ensured a 26.5% mean decrease in the TRE value, versus 19.4% for conventional quasi-Newton optimization. Common features in GETS marker configurations were highlighted in the dataset of ten patients, even when multiple runs of the stochastic algorithm were performed. Including OARs in TRE minimization did not considerably affect the spatial distribution of GETS marker configurations. In conclusion, the GETS algorithm proved to be highly effective in solving the optimal marker placement problem. Further work is needed to embed site-specific deformation models in the optimization process.
[Accurate 3D free-form registration between fan-beam CT and cone-beam CT].
Liang, Yueqiang; Xu, Hongbing; Li, Baosheng; Li, Hongsheng; Yang, Fujun
2012-06-01
Because the X-ray scatters, the CT numbers in cone-beam CT cannot exactly correspond to the electron densities. This, therefore, results in registration error when the intensity-based registration algorithm is used to register planning fan-beam CT and cone-beam CT. In order to reduce the registration error, we have developed an accurate gradient-based registration algorithm. The gradient-based deformable registration problem is described as a minimization of energy functional. Through the calculus of variations and Gauss-Seidel finite difference method, we derived the iterative formula of the deformable registration. The algorithm was implemented by GPU through OpenCL framework, with which the registration time was greatly reduced. Our experimental results showed that the proposed gradient-based registration algorithm could register more accurately the clinical cone-beam CT and fan-beam CT images compared with the intensity-based algorithm. The GPU-accelerated algorithm meets the real-time requirement in the online adaptive radiotherapy.
Vision Algorithm for the Solar Aspect System of the HEROES Mission
NASA Technical Reports Server (NTRS)
Cramer, Alexander
2014-01-01
This work covers the design and test of a machine vision algorithm for generating high-accuracy pitch and yaw pointing solutions relative to the sun for the High Energy Replicated Optics to Explore the Sun (HEROES) mission. It describes how images were constructed by focusing an image of the sun onto a plate printed with a pattern of small fiducial markers. Images of this plate were processed in real time to determine relative position of the balloon payload to the sun. The algorithm is broken into four problems: circle detection, fiducial detection, fiducial identification, and image registration. Circle detection is handled by an "Average Intersection" method, fiducial detection by a matched filter approach, identification with an ad-hoc method based on the spacing between fiducials, and image registration with a simple least squares fit. Performance is verified on a combination of artificially generated images, test data recorded on the ground, and images from the 2013 flight
Vision Algorithm for the Solar Aspect System of the HEROES Mission
NASA Technical Reports Server (NTRS)
Cramer, Alexander; Christe, Steven; Shih, Albert
2014-01-01
This work covers the design and test of a machine vision algorithm for generating high-accuracy pitch and yaw pointing solutions relative to the sun for the High Energy Replicated Optics to Explore the Sun (HEROES) mission. It describes how images were constructed by focusing an image of the sun onto a plate printed with a pattern of small fiducial markers. Images of this plate were processed in real time to determine relative position of the balloon payload to the sun. The algorithm is broken into four problems: circle detection, fiducial detection, fiducial identification, and image registration. Circle detection is handled by an Average Intersection method, fiducial detection by a matched filter approach, identification with an ad-hoc method based on the spacing between fiducials, and image registration with a simple least squares fit. Performance is verified on a combination of artificially generated images, test data recorded on the ground, and images from the 2013 flight.
Automated reconstruction of standing posture panoramas from multi-sector long limb x-ray images
NASA Astrophysics Data System (ADS)
Miller, Linzey; Trier, Caroline; Ben-Zikri, Yehuda K.; Linte, Cristian A.
2016-03-01
Due to the digital X-ray imaging system's limited field of view, several individual sector images are required to capture the posture of an individual in standing position. These images are then "stitched together" to reconstruct the standing posture. We have created an image processing application that automates the stitching, therefore minimizing user input, optimizing workflow, and reducing human error. The application begins with pre-processing the input images by removing artifacts, filtering out isolated noisy regions, and amplifying a seamless bone edge. The resulting binary images are then registered together using a rigid-body intensity based registration algorithm. The identified registration transformations are then used to map the original sector images into the panorama image. Our method focuses primarily on the use of the anatomical content of the images to generate the panoramas as opposed to using external markers employed to aid with the alignment process. Currently, results show robust edge detection prior to registration and we have tested our approach by comparing the resulting automatically-stitched panoramas to the manually stitched panoramas in terms of registration parameters, target registration error of homologous markers, and the homogeneity of the digitally subtracted automatically- and manually-stitched images using 26 patient datasets.
Local-search based prediction of medical image registration error
NASA Astrophysics Data System (ADS)
Saygili, Görkem
2018-03-01
Medical image registration is a crucial task in many different medical imaging applications. Hence, considerable amount of work has been published recently that aim to predict the error in a registration without any human effort. If provided, these error predictions can be used as a feedback to the registration algorithm to further improve its performance. Recent methods generally start with extracting image-based and deformation-based features, then apply feature pooling and finally train a Random Forest (RF) regressor to predict the real registration error. Image-based features can be calculated after applying a single registration but provide limited accuracy whereas deformation-based features such as variation of deformation vector field may require up to 20 registrations which is a considerably high time-consuming task. This paper proposes to use extracted features from a local search algorithm as image-based features to estimate the error of a registration. The proposed method comprises a local search algorithm to find corresponding voxels between registered image pairs and based on the amount of shifts and stereo confidence measures, it predicts the amount of registration error in millimetres densely using a RF regressor. Compared to other algorithms in the literature, the proposed algorithm does not require multiple registrations, can be efficiently implemented on a Graphical Processing Unit (GPU) and can still provide highly accurate error predictions in existence of large registration error. Experimental results with real registrations on a public dataset indicate a substantially high accuracy achieved by using features from the local search algorithm.
3D-2D registration for surgical guidance: effect of projection view angles on registration accuracy
NASA Astrophysics Data System (ADS)
Uneri, A.; Otake, Y.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Siewerdsen, J. H.
2014-01-01
An algorithm for intensity-based 3D-2D registration of CT and x-ray projections is evaluated, specifically using single- or dual-projection views to provide 3D localization. The registration framework employs the gradient information similarity metric and covariance matrix adaptation evolution strategy to solve for the patient pose in six degrees of freedom. Registration performance was evaluated in an anthropomorphic phantom and cadaver, using C-arm projection views acquired at angular separation, Δθ, ranging from ˜0°-180° at variable C-arm magnification. Registration accuracy was assessed in terms of 2D projection distance error and 3D target registration error (TRE) and compared to that of an electromagnetic (EM) tracker. The results indicate that angular separation as small as Δθ ˜10°-20° achieved TRE <2 mm with 95% confidence, comparable or superior to that of the EM tracker. The method allows direct registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers and manual registration.
A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images.
Du, Xiaogang; Dang, Jianwu; Wang, Yangping; Wang, Song; Lei, Tao
2016-01-01
The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU).
Correction of rotational distortion for catheter-based en face OCT and OCT angiography
Ahsen, Osman O.; Lee, Hsiang-Chieh; Giacomelli, Michael G.; Wang, Zhao; Liang, Kaicheng; Tsai, Tsung-Han; Potsaid, Benjamin; Mashimo, Hiroshi; Fujimoto, James G.
2015-01-01
We demonstrate a computationally efficient method for correcting the nonuniform rotational distortion (NURD) in catheter-based imaging systems to improve endoscopic en face optical coherence tomography (OCT) and OCT angiography. The method performs nonrigid registration using fiducial markers on the catheter to correct rotational speed variations. Algorithm performance is investigated with an ultrahigh-speed endoscopic OCT system and micromotor catheter. Scan nonuniformity is quantitatively characterized, and artifacts from rotational speed variations are significantly reduced. Furthermore, we present endoscopic en face OCT and OCT angiography images of human gastrointestinal tract in vivo to demonstrate the image quality improvement using the correction algorithm. PMID:25361133
Increasing the automation of a 2D-3D registration system.
Varnavas, Andreas; Carrell, Tom; Penney, Graeme
2013-02-01
Routine clinical use of 2D-3D registration algorithms for Image Guided Surgery remains limited. A key aspect for routine clinical use of this technology is its degree of automation, i.e., the amount of necessary knowledgeable interaction between the clinicians and the registration system. Current image-based registration approaches usually require knowledgeable manual interaction during two stages: for initial pose estimation and for verification of produced results. We propose four novel techniques, particularly suited to vertebra-based registration systems, which can significantly automate both of the above stages. Two of these techniques are based upon the intraoperative "insertion" of a virtual fiducial marker into the preoperative data. The remaining two techniques use the final registration similarity value between multiple CT vertebrae and a single fluoroscopy vertebra. The proposed methods were evaluated with data from 31 operations (31 CT scans, 419 fluoroscopy images). Results show these methods can remove the need for manual vertebra identification during initial pose estimation, and were also very effective for result verification, producing a combined true positive rate of 100% and false positive rate equal to zero. This large decrease in required knowledgeable interaction is an important contribution aiming to enable more widespread use of 2D-3D registration technology.
NASA Astrophysics Data System (ADS)
Wu, Huiqun; Zhou, Gangping; Geng, Xingyun; Zhang, Xiaofeng; Jiang, Kui; Tang, Lemin; Zhou, Guomin; Dong, Jiancheng
2013-10-01
With the development of computer aided navigation system, more and more tissues shall be reconstructed to provide more useful information for surgical pathway planning. In this study, we aimed to propose a registration framework for different reconstructed tissues from multi-modalities based on some fiducial points on lateral ventricles. A male patient with brain lesion was admitted and his brain scans were performed by different modalities. Then, the different brain tissues were segmented in different modality with relevant suitable algorithms. Marching cubes were calculated for three dimensional reconstructions, and then the rendered tissues were imported to a common coordinate system for registration. Four pairs of fiducial markers were selected to calculate the rotation and translation matrix using least-square measure method. The registration results were satisfied in a glioblastoma surgery planning as it provides the spatial relationship between tumors and surrounding fibers as well as vessels. Hence, our framework is of potential value for clinicians to plan surgery.
Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T.C.
2010-01-01
It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity, is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233
A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images
Wang, Yangping; Wang, Song
2016-01-01
The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU). PMID:28053653
Using surface markers for MRI guided breast conserving surgery: a feasibility survey
NASA Astrophysics Data System (ADS)
Ebrahimi, Mehran; Siegler, Peter; Modhafar, Amen; Holloway, Claire M. B.; Plewes, Donald B.; Martel, Anne L.
2014-04-01
Breast MRI is frequently performed prior to breast conserving surgery in order to assess the location and extent of the lesion. Ideally, the surgeon should also be able to use the image information during surgery to guide the excision and this requires that the MR image is co-registered to conform to the patient’s position on the operating table. Recent progress in MR imaging techniques has made it possible to obtain high quality images of the patient in the supine position which significantly reduces the complexity of the registration task. Surface markers placed on the breast during imaging can be located during surgery using an external tracking device and this information can be used to co-register the images to the patient. There remains the problem that in most clinical MR scanners the arm of the patient has to be placed parallel to the body whereas the arm is placed perpendicular to the patient during surgery. The aim of this study is to determine the accuracy of co-registration based on a surface marker approach and, in particular, to determine what effect the difference in a patient’s arm position makes on the accuracy of tumour localization. Obtaining a second MRI of the patient where the patient’s arm is perpendicular to body axes (operating room position) is not possible. Instead we obtain a secondary MRI scan where the patient’s arm is above the patient’s head to validate the registration. Five patients with enhancing lesions ranging from 1.5 to 80 cm3 in size were imaged using contrast enhanced MRI with their arms in two positions. A thin-plate spline registration scheme was used to match these two configurations. The registration algorithm uses the surface markers only and does not employ the image intensities. Tumour outlines were segmented and centre of mass (COM) displacement and Dice measures of lesion overlap were calculated. The relationship between the number of markers used and the COM-displacement was also studied. The lesion COM-displacements ranged from 0.9 to 9.3 mm and the Dice overlap score ranged from 20% to 80%. The registration procedure took less than 1 min to run on a standard PC. Alignment of pre-surgical supine MR images to the patient using surface markers on the breast for co-registration therefore appears to be feasible.
Effect of registration on corpus callosum population differences found with DBM analysis
NASA Astrophysics Data System (ADS)
Han, Zhaoying; Thornton-Wells, Tricia A.; Gore, John C.; Dawant, Benoit M.
2011-03-01
Deformation Based Morphometry (DBM) is a relatively new method used for characterizing anatomical differences among populations. DBM is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to one standard coordinate system. Although several studies have compared non-rigid registration algorithms for segmentation tasks, few studies have compared the effect of the registration algorithm on population differences that may be uncovered through DBM. In this study, we compared DBM results obtained with five well established non-rigid registration algorithms on the corpus callosum (CC) in thirteen subjects with Williams Syndrome (WS) and thirteen Normal Control (NC) subjects. The five non-rigid registration algorithms include: (1) The Adaptive Basis Algorithm (ABA); (2) Image Registration Toolkit (IRTK); (3) FSL Nonlinear Image Registration Tool (FSL); (4) Automatic Registration Tools (ART); and (5) the normalization algorithm available in SPM8. For each algorithm, the 3D deformation fields from all subjects to the atlas were obtained and used to calculate the Jacobian determinant (JAC) at each voxel in the mid-sagittal slice of the CC. The mean JAC maps for each group were compared quantitatively across different nonrigid registration algorithms. An ANOVA test performed on the means of the JAC over the Genu and the Splenium ROIs shows the JAC differences between nonrigid registration algorithms are statistically significant over the Genu for both groups and over the Splenium for the NC group. These results suggest that it is important to consider the effect of registration when using DBM to compute morphological differences in populations.
Development and evaluation of an articulated registration algorithm for human skeleton registration
NASA Astrophysics Data System (ADS)
Yip, Stephen; Perk, Timothy; Jeraj, Robert
2014-03-01
Accurate registration over multiple scans is necessary to assess treatment response of bone diseases (e.g. metastatic bone lesions). This study aimed to develop and evaluate an articulated registration algorithm for the whole-body skeleton registration in human patients. In articulated registration, whole-body skeletons are registered by auto-segmenting into individual bones using atlas-based segmentation, and then rigidly aligning them. Sixteen patients (weight = 80-117 kg, height = 168-191 cm) with advanced prostate cancer underwent the pre- and mid-treatment PET/CT scans over a course of cancer therapy. Skeletons were extracted from the CT images by thresholding (HU>150). Skeletons were registered using the articulated, rigid, and deformable registration algorithms to account for position and postural variability between scans. The inter-observers agreement in the atlas creation, the agreement between the manually and atlas-based segmented bones, and the registration performances of all three registration algorithms were all assessed using the Dice similarity index—DSIobserved, DSIatlas, and DSIregister. Hausdorff distance (dHausdorff) of the registered skeletons was also used for registration evaluation. Nearly negligible inter-observers variability was found in the bone atlases creation as the DSIobserver was 96 ± 2%. Atlas-based and manual segmented bones were in excellent agreement with DSIatlas of 90 ± 3%. Articulated (DSIregsiter = 75 ± 2%, dHausdorff = 0.37 ± 0.08 cm) and deformable registration algorithms (DSIregister = 77 ± 3%, dHausdorff = 0.34 ± 0.08 cm) considerably outperformed the rigid registration algorithm (DSIregsiter = 59 ± 9%, dHausdorff = 0.69 ± 0.20 cm) in the skeleton registration as the rigid registration algorithm failed to capture the skeleton flexibility in the joints. Despite superior skeleton registration performance, deformable registration algorithm failed to preserve the local rigidity of bones as over 60% of the skeletons were deformed. Articulated registration is superior to rigid and deformable registrations by capturing global flexibility while preserving local rigidity inherent in skeleton registration. Therefore, articulated registration can be employed to accurately register the whole-body human skeletons, and it enables the treatment response assessment of various bone diseases.
Robust non-rigid registration algorithm based on local affine registration
NASA Astrophysics Data System (ADS)
Wu, Liyang; Xiong, Lei; Du, Shaoyi; Bi, Duyan; Fang, Ting; Liu, Kun; Wu, Dongpeng
2018-04-01
Aiming at the problem that the traditional point set non-rigid registration algorithm has low precision and slow convergence speed for complex local deformation data, this paper proposes a robust non-rigid registration algorithm based on local affine registration. The algorithm uses a hierarchical iterative method to complete the point set non-rigid registration from coarse to fine. In each iteration, the sub data point sets and sub model point sets are divided and the shape control points of each sub point set are updated. Then we use the control point guided affine ICP algorithm to solve the local affine transformation between the corresponding sub point sets. Next, the local affine transformation obtained by the previous step is used to update the sub data point sets and their shape control point sets. When the algorithm reaches the maximum iteration layer K, the loop ends and outputs the updated sub data point sets. Experimental results demonstrate that the accuracy and convergence of our algorithm are greatly improved compared with the traditional point set non-rigid registration algorithms.
2012-09-01
Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain techniques Peter N. Crabtree, Collin Seanor...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain...demonstrate performance of a hybrid algorithm . These results are from analysis of a set of images of an ISO 12233 [12] resolution chart captured in the
NASA Astrophysics Data System (ADS)
Guo, Fumin; Pike, Damien; Svenningsen, Sarah; Coxson, Harvey O.; Drozd, John J.; Yuan, Jing; Fenster, Aaron; Parraga, Grace
2014-03-01
Objectives: We aimed to develop a way to rapidly generate multi-modality (MRI-CT) pulmonary imaging structurefunction maps using novel non-rigid image registration methods. This objective is part of our overarching goal to provide an image processing pipeline to generate pulmonary structure-function maps and guide airway-targeted therapies. Methods: Anatomical 1H and functional 3He MRI were acquired in 5 healthy asymptomatic ex-smokers and 7 ex-smokers with chronic obstructive pulmonary disease (COPD) at inspiration breath-hold. Thoracic CT was performed within ten minutes of MRI using the same breath-hold volume. Landmark-based affine registration methods previously validated for imaging of COPD, was based on corresponding fiducial markers located in both CT and 1H MRI coronal slices and compared with shape-based CT-MRI non-rigid registration. Shape-based CT-MRI registration was developed by first identifying the shapes of the lung cavities manually, and then registering the two shapes using affine and thin-plate spline algorithms. We compared registration accuracy using the fiducial localization error (FLE) and target registration error (TRE). Results: For landmark-based registration, the TRE was 8.4±5.3 mm for whole lung and 7.8±4.6 mm for the R and L lungs registered independently (p=0.4). For shape-based registration, the TRE was 8.0±4.6 mm for whole lung as compared to 6.9±4.4 mm for the R and L lung registered independently and this difference was significant (p=0.01). The difference for shape-based (6.9±4.4 mm) and landmark-based R and L lung registration (7.8±4.6 mm) was also significant (p=.04) Conclusion: Shape-based registration TRE was significantly improved compared to landmark-based registration when considering L and R lungs independently.
Wein, Wolfgang; Karamalis, Athanasios; Baumgartner, Adrian; Navab, Nassir
2015-06-01
The transfer of preoperative CT data into the tracking system coordinates within an operating room is of high interest for computer-aided orthopedic surgery. In this work, we introduce a solution for intra-operative ultrasound-CT registration of bones. We have developed methods for fully automatic real-time bone detection in ultrasound images and global automatic registration to CT. The bone detection algorithm uses a novel bone-specific feature descriptor and was thoroughly evaluated on both in-vivo and ex-vivo data. A global optimization strategy aligns the bone surface, followed by a soft tissue aware intensity-based registration to provide higher local registration accuracy. We evaluated the system on femur, tibia and fibula anatomy in a cadaver study with human legs, where magnetically tracked bone markers were implanted to yield ground truth information. An overall median system error of 3.7 mm was achieved on 11 datasets. Global and fully automatic registration of bones aquired with ultrasound to CT is feasible, with bone detection and tracking operating in real time for immediate feedback to the surgeon.
Machiels, Mélanie; Jin, Peng; van Gurp, Christianne H; van Hooft, Jeanin E; Alderliesten, Tanja; Hulshof, Maarten C C M
2018-03-21
To investigate the feasibility and geometric accuracy of carina-based registration for CBCT-guided setup verification in esophageal cancer IGRT, compared with current practice bony anatomy-based registration. Included were 24 esophageal cancer patients with 65 implanted fiducial markers, visible on planning CTs and follow-up CBCTs. All available CBCT scans (n = 236) were rigidly registered to the planning CT with respect to the bony anatomy and the carina. Target coverage was visually inspected and marker position variation was quantified relative to both registration approaches; the variation of systematic (Σ) and random errors (σ) was estimated. Automatic carina-based registration was feasible in 94.9% of the CBCT scans, with an adequate target coverage in 91.1% compared to 100% after bony anatomy-based registration. Overall, Σ (σ) in the LR/CC/AP direction was 2.9(2.4)/4.1(2.4)/2.2(1.8) mm using the bony anatomy registration compared to 3.3(3.0)/3.6(2.6)/3.9(3.1) mm for the carina. Mid-thoracic placed markers showed a non-significant but smaller Σ in CC and AP direction when using the carina-based registration. Compared with a bony anatomy-based registration, carina-based registration for esophageal cancer IGRT results in inadequate target coverage in 8.9% of cases. Furthermore, large Σ and σ, requiring larger anisotropic margins, were seen after carina-based registration. Only for tumors entirely confined to the mid-thoracic region the carina-based registration might be slightly favorable.
Han, Zhaoying; Thornton-Wells, Tricia A.; Dykens, Elisabeth M.; Gore, John C.; Dawant, Benoit M.
2014-01-01
Deformation Based Morphometry (DBM) is a widely used method for characterizing anatomical differences across groups. DBM is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to a DBM atlas. Although several studies have compared non-rigid registration algorithms for segmentation tasks, few studies have compared the effect of the registration algorithms on group differences that may be uncovered through DBM. In this study, we compared group atlas creation and DBM results obtained with five well-established non-rigid registration algorithms using thirteen subjects with Williams Syndrome (WS) and thirteen Normal Control (NC) subjects. The five non-rigid registration algorithms include: (1) The Adaptive Bases Algorithm (ABA); (2) The Image Registration Toolkit (IRTK); (3) The FSL Nonlinear Image Registration Tool (FSL); (4) The Automatic Registration Tool (ART); and (5) the normalization algorithm available in SPM8. Results indicate that the choice of algorithm has little effect on the creation of group atlases. However, regions of differences between groups detected with DBM vary from algorithm to algorithm both qualitatively and quantitatively. The unique nature of the data set used in this study also permits comparison of visible anatomical differences between the groups and regions of difference detected by each algorithm. Results show that the interpretation of DBM results is difficult. Four out of the five algorithms we have evaluated detect bilateral differences between the two groups in the insular cortex, the basal ganglia, orbitofrontal cortex, as well as in the cerebellum. These correspond to differences that have been reported in the literature and that are visible in our samples. But our results also show that some algorithms detect regions that are not detected by the others and that the extent of the detected regions varies from algorithm to algorithm. These results suggest that using more than one algorithm when performing DBM studies would increase confidence in the results. Properties of the algorithms such as the similarity measure they maximize and the regularity of the deformation fields, as well as the location of differences detected with DBM, also need to be taken into account in the interpretation process. PMID:22459439
Marker Registration Technique for Handwritten Text Marker in Augmented Reality Applications
NASA Astrophysics Data System (ADS)
Thanaborvornwiwat, N.; Patanukhom, K.
2018-04-01
Marker registration is a fundamental process to estimate camera poses in marker-based Augmented Reality (AR) systems. We developed AR system that creates correspondence virtual objects on handwritten text markers. This paper presents a new method for registration that is robust for low-content text markers, variation of camera poses, and variation of handwritten styles. The proposed method uses Maximally Stable Extremal Regions (MSER) and polygon simplification for a feature point extraction. The experiment shows that we need to extract only five feature points per image which can provide the best registration results. An exhaustive search is used to find the best matching pattern of the feature points in two images. We also compared performance of the proposed method to some existing registration methods and found that the proposed method can provide better accuracy and time efficiency.
Study on Huizhou architecture of point cloud registration based on optimized ICP algorithm
NASA Astrophysics Data System (ADS)
Zhang, Runmei; Wu, Yulu; Zhang, Guangbin; Zhou, Wei; Tao, Yuqian
2018-03-01
In view of the current point cloud registration software has high hardware requirements, heavy workload and moltiple interactive definition, the source of software with better processing effect is not open, a two--step registration method based on normal vector distribution feature and coarse feature based iterative closest point (ICP) algorithm is proposed in this paper. This method combines fast point feature histogram (FPFH) algorithm, define the adjacency region of point cloud and the calculation model of the distribution of normal vectors, setting up the local coordinate system for each key point, and obtaining the transformation matrix to finish rough registration, the rough registration results of two stations are accurately registered by using the ICP algorithm. Experimental results show that, compared with the traditional ICP algorithm, the method used in this paper has obvious time and precision advantages for large amount of point clouds.
Evaluation of Demons- and FEM-Based Registration Algorithms for Lung Cancer.
Yang, Juan; Li, Dengwang; Yin, Yong; Zhao, Fen; Wang, Hongjun
2016-04-01
We evaluated and compared the accuracy of 2 deformable image registration algorithms in 4-dimensional computed tomography images for patients with lung cancer. Ten patients with non-small cell lung cancer or small cell lung cancer were enrolled in this institutional review board-approved study. The displacement vector fields relative to a specific reference image were calculated by using the diffeomorphic demons (DD) algorithm and the finite element method (FEM)-based algorithm. The registration accuracy was evaluated by using normalized mutual information (NMI), the sum of squared intensity difference (SSD), modified Hausdorff distance (dH_M), and ratio of gross tumor volume (rGTV) difference between reference image and deformed phase image. We also compared the registration speed of the 2 algorithms. Of all patients, the FEM-based algorithm showed stronger ability in aligning 2 images than the DD algorithm. The means (±standard deviation) of NMI were 0.86 (±0.05) and 0.90 (±0.05) using the DD algorithm and the FEM-based algorithm, respectively. The means of SSD were 0.006 (±0.003) and 0.003 (±0.002) using the DD algorithm and the FEM-based algorithm, respectively. The means of dH_M were 0.04 (±0.02) and 0.03 (±0.03) using the DD algorithm and the FEM-based algorithm, respectively. The means of rGTV were 3.9% (±1.01%) and 2.9% (±1.1%) using the DD algorithm and the FEM-based algorithm, respectively. However, the FEM-based algorithm costs a longer time than the DD algorithm, with the average running time of 31.4 minutes compared to 21.9 minutes for all patients. The preliminary results showed that the FEM-based algorithm was more accurate than the DD algorithm while compromised with the registration speed. © The Author(s) 2015.
Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis
NASA Astrophysics Data System (ADS)
Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song
2018-01-01
To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.
Estimation of the uncertainty of elastic image registration with the demons algorithm.
Hub, M; Karger, C P
2013-05-07
The accuracy of elastic image registration is limited. We propose an approach to detect voxels where registration based on the demons algorithm is likely to perform inaccurately, compared to other locations of the same image. The approach is based on the assumption that the local reproducibility of the registration can be regarded as a measure of uncertainty of the image registration. The reproducibility is determined as the standard deviation of the displacement vector components obtained from multiple registrations. These registrations differ in predefined initial deformations. The proposed approach was tested with artificially deformed lung images, where the ground truth on the deformation is known. In voxels where the result of the registration was less reproducible, the registration turned out to have larger average registration errors as compared to locations of the same image, where the registration was more reproducible. The proposed method can show a clinician in which area of the image the elastic registration with the demons algorithm cannot be expected to be accurate.
A MULTICORE BASED PARALLEL IMAGE REGISTRATION METHOD
Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.
2012-01-01
Image registration is a crucial step for many image-assisted clinical applications such as surgery planning and treatment evaluation. In this paper we proposed a landmark based nonlinear image registration algorithm for matching 2D image pairs. The algorithm was shown to be effective and robust under conditions of large deformations. In landmark based registration, the most important step is establishing the correspondence among the selected landmark points. This usually requires an extensive search which is often computationally expensive. We introduced a nonregular data partition algorithm using the K-means clustering algorithm to group the landmarks based on the number of available processing cores. The step optimizes the memory usage and data transfer. We have tested our method using IBM Cell Broadband Engine (Cell/B.E.) platform. PMID:19964921
Lin, Fan; Xiao, Bin
2017-01-01
Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment. PMID:29088228
Hong, Zhiling; Lin, Fan; Xiao, Bin
2017-01-01
Based on the traditional Fast Retina Keypoint (FREAK) feature description algorithm, this paper proposed a Gravity-FREAK feature description algorithm based on Micro-electromechanical Systems (MEMS) sensor to overcome the limited computing performance and memory resources of mobile devices and further improve the reality interaction experience of clients through digital information added to the real world by augmented reality technology. The algorithm takes the gravity projection vector corresponding to the feature point as its feature orientation, which saved the time of calculating the neighborhood gray gradient of each feature point, reduced the cost of calculation and improved the accuracy of feature extraction. In the case of registration method of matching and tracking natural features, the adaptive and generic corner detection based on the Gravity-FREAK matching purification algorithm was used to eliminate abnormal matches, and Gravity Kaneda-Lucas Tracking (KLT) algorithm based on MEMS sensor can be used for the tracking registration of the targets and robustness improvement of tracking registration algorithm under mobile environment.
Sethi, A; Rusu, I; Surucu, M; Halama, J
2012-06-01
Evaluate accuracy of multi-modality image registration in radiotherapy planning process. A water-filled anthropomorphic head phantom containing eight 'donut-shaped' fiducial markers (3 internal + 5 external) was selected for this study. Seven image sets (3CTs, 3MRs and PET) of phantom were acquired and fused in a commercial treatment planning system. First, a narrow slice (0.75mm) baseline CT scan was acquired (CT1). Subsequently, the phantom was re-scanned with a coarse slice width = 1.5mm (CT2) and after subjecting phantom to rotation/displacement (CT3). Next, the phantom was scanned in a 1.5 Tesla MR scanner and three MR image sets (axial T1, axial T2, coronal T1) were acquired at 2mm slice width. Finally, the phantom and center of fiducials were doped with 18F and a PET scan was performed with 2mm cubic voxels. All image scans (CT/MR/PET) were fused to the baseline (CT1) data using automated mutual-information based fusion algorithm. Difference between centroids of fiducial markers in various image modalities was used to assess image registration accuracy. CT/CT image registration was superior to CT/MR and CT/PET: average CT/CT fusion error was found to be 0.64 ± 0.14 mm. Corresponding values for CT/MR and CT/PET fusion were 1.33 ± 0.71mm and 1.11 ± 0.37mm. Internal markers near the center of phantom fused better than external markers placed on the phantom surface. This was particularly true for the CT/MR and CT/PET. The inferior quality of external marker fusion indicates possible distortion effects toward the edges of MR image. Peripheral targets in the PET scan may be subject to parallax error caused by depth of interaction of photons in detectors. Current widespread use of multimodality imaging in radiotherapy planning calls for periodic quality assurance of image registration process. Such studies may help improve safety and accuracy in treatment planning. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smitsmans, Monique H.P.; Bois, Josien de; Sonke, Jan-Jakob
Purpose: The objectives of this study were to quantify residual interfraction displacement of seminal vesicles (SV) and investigate the efficacy of rotation correction on SV displacement in marker-based prostate image-guided radiotherapy (IGRT). We also determined the effect of marker registration on the measured SV displacement and its impact on margin design. Methods and Materials: SV displacement was determined relative to marker registration by using 296 cone beam computed tomography scans of 13 prostate cancer patients with implanted markers. SV were individually registered in the transverse plane, based on gray-value information. The target registration error (TRE) for the SV due tomore » marker registration inaccuracies was estimated. Correlations between prostate gland rotations and SV displacement and between individual SV displacements were determined. Results: The SV registration success rate was 99%. Displacement amounts of both SVs were comparable. Systematic and random residual SV displacements were 1.6 mm and 2.0 mm in the left-right direction, respectively, and 2.8 mm and 3.1 mm in the anteroposterior (AP) direction, respectively. Rotation correction did not reduce residual SV displacement. Prostate gland rotation around the left-right axis correlated with SV AP displacement (R{sup 2} = 42%); a correlation existed between both SVs for AP displacement (R{sup 2} = 62%); considerable correlation existed between random errors of SV displacement and TRE (R{sup 2} = 34%). Conclusions: Considerable residual SV displacement exists in marker-based IGRT. Rotation correction barely reduced SV displacement, rather, a larger SV displacement was shown relative to the prostate gland that was not captured by the marker position. Marker registration error partly explains SV displacement when correcting for rotations. Correcting for rotations, therefore, is not advisable when SV are part of the target volume. Margin design for SVs should take these uncertainties into account.« less
[Application of elastic registration based on Demons algorithm in cone beam CT].
Pang, Haowen; Sun, Xiaoyang
2014-02-01
We applied Demons and accelerated Demons elastic registration algorithm in radiotherapy cone beam CT (CBCT) images, We provided software support for real-time understanding of organ changes during radiotherapy. We wrote a 3D CBCT image elastic registration program using Matlab software, and we tested and verified the images of two patients with cervical cancer 3D CBCT images for elastic registration, based on the classic Demons algorithm, minimum mean square error (MSE) decreased 59.7%, correlation coefficient (CC) increased 11.0%. While for the accelerated Demons algorithm, MSE decreased 40.1%, CC increased 7.2%. The experimental verification with two methods of Demons algorithm obtained the desired results, but the small difference appeared to be lack of precision, and the total registration time was a little long. All these problems need to be further improved for accuracy and reducing of time.
Identification and DUS Testing of Rice Varieties through Microsatellite Markers.
Pourabed, Ehsan; Jazayeri Noushabadi, Mohammad Reza; Jamali, Seyed Hossein; Moheb Alipour, Naser; Zareyan, Abbas; Sadeghi, Leila
2015-01-01
Identification and registration of new rice varieties are very important to be free from environmental effects and using molecular markers that are more reliable. The objectives of this study were, first, the identification and distinction of 40 rice varieties consisting of local varieties of Iran, improved varieties, and IRRI varieties using PIC, and discriminating power, second, cluster analysis based on Dice similarity coefficient and UPGMA algorithm, and, third, determining the ability of microsatellite markers to separate varieties utilizing the best combination of markers. For this research, 12 microsatellite markers were used. In total, 83 polymorphic alleles (6.91 alleles per locus) were found. In addition, the variation of PIC was calculated from 0.52 to 0.9. The results of cluster analysis showed the complete discrimination of varieties from each other except for IR58025A and IR58025B. Moreover, cluster analysis could detect the most of the improved varieties from local varieties. Based on the best combination of markers analysis, five pair primers together have shown the same results of all markers for detection among all varieties. Considering the results of this research, we can propose that microsatellite markers can be used as a complementary tool for morphological characteristics in DUS tests.
NASA Astrophysics Data System (ADS)
Cheng, Jieyu; Qiu, Wu; Yuan, Jing; Fenster, Aaron; Chiu, Bernard
2016-03-01
Registration of longitudinally acquired 3D ultrasound (US) images plays an important role in monitoring and quantifying progression/regression of carotid atherosclerosis. We introduce an image-based non-rigid registration algorithm to align the baseline 3D carotid US with longitudinal images acquired over several follow-up time points. This algorithm minimizes the sum of absolute intensity differences (SAD) under a variational optical-flow perspective within a multi-scale optimization framework to capture local and global deformations. Outer wall and lumen were segmented manually on each image, and the performance of the registration algorithm was quantified by Dice similarity coefficient (DSC) and mean absolute distance (MAD) of the outer wall and lumen surfaces after registration. In this study, images for 5 subjects were registered initially by rigid registration, followed by the proposed algorithm. Mean DSC generated by the proposed algorithm was 79:3+/-3:8% for lumen and 85:9+/-4:0% for outer wall, compared to 73:9+/-3:4% and 84:7+/-3:2% generated by rigid registration. Mean MAD of 0:46+/-0:08mm and 0:52+/-0:13mm were generated for lumen and outer wall respectively by the proposed algorithm, compared to 0:55+/-0:08mm and 0:54+/-0:11mm generated by rigid registration. The mean registration time of our method per image pair was 143+/-23s.
Inverse consistent non-rigid image registration based on robust point set matching
2014-01-01
Background Robust point matching (RPM) has been extensively used in non-rigid registration of images to robustly register two sets of image points. However, except for the location at control points, RPM cannot estimate the consistent correspondence between two images because RPM is a unidirectional image matching approach. Therefore, it is an important issue to make an improvement in image registration based on RPM. Methods In our work, a consistent image registration approach based on the point sets matching is proposed to incorporate the property of inverse consistency and improve registration accuracy. Instead of only estimating the forward transformation between the source point sets and the target point sets in state-of-the-art RPM algorithms, the forward and backward transformations between two point sets are estimated concurrently in our algorithm. The inverse consistency constraints are introduced to the cost function of RPM and the fuzzy correspondences between two point sets are estimated based on both the forward and backward transformations simultaneously. A modified consistent landmark thin-plate spline registration is discussed in detail to find the forward and backward transformations during the optimization of RPM. The similarity of image content is also incorporated into point matching in order to improve image matching. Results Synthetic data sets, medical images are employed to demonstrate and validate the performance of our approach. The inverse consistent errors of our algorithm are smaller than RPM. Especially, the topology of transformations is preserved well for our algorithm for the large deformation between point sets. Moreover, the distance errors of our algorithm are similar to that of RPM, and they maintain a downward trend as whole, which demonstrates the convergence of our algorithm. The registration errors for image registrations are evaluated also. Again, our algorithm achieves the lower registration errors in same iteration number. The determinant of the Jacobian matrix of the deformation field is used to analyse the smoothness of the forward and backward transformations. The forward and backward transformations estimated by our algorithm are smooth for small deformation. For registration of lung slices and individual brain slices, large or small determinant of the Jacobian matrix of the deformation fields are observed. Conclusions Results indicate the improvement of the proposed algorithm in bi-directional image registration and the decrease of the inverse consistent errors of the forward and the reverse transformations between two images. PMID:25559889
Image-guided ex-vivo targeting accuracy using a laparoscopic tissue localization system
NASA Astrophysics Data System (ADS)
Bieszczad, Jerry; Friets, Eric; Knaus, Darin; Rauth, Thomas; Herline, Alan; Miga, Michael; Galloway, Robert; Kynor, David
2007-03-01
In image-guided surgery, discrete fiducials are used to determine a spatial registration between the location of surgical tools in the operating theater and the location of targeted subsurface lesions and critical anatomic features depicted in preoperative tomographic image data. However, the lack of readily localized anatomic landmarks has greatly hindered the use of image-guided surgery in minimally invasive abdominal procedures. To address these needs, we have previously described a laser-based system for localization of internal surface anatomy using conventional laparoscopes. During a procedure, this system generates a digitized, three-dimensional representation of visible anatomic surfaces in the abdominal cavity. This paper presents the results of an experiment utilizing an ex-vivo bovine liver to assess subsurface targeting accuracy achieved using our system. During the experiment, several radiopaque targets were inserted into the liver parenchyma. The location of each target was recorded using an optically-tracked insertion probe. The liver surface was digitized using our system, and registered with the liver surface extracted from post-procedure CT images. This surface-based registration was then used to transform the position of the inserted targets into the CT image volume. The target registration error (TRE) achieved using our surface-based registration (given a suitable registration algorithm initialization) was 2.4 mm +/- 1.0 mm. A comparable TRE (2.6 mm +/- 1.7 mm) was obtained using a registration based on traditional fiducial markers placed on the surface of the same liver. These results indicate the potential of fiducial-free, surface-to-surface registration for image-guided lesion targeting in minimally invasive abdominal surgery.
Walimbe, Vivek; Shekhar, Raj
2006-12-01
We present an algorithm for automatic elastic registration of three-dimensional (3D) medical images. Our algorithm initially recovers the global spatial mismatch between the reference and floating images, followed by hierarchical octree-based subdivision of the reference image and independent registration of the floating image with the individual subvolumes of the reference image at each hierarchical level. Global as well as local registrations use the six-parameter full rigid-body transformation model and are based on maximization of normalized mutual information (NMI). To ensure robustness of the subvolume registration with low voxel counts, we calculate NMI using a combination of current and prior mutual histograms. To generate a smooth deformation field, we perform direct interpolation of six-parameter rigid-body subvolume transformations obtained at the last subdivision level. Our interpolation scheme involves scalar interpolation of the 3D translations and quaternion interpolation of the 3D rotational pose. We analyzed the performance of our algorithm through experiments involving registration of synthetically deformed computed tomography (CT) images. Our algorithm is general and can be applied to image pairs of any two modalities of most organs. We have demonstrated successful registration of clinical whole-body CT and positron emission tomography (PET) images using this algorithm. The registration accuracy for this application was evaluated, based on validation using expert-identified anatomical landmarks in 15 CT-PET image pairs. The algorithm's performance was comparable to the average accuracy observed for three expert-determined registrations in the same 15 image pairs.
Duarte-Carvajalino, Julio M.; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe
2013-01-01
Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis. PMID:23596381
Duarte-Carvajalino, Julio M; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe
2013-01-01
Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis.
Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration.
Pycinski, Bartlomiej; Czajkowska, Joanna; Badura, Pawel; Juszczyk, Jan; Pietka, Ewa
2016-01-01
A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers.
Automatic parameter selection for feature-based multi-sensor image registration
NASA Astrophysics Data System (ADS)
DelMarco, Stephen; Tom, Victor; Webb, Helen; Chao, Alan
2006-05-01
Accurate image registration is critical for applications such as precision targeting, geo-location, change-detection, surveillance, and remote sensing. However, the increasing volume of image data is exceeding the current capacity of human analysts to perform manual registration. This image data glut necessitates the development of automated approaches to image registration, including algorithm parameter value selection. Proper parameter value selection is crucial to the success of registration techniques. The appropriate algorithm parameters can be highly scene and sensor dependent. Therefore, robust algorithm parameter value selection approaches are a critical component of an end-to-end image registration algorithm. In previous work, we developed a general framework for multisensor image registration which includes feature-based registration approaches. In this work we examine the problem of automated parameter selection. We apply the automated parameter selection approach of Yitzhaky and Peli to select parameters for feature-based registration of multisensor image data. The approach consists of generating multiple feature-detected images by sweeping over parameter combinations and using these images to generate estimated ground truth. The feature-detected images are compared to the estimated ground truth images to generate ROC points associated with each parameter combination. We develop a strategy for selecting the optimal parameter set by choosing the parameter combination corresponding to the optimal ROC point. We present numerical results showing the effectiveness of the approach using registration of collected SAR data to reference EO data.
Image Registration for Stability Testing of MEMS
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; LeMoigne, Jacqueline; Blake, Peter N.; Morey, Peter A.; Landsman, Wayne B.; Chambers, Victor J.; Moseley, Samuel H.
2011-01-01
Image registration, or alignment of two or more images covering the same scenes or objects, is of great interest in many disciplines such as remote sensing, medical imaging. astronomy, and computer vision. In this paper, we introduce a new application of image registration algorithms. We demonstrate how through a wavelet based image registration algorithm, engineers can evaluate stability of Micro-Electro-Mechanical Systems (MEMS). In particular, we applied image registration algorithms to assess alignment stability of the MicroShutters Subsystem (MSS) of the Near Infrared Spectrograph (NIRSpec) instrument of the James Webb Space Telescope (JWST). This work introduces a new methodology for evaluating stability of MEMS devices to engineers as well as a new application of image registration algorithms to computer scientists.
Automatic Image Registration of Multimodal Remotely Sensed Data with Global Shearlet Features
NASA Technical Reports Server (NTRS)
Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.
2015-01-01
Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone.
Automatic Image Registration of Multi-Modal Remotely Sensed Data with Global Shearlet Features
Murphy, James M.; Le Moigne, Jacqueline; Harding, David J.
2017-01-01
Automatic image registration is the process of aligning two or more images of approximately the same scene with minimal human assistance. Wavelet-based automatic registration methods are standard, but sometimes are not robust to the choice of initial conditions. That is, if the images to be registered are too far apart relative to the initial guess of the algorithm, the registration algorithm does not converge or has poor accuracy, and is thus not robust. These problems occur because wavelet techniques primarily identify isotropic textural features and are less effective at identifying linear and curvilinear edge features. We integrate the recently developed mathematical construction of shearlets, which is more effective at identifying sparse anisotropic edges, with an existing automatic wavelet-based registration algorithm. Our shearlet features algorithm produces more distinct features than wavelet features algorithms; the separation of edges from textures is even stronger than with wavelets. Our algorithm computes shearlet and wavelet features for the images to be registered, then performs least squares minimization on these features to compute a registration transformation. Our algorithm is two-staged and multiresolution in nature. First, a cascade of shearlet features is used to provide a robust, though approximate, registration. This is then refined by registering with a cascade of wavelet features. Experiments across a variety of image classes show an improved robustness to initial conditions, when compared to wavelet features alone. PMID:29123329
Deformable structure registration of bladder through surface mapping.
Xiong, Li; Viswanathan, Akila; Stewart, Alexandra J; Haker, Steven; Tempany, Clare M; Chin, Lee M; Cormack, Robert A
2006-06-01
Cumulative dose distributions in fractionated radiation therapy depict the dose to normal tissues and therefore may permit an estimation of the risk of normal tissue complications. However, calculation of these distributions is highly challenging because of interfractional changes in the geometry of patient anatomy. This work presents an algorithm for deformable structure registration of the bladder and the verification of the accuracy of the algorithm using phantom and patient data. In this algorithm, the registration process involves conformal mapping of genus zero surfaces using finite element analysis, and guided by three control landmarks. The registration produces a correspondence between fractions of the triangular meshes used to describe the bladder surface. For validation of the algorithm, two types of balloons were inflated gradually to three times their original size, and several computerized tomography (CT) scans were taken during the process. The registration algorithm yielded a local accuracy of 4 mm along the balloon surface. The algorithm was then applied to CT data of patients receiving fractionated high-dose-rate brachytherapy to the vaginal cuff, with the vaginal cylinder in situ. The patients' bladder filling status was intentionally different for each fraction. The three required control landmark points were identified for the bladder based on anatomy. Out of an Institutional Review Board (IRB) approved study of 20 patients, 3 had radiographically identifiable points near the bladder surface that were used for verification of the accuracy of the registration. The verification point as seen in each fraction was compared with its predicted location based on affine as well as deformable registration. Despite the variation in bladder shape and volume, the deformable registration was accurate to 5 mm, consistently outperforming the affine registration. We conclude that the structure registration algorithm presented works with reasonable accuracy and provides a means of calculating cumulative dose distributions.
Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain
Osechinskiy, Sergey; Kruggel, Frithjof
2011-01-01
Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS), Gaussian elastic body splines (GEBS), or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D) warp, a new unconstrained optimization algorithm (NEWUOA), and a correlation-coefficient-based cost function. PMID:22567290
NASA Astrophysics Data System (ADS)
Benincasa, Anne B.; Clements, Logan W.; Herrell, S. Duke; Chang, Sam S.; Cookson, Michael S.; Galloway, Robert L.
2006-03-01
Currently, the removal of kidney tumor masses uses only direct or laparoscopic visualizations, resulting in prolonged procedure and recovery times and reduced clear margin. Applying current image guided surgery (IGS) techniques, as those used in liver cases, to kidney resections (nephrectomies) presents a number of complications. Most notably is the limited field of view of the intraoperative kidney surface, which constrains the ability to obtain a surface delineation that is geometrically descriptive enough to drive a surface-based registration. Two different phantom orientations were used to model the laparoscopic and traditional partial nephrectomy views. For the laparoscopic view, fiducial point sets were compiled from a CT image volume using anatomical features such as the renal artery and vein. For the traditional view, markers attached to the phantom set-up were used for fiducials and targets. The fiducial points were used to perform a point-based registration, which then served as a guide for the surface-based registration. Laser range scanner (LRS) obtained surfaces were registered to each phantom surface using a rigid iterative closest point algorithm. Subsets of each phantom's LRS surface were used in a robustness test to determine the predictability of their registrations to transform the entire surface. Results from both orientations suggest that about half of the kidney's surface needs to be obtained intraoperatively for accurate registrations between the image surface and the LRS surface, suggesting the obtained kidney surfaces were geometrically descriptive enough to perform accurate registrations. This preliminary work paves the way for further development of kidney IGS systems.
de Groot, Marius; Vernooij, Meike W; Klein, Stefan; Ikram, M Arfan; Vos, Frans M; Smith, Stephen M; Niessen, Wiro J; Andersson, Jesper L R
2013-08-01
Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence using a combination of nonlinear registration and a "skeleton projection" that may break topological consistency of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-projection procedure in TBSS with a single, regularized, high-dimensional registration. To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and quantifies tract similarity across subjects in standard space. We optimized parameters for two registration algorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation framework, and of the optimized registration algorithms. Next, we compared registration performance of the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved registration in TBSS were evaluated in an example study. The evaluation framework was highly reproducible for both algorithms (R(2) 0.993; 0.931). The optimal registration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such approaches in TBSS. This was further confirmed in the example experiment. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, S; Farr, J; Merchant, T
Purpose: To study the effect of total-variation based noise reduction algorithms to improve the image registration of low-dose CBCT for patient positioning in radiation therapy. Methods: In low-dose CBCT, the reconstructed image is degraded by excessive quantum noise. In this study, we developed a total-variation based noise reduction algorithm and studied the effect of the algorithm on noise reduction and image registration accuracy. To study the effect of noise reduction, we have calculated the peak signal-to-noise ratio (PSNR). To study the improvement of image registration, we performed image registration between volumetric CT and MV- CBCT images of different head-and-neck patientsmore » and calculated the mutual information (MI) and Pearson correlation coefficient (PCC) as a similarity metric. The PSNR, MI and PCC were calculated for both the noisy and noise-reduced CBCT images. Results: The algorithms were shown to be effective in reducing the noise level and improving the MI and PCC for the low-dose CBCT images tested. For the different head-and-neck patients, a maximum improvement of PSNR of 10 dB with respect to the noisy image was calculated. The improvement of MI and PCC was 9% and 2% respectively. Conclusion: Total-variation based noise reduction algorithm was studied to improve the image registration between CT and low-dose CBCT. The algorithm had shown promising results in reducing the noise from low-dose CBCT images and improving the similarity metric in terms of MI and PCC.« less
Relation between brain architecture and mathematical ability in children: a DBM study.
Han, Zhaoying; Davis, Nicole; Fuchs, Lynn; Anderson, Adam W; Gore, John C; Dawant, Benoit M
2013-12-01
Population-based studies indicate that between 5 and 9 percent of US children exhibit significant deficits in mathematical reasoning, yet little is understood about the brain morphological features related to mathematical performances. In this work, deformation-based morphometry (DBM) analyses have been performed on magnetic resonance images of the brains of 79 third graders to investigate whether there is a correlation between brain morphological features and mathematical proficiency. Group comparison was also performed between Math Difficulties (MD-worst math performers) and Normal Controls (NC), where each subgroup consists of 20 age and gender matched subjects. DBM analysis is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to a common space. To evaluate the effect of registration algorithms on DBM results, five nonrigid registration algorithms have been used: (1) the Adaptive Bases Algorithm (ABA); (2) the Image Registration Toolkit (IRTK); (3) the FSL Nonlinear Image Registration Tool; (4) the Automatic Registration Tool (ART); and (5) the normalization algorithm available in SPM8. The deformation field magnitude (DFM) was used to measure the displacement at each voxel, and the Jacobian determinant (JAC) was used to quantify local volumetric changes. Results show there are no statistically significant volumetric differences between the NC and the MD groups using JAC. However, DBM analysis using DFM found statistically significant anatomical variations between the two groups around the left occipital-temporal cortex, left orbital-frontal cortex, and right insular cortex. Regions of agreement between at least two algorithms based on voxel-wise analysis were used to define Regions of Interest (ROIs) to perform an ROI-based correlation analysis on all 79 volumes. Correlations between average DFM values and standard mathematical scores over these regions were found to be significant. We also found that the choice of registration algorithm has an impact on DBM-based results, so we recommend using more than one algorithm when conducting DBM studies. To the best of our knowledge, this is the first study that uses DBM to investigate brain anatomical features related to mathematical performance in a relatively large population of children. © 2013.
Feature-based three-dimensional registration for repetitive geometry in machine vision
Gong, Yuanzheng; Seibel, Eric J.
2016-01-01
As an important step in three-dimensional (3D) machine vision, 3D registration is a process of aligning two or multiple 3D point clouds that are collected from different perspectives together into a complete one. The most popular approach to register point clouds is to minimize the difference between these point clouds iteratively by Iterative Closest Point (ICP) algorithm. However, ICP does not work well for repetitive geometries. To solve this problem, a feature-based 3D registration algorithm is proposed to align the point clouds that are generated by vision-based 3D reconstruction. By utilizing texture information of the object and the robustness of image features, 3D correspondences can be retrieved so that the 3D registration of two point clouds is to solve a rigid transformation. The comparison of our method and different ICP algorithms demonstrates that our proposed algorithm is more accurate, efficient and robust for repetitive geometry registration. Moreover, this method can also be used to solve high depth uncertainty problem caused by little camera baseline in vision-based 3D reconstruction. PMID:28286703
Matching Real and Synthetic Panoramic Images Using a Variant of Geometric Hashing
NASA Astrophysics Data System (ADS)
Li-Chee-Ming, J.; Armenakis, C.
2017-05-01
This work demonstrates an approach to automatically initialize a visual model-based tracker, and recover from lost tracking, without prior camera pose information. These approaches are commonly referred to as tracking-by-detection. Previous tracking-by-detection techniques used either fiducials (i.e. landmarks or markers) or the object's texture. The main contribution of this work is the development of a tracking-by-detection algorithm that is based solely on natural geometric features. A variant of geometric hashing, a model-to-image registration algorithm, is proposed that searches for a matching panoramic image from a database of synthetic panoramic images captured in a 3D virtual environment. The approach identifies corresponding features between the matched panoramic images. The corresponding features are to be used in a photogrammetric space resection to estimate the camera pose. The experiments apply this algorithm to initialize a model-based tracker in an indoor environment using the 3D CAD model of the building.
Markel, D; Naqa, I El; Freeman, C; Vallières, M
2012-06-01
To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. To present a novel joint segmentation/registration for multimodality image-guided and adaptive radiotherapy. A major challenge to this framework is the sensitivity of many segmentation or registration algorithms to noise. Presented is a level set active contour based on the Jensen-Renyi (JR) divergence to achieve improved noise robustness in a multi-modality imaging space. It was found that JR divergence when used for segmentation has an improved robustness to noise compared to using mutual information, or other entropy-based metrics. The MI metric failed at around 2/3 the noise power than the JR divergence. The JR divergence metric is useful for the task of joint segmentation/registration of multimodality images and shows improved results compared entropy based metric. The algorithm can be easily modified to incorporate non-intensity based images, which would allow applications into multi-modality and texture analysis. © 2012 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xiong; Viswanathan, Akila; Stewart, Alexandra J.
Cumulative dose distributions in fractionated radiation therapy depict the dose to normal tissues and therefore may permit an estimation of the risk of normal tissue complications. However, calculation of these distributions is highly challenging because of interfractional changes in the geometry of patient anatomy. This work presents an algorithm for deformable structure registration of the bladder and the verification of the accuracy of the algorithm using phantom and patient data. In this algorithm, the registration process involves conformal mapping of genus zero surfaces using finite element analysis, and guided by three control landmarks. The registration produces a correspondence between fractionsmore » of the triangular meshes used to describe the bladder surface. For validation of the algorithm, two types of balloons were inflated gradually to three times their original size, and several computerized tomography (CT) scans were taken during the process. The registration algorithm yielded a local accuracy of 4 mm along the balloon surface. The algorithm was then applied to CT data of patients receiving fractionated high-dose-rate brachytherapy to the vaginal cuff, with the vaginal cylinder in situ. The patients' bladder filling status was intentionally different for each fraction. The three required control landmark points were identified for the bladder based on anatomy. Out of an Institutional Review Board (IRB) approved study of 20 patients, 3 had radiographically identifiable points near the bladder surface that were used for verification of the accuracy of the registration. The verification point as seen in each fraction was compared with its predicted location based on affine as well as deformable registration. Despite the variation in bladder shape and volume, the deformable registration was accurate to 5 mm, consistently outperforming the affine registration. We conclude that the structure registration algorithm presented works with reasonable accuracy and provides a means of calculating cumulative dose distributions.« less
Identification and DUS Testing of Rice Varieties through Microsatellite Markers
Pourabed, Ehsan; Jazayeri Noushabadi, Mohammad Reza; Jamali, Seyed Hossein; Moheb Alipour, Naser; Zareyan, Abbas; Sadeghi, Leila
2015-01-01
Identification and registration of new rice varieties are very important to be free from environmental effects and using molecular markers that are more reliable. The objectives of this study were, first, the identification and distinction of 40 rice varieties consisting of local varieties of Iran, improved varieties, and IRRI varieties using PIC, and discriminating power, second, cluster analysis based on Dice similarity coefficient and UPGMA algorithm, and, third, determining the ability of microsatellite markers to separate varieties utilizing the best combination of markers. For this research, 12 microsatellite markers were used. In total, 83 polymorphic alleles (6.91 alleles per locus) were found. In addition, the variation of PIC was calculated from 0.52 to 0.9. The results of cluster analysis showed the complete discrimination of varieties from each other except for IR58025A and IR58025B. Moreover, cluster analysis could detect the most of the improved varieties from local varieties. Based on the best combination of markers analysis, five pair primers together have shown the same results of all markers for detection among all varieties. Considering the results of this research, we can propose that microsatellite markers can be used as a complementary tool for morphological characteristics in DUS tests. PMID:25755666
Jia, J; Liu, F; Ren, Q; Pei, X; Cao, R; Wu, Y
2012-06-01
Image-guided radiotherapy (IGRT) is becoming increasingly important in the planning and delivery of radiotherapy. With the aim of implementing the key technologies in a flexible and integrated way in IGRT for accurate radiotherapy system (ARTS), a prototype system named as ARTS-IGRT was designed and completed to apply main principles in image-guided radiotherapy. The basic workflow of the ARTS-IGRT software was completed with five functional modules including management of patient information, X-ray image acquisition, 2D/2D anatomy match, 2D/3D match as well as marker-based match. For 2D/2D match, an image registration method was proposed based on maximization of mutual information with multi-resolution and regions of interest. For the 2D/3D registration, optimizations have been employed to improve the existing digitally reconstructed radiography generation algorithm based on ray-casting, and also an image registration method based on implanted markers with different numbers was adopted for 3D/3D match. In additional, the kV X-Ray imaging on rail device was finished for a better internal anatomy image checking at any angle. Together with an infrared device, a positioning and tracking system was developed as well for accurate patient setup and motion monitoring during each treatment. A lot of tests were carried out based on the head phantom to testify the availability of the improved algorithms. Compared with a set of controlled experiments adopted on the released commercial IGRT platform in the hospital, the functions of both software and hardware were testified comprehensively. The results showed a validity verification of ARTS-IGRT. The accuracy and efficiency of ARTS-IGRT on both software and hardware proved to be valid. And also with a flexible and user-friendly interface it can meet the principles of clinical radiotherapy practice. Supported by the Natural Science Foundation of Anhui Province (11040606Q55) and the National Natural Science Foundation of China (30900386). © 2012 American Association of Physicists in Medicine.
[Research on non-rigid registration of multi-modal medical image based on Demons algorithm].
Hao, Peibo; Chen, Zhen; Jiang, Shaofeng; Wang, Yang
2014-02-01
Non-rigid medical image registration is a popular subject in the research areas of the medical image and has an important clinical value. In this paper we put forward an improved algorithm of Demons, together with the conservation of gray model and local structure tensor conservation model, to construct a new energy function processing multi-modal registration problem. We then applied the L-BFGS algorithm to optimize the energy function and solve complex three-dimensional data optimization problem. And finally we used the multi-scale hierarchical refinement ideas to solve large deformation registration. The experimental results showed that the proposed algorithm for large de formation and multi-modal three-dimensional medical image registration had good effects.
Shearlet Features for Registration of Remotely Sensed Multitemporal Images
NASA Technical Reports Server (NTRS)
Murphy, James M.; Le Moigne, Jacqueline
2015-01-01
We investigate the role of anisotropic feature extraction methods for automatic image registration of remotely sensed multitemporal images. Building on the classical use of wavelets in image registration, we develop an algorithm based on shearlets, a mathematical generalization of wavelets that offers increased directional sensitivity. Initial experimental results on LANDSAT images are presented, which indicate superior performance of the shearlet algorithm when compared to classical wavelet algorithms.
SAR image registration based on Susan algorithm
NASA Astrophysics Data System (ADS)
Wang, Chun-bo; Fu, Shao-hua; Wei, Zhong-yi
2011-10-01
Synthetic Aperture Radar (SAR) is an active remote sensing system which can be installed on aircraft, satellite and other carriers with the advantages of all day and night and all-weather ability. It is the important problem that how to deal with SAR and extract information reasonably and efficiently. Particularly SAR image geometric correction is the bottleneck to impede the application of SAR. In this paper we introduces image registration and the Susan algorithm knowledge firstly, then introduces the process of SAR image registration based on Susan algorithm and finally presents experimental results of SAR image registration. The Experiment shows that this method is effective and applicable, no matter from calculating the time or from the calculation accuracy.
Accelerated gradient-based free form deformable registration for online adaptive radiotherapy
NASA Astrophysics Data System (ADS)
Yu, Gang; Liang, Yueqiang; Yang, Guanyu; Shu, Huazhong; Li, Baosheng; Yin, Yong; Li, Dengwang
2015-04-01
The registration of planning fan-beam computed tomography (FBCT) and daily cone-beam CT (CBCT) is a crucial step in adaptive radiation therapy. The current intensity-based registration algorithms, such as Demons, may fail when they are used to register FBCT and CBCT, because the CT numbers in CBCT cannot exactly correspond to the electron densities. In this paper, we investigated the effects of CBCT intensity inaccuracy on the registration accuracy and developed an accurate gradient-based free form deformation algorithm (GFFD). GFFD distinguishes itself from other free form deformable registration algorithms by (a) measuring the similarity using the 3D gradient vector fields to avoid the effect of inconsistent intensities between the two modalities; (b) accommodating image sampling anisotropy using the local polynomial approximation-intersection of confidence intervals (LPA-ICI) algorithm to ensure a smooth and continuous displacement field; and (c) introducing a ‘bi-directional’ force along with an adaptive force strength adjustment to accelerate the convergence process. It is expected that such a strategy can decrease the effect of the inconsistent intensities between the two modalities, thus improving the registration accuracy and robustness. Moreover, for clinical application, the algorithm was implemented by graphics processing units (GPU) through OpenCL framework. The registration time of the GFFD algorithm for each set of CT data ranges from 8 to 13 s. The applications of on-line adaptive image-guided radiation therapy, including auto-propagation of contours, aperture-optimization and dose volume histogram (DVH) in the course of radiation therapy were also studied by in-house-developed software.
Insight into efficient image registration techniques and the demons algorithm.
Vercauteren, Tom; Pennec, Xavier; Malis, Ezio; Perchant, Aymeric; Ayache, Nicholas
2007-01-01
As image registration becomes more and more central to many biomedical imaging applications, the efficiency of the algorithms becomes a key issue. Image registration is classically performed by optimizing a similarity criterion over a given spatial transformation space. Even if this problem is considered as almost solved for linear registration, we show in this paper that some tools that have recently been developed in the field of vision-based robot control can outperform classical solutions. The adequacy of these tools for linear image registration leads us to revisit non-linear registration and allows us to provide interesting theoretical roots to the different variants of Thirion's demons algorithm. This analysis predicts a theoretical advantage to the symmetric forces variant of the demons algorithm. We show that, on controlled experiments, this advantage is confirmed, and yields a faster convergence.
Sharp, G C; Kandasamy, N; Singh, H; Folkert, M
2007-10-07
This paper shows how to significantly accelerate cone-beam CT reconstruction and 3D deformable image registration using the stream-processing model. We describe data-parallel designs for the Feldkamp, Davis and Kress (FDK) reconstruction algorithm, and the demons deformable registration algorithm, suitable for use on a commodity graphics processing unit. The streaming versions of these algorithms are implemented using the Brook programming environment and executed on an NVidia 8800 GPU. Performance results using CT data of a preserved swine lung indicate that the GPU-based implementations of the FDK and demons algorithms achieve a substantial speedup--up to 80 times for FDK and 70 times for demons when compared to an optimized reference implementation on a 2.8 GHz Intel processor. In addition, the accuracy of the GPU-based implementations was found to be excellent. Compared with CPU-based implementations, the RMS differences were less than 0.1 Hounsfield unit for reconstruction and less than 0.1 mm for deformable registration.
Registration algorithm of point clouds based on multiscale normal features
NASA Astrophysics Data System (ADS)
Lu, Jun; Peng, Zhongtao; Su, Hang; Xia, GuiHua
2015-01-01
The point cloud registration technology for obtaining a three-dimensional digital model is widely applied in many areas. To improve the accuracy and speed of point cloud registration, a registration method based on multiscale normal vectors is proposed. The proposed registration method mainly includes three parts: the selection of key points, the calculation of feature descriptors, and the determining and optimization of correspondences. First, key points are selected from the point cloud based on the changes of magnitude of multiscale curvatures obtained by using principal components analysis. Then the feature descriptor of each key point is proposed, which consists of 21 elements based on multiscale normal vectors and curvatures. The correspondences in a pair of two point clouds are determined according to the descriptor's similarity of key points in the source point cloud and target point cloud. Correspondences are optimized by using a random sampling consistency algorithm and clustering technology. Finally, singular value decomposition is applied to optimized correspondences so that the rigid transformation matrix between two point clouds is obtained. Experimental results show that the proposed point cloud registration algorithm has a faster calculation speed, higher registration accuracy, and better antinoise performance.
Non-parametric diffeomorphic image registration with the demons algorithm.
Vercauteren, Tom; Pennec, Xavier; Perchant, Aymeric; Ayache, Nicholas
2007-01-01
We propose a non-parametric diffeomorphic image registration algorithm based on Thirion's demons algorithm. The demons algorithm can be seen as an optimization procedure on the entire space of displacement fields. The main idea of our algorithm is to adapt this procedure to a space of diffeomorphic transformations. In contrast to many diffeomorphic registration algorithms, our solution is computationally efficient since in practice it only replaces an addition of free form deformations by a few compositions. Our experiments show that in addition to being diffeomorphic, our algorithm provides results that are similar to the ones from the demons algorithm but with transformations that are much smoother and closer to the true ones in terms of Jacobians.
Jin, Shuo; Li, Dengwang; Wang, Hongjun; Yin, Yong
2013-01-07
Accurate registration of 18F-FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from (18)F-FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information-based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application.
Jin, Shuo; Li, Dengwang; Yin, Yong
2013-01-01
Accurate registration of 18F−FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from 18F−FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information‐based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application. PACS numbers: 87.57.nj, 87.57.Q‐, 87.57.uk PMID:23318381
A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms
Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine
2010-01-01
Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise. PMID:22163672
A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.
Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine
2010-01-01
Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.
Han, Lianghao; Dong, Hua; McClelland, Jamie R; Han, Liangxiu; Hawkes, David J; Barratt, Dean C
2017-07-01
This paper presents a new hybrid biomechanical model-based non-rigid image registration method for lung motion estimation. In the proposed method, a patient-specific biomechanical modelling process captures major physically realistic deformations with explicit physical modelling of sliding motion, whilst a subsequent non-rigid image registration process compensates for small residuals. The proposed algorithm was evaluated with 10 4D CT datasets of lung cancer patients. The target registration error (TRE), defined as the Euclidean distance of landmark pairs, was significantly lower with the proposed method (TRE = 1.37 mm) than with biomechanical modelling (TRE = 3.81 mm) and intensity-based image registration without specific considerations for sliding motion (TRE = 4.57 mm). The proposed method achieved a comparable accuracy as several recently developed intensity-based registration algorithms with sliding handling on the same datasets. A detailed comparison on the distributions of TREs with three non-rigid intensity-based algorithms showed that the proposed method performed especially well on estimating the displacement field of lung surface regions (mean TRE = 1.33 mm, maximum TRE = 5.3 mm). The effects of biomechanical model parameters (such as Poisson's ratio, friction and tissue heterogeneity) on displacement estimation were investigated. The potential of the algorithm in optimising biomechanical models of lungs through analysing the pattern of displacement compensation from the image registration process has also been demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Registration of 4D time-series of cardiac images with multichannel Diffeomorphic Demons.
Peyrat, Jean-Marc; Delingette, Hervé; Sermesant, Maxime; Pennec, Xavier; Xu, Chenyang; Ayache, Nicholas
2008-01-01
In this paper, we propose a generic framework for intersubject non-linear registration of 4D time-series images. In this framework, spatio-temporal registration is defined by mapping trajectories of physical points as opposed to spatial registration that solely aims at mapping homologous points. First, we determine the trajectories we want to register in each sequence using a motion tracking algorithm based on the Diffeomorphic Demons algorithm. Then, we perform simultaneously pairwise registrations of corresponding time-points with the constraint to map the same physical points over time. We show this trajectory registration can be formulated as a multichannel registration of 3D images. We solve it using the Diffeomorphic Demons algorithm extended to vector-valued 3D images. This framework is applied to the inter-subject non-linear registration of 4D cardiac CT sequences.
NASA Astrophysics Data System (ADS)
Keane, Tommy P.; Saber, Eli; Rhody, Harvey; Savakis, Andreas; Raj, Jeffrey
2012-04-01
Contemporary research in automated panorama creation utilizes camera calibration or extensive knowledge of camera locations and relations to each other to achieve successful results. Research in image registration attempts to restrict these same camera parameters or apply complex point-matching schemes to overcome the complications found in real-world scenarios. This paper presents a novel automated panorama creation algorithm by developing an affine transformation search based on maximized mutual information (MMI) for region-based registration. Standard MMI techniques have been limited to applications with airborne/satellite imagery or medical images. We show that a novel MMI algorithm can approximate an accurate registration between views of realistic scenes of varying depth distortion. The proposed algorithm has been developed using stationary, color, surveillance video data for a scenario with no a priori camera-to-camera parameters. This algorithm is robust for strict- and nearly-affine-related scenes, while providing a useful approximation for the overlap regions in scenes related by a projective homography or a more complex transformation, allowing for a set of efficient and accurate initial conditions for pixel-based registration.
NASA Astrophysics Data System (ADS)
Franz, Astrid; Carlsen, Ingwer C.; Renisch, Steffen; Wischmann, Hans-Aloys
2006-03-01
Elastic registration of medical images is an active field of current research. Registration algorithms have to be validated in order to show that they fulfill the requirements of a particular clinical application. Furthermore, validation strategies compare the performance of different registration algorithms and can hence judge which algorithm is best suited for a target application. In the literature, validation strategies for rigid registration algorithms have been analyzed. For a known ground truth they assess the displacement error at a few landmarks, which is not sufficient for elastic transformations described by a huge number of parameters. Hence we consider the displacement error averaged over all pixels in the whole image or in a region-of-interest of clinical relevance. Using artificially, but realistically deformed images of the application domain, we use this quality measure to analyze an elastic registration based on transformations defined on adaptive irregular grids for the following clinical applications: Magnetic Resonance (MR) images of freely moving joints for orthopedic investigations, thoracic Computed Tomography (CT) images for the detection of pulmonary embolisms, and transmission images as used for the attenuation correction and registration of independently acquired Positron Emission Tomography (PET) and CT images. The definition of a region-of-interest allows to restrict the analysis of the registration accuracy to clinically relevant image areas. The behaviour of the displacement error as a function of the number of transformation control points and their placement can be used for identifying the best strategy for the initial placement of the control points.
Munbodh, Reshma; Knisely, Jonathan Ps; Jaffray, David A; Moseley, Douglas J
2018-05-01
We present and evaluate a fully automated 2D-3D intensity-based registration framework using a single limited field-of-view (FOV) 2D kV radiograph and a 3D kV CBCT for 3D estimation of patient setup errors during brain radiotherapy. We evaluated two similarity measures, the Pearson correlation coefficient on image intensity values (ICC) and maximum likelihood measure with Gaussian noise (MLG), derived from the statistics of transmission images. Pose determination experiments were conducted on 2D kV radiographs in the anterior-posterior (AP) and left lateral (LL) views and 3D kV CBCTs of an anthropomorphic head phantom. In order to minimize radiation exposure and exclude nonrigid structures from the registration, limited FOV 2D kV radiographs were employed. A spatial frequency band useful for the 2D-3D registration was identified from the bone-to-no-bone spectral ratio (BNBSR) of digitally reconstructed radiographs (DRRs) computed from the 3D kV planning CT of the phantom. The images being registered were filtered accordingly prior to computation of the similarity measures. We evaluated the registration accuracy achievable with a single 2D kV radiograph and with the registration results from the AP and LL views combined. We also compared the performance of the 2D-3D registration solutions proposed to that of a commercial 3D-3D registration algorithm, which used the entire skull for the registration. The ground truth was determined from markers affixed to the phantom and visible in the CBCT images. The accuracy of the 2D-3D registration solutions, as quantified by the root mean squared value of the target registration error (TRE) calculated over a radius of 3 cm for all poses tested, was ICC AP : 0.56 mm, MLG AP : 0.74 mm, ICC LL : 0.57 mm, MLG LL : 0.54 mm, ICC (AP and LL combined): 0.19 mm, and MLG (AP and LL combined): 0.21 mm. The accuracy of the 3D-3D registration algorithm was 0.27 mm. There was no significant difference in mean TRE for the 2D-3D registration algorithms using a single 2D kV radiograph with similarity measure and image view point. There was no significant difference in mean TRE between ICC LL , MLG LL , ICC (AP and LL combined), MLG (AP and LL combined), and the 3D-3D registration algorithm despite the smaller FOV used for the 2D-3D registration. While submillimeter registration accuracy was obtained with both ICC and MLG using a single 2D kV radiograph, combining the results from the two projection views resulted in a significantly smaller (P≤0.05) mean TRE. Our results indicate that it is possible to achieve submillimeter registration accuracy with both ICC and MLG using either single or dual limited FOV 2D kV radiographs of the head in the AP and LL views. The registration accuracy suggests that the 2D-3D registration solutions presented are suitable for the estimation of patient setup errors not only during conventional brain radiation therapy, but also during stereotactic procedures and proton radiation therapy where tighter setup margins are required. © 2018 American Association of Physicists in Medicine.
Hattab, Georges; Schlüter, Jan-Philip; Becker, Anke; Nattkemper, Tim W.
2017-01-01
In order to understand gene function in bacterial life cycles, time lapse bioimaging is applied in combination with different marker protocols in so called microfluidics chambers (i.e., a multi-well plate). In one experiment, a series of T images is recorded for one visual field, with a pixel resolution of 60 nm/px. Any (semi-)automatic analysis of the data is hampered by a strong image noise, low contrast and, last but not least, considerable irregular shifts during the acquisition. Image registration corrects such shifts enabling next steps of the analysis (e.g., feature extraction or tracking). Image alignment faces two obstacles in this microscopic context: (a) highly dynamic structural changes in the sample (i.e., colony growth) and (b) an individual data set-specific sample environment which makes the application of landmarks-based alignments almost impossible. We present a computational image registration solution, we refer to as ViCAR: (Vi)sual (C)ues based (A)daptive (R)egistration, for such microfluidics experiments, consisting of (1) the detection of particular polygons (outlined and segmented ones, referred to as visual cues), (2) the adaptive retrieval of three coordinates throughout different sets of frames, and finally (3) an image registration based on the relation of these points correcting both rotation and translation. We tested ViCAR with different data sets and have found that it provides an effective spatial alignment thereby paving the way to extract temporal features pertinent to each resulting bacterial colony. By using ViCAR, we achieved an image registration with 99.9% of image closeness, based on the average rmsd of 4.10−2 pixels, and superior results compared to a state of the art algorithm. PMID:28620411
Canny edge-based deformable image registration
NASA Astrophysics Data System (ADS)
Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping
2017-02-01
This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.
a Band Selection Method for High Precision Registration of Hyperspectral Image
NASA Astrophysics Data System (ADS)
Yang, H.; Li, X.
2018-04-01
During the registration of hyperspectral images and high spatial resolution images, too much bands in a hyperspectral image make it difficult to select bands with good registration performance. Terrible bands are possible to reduce matching speed and accuracy. To solve this problem, an algorithm based on Cram'er-Rao lower bound theory is proposed to select good matching bands in this paper. The algorithm applies the Cram'er-Rao lower bound theory to the study of registration accuracy, and selects good matching bands by CRLB parameters. Experiments show that the algorithm in this paper can choose good matching bands and provide better data for the registration of hyperspectral image and high spatial resolution image.
COMPARISON OF VOLUMETRIC REGISTRATION ALGORITHMS FOR TENSOR-BASED MORPHOMETRY
Villalon, Julio; Joshi, Anand A.; Toga, Arthur W.; Thompson, Paul M.
2015-01-01
Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed that combine intensity-guided volume registrations with cortical surface constraints. In this paper, we compare one such algorithm to two popular high-dimensional volumetric registration methods: large-deformation viscous fluid registration, formulated in a Riemannian framework, and the diffeomorphic “Demons” algorithm. We performed an objective morphometric comparison, by using a large MRI dataset from 340 young adult twin subjects to examine 3D patterns of correlations in anatomical volumes. Surface-constrained volume registration gave greater effect sizes for detecting morphometric associations near the cortex, while the other two approaches gave greater effects sizes subcortically. These findings suggest novel ways to combine the advantages of multiple methods in the future. PMID:26925198
Meyer, C R; Boes, J L; Kim, B; Bland, P H; Zasadny, K R; Kison, P V; Koral, K; Frey, K A; Wahl, R L
1997-04-01
This paper applies and evaluates an automatic mutual information-based registration algorithm across a broad spectrum of multimodal volume data sets. The algorithm requires little or no pre-processing, minimal user input and easily implements either affine, i.e. linear or thin-plate spline (TPS) warped registrations. We have evaluated the algorithm in phantom studies as well as in selected cases where few other algorithms could perform as well, if at all, to demonstrate the value of this new method. Pairs of multimodal gray-scale volume data sets were registered by iteratively changing registration parameters to maximize mutual information. Quantitative registration errors were assessed in registrations of a thorax phantom using PET/CT and in the National Library of Medicine's Visible Male using MRI T2-/T1-weighted acquisitions. Registrations of diverse clinical data sets were demonstrated including rotate-translate mapping of PET/MRI brain scans with significant missing data, full affine mapping of thoracic PET/CT and rotate-translate mapping of abdominal SPECT/CT. A five-point thin-plate spline (TPS) warped registration of thoracic PET/CT is also demonstrated. The registration algorithm converged in times ranging between 3.5 and 31 min for affine clinical registrations and 57 min for TPS warping. Mean error vector lengths for rotate-translate registrations were measured to be subvoxel in phantoms. More importantly the rotate-translate algorithm performs well even with missing data. The demonstrated clinical fusions are qualitatively excellent at all levels. We conclude that such automatic, rapid, robust algorithms significantly increase the likelihood that multimodality registrations will be routinely used to aid clinical diagnoses and post-therapeutic assessment in the near future.
Ayaz, Shirazi Muhammad; Kim, Min Young
2018-01-01
In this article, a multi-view registration approach for the 3D handheld profiling system based on the multiple shot structured light technique is proposed. The multi-view registration approach is categorized into coarse registration and point cloud refinement using the iterative closest point (ICP) algorithm. Coarse registration of multiple point clouds was performed using relative orientation and translation parameters estimated via homography-based visual navigation. The proposed system was evaluated using an artificial human skull and a paper box object. For the quantitative evaluation of the accuracy of a single 3D scan, a paper box was reconstructed, and the mean errors in its height and breadth were found to be 9.4 μm and 23 μm, respectively. A comprehensive quantitative evaluation and comparison of proposed algorithm was performed with other variants of ICP. The root mean square error for the ICP algorithm to register a pair of point clouds of the skull object was also found to be less than 1 mm. PMID:29642552
An effective non-rigid registration approach for ultrasound image based on "demons" algorithm.
Liu, Yan; Cheng, H D; Huang, Jianhua; Zhang, Yingtao; Tang, Xianglong; Tian, Jiawei
2013-06-01
Medical image registration is an important component of computer-aided diagnosis system in diagnostics, therapy planning, and guidance of surgery. Because of its low signal/noise ratio (SNR), ultrasound (US) image registration is a difficult task. In this paper, a fully automatic non-rigid image registration algorithm based on demons algorithm is proposed for registration of ultrasound images. In the proposed method, an "inertia force" derived from the local motion trend of pixels in a Moore neighborhood system is produced and integrated into optical flow equation to estimate the demons force, which is helpful to handle the speckle noise and preserve the geometric continuity of US images. In the experiment, a series of US images and several similarity measure metrics are utilized for evaluating the performance. The experimental results demonstrate that the proposed method can register ultrasound images efficiently, robust to noise, quickly and automatically.
NASA Astrophysics Data System (ADS)
Wang, Jianing; Liu, Yuan; Noble, Jack H.; Dawant, Benoit M.
2017-02-01
Medical image registration establishes a correspondence between images of biological structures and it is at the core of many applications. Commonly used deformable image registration methods are dependent on a good preregistration initialization. The initialization can be performed by localizing homologous landmarks and calculating a point-based transformation between the images. The selection of landmarks is however important. In this work, we present a learning-based method to automatically find a set of robust landmarks in 3D MR image volumes of the head to initialize non-rigid transformations. To validate our method, these selected landmarks are localized in unknown image volumes and they are used to compute a smoothing thin-plate splines transformation that registers the atlas to the volumes. The transformed atlas image is then used as the preregistration initialization of an intensity-based non-rigid registration algorithm. We show that the registration accuracy of this algorithm is statistically significantly improved when using the presented registration initialization over a standard intensity-based affine registration.
Nonrigid Image Registration in Digital Subtraction Angiography Using Multilevel B-Spline
2013-01-01
We address the problem of motion artifact reduction in digital subtraction angiography (DSA) using image registration techniques. Most of registration algorithms proposed for application in DSA, have been designed for peripheral and cerebral angiography images in which we mainly deal with global rigid motions. These algorithms did not yield good results when applied to coronary angiography images because of complex nonrigid motions that exist in this type of angiography images. Multiresolution and iterative algorithms are proposed to cope with this problem, but these algorithms are associated with high computational cost which makes them not acceptable for real-time clinical applications. In this paper we propose a nonrigid image registration algorithm for coronary angiography images that is significantly faster than multiresolution and iterative blocking methods and outperforms competing algorithms evaluated on the same data sets. This algorithm is based on a sparse set of matched feature point pairs and the elastic registration is performed by means of multilevel B-spline image warping. Experimental results with several clinical data sets demonstrate the effectiveness of our approach. PMID:23971026
LCC-Demons: a robust and accurate symmetric diffeomorphic registration algorithm.
Lorenzi, M; Ayache, N; Frisoni, G B; Pennec, X
2013-11-01
Non-linear registration is a key instrument for computational anatomy to study the morphology of organs and tissues. However, in order to be an effective instrument for the clinical practice, registration algorithms must be computationally efficient, accurate and most importantly robust to the multiple biases affecting medical images. In this work we propose a fast and robust registration framework based on the log-Demons diffeomorphic registration algorithm. The transformation is parameterized by stationary velocity fields (SVFs), and the similarity metric implements a symmetric local correlation coefficient (LCC). Moreover, we show how the SVF setting provides a stable and consistent numerical scheme for the computation of the Jacobian determinant and the flux of the deformation across the boundaries of a given region. Thus, it provides a robust evaluation of spatial changes. We tested the LCC-Demons in the inter-subject registration setting, by comparing with state-of-the-art registration algorithms on public available datasets, and in the intra-subject longitudinal registration problem, for the statistically powered measurements of the longitudinal atrophy in Alzheimer's disease. Experimental results show that LCC-Demons is a generic, flexible, efficient and robust algorithm for the accurate non-linear registration of images, which can find several applications in the field of medical imaging. Without any additional optimization, it solves equally well intra & inter-subject registration problems, and compares favorably to state-of-the-art methods. Copyright © 2013 Elsevier Inc. All rights reserved.
Time-Of-Flight Camera, Optical Tracker and Computed Tomography in Pairwise Data Registration
Badura, Pawel; Juszczyk, Jan; Pietka, Ewa
2016-01-01
Purpose A growing number of medical applications, including minimal invasive surgery, depends on multi-modal or multi-sensors data processing. Fast and accurate 3D scene analysis, comprising data registration, seems to be crucial for the development of computer aided diagnosis and therapy. The advancement of surface tracking system based on optical trackers already plays an important role in surgical procedures planning. However, new modalities, like the time-of-flight (ToF) sensors, widely explored in non-medical fields are powerful and have the potential to become a part of computer aided surgery set-up. Connection of different acquisition systems promises to provide a valuable support for operating room procedures. Therefore, the detailed analysis of the accuracy of such multi-sensors positioning systems is needed. Methods We present the system combining pre-operative CT series with intra-operative ToF-sensor and optical tracker point clouds. The methodology contains: optical sensor set-up and the ToF-camera calibration procedures, data pre-processing algorithms, and registration technique. The data pre-processing yields a surface, in case of CT, and point clouds for ToF-sensor and marker-driven optical tracker representation of an object of interest. An applied registration technique is based on Iterative Closest Point algorithm. Results The experiments validate the registration of each pair of modalities/sensors involving phantoms of four various human organs in terms of Hausdorff distance and mean absolute distance metrics. The best surface alignment was obtained for CT and optical tracker combination, whereas the worst for experiments involving ToF-camera. Conclusion The obtained accuracies encourage to further develop the multi-sensors systems. The presented substantive discussion concerning the system limitations and possible improvements mainly related to the depth information produced by the ToF-sensor is useful for computer aided surgery developers. PMID:27434396
NASA Astrophysics Data System (ADS)
Pirpinia, Kleopatra; Bosman, Peter A. N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja
2015-03-01
The use of gradient information is well-known to be highly useful in single-objective optimization-based image registration methods. However, its usefulness has not yet been investigated for deformable image registration from a multi-objective optimization perspective. To this end, within a previously introduced multi-objective optimization framework, we use a smooth B-spline-based dual-dynamic transformation model that allows us to derive gradient information analytically, while still being able to account for large deformations. Within the multi-objective framework, we previously employed a powerful evolutionary algorithm (EA) that computes and advances multiple outcomes at once, resulting in a set of solutions (a so-called Pareto front) that represents efficient trade-offs between the objectives. With the addition of the B-spline-based transformation model, we studied the usefulness of gradient information in multiobjective deformable image registration using three different optimization algorithms: the (gradient-less) EA, a gradientonly algorithm, and a hybridization of these two. We evaluated the algorithms to register highly deformed images: 2D MRI slices of the breast in prone and supine positions. Results demonstrate that gradient-based multi-objective optimization significantly speeds up optimization in the initial stages of optimization. However, allowing sufficient computational resources, better results could still be obtained with the EA. Ultimately, the hybrid EA found the best overall approximation of the optimal Pareto front, further indicating that adding gradient-based optimization for multiobjective optimization-based deformable image registration can indeed be beneficial
NASA Astrophysics Data System (ADS)
Lee, Duhgoon; Nam, Woo Hyun; Lee, Jae Young; Ra, Jong Beom
2011-01-01
In order to utilize both ultrasound (US) and computed tomography (CT) images of the liver concurrently for medical applications such as diagnosis and image-guided intervention, non-rigid registration between these two types of images is an essential step, as local deformation between US and CT images exists due to the different respiratory phases involved and due to the probe pressure that occurs in US imaging. This paper introduces a voxel-based non-rigid registration algorithm between the 3D B-mode US and CT images of the liver. In the proposed algorithm, to improve the registration accuracy, we utilize the surface information of the liver and gallbladder in addition to the information of the vessels inside the liver. For an effective correlation between US and CT images, we treat those anatomical regions separately according to their characteristics in US and CT images. Based on a novel objective function using a 3D joint histogram of the intensity and gradient information, vessel-based non-rigid registration is followed by surface-based non-rigid registration in sequence, which improves the registration accuracy. The proposed algorithm is tested for ten clinical datasets and quantitative evaluations are conducted. Experimental results show that the registration error between anatomical features of US and CT images is less than 2 mm on average, even with local deformation due to different respiratory phases and probe pressure. In addition, the lesion registration error is less than 3 mm on average with a maximum of 4.5 mm that is considered acceptable for clinical applications.
Spherical Demons: Fast Surface Registration
Yeo, B.T. Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2009-01-01
We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast – registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:18979813
Spherical demons: fast surface registration.
Yeo, B T Thomas; Sabuncu, Mert; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2008-01-01
We present the fast Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizers for the modified demons objective function can be efficiently implemented on the sphere using convolution. Based on the one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast - registration of two cortical mesh models with more than 100k nodes takes less than 5 minutes, comparable to the fastest surface registration algorithms. Moreover, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different settings: (1) parcellation in a set of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces.
A Parallel Point Matching Algorithm for Landmark Based Image Registration Using Multicore Platform
Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L.; Foran, David J.
2013-01-01
Point matching is crucial for many computer vision applications. Establishing the correspondence between a large number of data points is a computationally intensive process. Some point matching related applications, such as medical image registration, require real time or near real time performance if applied to critical clinical applications like image assisted surgery. In this paper, we report a new multicore platform based parallel algorithm for fast point matching in the context of landmark based medical image registration. We introduced a non-regular data partition algorithm which utilizes the K-means clustering algorithm to group the landmarks based on the number of available processing cores, which optimize the memory usage and data transfer. We have tested our method using the IBM Cell Broadband Engine (Cell/B.E.) platform. The results demonstrated a significant speed up over its sequential implementation. The proposed data partition and parallelization algorithm, though tested only on one multicore platform, is generic by its design. Therefore the parallel algorithm can be extended to other computing platforms, as well as other point matching related applications. PMID:24308014
MREG V1.1 : a multi-scale image registration algorithm for SAR applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichel, Paul H.
2013-08-01
MREG V1.1 is the sixth generation SAR image registration algorithm developed by the Signal Processing&Technology Department for Synthetic Aperture Radar applications. Like its predecessor algorithm REGI, it employs a powerful iterative multi-scale paradigm to achieve the competing goals of sub-pixel registration accuracy and the ability to handle large initial offsets. Since it is not model based, it allows for high fidelity tracking of spatially varying terrain-induced misregistration. Since it does not rely on image domain phase, it is equally adept at coherent and noncoherent image registration. This document provides a brief history of the registration processors developed by Dept. 5962more » leading up to MREG V1.1, a full description of the signal processing steps involved in the algorithm, and a user's manual with application specific recommendations for CCD, TwoColor MultiView, and SAR stereoscopy.« less
Evaluation of GMI and PMI diffeomorphic‐based demons algorithms for aligning PET and CT Images
Yang, Juan; Zhang, You; Yin, Yong
2015-01-01
Fusion of anatomic information in computed tomography (CT) and functional information in F18‐FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined F18‐FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole‐body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)‐based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point‐wise mutual information (PMI) diffeomorphic‐based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB‐approved study. Whole‐body PET and CT images were acquired from a combined F18‐FDG PET/CT scanner for each patient. The modified Hausdorff distance (dMH) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of dMH were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI‐based demons and the PMI diffeomorphic‐based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined F18‐FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic‐based demons algorithm was more accurate than the GMI‐based demons algorithm in registering PET/CT esophageal images. PACS numbers: 87.57.nj, 87.57. Q‐, 87.57.uk PMID:26218993
Evaluation of GMI and PMI diffeomorphic-based demons algorithms for aligning PET and CT Images.
Yang, Juan; Wang, Hongjun; Zhang, You; Yin, Yong
2015-07-08
Fusion of anatomic information in computed tomography (CT) and functional information in 18F-FDG positron emission tomography (PET) is crucial for accurate differentiation of tumor from benign masses, designing radiotherapy treatment plan and staging of cancer. Although current PET and CT images can be acquired from combined 18F-FDG PET/CT scanner, the two acquisitions are scanned separately and take a long time, which may induce potential positional errors in global and local caused by respiratory motion or organ peristalsis. So registration (alignment) of whole-body PET and CT images is a prerequisite for their meaningful fusion. The purpose of this study was to assess the performance of two multimodal registration algorithms for aligning PET and CT images. The proposed gradient of mutual information (GMI)-based demons algorithm, which incorporated the GMI between two images as an external force to facilitate the alignment, was compared with the point-wise mutual information (PMI) diffeomorphic-based demons algorithm whose external force was modified by replacing the image intensity difference in diffeomorphic demons algorithm with the PMI to make it appropriate for multimodal image registration. Eight patients with esophageal cancer(s) were enrolled in this IRB-approved study. Whole-body PET and CT images were acquired from a combined 18F-FDG PET/CT scanner for each patient. The modified Hausdorff distance (d(MH)) was used to evaluate the registration accuracy of the two algorithms. Of all patients, the mean values and standard deviations (SDs) of d(MH) were 6.65 (± 1.90) voxels and 6.01 (± 1.90) after the GMI-based demons and the PMI diffeomorphic-based demons registration algorithms respectively. Preliminary results on oncological patients showed that the respiratory motion and organ peristalsis in PET/CT esophageal images could not be neglected, although a combined 18F-FDG PET/CT scanner was used for image acquisition. The PMI diffeomorphic-based demons algorithm was more accurate than the GMI-based demons algorithm in registering PET/CT esophageal images.
Performance of 12 DIR algorithms in low-contrast regions for mass and density conserving deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeo, U. J.; Supple, J. R.; Franich, R. D.
2013-10-15
Purpose: Deformable image registration (DIR) has become a key tool for adaptive radiotherapy to account for inter- and intrafraction organ deformation. Of contemporary interest, the application to deformable dose accumulation requires accurate deformation even in low contrast regions where dose gradients may exist within near-uniform tissues. One expects high-contrast features to generally be deformed more accurately by DIR algorithms. The authors systematically assess the accuracy of 12 DIR algorithms and quantitatively examine, in particular, low-contrast regions, where accuracy has not previously been established.Methods: This work investigates DIR algorithms in three dimensions using deformable gel (DEFGEL) [U. J. Yeo, M. L.more » Taylor, L. Dunn, R. L. Smith, T. Kron, and R. D. Franich, “A novel methodology for 3D deformable dosimetry,” Med. Phys. 39, 2203–2213 (2012)], for application to mass- and density-conserving deformations. CT images of DEFGEL phantoms with 16 fiducial markers (FMs) implanted were acquired in deformed and undeformed states for three different representative deformation geometries. Nonrigid image registration was performed using 12 common algorithms in the public domain. The optimum parameter setup was identified for each algorithm and each was tested for deformation accuracy in three scenarios: (I) original images of the DEFGEL with 16 FMs; (II) images with eight of the FMs mathematically erased; and (III) images with all FMs mathematically erased. The deformation vector fields obtained for scenarios II and III were then applied to the original images containing all 16 FMs. The locations of the FMs estimated by the algorithms were compared to actual locations determined by CT imaging. The accuracy of the algorithms was assessed by evaluation of three-dimensional vectors between true marker locations and predicted marker locations.Results: The mean magnitude of 16 error vectors per sample ranged from 0.3 to 3.7, 1.0 to 6.3, and 1.3 to 7.5 mm across algorithms for scenarios I to III, respectively. The greatest accuracy was exhibited by the original Horn and Schunck optical flow algorithm. In this case, for scenario III (erased FMs not contributing to driving the DIR calculation), the mean error was half that of the modified demons algorithm (which exhibited the greatest error), across all deformations. Some algorithms failed to reproduce the geometry at all, while others accurately deformed high contrast features but not low-contrast regions—indicating poor interpolation between landmarks.Conclusions: The accuracy of DIR algorithms was quantitatively evaluated using a tissue equivalent, mass, and density conserving DEFGEL phantom. For the model studied, optical flow algorithms performed better than demons algorithms, with the original Horn and Schunck performing best. The degree of error is influenced more by the magnitude of displacement than the geometric complexity of the deformation. As might be expected, deformation is estimated less accurately for low-contrast regions than for high-contrast features, and the method presented here allows quantitative analysis of the differences. The evaluation of registration accuracy through observation of the same high contrast features that drive the DIR calculation is shown to be circular and hence misleading.« less
He, Ying; Liang, Bin; Yang, Jun; Li, Shunzhi; He, Jin
2017-08-11
The Iterative Closest Points (ICP) algorithm is the mainstream algorithm used in the process of accurate registration of 3D point cloud data. The algorithm requires a proper initial value and the approximate registration of two point clouds to prevent the algorithm from falling into local extremes, but in the actual point cloud matching process, it is difficult to ensure compliance with this requirement. In this paper, we proposed the ICP algorithm based on point cloud features (GF-ICP). This method uses the geometrical features of the point cloud to be registered, such as curvature, surface normal and point cloud density, to search for the correspondence relationships between two point clouds and introduces the geometric features into the error function to realize the accurate registration of two point clouds. The experimental results showed that the algorithm can improve the convergence speed and the interval of convergence without setting a proper initial value.
Liang, Bin; Yang, Jun; Li, Shunzhi; He, Jin
2017-01-01
The Iterative Closest Points (ICP) algorithm is the mainstream algorithm used in the process of accurate registration of 3D point cloud data. The algorithm requires a proper initial value and the approximate registration of two point clouds to prevent the algorithm from falling into local extremes, but in the actual point cloud matching process, it is difficult to ensure compliance with this requirement. In this paper, we proposed the ICP algorithm based on point cloud features (GF-ICP). This method uses the geometrical features of the point cloud to be registered, such as curvature, surface normal and point cloud density, to search for the correspondence relationships between two point clouds and introduces the geometric features into the error function to realize the accurate registration of two point clouds. The experimental results showed that the algorithm can improve the convergence speed and the interval of convergence without setting a proper initial value. PMID:28800096
Zhen, Xin; Zhou, Ling-hong; Lu, Wen-ting; Zhang, Shu-xu; Zhou, Lu
2010-12-01
To validate the efficiency and accuracy of an improved Demons deformable registration algorithm and evaluate its application in contour recontouring in 4D-CT. To increase the additional Demons force and reallocate the bilateral forces to accelerate convergent speed, we propose a novel energy function as the similarity measure, and utilize a BFGS method for optimization to avoid specifying the numbers of iteration. Mathematical transformed deformable CT images and home-made deformable phantom were used to validate the accuracy of the improved algorithm, and its effectiveness for contour recontouring was tested. The improved algorithm showed a relatively high registration accuracy and speed when compared with the classic Demons algorithm and optical flow based method. Visual inspection of the positions and shapes of the deformed contours agreed well with the physician-drawn contours. Deformable registration is a key technique in 4D-CT, and this improved Demons algorithm for contour recontouring can significantly reduce the workload of the physicians. The registration accuracy of this method proves to be sufficient for clinical needs.
Sensitivity study of voxel-based PET image comparison to image registration algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, Stephen, E-mail: syip@lroc.harvard.edu; Chen, Aileen B.; Berbeco, Ross
2014-11-01
Purpose: Accurate deformable registration is essential for voxel-based comparison of sequential positron emission tomography (PET) images for proper adaptation of treatment plan and treatment response assessment. The comparison may be sensitive to the method of deformable registration as the optimal algorithm is unknown. This study investigated the impact of registration algorithm choice on therapy response evaluation. Methods: Sixteen patients with 20 lung tumors underwent a pre- and post-treatment computed tomography (CT) and 4D FDG-PET scans before and after chemoradiotherapy. All CT images were coregistered using a rigid and ten deformable registration algorithms. The resulting transformations were then applied to themore » respective PET images. Moreover, the tumor region defined by a physician on the registered PET images was classified into progressor, stable-disease, and responder subvolumes. Particularly, voxels with standardized uptake value (SUV) decreases >30% were classified as responder, while voxels with SUV increases >30% were progressor. All other voxels were considered stable-disease. The agreement of the subvolumes resulting from difference registration algorithms was assessed by Dice similarity index (DSI). Coefficient of variation (CV) was computed to assess variability of DSI between individual tumors. Root mean square difference (RMS{sub rigid}) of the rigidly registered CT images was used to measure the degree of tumor deformation. RMS{sub rigid} and DSI were correlated by Spearman correlation coefficient (R) to investigate the effect of tumor deformation on DSI. Results: Median DSI{sub rigid} was found to be 72%, 66%, and 80%, for progressor, stable-disease, and responder, respectively. Median DSI{sub deformable} was 63%–84%, 65%–81%, and 82%–89%. Variability of DSI was substantial and similar for both rigid and deformable algorithms with CV > 10% for all subvolumes. Tumor deformation had moderate to significant impact on DSI for progressor subvolume with R{sub rigid} = − 0.60 (p = 0.01) and R{sub deformable} = − 0.46 (p = 0.01–0.20) averaging over all deformable algorithms. For stable-disease subvolumes, the correlations were significant (p < 0.001) for all registration algorithms with R{sub rigid} = − 0.71 and R{sub deformable} = − 0.72. Progressor and stable-disease subvolumes resulting from rigid registration were in excellent agreement (DSI > 70%) for RMS{sub rigid} < 150 HU. However, tumor deformation was observed to have negligible effect on DSI for responder subvolumes with insignificant |R| < 0.26, p > 0.27. Conclusions: This study demonstrated that deformable algorithms cannot be arbitrarily chosen; different deformable algorithms can result in large differences of voxel-based PET image comparison. For low tumor deformation (RMS{sub rigid} < 150 HU), rigid and deformable algorithms yield similar results, suggesting deformable registration is not required for these cases.« less
Wang, Jianing; Liu, Yuan; Noble, Jack H; Dawant, Benoit M
2017-10-01
Medical image registration establishes a correspondence between images of biological structures, and it is at the core of many applications. Commonly used deformable image registration methods depend on a good preregistration initialization. We develop a learning-based method to automatically find a set of robust landmarks in three-dimensional MR image volumes of the head. These landmarks are then used to compute a thin plate spline-based initialization transformation. The process involves two steps: (1) identifying a set of landmarks that can be reliably localized in the images and (2) selecting among them the subset that leads to a good initial transformation. To validate our method, we use it to initialize five well-established deformable registration algorithms that are subsequently used to register an atlas to MR images of the head. We compare our proposed initialization method with a standard approach that involves estimating an affine transformation with an intensity-based approach. We show that for all five registration algorithms the final registration results are statistically better when they are initialized with the method that we propose than when a standard approach is used. The technique that we propose is generic and could be used to initialize nonrigid registration algorithms for other applications.
NASA Technical Reports Server (NTRS)
Solarna, David; Moser, Gabriele; Le Moigne-Stewart, Jacqueline; Serpico, Sebastiano B.
2017-01-01
Because of the large variety of sensors and spacecraft collecting data, planetary science needs to integrate various multi-sensor and multi-temporal images. These multiple data represent a precious asset, as they allow the study of targets spectral responses and of changes in the surface structure; because of their variety, they also require accurate and robust registration. A new crater detection algorithm, used to extract features that will be integrated in an image registration framework, is presented. A marked point process-based method has been developed to model the spatial distribution of elliptical objects (i.e. the craters) and a birth-death Markov chain Monte Carlo method, coupled with a region-based scheme aiming at computational efficiency, is used to find the optimal configuration fitting the image. The extracted features are exploited, together with a newly defined fitness function based on a modified Hausdorff distance, by an image registration algorithm whose architecture has been designed to minimize the computational time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan
Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan
2013-12-15
Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less
Stanley, Nick; Glide-Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J.; Zhong, Hualiang
2014-01-01
The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B-spline–based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast-Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM-DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0 ~ 3.1 mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B-spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient-specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient-dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that DIR algorithms need to be verified for each registration instance when implementing adaptive radiation therapy. PMID:24257278
Stanley, Nick; Glide‐Hurst, Carri; Kim, Jinkoo; Adams, Jeffrey; Li, Shunshan; Wen, Ning; Chetty, Indrin J
2013-01-01
The quality of adaptive treatment planning depends on the accuracy of its underlying deformable image registration (DIR). The purpose of this study is to evaluate the performance of two DIR algorithms, B‐spline‐based deformable multipass (DMP) and deformable demons (Demons), implemented in a commercial software package. Evaluations were conducted using both computational and physical deformable phantoms. Based on a finite element method (FEM), a total of 11 computational models were developed from a set of CT images acquired from four lung and one prostate cancer patients. FEM generated displacement vector fields (DVF) were used to construct the lung and prostate image phantoms. Based on a fast‐Fourier transform technique, image noise power spectrum was incorporated into the prostate image phantoms to create simulated CBCT images. The FEM‐DVF served as a gold standard for verification of the two registration algorithms performed on these phantoms. The registration algorithms were also evaluated at the homologous points quantified in the CT images of a physical lung phantom. The results indicated that the mean errors of the DMP algorithm were in the range of 1.0~3.1mm for the computational phantoms and 1.9 mm for the physical lung phantom. For the computational prostate phantoms, the corresponding mean error was 1.0–1.9 mm in the prostate, 1.9–2.4 mm in the rectum, and 1.8–2.1 mm over the entire patient body. Sinusoidal errors induced by B‐spline interpolations were observed in all the displacement profiles of the DMP registrations. Regions of large displacements were observed to have more registration errors. Patient‐specific FEM models have been developed to evaluate the DIR algorithms implemented in the commercial software package. It has been found that the accuracy of these algorithms is patient‐dependent and related to various factors including tissue deformation magnitudes and image intensity gradients across the regions of interest. This may suggest that DIR algorithms need to be verified for each registration instance when implementing adaptive radiation therapy. PACS numbers: 87.10.Kn, 87.55.km, 87.55.Qr, 87.57.nj
A finite element method to correct deformable image registration errors in low-contrast regions
NASA Astrophysics Data System (ADS)
Zhong, Hualiang; Kim, Jinkoo; Li, Haisen; Nurushev, Teamour; Movsas, Benjamin; Chetty, Indrin J.
2012-06-01
Image-guided adaptive radiotherapy requires deformable image registration to map radiation dose back and forth between images. The purpose of this study is to develop a novel method to improve the accuracy of an intensity-based image registration algorithm in low-contrast regions. A computational framework has been developed in this study to improve the quality of the ‘demons’ registration. For each voxel in the registration's target image, the standard deviation of image intensity in a neighborhood of this voxel was calculated. A mask for high-contrast regions was generated based on their standard deviations. In the masked regions, a tetrahedral mesh was refined recursively so that a sufficient number of tetrahedral nodes in these regions can be selected as driving nodes. An elastic system driven by the displacements of the selected nodes was formulated using a finite element method (FEM) and implemented on the refined mesh. The displacements of these driving nodes were generated with the ‘demons’ algorithm. The solution of the system was derived using a conjugated gradient method, and interpolated to generate a displacement vector field for the registered images. The FEM correction method was compared with the ‘demons’ algorithm on the computed tomography (CT) images of lung and prostate patients. The performance of the FEM correction relating to the ‘demons’ registration was analyzed based on the physical property of their deformation maps, and quantitatively evaluated through a benchmark model developed specifically for this study. Compared to the benchmark model, the ‘demons’ registration has the maximum error of 1.2 cm, which can be corrected by the FEM to 0.4 cm, and the average error of the ‘demons’ registration is reduced from 0.17 to 0.11 cm. For the CT images of lung and prostate patients, the deformation maps generated by the ‘demons’ algorithm were found unrealistic at several places. In these places, the displacement differences between the ‘demons’ registrations and their FEM corrections were found in the range of 0.4 and 1.1 cm. The mesh refinement and FEM simulation were implemented in a single thread application which requires about 45 min of computation time on a 2.6 GHz computer. This study has demonstrated that the FEM can be integrated with intensity-based image registration algorithms to improve their registration accuracy, especially in low-contrast regions.
Scene-based nonuniformity correction with video sequences and registration.
Hardie, R C; Hayat, M M; Armstrong, E; Yasuda, B
2000-03-10
We describe a new, to our knowledge, scene-based nonuniformity correction algorithm for array detectors. The algorithm relies on the ability to register a sequence of observed frames in the presence of the fixed-pattern noise caused by pixel-to-pixel nonuniformity. In low-to-moderate levels of nonuniformity, sufficiently accurate registration may be possible with standard scene-based registration techniques. If the registration is accurate, and motion exists between the frames, then groups of independent detectors can be identified that observe the same irradiance (or true scene value). These detector outputs are averaged to generate estimates of the true scene values. With these scene estimates, and the corresponding observed values through a given detector, a curve-fitting procedure is used to estimate the individual detector response parameters. These can then be used to correct for detector nonuniformity. The strength of the algorithm lies in its simplicity and low computational complexity. Experimental results, to illustrate the performance of the algorithm, include the use of visible-range imagery with simulated nonuniformity and infrared imagery with real nonuniformity.
Zhou, Lu; Zhou, Linghong; Zhang, Shuxu; Zhen, Xin; Yu, Hui; Zhang, Guoqian; Wang, Ruihao
2014-01-01
Deformable image registration (DIR) was widely used in radiation therapy, such as in automatic contour generation, dose accumulation, tumor growth or regression analysis. To achieve higher registration accuracy and faster convergence, an improved 'diffeomorphic demons' registration algorithm was proposed and validated. Based on Brox et al.'s gradient constancy assumption and Malis's efficient second-order minimization (ESM) algorithm, a grey value gradient similarity term and a transformation error term were added into the demons energy function, and a formula was derived to calculate the update of transformation field. The limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm was used to optimize the energy function so that the iteration number could be determined automatically. The proposed algorithm was validated using mathematically deformed images and physically deformed phantom images. Compared with the original 'diffeomorphic demons' algorithm, the registration method proposed achieve a higher precision and a faster convergence speed. Due to the influence of different scanning conditions in fractionated radiation, the density range of the treatment image and the planning image may be different. In such a case, the improved demons algorithm can achieve faster and more accurate radiotherapy.
Mass preserving registration for heart MR images.
Zhu, Lei; Haker, Steven; Tannenbaum, Allen
2005-01-01
This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm.
Mass Preserving Registration for Heart MR Images
Zhu, Lei; Haker, Steven; Tannenbaum, Allen
2013-01-01
This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm. PMID:16685954
Direct endoscopic video registration for sinus surgery
NASA Astrophysics Data System (ADS)
Mirota, Daniel; Taylor, Russell H.; Ishii, Masaru; Hager, Gregory D.
2009-02-01
Advances in computer vision have made possible robust 3D reconstruction of monocular endoscopic video. These reconstructions accurately represent the visible anatomy and, once registered to pre-operative CT data, enable a navigation system to track directly through video eliminating the need for an external tracking system. Video registration provides the means for a direct interface between an endoscope and a navigation system and allows a shorter chain of rigid-body transformations to be used to solve the patient/navigation-system registration. To solve this registration step we propose a new 3D-3D registration algorithm based on Trimmed Iterative Closest Point (TrICP)1 and the z-buffer algorithm.2 The algorithm takes as input a 3D point cloud of relative scale with the origin at the camera center, an isosurface from the CT, and an initial guess of the scale and location. Our algorithm utilizes only the visible polygons of the isosurface from the current camera location during each iteration to minimize the search area of the target region and robustly reject outliers of the reconstruction. We present example registrations in the sinus passage applicable to both sinus surgery and transnasal surgery. To evaluate our algorithm's performance we compare it to registration via Optotrak and present closest distance point to surface error. We show our algorithm has a mean closest distance error of .2268mm.
Padgett, Kyle R; Stoyanova, Radka; Pirozzi, Sara; Johnson, Perry; Piper, Jon; Dogan, Nesrin; Pollack, Alan
2018-03-01
Validating deformable multimodality image registrations is challenging due to intrinsic differences in signal characteristics and their spatial intensity distributions. Evaluating multimodality registrations using these spatial intensity distributions is also complicated by the fact that these metrics are often employed in the registration optimization process. This work evaluates rigid and deformable image registrations of the prostate in between diagnostic-MRI and radiation treatment planning-CT by utilizing a planning-MRI after fiducial marker placement as a surrogate. The surrogate allows for the direct quantitative analysis that can be difficult in the multimodality domain. For thirteen prostate patients, T2 images were acquired at two different time points, the first several weeks prior to planning (diagnostic-MRI) and the second on the same day as the planning-CT (planning-MRI). The diagnostic-MRI was deformed to the planning-CT utilizing a commercially available algorithm which synthesizes a deformable image registration (DIR) algorithm from local rigid registrations. The planning-MRI provided an independent surrogate for the planning-CT for assessing registration accuracy using image similarity metrics, including Pearson correlation and normalized mutual information (NMI). A local analysis was performed by looking only within the prostate, proximal seminal vesicles, penile bulb, and combined areas. The planning-MRI provided an excellent surrogate for the planning-CT with residual error in fiducial alignment between the two datasets being submillimeter, 0.78 mm. DIR was superior to the rigid registration in 11 of 13 cases demonstrating a 27.37% improvement in NMI (P < 0.009) within a regional area surrounding the prostate and associated critical organs. Pearson correlations showed similar results, demonstrating a 13.02% improvement (P < 0.013). By utilizing the planning-MRI as a surrogate for the planning-CT, an independent evaluation of registration accuracy is possible. This population provides an ideal testing ground for MRI to CT DIR by obviating the need for multimodality comparisons which are inherently more challenging. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
2008-10-01
concentrated aqueous 99m Tc and taped to the exterior surface of the breast phantom to act as fiducial markers for registration purposes. Two...34 Physica Medica, vol. 21, pp. 48-55, 2006. [16] H. Erdogan and J. A. Fessler, "Ordered subsets algorithms for transmission tomography," Phys Med Biol
NASA Astrophysics Data System (ADS)
Rivest-Hénault, David; Dowson, Nicholas; Greer, Peter; Dowling, Jason
2014-03-01
MRI-alone treatment planning and adaptive MRI-based prostate radiation therapy are two promising techniques that could significantly increase the accuracy of the curative dose delivery processes while reducing the total radiation dose. State-of-the-art methods rely on the registration of a patient MRI with a MR-CT atlas for the estimation of pseudo-CT [5]. This atlas itself is generally created by registering many CT and MRI pairs. Most registration methods are not symmetric, but the order of the images influences the result [8]. The computed transformation is therefore biased, introducing unwanted variability. This work examines how much a symmetric algorithm improves the registration. Methods: A robust symmetric registration algorithm is proposed that simultaneously optimises a half space transform and its inverse. During the registration process, the two input volumetric images are transformed to a common position in space, therefore minimising any computational bias. An asymmetrical implementation of the same algorithm was used for comparison purposes. Results: Whole pelvis MRI and CT scans from 15 prostate patients were registered, as in the creation of MR-CT atlases. In each case, two registrations were performed, with different input image orders, and the transformation error quantified. Mean residuals of 0.63±0.26 mm (translation) and (8.7±7.3) × 10--3 rad (rotation) were found for the asymmetrical implementation with corresponding values of 0.038±0.039 mm and (1.6 ± 1.3) × 10--3 rad for the proposed symmetric algorithm, a substantial improvement. Conclusions: The increased registration precision will enhance the generation of pseudo-CT from MRI for atlas based MR planning methods.
Spherical demons: fast diffeomorphic landmark-free surface registration.
Yeo, B T Thomas; Sabuncu, Mert R; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2010-03-01
We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160 k nodes requires less than 5 min when warping the atlas and less than 3 min when warping the subject on a Xeon 3.2 GHz single processor machine. This is comparable to the fastest nondiffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image 1) parcellation of in vivo cortical surfaces and 2) Brodmann area localization in ex vivo cortical surfaces.
Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration
Yeo, B.T. Thomas; Sabuncu, Mert R.; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2010-01-01
We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160k nodes requires less than 5 minutes when warping the atlas and less than 3 minutes when warping the subject on a Xeon 3.2GHz single processor machine. This is comparable to the fastest non-diffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image: (1) parcellation of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:19709963
Wu, Guorong; Yap, Pew-Thian; Kim, Minjeong; Shen, Dinggang
2010-02-01
We present an improved MR brain image registration algorithm, called TPS-HAMMER, which is based on the concepts of attribute vectors and hierarchical landmark selection scheme proposed in the highly successful HAMMER registration algorithm. We demonstrate that TPS-HAMMER algorithm yields better registration accuracy, robustness, and speed over HAMMER owing to (1) the employment of soft correspondence matching and (2) the utilization of thin-plate splines (TPS) for sparse-to-dense deformation field generation. These two aspects can be integrated into a unified framework to refine the registration iteratively by alternating between soft correspondence matching and dense deformation field estimation. Compared with HAMMER, TPS-HAMMER affords several advantages: (1) unlike the Gaussian propagation mechanism employed in HAMMER, which can be slow and often leaves unreached blotches in the deformation field, the deformation interpolation in the non-landmark points can be obtained immediately with TPS in our algorithm; (2) the smoothness of deformation field is preserved due to the nice properties of TPS; (3) possible misalignments can be alleviated by allowing the matching of the landmarks with a number of possible candidate points and enforcing more exact matches in the final stages of the registration. Extensive experiments have been conducted, using the original HAMMER as a comparison baseline, to validate the merits of TPS-HAMMER. The results show that TPS-HAMMER yields significant improvement in both accuracy and speed, indicating high applicability for the clinical scenario. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Rettmann, Maryam E.; Holmes, David R.; Kwartowitz, David M.; Gunawan, Mia; Johnson, Susan B.; Camp, Jon J.; Cameron, Bruce M.; Dalegrave, Charles; Kolasa, Mark W.; Packer, Douglas L.; Robb, Richard A.
2014-01-01
Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Data from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamic in vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved landmark-only registration provided the noise in the surface points is not excessively high. Increased variability on the landmark fiducials resulted in increased registration errors; however, refinement of the initial landmark registration by the surface-based algorithm can compensate for small initial misalignments. The surface-based registration algorithm is quite robust to noise on the surface points and continues to improve landmark registration even at high levels of noise on the surface points. Both the canine and patient studies also demonstrate that combined landmark and surface registration has lower errors than landmark registration alone. Conclusions: In this work, we describe a model for evaluating the impact of noise variability on the input parameters of a registration algorithm in the context of cardiac ablation therapy. The model can be used to predict both registration error as well as assess which inputs have the largest effect on registration accuracy. PMID:24506630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rettmann, Maryam E., E-mail: rettmann.maryam@mayo.edu; Holmes, David R.; Camp, Jon J.
2014-02-15
Purpose: In cardiac ablation therapy, accurate anatomic guidance is necessary to create effective tissue lesions for elimination of left atrial fibrillation. While fluoroscopy, ultrasound, and electroanatomic maps are important guidance tools, they lack information regarding detailed patient anatomy which can be obtained from high resolution imaging techniques. For this reason, there has been significant effort in incorporating detailed, patient-specific models generated from preoperative imaging datasets into the procedure. Both clinical and animal studies have investigated registration and targeting accuracy when using preoperative models; however, the effect of various error sources on registration accuracy has not been quantitatively evaluated. Methods: Datamore » from phantom, canine, and patient studies are used to model and evaluate registration accuracy. In the phantom studies, data are collected using a magnetically tracked catheter on a static phantom model. Monte Carlo simulation studies were run to evaluate both baseline errors as well as the effect of different sources of error that would be present in a dynamicin vivo setting. Error is simulated by varying the variance parameters on the landmark fiducial, physical target, and surface point locations in the phantom simulation studies. In vivo validation studies were undertaken in six canines in which metal clips were placed in the left atrium to serve as ground truth points. A small clinical evaluation was completed in three patients. Landmark-based and combined landmark and surface-based registration algorithms were evaluated in all studies. In the phantom and canine studies, both target registration error and point-to-surface error are used to assess accuracy. In the patient studies, no ground truth is available and registration accuracy is quantified using point-to-surface error only. Results: The phantom simulation studies demonstrated that combined landmark and surface-based registration improved landmark-only registration provided the noise in the surface points is not excessively high. Increased variability on the landmark fiducials resulted in increased registration errors; however, refinement of the initial landmark registration by the surface-based algorithm can compensate for small initial misalignments. The surface-based registration algorithm is quite robust to noise on the surface points and continues to improve landmark registration even at high levels of noise on the surface points. Both the canine and patient studies also demonstrate that combined landmark and surface registration has lower errors than landmark registration alone. Conclusions: In this work, we describe a model for evaluating the impact of noise variability on the input parameters of a registration algorithm in the context of cardiac ablation therapy. The model can be used to predict both registration error as well as assess which inputs have the largest effect on registration accuracy.« less
A Robust Linear Feature-Based Procedure for Automated Registration of Point Clouds
Poreba, Martyna; Goulette, François
2015-01-01
With the variety of measurement techniques available on the market today, fusing multi-source complementary information into one dataset is a matter of great interest. Target-based, point-based and feature-based methods are some of the approaches used to place data in a common reference frame by estimating its corresponding transformation parameters. This paper proposes a new linear feature-based method to perform accurate registration of point clouds, either in 2D or 3D. A two-step fast algorithm called Robust Line Matching and Registration (RLMR), which combines coarse and fine registration, was developed. The initial estimate is found from a triplet of conjugate line pairs, selected by a RANSAC algorithm. Then, this transformation is refined using an iterative optimization algorithm. Conjugates of linear features are identified with respect to a similarity metric representing a line-to-line distance. The efficiency and robustness to noise of the proposed method are evaluated and discussed. The algorithm is valid and ensures valuable results when pre-aligned point clouds with the same scale are used. The studies show that the matching accuracy is at least 99.5%. The transformation parameters are also estimated correctly. The error in rotation is better than 2.8% full scale, while the translation error is less than 12.7%. PMID:25594589
Koutouzi, G; Sandström, C; Roos, H; Henrikson, O; Leonhardt, H; Falkenberg, M
2016-11-01
Evaluation of orthogonal rings, fiducial markers, and overlay accuracy when image fusion is used for endovascular aortic repair (EVAR). This was a prospective single centre study. In 19 patients undergoing standard EVAR, 3D image fusion was used for intra-operative guidance. Renal arteries and targeted stent graft positions were marked with rings orthogonal to the respective centre lines from pre-operative computed tomography (CT). Radiopaque reference objects attached to the back of the patient were used as fiducial markers to detect patient movement intra-operatively. Automatic 3D-3D registration of the pre-operative CT with an intra-operative cone beam computed tomography (CBCT) as well as 3D-3D registration after manual alignment of nearby vertebrae were evaluated. Registration was defined as being sufficient for EVAR guidance if the deviation of the origin of the lower renal artery was less than 3 mm. For final overlay registration, the renal arteries were manually aligned using aortic calcification and vessel outlines. The accuracy of the overlay before stent graft deployment was evaluated using digital subtraction angiography (DSA) as direct comparison. Fiducial markers helped in detecting misalignment caused by patient movement during the procedure. Use of automatic intensity based registration alone was insufficient for EVAR guidance. Manual registration based on vertebrae L1-L2 was sufficient in 7/19 patients (37%). Using the final adjusted registration as overlay, the median alignment error of the lower renal artery marking at pre-deployment DSA was 2 mm (0-5) sideways and 2 mm (0-9) longitudinally, mostly in a caudal direction. 3D image fusion can facilitate intra-operative guidance during EVAR. Orthogonal rings and fiducial markers are useful for visualization and overlay correction. However, the accuracy of the overlaid 3D image is not always ideal and further technical development is needed. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Luiza Bondar, M.; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben
2013-08-01
For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.
Bondar, M Luiza; Hoogeman, Mischa; Schillemans, Wilco; Heijmen, Ben
2013-08-07
For online adaptive radiotherapy of cervical cancer, fast and accurate image segmentation is required to facilitate daily treatment adaptation. Our aim was twofold: (1) to test and compare three intra-patient automated segmentation methods for the cervix-uterus structure in CT-images and (2) to improve the segmentation accuracy by including prior knowledge on the daily bladder volume or on the daily coordinates of implanted fiducial markers. The tested methods were: shape deformation (SD) and atlas-based segmentation (ABAS) using two non-rigid registration methods: demons and a hierarchical algorithm. Tests on 102 CT-scans of 13 patients demonstrated that the segmentation accuracy significantly increased by including the bladder volume predicted with a simple 1D model based on a manually defined bladder top. Moreover, manually identified implanted fiducial markers significantly improved the accuracy of the SD method. For patients with large cervix-uterus volume regression, the use of CT-data acquired toward the end of the treatment was required to improve segmentation accuracy. Including prior knowledge, the segmentation results of SD (Dice similarity coefficient 85 ± 6%, error margin 2.2 ± 2.3 mm, average time around 1 min) and of ABAS using hierarchical non-rigid registration (Dice 82 ± 10%, error margin 3.1 ± 2.3 mm, average time around 30 s) support their use for image guided online adaptive radiotherapy of cervical cancer.
Oguro, Sota; Tokuda, Junichi; Elhawary, Haytham; Haker, Steven; Kikinis, Ron; Tempany, Clare M C; Hata, Nobuhiko
2009-11-01
To apply an intensity-based nonrigid registration algorithm to MRI-guided prostate brachytherapy clinical data and to assess its accuracy. A nonrigid registration of preoperative MRI to intraoperative MRI images was carried out in 16 cases using a Basis-Spline algorithm in a retrospective manner. The registration was assessed qualitatively by experts' visual inspection and quantitatively by measuring the Dice similarity coefficient (DSC) for total gland (TG), central gland (CG), and peripheral zone (PZ), the mutual information (MI) metric, and the fiducial registration error (FRE) between corresponding anatomical landmarks for both the nonrigid and a rigid registration method. All 16 cases were successfully registered in less than 5 min. After the nonrigid registration, DSC values for TG, CG, PZ were 0.91, 0.89, 0.79, respectively, the MI metric was -0.19 +/- 0.07 and FRE presented a value of 2.3 +/- 1.8 mm. All the metrics were significantly better than in the case of rigid registration, as determined by one-sided t-tests. The intensity-based nonrigid registration method using clinical data was demonstrated to be feasible and showed statistically improved metrics when compare to only rigid registration. The method is a valuable tool to integrate pre- and intraoperative images for brachytherapy.
Calibration of RGBD camera and cone-beam CT for 3D intra-operative mixed reality visualization.
Lee, Sing Chun; Fuerst, Bernhard; Fotouhi, Javad; Fischer, Marius; Osgood, Greg; Navab, Nassir
2016-06-01
This work proposes a novel algorithm to register cone-beam computed tomography (CBCT) volumes and 3D optical (RGBD) camera views. The co-registered real-time RGBD camera and CBCT imaging enable a novel augmented reality solution for orthopedic surgeries, which allows arbitrary views using digitally reconstructed radiographs overlaid on the reconstructed patient's surface without the need to move the C-arm. An RGBD camera is rigidly mounted on the C-arm near the detector. We introduce a calibration method based on the simultaneous reconstruction of the surface and the CBCT scan of an object. The transformation between the two coordinate spaces is recovered using Fast Point Feature Histogram descriptors and the Iterative Closest Point algorithm. Several experiments are performed to assess the repeatability and the accuracy of this method. Target registration error is measured on multiple visual and radio-opaque landmarks to evaluate the accuracy of the registration. Mixed reality visualizations from arbitrary angles are also presented for simulated orthopedic surgeries. To the best of our knowledge, this is the first calibration method which uses only tomographic and RGBD reconstructions. This means that the method does not impose a particular shape of the phantom. We demonstrate a marker-less calibration of CBCT volumes and 3D depth cameras, achieving reasonable registration accuracy. This design requires a one-time factory calibration, is self-contained, and could be integrated into existing mobile C-arms to provide real-time augmented reality views from arbitrary angles.
NASA Technical Reports Server (NTRS)
Cramer, Alexander Krishnan
2014-01-01
This work covers the design and test of a machine vision algorithm for generating high- accuracy pitch and yaw pointing solutions relative to the sun on a high altitude balloon. It describes how images were constructed by focusing an image of the sun onto a plate printed with a pattern of small cross-shaped fiducial markers. Images of this plate taken with an off-the-shelf camera were processed to determine relative position of the balloon payload to the sun. The algorithm is broken into four problems: circle detection, fiducial detection, fiducial identification, and image registration. Circle detection is handled by an "Average Intersection" method, fiducial detection by a matched filter approach, and identification with an ad-hoc method based on the spacing between fiducials. Performance is verified on real test data where possible, but otherwise uses artificially generated data. Pointing knowledge is ultimately verified to meet the 20 arcsecond requirement.
Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery
NASA Technical Reports Server (NTRS)
Zavorin, Ilya; Le Moigne, Jacqueline
2005-01-01
The problem of image registration, or the alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast, and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times and that would provide subpixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the bandpass wavelets obtained from the steerable pyramid due to Simoncelli performs best in terms of accuracy and consistency, while the low-pass wavelets obtained from the same pyramid give the best results in terms of the radius of convergence. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.
Use of Multi-Resolution Wavelet Feature Pyramids for Automatic Registration of Multi-Sensor Imagery
NASA Technical Reports Server (NTRS)
Zavorin, Ilya; LeMoigne, Jacqueline
2003-01-01
The problem of image registration, or alignment of two or more images representing the same scene or object, has to be addressed in various disciplines that employ digital imaging. In the area of remote sensing, just like in medical imaging or computer vision, it is necessary to design robust, fast and widely applicable algorithms that would allow automatic registration of images generated by various imaging platforms at the same or different times, and that would provide sub-pixel accuracy. One of the main issues that needs to be addressed when developing a registration algorithm is what type of information should be extracted from the images being registered, to be used in the search for the geometric transformation that best aligns them. The main objective of this paper is to evaluate several wavelet pyramids that may be used both for invariant feature extraction and for representing images at multiple spatial resolutions to accelerate registration. We find that the band-pass wavelets obtained from the Steerable Pyramid due to Simoncelli perform better than two types of low-pass pyramids when the images being registered have relatively small amount of nonlinear radiometric variations between them. Based on these findings, we propose a modification of a gradient-based registration algorithm that has recently been developed for medical data. We test the modified algorithm on several sets of real and synthetic satellite imagery.
Consistency-based rectification of nonrigid registrations
Gass, Tobias; Székely, Gábor; Goksel, Orcun
2015-01-01
Abstract. We present a technique to rectify nonrigid registrations by improving their group-wise consistency, which is a widely used unsupervised measure to assess pair-wise registration quality. While pair-wise registration methods cannot guarantee any group-wise consistency, group-wise approaches typically enforce perfect consistency by registering all images to a common reference. However, errors in individual registrations to the reference then propagate, distorting the mean and accumulating in the pair-wise registrations inferred via the reference. Furthermore, the assumption that perfect correspondences exist is not always true, e.g., for interpatient registration. The proposed consistency-based registration rectification (CBRR) method addresses these issues by minimizing the group-wise inconsistency of all pair-wise registrations using a regularized least-squares algorithm. The regularization controls the adherence to the original registration, which is additionally weighted by the local postregistration similarity. This allows CBRR to adaptively improve consistency while locally preserving accurate pair-wise registrations. We show that the resulting registrations are not only more consistent, but also have lower average transformation error when compared to known transformations in simulated data. On clinical data, we show improvements of up to 50% target registration error in breathing motion estimation from four-dimensional MRI and improvements in atlas-based segmentation quality of up to 65% in terms of mean surface distance in three-dimensional (3-D) CT. Such improvement was observed consistently using different registration algorithms, dimensionality (two-dimensional/3-D), and modalities (MRI/CT). PMID:26158083
NASA Astrophysics Data System (ADS)
Magri, Alphonso William
This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression algorithm. The best-fit parameters were used to create 3D parametric images. Compartmental modeling evaluation was based on the ability of parameter values to differentiate between tissue types. This evaluation was used on registered and unregistered image series and found that registration improved results. (5) PET and MR parametric images were registered through FEM- and FFD-based registration. Parametric image registration was evaluated using similarity measurements, target registration error, and qualitative comparison. Comparing FFD and FEM-based registration results showed that the FEM method is superior. This five-step process constitutes a novel multifaceted approach to a nonsurgical breast biopsy that successfully executes each step. Comparison of this method to biopsy still needs to be done with a larger set of subject data.
Wen, Ying; Hou, Lili; He, Lianghua; Peterson, Bradley S; Xu, Dongrong
2015-05-01
Spatial normalization plays a key role in voxel-based analyses of brain images. We propose a highly accurate algorithm for high-dimensional spatial normalization of brain images based on the technique of symmetric optical flow. We first construct a three dimension optical model with the consistency assumption of intensity and consistency of the gradient of intensity under a constraint of discontinuity-preserving spatio-temporal smoothness. Then, an efficient inverse consistency optical flow is proposed with aims of higher registration accuracy, where the flow is naturally symmetric. By employing a hierarchical strategy ranging from coarse to fine scales of resolution and a method of Euler-Lagrange numerical analysis, our algorithm is capable of registering brain images data. Experiments using both simulated and real datasets demonstrated that the accuracy of our algorithm is not only better than that of those traditional optical flow algorithms, but also comparable to other registration methods used extensively in the medical imaging community. Moreover, our registration algorithm is fully automated, requiring a very limited number of parameters and no manual intervention. Copyright © 2015 Elsevier Inc. All rights reserved.
Symmetric log-domain diffeomorphic Registration: a demons-based approach.
Vercauteren, Tom; Pennec, Xavier; Perchant, Aymeric; Ayache, Nicholas
2008-01-01
Modern morphometric studies use non-linear image registration to compare anatomies and perform group analysis. Recently, log-Euclidean approaches have contributed to promote the use of such computational anatomy tools by permitting simple computations of statistics on a rather large class of invertible spatial transformations. In this work, we propose a non-linear registration algorithm perfectly fit for log-Euclidean statistics on diffeomorphisms. Our algorithm works completely in the log-domain, i.e. it uses a stationary velocity field. This implies that we guarantee the invertibility of the deformation and have access to the true inverse transformation. This also means that our output can be directly used for log-Euclidean statistics without relying on the heavy computation of the log of the spatial transformation. As it is often desirable, our algorithm is symmetric with respect to the order of the input images. Furthermore, we use an alternate optimization approach related to Thirion's demons algorithm to provide a fast non-linear registration algorithm. First results show that our algorithm outperforms both the demons algorithm and the recently proposed diffeomorphic demons algorithm in terms of accuracy of the transformation while remaining computationally efficient.
An ITK framework for deterministic global optimization for medical image registration
NASA Astrophysics Data System (ADS)
Dru, Florence; Wachowiak, Mark P.; Peters, Terry M.
2006-03-01
Similarity metric optimization is an essential step in intensity-based rigid and nonrigid medical image registration. For clinical applications, such as image guidance of minimally invasive procedures, registration accuracy and efficiency are prime considerations. In addition, clinical utility is enhanced when registration is integrated into image analysis and visualization frameworks, such as the popular Insight Toolkit (ITK). ITK is an open source software environment increasingly used to aid the development, testing, and integration of new imaging algorithms. In this paper, we present a new ITK-based implementation of the DIRECT (Dividing Rectangles) deterministic global optimization algorithm for medical image registration. Previously, it has been shown that DIRECT improves the capture range and accuracy for rigid registration. Our ITK class also contains enhancements over the original DIRECT algorithm by improving stopping criteria, adaptively adjusting a locality parameter, and by incorporating Powell's method for local refinement. 3D-3D registration experiments with ground-truth brain volumes and clinical cardiac volumes show that combining DIRECT with Powell's method improves registration accuracy over Powell's method used alone, is less sensitive to initial misorientation errors, and, with the new stopping criteria, facilitates adequate exploration of the search space without expending expensive iterations on non-improving function evaluations. Finally, in this framework, a new parallel implementation for computing mutual information is presented, resulting in near-linear speedup with two processors.
LSAH: a fast and efficient local surface feature for point cloud registration
NASA Astrophysics Data System (ADS)
Lu, Rongrong; Zhu, Feng; Wu, Qingxiao; Kong, Yanzi
2018-04-01
Point cloud registration is a fundamental task in high level three dimensional applications. Noise, uneven point density and varying point cloud resolutions are the three main challenges for point cloud registration. In this paper, we design a robust and compact local surface descriptor called Local Surface Angles Histogram (LSAH) and propose an effectively coarse to fine algorithm for point cloud registration. The LSAH descriptor is formed by concatenating five normalized sub-histograms into one histogram. The five sub-histograms are created by accumulating a different type of angle from a local surface patch respectively. The experimental results show that our LSAH is more robust to uneven point density and point cloud resolutions than four state-of-the-art local descriptors in terms of feature matching. Moreover, we tested our LSAH based coarse to fine algorithm for point cloud registration. The experimental results demonstrate that our algorithm is robust and efficient as well.
NASA Astrophysics Data System (ADS)
Wang, Lei; Strehlow, Jan; Rühaak, Jan; Weiler, Florian; Diez, Yago; Gubern-Merida, Albert; Diekmann, Susanne; Laue, Hendrik; Hahn, Horst K.
2015-03-01
In breast cancer screening for high-risk women, follow-up magnetic resonance images (MRI) are acquired with a time interval ranging from several months up to a few years. Prior MRI studies may provide additional clinical value when examining the current one and thus have the potential to increase sensitivity and specificity of screening. To build a spatial correlation between suspicious findings in both current and prior studies, a reliable alignment method between follow-up studies is desirable. However, long time interval, different scanners and imaging protocols, and varying breast compression can result in a large deformation, which challenges the registration process. In this work, we present a fast and robust spatial alignment framework, which combines automated breast segmentation and current-prior registration techniques in a multi-level fashion. First, fully automatic breast segmentation is applied to extract the breast masks that are used to obtain an initial affine transform. Then, a non-rigid registration algorithm using normalized gradient fields as similarity measure together with curvature regularization is applied. A total of 29 subjects and 58 breast MR images were collected for performance assessment. To evaluate the global registration accuracy, the volume overlap and boundary surface distance metrics are calculated, resulting in an average Dice Similarity Coefficient (DSC) of 0.96 and root mean square distance (RMSD) of 1.64 mm. In addition, to measure local registration accuracy, for each subject a radiologist annotated 10 pairs of markers in the current and prior studies representing corresponding anatomical locations. The average distance error of marker pairs dropped from 67.37 mm to 10.86 mm after applying registration.
Du, Shaoyi; Xu, Yiting; Wan, Teng; Hu, Huaizhong; Zhang, Sirui; Xu, Guanglin; Zhang, Xuetao
2017-01-01
The iterative closest point (ICP) algorithm is efficient and accurate for rigid registration but it needs the good initial parameters. It is easily failed when the rotation angle between two point sets is large. To deal with this problem, a new objective function is proposed by introducing a rotation invariant feature based on the Euclidean distance between each point and a global reference point, where the global reference point is a rotation invariant. After that, this optimization problem is solved by a variant of ICP algorithm, which is an iterative method. Firstly, the accurate correspondence is established by using the weighted rotation invariant feature distance and position distance together. Secondly, the rigid transformation is solved by the singular value decomposition method. Thirdly, the weight is adjusted to control the relative contribution of the positions and features. Finally this new algorithm accomplishes the registration by a coarse-to-fine way whatever the initial rotation angle is, which is demonstrated to converge monotonically. The experimental results validate that the proposed algorithm is more accurate and robust compared with the original ICP algorithm.
Du, Shaoyi; Xu, Yiting; Wan, Teng; Zhang, Sirui; Xu, Guanglin; Zhang, Xuetao
2017-01-01
The iterative closest point (ICP) algorithm is efficient and accurate for rigid registration but it needs the good initial parameters. It is easily failed when the rotation angle between two point sets is large. To deal with this problem, a new objective function is proposed by introducing a rotation invariant feature based on the Euclidean distance between each point and a global reference point, where the global reference point is a rotation invariant. After that, this optimization problem is solved by a variant of ICP algorithm, which is an iterative method. Firstly, the accurate correspondence is established by using the weighted rotation invariant feature distance and position distance together. Secondly, the rigid transformation is solved by the singular value decomposition method. Thirdly, the weight is adjusted to control the relative contribution of the positions and features. Finally this new algorithm accomplishes the registration by a coarse-to-fine way whatever the initial rotation angle is, which is demonstrated to converge monotonically. The experimental results validate that the proposed algorithm is more accurate and robust compared with the original ICP algorithm. PMID:29176780
NASA Astrophysics Data System (ADS)
Zhong, Hualiang; Chetty, Indrin J.
2017-06-01
Tumor regression during the course of fractionated radiotherapy confounds the ability to accurately estimate the total dose delivered to tumor targets. Here we present a new criterion to improve the accuracy of image intensity-based dose mapping operations for adaptive radiotherapy for patients with non-small cell lung cancer (NSCLC). Six NSCLC patients were retrospectively investigated in this study. An image intensity-based B-spline registration algorithm was used for deformable image registration (DIR) of weekly CBCT images to a reference image. The resultant displacement vector fields were employed to map the doses calculated on weekly images to the reference image. The concept of energy conservation was introduced as a criterion to evaluate the accuracy of the dose mapping operations. A finite element method (FEM)-based mechanical model was implemented to improve the performance of the B-Spline-based registration algorithm in regions involving tumor regression. For the six patients, deformed tumor volumes changed by 21.2 ± 15.0% and 4.1 ± 3.7% on average for the B-Spline and the FEM-based registrations performed from fraction 1 to fraction 21, respectively. The energy deposited in the gross tumor volume (GTV) was 0.66 Joules (J) per fraction on average. The energy derived from the fractional dose reconstructed by the B-spline and FEM-based DIR algorithms in the deformed GTV’s was 0.51 J and 0.64 J, respectively. Based on landmark comparisons for the 6 patients, mean error for the FEM-based DIR algorithm was 2.5 ± 1.9 mm. The cross-correlation coefficient between the landmark-measured displacement error and the loss of radiation energy was -0.16 for the FEM-based algorithm. To avoid uncertainties in measuring distorted landmarks, the B-Spline-based registrations were compared to the FEM registrations, and their displacement differences equal 4.2 ± 4.7 mm on average. The displacement differences were correlated to their relative loss of radiation energy with a cross-correlation coefficient equal to 0.68. Based on the principle of energy conservation, the FEM-based mechanical model has a better performance than the B-Spline-based DIR algorithm. It is recommended that the principle of energy conservation be incorporated into a comprehensive QA protocol for adaptive radiotherapy.
Muenzing, Sascha E A; van Ginneken, Bram; Viergever, Max A; Pluim, Josien P W
2014-04-01
We introduce a boosting algorithm to improve on existing methods for deformable image registration (DIR). The proposed DIRBoost algorithm is inspired by the theory on hypothesis boosting, well known in the field of machine learning. DIRBoost utilizes a method for automatic registration error detection to obtain estimates of local registration quality. All areas detected as erroneously registered are subjected to boosting, i.e. undergo iterative registrations by employing boosting masks on both the fixed and moving image. We validated the DIRBoost algorithm on three different DIR methods (ANTS gSyn, NiftyReg, and DROP) on three independent reference datasets of pulmonary image scan pairs. DIRBoost reduced registration errors significantly and consistently on all reference datasets for each DIR algorithm, yielding an improvement of the registration accuracy by 5-34% depending on the dataset and the registration algorithm employed. Copyright © 2014 Elsevier B.V. All rights reserved.
Billings, Seth D.; Boctor, Emad M.; Taylor, Russell H.
2015-01-01
We present a probabilistic registration algorithm that robustly solves the problem of rigid-body alignment between two shapes with high accuracy, by aptly modeling measurement noise in each shape, whether isotropic or anisotropic. For point-cloud shapes, the probabilistic framework additionally enables modeling locally-linear surface regions in the vicinity of each point to further improve registration accuracy. The proposed Iterative Most-Likely Point (IMLP) algorithm is formed as a variant of the popular Iterative Closest Point (ICP) algorithm, which iterates between point-correspondence and point-registration steps. IMLP’s probabilistic framework is used to incorporate a generalized noise model into both the correspondence and the registration phases of the algorithm, hence its name as a most-likely point method rather than a closest-point method. To efficiently compute the most-likely correspondences, we devise a novel search strategy based on a principal direction (PD)-tree search. We also propose a new approach to solve the generalized total-least-squares (GTLS) sub-problem of the registration phase, wherein the point correspondences are registered under a generalized noise model. Our GTLS approach has improved accuracy, efficiency, and stability compared to prior methods presented for this problem and offers a straightforward implementation using standard least squares. We evaluate the performance of IMLP relative to a large number of prior algorithms including ICP, a robust variant on ICP, Generalized ICP (GICP), and Coherent Point Drift (CPD), as well as drawing close comparison with the prior anisotropic registration methods of GTLS-ICP and A-ICP. The performance of IMLP is shown to be superior with respect to these algorithms over a wide range of noise conditions, outliers, and misalignments using both mesh and point-cloud representations of various shapes. PMID:25748700
Zhou, Lu; Zhen, Xin; Lu, Wenting; Dou, Jianhong; Zhou, Linghong
2012-01-01
To validate the efficiency of an improved Demons deformable registration algorithm and evaluate its application in registration of the treatment image and the planning image in image-guided radiotherapy (IGRT). Based on Brox's gradient constancy assumption and Malis's efficient second-order minimization algorithm, a grey value gradient similarity term was added into the original energy function, and a formula was derived to calculate the update of transformation field. The limited Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm was used to optimize the energy function for automatic determination of the iteration number. The proposed algorithm was validated using mathematically deformed images, physically deformed phantom images and clinical tumor images. Compared with the original Additive Demons algorithm, the improved Demons algorithm achieved a higher precision and a faster convergence speed. Due to the influence of different scanning conditions in fractionated radiation, the density range of the treatment image and the planning image may be different. The improved Demons algorithm can achieve faster and more accurate radiotherapy.
An underwater turbulence degraded image restoration algorithm
NASA Astrophysics Data System (ADS)
Furhad, Md. Hasan; Tahtali, Murat; Lambert, Andrew
2017-09-01
Underwater turbulence occurs due to random fluctuations of temperature and salinity in the water. These fluctuations are responsible for variations in water density, refractive index and attenuation. These impose random geometric distortions, spatio-temporal varying blur, limited range visibility and limited contrast on the acquired images. There are some restoration techniques developed to address this problem, such as image registration based, lucky region based and centroid-based image restoration algorithms. Although these methods demonstrate better results in terms of removing turbulence, they require computationally intensive image registration, higher CPU load and memory allocations. Thus, in this paper, a simple patch based dictionary learning algorithm is proposed to restore the image by alleviating the costly image registration step. Dictionary learning is a machine learning technique which builds a dictionary of non-zero atoms derived from the sparse representation of an image or signal. The image is divided into several patches and the sharp patches are detected from them. Next, dictionary learning is performed on these patches to estimate the restored image. Finally, an image deconvolution algorithm is employed on the estimated restored image to remove noise that still exists.
A Finite Element Method to Correct Deformable Image Registration Errors in Low-Contrast Regions
Zhong, Hualiang; Kim, Jinkoo; Li, Haisen; Nurushev, Teamour; Movsas, Benjamin; Chetty, Indrin J.
2012-01-01
Image-guided adaptive radiotherapy requires deformable image registration to map radiation dose back and forth between images. The purpose of this study is to develop a novel method to improve the accuracy of an intensity-based image registration algorithm in low-contrast regions. A computational framework has been developed in this study to improve the quality of the “demons” registration. For each voxel in the registration’s target image, the standard deviation of image intensity in a neighborhood of this voxel was calculated. A mask for high-contrast regions was generated based on their standard deviations. In the masked regions, a tetrahedral mesh was refined recursively so that a sufficient number of tetrahedral nodes in these regions can be selected as driving nodes. An elastic system driven by the displacements of the selected nodes was formulated using a finite element method (FEM) and implemented on the refined mesh. The displacements of these driving nodes were generated with the “demons” algorithm. The solution of the system was derived using a conjugated gradient method, and interpolated to generate a displacement vector field for the registered images. The FEM correction method was compared with the “demons” algorithm on the CT images of lung and prostate patients. The performance of the FEM correction relating to the “demons” registration was analyzed based on the physical property of their deformation maps, and quantitatively evaluated through a benchmark model developed specifically for this study. Compared to the benchmark model, the “demons” registration has the maximum error of 1.2 cm, which can be corrected by the FEM method to 0.4 cm, and the average error of the “demons” registration is reduced from 0.17 cm to 0.11 cm. For the CT images of lung and prostate patients, the deformation maps generated by the “demons” algorithm were found unrealistic at several places. In these places, the displacement differences between the “demons” registrations and their FEM corrections were found in the range of 0.4 cm and 1.1cm. The mesh refinement and FEM simulation were implemented in a single thread application which requires about 45 minutes of computation time on a 2.6 GH computer. This study has demonstrated that the finite element method can be integrated with intensity-based image registration algorithms to improve their registration accuracy, especially in low-contrast regions. PMID:22581269
Automated robust registration of grossly misregistered whole-slide images with varying stains
NASA Astrophysics Data System (ADS)
Litjens, G.; Safferling, K.; Grabe, N.
2016-03-01
Cancer diagnosis and pharmaceutical research increasingly depend on the accurate quantification of cancer biomarkers. Identification of biomarkers is usually performed through immunohistochemical staining of cancer sections on glass slides. However, combination of multiple biomarkers from a wide variety of immunohistochemically stained slides is a tedious process in traditional histopathology due to the switching of glass slides and re-identification of regions of interest by pathologists. Digital pathology now allows us to apply image registration algorithms to digitized whole-slides to align the differing immunohistochemical stains automatically. However, registration algorithms need to be robust to changes in color due to differing stains and severe changes in tissue content between slides. In this work we developed a robust registration methodology to allow for fast coarse alignment of multiple immunohistochemical stains to the base hematyoxylin and eosin stained image. We applied HSD color model conversion to obtain a less stain color dependent representation of the whole-slide images. Subsequently, optical density thresholding and connected component analysis were used to identify the relevant regions for registration. Template matching using normalized mutual information was applied to provide initial translation and rotation parameters, after which a cost function-driven affine registration was performed. The algorithm was validated using 40 slides from 10 prostate cancer patients, with landmark registration error as a metric. Median landmark registration error was around 180 microns, which indicates performance is adequate for practical application. None of the registrations failed, indicating the robustness of the algorithm.
Park, Hyunjin; Park, Jun-Sung; Seong, Joon-Kyung; Na, Duk L; Lee, Jong-Min
2012-04-30
Analysis of cortical patterns requires accurate cortical surface registration. Many researchers map the cortical surface onto a unit sphere and perform registration of two images defined on the unit sphere. Here we have developed a novel registration framework for the cortical surface based on spherical thin-plate splines. Small-scale composition of spherical thin-plate splines was used as the geometric interpolant to avoid folding in the geometric transform. Using an automatic algorithm based on anisotropic skeletons, we extracted seven sulcal lines, which we then incorporated as landmark information. Mean curvature was chosen as an additional feature for matching between spherical maps. We employed a two-term cost function to encourage matching of both sulcal lines and the mean curvature between the spherical maps. Application of our registration framework to fifty pairwise registrations of T1-weighted MRI scans resulted in improved registration accuracy, which was computed from sulcal lines. Our registration approach was tested as an additional procedure to improve an existing surface registration algorithm. Our registration framework maintained an accurate registration over the sulcal lines while significantly increasing the cross-correlation of mean curvature between the spherical maps being registered. Copyright © 2012 Elsevier B.V. All rights reserved.
Oguro, Sota; Tokuda, Junichi; Elhawary, Haytham; Haker, Steven; Kikinis, Ron; Tempany, Clare M.C.; Hata, Nobuhiko
2009-01-01
Purpose To apply an intensity-based nonrigid registration algorithm to MRI-guided prostate brachytherapy clinical data and to assess its accuracy. Materials and Methods A nonrigid registration of preoperative MRI to intraoperative MRI images was carried out in 16 cases using a Basis-Spline algorithm in a retrospective manner. The registration was assessed qualitatively by experts’ visual inspection and quantitatively by measuring the Dice similarity coefficient (DSC) for total gland (TG), central gland (CG), and peripheral zone (PZ), the mutual information (MI) metric, and the fiducial registration error (FRE) between corresponding anatomical landmarks for both the nonrigid and a rigid registration method. Results All 16 cases were successfully registered in less than 5 min. After the nonrigid registration, DSC values for TG, CG, PZ were 0.91, 0.89, 0.79, respectively, the MI metric was −0.19 ± 0.07 and FRE presented a value of 2.3 ± 1.8 mm. All the metrics were significantly better than in the case of rigid registration, as determined by one-sided t-tests. Conclusion The intensity-based nonrigid registration method using clinical data was demonstrated to be feasible and showed statistically improved metrics when compare to only rigid registration. The method is a valuable tool to integrate pre- and intraoperative images for brachytherapy. PMID:19856437
Improving Functional MRI Registration Using Whole-Brain Functional Correlation Tensors.
Zhou, Yujia; Yap, Pew-Thian; Zhang, Han; Zhang, Lichi; Feng, Qianjin; Shen, Dinggang
2017-09-01
Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) largely rely on the accurate inter-subject registration of functional areas. This is typically achieved through registration of the corresponding T1-weighted MR images with more structural details. However, accumulating evidence has suggested that such strategy cannot well-align functional regions which are not necessarily confined by the anatomical boundaries defined by the T1-weighted MR images. To mitigate this problem, various registration algorithms based directly on rs-fMRI data have been developed, most of which have utilized functional connectivity (FC) as features for registration. However, most of the FC-based registration methods usually extract the functional features only from the thin and highly curved cortical grey matter (GM), posing a great challenge in accurately estimating the whole-brain deformation field. In this paper, we demonstrate that the additional useful functional features can be extracted from brain regions beyond the GM, particularly, white-matter (WM) based on rs-fMRI, for improving the overall functional registration. Specifically, we quantify the local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals, modeled by functional correlation tensors (FCTs), in both GM and WM. Functional registration is then performed based on multiple components of the whole-brain FCTs using a multichannel Large Deformation Diffeomorphic Metric Mapping (mLDDMM) algorithm. Experimental results show that our proposed method achieves superior functional registration performance, compared with other conventional registration methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kronfeld, Andrea; Müller-Forell, Wibke; Buchholz, Hans-Georg
Purpose: Image registration is one prerequisite for the analysis of brain regions in magnetic-resonance-imaging (MRI) or positron-emission-tomography (PET) studies. Diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) is a nonlinear, diffeomorphic algorithm for image registration and construction of image templates. The goal of this small animal study was (1) the evaluation of a MRI and calculation of several cannabinoid type 1 (CB1) receptor PET templates constructed using DARTEL and (2) the analysis of the image registration accuracy of MR and PET images to their DARTEL templates with reference to analytical and iterative PET reconstruction algorithms. Methods: Five male Sprague Dawleymore » rats were investigated for template construction using MRI and [{sup 18}F]MK-9470 PET for CB1 receptor representation. PET images were reconstructed using the algorithms filtered back-projection, ordered subset expectation maximization in 2D, and maximum a posteriori in 3D. Landmarks were defined on each MR image, and templates were constructed under different settings, i.e., based on different tissue class images [gray matter (GM), white matter (WM), and GM + WM] and regularization forms (“linear elastic energy,” “membrane energy,” and “bending energy”). Registration accuracy for MRI and PET templates was evaluated by means of the distance between landmark coordinates. Results: The best MRI template was constructed based on gray and white matter images and the regularization form linear elastic energy. In this case, most distances between landmark coordinates were <1 mm. Accordingly, MRI-based spatial normalization was most accurate, but results of the PET-based spatial normalization were quite comparable. Conclusions: Image registration using DARTEL provides a standardized and automatic framework for small animal brain data analysis. The authors were able to show that this method works with high reliability and validity. Using DARTEL templates together with nonlinear registration algorithms allows for accurate spatial normalization of combined MRI/PET or PET-only studies.« less
Real-time automatic registration in optical surgical navigation
NASA Astrophysics Data System (ADS)
Lin, Qinyong; Yang, Rongqian; Cai, Ken; Si, Xuan; Chen, Xiuwen; Wu, Xiaoming
2016-05-01
An image-guided surgical navigation system requires the improvement of the patient-to-image registration time to enhance the convenience of the registration procedure. A critical step in achieving this aim is performing a fully automatic patient-to-image registration. This study reports on a design of custom fiducial markers and the performance of a real-time automatic patient-to-image registration method using these markers on the basis of an optical tracking system for rigid anatomy. The custom fiducial markers are designed to be automatically localized in both patient and image spaces. An automatic localization method is performed by registering a point cloud sampled from the three dimensional (3D) pedestal model surface of a fiducial marker to each pedestal of fiducial markers searched in image space. A head phantom is constructed to estimate the performance of the real-time automatic registration method under four fiducial configurations. The head phantom experimental results demonstrate that the real-time automatic registration method is more convenient, rapid, and accurate than the manual method. The time required for each registration is approximately 0.1 s. The automatic localization method precisely localizes the fiducial markers in image space. The averaged target registration error for the four configurations is approximately 0.7 mm. The automatic registration performance is independent of the positions relative to the tracking system and the movement of the patient during the operation.
Geometry-aware multiscale image registration via OBBTree-based polyaffine log-demons.
Seiler, Christof; Pennec, Xavier; Reyes, Mauricio
2011-01-01
Non-linear image registration is an important tool in many areas of image analysis. For instance, in morphometric studies of a population of brains, free-form deformations between images are analyzed to describe the structural anatomical variability. Such a simple deformation model is justified by the absence of an easy expressible prior about the shape changes. Applying the same algorithms used in brain imaging to orthopedic images might not be optimal due to the difference in the underlying prior on the inter-subject deformations. In particular, using an un-informed deformation prior often leads to local minima far from the expected solution. To improve robustness and promote anatomically meaningful deformations, we propose a locally affine and geometry-aware registration algorithm that automatically adapts to the data. We build upon the log-domain demons algorithm and introduce a new type of OBBTree-based regularization in the registration with a natural multiscale structure. The regularization model is composed of a hierarchy of locally affine transformations via their logarithms. Experiments on mandibles show improved accuracy and robustness when used to initialize the demons, and even similar performance by direct comparison to the demons, with a significantly lower degree of freedom. This closes the gap between polyaffine and non-rigid registration and opens new ways to statistically analyze the registration results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, Saradwata; Johnson, Timothy D.; Ma, Bing
2012-07-01
Purpose: Assuming that early tumor volume change is a biomarker for response to therapy, accurate quantification of early volume changes could aid in adapting an individual patient's therapy and lead to shorter clinical trials. We investigated an image registration-based approach for tumor volume change quantification that may more reliably detect smaller changes that occur in shorter intervals than can be detected by existing algorithms. Methods and Materials: Variance and bias of the registration-based approach were evaluated using retrospective, in vivo, very-short-interval diffusion magnetic resonance imaging scans where true zero tumor volume change is unequivocally known and synthetic data, respectively. Themore » interval scans were nonlinearly registered using two similarity measures: mutual information (MI) and normalized cross-correlation (NCC). Results: The 95% confidence interval of the percentage volume change error was (-8.93% to 10.49%) for MI-based and (-7.69%, 8.83%) for NCC-based registrations. Linear mixed-effects models demonstrated that error in measuring volume change increased with increase in tumor volume and decreased with the increase in the tumor's normalized mutual information, even when NCC was the similarity measure being optimized during registration. The 95% confidence interval of the relative volume change error for the synthetic examinations with known changes over {+-}80% of reference tumor volume was (-3.02% to 3.86%). Statistically significant bias was not demonstrated. Conclusion: A low-noise, low-bias tumor volume change measurement algorithm using nonlinear registration is described. Errors in change measurement were a function of tumor volume and the normalized mutual information content of the tumor.« less
Analysis of deformable image registration accuracy using computational modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong Hualiang; Kim, Jinkoo; Chetty, Indrin J.
2010-03-15
Computer aided modeling of anatomic deformation, allowing various techniques and protocols in radiation therapy to be systematically verified and studied, has become increasingly attractive. In this study the potential issues in deformable image registration (DIR) were analyzed based on two numerical phantoms: One, a synthesized, low intensity gradient prostate image, and the other a lung patient's CT image data set. Each phantom was modeled with region-specific material parameters with its deformation solved using a finite element method. The resultant displacements were used to construct a benchmark to quantify the displacement errors of the Demons and B-Spline-based registrations. The results showmore » that the accuracy of these registration algorithms depends on the chosen parameters, the selection of which is closely associated with the intensity gradients of the underlying images. For the Demons algorithm, both single resolution (SR) and multiresolution (MR) registrations required approximately 300 iterations to reach an accuracy of 1.4 mm mean error in the lung patient's CT image (and 0.7 mm mean error averaged in the lung only). For the low gradient prostate phantom, these algorithms (both SR and MR) required at least 1600 iterations to reduce their mean errors to 2 mm. For the B-Spline algorithms, best performance (mean errors of 1.9 mm for SR and 1.6 mm for MR, respectively) on the low gradient prostate was achieved using five grid nodes in each direction. Adding more grid nodes resulted in larger errors. For the lung patient's CT data set, the B-Spline registrations required ten grid nodes in each direction for highest accuracy (1.4 mm for SR and 1.5 mm for MR). The numbers of iterations or grid nodes required for optimal registrations depended on the intensity gradients of the underlying images. In summary, the performance of the Demons and B-Spline registrations have been quantitatively evaluated using numerical phantoms. The results show that parameter selection for optimal accuracy is closely related to the intensity gradients of the underlying images. Also, the result that the DIR algorithms produce much lower errors in heterogeneous lung regions relative to homogeneous (low intensity gradient) regions, suggests that feature-based evaluation of deformable image registration accuracy must be viewed cautiously.« less
Jin, Peng; van der Horst, Astrid; de Jong, Rianne; van Hooft, Jeanin E; Kamphuis, Martijn; van Wieringen, Niek; Machiels, Melanie; Bel, Arjan; Hulshof, Maarten C C M; Alderliesten, Tanja
2015-12-01
The aim of this study was to quantify interfractional esophageal tumor position variation using markers and investigate the use of markers for setup verification. Sixty-five markers placed in the tumor volumes of 24 esophageal cancer patients were identified in computed tomography (CT) and follow-up cone-beam CT. For each patient we calculated pairwise distances between markers over time to evaluate geometric tumor volume variation. We then quantified marker displacements relative to bony anatomy and estimated the variation of systematic (Σ) and random errors (σ). During bony anatomy-based setup verification, we visually inspected whether the markers were inside the planning target volume (PTV) and attempted marker-based registration. Minor time trends with substantial fluctuations in pairwise distances implied tissue deformation. Overall, Σ(σ) in the left-right/cranial-caudal/anterior-posterior direction was 2.9(2.4)/4.1(2.4)/2.2(1.8) mm; for the proximal stomach, it was 5.4(4.3)/4.9(3.2)/1.9(2.4) mm. After bony anatomy-based setup correction, all markers were inside the PTV. However, due to large tissue deformation, marker-based registration was not feasible. Generally, the interfractional position variation of esophageal tumors is more pronounced in the cranial-caudal direction and in the proximal stomach. Currently, marker-based setup verification is not feasible for clinical routine use, but markers can facilitate the setup verification by inspecting whether the PTV covers the tumor volume adequately. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
An Automated Parallel Image Registration Technique Based on the Correlation of Wavelet Features
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline; Campbell, William J.; Cromp, Robert F.; Zukor, Dorothy (Technical Monitor)
2001-01-01
With the increasing importance of multiple platform/multiple remote sensing missions, fast and automatic integration of digital data from disparate sources has become critical to the success of these endeavors. Our work utilizes maxima of wavelet coefficients to form the basic features of a correlation-based automatic registration algorithm. Our wavelet-based registration algorithm is tested successfully with data from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) and the Landsat/Thematic Mapper(TM), which differ by translation and/or rotation. By the choice of high-frequency wavelet features, this method is similar to an edge-based correlation method, but by exploiting the multi-resolution nature of a wavelet decomposition, our method achieves higher computational speeds for comparable accuracies. This algorithm has been implemented on a Single Instruction Multiple Data (SIMD) massively parallel computer, the MasPar MP-2, as well as on the CrayT3D, the Cray T3E and a Beowulf cluster of Pentium workstations.
Comparison between skin-mounted fiducials and bone-implanted fiducials for image-guided neurosurgery
NASA Astrophysics Data System (ADS)
Rost, Jennifer; Harris, Steven S.; Stefansic, James D.; Sillay, Karl; Galloway, Robert L., Jr.
2004-05-01
Point-based registration for image-guided neurosurgery has become the industry standard. While the use of intrinsic points is appealing because of its retrospective nature, affixing extrinsic objects to the head prior to scanning has been demonstrated to provide much more accurate registrations. Points of reference between image space and physical space are called fiducials. The extrinsic objects which generate those points are fiducial markers. The markers can be broken down into two classifications: skin-mounted and bone-implanted. Each has distinct advantages and disadvantages. Skin-mounted fiducials require simply sticking them on the patient in locations suggested by the manufacturer, however, they can move with tractions placed on the skin, fall off and perhaps the most dangerous problem, they can be replaced by the patient. Bone implanted markers being rigidly affixed to the skull do not present such problems. However, a minor surgical intervention (analogous to dental work) must be performed to implant the markers prior to surgery. Therefore marker type and use has become a decision point for image-guided surgery. We have performed a series of experiments in an attempt to better quantify aspects of the two types of markers so that better informed decisions can be made. We have created a phantom composed of a full-size plastic skull [Wards Scientific Supply] with a 500 ml bag of saline placed in the brain cavity. The skull was then sealed. A skin mimicking material, DragonSkinTM [SmoothOn Company] was painted onto the surface and allowed to dry. Skin mounted fiducials [Medtronic-SNT] and bone-implanted markers [Z-Kat]were placed on the phantom. In addition, three additional bone-implanted markers were placed (two on the base of the skull and one in the eye socket for use as targets). The markers were imaged in CT and 4 MRI sequences (T1-weighted, T2 weighted, SPGR, and a functional series.) The markers were also located in physical space using an Optotrak 3020 [Northern Digital Inc]. Registrations between image space and physical space were performed and fiducial and target registration errors were determined. Finally the 5 bone-implanted makers which penetrated the skin were removed and a traction equivalent to 25% of the weight of the average human head was applied to the "skin" surface. Target and fiducial registrations were again performed.
Diffeomorphic demons: efficient non-parametric image registration.
Vercauteren, Tom; Pennec, Xavier; Perchant, Aymeric; Ayache, Nicholas
2009-03-01
We propose an efficient non-parametric diffeomorphic image registration algorithm based on Thirion's demons algorithm. In the first part of this paper, we show that Thirion's demons algorithm can be seen as an optimization procedure on the entire space of displacement fields. We provide strong theoretical roots to the different variants of Thirion's demons algorithm. This analysis predicts a theoretical advantage for the symmetric forces variant of the demons algorithm. We show on controlled experiments that this advantage is confirmed in practice and yields a faster convergence. In the second part of this paper, we adapt the optimization procedure underlying the demons algorithm to a space of diffeomorphic transformations. In contrast to many diffeomorphic registration algorithms, our solution is computationally efficient since in practice it only replaces an addition of displacement fields by a few compositions. Our experiments show that in addition to being diffeomorphic, our algorithm provides results that are similar to the ones from the demons algorithm but with transformations that are much smoother and closer to the gold standard, available in controlled experiments, in terms of Jacobians.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Ting; Kim, Sung; Goyal, Sharad
2010-01-15
Purpose: High-speed nonrigid registration between the planning CT and the treatment CBCT data is critical for real time image guided radiotherapy (IGRT) to improve the dose distribution and to reduce the toxicity to adjacent organs. The authors propose a new fully automatic 3D registration framework that integrates object-based global and seed constraints with the grayscale-based ''demons'' algorithm. Methods: Clinical objects were segmented on the planning CT images and were utilized as meshless deformable models during the nonrigid registration process. The meshless models reinforced a global constraint in addition to the grayscale difference between CT and CBCT in order to maintainmore » the shape and the volume of geometrically complex 3D objects during the registration. To expedite the registration process, the framework was stratified into hierarchies, and the authors used a frequency domain formulation to diffuse the displacement between the reference and the target in each hierarchy. Also during the registration of pelvis images, they replaced the air region inside the rectum with estimated pixel values from the surrounding rectal wall and introduced an additional seed constraint to robustly track and match the seeds implanted into the prostate. The proposed registration framework and algorithm were evaluated on 15 real prostate cancer patients. For each patient, prostate gland, seminal vesicle, bladder, and rectum were first segmented by a radiation oncologist on planning CT images for radiotherapy planning purpose. The same radiation oncologist also manually delineated the tumor volumes and critical anatomical structures in the corresponding CBCT images acquired at treatment. These delineated structures on the CBCT were only used as the ground truth for the quantitative validation, while structures on the planning CT were used both as the input to the registration method and the ground truth in validation. By registering the planning CT to the CBCT, a displacement map was generated. Segmented volumes in the CT images deformed using the displacement field were compared against the manual segmentations in the CBCT images to quantitatively measure the convergence of the shape and the volume. Other image features were also used to evaluate the overall performance of the registration. Results: The algorithm was able to complete the segmentation and registration process within 1 min, and the superimposed clinical objects achieved a volumetric similarity measure of over 90% between the reference and the registered data. Validation results also showed that the proposed registration could accurately trace the deformation inside the target volume with average errors of less than 1 mm. The method had a solid performance in registering the simulated images with up to 20 Hounsfield unit white noise added. Also, the side by side comparison with the original demons algorithm demonstrated its improved registration performance over the local pixel-based registration approaches. Conclusions: Given the strength and efficiency of the algorithm, the proposed method has significant clinical potential to accelerate and to improve the CBCT delineation and targets tracking in online IGRT applications.« less
Functional MRI registration with tissue-specific patch-based functional correlation tensors.
Zhou, Yujia; Zhang, Han; Zhang, Lichi; Cao, Xiaohuan; Yang, Ru; Feng, Qianjin; Yap, Pew-Thian; Shen, Dinggang
2018-06-01
Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) rely on accurate intersubject registration of functional areas. This is typically achieved through registration using high-resolution structural images with more spatial details and better tissue contrast. However, accumulating evidence has suggested that such strategy cannot align functional regions well because functional areas are not necessarily consistent with anatomical structures. To alleviate this problem, a number of registration algorithms based directly on rs-fMRI data have been developed, most of which utilize functional connectivity (FC) features for registration. However, most of these methods usually extract functional features only from the thin and highly curved cortical grey matter (GM), posing great challenges to accurate estimation of whole-brain deformation fields. In this article, we demonstrate that additional useful functional features can also be extracted from the whole brain, not restricted to the GM, particularly the white-matter (WM), for improving the overall functional registration. Specifically, we quantify local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals using tissue-specific patch-based functional correlation tensors (ts-PFCTs) in both GM and WM. Functional registration is then performed by integrating the features from different tissues using the multi-channel large deformation diffeomorphic metric mapping (mLDDMM) algorithm. Experimental results show that our method achieves superior functional registration performance, compared with conventional registration methods. © 2018 Wiley Periodicals, Inc.
Marker-free motion correction in weight-bearing cone-beam CT of the knee joint.
Berger, M; Müller, K; Aichert, A; Unberath, M; Thies, J; Choi, J-H; Fahrig, R; Maier, A
2016-03-01
To allow for a purely image-based motion estimation and compensation in weight-bearing cone-beam computed tomography of the knee joint. Weight-bearing imaging of the knee joint in a standing position poses additional requirements for the image reconstruction algorithm. In contrast to supine scans, patient motion needs to be estimated and compensated. The authors propose a method that is based on 2D/3D registration of left and right femur and tibia segmented from a prior, motion-free reconstruction acquired in supine position. Each segmented bone is first roughly aligned to the motion-corrupted reconstruction of a scan in standing or squatting position. Subsequently, a rigid 2D/3D registration is performed for each bone to each of K projection images, estimating 6 × 4 × K motion parameters. The motion of individual bones is combined into global motion fields using thin-plate-spline extrapolation. These can be incorporated into a motion-compensated reconstruction in the backprojection step. The authors performed visual and quantitative comparisons between a state-of-the-art marker-based (MB) method and two variants of the proposed method using gradient correlation (GC) and normalized gradient information (NGI) as similarity measure for the 2D/3D registration. The authors evaluated their method on four acquisitions under different squatting positions of the same patient. All methods showed substantial improvement in image quality compared to the uncorrected reconstructions. Compared to NGI and MB, the GC method showed increased streaking artifacts due to misregistrations in lateral projection images. NGI and MB showed comparable image quality at the bone regions. Because the markers are attached to the skin, the MB method performed better at the surface of the legs where the authors observed slight streaking of the NGI and GC methods. For a quantitative evaluation, the authors computed the universal quality index (UQI) for all bone regions with respect to the motion-free reconstruction. The authors quantitative evaluation over regions around the bones yielded a mean UQI of 18.4 for no correction, 53.3 and 56.1 for the proposed method using GC and NGI, respectively, and 53.7 for the MB reference approach. In contrast to the authors registration-based corrections, the MB reference method caused slight nonrigid deformations at bone outlines when compared to a motion-free reference scan. The authors showed that their method based on the NGI similarity measure yields reconstruction quality close to the MB reference method. In contrast to the MB method, the proposed method does not require any preparation prior to the examination which will improve the clinical workflow and patient comfort. Further, the authors found that the MB method causes small, nonrigid deformations at the bone outline which indicates that markers may not accurately reflect the internal motion close to the knee joint. Therefore, the authors believe that the proposed method is a promising alternative to MB motion management.
Marker-free motion correction in weight-bearing cone-beam CT of the knee joint
Berger, M.; Müller, K.; Aichert, A.; Unberath, M.; Thies, J.; Choi, J.-H.; Fahrig, R.; Maier, A.
2016-01-01
Purpose: To allow for a purely image-based motion estimation and compensation in weight-bearing cone-beam computed tomography of the knee joint. Methods: Weight-bearing imaging of the knee joint in a standing position poses additional requirements for the image reconstruction algorithm. In contrast to supine scans, patient motion needs to be estimated and compensated. The authors propose a method that is based on 2D/3D registration of left and right femur and tibia segmented from a prior, motion-free reconstruction acquired in supine position. Each segmented bone is first roughly aligned to the motion-corrupted reconstruction of a scan in standing or squatting position. Subsequently, a rigid 2D/3D registration is performed for each bone to each of K projection images, estimating 6 × 4 × K motion parameters. The motion of individual bones is combined into global motion fields using thin-plate-spline extrapolation. These can be incorporated into a motion-compensated reconstruction in the backprojection step. The authors performed visual and quantitative comparisons between a state-of-the-art marker-based (MB) method and two variants of the proposed method using gradient correlation (GC) and normalized gradient information (NGI) as similarity measure for the 2D/3D registration. Results: The authors evaluated their method on four acquisitions under different squatting positions of the same patient. All methods showed substantial improvement in image quality compared to the uncorrected reconstructions. Compared to NGI and MB, the GC method showed increased streaking artifacts due to misregistrations in lateral projection images. NGI and MB showed comparable image quality at the bone regions. Because the markers are attached to the skin, the MB method performed better at the surface of the legs where the authors observed slight streaking of the NGI and GC methods. For a quantitative evaluation, the authors computed the universal quality index (UQI) for all bone regions with respect to the motion-free reconstruction. The authors quantitative evaluation over regions around the bones yielded a mean UQI of 18.4 for no correction, 53.3 and 56.1 for the proposed method using GC and NGI, respectively, and 53.7 for the MB reference approach. In contrast to the authors registration-based corrections, the MB reference method caused slight nonrigid deformations at bone outlines when compared to a motion-free reference scan. Conclusions: The authors showed that their method based on the NGI similarity measure yields reconstruction quality close to the MB reference method. In contrast to the MB method, the proposed method does not require any preparation prior to the examination which will improve the clinical workflow and patient comfort. Further, the authors found that the MB method causes small, nonrigid deformations at the bone outline which indicates that markers may not accurately reflect the internal motion close to the knee joint. Therefore, the authors believe that the proposed method is a promising alternative to MB motion management. PMID:26936708
Influence of the number of elongated fiducial markers on the localization accuracy of the prostate
NASA Astrophysics Data System (ADS)
de Boer, Johan; de Bois, Josien; van Herk, Marcel; Sonke, Jan-Jakob
2012-10-01
Implanting fiducial markers for localization purposes has become an accepted practice in radiotherapy for prostate cancer. While many correction strategies correct for translations only, advanced correction protocols also require knowledge of the rotation of the prostate. For this purpose, typically, three or more markers are implanted. Elongated fiducial markers provide more information about their orientation than traditional round or cylindrical markers. Potentially, fewer markers are required. In this study, we evaluate the effect of the number of elongated markers on the localization accuracy of the prostate. To quantify the localization error, we developed a model that estimates, at arbitrary locations in the prostate, the registration error caused by translational and rotational uncertainties of the marker registration. Every combination of one, two and three markers was analysed for a group of 24 patients. The average registration errors at the prostate surface were 0.3-0.8 mm and 0.4-1 mm for registrations on, respectively, three markers and two markers located on different sides of the prostate. Substantial registration errors (2.0-2.2 mm) occurred at the prostate surface contralateral to the markers when two markers were implanted on the same side of the prostate or only one marker was used. In conclusion, there is no benefit in using three elongated markers: two markers accurately localize the prostate if they are implanted at some distance from each other.
Heinz, Christian; Gerum, Sabine; Freislederer, Philipp; Ganswindt, Ute; Roeder, Falk; Corradini, Stefanie; Belka, Claus; Niyazi, Maximilian
2016-06-27
Fiducial markers are the superior method to compensate for interfractional motion in liver SBRT. However this method is invasive and thereby limits its application range. In this retrospective study, the compensation method for the interfractional motion using fiducial markers (gold standard) was compared to a new non-invasive approach, which does rely on the organ motion of the liver and the relative tumor position within this volume. We analyzed six patients (3 m, 3f) treated with SBRT in 2014. After fiducial marker implantation, all patients received a treatment CT (free breathing, without abdominal compression) and a 4D-CT (consisting of 10 respiratory phases). For all patients the gross tumor volumes (GTVs), internal target volume (ITV), planning target volume (PTV), internal marker target volumes (IMTVs) and the internal liver target volume (ILTV) were delineated based on the CT and 4D-CT images. CBCT imaging was used for the standard treatment setup based on the fiducial markers. According to the patient coordinates the 3 translational compensation values (t x , t y , t z ) for the interfractional motion were calculated by matching the blurred fiducial markers with the corresponding IMTV structures. 4 observers were requested to recalculate the translational compensation values for each CBCT (31) based on the ILTV structures. The differences of the translational compensation values between the IMTV and ILTV approach were analyzed. The magnitude of the mean absolute 3D registration error with regard to the gold standard overall patients and observers was 0.50 cm ± 0.28 cm. Individual registration errors up to 1.3 cm were observed. There was no significant overall linear correlation between the respiratory motion and the registration error of the ILTV approach. Two different methods to calculate the translational compensation values for interfractional motion in stereotactic liver therapy were evaluated. The registration accuracy of the ILTV approach is mainly limited by the non-rigid behavior of the liver and the individual registration experience of the observer. The ILTV approach lacks the accuracy that would be desired for stereotactic radiotherapy of the liver.
[Optimization of end-tool parameters based on robot hand-eye calibration].
Zhang, Lilong; Cao, Tong; Liu, Da
2017-04-01
A new one-time registration method was developed in this research for hand-eye calibration of a surgical robot to simplify the operation process and reduce the preparation time. And a new and practical method is introduced in this research to optimize the end-tool parameters of the surgical robot based on analysis of the error sources in this registration method. In the process with one-time registration method, firstly a marker on the end-tool of the robot was recognized by a fixed binocular camera, and then the orientation and position of the marker were calculated based on the joint parameters of the robot. Secondly the relationship between the camera coordinate system and the robot base coordinate system could be established to complete the hand-eye calibration. Because of manufacturing and assembly errors of robot end-tool, an error equation was established with the transformation matrix between the robot end coordinate system and the robot end-tool coordinate system as the variable. Numerical optimization was employed to optimize end-tool parameters of the robot. The experimental results showed that the one-time registration method could significantly improve the efficiency of the robot hand-eye calibration compared with the existing methods. The parameter optimization method could significantly improve the absolute positioning accuracy of the one-time registration method. The absolute positioning accuracy of the one-time registration method can meet the requirements of the clinical surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Zhen, X; Zhou, L
2014-06-15
Purpose: To propose and validate a deformable point matching scheme for surface deformation to facilitate accurate bladder dose summation for fractionated HDR cervical cancer treatment. Method: A deformable point matching scheme based on the thin plate spline robust point matching (TPSRPM) algorithm is proposed for bladder surface registration. The surface of bladders segmented from fractional CT images is extracted and discretized with triangular surface mesh. Deformation between the two bladder surfaces are obtained by matching the two meshes' vertices via the TPS-RPM algorithm, and the deformation vector fields (DVFs) characteristic of this deformation is estimated by B-spline approximation. Numerically, themore » algorithm is quantitatively compared with the Demons algorithm using five clinical cervical cancer cases by several metrics: vertex-to-vertex distance (VVD), Hausdorff distance (HD), percent error (PE), and conformity index (CI). Experimentally, the algorithm is validated on a balloon phantom with 12 surface fiducial markers. The balloon is inflated with different amount of water, and the displacement of fiducial markers is benchmarked as ground truth to study TPS-RPM calculated DVFs' accuracy. Results: In numerical evaluation, the mean VVD is 3.7(±2.0) mm after Demons, and 1.3(±0.9) mm after TPS-RPM. The mean HD is 14.4 mm after Demons, and 5.3mm after TPS-RPM. The mean PE is 101.7% after Demons and decreases to 18.7% after TPS-RPM. The mean CI is 0.63 after Demons, and increases to 0.90 after TPS-RPM. In the phantom study, the mean Euclidean distance of the fiducials is 7.4±3.0mm and 4.2±1.8mm after Demons and TPS-RPM, respectively. Conclusions: The bladder wall deformation is more accurate using the feature-based TPS-RPM algorithm than the intensity-based Demons algorithm, indicating that TPS-RPM has the potential for accurate bladder dose deformation and dose summation for multi-fractional cervical HDR brachytherapy. This work is supported in part by the National Natural ScienceFoundation of China (no 30970866 and no 81301940)« less
NASA Astrophysics Data System (ADS)
Uneri, A.; Otake, Y.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Gallia, G. L.; Rigamonti, D.; Wolinsky, J.-P.; Gokaslan, Ziya L.; Khanna, A. J.; Siewerdsen, J. H.
2014-03-01
An algorithm for 3D-2D registration of CT and x-ray projections has been developed using dual projection views to provide 3D localization with accuracy exceeding that of conventional tracking systems. The registration framework employs a normalized gradient information (NGI) similarity metric and covariance matrix adaptation evolution strategy (CMAES) to solve for the patient pose in 6 degrees of freedom. Registration performance was evaluated in anthropomorphic head and chest phantoms, as well as a human torso cadaver, using C-arm projection views acquired at angular separations (Δ𝜃) ranging 0-178°. Registration accuracy was assessed in terms target registration error (TRE) and compared to that of an electromagnetic tracker. Studies evaluated the influence of C-arm magnification, x-ray dose, and preoperative CT slice thickness on registration accuracy and the minimum angular separation required to achieve TRE ~2 mm. The results indicate that Δ𝜃 as small as 10-20° is adequate to achieve TRE <2 mm with 95% confidence, comparable or superior to that of commercial trackers. The method allows direct registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers, and manual registration. The studies support potential application to percutaneous spine procedures and intracranial neurosurgery.
Kong, Gang; Dai, Dao-Qing; Zou, Lu-Min
2008-07-01
In order to remove the artifacts of peripheral digital subtraction angiography (DSA), an affine transformation-based automatic image registration algorithm is introduced here. The whole process is described as follows: First, rectangle feature templates are constructed with their centers of the extracted Harris corners in the mask, and motion vectors of the central feature points are estimated using template matching technology with the similarity measure of maximum histogram energy. And then the optimal parameters of the affine transformation are calculated with the matrix singular value decomposition (SVD) method. Finally, bilinear intensity interpolation is taken to the mask according to the specific affine transformation. More than 30 peripheral DSA registrations are performed with the presented algorithm, and as the result, moving artifacts of the images are removed with sub-pixel precision, and the time consumption is less enough to satisfy the clinical requirements. Experimental results show the efficiency and robustness of the algorithm.
Multiresolution image registration in digital x-ray angiography with intensity variation modeling.
Nejati, Mansour; Pourghassem, Hossein
2014-02-01
Digital subtraction angiography (DSA) is a widely used technique for visualization of vessel anatomy in diagnosis and treatment. However, due to unavoidable patient motions, both externally and internally, the subtracted angiography images often suffer from motion artifacts that adversely affect the quality of the medical diagnosis. To cope with this problem and improve the quality of DSA images, registration algorithms are often employed before subtraction. In this paper, a novel elastic registration algorithm for registration of digital X-ray angiography images, particularly for the coronary location, is proposed. This algorithm includes a multiresolution search strategy in which a global transformation is calculated iteratively based on local search in coarse and fine sub-image blocks. The local searches are accomplished in a differential multiscale framework which allows us to capture both large and small scale transformations. The local registration transformation also explicitly accounts for local variations in the image intensities which incorporated into our model as a change of local contrast and brightness. These local transformations are then smoothly interpolated using thin-plate spline interpolation function to obtain the global model. Experimental results with several clinical datasets demonstrate the effectiveness of our algorithm in motion artifact reduction.
A framework for automatic creation of gold-standard rigid 3D-2D registration datasets.
Madan, Hennadii; Pernuš, Franjo; Likar, Boštjan; Špiclin, Žiga
2017-02-01
Advanced image-guided medical procedures incorporate 2D intra-interventional information into pre-interventional 3D image and plan of the procedure through 3D/2D image registration (32R). To enter clinical use, and even for publication purposes, novel and existing 32R methods have to be rigorously validated. The performance of a 32R method can be estimated by comparing it to an accurate reference or gold standard method (usually based on fiducial markers) on the same set of images (gold standard dataset). Objective validation and comparison of methods are possible only if evaluation methodology is standardized, and the gold standard dataset is made publicly available. Currently, very few such datasets exist and only one contains images of multiple patients acquired during a procedure. To encourage the creation of gold standard 32R datasets, we propose an automatic framework. The framework is based on rigid registration of fiducial markers. The main novelty is spatial grouping of fiducial markers on the carrier device, which enables automatic marker localization and identification across the 3D and 2D images. The proposed framework was demonstrated on clinical angiograms of 20 patients. Rigid 32R computed by the framework was more accurate than that obtained manually, with the respective target registration error below 0.027 mm compared to 0.040 mm. The framework is applicable for gold standard setup on any rigid anatomy, provided that the acquired images contain spatially grouped fiducial markers. The gold standard datasets and software will be made publicly available.
Surface registration technique for close-range mapping applications
NASA Astrophysics Data System (ADS)
Habib, Ayman F.; Cheng, Rita W. T.
2006-08-01
Close-range mapping applications such as cultural heritage restoration, virtual reality modeling for the entertainment industry, and anatomical feature recognition for medical activities require 3D data that is usually acquired by high resolution close-range laser scanners. Since these datasets are typically captured from different viewpoints and/or at different times, accurate registration is a crucial procedure for 3D modeling of mapped objects. Several registration techniques are available that work directly with the raw laser points or with extracted features from the point cloud. Some examples include the commonly known Iterative Closest Point (ICP) algorithm and a recently proposed technique based on matching spin-images. This research focuses on developing a surface matching algorithm that is based on the Modified Iterated Hough Transform (MIHT) and ICP to register 3D data. The proposed algorithm works directly with the raw 3D laser points and does not assume point-to-point correspondence between two laser scans. The algorithm can simultaneously establish correspondence between two surfaces and estimates the transformation parameters relating them. Experiment with two partially overlapping laser scans of a small object is performed with the proposed algorithm and shows successful registration. A high quality of fit between the two scans is achieved and improvement is found when compared to the results obtained using the spin-image technique. The results demonstrate the feasibility of the proposed algorithm for registering 3D laser scanning data in close-range mapping applications to help with the generation of complete 3D models.
Non-rigid CT/CBCT to CBCT registration for online external beam radiotherapy guidance
NASA Astrophysics Data System (ADS)
Zachiu, Cornel; de Senneville, Baudouin Denis; Tijssen, Rob H. N.; Kotte, Alexis N. T. J.; Houweling, Antonetta C.; Kerkmeijer, Linda G. W.; Lagendijk, Jan J. W.; Moonen, Chrit T. W.; Ries, Mario
2018-01-01
Image-guided external beam radiotherapy (EBRT) allows radiation dose deposition with a high degree of accuracy and precision. Guidance is usually achieved by estimating the displacements, via image registration, between cone beam computed tomography (CBCT) and computed tomography (CT) images acquired at different stages of the therapy. The resulting displacements are then used to reposition the patient such that the location of the tumor at the time of treatment matches its position during planning. Moreover, ongoing research aims to use CBCT-CT image registration for online plan adaptation. However, CBCT images are usually acquired using a small number of x-ray projections and/or low beam intensities. This often leads to the images being subject to low contrast, low signal-to-noise ratio and artifacts, which ends-up hampering the image registration process. Previous studies addressed this by integrating additional image processing steps into the registration procedure. However, these steps are usually designed for particular image acquisition schemes, therefore limiting their use on a case-by-case basis. In the current study we address CT to CBCT and CBCT to CBCT registration by the means of the recently proposed EVolution registration algorithm. Contrary to previous approaches, EVolution does not require the integration of additional image processing steps in the registration scheme. Moreover, the algorithm requires a low number of input parameters, is easily parallelizable and provides an elastic deformation on a point-by-point basis. Results have shown that relative to a pure CT-based registration, the intrinsic artifacts present in typical CBCT images only have a sub-millimeter impact on the accuracy and precision of the estimated deformation. In addition, the algorithm has low computational requirements, which are compatible with online image-based guidance of EBRT treatments.
A Demons algorithm for image registration with locally adaptive regularization.
Cahill, Nathan D; Noble, J Alison; Hawkes, David J
2009-01-01
Thirion's Demons is a popular algorithm for nonrigid image registration because of its linear computational complexity and ease of implementation. It approximately solves the diffusion registration problem by successively estimating force vectors that drive the deformation toward alignment and smoothing the force vectors by Gaussian convolution. In this article, we show how the Demons algorithm can be generalized to allow image-driven locally adaptive regularization in a manner that preserves both the linear complexity and ease of implementation of the original Demons algorithm. We show that the proposed algorithm exhibits lower target registration error and requires less computational effort than the original Demons algorithm on the registration of serial chest CT scans of patients with lung nodules.
Biomechanical deformable image registration of longitudinal lung CT images using vessel information
NASA Astrophysics Data System (ADS)
Cazoulat, Guillaume; Owen, Dawn; Matuszak, Martha M.; Balter, James M.; Brock, Kristy K.
2016-07-01
Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Six lung cancer patients previously treated with conventionally fractionated radiotherapy were retrospectively evaluated. Exhale CT scans were obtained at treatment planning and following three weeks of treatment. For each patient, the planning CT was registered to the follow-up CT using Morfeus, a biomechanical model-based deformable registration algorithm. To model the complex response of the lung, an extension to Morfeus has been developed: an initial deformation was estimated with Morfeus consisting of boundary conditions on the chest wall and incorporating a sliding interface with the lungs. It was hypothesized that the addition of boundary conditions based on vessel tree matching would provide a robust reduction of the residual registration error. To achieve this, the vessel trees were segmented on the two images by thresholding a vesselness image based on the Hessian matrix’s eigenvalues. For each point on the reference vessel tree centerline, the displacement vector was estimated by applying a variant of the Demons registration algorithm between the planning CT and the deformed follow-up CT. An expert independently identified corresponding landmarks well distributed in the lung to compute target registration errors (TRE). The TRE was: 5.8+/- 2.9 , 3.4+/- 2.3 and 1.6+/- 1.3 mm after rigid registration, Morfeus and Morfeus with boundary conditions on the vessel tree, respectively. In conclusion, the addition of boundary conditions on the vessels significantly improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these geometrical uncertainties will enable future plan adaptation strategies.
Coarse Point Cloud Registration by Egi Matching of Voxel Clusters
NASA Astrophysics Data System (ADS)
Wang, Jinhu; Lindenbergh, Roderik; Shen, Yueqian; Menenti, Massimo
2016-06-01
Laser scanning samples the surface geometry of objects efficiently and records versatile information as point clouds. However, often more scans are required to fully cover a scene. Therefore, a registration step is required that transforms the different scans into a common coordinate system. The registration of point clouds is usually conducted in two steps, i.e. coarse registration followed by fine registration. In this study an automatic marker-free coarse registration method for pair-wise scans is presented. First the two input point clouds are re-sampled as voxels and dimensionality features of the voxels are determined by principal component analysis (PCA). Then voxel cells with the same dimensionality are clustered. Next, the Extended Gaussian Image (EGI) descriptor of those voxel clusters are constructed using significant eigenvectors of each voxel in the cluster. Correspondences between clusters in source and target data are obtained according to the similarity between their EGI descriptors. The random sampling consensus (RANSAC) algorithm is employed to remove outlying correspondences until a coarse alignment is obtained. If necessary, a fine registration is performed in a final step. This new method is illustrated on scan data sampling two indoor scenarios. The results of the tests are evaluated by computing the point to point distance between the two input point clouds. The presented two tests resulted in mean distances of 7.6 mm and 9.5 mm respectively, which are adequate for fine registration.
NASA Astrophysics Data System (ADS)
Wodzinski, Marek; Skalski, Andrzej; Ciepiela, Izabela; Kuszewski, Tomasz; Kedzierawski, Piotr; Gajda, Janusz
2018-02-01
Knowledge about tumor bed localization and its shape analysis is a crucial factor for preventing irradiation of healthy tissues during supportive radiotherapy and as a result, cancer recurrence. The localization process is especially hard for tumors placed nearby soft tissues, which undergo complex, nonrigid deformations. Among them, breast cancer can be considered as the most representative example. A natural approach to improving tumor bed localization is the use of image registration algorithms. However, this involves two unusual aspects which are not common in typical medical image registration: the real deformation field is discontinuous, and there is no direct correspondence between the cancer and its bed in the source and the target 3D images respectively. The tumor no longer exists during radiotherapy planning. Therefore, a traditional evaluation approach based on known, smooth deformations and target registration error are not directly applicable. In this work, we propose alternative artificial deformations which model the tumor bed creation process. We perform a comprehensive evaluation of the most commonly used deformable registration algorithms: B-Splines free form deformations (B-Splines FFD), different variants of the Demons and TV-L1 optical flow. The evaluation procedure includes quantitative assessment of the dedicated artificial deformations, target registration error calculation, 3D contour propagation and medical experts visual judgment. The results demonstrate that the currently, practically applied image registration (rigid registration and B-Splines FFD) are not able to correctly reconstruct discontinuous deformation fields. We show that the symmetric Demons provide the most accurate soft tissues alignment in terms of the ability to reconstruct the deformation field, target registration error and relative tumor volume change, while B-Splines FFD and TV-L1 optical flow are not an appropriate choice for the breast tumor bed localization problem, even though the visual alignment seems to be better than for the Demons algorithm. However, no algorithm could recover the deformation field with sufficient accuracy in terms of vector length and rotation angle differences.
Fast time-of-flight camera based surface registration for radiotherapy patient positioning.
Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli
2012-01-01
This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an "ICP only" strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 ± 1.08 mm and 0.07° ± 0.05°, respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface registration technologies. Its main benefit is the usage of a cost-effective off-the-shelf technology for surface acquisition. Further strategies to improve the registration accuracy are under development.
Plane-Based Registration of Several Thousand Laser Scans on Standard Hardware
NASA Astrophysics Data System (ADS)
Wujanz, D.; Schaller, S.; Gielsdorf, F.; Gründig, L.
2018-05-01
The automatic registration of terrestrial laser scans appears to be a solved problem in science as well as in practice. However, this assumption is questionable especially in the context of large projects where an object of interest is described by several thousand scans. A critical issue inherently linked to this task is memory management especially if cloud-based registration approaches such as the ICP are being deployed. In order to process even thousands of scans on standard hardware a plane-based registration approach is applied. As a first step planar features are detected within the unregistered scans. This step drastically reduces the amount of data that has to be handled by the hardware. After determination of corresponding planar features a pairwise registration procedure is initiated based on a graph that represents topological relations among all scans. For every feature individual stochastic characteristics are computed that are consequently carried through the algorithm. Finally, a block adjustment is carried out that minimises the residuals between redundantly captured areas. The algorithm is demonstrated on a practical survey campaign featuring a historic town hall. In total, 4853 scans were registered on a standard PC with four processors (3.07 GHz) and 12 GB of RAM.
NASA Astrophysics Data System (ADS)
Bhosale, Parag; Staring, Marius; Al-Ars, Zaid; Berendsen, Floris F.
2018-03-01
Currently, non-rigid image registration algorithms are too computationally intensive to use in time-critical applications. Existing implementations that focus on speed typically address this by either parallelization on GPU-hardware, or by introducing methodically novel techniques into CPU-oriented algorithms. Stochastic gradient descent (SGD) optimization and variations thereof have proven to drastically reduce the computational burden for CPU-based image registration, but have not been successfully applied in GPU hardware due to its stochastic nature. This paper proposes 1) NiftyRegSGD, a SGD optimization for the GPU-based image registration tool NiftyReg, 2) random chunk sampler, a new random sampling strategy that better utilizes the memory bandwidth of GPU hardware. Experiments have been performed on 3D lung CT data of 19 patients, which compared NiftyRegSGD (with and without random chunk sampler) with CPU-based elastix Fast Adaptive SGD (FASGD) and NiftyReg. The registration runtime was 21.5s, 4.4s and 2.8s for elastix-FASGD, NiftyRegSGD without, and NiftyRegSGD with random chunk sampling, respectively, while similar accuracy was obtained. Our method is publicly available at https://github.com/SuperElastix/NiftyRegSGD.
A hybrid multimodal non-rigid registration of MR images based on diffeomorphic demons.
Lu, Huanxiang; Cattin, Philippe C; Reyes, Mauricio
2010-01-01
In this paper we present a novel hybrid approach for multimodal medical image registration based on diffeomorphic demons. Diffeomorphic demons have proven to be a robust and efficient way for intensity-based image registration. A very recent extension even allows to use mutual information (MI) as a similarity measure to registration multimodal images. However, due to the intensity correspondence uncertainty existing in some anatomical parts, it is difficult for a purely intensity-based algorithm to solve the registration problem. Therefore, we propose to combine the resulting transformations from both intensity-based and landmark-based methods for multimodal non-rigid registration based on diffeomorphic demons. Several experiments on different types of MR images were conducted, for which we show that a better anatomical correspondence between the images can be obtained using the hybrid approach than using either intensity information or landmarks alone.
Enhanced ICP for the Registration of Large-Scale 3D Environment Models: An Experimental Study
Han, Jianda; Yin, Peng; He, Yuqing; Gu, Feng
2016-01-01
One of the main applications of mobile robots is the large-scale perception of the outdoor environment. One of the main challenges of this application is fusing environmental data obtained by multiple robots, especially heterogeneous robots. This paper proposes an enhanced iterative closest point (ICP) method for the fast and accurate registration of 3D environmental models. First, a hierarchical searching scheme is combined with the octree-based ICP algorithm. Second, an early-warning mechanism is used to perceive the local minimum problem. Third, a heuristic escape scheme based on sampled potential transformation vectors is used to avoid local minima and achieve optimal registration. Experiments involving one unmanned aerial vehicle and one unmanned surface vehicle were conducted to verify the proposed technique. The experimental results were compared with those of normal ICP registration algorithms to demonstrate the superior performance of the proposed method. PMID:26891298
FPFH-based graph matching for 3D point cloud registration
NASA Astrophysics Data System (ADS)
Zhao, Jiapeng; Li, Chen; Tian, Lihua; Zhu, Jihua
2018-04-01
Correspondence detection is a vital step in point cloud registration and it can help getting a reliable initial alignment. In this paper, we put forward an advanced point feature-based graph matching algorithm to solve the initial alignment problem of rigid 3D point cloud registration with partial overlap. Specifically, Fast Point Feature Histograms are used to determine the initial possible correspondences firstly. Next, a new objective function is provided to make the graph matching more suitable for partially overlapping point cloud. The objective function is optimized by the simulated annealing algorithm for final group of correct correspondences. Finally, we present a novel set partitioning method which can transform the NP-hard optimization problem into a O(n3)-solvable one. Experiments on the Stanford and UWA public data sets indicates that our method can obtain better result in terms of both accuracy and time cost compared with other point cloud registration methods.
Multi-Sensor Registration of Earth Remotely Sensed Imagery
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline; Cole-Rhodes, Arlene; Eastman, Roger; Johnson, Kisha; Morisette, Jeffrey; Netanyahu, Nathan S.; Stone, Harold S.; Zavorin, Ilya; Zukor, Dorothy (Technical Monitor)
2001-01-01
Assuming that approximate registration is given within a few pixels by a systematic correction system, we develop automatic image registration methods for multi-sensor data with the goal of achieving sub-pixel accuracy. Automatic image registration is usually defined by three steps; feature extraction, feature matching, and data resampling or fusion. Our previous work focused on image correlation methods based on the use of different features. In this paper, we study different feature matching techniques and present five algorithms where the features are either original gray levels or wavelet-like features, and the feature matching is based on gradient descent optimization, statistical robust matching, and mutual information. These algorithms are tested and compared on several multi-sensor datasets covering one of the EOS Core Sites, the Konza Prairie in Kansas, from four different sensors: IKONOS (4m), Landsat-7/ETM+ (30m), MODIS (500m), and SeaWIFS (1000m).
A Multistage Approach for Image Registration.
Bowen, Francis; Hu, Jianghai; Du, Eliza Yingzi
2016-09-01
Successful image registration is an important step for object recognition, target detection, remote sensing, multimodal content fusion, scene blending, and disaster assessment and management. The geometric and photometric variations between images adversely affect the ability for an algorithm to estimate the transformation parameters that relate the two images. Local deformations, lighting conditions, object obstructions, and perspective differences all contribute to the challenges faced by traditional registration techniques. In this paper, a novel multistage registration approach is proposed that is resilient to view point differences, image content variations, and lighting conditions. Robust registration is realized through the utilization of a novel region descriptor which couples with the spatial and texture characteristics of invariant feature points. The proposed region descriptor is exploited in a multistage approach. A multistage process allows the utilization of the graph-based descriptor in many scenarios thus allowing the algorithm to be applied to a broader set of images. Each successive stage of the registration technique is evaluated through an effective similarity metric which determines subsequent action. The registration of aerial and street view images from pre- and post-disaster provide strong evidence that the proposed method estimates more accurate global transformation parameters than traditional feature-based methods. Experimental results show the robustness and accuracy of the proposed multistage image registration methodology.
SU-E-J-91: FFT Based Medical Image Registration Using a Graphics Processing Unit (GPU).
Luce, J; Hoggarth, M; Lin, J; Block, A; Roeske, J
2012-06-01
To evaluate the efficiency gains obtained from using a Graphics Processing Unit (GPU) to perform a Fourier Transform (FT) based image registration. Fourier-based image registration involves obtaining the FT of the component images, and analyzing them in Fourier space to determine the translations and rotations of one image set relative to another. An important property of FT registration is that by enlarging the images (adding additional pixels), one can obtain translations and rotations with sub-pixel resolution. The expense, however, is an increased computational time. GPUs may decrease the computational time associated with FT image registration by taking advantage of their parallel architecture to perform matrix computations much more efficiently than a Central Processor Unit (CPU). In order to evaluate the computational gains produced by a GPU, images with known translational shifts were utilized. A program was written in the Interactive Data Language (IDL; Exelis, Boulder, CO) to performCPU-based calculations. Subsequently, the program was modified using GPU bindings (Tech-X, Boulder, CO) to perform GPU-based computation on the same system. Multiple image sizes were used, ranging from 256×256 to 2304×2304. The time required to complete the full algorithm by the CPU and GPU were benchmarked and the speed increase was defined as the ratio of the CPU-to-GPU computational time. The ratio of the CPU-to- GPU time was greater than 1.0 for all images, which indicates the GPU is performing the algorithm faster than the CPU. The smallest improvement, a 1.21 ratio, was found with the smallest image size of 256×256, and the largest speedup, a 4.25 ratio, was observed with the largest image size of 2304×2304. GPU programming resulted in a significant decrease in computational time associated with a FT image registration algorithm. The inclusion of the GPU may provide near real-time, sub-pixel registration capability. © 2012 American Association of Physicists in Medicine.
Agile Multi-Scale Decompositions for Automatic Image Registration
NASA Technical Reports Server (NTRS)
Murphy, James M.; Leija, Omar Navarro; Le Moigne, Jacqueline
2016-01-01
In recent works, the first and third authors developed an automatic image registration algorithm based on a multiscale hybrid image decomposition with anisotropic shearlets and isotropic wavelets. This prototype showed strong performance, improving robustness over registration with wavelets alone. However, this method imposed a strict hierarchy on the order in which shearlet and wavelet features were used in the registration process, and also involved an unintegrated mixture of MATLAB and C code. In this paper, we introduce a more agile model for generating features, in which a flexible and user-guided mix of shearlet and wavelet features are computed. Compared to the previous prototype, this method introduces a flexibility to the order in which shearlet and wavelet features are used in the registration process. Moreover, the present algorithm is now fully coded in C, making it more efficient and portable than the MATLAB and C prototype. We demonstrate the versatility and computational efficiency of this approach by performing registration experiments with the fully-integrated C algorithm. In particular, meaningful timing studies can now be performed, to give a concrete analysis of the computational costs of the flexible feature extraction. Examples of synthetically warped and real multi-modal images are analyzed.
NASA Astrophysics Data System (ADS)
Unger, Jakob; Sun, Tianchen; Chen, Yi-Ling; Phipps, Jennifer E.; Bold, Richard J.; Darrow, Morgan A.; Ma, Kwan-Liu; Marcu, Laura
2018-01-01
An important step in establishing the diagnostic potential for emerging optical imaging techniques is accurate registration between imaging data and the corresponding tissue histopathology typically used as gold standard in clinical diagnostics. We present a method to precisely register data acquired with a point-scanning spectroscopic imaging technique from fresh surgical tissue specimen blocks with corresponding histological sections. Using a visible aiming beam to augment point-scanning multispectral time-resolved fluorescence spectroscopy on video images, we evaluate two different markers for the registration with histology: fiducial markers using a 405-nm CW laser and the tissue block's outer shape characteristics. We compare the registration performance with benchmark methods using either the fiducial markers or the outer shape characteristics alone to a hybrid method using both feature types. The hybrid method was found to perform best reaching an average error of 0.78±0.67 mm. This method provides a profound framework to validate diagnostical abilities of optical fiber-based techniques and furthermore enables the application of supervised machine learning techniques to automate tissue characterization.
NASA Astrophysics Data System (ADS)
Zhang, Wanjun; Yang, Xu
2017-12-01
Registration of simultaneous polarization images is the premise of subsequent image fusion operations. However, in the process of shooting all-weather, the polarized camera exposure time need to be kept unchanged, sometimes polarization images under low illumination conditions due to too dark result in SURF algorithm can not extract feature points, thus unable to complete the registration, therefore this paper proposes an improved SURF algorithm. Firstly, the luminance operator is used to improve overall brightness of low illumination image, and then create integral image, using Hession matrix to extract the points of interest to get the main direction of characteristic points, calculate Haar wavelet response in X and Y directions to get the SURF descriptor information, then use the RANSAC function to make precise matching, the function can eliminate wrong matching points and improve accuracy rate. And finally resume the brightness of the polarized image after registration, the effect of the polarized image is not affected. Results show that the improved SURF algorithm can be applied well under low illumination conditions.
Kim, Jinkoo; Kumar, Sanath; Liu, Chang; Zhong, Hualiang; Pradhan, Deepak; Shah, Mira; Cattaneo, Richard; Yechieli, Raphael; Robbins, Jared R.; Elshaikh, Mohamed A.; Chetty, Indrin J.
2014-01-01
Purpose Deformable image registration (DIR) is an integral component for adaptive radiation therapy. However, accurate registration between daily cone-beam computed tomography (CBCT) and treatment planning CT is challenging, due to significant daily variations in rectal and bladder fillings as well as the increased noise levels in CBCT images. Another significant challenge is the lack of “ground-truth” registrations in the clinical setting, which is necessary for quantitative evaluation of various registration algorithms. The aim of this study is to establish benchmark registrations of clinical patient data. Materials/Methods Three pairs of CT/CBCT datasets were chosen for this IRB-approved retrospective study. On each image, in order to reduce the contouring uncertainty, ten independent sets of organs were manually delineated by five physicians. The mean contour set for each image was derived from the ten contours. A set of distinctive points (round natural calcifications and 3 implanted prostate fiducial markers) were also manually identified. The mean contours and point features were then incorporated as constraints into a B-spline based DIR algorithm. Further, a rigidity penalty was imposed on the femurs and pelvic bones to preserve their rigidity. A piecewise-rigid registration approach was adapted to account for the differences in femur pose and the sliding motion between bones. For each registration, the magnitude of the spatial Jacobian (|JAC|) was calculated to quantify the tissue compression and expansion. Deformation grids and finite-element-model-based unbalanced energy maps were also reviewed visually to evaluate the physical soundness of the resultant deformations. Organ DICE indices (indicating the degree of overlap between registered organs) and residual misalignments of the fiducial landmarks were quantified. Results Manual organ delineation on CBCT images varied significantly among physicians with overall mean DICE index of only 0.7 among redundant contours. Seminal vesicle contours were found to have the lowest correlation amongst physicians (DICE=0.5). After DIR, the organ surfaces between CBCT and planning CT were in good alignment with mean DICE indices of 0.9 for prostate, rectum, and bladder, and 0.8 for seminal vesicles. The Jacobian magnitudes |JAC| in the prostate, rectum, and seminal vesicles were in the range of 0.4–1.5, indicating mild compression/expansion. The bladder volume differences were larger between CBCT and CT images with mean |JAC| values of 2.2, 0.7, and 1.0 for three respective patients. Bone deformation was negligible (|JAC|=~1.0). The difference between corresponding landmark points between CBCT and CT was less than 1.0 mm after DIR. Conclusions We have presented a novel method of establishing benchmark deformable image registration accuracy between CT and CBCT images in the pelvic region. The method incorporates manually delineated organ surfaces and landmark points as well as pixel similarity in the optimization, while ensuring bone rigidity and avoiding excessive deformation in soft tissue organs. Redundant contouring is necessary to reduce the overall registration uncertainty. PMID:24171908
A Greedy Algorithm for Brain MRI's Registration.
Chesseboeuf, Clément
2016-12-01
This document presents a non-rigid registration algorithm for the use of brain magnetic resonance (MR) images comparison. More precisely, we want to compare pre-operative and post-operative MR images in order to assess the deformation due to a surgical removal. The proposed algorithm has been studied in Chesseboeuf et al. ((Non-rigid registration of magnetic resonance imaging of brain. IEEE, 385-390. doi: 10.1109/IPTA.2015.7367172 , 2015), following ideas of Trouvé (An infinite dimensional group approach for physics based models in patterns recognition. Technical Report DMI Ecole Normale Supérieure, Cachan, 1995), in which the author introduces the algorithm within a very general framework. Here we recalled this theory from a practical point of view. The emphasis is on illustrations and description of the numerical procedure. Our version of the algorithm is associated with a particular matching criterion. Then, a section is devoted to the description of this object. In the last section we focus on the construction of a statistical method of evaluation.
Liu, Xiaozheng; Yuan, Zhenming; Zhu, Junming; Xu, Dongrong
2013-12-07
The demons algorithm is a popular algorithm for non-rigid image registration because of its computational efficiency and simple implementation. The deformation forces of the classic demons algorithm were derived from image gradients by considering the deformation to decrease the intensity dissimilarity between images. However, the methods using the difference of image intensity for medical image registration are easily affected by image artifacts, such as image noise, non-uniform imaging and partial volume effects. The gradient magnitude image is constructed from the local information of an image, so the difference in a gradient magnitude image can be regarded as more reliable and robust for these artifacts. Then, registering medical images by considering the differences in both image intensity and gradient magnitude is a straightforward selection. In this paper, based on a diffeomorphic demons algorithm, we propose a chain-type diffeomorphic demons algorithm by combining the differences in both image intensity and gradient magnitude for medical image registration. Previous work had shown that the classic demons algorithm can be considered as an approximation of a second order gradient descent on the sum of the squared intensity differences. By optimizing the new dissimilarity criteria, we also present a set of new demons forces which were derived from the gradients of the image and gradient magnitude image. We show that, in controlled experiments, this advantage is confirmed, and yields a fast convergence.
2D-3D rigid registration to compensate for prostate motion during 3D TRUS-guided biopsy.
De Silva, Tharindu; Fenster, Aaron; Cool, Derek W; Gardi, Lori; Romagnoli, Cesare; Samarabandu, Jagath; Ward, Aaron D
2013-02-01
Three-dimensional (3D) transrectal ultrasound (TRUS)-guided systems have been developed to improve targeting accuracy during prostate biopsy. However, prostate motion during the procedure is a potential source of error that can cause target misalignments. The authors present an image-based registration technique to compensate for prostate motion by registering the live two-dimensional (2D) TRUS images acquired during the biopsy procedure to a preacquired 3D TRUS image. The registration must be performed both accurately and quickly in order to be useful during the clinical procedure. The authors implemented an intensity-based 2D-3D rigid registration algorithm optimizing the normalized cross-correlation (NCC) metric using Powell's method. The 2D TRUS images acquired during the procedure prior to biopsy gun firing were registered to the baseline 3D TRUS image acquired at the beginning of the procedure. The accuracy was measured by calculating the target registration error (TRE) using manually identified fiducials within the prostate; these fiducials were used for validation only and were not provided as inputs to the registration algorithm. They also evaluated the accuracy when the registrations were performed continuously throughout the biopsy by acquiring and registering live 2D TRUS images every second. This measured the improvement in accuracy resulting from performing the registration, continuously compensating for motion during the procedure. To further validate the method using a more challenging data set, registrations were performed using 3D TRUS images acquired by intentionally exerting different levels of ultrasound probe pressures in order to measure the performance of our algorithm when the prostate tissue was intentionally deformed. In this data set, biopsy scenarios were simulated by extracting 2D frames from the 3D TRUS images and registering them to the baseline 3D image. A graphics processing unit (GPU)-based implementation was used to improve the registration speed. They also studied the correlation between NCC and TREs. The root-mean-square (RMS) TRE of registrations performed prior to biopsy gun firing was found to be 1.87 ± 0.81 mm. This was an improvement over 4.75 ± 2.62 mm before registration. When the registrations were performed every second during the biopsy, the RMS TRE was reduced to 1.63 ± 0.51 mm. For 3D data sets acquired under different probe pressures, the RMS TRE was found to be 3.18 ± 1.6 mm. This was an improvement from 6.89 ± 4.1 mm before registration. With the GPU based implementation, the registrations were performed with a mean time of 1.1 s. The TRE showed a weak correlation with the similarity metric. However, the authors measured a generally convex shape of the metric around the ground truth, which may explain the rapid convergence of their algorithm to accurate results. Registration to compensate for prostate motion during 3D TRUS-guided biopsy can be performed with a measured accuracy of less than 2 mm and a speed of 1.1 s, which is an important step toward improving the targeting accuracy of a 3D TRUS-guided biopsy system.
Multigrid optimal mass transport for image registration and morphing
NASA Astrophysics Data System (ADS)
Rehman, Tauseef ur; Tannenbaum, Allen
2007-02-01
In this paper we present a computationally efficient Optimal Mass Transport algorithm. This method is based on the Monge-Kantorovich theory and is used for computing elastic registration and warping maps in image registration and morphing applications. This is a parameter free method which utilizes all of the grayscale data in an image pair in a symmetric fashion. No landmarks need to be specified for correspondence. In our work, we demonstrate significant improvement in computation time when our algorithm is applied as compared to the originally proposed method by Haker et al [1]. The original algorithm was based on a gradient descent method for removing the curl from an initial mass preserving map regarded as 2D vector field. This involves inverting the Laplacian in each iteration which is now computed using full multigrid technique resulting in an improvement in computational time by a factor of two. Greater improvement is achieved by decimating the curl in a multi-resolutional framework. The algorithm was applied to 2D short axis cardiac MRI images and brain MRI images for testing and comparison.
Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; Mirota, Daniel J; Stayman, J Webster; Zbijewski, Wojciech; Brock, Kristy K; Daly, Michael J; Chan, Harley; Irish, Jonathan C; Siewerdsen, Jeffrey H
2011-04-01
A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values ("intensity"). A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5 +/- 2.8) mm compared to (3.5 +/- 3.0) mm with rigid registration. A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance.
Scene-based nonuniformity correction algorithm based on interframe registration.
Zuo, Chao; Chen, Qian; Gu, Guohua; Sui, Xiubao
2011-06-01
In this paper, we present a simple and effective scene-based nonuniformity correction (NUC) method for infrared focal plane arrays based on interframe registration. This method estimates the global translation between two adjacent frames and minimizes the mean square error between the two properly registered images to make any two detectors with the same scene produce the same output value. In this way, the accumulation of the registration error can be avoided and the NUC can be achieved. The advantages of the proposed algorithm lie in its low computational complexity and storage requirements and ability to capture temporal drifts in the nonuniformity parameters. The performance of the proposed technique is thoroughly studied with infrared image sequences with simulated nonuniformity and infrared imagery with real nonuniformity. It shows a significantly fast and reliable fixed-pattern noise reduction and obtains an effective frame-by-frame adaptive estimation of each detector's gain and offset.
Motion and positional error correction for cone beam 3D-reconstruction with mobile C-arms.
Bodensteiner, C; Darolti, C; Schumacher, H; Matthäus, L; Schweikard, A
2007-01-01
CT-images acquired by mobile C-arm devices can contain artefacts caused by positioning errors. We propose a data driven method based on iterative 3D-reconstruction and 2D/3D-registration to correct projection data inconsistencies. With a 2D/3D-registration algorithm, transformations are computed to align the acquired projection images to a previously reconstructed volume. In an iterative procedure, the reconstruction algorithm uses the results of the registration step. This algorithm also reduces small motion artefacts within 3D-reconstructions. Experiments with simulated projections from real patient data show the feasibility of the proposed method. In addition, experiments with real projection data acquired with an experimental robotised C-arm device have been performed with promising results.
Evaluation of deformable image registration and a motion model in CT images with limited features.
Liu, F; Hu, Y; Zhang, Q; Kincaid, R; Goodman, K A; Mageras, G S
2012-05-07
Deformable image registration (DIR) is increasingly used in radiotherapy applications and provides the basis for a previously described model of patient-specific respiratory motion. We examine the accuracy of a DIR algorithm and a motion model with respiration-correlated CT (RCCT) images of software phantom with known displacement fields, physical deformable abdominal phantom with implanted fiducials in the liver and small liver structures in patient images. The motion model is derived from a principal component analysis that relates volumetric deformations with the motion of the diaphragm or fiducials in the RCCT. Patient data analysis compares DIR with rigid registration as ground truth: the mean ± standard deviation 3D discrepancy of liver structure centroid positions is 2.0 ± 2.2 mm. DIR discrepancy in the software phantom is 3.8 ± 2.0 mm in lung and 3.7 ± 1.8 mm in abdomen; discrepancies near the chest wall are larger than indicated by image feature matching. Marker's 3D discrepancy in the physical phantom is 3.6 ± 2.8 mm. The results indicate that visible features in the images are important for guiding the DIR algorithm. Motion model accuracy is comparable to DIR, indicating that two principal components are sufficient to describe DIR-derived deformation in these datasets.
Application of 3D-MR image registration to monitor diseases around the knee joint.
Takao, Masaki; Sugano, Nobuhiko; Nishii, Takashi; Miki, Hidenobu; Koyama, Tsuyoshi; Masumoto, Jun; Sato, Yoshinobu; Tamura, Shinichi; Yoshikawa, Hideki
2005-11-01
To estimate the accuracy and consistency of a method using a voxel-based MR image registration algorithm for precise monitoring of knee joint diseases. Rigid body transformation was calculated using a normalized cross-correlation (NCC) algorithm involving simple manual segmentation of the bone region based on its anatomical features. The accuracy of registration was evaluated using four phantoms, followed by a consistency test using MR data from the 11 patients with knee joint disease. The registration accuracy in the phantom experiment was 0.49+/-0.19 mm (SD) for the femur and 0.56+/-0.21 mm (SD) for the tibia. The consistency value in the experiment using clinical data was 0.69+/-0.25 mm (SD) for the femur and 0.77+/-0.37 mm (SD) for the tibia. These values were all smaller than a voxel (1.25 x 1.25 x 1.5 mm). The present method based on an NCC algorithm can be used to register serial MR images of the knee joint with error on the order of a sub-voxel. This method would be useful for precisely assessing therapeutic response and monitoring knee joint diseases; normalized cross-correlation; accuracy. J. Magn. Reson. Imaging 2005. (c) 2005 Wiley-Liss, Inc.
Kang, S-H; Kim, M-K; Kim, J-H; Park, H-K; Park, W
2012-01-01
Objective This study compared three marker-free registration methods that are applicable to a navigation system that can be used for maxillary sinus surgery, and evaluated the associated errors, with the aim of determining which registration method is the most applicable for operations that require accurate navigation. Methods The CT digital imaging and communications in medicine (DICOM) data of ten maxillary models in DICOM files were converted into stereolithography file format. All of the ten maxillofacial models were scanned three dimensionally using a light-based three-dimensional scanner. The methods applied for registration of the maxillofacial models utilized the tooth cusp, bony landmarks and maxillary sinus anterior wall area. The errors during registration were compared between the groups. Results There were differences between the three registration methods in the zygoma, sinus posterior wall, molar alveolar, premolar alveolar, lateral nasal aperture and the infraorbital areas. The error was smallest using the overlay method for the anterior wall of the maxillary sinus, and the difference was statistically significant. Conclusion The navigation error can be minimized by conducting registration using the anterior wall of the maxillary sinus during image-guided surgery of the maxillary sinus. PMID:22499127
Markerless laser registration in image-guided oral and maxillofacial surgery.
Marmulla, Rüdiger; Lüth, Tim; Mühling, Joachim; Hassfeld, Stefan
2004-07-01
The use of registration markers in computer-assisted surgery is combined with high logistic costs and efforts. Markerless patient registration using laser scan surface registration techniques is a new challenging method. The present study was performed to evaluate the clinical accuracy in finding defined target points within the surgical site after markerless patient registration in image-guided oral and maxillofacial surgery. Twenty consecutive patients with different cranial diseases were scheduled for computer-assisted surgery. Data set alignment between the surgical site and the computed tomography (CT) data set was performed by markerless laser scan surface registration of the patient's face. Intraoral rigidly attached registration markers were used as target points, which had to be detected by an infrared pointer. The Surgical Segment Navigator SSN++ has been used for all procedures. SSN++ is an investigative product based on the SSN system that had previously been developed by the presenting authors with the support of Carl Zeiss (Oberkochen, Germany). SSN++ is connected to a Polaris infrared camera (Northern Digital, Waterloo, Ontario, Canada) and to a Minolta VI 900 3D digitizer (Tokyo, Japan) for high-resolution laser scanning. Minimal differences in shape between the laser scan surface and the surface generated from the CT data set could be detected. Nevertheless, high-resolution laser scan of the skin surface allows for a precise patient registration (mean deviation 1.1 mm, maximum deviation 1.8 mm). Radiation load, logistic costs, and efforts arising from the planning of computer-assisted surgery of the head can be reduced because native (markerless) CT data sets can be used for laser scan-based surface registration.
NASA Astrophysics Data System (ADS)
Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David
2009-02-01
This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.
Mohamed, Abdallah S. R.; Ruangskul, Manee-Naad; Awan, Musaddiq J.; Baron, Charles A.; Kalpathy-Cramer, Jayashree; Castillo, Richard; Castillo, Edward; Guerrero, Thomas M.; Kocak-Uzel, Esengul; Yang, Jinzhong; Court, Laurence E.; Kantor, Michael E.; Gunn, G. Brandon; Colen, Rivka R.; Frank, Steven J.; Garden, Adam S.; Rosenthal, David I.
2015-01-01
Purpose To develop a quality assurance (QA) workflow by using a robust, curated, manually segmented anatomic region-of-interest (ROI) library as a benchmark for quantitative assessment of different image registration techniques used for head and neck radiation therapy–simulation computed tomography (CT) with diagnostic CT coregistration. Materials and Methods Radiation therapy–simulation CT images and diagnostic CT images in 20 patients with head and neck squamous cell carcinoma treated with curative-intent intensity-modulated radiation therapy between August 2011 and May 2012 were retrospectively retrieved with institutional review board approval. Sixty-eight reference anatomic ROIs with gross tumor and nodal targets were then manually contoured on images from each examination. Diagnostic CT images were registered with simulation CT images rigidly and by using four deformable image registration (DIR) algorithms: atlas based, B-spline, demons, and optical flow. The resultant deformed ROIs were compared with manually contoured reference ROIs by using similarity coefficient metrics (ie, Dice similarity coefficient) and surface distance metrics (ie, 95% maximum Hausdorff distance). The nonparametric Steel test with control was used to compare different DIR algorithms with rigid image registration (RIR) by using the post hoc Wilcoxon signed-rank test for stratified metric comparison. Results A total of 2720 anatomic and 50 tumor and nodal ROIs were delineated. All DIR algorithms showed improved performance over RIR for anatomic and target ROI conformance, as shown for most comparison metrics (Steel test, P < .008 after Bonferroni correction). The performance of different algorithms varied substantially with stratification by specific anatomic structures or category and simulation CT section thickness. Conclusion Development of a formal ROI-based QA workflow for registration assessment demonstrated improved performance with DIR techniques over RIR. After QA, DIR implementation should be the standard for head and neck diagnostic CT and simulation CT allineation, especially for target delineation. © RSNA, 2014 Online supplemental material is available for this article. PMID:25380454
Comparison of subpixel image registration algorithms
NASA Astrophysics Data System (ADS)
Boye, R. R.; Nelson, C. L.
2009-02-01
Research into the use of multiframe superresolution has led to the development of algorithms for providing images with enhanced resolution using several lower resolution copies. An integral component of these algorithms is the determination of the registration of each of the low resolution images to a reference image. Without this information, no resolution enhancement can be attained. We have endeavored to find a suitable method for registering severely undersampled images by comparing several approaches. To test the algorithms, an ideal image is input to a simulated image formation program, creating several undersampled images with known geometric transformations. The registration algorithms are then applied to the set of low resolution images and the estimated registration parameters compared to the actual values. This investigation is limited to monochromatic images (extension to color images is not difficult) and only considers global geometric transformations. Each registration approach will be reviewed and evaluated with respect to the accuracy of the estimated registration parameters as well as the computational complexity required. In addition, the effects of image content, specifically spatial frequency content, as well as the immunity of the registration algorithms to noise will be discussed.
Feature-based US to CT registration of the aortic root
NASA Astrophysics Data System (ADS)
Lang, Pencilla; Chen, Elvis C. S.; Guiraudon, Gerard M.; Jones, Doug L.; Bainbridge, Daniel; Chu, Michael W.; Drangova, Maria; Hata, Noby; Jain, Ameet; Peters, Terry M.
2011-03-01
A feature-based registration was developed to align biplane and tracked ultrasound images of the aortic root with a preoperative CT volume. In transcatheter aortic valve replacement, a prosthetic valve is inserted into the aortic annulus via a catheter. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to significant morbidity and mortality. Registration of pre-operative CT to transesophageal ultrasound and fluoroscopy images is a major step towards providing augmented image guidance for this procedure. The proposed registration approach uses an iterative closest point algorithm to register a surface mesh generated from CT to 3D US points reconstructed from a single biplane US acquisition, or multiple tracked US images. The use of a single simultaneous acquisition biplane image eliminates reconstruction error introduced by cardiac gating and TEE probe tracking, creating potential for real-time intra-operative registration. A simple initialization procedure is used to minimize changes to operating room workflow. The algorithm is tested on images acquired from excised porcine hearts. Results demonstrate a clinically acceptable accuracy of 2.6mm and 5mm for tracked US to CT and biplane US to CT registration respectively.
Research based on the SoPC platform of feature-based image registration
NASA Astrophysics Data System (ADS)
Shi, Yue-dong; Wang, Zhi-hui
2015-12-01
This paper focuses on the study of implementing feature-based image registration by System on a Programmable Chip (SoPC) hardware platform. We solidify the image registration algorithm on the FPGA chip, in which embedded soft core processor Nios II can speed up the image processing system. In this way, we can make image registration technology get rid of the PC. And, consequently, this kind of technology will be got an extensive use. The experiment result indicates that our system shows stable performance, particularly in terms of matching processing which noise immunity is good. And feature points of images show a reasonable distribution.
NASA Astrophysics Data System (ADS)
Bouter, Anton; Alderliesten, Tanja; Bosman, Peter A. N.
2017-02-01
Taking a multi-objective optimization approach to deformable image registration has recently gained attention, because such an approach removes the requirement of manually tuning the weights of all the involved objectives. Especially for problems that require large complex deformations, this is a non-trivial task. From the resulting Pareto set of solutions one can then much more insightfully select a registration outcome that is most suitable for the problem at hand. To serve as an internal optimization engine, currently used multi-objective algorithms are competent, but rather inefficient. In this paper we largely improve upon this by introducing a multi-objective real-valued adaptation of the recently introduced Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) for discrete optimization. In this work, GOMEA is tailored specifically to the problem of deformable image registration to obtain substantially improved efficiency. This improvement is achieved by exploiting a key strength of GOMEA: iteratively improving small parts of solutions, allowing to faster exploit the impact of such updates on the objectives at hand through partial evaluations. We performed experiments on three registration problems. In particular, an artificial problem containing a disappearing structure, a pair of pre- and post-operative breast CT scans, and a pair of breast MRI scans acquired in prone and supine position were considered. Results show that compared to the previously used evolutionary algorithm, GOMEA obtains a speed-up of up to a factor of 1600 on the tested registration problems while achieving registration outcomes of similar quality.
Intensity-Based Registration for Lung Motion Estimation
NASA Astrophysics Data System (ADS)
Cao, Kunlin; Ding, Kai; Amelon, Ryan E.; Du, Kaifang; Reinhardt, Joseph M.; Raghavan, Madhavan L.; Christensen, Gary E.
Image registration plays an important role within pulmonary image analysis. The task of registration is to find the spatial mapping that brings two images into alignment. Registration algorithms designed for matching 4D lung scans or two 3D scans acquired at different inflation levels can catch the temporal changes in position and shape of the region of interest. Accurate registration is critical to post-analysis of lung mechanics and motion estimation. In this chapter, we discuss lung-specific adaptations of intensity-based registration methods for 3D/4D lung images and review approaches for assessing registration accuracy. Then we introduce methods for estimating tissue motion and studying lung mechanics. Finally, we discuss methods for assessing and quantifying specific volume change, specific ventilation, strain/ stretch information and lobar sliding.
SU-E-J-88: Deformable Registration Using Multi-Resolution Demons Algorithm for 4DCT.
Li, Dengwang; Yin, Yong
2012-06-01
In order to register 4DCT efficiently, we propose an improved deformable registration algorithm based on improved multi-resolution demons strategy to improve the efficiency of the algorithm. 4DCT images of lung cancer patients are collected from a General Electric Discovery ST CT scanner from our cancer hospital. All of the images are sorted into groups and reconstructed according to their phases, and eachrespiratory cycle is divided into 10 phases with the time interval of 10%. Firstly, in our improved demons algorithm we use gradients of both reference and floating images as deformation forces and also redistribute the forces according to the proportion of the two forces. Furthermore, we introduce intermediate variable to cost function for decreasing the noise in registration process. At the same time, Gaussian multi-resolution strategy and BFGS method for optimization are used to improve speed and accuracy of the registration. To validate the performance of the algorithm, we register the previous 10 phase-images. We compared the difference of floating and reference images before and after registered where two landmarks are decided by experienced clinician. We registered 10 phase-images of 4D-CT which is lung cancer patient from cancer hospital and choose images in exhalationas the reference images, and all other images were registered into the reference images. This method has a good accuracy demonstrated by a higher similarity measure for registration of 4D-CT and it can register a large deformation precisely. Finally, we obtain the tumor target achieved by the deformation fields using proposed method, which is more accurately than the internal margin (IM) expanded by the Gross Tumor Volume (GTV). Furthermore, we achieve tumor and normal tissue tracking and dose accumulation using 4DCT data. An efficient deformable registration algorithm was proposed by using multi-resolution demons algorithm for 4DCT. © 2012 American Association of Physicists in Medicine.
Miyamoto, Naoki; Ishikawa, Masayori; Sutherland, Kenneth; Suzuki, Ryusuke; Matsuura, Taeko; Toramatsu, Chie; Takao, Seishin; Nihongi, Hideaki; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki
2015-01-01
In the real-time tumor-tracking radiotherapy system, a surrogate fiducial marker inserted in or near the tumor is detected by fluoroscopy to realize respiratory-gated radiotherapy. The imaging dose caused by fluoroscopy should be minimized. In this work, an image processing technique is proposed for tracing a moving marker in low-dose imaging. The proposed tracking technique is a combination of a motion-compensated recursive filter and template pattern matching. The proposed image filter can reduce motion artifacts resulting from the recursive process based on the determination of the region of interest for the next frame according to the current marker position in the fluoroscopic images. The effectiveness of the proposed technique and the expected clinical benefit were examined by phantom experimental studies with actual tumor trajectories generated from clinical patient data. It was demonstrated that the marker motion could be traced in low-dose imaging by applying the proposed algorithm with acceptable registration error and high pattern recognition score in all trajectories, although some trajectories were not able to be tracked with the conventional spatial filters or without image filters. The positional accuracy is expected to be kept within ±2 mm. The total computation time required to determine the marker position is a few milliseconds. The proposed image processing technique is applicable for imaging dose reduction. PMID:25129556
NASA Astrophysics Data System (ADS)
Kim, Jinkoo; Kumar, Sanath; Liu, Chang; Zhong, Hualiang; Pradhan, Deepak; Shah, Mira; Cattaneo, Richard; Yechieli, Raphael; Robbins, Jared R.; Elshaikh, Mohamed A.; Chetty, Indrin J.
2013-11-01
Deformable image registration (DIR) is an integral component for adaptive radiation therapy. However, accurate registration between daily cone-beam computed tomography (CBCT) and treatment planning CT is challenging, due to significant daily variations in rectal and bladder fillings as well as the increased noise levels in CBCT images. Another significant challenge is the lack of ‘ground-truth’ registrations in the clinical setting, which is necessary for quantitative evaluation of various registration algorithms. The aim of this study is to establish benchmark registrations of clinical patient data. Three pairs of CT/CBCT datasets were chosen for this institutional review board approved retrospective study. On each image, in order to reduce the contouring uncertainty, ten independent sets of organs were manually delineated by five physicians. The mean contour set for each image was derived from the ten contours. A set of distinctive points (round natural calcifications and three implanted prostate fiducial markers) were also manually identified. The mean contours and point features were then incorporated as constraints into a B-spline based DIR algorithm. Further, a rigidity penalty was imposed on the femurs and pelvic bones to preserve their rigidity. A piecewise-rigid registration approach was adapted to account for the differences in femur pose and the sliding motion between bones. For each registration, the magnitude of the spatial Jacobian (|JAC|) was calculated to quantify the tissue compression and expansion. Deformation grids and finite-element-model-based unbalanced energy maps were also reviewed visually to evaluate the physical soundness of the resultant deformations. Organ DICE indices (indicating the degree of overlap between registered organs) and residual misalignments of the fiducial landmarks were quantified. Manual organ delineation on CBCT images varied significantly among physicians with overall mean DICE index of only 0.7 among redundant contours. Seminal vesicle contours were found to have the lowest correlation amongst physicians (DICE = 0.5). After DIR, the organ surfaces between CBCT and planning CT were in good alignment with mean DICE indices of 0.9 for prostate, rectum, and bladder, and 0.8 for seminal vesicles. The Jacobian magnitudes |JAC| in the prostate, rectum, and seminal vesicles were in the range of 0.4-1.5, indicating mild compression/expansion. The bladder volume differences were larger between CBCT and CT images with mean |JAC| values of 2.2, 0.7, and 1.0 for three respective patients. Bone deformation was negligible (|JAC| = ˜ 1.0). The difference between corresponding landmark points between CBCT and CT was less than 1.0 mm after DIR. We have presented a novel method of establishing benchmark DIR accuracy between CT and CBCT images in the pelvic region. The method incorporates manually delineated organ surfaces and landmark points as well as pixel similarity in the optimization, while ensuring bone rigidity and avoiding excessive deformation in soft tissue organs. Redundant contouring is necessary to reduce the overall registration uncertainty.
Neural network-based feature point descriptors for registration of optical and SAR images
NASA Astrophysics Data System (ADS)
Abulkhanov, Dmitry; Konovalenko, Ivan; Nikolaev, Dmitry; Savchik, Alexey; Shvets, Evgeny; Sidorchuk, Dmitry
2018-04-01
Registration of images of different nature is an important technique used in image fusion, change detection, efficient information representation and other problems of computer vision. Solving this task using feature-based approaches is usually more complex than registration of several optical images because traditional feature descriptors (SIFT, SURF, etc.) perform poorly when images have different nature. In this paper we consider the problem of registration of SAR and optical images. We train neural network to build feature point descriptors and use RANSAC algorithm to align found matches. Experimental results are presented that confirm the method's effectiveness.
Fatyga, Mirek; Dogan, Nesrin; Weiss, Elizabeth; Sleeman, William C; Zhang, Baoshe; Lehman, William J; Williamson, Jeffrey F; Wijesooriya, Krishni; Christensen, Gary E
2015-01-01
Commonly used methods of assessing the accuracy of deformable image registration (DIR) rely on image segmentation or landmark selection. These methods are very labor intensive and thus limited to relatively small number of image pairs. The direct voxel-by-voxel comparison can be automated to examine fluctuations in DIR quality on a long series of image pairs. A voxel-by-voxel comparison of three DIR algorithms applied to lung patients is presented. Registrations are compared by comparing volume histograms formed both with individual DIR maps and with a voxel-by-voxel subtraction of the two maps. When two DIR maps agree one concludes that both maps are interchangeable in treatment planning applications, though one cannot conclude that either one agrees with the ground truth. If two DIR maps significantly disagree one concludes that at least one of the maps deviates from the ground truth. We use the method to compare 3 DIR algorithms applied to peak inhale-peak exhale registrations of 4DFBCT data obtained from 13 patients. All three algorithms appear to be nearly equivalent when compared using DICE similarity coefficients. A comparison based on Jacobian volume histograms shows that all three algorithms measure changes in total volume of the lungs with reasonable accuracy, but show large differences in the variance of Jacobian distribution on contoured structures. Analysis of voxel-by-voxel subtraction of DIR maps shows differences between algorithms that exceed a centimeter for some registrations. Deformation maps produced by DIR algorithms must be treated as mathematical approximations of physical tissue deformation that are not self-consistent and may thus be useful only in applications for which they have been specifically validated. The three algorithms tested in this work perform fairly robustly for the task of contour propagation, but produce potentially unreliable results for the task of DVH accumulation or measurement of local volume change. Performance of DIR algorithms varies significantly from one image pair to the next hence validation efforts, which are exhaustive but performed on a small number of image pairs may not reflect the performance of the same algorithm in practical clinical situations. Such efforts should be supplemented by validation based on a longer series of images of clinical quality.
Nithiananthan, S; Brock, K K; Daly, M J; Chan, H; Irish, J C; Siewerdsen, J H
2009-10-01
The accuracy and convergence behavior of a variant of the Demons deformable registration algorithm were investigated for use in cone-beam CT (CBCT)-guided procedures of the head and neck. Online use of deformable registration for guidance of therapeutic procedures such as image-guided surgery or radiation therapy places trade-offs on accuracy and computational expense. This work describes a convergence criterion for Demons registration developed to balance these demands; the accuracy of a multiscale Demons implementation using this convergence criterion is quantified in CBCT images of the head and neck. Using an open-source "symmetric" Demons registration algorithm, a convergence criterion based on the change in the deformation field between iterations was developed to advance among multiple levels of a multiscale image pyramid in a manner that optimized accuracy and computation time. The convergence criterion was optimized in cadaver studies involving CBCT images acquired using a surgical C-arm prototype modified for 3D intraoperative imaging. CBCT-to-CBCT registration was performed and accuracy was quantified in terms of the normalized cross-correlation (NCC) and target registration error (TRE). The accuracy and robustness of the algorithm were then tested in clinical CBCT images of ten patients undergoing radiation therapy of the head and neck. The cadaver model allowed optimization of the convergence factor and initial measurements of registration accuracy: Demons registration exhibited TRE=(0.8+/-0.3) mm and NCC =0.99 in the cadaveric head compared to TRE=(2.6+/-1.0) mm and NCC=0.93 with rigid registration. Similarly for the patient data, Demons registration gave mean TRE=(1.6+/-0.9) mm compared to rigid registration TRE=(3.6+/-1.9) mm, suggesting registration accuracy at or near the voxel size of the patient images (1 x 1 x 2 mm3). The multiscale implementation based on optimal convergence criteria completed registration in 52 s for the cadaveric head and in an average time of 270 s for the larger FOV patient images. Appropriate selection of convergence and multiscale parameters in Demons registration was shown to reduce computational expense without sacrificing registration performance. For intraoperative CBCT imaging with deformable registration, the ability to perform accurate registration within the stringent time requirements of the operating environment could offer a useful clinical tool allowing integration of preoperative information while accurately reflecting changes in the patient anatomy. Similarly for CBCT-guided radiation therapy, fast accurate deformable registration could further augment high-precision treatment strategies.
Nithiananthan, S.; Brock, K. K.; Daly, M. J.; Chan, H.; Irish, J. C.; Siewerdsen, J. H.
2009-01-01
Purpose: The accuracy and convergence behavior of a variant of the Demons deformable registration algorithm were investigated for use in cone-beam CT (CBCT)-guided procedures of the head and neck. Online use of deformable registration for guidance of therapeutic procedures such as image-guided surgery or radiation therapy places trade-offs on accuracy and computational expense. This work describes a convergence criterion for Demons registration developed to balance these demands; the accuracy of a multiscale Demons implementation using this convergence criterion is quantified in CBCT images of the head and neck. Methods: Using an open-source “symmetric” Demons registration algorithm, a convergence criterion based on the change in the deformation field between iterations was developed to advance among multiple levels of a multiscale image pyramid in a manner that optimized accuracy and computation time. The convergence criterion was optimized in cadaver studies involving CBCT images acquired using a surgical C-arm prototype modified for 3D intraoperative imaging. CBCT-to-CBCT registration was performed and accuracy was quantified in terms of the normalized cross-correlation (NCC) and target registration error (TRE). The accuracy and robustness of the algorithm were then tested in clinical CBCT images of ten patients undergoing radiation therapy of the head and neck. Results: The cadaver model allowed optimization of the convergence factor and initial measurements of registration accuracy: Demons registration exhibited TRE=(0.8±0.3) mm and NCC=0.99 in the cadaveric head compared to TRE=(2.6±1.0) mm and NCC=0.93 with rigid registration. Similarly for the patient data, Demons registration gave mean TRE=(1.6±0.9) mm compared to rigid registration TRE=(3.6±1.9) mm, suggesting registration accuracy at or near the voxel size of the patient images (1×1×2 mm3). The multiscale implementation based on optimal convergence criteria completed registration in 52 s for the cadaveric head and in an average time of 270 s for the larger FOV patient images. Conclusions: Appropriate selection of convergence and multiscale parameters in Demons registration was shown to reduce computational expense without sacrificing registration performance. For intraoperative CBCT imaging with deformable registration, the ability to perform accurate registration within the stringent time requirements of the operating environment could offer a useful clinical tool allowing integration of preoperative information while accurately reflecting changes in the patient anatomy. Similarly for CBCT-guided radiation therapy, fast accurate deformable registration could further augment high-precision treatment strategies. PMID:19928106
NASA Astrophysics Data System (ADS)
Otake, Y.; Leonard, S.; Reiter, A.; Rajan, P.; Siewerdsen, J. H.; Ishii, M.; Taylor, R. H.; Hager, G. D.
2015-03-01
We present a system for registering the coordinate frame of an endoscope to pre- or intra- operatively acquired CT data based on optimizing the similarity metric between an endoscopic image and an image predicted via rendering of CT. Our method is robust and semi-automatic because it takes account of physical constraints, specifically, collisions between the endoscope and the anatomy, to initialize and constrain the search. The proposed optimization method is based on a stochastic optimization algorithm that evaluates a large number of similarity metric functions in parallel on a graphics processing unit. Images from a cadaver and a patient were used for evaluation. The registration error was 0.83 mm and 1.97 mm for cadaver and patient images respectively. The average registration time for 60 trials was 4.4 seconds. The patient study demonstrated robustness of the proposed algorithm against a moderate anatomical deformation.
A software tool of digital tomosynthesis application for patient positioning in radiotherapy.
Yan, Hui; Dai, Jian-Rong
2016-03-08
Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two-dimensional kV projections covering a narrow scan angles. Comparing with conventional cone-beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic process-ing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone-beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU-based algorithm and CPU-based algorithm is 0.99. Based on the measurements of cube phantom on DTS, the geometric errors are within 0.5 mm in three axes. For both cube phantom and pelvic phantom, the registration errors are within 0.5 mm in three axes. Compared with reconstruction performance of CPU-based algorithms, the performances of DRR and DTS reconstructions are improved by a factor of 15 to 20. A GPU-based software tool was developed for DTS application for patient positioning of radiotherapy. The geometric and registration accuracy met the clinical requirement in patient setup of radiotherapy. The high performance of DRR and DTS reconstruction algorithms was achieved by the GPU-based computation environments. It is a useful software tool for researcher and clinician in evaluating DTS application in patient positioning of radiotherapy.
Parallel image registration with a thin client interface
NASA Astrophysics Data System (ADS)
Saiprasad, Ganesh; Lo, Yi-Jung; Plishker, William; Lei, Peng; Ahmad, Tabassum; Shekhar, Raj
2010-03-01
Despite its high significance, the clinical utilization of image registration remains limited because of its lengthy execution time and a lack of easy access. The focus of this work was twofold. First, we accelerated our course-to-fine, volume subdivision-based image registration algorithm by a novel parallel implementation that maintains the accuracy of our uniprocessor implementation. Second, we developed a thin-client computing model with a user-friendly interface to perform rigid and nonrigid image registration. Our novel parallel computing model uses the message passing interface model on a 32-core cluster. The results show that, compared with the uniprocessor implementation, the parallel implementation of our image registration algorithm is approximately 5 times faster for rigid image registration and approximately 9 times faster for nonrigid registration for the images used. To test the viability of such systems for clinical use, we developed a thin client in the form of a plug-in in OsiriX, a well-known open source PACS workstation and DICOM viewer, and used it for two applications. The first application registered the baseline and follow-up MR brain images, whose subtraction was used to track progression of multiple sclerosis. The second application registered pretreatment PET and intratreatment CT of radiofrequency ablation patients to demonstrate a new capability of multimodality imaging guidance. The registration acceleration coupled with the remote implementation using a thin client should ultimately increase accuracy, speed, and access of image registration-based interpretations in a number of diagnostic and interventional applications.
Medical image registration based on normalized multidimensional mutual information
NASA Astrophysics Data System (ADS)
Li, Qi; Ji, Hongbing; Tong, Ming
2009-10-01
Registration of medical images is an essential research topic in medical image processing and applications, and especially a preliminary and key step for multimodality image fusion. This paper offers a solution to medical image registration based on normalized multi-dimensional mutual information. Firstly, affine transformation with translational and rotational parameters is applied to the floating image. Then ordinal features are extracted by ordinal filters with different orientations to represent spatial information in medical images. Integrating ordinal features with pixel intensities, the normalized multi-dimensional mutual information is defined as similarity criterion to register multimodality images. Finally the immune algorithm is used to search registration parameters. The experimental results demonstrate the effectiveness of the proposed registration scheme.
NASA Astrophysics Data System (ADS)
Ge, Xuming
2017-08-01
The coarse registration of point clouds from urban building scenes has become a key topic in applications of terrestrial laser scanning technology. Sampling-based algorithms in the random sample consensus (RANSAC) model have emerged as mainstream solutions to address coarse registration problems. In this paper, we propose a novel combined solution to automatically align two markerless point clouds from building scenes. Firstly, the method segments non-ground points from ground points. Secondly, the proposed method detects feature points from each cross section and then obtains semantic keypoints by connecting feature points with specific rules. Finally, the detected semantic keypoints from two point clouds act as inputs to a modified 4PCS algorithm. Examples are presented and the results compared with those of K-4PCS to demonstrate the main contributions of the proposed method, which are the extension of the original 4PCS to handle heavy datasets and the use of semantic keypoints to improve K-4PCS in relation to registration accuracy and computational efficiency.
NASA Astrophysics Data System (ADS)
Yepes-Calderon, Fernando; Brun, Caroline; Sant, Nishita; Thompson, Paul; Lepore, Natasha
2015-01-01
Tensor-Based Morphometry (TBM) is an increasingly popular method for group analysis of brain MRI data. The main steps in the analysis consist of a nonlinear registration to align each individual scan to a common space, and a subsequent statistical analysis to determine morphometric differences, or difference in fiber structure between groups. Recently, we implemented the Statistically-Assisted Fluid Registration Algorithm or SAFIRA,1 which is designed for tracking morphometric differences among populations. To this end, SAFIRA allows the inclusion of statistical priors extracted from the populations being studied as regularizers in the registration. This flexibility and degree of sophistication limit the tool to expert use, even more so considering that SAFIRA was initially implemented in command line mode. Here, we introduce a new, intuitive, easy to use, Matlab-based graphical user interface for SAFIRA's multivariate TBM. The interface also generates different choices for the TBM statistics, including both the traditional univariate statistics on the Jacobian matrix, and comparison of the full deformation tensors.2 This software will be freely disseminated to the neuroimaging research community.
NASA Astrophysics Data System (ADS)
Jin, Peng; van Wieringen, Niek; Hulshof, Maarten C. C. M.; Bel, Arjan; Alderliesten, Tanja
2016-03-01
The use of 4D cone-beam computed tomography (CBCT) and fiducial markers for guidance during radiation therapy of mobile tumors is challenging due to the trade-off between image quality, imaging dose, and scanning time. We aimed to investigate the visibility of markers and the feasibility of marker-based 4D registration and manual respiration-induced marker motion quantification for different CBCT acquisition settings. A dynamic thorax phantom and a patient with implanted gold markers were included. For both the phantom and patient, the peak-to-peak amplitude of marker motion in the cranial-caudal direction ranged from 5.3 to 14.0 mm, which did not affect the marker visibility and the associated marker-based registration feasibility. While using a medium field of view (FOV) and the same total imaging dose as is applied for 3D CBCT scanning in our clinic, it was feasible to attain an improved marker visibility by reducing the imaging dose per projection and increasing the number of projection images. For a small FOV with a shorter rotation arc but similar total imaging dose, streak artifacts were reduced due to using a smaller sampling angle. Additionally, the use of a small FOV allowed reducing total imaging dose and scanning time (~2.5 min) without losing the marker visibility. In conclusion, by using 4D CBCT with identical or lower imaging dose and a reduced gantry speed, it is feasible to attain sufficient marker visibility for marker-based 4D setup verification. Moreover, regardless of the settings, manual marker motion quantification can achieve a high accuracy with the error <1.2 mm.
Li, Xia; Abramson, Richard G; Arlinghaus, Lori R; Chakravarthy, Anuradha Bapsi; Abramson, Vandana; Mayer, Ingrid; Farley, Jaime; Delbeke, Dominique; Yankeelov, Thomas E
2012-11-16
By providing estimates of tumor glucose metabolism, 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) can potentially characterize the response of breast tumors to treatment. To assess therapy response, serial measurements of FDG-PET parameters (derived from static and/or dynamic images) can be obtained at different time points during the course of treatment. However, most studies track the changes in average parameter values obtained from the whole tumor, thereby discarding all spatial information manifested in tumor heterogeneity. Here, we propose a method whereby serially acquired FDG-PET breast data sets can be spatially co-registered to enable the spatial comparison of parameter maps at the voxel level. The goal is to optimally register normal tissues while simultaneously preventing tumor distortion. In order to accomplish this, we constructed a PET support device to enable PET/CT imaging of the breasts of ten patients in the prone position and applied a mutual information-based rigid body registration followed by a non-rigid registration. The non-rigid registration algorithm extended the adaptive bases algorithm (ABA) by incorporating a tumor volume-preserving constraint, which computed the Jacobian determinant over the tumor regions as outlined on the PET/CT images, into the cost function. We tested this approach on ten breast cancer patients undergoing neoadjuvant chemotherapy. By both qualitative and quantitative evaluation, our constrained algorithm yielded significantly less tumor distortion than the unconstrained algorithm: considering the tumor volume determined from standard uptake value maps, the post-registration median tumor volume changes, and the 25th and 75th quantiles were 3.42% (0%, 13.39%) and 16.93% (9.21%, 49.93%) for the constrained and unconstrained algorithms, respectively (p = 0.002), while the bending energy (a measure of the smoothness of the deformation) was 0.0015 (0.0005, 0.012) and 0.017 (0.005, 0.044), respectively (p = 0.005). The results indicate that the constrained ABA algorithm can accurately align prone breast FDG-PET images acquired at different time points while keeping the tumor from being substantially compressed or distorted. NCT00474604.
Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach
Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali; Mirota, Daniel J.; Stayman, J. Webster; Zbijewski, Wojciech; Brock, Kristy K.; Daly, Michael J.; Chan, Harley; Irish, Jonathan C.; Siewerdsen, Jeffrey H.
2011-01-01
Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (“intensity”). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specific intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and∕or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5±2.8) mm compared to (3.5±3.0) mm with rigid registration. Conclusions: A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance. PMID:21626913
Demons deformable registration of CT and cone-beam CT using an iterative intensity matching approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nithiananthan, Sajendra; Schafer, Sebastian; Uneri, Ali
2011-04-15
Purpose: A method of intensity-based deformable registration of CT and cone-beam CT (CBCT) images is described, in which intensity correction occurs simultaneously within the iterative registration process. The method preserves the speed and simplicity of the popular Demons algorithm while providing robustness and accuracy in the presence of large mismatch between CT and CBCT voxel values (''intensity''). Methods: A variant of the Demons algorithm was developed in which an estimate of the relationship between CT and CBCT intensity values for specific materials in the image is computed at each iteration based on the set of currently overlapping voxels. This tissue-specificmore » intensity correction is then used to estimate the registration output for that iteration and the process is repeated. The robustness of the method was tested in CBCT images of a cadaveric head exhibiting a broad range of simulated intensity variations associated with x-ray scatter, object truncation, and/or errors in the reconstruction algorithm. The accuracy of CT-CBCT registration was also measured in six real cases, exhibiting deformations ranging from simple to complex during surgery or radiotherapy guided by a CBCT-capable C-arm or linear accelerator, respectively. Results: The iterative intensity matching approach was robust against all levels of intensity variation examined, including spatially varying errors in voxel value of a factor of 2 or more, as can be encountered in cases of high x-ray scatter. Registration accuracy without intensity matching degraded severely with increasing magnitude of intensity error and introduced image distortion. A single histogram match performed prior to registration alleviated some of these effects but was also prone to image distortion and was quantifiably less robust and accurate than the iterative approach. Within the six case registration accuracy study, iterative intensity matching Demons reduced mean TRE to (2.5{+-}2.8) mm compared to (3.5{+-}3.0) mm with rigid registration. Conclusions: A method was developed to iteratively correct CT-CBCT intensity disparity during Demons registration, enabling fast, intensity-based registration in CBCT-guided procedures such as surgery and radiotherapy, in which CBCT voxel values may be inaccurate. Accurate CT-CBCT registration in turn facilitates registration of multimodality preoperative image and planning data to intraoperative CBCT by way of the preoperative CT, thereby linking the intraoperative frame of reference to a wealth of preoperative information that could improve interventional guidance.« less
Jia, Rui; Monk, Paul; Murray, David; Noble, J Alison; Mellon, Stephen
2017-09-06
Optoelectronic motion capture systems are widely employed to measure the movement of human joints. However, there can be a significant discrepancy between the data obtained by a motion capture system (MCS) and the actual movement of underlying bony structures, which is attributed to soft tissue artefact. In this paper, a computer-aided tracking and motion analysis with ultrasound (CAT & MAUS) system with an augmented globally optimal registration algorithm is presented to dynamically track the underlying bony structure during movement. The augmented registration part of CAT & MAUS was validated with a high system accuracy of 80%. The Euclidean distance between the marker-based bony landmark and the bony landmark tracked by CAT & MAUS was calculated to quantify the measurement error of an MCS caused by soft tissue artefact during movement. The average Euclidean distance between the target bony landmark measured by each of the CAT & MAUS system and the MCS alone varied from 8.32mm to 16.87mm in gait. This indicates the discrepancy between the MCS measured bony landmark and the actual underlying bony landmark. Moreover, Procrustes analysis was applied to demonstrate that CAT & MAUS reduces the deformation of the body segment shape modeled by markers during motion. The augmented CAT & MAUS system shows its potential to dynamically detect and locate actual underlying bony landmarks, which reduces the MCS measurement error caused by soft tissue artefact during movement. Copyright © 2017 Elsevier Ltd. All rights reserved.
Salas-Gonzalez, D; Górriz, J M; Ramírez, J; Padilla, P; Illán, I A
2013-01-01
A procedure to improve the convergence rate for affine registration methods of medical brain images when the images differ greatly from the template is presented. The methodology is based on a histogram matching of the source images with respect to the reference brain template before proceeding with the affine registration. The preprocessed source brain images are spatially normalized to a template using a general affine model with 12 parameters. A sum of squared differences between the source images and the template is considered as objective function, and a Gauss-Newton optimization algorithm is used to find the minimum of the cost function. Using histogram equalization as a preprocessing step improves the convergence rate in the affine registration algorithm of brain images as we show in this work using SPECT and PET brain images.
Incorporating User Input in Template-Based Segmentation
Vidal, Camille; Beggs, Dale; Younes, Laurent; Jain, Sanjay K.; Jedynak, Bruno
2015-01-01
We present a simple and elegant method to incorporate user input in a template-based segmentation method for diseased organs. The user provides a partial segmentation of the organ of interest, which is used to guide the template towards its target. The user also highlights some elements of the background that should be excluded from the final segmentation. We derive by likelihood maximization a registration algorithm from a simple statistical image model in which the user labels are modeled as Bernoulli random variables. The resulting registration algorithm minimizes the sum of square differences between the binary template and the user labels, while preventing the template from shrinking, and penalizing for the inclusion of background elements into the final segmentation. We assess the performance of the proposed algorithm on synthetic images in which the amount of user annotation is controlled. We demonstrate our algorithm on the segmentation of the lungs of Mycobacterium tuberculosis infected mice from μCT images. PMID:26146532
Two-step FEM-based Liver-CT registration: improving internal and external accuracy
NASA Astrophysics Data System (ADS)
Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan
2014-03-01
To know the exact location of the internal structures of the organs, especially the vasculature, is of great importance for the clinicians. This information allows them to know which structures/vessels will be affected by certain therapy and therefore to better treat the patients. However the use of internal structures for registration is often disregarded especially in physical based registration methods. In this paper we propose an algorithm that uses finite element methods to carry out a registration of liver volumes that will not only have accuracy in the boundaries of the organ but also in the interior. Therefore a graph matching algorithm is used to find correspondences between the vessel trees of the two livers to be registered. In addition to this an adaptive volumetric mesh is generated that contains nodes in the locations in which correspondences were found. The displacements derived from those correspondences are the input for the initial deformation of the model. The first deformation brings the internal structures to their final deformed positions and the surfaces close to it. Finally, thin plate splines are used to refine the solution at the boundaries of the organ achieving an improvement in the accuracy of 71%. The algorithm has been evaluated in CT clinical images of the abdomen.
Performance evaluations of demons and free form deformation algorithms for the liver region.
Wang, Hui; Gong, Guanzhong; Wang, Hongjun; Li, Dengwang; Yin, Yong; Lu, Jie
2014-04-01
We investigated the influence of breathing motion on radiation therapy according to four- dimensional computed tomography (4D-CT) technology and indicated the registration of 4D-CT images was significant. The demons algorithm in two interpolation modes was compared to the FFD model algorithm to register the different phase images of 4D-CT in tumor tracking, using iodipin as verification. Linear interpolation was used in both mode 1 and mode 2. Mode 1 set outside pixels to nearest pixel, while mode 2 set outside pixels to zero. We used normalized mutual information (NMI), sum of squared differences, modified Hausdorff-distance, and registration speed to evaluate the performance of each algorithm. The average NMI after demons registration method in mode 1 improved 1.76% and 4.75% when compared to mode 2 and FFD model algorithm, respectively. Further, the modified Hausdorff-distance was no different between demons modes 1 and 2, but mode 1 was 15.2% lower than FFD. Finally, demons algorithm has the absolute advantage in registration speed. The demons algorithm in mode 1 was therefore found to be much more suitable for the registration of 4D-CT images. The subtractions of floating images and reference image before and after registration by demons further verified that influence of breathing motion cannot be ignored and the demons registration method is feasible.
Akbari, Hamed; Bilello, Michel; Da, Xiao; Davatzikos, Christos
2015-01-01
Evaluating various algorithms for the inter-subject registration of brain magnetic resonance images (MRI) is a necessary topic receiving growing attention. Existing studies evaluated image registration algorithms in specific tasks or using specific databases (e.g., only for skull-stripped images, only for single-site images, etc.). Consequently, the choice of registration algorithms seems task- and usage/parameter-dependent. Nevertheless, recent large-scale, often multi-institutional imaging-related studies create the need and raise the question whether some registration algorithms can 1) generally apply to various tasks/databases posing various challenges; 2) perform consistently well, and while doing so, 3) require minimal or ideally no parameter tuning. In seeking answers to this question, we evaluated 12 general-purpose registration algorithms, for their generality, accuracy and robustness. We fixed their parameters at values suggested by algorithm developers as reported in the literature. We tested them in 7 databases/tasks, which present one or more of 4 commonly-encountered challenges: 1) inter-subject anatomical variability in skull-stripped images; 2) intensity homogeneity, noise and large structural differences in raw images; 3) imaging protocol and field-of-view (FOV) differences in multi-site data; and 4) missing correspondences in pathology-bearing images. Totally 7,562 registrations were performed. Registration accuracies were measured by (multi-)expert-annotated landmarks or regions of interest (ROIs). To ensure reproducibility, we used public software tools, public databases (whenever possible), and we fully disclose the parameter settings. We show evaluation results, and discuss the performances in light of algorithms’ similarity metrics, transformation models and optimization strategies. We also discuss future directions for the algorithm development and evaluations. PMID:24951685
Survey of Non-Rigid Registration Tools in Medicine.
Keszei, András P; Berkels, Benjamin; Deserno, Thomas M
2017-02-01
We catalogue available software solutions for non-rigid image registration to support scientists in selecting suitable tools for specific medical registration purposes. Registration tools were identified using non-systematic search in Pubmed, Web of Science, IEEE Xplore® Digital Library, Google Scholar, and through references in identified sources (n = 22). Exclusions are due to unavailability or inappropriateness. The remaining (n = 18) tools were classified by (i) access and technology, (ii) interfaces and application, (iii) living community, (iv) supported file formats, and (v) types of registration methodologies emphasizing the similarity measures implemented. Out of the 18 tools, (i) 12 are open source, 8 are released under a permissive free license, which imposes the least restrictions on the use and further development of the tool, 8 provide graphical processing unit (GPU) support; (ii) 7 are built on software platforms, 5 were developed for brain image registration; (iii) 6 are under active development but only 3 have had their last update in 2015 or 2016; (iv) 16 support the Analyze format, while 7 file formats can be read with only one of the tools; and (v) 6 provide multiple registration methods and 6 provide landmark-based registration methods. Based on open source, licensing, GPU support, active community, several file formats, algorithms, and similarity measures, the tools Elastics and Plastimatch are chosen for the platform ITK and without platform requirements, respectively. Researchers in medical image analysis already have a large choice of registration tools freely available. However, the most recently published algorithms may not be included in the tools, yet.
An Automatic Registration Algorithm for 3D Maxillofacial Model
NASA Astrophysics Data System (ADS)
Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng
2016-09-01
3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.
3D registration of surfaces for change detection in medical images
NASA Astrophysics Data System (ADS)
Fisher, Elizabeth; van der Stelt, Paul F.; Dunn, Stanley M.
1997-04-01
Spatial registration of data sets is essential for quantifying changes that take place over time in cases where the position of a patient with respect to the sensor has been altered. Changes within the region of interest can be problematic for automatic methods of registration. This research addresses the problem of automatic 3D registration of surfaces derived from serial, single-modality images for the purpose of quantifying changes over time. The registration algorithm utilizes motion-invariant, curvature- based geometric properties to derive an approximation to an initial rigid transformation to align two image sets. Following the initial registration, changed portions of the surface are detected and excluded before refining the transformation parameters. The performance of the algorithm was tested using simulation experiments. To quantitatively assess the registration, random noise at various levels, known rigid motion transformations, and analytically-defined volume changes were applied to the initial surface data acquired from models of teeth. These simulation experiments demonstrated that the calculated transformation parameters were accurate to within 1.2 percent of the total applied rotation and 2.9 percent of the total applied translation, even at the highest applied noise levels and simulated wear values.
The role of image registration in brain mapping
Toga, A.W.; Thompson, P.M.
2008-01-01
Image registration is a key step in a great variety of biomedical imaging applications. It provides the ability to geometrically align one dataset with another, and is a prerequisite for all imaging applications that compare datasets across subjects, imaging modalities, or across time. Registration algorithms also enable the pooling and comparison of experimental findings across laboratories, the construction of population-based brain atlases, and the creation of systems to detect group patterns in structural and functional imaging data. We review the major types of registration approaches used in brain imaging today. We focus on their conceptual basis, the underlying mathematics, and their strengths and weaknesses in different contexts. We describe the major goals of registration, including data fusion, quantification of change, automated image segmentation and labeling, shape measurement, and pathology detection. We indicate that registration algorithms have great potential when used in conjunction with a digital brain atlas, which acts as a reference system in which brain images can be compared for statistical analysis. The resulting armory of registration approaches is fundamental to medical image analysis, and in a brain mapping context provides a means to elucidate clinical, demographic, or functional trends in the anatomy or physiology of the brain. PMID:19890483
Design of an Image Fusion Phantom for a Small Animal microPET/CT Scanner Prototype
NASA Astrophysics Data System (ADS)
Nava-García, Dante; Alva-Sánchez, Héctor; Murrieta-Rodríguez, Tirso; Martínez-Dávalos, Arnulfo; Rodríguez-Villafuerte, Mercedes
2010-12-01
Two separate microtomography systems recently developed at Instituto de Física, UNAM, produce anatomical (microCT) and physiological images (microPET) of small animals. In this work, the development and initial tests of an image fusion method based on fiducial markers for image registration between the two modalities are presented. A modular Helix/Line-Sources phantom was designed and constructed; this phantom contains fiducial markers that can be visualized in both imaging systems. The registration was carried out by solving the rigid body alignment problem of Procrustes to obtain rotation and translation matrices required to align the two sets of images. The microCT/microPET image fusion of the Helix/Line-Sources phantom shows excellent visual coincidence between different structures, showing a calculated target-registration-error of 0.32 mm.
Loi, Gianfranco; Dominietto, Marco; Manfredda, Irene; Mones, Eleonora; Carriero, Alessandro; Inglese, Eugenio; Krengli, Marco; Brambilla, Marco
2008-09-01
This note describes a method to characterize the performances of image fusion software (Syntegra) with respect to accuracy and robustness. Computed tomography (CT), magnetic resonance imaging (MRI), and single-photon emission computed tomography (SPECT) studies were acquired from two phantoms and 10 patients. Image registration was performed independently by two couples composed of one radiotherapist and one physicist by means of superposition of anatomic landmarks. Each couple performed jointly and saved the registration. The two solutions were averaged to obtain the gold standard registration. A new set of estimators was defined to identify translation and rotation errors in the coordinate axes, independently from point position in image field of view (FOV). Algorithms evaluated were local correlation (LC) for CT-MRI, normalized mutual information (MI) for CT-MRI, and CT-SPECT registrations. To evaluate accuracy, estimator values were compared to limiting values for the algorithms employed, both in phantoms and in patients. To evaluate robustness, different alignments between images taken from a sample patient were produced and registration errors determined. LC algorithm resulted accurate in CT-MRI registrations in phantoms, but exceeded limiting values in 3 of 10 patients. MI algorithm resulted accurate in CT-MRI and CT-SPECT registrations in phantoms; limiting values were exceeded in one case in CT-MRI and never reached in CT-SPECT registrations. Thus, the evaluation of robustness was restricted to the algorithm of MI both for CT-MRI and CT-SPECT registrations. The algorithm of MI proved to be robust: limiting values were not exceeded with translation perturbations up to 2.5 cm, rotation perturbations up to 10 degrees and roto-translational perturbation up to 3 cm and 5 degrees.
NASA Astrophysics Data System (ADS)
Wörz, Stefan; Hoegen, Philipp; Liao, Wei; Müller-Eschner, Matthias; Kauczor, Hans-Ulrich; von Tengg-Kobligk, Hendrik; Rohr, Karl
2016-03-01
We introduce a framework for quantitative evaluation of 3D vessel segmentation approaches using vascular phantoms. Phantoms are designed using a CAD system and created with a 3D printer, and comprise realistic shapes including branches and pathologies such as abdominal aortic aneurysms (AAA). To transfer ground truth information to the 3D image coordinate system, we use a landmark-based registration scheme utilizing fiducial markers integrated in the phantom design. For accurate 3D localization of the markers we developed a novel 3D parametric intensity model that is directly fitted to the markers in the images. We also performed a quantitative evaluation of different vessel segmentation approaches for a phantom of an AAA.
17 CFR Appendix A to Part 37 - Guidance on Compliance With Registration Criteria
Code of Federal Regulations, 2011 CFR
2011-04-01
... facility should include the system's trade-matching algorithm and order entry procedures. A submission involving a trade-matching algorithm that is based on order priority factors other than on a best price/earliest time basis should include a brief explanation of the alternative algorithm. (b) A board of trade's...
17 CFR Appendix A to Part 37 - Guidance on Compliance With Registration Criteria
Code of Federal Regulations, 2012 CFR
2012-04-01
... facility should include the system's trade-matching algorithm and order entry procedures. A submission involving a trade-matching algorithm that is based on order priority factors other than on a best price/earliest time basis should include a brief explanation of the alternative algorithm. (b) A board of trade's...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Jinghao; Kim, Sung; Jabbour, Salma
2010-03-15
Purpose: In the external beam radiation treatment of prostate cancers, successful implementation of adaptive radiotherapy and conformal radiation dose delivery is highly dependent on precise and expeditious segmentation and registration of the prostate volume between the simulation and the treatment images. The purpose of this study is to develop a novel, fast, and accurate segmentation and registration method to increase the computational efficiency to meet the restricted clinical treatment time requirement in image guided radiotherapy. Methods: The method developed in this study used soft tissues to capture the transformation between the 3D planning CT (pCT) images and 3D cone-beam CTmore » (CBCT) treatment images. The method incorporated a global-to-local deformable mesh model based registration framework as well as an automatic anatomy-constrained robust active shape model (ACRASM) based segmentation algorithm in the 3D CBCT images. The global registration was based on the mutual information method, and the local registration was to minimize the Euclidian distance of the corresponding nodal points from the global transformation of deformable mesh models, which implicitly used the information of the segmented target volume. The method was applied on six data sets of prostate cancer patients. Target volumes delineated by the same radiation oncologist on the pCT and CBCT were chosen as the benchmarks and were compared to the segmented and registered results. The distance-based and the volume-based estimators were used to quantitatively evaluate the results of segmentation and registration. Results: The ACRASM segmentation algorithm was compared to the original active shape model (ASM) algorithm by evaluating the values of the distance-based estimators. With respect to the corresponding benchmarks, the mean distance ranged from -0.85 to 0.84 mm for ACRASM and from -1.44 to 1.17 mm for ASM. The mean absolute distance ranged from 1.77 to 3.07 mm for ACRASM and from 2.45 to 6.54 mm for ASM. The volume overlap ratio ranged from 79% to 91% for ACRASM and from 44% to 80% for ASM. These data demonstrated that the segmentation results of ACRASM were in better agreement with the corresponding benchmarks than those of ASM. The developed registration algorithm was quantitatively evaluated by comparing the registered target volumes from the pCT to the benchmarks on the CBCT. The mean distance and the root mean square error ranged from 0.38 to 2.2 mm and from 0.45 to 2.36 mm, respectively, between the CBCT images and the registered pCT. The mean overlap ratio of the prostate volumes ranged from 85.2% to 95% after registration. The average time of the ACRASM-based segmentation was under 1 min. The average time of the global transformation was from 2 to 4 min on two 3D volumes and the average time of the local transformation was from 20 to 34 s on two deformable superquadrics mesh models. Conclusions: A novel and fast segmentation and deformable registration method was developed to capture the transformation between the planning and treatment images for external beam radiotherapy of prostate cancers. This method increases the computational efficiency and may provide foundation to achieve real time adaptive radiotherapy.« less
Barratt, Dean C; Chan, Carolyn S K; Edwards, Philip J; Penney, Graeme P; Slomczykowski, Mike; Carter, Timothy J; Hawkes, David J
2008-06-01
Statistical shape modelling potentially provides a powerful tool for generating patient-specific, 3D representations of bony anatomy for computer-aided orthopaedic surgery (CAOS) without the need for a preoperative CT scan. Furthermore, freehand 3D ultrasound (US) provides a non-invasive method for digitising bone surfaces in the operating theatre that enables a much greater region to be sampled compared with conventional direct-contact (i.e., pointer-based) digitisation techniques. In this paper, we describe how these approaches can be combined to simultaneously generate and register a patient-specific model of the femur and pelvis to the patient during surgery. In our implementation, a statistical deformation model (SDM) was constructed for the femur and pelvis by performing a principal component analysis on the B-spline control points that parameterise the freeform deformations required to non-rigidly register a training set of CT scans to a carefully segmented template CT scan. The segmented template bone surface, represented by a triangulated surface mesh, is instantiated and registered to a cloud of US-derived surface points using an iterative scheme in which the weights corresponding to the first five principal modes of variation of the SDM are optimised in addition to the rigid-body parameters. The accuracy of the method was evaluated using clinically realistic data obtained on three intact human cadavers (three whole pelves and six femurs). For each bone, a high-resolution CT scan and rigid-body registration transformation, calculated using bone-implanted fiducial markers, served as the gold standard bone geometry and registration transformation, respectively. After aligning the final instantiated model and CT-derived surfaces using the iterative closest point (ICP) algorithm, the average root-mean-square distance between the surfaces was 3.5mm over the whole bone and 3.7mm in the region of surgical interest. The corresponding distances after aligning the surfaces using the marker-based registration transformation were 4.6 and 4.5mm, respectively. We conclude that despite limitations on the regions of bone accessible using US imaging, this technique has potential as a cost-effective and non-invasive method to enable surgical navigation during CAOS procedures, without the additional radiation dose associated with performing a preoperative CT scan or intraoperative fluoroscopic imaging. However, further development is required to investigate errors using error measures relevant to specific surgical procedures.
A software tool of digital tomosynthesis application for patient positioning in radiotherapy
Dai, Jian‐Rong
2016-01-01
Digital Tomosynthesis (DTS) is an image modality in reconstructing tomographic images from two‐dimensional kV projections covering a narrow scan angles. Comparing with conventional cone‐beam CT (CBCT), it requires less time and radiation dose in data acquisition. It is feasible to apply this technique in patient positioning in radiotherapy. To facilitate its clinical application, a software tool was developed and the reconstruction processes were accelerated by graphic processing unit (GPU). Two reconstruction and two registration processes are required for DTS application which is different from conventional CBCT application which requires one image reconstruction process and one image registration process. The reconstruction stage consists of productions of two types of DTS. One type of DTS is reconstructed from cone‐beam (CB) projections covering a narrow scan angle and is named onboard DTS (ODTS), which represents the real patient position in treatment room. Another type of DTS is reconstructed from digitally reconstructed radiography (DRR) and is named reference DTS (RDTS), which represents the ideal patient position in treatment room. Prior to the reconstruction of RDTS, The DRRs are reconstructed from planning CT using the same acquisition setting of CB projections. The registration stage consists of two matching processes between ODTS and RDTS. The target shift in lateral and longitudinal axes are obtained from the matching between ODTS and RDTS in coronal view, while the target shift in longitudinal and vertical axes are obtained from the matching between ODTS and RDTS in sagittal view. In this software, both DRR and DTS reconstruction algorithms were implemented on GPU environments for acceleration purpose. The comprehensive evaluation of this software tool was performed including geometric accuracy, image quality, registration accuracy, and reconstruction efficiency. The average correlation coefficient between DRR/DTS generated by GPU‐based algorithm and CPU‐based algorithm is 0.99. Based on the measurements of cube phantom on DTS, the geometric errors are within 0.5 mm in three axes. For both cube phantom and pelvic phantom, the registration errors are within 0.5 mm in three axes. Compared with reconstruction performance of CPU‐based algorithms, the performances of DRR and DTS reconstructions are improved by a factor of 15 to 20. A GPU‐based software tool was developed for DTS application for patient positioning of radiotherapy. The geometric and registration accuracy met the clinical requirement in patient setup of radiotherapy. The high performance of DRR and DTS reconstruction algorithms was achieved by the GPU‐based computation environments. It is a useful software tool for researcher and clinician in evaluating DTS application in patient positioning of radiotherapy. PACS number(s): 87.57.nf PMID:27074482
An Extended Spectral-Spatial Classification Approach for Hyperspectral Data
NASA Astrophysics Data System (ADS)
Akbari, D.
2017-11-01
In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.
NASA Astrophysics Data System (ADS)
Hao, Xiangyang; Liu, Songlin; Zhao, Fulai; Jiang, Lixing
2015-05-01
The packing presswork is an important factor of industrial product, especially for the luxury commodities such as cigarettes. In order to ensure the packing presswork to be qualified, the products should be inspected and unqualified one be picked out piece by piece with the vision-based inspection method, which has such advantages as no-touch inspection, high efficiency and automation. Vision-based inspection of packing presswork mainly consists of steps as image acquisition, image registration and defect inspection. The registration between inspected image and reference image is the foundation and premise of visual inspection. In order to realize rapid, reliable and accurate image registration, a registration method based on virtual orientation points is put forward. The precision of registration between inspected image and reference image can reach to sub pixels. Since defect is without fixed position, shape, size and color, three measures are taken to improve the inspection effect. Firstly, the concept of threshold template image is put forward to resolve the problem of variable threshold of intensity difference. Secondly, the color difference is calculated by comparing each pixel with the adjacent pixels of its correspondence on reference image to avoid false defect resulted from color registration error. Thirdly, the strategy of image pyramid is applied in the inspection algorithm to enhance the inspection efficiency. Experiments show that the related algorithm is effective to defect inspection and it takes 27.4 ms on average to inspect a piece of cigarette packing presswork.
Deformable Image Registration for Cone-Beam CT Guided Transoral Robotic Base of Tongue Surgery
Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.
2013-01-01
Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base of tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam CT (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e., volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC), and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid, and Demons steps was 4.6, 2.1, and 1.7 mm, respectively. The respective ECC was 0.57, 0.70, and 0.73 and NPMI was 0.46, 0.57, and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to support safer, high-precision base of tongue robotic surgery. PMID:23807549
Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery
NASA Astrophysics Data System (ADS)
Reaungamornrat, S.; Liu, W. P.; Wang, A. S.; Otake, Y.; Nithiananthan, S.; Uneri, A.; Schafer, S.; Tryggestad, E.; Richmon, J.; Sorger, J. M.; Siewerdsen, J. H.; Taylor, R. H.
2013-07-01
Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to support safer, high-precision base-of-tongue robotic surgery.
Single photon emission tomography in neurological studies: Instrumentation and clinical applications
NASA Astrophysics Data System (ADS)
Nikkinen, Paivi Helena
One triple head and two single head gamma camera systems were used for single photon emission tomography (SPET) imaging of both patients and brain phantoms. Studies with an anatomical brain phantom were performed for evaluation of reconstruction and correction methods in brain perfusion SPET studies. The use of the triple head gamma camera system resulted in a significant increase in image contrast and resolution. This was mainly due to better imaging geometry and the use of a high resolution collimator. The conventional Chang attenuation correction was found suitable for the brain perfusion studies. In the brain perfusion studies region of interest (ROI) based semiquantitation methods were used. A ROI map based on anatomical areas was used in 70 elderly persons (age range 55-85 years) without neurological diseases and in patients suffering from encephalitis or having had a cardiac arrest. Semiquantitative reference values are presented. For the 14 patients with encephalitis the right-to-left side differences were calculated. Defect volume indexes were calculated for 64 patients with brain infarcts. For the 30 cardiac arrest patients the defect percentages and the anteroposterior ratios were used for semiquantitation. It is concluded that different semiquantitation methods are needed for the various patient groups. Age-related reference values will improve the interpretation of SPET data. For validation of the basal ganglia receptor studies measurements were performed using a cylindrical and an anatomical striatal phantom. In these measurements conventional and transmission imaging based non-uniform attenuation corrections were compared. A calibration curve was calculated for the determination of the specific receptor uptake ratio. In the phantom studies using the triple head camera the uptake ratio obtained from simultaneous transmission-emission protocol (STEP) acquisition and iterative reconstruction was closest to the true activity ratio. Conventional acquisition and uniform Chang attenuation correction gave 40% lower values. The effect of dual window scatter correction was also measured. In conventional reconstruction dual window scatter correction increased the uptake ratios when using a single head camera, but when using the triple head camera this correction did not have a significant effect on the ratios. Semiquantitative values for striatal 123I-labelled β-carbomethoxy-3β- (4-iodophenyl)tropane (123I-βCIT) dopamine transporter uptake in 20 adults (mean age 52 +/- 15 years) are presented. The mean basal ganglia to cerebellum ratio was 6.5 +/- 0.9 and the mean caudatus to putamen ratio was 1.2. The registration of brain SPET and magnetic resonance (MR) studies provides the necessary anatomical information for determination of the ROIs. A procedure for registration and simultaneous display of brain SPET and MR images based on six external skin markers is presented. The usefulness of this method was demonstrated in selected patients. The registration accuracy was determined for single and triple head gamma camera systems using brain phantom and simulation studies. The registration residual for three internal test markers was calculated using 4 to 13 external markers in the registration. For 6 external markers, as used in the registration in the patient studies, the mean RMS residuals of the test markers for the single head camera and the triple head camera were 3.5 mm and 3.2 mm, respectively. According to the simulation studies the largest inaccuracy is due mainly to the spatial resolution of SPET. The use of six markers, as in the patient studies, is adequate for accurate registration.
Dijkman, B; Wellens, H J
2001-09-01
The 7250 Jewel AF Medtronic model of ICD is the first implantable device in which both therapies for atrial arrhythmias and pacing algorithms for atrial arrhythmia prevention are available. Feasibility of that extensive atrial arrhythmia management requires correct and synergic functioning of different algorithms to control arrhythmias. The ability of the new pacing algorithms to stabilize the atrial rate following termination of treated atrial arrhythmias was evaluated in the marker channel registration of 600 spontaneously occurring episodes in 15 patients with the Jewel AF. All patients (55+/-15 years) had structural heart disease and documented atrial and ventricular arrhythmias. Dual chamber rate stabilization pacing was present in 245 (41 %) of episodes following arrhythmia termination and was a part of the mode switching operation during which pacing was provided in the dynamic DDI mode. This algorithm could function as the atrial rate stabilization pacing only when there was a slow spontaneous atrial rhythm or in presence of atrial premature beats conducted to the ventricles with a normal AV time. In case of atrial premature beats with delayed or absent conduction to the ventricles and in case of ventricular premature beats, the algorithm stabilized the ventricular rate. The rate stabilization pacing in DDI mode during sinus rhythm following atrial arrhythmia termination was often extended in time due to the device-based definition of arrhythmia termination. This was also the case in patients, in whom the DDD mode with true atrial rate stabilization algorithm was programmed. The rate stabilization algorithms in the Jewel AF applied after atrial arrhythmia termination provide pacing that is not based on the timing of atrial events. Only under certain circumstances the algorithm can function as atrial rate stabilization pacing. Adjustments in availability and functioning of the rate stabilization algorithms might be of benefit for the clinical performance of pacing as part of device therapy for atrial arrhythmias.
Real-time registration of 3D to 2D ultrasound images for image-guided prostate biopsy.
Gillies, Derek J; Gardi, Lori; De Silva, Tharindu; Zhao, Shuang-Ren; Fenster, Aaron
2017-09-01
During image-guided prostate biopsy, needles are targeted at tissues that are suspicious of cancer to obtain specimen for histological examination. Unfortunately, patient motion causes targeting errors when using an MR-transrectal ultrasound (TRUS) fusion approach to augment the conventional biopsy procedure. This study aims to develop an automatic motion correction algorithm approaching the frame rate of an ultrasound system to be used in fusion-based prostate biopsy systems. Two modes of operation have been investigated for the clinical implementation of the algorithm: motion compensation using a single user initiated correction performed prior to biopsy, and real-time continuous motion compensation performed automatically as a background process. Retrospective 2D and 3D TRUS patient images acquired prior to biopsy gun firing were registered using an intensity-based algorithm utilizing normalized cross-correlation and Powell's method for optimization. 2D and 3D images were downsampled and cropped to estimate the optimal amount of image information that would perform registrations quickly and accurately. The optimal search order during optimization was also analyzed to avoid local optima in the search space. Error in the algorithm was computed using target registration errors (TREs) from manually identified homologous fiducials in a clinical patient dataset. The algorithm was evaluated for real-time performance using the two different modes of clinical implementations by way of user initiated and continuous motion compensation methods on a tissue mimicking prostate phantom. After implementation in a TRUS-guided system with an image downsampling factor of 4, the proposed approach resulted in a mean ± std TRE and computation time of 1.6 ± 0.6 mm and 57 ± 20 ms respectively. The user initiated mode performed registrations with in-plane, out-of-plane, and roll motions computation times of 108 ± 38 ms, 60 ± 23 ms, and 89 ± 27 ms, respectively, and corresponding registration errors of 0.4 ± 0.3 mm, 0.2 ± 0.4 mm, and 0.8 ± 0.5°. The continuous method performed registration significantly faster (P < 0.05) than the user initiated method, with observed computation times of 35 ± 8 ms, 43 ± 16 ms, and 27 ± 5 ms for in-plane, out-of-plane, and roll motions, respectively, and corresponding registration errors of 0.2 ± 0.3 mm, 0.7 ± 0.4 mm, and 0.8 ± 1.0°. The presented method encourages real-time implementation of motion compensation algorithms in prostate biopsy with clinically acceptable registration errors. Continuous motion compensation demonstrated registration accuracy with submillimeter and subdegree error, while performing < 50 ms computation times. Image registration technique approaching the frame rate of an ultrasound system offers a key advantage to be smoothly integrated to the clinical workflow. In addition, this technique could be used further for a variety of image-guided interventional procedures to treat and diagnose patients by improving targeting accuracy. © 2017 American Association of Physicists in Medicine.
Comparison of manual and automatic MR-CT registration for radiotherapy of prostate cancer.
Korsager, Anne Sofie; Carl, Jesper; Riis Østergaard, Lasse
2016-05-08
In image-guided radiotherapy (IGRT) of prostate cancer, delineation of the clini-cal target volume (CTV) often relies on magnetic resonance (MR) because of its good soft-tissue visualization. Registration of MR and computed tomography (CT) is required in order to add this accurate delineation to the dose planning CT. An automatic approach for local MR-CT registration of the prostate has previously been developed using a voxel property-based registration as an alternative to a manual landmark-based registration. The aim of this study is to compare the two registration approaches and to investigate the clinical potential for replacing the manual registration with the automatic registration. Registrations and analysis were performed for 30 prostate cancer patients treated with IGRT using a Ni-Ti prostate stent as a fiducial marker. The comparison included computing translational and rotational differences between the approaches, visual inspection, and computing the overlap of the CTV. The computed mean translational difference was 1.65, 1.60, and 1.80mm and the computed mean rotational difference was 1.51°, 3.93°, and 2.09° in the superior/inferior, anterior/posterior, and medial/lateral direction, respectively. The sensitivity of overlap was 87%. The results demonstrate that the automatic registration approach performs registrations comparable to the manual registration.
NASA Astrophysics Data System (ADS)
Rieder, Christian; Wirtz, Stefan; Strehlow, Jan; Zidowitz, Stephan; Bruners, Philipp; Isfort, Peter; Mahnken, Andreas H.; Peitgen, Heinz-Otto
2012-02-01
Image-guided radiofrequency ablation (RFA) is becoming a standard procedure for minimally invasive tumor treatment in clinical practice. To verify the treatment success of the therapy, reliable post-interventional assessment of the ablation zone (coagulation) is essential. Typically, pre- and post-interventional CT images have to be aligned to compare the shape, size, and position of tumor and coagulation zone. In this work, we present an automatic workflow for masking liver tissue, enabling a rigid registration algorithm to perform at least as accurate as experienced medical experts. To minimize the effect of global liver deformations, the registration is computed in a local region of interest around the pre-interventional lesion and post-interventional coagulation necrosis. A registration mask excluding lesions and neighboring organs is calculated to prevent the registration algorithm from matching both lesion shapes instead of the surrounding liver anatomy. As an initial registration step, the centers of gravity from both lesions are aligned automatically. The subsequent rigid registration method is based on the Local Cross Correlation (LCC) similarity measure and Newton-type optimization. To assess the accuracy of our method, 41 RFA cases are registered and compared with the manually aligned cases from four medical experts. Furthermore, the registration results are compared with ground truth transformations based on averaged anatomical landmark pairs. In the evaluation, we show that our method allows to automatic alignment of the data sets with equal accuracy as medical experts, but requiring significancy less time consumption and variability.
Nankali, Saber; Miandoab, Payam Samadi; Baghizadeh, Amin
2016-01-01
In external‐beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation‐based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two “Genetic” and “Ranker” searching procedures. The performance of these algorithms has been evaluated using four‐dimensional extended cardiac‐torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro‐fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F‐test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation‐based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers. PACS numbers: 87.55.km, 87.56.Fc PMID:26894358
Nankali, Saber; Torshabi, Ahmad Esmaili; Miandoab, Payam Samadi; Baghizadeh, Amin
2016-01-08
In external-beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation-based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two "Genetic" and "Ranker" searching procedures. The performance of these algorithms has been evaluated using four-dimensional extended cardiac-torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro-fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F-test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation-based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers.
NASA Astrophysics Data System (ADS)
Renner, A.; Furtado, H.; Seppenwoolde, Y.; Birkfellner, W.; Georg, D.
2016-03-01
A radiotherapy (RT) treatment can last for several weeks. In that time organ motion and shape changes introduce uncertainty in dose application. Monitoring and quantifying the change can yield a more precise irradiation margin definition and thereby reduce dose delivery to healthy tissue and adjust tumor targeting. Deformable image registration (DIR) has the potential to fulfill this task by calculating a deformation field (DF) between a planning CT and a repeated CT of the altered anatomy. Application of the DF on the original contours yields new contours that can be used for an adapted treatment plan. DIR is a challenging method and therefore needs careful user interaction. Without a proper graphical user interface (GUI) a misregistration cannot be easily detected by visual inspection and the results cannot be fine-tuned by changing registration parameters. To provide a DIR algorithm with such a GUI available for everyone, we created the extension Featurelet-Registration for the open source software platform 3D Slicer. The registration logic is an upgrade of an in-house-developed DIR method, which is a featurelet-based piecewise rigid registration. The so called "featurelets" are equally sized rectangular subvolumes of the moving image which are rigidly registered to rectangular search regions on the fixed image. The output is a deformed image and a deformation field. Both can be visualized directly in 3D Slicer facilitating the interpretation and quantification of the results. For validation of the registration accuracy two deformable phantoms were used. The performance was benchmarked against a demons algorithm with comparable results.
NASA Astrophysics Data System (ADS)
Cheng, Rita W. T.; Habib, Ayman F.; Frayne, Richard; Ronsky, Janet L.
2006-03-01
In-vivo quantitative assessments of joint conditions and health status can help to increase understanding of the pathology of osteoarthritis, a degenerative joint disease that affects a large population each year. Magnetic resonance imaging (MRI) provides a non-invasive and accurate means to assess and monitor joint properties, and has become widely used for diagnosis and biomechanics studies. Quantitative analyses and comparisons of MR datasets require accurate alignment of anatomical structures, thus image registration becomes a necessary procedure for these applications. This research focuses on developing a registration technique for MR knee joint surfaces to allow quantitative study of joint injuries and health status. It introduces a novel idea of translating techniques originally developed for geographic data in the field of photogrammetry and remote sensing to register 3D MR data. The proposed algorithm works with surfaces that are represented by randomly distributed points with no requirement of known correspondences. The algorithm performs matching locally by identifying corresponding surface elements, and solves for the transformation parameters relating the surfaces by minimizing normal distances between them. This technique was used in three applications to: 1) register temporal MR data to verify the feasibility of the algorithm to help monitor diseases, 2) quantify patellar movement with respect to the femur based on the transformation parameters, and 3) quantify changes in contact area locations between the patellar and femoral cartilage at different knee flexion angles. The results indicate accurate registration and the proposed algorithm can be applied for in-vivo study of joint injuries with MRI.
Registration of 3D spectral OCT volumes combining ICP with a graph-based approach
NASA Astrophysics Data System (ADS)
Niemeijer, Meindert; Lee, Kyungmoo; Garvin, Mona K.; Abràmoff, Michael D.; Sonka, Milan
2012-02-01
The introduction of spectral Optical Coherence Tomography (OCT) scanners has enabled acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D-OCT is used to detect and manage eye diseases such as glaucoma and age-related macular degeneration. To follow-up patients over time, image registration is a vital tool to enable more precise, quantitative comparison of disease states. In this work we present a 3D registrationmethod based on a two-step approach. In the first step we register both scans in the XY domain using an Iterative Closest Point (ICP) based algorithm. This algorithm is applied to vessel segmentations obtained from the projection image of each scan. The distance minimized in the ICP algorithm includes measurements of the vessel orientation and vessel width to allow for a more robust match. In the second step, a graph-based method is applied to find the optimal translation along the depth axis of the individual A-scans in the volume to match both scans. The cost image used to construct the graph is based on the mean squared error (MSE) between matching A-scans in both images at different translations. We have applied this method to the registration of Optic Nerve Head (ONH) centered 3D-OCT scans of the same patient. First, 10 3D-OCT scans of 5 eyes with glaucoma imaged in vivo were registered for a qualitative evaluation of the algorithm performance. Then, 17 OCT data set pairs of 17 eyes with known deformation were used for quantitative assessment of the method's robustness.
Rivest-Hénault, David; Dowson, Nicholas; Greer, Peter B; Fripp, Jurgen; Dowling, Jason A
2015-07-01
CT-MR registration is a critical component of many radiation oncology protocols. In prostate external beam radiation therapy, it allows the propagation of MR-derived contours to reference CT images at the planning stage, and it enables dose mapping during dosimetry studies. The use of carefully registered CT-MR atlases allows the estimation of patient specific electron density maps from MRI scans, enabling MRI-alone radiation therapy planning and treatment adaptation. In all cases, the precision and accuracy achieved by registration influences the quality of the entire process. Most current registration algorithms do not robustly generalize and lack inverse-consistency, increasing the risk of human error and acting as a source of bias in studies where information is propagated in a particular direction, e.g. CT to MR or vice versa. In MRI-based treatment planning where both CT and MR scans serve as spatial references, inverse-consistency is critical, if under-acknowledged. A robust, inverse-consistent, rigid/affine registration algorithm that is well suited to CT-MR alignment in prostate radiation therapy is presented. The presented method is based on a robust block-matching optimization process that utilises a half-way space definition to maintain inverse-consistency. Inverse-consistency substantially reduces the influence of the order of input images, simplifying analysis, and increasing robustness. An open source implementation is available online at http://aehrc.github.io/Mirorr/. Experimental results on a challenging 35 CT-MR pelvis dataset demonstrate that the proposed method is more accurate than other popular registration packages and is at least as accurate as the state of the art, while being more robust and having an order of magnitude higher inverse-consistency than competing approaches. The presented results demonstrate that the proposed registration algorithm is readily applicable to prostate radiation therapy planning. Copyright © 2015. Published by Elsevier B.V.
Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.
2009-01-01
Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Shijun; Yao Jianhua; Liu Jiamin
Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, A; Xu, H; Chen, S
Purpose: To compare the contour propagation accuracy of two deformable image registration (DIR) algorithms in the Raystation treatment planning system – the “Hybrid” algorithm based on image intensities and anatomical information; and the “Biomechanical” algorithm based on linear anatomical elasticity and finite element modeling. Methods: Both DIR algorithms were used for CT-to-CT deformation for 20 lung radiation therapy patients that underwent treatment plan revisions. Deformation accuracy was evaluated using landmark tracking to measure the target registration error (TRE) and inverse consistency error (ICE). The deformed contours were also evaluated against physician drawn contours using Dice similarity coefficients (DSC). Contour propagationmore » was qualitatively assessed using a visual quality score assigned by physicians, and a refinement quality score (0 0.9 for lungs, > 0.85 for heart, > 0.8 for liver) and similar qualitative assessments (VQS < 0.35, RQS > 0.75 for lungs). When anatomical structures were used to control the deformation, the DSC improved more significantly for the biomechanical DIR compared to the hybrid DIR, while the VQS and RQS improved only for the controlling structures. However, while the inclusion of controlling structures improved the TRE for the hybrid DIR, it increased the TRE for the biomechanical DIR. Conclusion: The hybrid DIR was found to perform slightly better than the biomechanical DIR based on lower TRE while the DSC, VQS, and RQS studies yielded comparable results for both. The use of controlling structures showed considerable improvement in the hybrid DIR results and is recommended for clinical use in contour propagation.« less
SU-E-J-112: Intensity-Based Pulmonary Image Registration: An Evaluation Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, F; Meyer, J; Sandison, G
2015-06-15
Purpose: Accurate alignment of thoracic CT images is essential for dose tracking and to safely implement adaptive radiotherapy in lung cancers. At the same time it is challenging given the highly elastic nature of lung tissue deformations. The objective of this study was to assess the performances of three state-of-art intensity-based algorithms in terms of their ability to register thoracic CT images subject to affine, barrel, and sinusoid transformation. Methods: Intensity similarity measures of the evaluated algorithms contained sum-of-squared difference (SSD), local mutual information (LMI), and residual complexity (RC). Five thoracic CT scans obtained from the EMPIRE10 challenge database weremore » included and served as reference images. Each CT dataset was distorted by realistic affine, barrel, and sinusoid transformations. Registration performances of the three algorithms were evaluated for each distortion type in terms of intensity root mean square error (IRMSE) between the reference and registered images in the lung regions. Results: For affine distortions, the three algorithms differed significantly in registration of thoracic images both visually and nominally in terms of IRMSE with a mean of 0.011 for SSD, 0.039 for RC, and 0.026 for LMI (p<0.01; Kruskal-Wallis test). For barrel distortion, the three algorithms showed nominally no significant difference in terms of IRMSE with a mean of 0.026 for SSD, 0.086 for RC, and 0.054 for LMI (p=0.16) . A significant difference was seen for sinusoid distorted thoracic CT data with mean lung IRMSE of 0.039 for SSD, 0.092 for RC, and 0.035 for LMI (p=0.02). Conclusion: Pulmonary deformations might vary to a large extent in nature in a daily clinical setting due to factors ranging from anatomy variations to respiratory motion to image quality. It can be appreciated from the results of the present study that the suitability of application of a particular algorithm for pulmonary image registration is deformation-dependent.« less
Combined Feature Based and Shape Based Visual Tracker for Robot Navigation
NASA Technical Reports Server (NTRS)
Deans, J.; Kunz, C.; Sargent, R.; Park, E.; Pedersen, L.
2005-01-01
We have developed a combined feature based and shape based visual tracking system designed to enable a planetary rover to visually track and servo to specific points chosen by a user with centimeter precision. The feature based tracker uses invariant feature detection and matching across a stereo pair, as well as matching pairs before and after robot movement in order to compute an incremental 6-DOF motion at each tracker update. This tracking method is subject to drift over time, which can be compensated by the shape based method. The shape based tracking method consists of 3D model registration, which recovers 6-DOF motion given sufficient shape and proper initialization. By integrating complementary algorithms, the combined tracker leverages the efficiency and robustness of feature based methods with the precision and accuracy of model registration. In this paper, we present the algorithms and their integration into a combined visual tracking system.
A Statistically Representative Atlas for Mapping Neuronal Circuits in the Drosophila Adult Brain.
Arganda-Carreras, Ignacio; Manoliu, Tudor; Mazuras, Nicolas; Schulze, Florian; Iglesias, Juan E; Bühler, Katja; Jenett, Arnim; Rouyer, François; Andrey, Philippe
2018-01-01
Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila , one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Guanghua, E-mail: yan@ufl.edu; Li, Jonathan; Huang, Yin
Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. Themore » two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position uncertainties, and marker displacement. Results: The sensor positions and the limit for the CWL condition were measured with excellent reproducibility (standard deviation ≤ 0.39 mm). The ghost marker detection algorithm had perfect detection accuracy for both the jig (1544 samples) and the anthropomorphic phantom (2045 samples). Pattern matching was successful for all samples from both phantoms as well as the 40 patient marker patterns. Conclusions: The authors proposed a simple model to explain the origin of ghost markers and identified the CWL condition as the necessary condition for ghost marker occurrence. The retrospective ghost marker detection and elimination algorithms guarantee complete ghost marker elimination while providing the users with maximum flexibility in selecting the number of markers and their configuration to meet their clinic needs.« less
Multimodal Registration of White Matter Brain Data via Optimal Mass Transport.
Rehman, Tauseefur; Haber, Eldad; Pohl, Kilian M; Haker, Steven; Halle, Mike; Talos, Florin; Wald, Lawrence L; Kikinis, Ron; Tannenbaum, Allen
2008-09-01
The elastic registration of medical scans from different acquisition sequences is becoming an important topic for many research labs that would like to continue the post-processing of medical scans acquired via the new generation of high-field-strength scanners. In this note, we present a parameter-free registration algorithm that is well suited for this scenario as it requires no tuning to specific acquisition sequences. The algorithm encompasses a new numerical scheme for computing elastic registration maps based on the minimizing flow approach to optimal mass transport. The approach utilizes all of the gray-scale data in both images, and the optimal mapping from image A to image B is the inverse of the optimal mapping from B to A . Further, no landmarks need to be specified, and the minimizer of the distance functional involved is unique. We apply the algorithm to register the white matter folds of two different scans and use the results to parcellate the cortex of the target image. To the best of our knowledge, this is the first time that the optimal mass transport function has been applied to register large 3D multimodal data sets.
Multimodal Registration of White Matter Brain Data via Optimal Mass Transport
Rehman, Tauseefur; Haber, Eldad; Pohl, Kilian M.; Haker, Steven; Halle, Mike; Talos, Florin; Wald, Lawrence L.; Kikinis, Ron; Tannenbaum, Allen
2017-01-01
The elastic registration of medical scans from different acquisition sequences is becoming an important topic for many research labs that would like to continue the post-processing of medical scans acquired via the new generation of high-field-strength scanners. In this note, we present a parameter-free registration algorithm that is well suited for this scenario as it requires no tuning to specific acquisition sequences. The algorithm encompasses a new numerical scheme for computing elastic registration maps based on the minimizing flow approach to optimal mass transport. The approach utilizes all of the gray-scale data in both images, and the optimal mapping from image A to image B is the inverse of the optimal mapping from B to A. Further, no landmarks need to be specified, and the minimizer of the distance functional involved is unique. We apply the algorithm to register the white matter folds of two different scans and use the results to parcellate the cortex of the target image. To the best of our knowledge, this is the first time that the optimal mass transport function has been applied to register large 3D multimodal data sets. PMID:28626844
The ANACONDA algorithm for deformable image registration in radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weistrand, Ola; Svensson, Stina, E-mail: stina.svensson@raysearchlabs.com
2015-01-15
Purpose: The purpose of this work was to describe a versatile algorithm for deformable image registration with applications in radiotherapy and to validate it on thoracic 4DCT data as well as CT/cone beam CT (CBCT) data. Methods: ANAtomically CONstrained Deformation Algorithm (ANACONDA) combines image information (i.e., intensities) with anatomical information as provided by contoured image sets. The registration problem is formulated as a nonlinear optimization problem and solved with an in-house developed solver, tailored to this problem. The objective function, which is minimized during optimization, is a linear combination of four nonlinear terms: 1. image similarity term; 2. grid regularizationmore » term, which aims at keeping the deformed image grid smooth and invertible; 3. a shape based regularization term which works to keep the deformation anatomically reasonable when regions of interest are present in the reference image; and 4. a penalty term which is added to the optimization problem when controlling structures are used, aimed at deforming the selected structure in the reference image to the corresponding structure in the target image. Results: To validate ANACONDA, the authors have used 16 publically available thoracic 4DCT data sets for which target registration errors from several algorithms have been reported in the literature. On average for the 16 data sets, the target registration error is 1.17 ± 0.87 mm, Dice similarity coefficient is 0.98 for the two lungs, and image similarity, measured by the correlation coefficient, is 0.95. The authors have also validated ANACONDA using two pelvic cases and one head and neck case with planning CT and daily acquired CBCT. Each image has been contoured by a physician (radiation oncologist) or experienced radiation therapist. The results are an improvement with respect to rigid registration. However, for the head and neck case, the sample set is too small to show statistical significance. Conclusions: ANACONDA performs well in comparison with other algorithms. By including CT/CBCT data in the validation, the various aspects of the algorithm such as its ability to handle different modalities, large deformations, and air pockets are shown.« less
Deformation Invariant Attribute Vector for Deformable Registration of Longitudinal Brain MR Images
Li, Gang; Guo, Lei; Liu, Tianming
2009-01-01
This paper presents a novel approach to define deformation invariant attribute vector (DIAV) for each voxel in 3D brain image for the purpose of anatomic correspondence detection. The DIAV method is validated by using synthesized deformation in 3D brain MRI images. Both theoretic analysis and experimental studies demonstrate that the proposed DIAV is invariant to general nonlinear deformation. Moreover, our experimental results show that the DIAV is able to capture rich anatomic information around the voxels and exhibit strong discriminative ability. The DIAV has been integrated into a deformable registration algorithm for longitudinal brain MR images, and the results on both simulated and real brain images are provided to demonstrate the good performance of the proposed registration algorithm based on matching of DIAVs. PMID:19369031
Mester, David; Ronin, Yefim; Schnable, Patrick; Aluru, Srinivas; Korol, Abraham
2015-01-01
Our aim was to develop a fast and accurate algorithm for constructing consensus genetic maps for chip-based SNP genotyping data with a high proportion of shared markers between mapping populations. Chip-based genotyping of SNP markers allows producing high-density genetic maps with a relatively standardized set of marker loci for different mapping populations. The availability of a standard high-throughput mapping platform simplifies consensus analysis by ignoring unique markers at the stage of consensus mapping thereby reducing mathematical complicity of the problem and in turn analyzing bigger size mapping data using global optimization criteria instead of local ones. Our three-phase analytical scheme includes automatic selection of ~100-300 of the most informative (resolvable by recombination) markers per linkage group, building a stable skeletal marker order for each data set and its verification using jackknife re-sampling, and consensus mapping analysis based on global optimization criterion. A novel Evolution Strategy optimization algorithm with a global optimization criterion presented in this paper is able to generate high quality, ultra-dense consensus maps, with many thousands of markers per genome. This algorithm utilizes "potentially good orders" in the initial solution and in the new mutation procedures that generate trial solutions, enabling to obtain a consensus order in reasonable time. The developed algorithm, tested on a wide range of simulated data and real world data (Arabidopsis), outperformed two tested state-of-the-art algorithms by mapping accuracy and computation time. PMID:25867943
Monitoring tumor motion by real time 2D/3D registration during radiotherapy.
Gendrin, Christelle; Furtado, Hugo; Weber, Christoph; Bloch, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Bergmann, Helmar; Stock, Markus; Fichtinger, Gabor; Georg, Dietmar; Birkfellner, Wolfgang
2012-02-01
In this paper, we investigate the possibility to use X-ray based real time 2D/3D registration for non-invasive tumor motion monitoring during radiotherapy. The 2D/3D registration scheme is implemented using general purpose computation on graphics hardware (GPGPU) programming techniques and several algorithmic refinements in the registration process. Validation is conducted off-line using a phantom and five clinical patient data sets. The registration is performed on a region of interest (ROI) centered around the planned target volume (PTV). The phantom motion is measured with an rms error of 2.56 mm. For the patient data sets, a sinusoidal movement that clearly correlates to the breathing cycle is shown. Videos show a good match between X-ray and digitally reconstructed radiographs (DRR) displacement. Mean registration time is 0.5 s. We have demonstrated that real-time organ motion monitoring using image based markerless registration is feasible. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dalvi, Rupin; Hacihaliloglu, Ilker; Abugharbieh, Rafeef
2010-03-01
Stitching of volumes obtained from three dimensional (3D) ultrasound (US) scanners improves visualization of anatomy in many clinical applications. Fast but accurate volume registration remains the key challenge in this area.We propose a volume stitching method based on efficient registration of 3D US volumes obtained from a tracked US probe. Since the volumes, after adjusting for probe motion, are coarsely registered, we obtain salient correspondence points in the central slices of these volumes. This is done by first removing artifacts in the US slices using intensity invariant local phase image processing and then applying the Harris Corner detection algorithm. Fast sub-volume registration on a small neighborhood around the points then gives fast, accurate 3D registration parameters. The method has been tested on 3D US scans of phantom and real human radius and pelvis bones and a phantom human fetus. The method has also been compared to volumetric registration, as well as feature based registration using 3D-SIFT. Quantitative results show average post-registration error of 0.33mm which is comparable to volumetric registration accuracy (0.31mm) and much better than 3D-SIFT based registration which failed to register the volumes. The proposed method was also much faster than volumetric registration (~4.5 seconds versus 83 seconds).
[Elastic registration method to compute deformation functions for mitral valve].
Yang, Jinyu; Zhang, Wan; Yin, Ran; Deng, Yuxiao; Wei, Yunfeng; Zeng, Junyi; Wen, Tong; Ding, Lu; Liu, Xiaojian; Li, Yipeng
2014-10-01
Mitral valve disease is one of the most popular heart valve diseases. Precise positioning and displaying of the valve characteristics is necessary for the minimally invasive mitral valve repairing procedures. This paper presents a multi-resolution elastic registration method to compute the deformation functions constructed from cubic B-splines in three dimensional ultrasound images, in which the objective functional to be optimized was generated by maximum likelihood method based on the probabilistic distribution of the ultrasound speckle noise. The algorithm was then applied to register the mitral valve voxels. Numerical results proved the effectiveness of the algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nithiananthan, S.; Brock, K. K.; Daly, M. J.
2009-10-15
Purpose: The accuracy and convergence behavior of a variant of the Demons deformable registration algorithm were investigated for use in cone-beam CT (CBCT)-guided procedures of the head and neck. Online use of deformable registration for guidance of therapeutic procedures such as image-guided surgery or radiation therapy places trade-offs on accuracy and computational expense. This work describes a convergence criterion for Demons registration developed to balance these demands; the accuracy of a multiscale Demons implementation using this convergence criterion is quantified in CBCT images of the head and neck. Methods: Using an open-source ''symmetric'' Demons registration algorithm, a convergence criterion basedmore » on the change in the deformation field between iterations was developed to advance among multiple levels of a multiscale image pyramid in a manner that optimized accuracy and computation time. The convergence criterion was optimized in cadaver studies involving CBCT images acquired using a surgical C-arm prototype modified for 3D intraoperative imaging. CBCT-to-CBCT registration was performed and accuracy was quantified in terms of the normalized cross-correlation (NCC) and target registration error (TRE). The accuracy and robustness of the algorithm were then tested in clinical CBCT images of ten patients undergoing radiation therapy of the head and neck. Results: The cadaver model allowed optimization of the convergence factor and initial measurements of registration accuracy: Demons registration exhibited TRE=(0.8{+-}0.3) mm and NCC=0.99 in the cadaveric head compared to TRE=(2.6{+-}1.0) mm and NCC=0.93 with rigid registration. Similarly for the patient data, Demons registration gave mean TRE=(1.6{+-}0.9) mm compared to rigid registration TRE=(3.6{+-}1.9) mm, suggesting registration accuracy at or near the voxel size of the patient images (1x1x2 mm{sup 3}). The multiscale implementation based on optimal convergence criteria completed registration in 52 s for the cadaveric head and in an average time of 270 s for the larger FOV patient images. Conclusions: Appropriate selection of convergence and multiscale parameters in Demons registration was shown to reduce computational expense without sacrificing registration performance. For intraoperative CBCT imaging with deformable registration, the ability to perform accurate registration within the stringent time requirements of the operating environment could offer a useful clinical tool allowing integration of preoperative information while accurately reflecting changes in the patient anatomy. Similarly for CBCT-guided radiation therapy, fast accurate deformable registration could further augment high-precision treatment strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falco, Maria Daniela, E-mail: mdanielafalco@hotmail.co; Fontanarosa, Davide; Miceli, Roberto
2011-04-01
Cone-beam X-ray volumetric imaging in the treatment room, allows online correction of set-up errors and offline assessment of residual set-up errors and organ motion. In this study the registration algorithm of the X-ray volume imaging software (XVI, Elekta, Crawley, United Kingdom), which manages a commercial cone-beam computed tomography (CBCT)-based positioning system, has been tested using a homemade and an anthropomorphic phantom to: (1) assess its performance in detecting known translational and rotational set-up errors and (2) transfer the transformation matrix of its registrations into a commercial treatment planning system (TPS) for offline organ motion analysis. Furthermore, CBCT dose index hasmore » been measured for a particular site (prostate: 120 kV, 1028.8 mAs, approximately 640 frames) using a standard Perspex cylindrical body phantom (diameter 32 cm, length 15 cm) and a 10-cm-long pencil ionization chamber. We have found that known displacements were correctly calculated by the registration software to within 1.3 mm and 0.4{sup o}. For the anthropomorphic phantom, only translational displacements have been considered. Both studies have shown errors within the intrinsic uncertainty of our system for translational displacements (estimated as 0.87 mm) and rotational displacements (estimated as 0.22{sup o}). The resulting table translations proposed by the system to correct the displacements were also checked with portal images and found to place the isocenter of the plan on the linac isocenter within an error of 1 mm, which is the dimension of the spherical lead marker inserted at the center of the homemade phantom. The registration matrix translated into the TPS image fusion module correctly reproduced the alignment between planning CT scans and CBCT scans. Finally, measurements on the CBCT dose index indicate that CBCT acquisition delivers less dose than conventional CT scans and electronic portal imaging device portals. The registration software was found to be accurate, and its registration matrix can be easily translated into the TPS and a low dose is delivered to the patient during image acquisition. These results can help in designing imaging protocols for offline evaluations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Presles, Benoît, E-mail: benoit.presles@creatis.insa-lyon.fr; Rit, Simon; Sarrut, David
2014-12-15
Purpose: The aim of the present work is to propose and evaluate registration algorithms of three-dimensional (3D) transabdominal (TA) ultrasound (US) images to setup postprostatectomy patients during radiation therapy. Methods: Three registration methods have been developed and evaluated to register a reference 3D-TA-US image acquired during the planning CT session and a 3D-TA-US image acquired before each treatment session. The first method (method A) uses only gray value information, whereas the second one (method B) uses only gradient information. The third one (method C) combines both sets of information. All methods restrict the comparison to a region of interest computedmore » from the dilated reference positioning volume drawn on the reference image and use mutual information as a similarity measure. The considered geometric transformations are translations and have been optimized by using the adaptive stochastic gradient descent algorithm. Validation has been carried out using manual registration by three operators of the same set of image pairs as the algorithms. Sixty-two treatment US images of seven patients irradiated after a prostatectomy have been registered to their corresponding reference US image. The reference registration has been defined as the average of the manual registration values. Registration error has been calculated by subtracting the reference registration from the algorithm result. For each session, the method has been considered a failure if the registration error was above both the interoperator variability of the session and a global threshold of 3.0 mm. Results: All proposed registration algorithms have no systematic bias. Method B leads to the best results with mean errors of −0.6, 0.7, and −0.2 mm in left–right (LR), superior–inferior (SI), and anterior–posterior (AP) directions, respectively. With this method, the standard deviations of the mean error are of 1.7, 2.4, and 2.6 mm in LR, SI, and AP directions, respectively. The latter are inferior to the interoperator registration variabilities which are of 2.5, 2.5, and 3.5 mm in LR, SI, and AP directions, respectively. Failures occur in 5%, 18%, and 10% of cases in LR, SI, and AP directions, respectively. 69% of the sessions have no failure. Conclusions: Results of the best proposed registration algorithm of 3D-TA-US images for postprostatectomy treatment have no bias and are in the same variability range as manual registration. As the algorithm requires a short computation time, it could be used in clinical practice provided that a visual review is performed.« less
A rib-specific multimodal registration algorithm for fused unfolded rib visualization using PET/CT
NASA Astrophysics Data System (ADS)
Kaftan, Jens N.; Kopaczka, Marcin; Wimmer, Andreas; Platsch, Günther; Declerck, Jérôme
2014-03-01
Respiratory motion affects the alignment of PET and CT volumes from PET/CT examinations in a non-rigid manner. This becomes particularly apparent if reviewing fine anatomical structures such as ribs when assessing bone metastases, which frequently occur in many advanced cancers. To make this routine diagnostic task more efficient, a fused unfolded rib visualization for 18F-NaF PET/CT is presented. It allows to review the whole rib cage in a single image. This advanced visualization is enabled by a novel rib-specific registration algorithm that rigidly optimizes the local alignment of each individual rib in both modalities based on a matched filter response function. More specifically, rib centerlines are automatically extracted from CT and subsequently individually aligned to the corresponding bone-specific PET rib uptake pattern. The proposed method has been validated on 20 PET/CT scans acquired at different clinical sites. It has been demonstrated that the presented rib- specific registration method significantly improves the rib alignment without having to run complex deformable registration algorithms. At the same time, it guarantees that rib lesions are not further deformed, which may otherwise affect quantitative measurements such as SUVs. Considering clinically relevant distance thresholds, the centerline portion with good alignment compared to the ground truth improved from 60:6% to 86:7% after registration while approximately 98% can be still considered as acceptably aligned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatt, Charles R.; Tomkowiak, Michael T.; Dunkerley, David A. P.
2015-12-15
Purpose: Image registration between standard x-ray fluoroscopy and transesophageal echocardiography (TEE) has recently been proposed. Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system designed for cardiac procedures. This study presents a method for 3D registration of SBDX and TEE images based on the tomosynthesis and 3D tracking capabilities of SBDX. Methods: The registration algorithm utilizes the stack of tomosynthetic planes produced by the SBDX system to estimate the physical 3D coordinates of salient key-points on the TEE probe. The key-points are used to arrive at an initial estimate of the probe pose, which is then refined using amore » 2D/3D registration method adapted for inverse geometry fluoroscopy. A phantom study was conducted to evaluate probe pose estimation accuracy relative to the ground truth, as defined by a set of coregistered fiducial markers. This experiment was conducted with varying probe poses and levels of signal difference-to-noise ratio (SDNR). Additional phantom and in vivo studies were performed to evaluate the correspondence of catheter tip positions in TEE and x-ray images following registration of the two modalities. Results: Target registration error (TRE) was used to characterize both pose estimation and registration accuracy. In the study of pose estimation accuracy, successful pose estimates (3D TRE < 5.0 mm) were obtained in 97% of cases when the SDNR was 5.9 or higher in seven out of eight poses. Under these conditions, 3D TRE was 2.32 ± 1.88 mm, and 2D (projection) TRE was 1.61 ± 1.36 mm. Probe localization error along the source-detector axis was 0.87 ± 1.31 mm. For the in vivo experiments, mean 3D TRE ranged from 2.6 to 4.6 mm and mean 2D TRE ranged from 1.1 to 1.6 mm. Anatomy extracted from the echo images appeared well aligned when projected onto the SBDX images. Conclusions: Full 6 DOF image registration between SBDX and TEE is feasible and accurate to within 5 mm. Future studies will focus on real-time implementation and application-specific analysis.« less
Cross contrast multi-channel image registration using image synthesis for MR brain images.
Chen, Min; Carass, Aaron; Jog, Amod; Lee, Junghoon; Roy, Snehashis; Prince, Jerry L
2017-02-01
Multi-modal deformable registration is important for many medical image analysis tasks such as atlas alignment, image fusion, and distortion correction. Whereas a conventional method would register images with different modalities using modality independent features or information theoretic metrics such as mutual information, this paper presents a new framework that addresses the problem using a two-channel registration algorithm capable of using mono-modal similarity measures such as sum of squared differences or cross-correlation. To make it possible to use these same-modality measures, image synthesis is used to create proxy images for the opposite modality as well as intensity-normalized images from each of the two available images. The new deformable registration framework was evaluated by performing intra-subject deformation recovery, intra-subject boundary alignment, and inter-subject label transfer experiments using multi-contrast magnetic resonance brain imaging data. Three different multi-channel registration algorithms were evaluated, revealing that the framework is robust to the multi-channel deformable registration algorithm that is used. With a single exception, all results demonstrated improvements when compared against single channel registrations using the same algorithm with mutual information. Copyright © 2016 Elsevier B.V. All rights reserved.
Lanchon, Cecilia; Custillon, Guillaume; Moreau-Gaudry, Alexandre; Descotes, Jean-Luc; Long, Jean-Alexandre; Fiard, Gaelle; Voros, Sandrine
2016-07-01
To guide the surgeon during laparoscopic or robot-assisted radical prostatectomy an innovative laparoscopic/ultrasound fusion platform was developed using a motorized 3-dimensional transurethral ultrasound probe. We present what is to our knowledge the first preclinical evaluation of 3-dimensional prostate visualization using transurethral ultrasound and the preliminary results of this new augmented reality. The transurethral probe and laparoscopic/ultrasound registration were tested on realistic prostate phantoms made of standard polyvinyl chloride. The quality of transurethral ultrasound images and the detection of passive markers placed on the prostate surface were evaluated on 2-dimensional dynamic views and 3-dimensional reconstructions. The feasibility, precision and reproducibility of laparoscopic/transurethral ultrasound registration was then determined using 4, 5, 6 and 7 markers to assess the optimal amount needed. The root mean square error was calculated for each registration and the median root mean square error and IQR were calculated according to the number of markers. The transurethral ultrasound probe was easy to manipulate and the prostatic capsule was well visualized in 2 and 3 dimensions. Passive markers could precisely be localized in the volume. Laparoscopic/transurethral ultrasound registration procedures were performed on 74 phantoms of various sizes and shapes. All were successful. The median root mean square error of 1.1 mm (IQR 0.8-1.4) was significantly associated with the number of landmarks (p = 0.001). The highest accuracy was achieved using 6 markers. However, prostate volume did not affect registration precision. Transurethral ultrasound provided high quality prostate reconstruction and easy marker detection. Laparoscopic/ultrasound registration was successful with acceptable mm precision. Further investigations are necessary to achieve sub mm accuracy and assess feasibility in a human model. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Khare, Rahul; Sala, Guillaume; Kinahan, Paul; Esposito, Giuseppe; Banovac, Filip; Cleary, Kevin; Enquobahrie, Andinet
2013-01-01
Positron emission tomography computed tomography (PET-CT) images are increasingly being used for guidance during percutaneous biopsy. However, due to the physics of image acquisition, PET-CT images are susceptible to problems due to respiratory and cardiac motion, leading to inaccurate tumor localization, shape distortion, and attenuation correction. To address these problems, we present a method for motion correction that relies on respiratory gated CT images aligned using a deformable registration algorithm. In this work, we use two deformable registration algorithms and two optimization approaches for registering the CT images obtained over the respiratory cycle. The two algorithms are the BSpline and the symmetric forces Demons registration. In the first optmization approach, CT images at each time point are registered to a single reference time point. In the second approach, deformation maps are obtained to align each CT time point with its adjacent time point. These deformations are then composed to find the deformation with respect to a reference time point. We evaluate these two algorithms and optimization approaches using respiratory gated CT images obtained from 7 patients. Our results show that overall the BSpline registration algorithm with the reference optimization approach gives the best results.
Comparison of manual and automatic MR‐CT registration for radiotherapy of prostate cancer
Carl, Jesper; Østergaard, Lasse Riis
2016-01-01
In image‐guided radiotherapy (IGRT) of prostate cancer, delineation of the clinical target volume (CTV) often relies on magnetic resonance (MR) because of its good soft‐tissue visualization. Registration of MR and computed tomography (CT) is required in order to add this accurate delineation to the dose planning CT. An automatic approach for local MR‐CT registration of the prostate has previously been developed using a voxel property‐based registration as an alternative to a manual landmark‐based registration. The aim of this study is to compare the two registration approaches and to investigate the clinical potential for replacing the manual registration with the automatic registration. Registrations and analysis were performed for 30 prostate cancer patients treated with IGRT using a Ni‐Ti prostate stent as a fiducial marker. The comparison included computing translational and rotational differences between the approaches, visual inspection, and computing the overlap of the CTV. The computed mean translational difference was 1.65, 1.60, and 1.80 mm and the computed mean rotational difference was 1.51°, 3.93°, and 2.09° in the superior/inferior, anterior/posterior, and medial/lateral direction, respectively. The sensitivity of overlap was 87%. The results demonstrate that the automatic registration approach performs registrations comparable to the manual registration. PACS number(s): 87.57.nj, 87.61.‐c, 87.57.Q‐, 87.56.J‐ PMID:27167285
An image mosaic method based on corner
NASA Astrophysics Data System (ADS)
Jiang, Zetao; Nie, Heting
2015-08-01
In view of the shortcomings of the traditional image mosaic, this paper describes a new algorithm for image mosaic based on the Harris corner. Firstly, Harris operator combining the constructed low-pass smoothing filter based on splines function and circular window search is applied to detect the image corner, which allows us to have better localisation performance and effectively avoid the phenomenon of cluster. Secondly, the correlation feature registration is used to find registration pair, remove the false registration using random sampling consensus. Finally use the method of weighted trigonometric combined with interpolation function for image fusion. The experiments show that this method can effectively remove the splicing ghosting and improve the accuracy of image mosaic.
Deformation-based augmented reality for hepatic surgery.
Haouchine, Nazim; Dequidt, Jérémie; Berger, Marie-Odile; Cotin, Stéphane
2013-01-01
In this paper we introduce a method for augmenting the laparoscopic view during hepatic tumor resection. Using augmented reality techniques, vessels, tumors and cutting planes computed from pre-operative data can be overlaid onto the laparoscopic video. Compared to current techniques, which are limited to a rigid registration of the pre-operative liver anatomy with the intra-operative image, we propose a real-time, physics-based, non-rigid registration. The main strength of our approach is that the deformable model can also be used to regularize the data extracted from the computer vision algorithms. We show preliminary results on a video sequence which clearly highlights the interest of using physics-based model for elastic registration.
Hyperbolic Harmonic Mapping for Surface Registration
Shi, Rui; Zeng, Wei; Su, Zhengyu; Jiang, Jian; Damasio, Hanna; Lu, Zhonglin; Wang, Yalin; Yau, Shing-Tung; Gu, Xianfeng
2016-01-01
Automatic computation of surface correspondence via harmonic map is an active research field in computer vision, computer graphics and computational geometry. It may help document and understand physical and biological phenomena and also has broad applications in biometrics, medical imaging and motion capture inducstries. Although numerous studies have been devoted to harmonic map research, limited progress has been made to compute a diffeomorphic harmonic map on general topology surfaces with landmark constraints. This work conquers this problem by changing the Riemannian metric on the target surface to a hyperbolic metric so that the harmonic mapping is guaranteed to be a diffeomorphism under landmark constraints. The computational algorithms are based on Ricci flow and nonlinear heat diffusion methods. The approach is general and robust. We employ our algorithm to study the constrained surface registration problem which applies to both computer vision and medical imaging applications. Experimental results demonstrate that, by changing the Riemannian metric, the registrations are always diffeomorphic and achieve relatively high performance when evaluated with some popular surface registration evaluation standards. PMID:27187948
Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.
de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R
2008-01-01
Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |< 0.083 mm for translations and |mu| < 0.023 degrees for rotations. The precision sigma in x-, y-, and z-direction was 0.090, 0.077, and 0.220 mm for translations and 0.155 degrees , 0.243 degrees , and 0.074 degrees for rotations. Our results show that the accuracy and precision of in vitro IBRSA, performed under ideal laboratory conditions, are lower than in vitro standard RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications.
Fast image matching algorithm based on projection characteristics
NASA Astrophysics Data System (ADS)
Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun
2011-06-01
Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.
Application of real-time single camera SLAM technology for image-guided targeting in neurosurgery
NASA Astrophysics Data System (ADS)
Chang, Yau-Zen; Hou, Jung-Fu; Tsao, Yi Hsiang; Lee, Shih-Tseng
2012-10-01
In this paper, we propose an application of augmented reality technology for targeting tumors or anatomical structures inside the skull. The application is a combination of the technologies of MonoSLAM (Single Camera Simultaneous Localization and Mapping) and computer graphics. A stereo vision system is developed to construct geometric data of human face for registration with CT images. Reliability and accuracy of the application is enhanced by the use of fiduciary markers fixed to the skull. The MonoSLAM keeps track of the current location of the camera with respect to an augmented reality (AR) marker using the extended Kalman filter. The fiduciary markers provide reference when the AR marker is invisible to the camera. Relationship between the markers on the face and the augmented reality marker is obtained by a registration procedure by the stereo vision system and is updated on-line. A commercially available Android based tablet PC equipped with a 320×240 front-facing camera was used for implementation. The system is able to provide a live view of the patient overlaid by the solid models of tumors or anatomical structures, as well as the missing part of the tool inside the skull.
Strain Rate Tensor Estimation in Cine Cardiac MRI Based on Elastic Image Registration
NASA Astrophysics Data System (ADS)
Sánchez-Ferrero, Gonzalo Vegas; Vega, Antonio Tristán; Grande, Lucilio Cordero; de La Higuera, Pablo Casaseca; Fernández, Santiago Aja; Fernández, Marcos Martín; López, Carlos Alberola
In this work we propose an alternative method to estimate and visualize the Strain Rate Tensor (SRT) in Magnetic Resonance Images (MRI) when Phase Contrast MRI (PCMRI) and Tagged MRI (TMRI) are not available. This alternative is based on image processing techniques. Concretely, image registration algorithms are used to estimate the movement of the myocardium at each point. Additionally, a consistency checking method is presented to validate the accuracy of the estimates when no golden standard is available. Results prove that the consistency checking method provides an upper bound of the mean squared error of the estimate. Our experiments with real data show that the registration algorithm provides a useful deformation field to estimate the SRT fields. A classification between regional normal and dysfunctional contraction patterns, as compared with experts diagnosis, points out that the parameters extracted from the estimated SRT can represent these patterns. Additionally, a scheme for visualizing and analyzing the local behavior of the SRT field is presented.
Registration of pencil beam proton radiography data with X-ray CT.
Deffet, Sylvain; Macq, Benoît; Righetto, Roberto; Vander Stappen, François; Farace, Paolo
2017-10-01
Proton radiography seems to be a promising tool for assessing the quality of the stopping power computation in proton therapy. However, range error maps obtained on the basis of proton radiographs are very sensitive to small misalignment between the planning CT and the proton radiography acquisitions. In order to be able to mitigate misalignment in postprocessing, the authors implemented a fast method for registration between pencil proton radiography data obtained with a multilayer ionization chamber (MLIC) and an X-ray CT acquired on a head phantom. The registration was performed by optimizing a cost function which performs a comparison between the acquired data and simulated integral depth-dose curves. Two methodologies were considered, one based on dual orthogonal projections and the other one on a single projection. For each methodology, the robustness of the registration algorithm with respect to three confounding factors (measurement noise, CT calibration errors, and spot spacing) was investigated by testing the accuracy of the method through simulations based on a CT scan of a head phantom. The present registration method showed robust convergence towards the optimal solution. For the level of measurement noise and the uncertainty in the stopping power computation expected in proton radiography using a MLIC, the accuracy appeared to be better than 0.3° for angles and 0.3 mm for translations by use of the appropriate cost function. The spot spacing analysis showed that a spacing larger than the 5 mm used by other authors for the investigation of a MLIC for proton radiography led to results with absolute accuracy better than 0.3° for angles and 1 mm for translations when orthogonal proton radiographs were fed into the algorithm. In the case of a single projection, 6 mm was the largest spot spacing presenting an acceptable registration accuracy. For registration of proton radiography data with X-ray CT, the use of a direct ray-tracing algorithm to compute sums of squared differences and corrections of range errors showed very good accuracy and robustness with respect to three confounding factors: measurement noise, calibration error, and spot spacing. It is therefore a suitable algorithm to use in the in vivo range verification framework, allowing to separate in postprocessing the proton range uncertainty due to setup errors from the other sources of uncertainty. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Xin, Meiting; Li, Bing; Yan, Xiao; Chen, Lei; Wei, Xiang
2018-02-01
A robust coarse-to-fine registration method based on the backpropagation (BP) neural network and shift window technology is proposed in this study. Specifically, there are three steps: coarse alignment between the model data and measured data, data simplification based on the BP neural network and point reservation in the contour region of point clouds, and fine registration with the reweighted iterative closest point algorithm. In the process of rough alignment, the initial rotation matrix and the translation vector between the two datasets are obtained. After performing subsequent simplification operations, the number of points can be reduced greatly. Therefore, the time and space complexity of the accurate registration can be significantly reduced. The experimental results show that the proposed method improves the computational efficiency without loss of accuracy.
Handheld laser scanner automatic registration based on random coding
NASA Astrophysics Data System (ADS)
He, Lei; Yu, Chun-ping; Wang, Li
2011-06-01
Current research on Laser Scanner often focuses mainly on the static measurement. Little use has been made of dynamic measurement, that are appropriate for more problems and situations. In particular, traditional Laser Scanner must Keep stable to scan and measure coordinate transformation parameters between different station. In order to make the scanning measurement intelligently and rapidly, in this paper ,we developed a new registration algorithm for handleheld laser scanner based on the positon of target, which realize the dynamic measurement of handheld laser scanner without any more complex work. the double camera on laser scanner can take photograph of the artificial target points to get the three-dimensional coordinates, this points is designed by random coding. And then, a set of matched points is found from control points to realize the orientation of scanner by the least-square common points transformation. After that the double camera can directly measure the laser point cloud in the surface of object and get the point cloud data in an unified coordinate system. There are three major contributions in the paper. Firstly, a laser scanner based on binocular vision is designed with double camera and one laser head. By those, the real-time orientation of laser scanner is realized and the efficiency is improved. Secondly, the coding marker is introduced to solve the data matching, a random coding method is proposed. Compared with other coding methods,the marker with this method is simple to match and can avoid the shading for the object. Finally, a recognition method of coding maker is proposed, with the use of the distance recognition, it is more efficient. The method present here can be used widely in any measurement from small to huge obiect, such as vehicle, airplane which strengthen its intelligence and efficiency. The results of experiments and theory analzing demonstrate that proposed method could realize the dynamic measurement of handheld laser scanner. Theory analysis and experiment shows the method is reasonable and efficient.
Du, Jia; Younes, Laurent; Qiu, Anqi
2011-01-01
This paper introduces a novel large deformation diffeomorphic metric mapping algorithm for whole brain registration where sulcal and gyral curves, cortical surfaces, and intensity images are simultaneously carried from one subject to another through a flow of diffeomorphisms. To the best of our knowledge, this is the first time that the diffeomorphic metric from one brain to another is derived in a shape space of intensity images and point sets (such as curves and surfaces) in a unified manner. We describe the Euler–Lagrange equation associated with this algorithm with respect to momentum, a linear transformation of the velocity vector field of the diffeomorphic flow. The numerical implementation for solving this variational problem, which involves large-scale kernel convolution in an irregular grid, is made feasible by introducing a class of computationally friendly kernels. We apply this algorithm to align magnetic resonance brain data. Our whole brain mapping results show that our algorithm outperforms the image-based LDDMM algorithm in terms of the mapping accuracy of gyral/sulcal curves, sulcal regions, and cortical and subcortical segmentation. Moreover, our algorithm provides better whole brain alignment than combined volumetric and surface registration (Postelnicu et al., 2009) and hierarchical attribute matching mechanism for elastic registration (HAMMER) (Shen and Davatzikos, 2002) in terms of cortical and subcortical volume segmentation. PMID:21281722
Estimation of slipping organ motion by registration with direction-dependent regularization.
Schmidt-Richberg, Alexander; Werner, René; Handels, Heinz; Ehrhardt, Jan
2012-01-01
Accurate estimation of respiratory motion is essential for many applications in medical 4D imaging, for example for radiotherapy of thoracic and abdominal tumors. It is usually done by non-linear registration of image scans at different states of the breathing cycle but without further modeling of specific physiological motion properties. In this context, the accurate computation of respiration-driven lung motion is especially challenging because this organ is sliding along the surrounding tissue during the breathing cycle, leading to discontinuities in the motion field. Without considering this property in the registration model, common intensity-based algorithms cause incorrect estimation along the object boundaries. In this paper, we present a model for incorporating slipping motion in image registration. Extending the common diffusion registration by distinguishing between normal- and tangential-directed motion, we are able to estimate slipping motion at the organ boundaries while preventing gaps and ensuring smooth motion fields inside and outside. We further present an algorithm for a fully automatic detection of discontinuities in the motion field, which does not rely on a prior segmentation of the organ. We evaluate the approach for the estimation of lung motion based on 23 inspiration/expiration pairs of thoracic CT images. The results show a visually more plausible motion estimation. Moreover, the target registration error is quantified using manually defined landmarks and a significant improvement over the standard diffusion regularization is shown. Copyright © 2011 Elsevier B.V. All rights reserved.
Research Issues in Image Registration for Remote Sensing
NASA Technical Reports Server (NTRS)
Eastman, Roger D.; LeMoigne, Jacqueline; Netanyahu, Nathan S.
2007-01-01
Image registration is an important element in data processing for remote sensing with many applications and a wide range of solutions. Despite considerable investigation the field has not settled on a definitive solution for most applications and a number of questions remain open. This article looks at selected research issues by surveying the experience of operational satellite teams, application-specific requirements for Earth science, and our experiments in the evaluation of image registration algorithms with emphasis on the comparison of algorithms for subpixel accuracy. We conclude that remote sensing applications put particular demands on image registration algorithms to take into account domain-specific knowledge of geometric transformations and image content.
NASA Astrophysics Data System (ADS)
Marchant, T. E.; Joshi, K. D.; Moore, C. J.
2018-03-01
Radiotherapy dose calculations based on cone-beam CT (CBCT) images can be inaccurate due to unreliable Hounsfield units (HU) in the CBCT. Deformable image registration of planning CT images to CBCT, and direct correction of CBCT image values are two methods proposed to allow heterogeneity corrected dose calculations based on CBCT. In this paper we compare the accuracy and robustness of these two approaches. CBCT images for 44 patients were used including pelvis, lung and head & neck sites. CBCT HU were corrected using a ‘shading correction’ algorithm and via deformable registration of planning CT to CBCT using either Elastix or Niftyreg. Radiotherapy dose distributions were re-calculated with heterogeneity correction based on the corrected CBCT and several relevant dose metrics for target and OAR volumes were calculated. Accuracy of CBCT based dose metrics was determined using an ‘override ratio’ method where the ratio of the dose metric to that calculated on a bulk-density assigned version of the same image is assumed to be constant for each patient, allowing comparison to the patient’s planning CT as a gold standard. Similar performance is achieved by shading corrected CBCT and both deformable registration algorithms, with mean and standard deviation of dose metric error less than 1% for all sites studied. For lung images, use of deformed CT leads to slightly larger standard deviation of dose metric error than shading corrected CBCT with more dose metric errors greater than 2% observed (7% versus 1%).
Shi, Yue; Queener, Hope M.; Marsack, Jason D.; Ravikumar, Ayeswarya; Bedell, Harold E.; Applegate, Raymond A.
2013-01-01
Dynamic registration uncertainty of a wavefront-guided correction with respect to underlying wavefront error (WFE) inevitably decreases retinal image quality. A partial correction may improve average retinal image quality and visual acuity in the presence of registration uncertainties. The purpose of this paper is to (a) develop an algorithm to optimize wavefront-guided correction that improves visual acuity given registration uncertainty and (b) test the hypothesis that these corrections provide improved visual performance in the presence of these uncertainties as compared to a full-magnitude correction or a correction by Guirao, Cox, and Williams (2002). A stochastic parallel gradient descent (SPGD) algorithm was used to optimize the partial-magnitude correction for three keratoconic eyes based on measured scleral contact lens movement. Given its high correlation with logMAR acuity, the retinal image quality metric log visual Strehl was used as a predictor of visual acuity. Predicted values of visual acuity with the optimized corrections were validated by regressing measured acuity loss against predicted loss. Measured loss was obtained from normal subjects viewing acuity charts that were degraded by the residual aberrations generated by the movement of the full-magnitude correction, the correction by Guirao, and optimized SPGD correction. Partial-magnitude corrections optimized with an SPGD algorithm provide at least one line improvement of average visual acuity over the full magnitude and the correction by Guirao given the registration uncertainty. This study demonstrates that it is possible to improve the average visual acuity by optimizing wavefront-guided correction in the presence of registration uncertainty. PMID:23757512
Genomecmp: computer software to detect genomic rearrangements using markers
NASA Astrophysics Data System (ADS)
Kulawik, Maciej; Nowak, Robert M.
2017-08-01
Detection of genomics rearrangements is a tough task, because of the size of data to be processed. As genome sequences may consist of hundreds of millions symbols, it is not only practically impossible to compare them by hand, but it is also complex problem for computer software. The way to significantly accelerate the process is to use rearrangement detection algorithm based on unique short sequences called markers. The algorithm described in this paper develops markers using base genome and find the markers positions on other genome. The algorithm has been extended by support for ambiguity symbols. Web application with graphical user interface has been created using three-layer architecture, where users could run the task simultaneously. The accuracy and efficiency of proposed solution has been studied using generated and real data.
Hierarchical patch-based co-registration of differently stained histopathology slides
NASA Astrophysics Data System (ADS)
Yigitsoy, Mehmet; Schmidt, Günter
2017-03-01
Over the past decades, digital pathology has emerged as an alternative way of looking at the tissue at subcellular level. It enables multiplexed analysis of different cell types at micron level. Information about cell types can be extracted by staining sections of a tissue block using different markers. However, robust fusion of structural and functional information from different stains is necessary for reproducible multiplexed analysis. Such a fusion can be obtained via image co-registration by establishing spatial correspondences between tissue sections. Spatial correspondences can then be used to transfer various statistics about cell types between sections. However, the multi-modal nature of images and sparse distribution of interesting cell types pose several challenges for the registration of differently stained tissue sections. In this work, we propose a co-registration framework that efficiently addresses such challenges. We present a hierarchical patch-based registration of intensity normalized tissue sections. Preliminary experiments demonstrate the potential of the proposed technique for the fusion of multi-modal information from differently stained digital histopathology sections.
X-Ray Phase Imaging for Breast Cancer Detection
2012-09-01
the Gerchberg-Saxton algorithm in the Fresnel diffraction regime, and is much more robust against image noise than the TIE-based method. For details...developed efficient coding with the software modules for the image registration, flat-filed correction , and phase retrievals. In addition, we...X, Liu H. 2010. Performance analysis of the attenuation-partition based iterative phase retrieval algorithm for in-line phase-contrast imaging
A Statistically Representative Atlas for Mapping Neuronal Circuits in the Drosophila Adult Brain
Arganda-Carreras, Ignacio; Manoliu, Tudor; Mazuras, Nicolas; Schulze, Florian; Iglesias, Juan E.; Bühler, Katja; Jenett, Arnim; Rouyer, François; Andrey, Philippe
2018-01-01
Imaging the expression patterns of reporter constructs is a powerful tool to dissect the neuronal circuits of perception and behavior in the adult brain of Drosophila, one of the major models for studying brain functions. To date, several Drosophila brain templates and digital atlases have been built to automatically analyze and compare collections of expression pattern images. However, there has been no systematic comparison of performances between alternative atlasing strategies and registration algorithms. Here, we objectively evaluated the performance of different strategies for building adult Drosophila brain templates and atlases. In addition, we used state-of-the-art registration algorithms to generate a new group-wise inter-sex atlas. Our results highlight the benefit of statistical atlases over individual ones and show that the newly proposed inter-sex atlas outperformed existing solutions for automated registration and annotation of expression patterns. Over 3,000 images from the Janelia Farm FlyLight collection were registered using the proposed strategy. These registered expression patterns can be searched and compared with a new version of the BrainBaseWeb system and BrainGazer software. We illustrate the validity of our methodology and brain atlas with registration-based predictions of expression patterns in a subset of clock neurons. The described registration framework should benefit to brain studies in Drosophila and other insect species. PMID:29628885
3D/2D image registration using weighted histogram of gradient directions
NASA Astrophysics Data System (ADS)
Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang
2015-03-01
Three dimensional (3D) to two dimensional (2D) image registration is crucial in many medical applications such as image-guided evaluation of musculoskeletal disorders. One of the key problems is to estimate the 3D CT- reconstructed bone model positions (translation and rotation) which maximize the similarity between the digitally reconstructed radiographs (DRRs) and the 2D fluoroscopic images using a registration method. This problem is computational-intensive due to a large search space and the complicated DRR generation process. Also, finding a similarity measure which converges to the global optimum instead of local optima adds to the challenge. To circumvent these issues, most existing registration methods need a manual initialization, which requires user interaction and is prone to human error. In this paper, we introduce a novel feature-based registration method using the weighted histogram of gradient directions of images. This method simplifies the computation by searching the parameter space (rotation and translation) sequentially rather than simultaneously. In our numeric simulation experiments, the proposed registration algorithm was able to achieve sub-millimeter and sub-degree accuracies. Moreover, our method is robust to the initial guess. It can tolerate up to +/-90°rotation offset from the global optimal solution, which minimizes the need for human interaction to initialize the algorithm.
Band co-registration modeling of LAPAN-A3/IPB multispectral imager based on satellite attitude
NASA Astrophysics Data System (ADS)
Hakim, P. R.; Syafrudin, A. H.; Utama, S.; Jayani, A. P. S.
2018-05-01
One of significant geometric distortion on images of LAPAN-A3/IPB multispectral imager is co-registration error between each color channel detector. Band co-registration distortion usually can be corrected by using several approaches, which are manual method, image matching algorithm, or sensor modeling and calibration approach. This paper develops another approach to minimize band co-registration distortion on LAPAN-A3/IPB multispectral image by using supervised modeling of image matching with respect to satellite attitude. Modeling results show that band co-registration error in across-track axis is strongly influenced by yaw angle, while error in along-track axis is fairly influenced by both pitch and roll angle. Accuracy of the models obtained is pretty good, which lies between 1-3 pixels error for each axis of each pair of band co-registration. This mean that the model can be used to correct the distorted images without the need of slower image matching algorithm, nor the laborious effort needed in manual approach and sensor calibration. Since the calculation can be executed in order of seconds, this approach can be used in real time quick-look image processing in ground station or even in satellite on-board image processing.
NASA Astrophysics Data System (ADS)
De Silva, Tharindu; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.
2014-03-01
In targeted 3D transrectal ultrasound (TRUS)-guided biopsy, patient and prostate movement during the procedure can cause target misalignments that hinder accurate sampling of pre-planned suspicious tissue locations. Multiple solutions have been proposed for motion compensation via registration of intra-procedural TRUS images to a baseline 3D TRUS image acquired at the beginning of the biopsy procedure. While 2D TRUS images are widely used for intra-procedural guidance, some solutions utilize richer intra-procedural images such as bi- or multi-planar TRUS or 3D TRUS, acquired by specialized probes. In this work, we measured the impact of such richer intra-procedural imaging on motion compensation accuracy, to evaluate the tradeoff between cost and complexity of intra-procedural imaging versus improved motion compensation. We acquired baseline and intra-procedural 3D TRUS images from 29 patients at standard sextant-template biopsy locations. We used the planes extracted from the 3D intra-procedural scans to simulate 2D and 3D information available in different clinically relevant scenarios for registration. The registration accuracy was evaluated by calculating the target registration error (TRE) using manually identified homologous fiducial markers (micro-calcifications). Our results indicate that TRE improves gradually when the number of intra-procedural imaging planes used in registration is increased. Full 3D TRUS information helps the registration algorithm to robustly converge to more accurate solutions. These results can also inform the design of a fail-safe workflow during motion compensation in a system using a tracked 2D TRUS probe, by prescribing rotational acquisitions that can be performed quickly and easily by the physician immediately prior to needle targeting.
Improving best-phase image quality in cardiac CT by motion correction with MAM optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohkohl, Christopher; Bruder, Herbert; Stierstorfer, Karl
2013-03-15
Purpose: Research in image reconstruction for cardiac CT aims at using motion correction algorithms to improve the image quality of the coronary arteries. The key to those algorithms is motion estimation, which is currently based on 3-D/3-D registration to align the structures of interest in images acquired in multiple heart phases. The need for an extended scan data range covering several heart phases is critical in terms of radiation dose to the patient and limits the clinical potential of the method. Furthermore, literature reports only slight quality improvements of the motion corrected images when compared to the most quiet phasemore » (best-phase) that was actually used for motion estimation. In this paper a motion estimation algorithm is proposed which does not require an extended scan range but works with a short scan data interval, and which markedly improves the best-phase image quality. Methods: Motion estimation is based on the definition of motion artifact metrics (MAM) to quantify motion artifacts in a 3-D reconstructed image volume. The authors use two different MAMs, entropy, and positivity. By adjusting the motion field parameters, the MAM of the resulting motion-compensated reconstruction is optimized using a gradient descent procedure. In this way motion artifacts are minimized. For a fast and practical implementation, only analytical methods are used for motion estimation and compensation. Both the MAM-optimization and a 3-D/3-D registration-based motion estimation algorithm were investigated by means of a computer-simulated vessel with a cardiac motion profile. Image quality was evaluated using normalized cross-correlation (NCC) with the ground truth template and root-mean-square deviation (RMSD). Four coronary CT angiography patient cases were reconstructed to evaluate the clinical performance of the proposed method. Results: For the MAM-approach, the best-phase image quality could be improved for all investigated heart phases, with a maximum improvement of the NCC value by 100% and of the RMSD value by 81%. The corresponding maximum improvements for the registration-based approach were 20% and 40%. In phases with very rapid motion the registration-based algorithm obtained better image quality, while the image quality of the MAM algorithm was superior in phases with less motion. The image quality improvement of the MAM optimization was visually confirmed for the different clinical cases. Conclusions: The proposed method allows a software-based best-phase image quality improvement in coronary CT angiography. A short scan data interval at the target heart phase is sufficient, no additional scan data in other cardiac phases are required. The algorithm is therefore directly applicable to any standard cardiac CT acquisition protocol.« less
NASA Astrophysics Data System (ADS)
Preibisch, Stephan; Rohlfing, Torsten; Hasak, Michael P.; Tomancak, Pavel
2008-03-01
Single Plane Illumination Microscopy (SPIM; Huisken et al., Nature 305(5686):1007-1009, 2004) is an emerging microscopic technique that enables live imaging of large biological specimens in their entirety. By imaging the living biological sample from multiple angles SPIM has the potential to achieve isotropic resolution throughout even relatively large biological specimens. For every angle, however, only a relatively shallow section of the specimen is imaged with high resolution, whereas deeper regions appear increasingly blurred. In order to produce a single, uniformly high resolution image, we propose here an image mosaicing algorithm that combines state of the art groupwise image registration for alignment with content-based image fusion to prevent degrading of the fused image due to regional blurring of the input images. For the registration stage, we introduce an application-specific groupwise transformation model that incorporates per-image as well as groupwise transformation parameters. We also propose a new fusion algorithm based on Gaussian filters, which is substantially faster than fusion based on local image entropy. We demonstrate the performance of our mosaicing method on data acquired from living embryos of the fruit fly, Drosophila, using four and eight angle acquisitions.
Image registration with auto-mapped control volumes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreibmann, Eduard; Xing Lei
2006-04-15
Many image registration algorithms rely on the use of homologous control points on the two input image sets to be registered. In reality, the interactive identification of the control points on both images is tedious, difficult, and often a source of error. We propose a two-step algorithm to automatically identify homologous regions that are used as a priori information during the image registration procedure. First, a number of small control volumes having distinct anatomical features are identified on the model image in a somewhat arbitrary fashion. Instead of attempting to find their correspondences in the reference image through user interaction,more » in the proposed method, each of the control regions is mapped to the corresponding part of the reference image by using an automated image registration algorithm. A normalized cross-correlation (NCC) function or mutual information was used as the auto-mapping metric and a limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) was employed to optimize the function to find the optimal mapping. For rigid registration, the transformation parameters of the system are obtained by averaging that derived from the individual control volumes. In our deformable calculation, the mapped control volumes are treated as the nodes or control points with known positions on the two images. If the number of control volumes is not enough to cover the whole image to be registered, additional nodes are placed on the model image and then located on the reference image in a manner similar to the conventional BSpline deformable calculation. For deformable registration, the established correspondence by the auto-mapped control volumes provides valuable guidance for the registration calculation and greatly reduces the dimensionality of the problem. The performance of the two-step registrations was applied to three rigid registration cases (two PET-CT registrations and a brain MRI-CT registration) and one deformable registration of inhale and exhale phases of a lung 4D CT. Algorithm convergence was confirmed by starting the registration calculations from a large number of initial transformation parameters. An accuracy of {approx}2 mm was achieved for both deformable and rigid registration. The proposed image registration method greatly reduces the complexity involved in the determination of homologous control points and allows us to minimize the subjectivity and uncertainty associated with the current manual interactive approach. Patient studies have indicated that the two-step registration technique is fast, reliable, and provides a valuable tool to facilitate both rigid and nonrigid image registrations.« less
3D-SIFT-Flow for atlas-based CT liver image segmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yan, E-mail: xuyan04@gmail.com; Xu, Chenchao, E-mail: chenchaoxu33@gmail.com; Kuang, Xiao, E-mail: kuangxiao.ace@gmail.com
Purpose: In this paper, the authors proposed a new 3D registration algorithm, 3D-scale invariant feature transform (SIFT)-Flow, for multiatlas-based liver segmentation in computed tomography (CT) images. Methods: In the registration work, the authors developed a new registration method that takes advantage of dense correspondence using the informative and robust SIFT feature. The authors computed the dense SIFT features for the source image and the target image and designed an objective function to obtain the correspondence between these two images. Labeling of the source image was then mapped to the target image according to the former correspondence, resulting in accurate segmentation.more » In the fusion work, the 2D-based nonparametric label transfer method was extended to 3D for fusing the registered 3D atlases. Results: Compared with existing registration algorithms, 3D-SIFT-Flow has its particular advantage in matching anatomical structures (such as the liver) that observe large variation/deformation. The authors observed consistent improvement over widely adopted state-of-the-art registration methods such as ELASTIX, ANTS, and multiatlas fusion methods such as joint label fusion. Experimental results of liver segmentation on the MICCAI 2007 Grand Challenge are encouraging, e.g., Dice overlap ratio 96.27% ± 0.96% by our method compared with the previous state-of-the-art result of 94.90% ± 2.86%. Conclusions: Experimental results show that 3D-SIFT-Flow is robust for segmenting the liver from CT images, which has large tissue deformation and blurry boundary, and 3D label transfer is effective and efficient for improving the registration accuracy.« less
Intra-operative registration for image enhanced endoscopic sinus surgery using photo-consistency.
Chen, Min Si; Gonzalez, Gerardo; Lapeer, Rudy
2007-01-01
The purpose of this paper is to present an intensity based algorithm for aligning 2D endoscopic images with virtual images generated from pre-operative 3D data. The proposed algorithm uses photo-consistency as the measurement of similarity between images, provided the illumination is independent from the viewing direction.
NASA Astrophysics Data System (ADS)
Wang, Yibing; Petit, Steven F.; Vásquez Osorio, Eliana; Gupta, Vikas; Méndez Romero, Alejandra; Heijmen, Ben
2018-06-01
In the abdomen, it is challenging to assess the accuracy of deformable image registration (DIR) for individual patients, due to the lack of clear anatomical landmarks, which can hamper clinical applications that require high accuracy DIR, such as adaptive radiotherapy. In this study, we propose and evaluate a methodology for estimating the impact of uncertainties in DIR on calculated accumulated dose in the upper abdomen, in order to aid decision making in adaptive treatment approaches. Sixteen liver metastasis patients treated with SBRT were evaluated. Each patient had one planning and three daily treatment CT-scans. Each daily CT scan was deformably registered 132 times to the planning CT-scan, using a wide range of parameter settings for the registration algorithm. A subset of ‘realistic’ registrations was then objectively selected based on distances between mapped and target contours. The underlying 3D transformations of these registrations were used to assess the corresponding uncertainties in voxel positions, and delivered dose, with a focus on accumulated maximum doses in the hollow OARs, i.e. esophagus, stomach, and duodenum. The number of realistic registrations varied from 5 to 109, depending on the patient, emphasizing the need for individualized registration parameters. Considering for all patients the realistic registrations, the 99th percentile of the voxel position uncertainties was 5.6 ± 3.3 mm. This translated into a variation (difference between 1st and 99th percentile) in accumulated D max in hollow OARs of up to 3.3 Gy. For one patient a violation of the accumulated stomach dose outside the uncertainty band was detected. The observed variation in accumulated doses in the OARs related to registration uncertainty, emphasizes the need to investigate the impact of this uncertainty for any DIR algorithm prior to clinical use for dose accumulation. The proposed method for assessing on an individual patient basis the impact of uncertainties in DIR on accumulated dose is in principle applicable for all DIR algorithms allowing variation in registration parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damato, A; Viswanathan, A; Cormack, R
2015-06-15
Purpose: To evaluate the feasibility of brachytherapy catheter localization through use of an EMT and 3D image set. Methods: A 15-catheter phantom mimicking an interstitial implantation was built and CT-scanned. Baseline catheter reconstruction was performed manually. An EMT was used to acquire the catheter coordinates in the EMT frame of reference. N user-identified catheter tips, without catheter number associations, were used to establish registration with the CT frame of reference. Two algorithms were investigated: brute-force registration (BFR), in which all possible permutation of N identified tips with the EMT tips were evaluated; and signature-based registration (SBR), in which a distancemore » matrix was used to generate a list of matching signatures describing possible N-point matches with the registration points. Digitization error (average of the distance between corresponding EMT and baseline dwell positions; average, standard deviation, and worst-case scenario over all possible registration-point selections) and algorithm inefficiency (maximum number of rigid registrations required to find the matching fusion for all possible selections of registration points) were calculated. Results: Digitization errors on average <2 mm were observed for N ≥5, with standard deviation <2 mm for N ≥6, and worst-case scenario error <2 mm for N ≥11. Algorithm inefficiencies were: N = 5, 32,760 (BFR) and 9900 (SBR); N = 6, 360,360 (BFR) and 21,660 (SBR); N = 11, 5.45*1010 (BFR) and 12 (SBR). Conclusion: A procedure was proposed for catheter reconstruction using EMT and only requiring user identification of catheter tips without catheter localization. Digitization errors <2 mm were observed on average with 5 or more registration points, and in any scenario with 11 or more points. Inefficiency for N = 11 was 9 orders of magnitude lower for SBR than for BFR. Funding: Kaye Family Award.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhen, X; Chen, H; Zhou, L
2014-06-15
Purpose: To propose and validate a novel and accurate deformable image registration (DIR) scheme to facilitate dose accumulation among treatment fractions of high-dose-rate (HDR) gynecological brachytherapy. Method: We have developed a method to adapt DIR algorithms to gynecologic anatomies with HDR applicators by incorporating a segmentation step and a point-matching step into an existing DIR framework. In the segmentation step, random walks algorithm is used to accurately segment and remove the applicator region (AR) in the HDR CT image. A semi-automatic seed point generation approach is developed to obtain the incremented foreground and background point sets to feed the randommore » walks algorithm. In the subsequent point-matching step, a feature-based thin-plate spline-robust point matching (TPS-RPM) algorithm is employed for AR surface point matching. With the resulting mapping, a DVF characteristic of the deformation between the two AR surfaces is generated by B-spline approximation, which serves as the initial DVF for the following Demons DIR between the two AR-free HDR CT images. Finally, the calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. Results: The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative results as well as the visual inspection of the DIR indicate that our proposed method can suppress the interference of the applicator with the DIR algorithm, and accurately register HDR CT images as well as deform and add interfractional HDR doses. Conclusions: We have developed a novel and robust DIR scheme that can perform registration between HDR gynecological CT images and yield accurate registration results. This new DIR scheme has potential for accurate interfractional HDR dose accumulation. This work is supported in part by the National Natural ScienceFoundation of China (no 30970866 and no 81301940)« less
Fast internal marker tracking algorithm for onboard MV and kV imaging systems
Mao, W.; Wiersma, R. D.; Xing, L.
2008-01-01
Intrafraction organ motion can limit the advantage of highly conformal dose techniques such as intensity modulated radiation therapy (IMRT) due to target position uncertainty. To ensure high accuracy in beam targeting, real-time knowledge of the target location is highly desired throughout the beam delivery process. This knowledge can be gained through imaging of internally implanted radio-opaque markers with fluoroscopic or electronic portal imaging devices (EPID). In the case of MV based images, marker detection can be problematic due to the significantly lower contrast between different materials in comparison to their kV-based counterparts. This work presents a fully automated algorithm capable of detecting implanted metallic markers in both kV and MV images with high consistency. Using prior CT information, the algorithm predefines the volumetric search space without manual region-of-interest (ROI) selection by the user. Depending on the template selected, both spherical and cylindrical markers can be detected. Multiple markers can be simultaneously tracked without indexing confusion. Phantom studies show detection success rates of 100% for both kV and MV image data. In addition, application of the algorithm to real patient image data results in successful detection of all implanted markers for MV images. Near real-time operational speeds of ∼10 frames∕sec for the detection of five markers in a 1024×768 image are accomplished using an ordinary PC workstation. PMID:18561670
Pace, Danielle F.; Aylward, Stephen R.; Niethammer, Marc
2014-01-01
We propose a deformable image registration algorithm that uses anisotropic smoothing for regularization to find correspondences between images of sliding organs. In particular, we apply the method for respiratory motion estimation in longitudinal thoracic and abdominal computed tomography scans. The algorithm uses locally adaptive diffusion tensors to determine the direction and magnitude with which to smooth the components of the displacement field that are normal and tangential to an expected sliding boundary. Validation was performed using synthetic, phantom, and 14 clinical datasets, including the publicly available DIR-Lab dataset. We show that motion discontinuities caused by sliding can be effectively recovered, unlike conventional regularizations that enforce globally smooth motion. In the clinical datasets, target registration error showed improved accuracy for lung landmarks compared to the diffusive regularization. We also present a generalization of our algorithm to other sliding geometries, including sliding tubes (e.g., needles sliding through tissue, or contrast agent flowing through a vessel). Potential clinical applications of this method include longitudinal change detection and radiotherapy for lung or abdominal tumours, especially those near the chest or abdominal wall. PMID:23899632
Pace, Danielle F; Aylward, Stephen R; Niethammer, Marc
2013-11-01
We propose a deformable image registration algorithm that uses anisotropic smoothing for regularization to find correspondences between images of sliding organs. In particular, we apply the method for respiratory motion estimation in longitudinal thoracic and abdominal computed tomography scans. The algorithm uses locally adaptive diffusion tensors to determine the direction and magnitude with which to smooth the components of the displacement field that are normal and tangential to an expected sliding boundary. Validation was performed using synthetic, phantom, and 14 clinical datasets, including the publicly available DIR-Lab dataset. We show that motion discontinuities caused by sliding can be effectively recovered, unlike conventional regularizations that enforce globally smooth motion. In the clinical datasets, target registration error showed improved accuracy for lung landmarks compared to the diffusive regularization. We also present a generalization of our algorithm to other sliding geometries, including sliding tubes (e.g., needles sliding through tissue, or contrast agent flowing through a vessel). Potential clinical applications of this method include longitudinal change detection and radiotherapy for lung or abdominal tumours, especially those near the chest or abdominal wall.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunliffe, Alexandra R.; Armato, Samuel G.; White, Bradley
2015-01-15
Purpose: To characterize the effects of deformable image registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60 Gy, 2 Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pretherapy (4–75 days) CT scan and a treatment planning scan with an associated dose map were collected. To establish correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pretherapy scans then were coregistered with planning scans (and associated dose maps)more » using the demons deformable registration algorithm and two variants of the Fraunhofer MEVIS algorithm (“Fast” and “EMPIRE10”). Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from each of the three algorithms. The Euclidean distance between manually and automatically mapped landmark points (d{sub E}) and the absolute difference in planned dose (|ΔD|) were calculated. Using regression modeling, |ΔD| was modeled as a function of d{sub E}, dose (D), dose standard deviation (SD{sub dose}) in an eight-pixel neighborhood, and the registration algorithm used. Results: Over 1400 landmark point pairs were identified, with 58–93 (median: 84) points identified per patient. Average |ΔD| across patients was 3.5 Gy (range: 0.9–10.6 Gy). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, with an average d{sub E} across patients of 5.2 mm (compared with >7 mm for the other two algorithms). Consequently, average |ΔD| was also lowest using the Fraunhofer MEVIS EMPIRE10 algorithm. |ΔD| increased significantly as a function of d{sub E} (0.42 Gy/mm), D (0.05 Gy/Gy), SD{sub dose} (1.4 Gy/Gy), and the algorithm used (≤1 Gy). Conclusions: An average error of <4 Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration, with the majority of points yielding dose-mapping error <2 Gy (approximately 3% of the total prescribed dose). Registration accuracy was highest using the Fraunhofer MEVIS EMPIRE10 algorithm, resulting in the smallest errors in mapped dose. Dose differences following registration increased significantly with increasing spatial registration errors, dose, and dose gradient (i.e., SD{sub dose}). This model provides a measurement of the uncertainty in the radiation dose when points are mapped between serial CT scans through deformable registration.« less
Accurate and robust brain image alignment using boundary-based registration.
Greve, Douglas N; Fischl, Bruce
2009-10-15
The fine spatial scales of the structures in the human brain represent an enormous challenge to the successful integration of information from different images for both within- and between-subject analysis. While many algorithms to register image pairs from the same subject exist, visual inspection shows that their accuracy and robustness to be suspect, particularly when there are strong intensity gradients and/or only part of the brain is imaged. This paper introduces a new algorithm called Boundary-Based Registration, or BBR. The novelty of BBR is that it treats the two images very differently. The reference image must be of sufficient resolution and quality to extract surfaces that separate tissue types. The input image is then aligned to the reference by maximizing the intensity gradient across tissue boundaries. Several lower quality images can be aligned through their alignment with the reference. Visual inspection and fMRI results show that BBR is more accurate than correlation ratio or normalized mutual information and is considerably more robust to even strong intensity inhomogeneities. BBR also excels at aligning partial-brain images to whole-brain images, a domain in which existing registration algorithms frequently fail. Even in the limit of registering a single slice, we show the BBR results to be robust and accurate.
Fast 3D registration of multimodality tibial images with significant structural mismatch
NASA Astrophysics Data System (ADS)
Rajapakse, C. S.; Wald, M. J.; Magland, J.; Zhang, X. H.; Liu, X. S.; Guo, X. E.; Wehrli, F. W.
2009-02-01
Recently, micro-magnetic resonance imaging (μMRI) in conjunction with micro-finite element analysis has shown great potential in estimating mechanical properties - stiffness and elastic moduli - of bone in patients at risk of osteoporosis. Due to limited spatial resolution and signal-to-noise ratio achievable in vivo, the validity of estimated properties is often established by comparison to those derived from high-resolution micro-CT (μCT) images of cadaveric specimens. For accurate comparison of mechanical parameters derived from μMR and μCT images, analyzed 3D volumes have to be closely matched. The alignment of the micro structure (and the cortex) is often hampered by the fundamental differences of μMR and μCT images and variations in marrow content and cortical bone thickness. Here we present an intensity cross-correlation based registration algorithm coupled with segmentation for registering 3D tibial specimen images acquired by μMRI and μCT in the context of finite-element modeling to assess the bone's mechanical constants. The algorithm first generates three translational and three rotational parameters required to align segmented μMR and CT images from sub regions with high micro-structural similarities. These transformation parameters are then used to register the grayscale μMR and μCT images, which include both the cortex and trabecular bone. The intensity crosscorrelation maximization based registration algorithm described here is suitable for 3D rigid-body image registration applications where through-plane rotations are known to be relatively small. The close alignment of the resulting images is demonstrated quantitatively based on a voxel-overlap measure and qualitatively using visual inspection of the micro structure.
Research on registration algorithm for check seal verification
NASA Astrophysics Data System (ADS)
Wang, Shuang; Liu, Tiegen
2008-03-01
Nowadays seals play an important role in China. With the development of social economy, the traditional method of manual check seal identification can't meet the need s of banking transactions badly. This paper focus on pre-processing and registration algorithm for check seal verification using theory of image processing and pattern recognition. First of all, analyze the complex characteristics of check seals. To eliminate the difference of producing conditions and the disturbance caused by background and writing in check image, many methods are used in the pre-processing of check seal verification, such as color components transformation, linearity transform to gray-scale image, medium value filter, Otsu, close calculations and labeling algorithm of mathematical morphology. After the processes above, the good binary seal image can be obtained. On the basis of traditional registration algorithm, a double-level registration method including rough and precise registration method is proposed. The deflection angle of precise registration method can be precise to 0.1°. This paper introduces the concepts of difference inside and difference outside and use the percent of difference inside and difference outside to judge whether the seal is real or fake. The experimental results of a mass of check seals are satisfied. It shows that the methods and algorithmic presented have good robustness to noise sealing conditions and satisfactory tolerance of difference within class.
Construction of Extended 3D Field of Views of the Internal Bladder Wall Surface: A Proof of Concept
NASA Astrophysics Data System (ADS)
Ben-Hamadou, Achraf; Daul, Christian; Soussen, Charles
2016-09-01
3D extended field of views (FOVs) of the internal bladder wall facilitate lesion diagnosis, patient follow-up and treatment traceability. In this paper, we propose a 3D image mosaicing algorithm guided by 2D cystoscopic video-image registration for obtaining textured FOV mosaics. In this feasibility study, the registration makes use of data from a 3D cystoscope prototype providing, in addition to each small FOV image, some 3D points located on the surface. This proof of concept shows that textured surfaces can be constructed with minimally modified cystoscopes. The potential of the method is demonstrated on numerical and real phantoms reproducing various surface shapes. Pig and human bladder textures are superimposed on phantoms with known shape and dimensions. These data allow for quantitative assessment of the 3D mosaicing algorithm based on the registration of images simulating bladder textures.
Kantelhardt, Sven R; Neulen, Axel; Keric, Naureen; Gutenberg, Angelika; Conrad, Jens; Giese, Alf
2017-10-01
Image-guided pedicle screw placement in the cervico-thoracic region is a commonly applied technique. In some patients with deformed cervico-thoracic segments, conventional or 3D fluoroscopy based registration of image-guidance might be difficult or impossible because of the anatomic/pathological conditions. Landmark based registration has been used as an alternative, mostly using separate registration of each vertebra. We here investigated a routine for landmark based registration of rigid spinal segments as single objects, using cranial image-guidance software. Landmark based registration of image-guidance was performed using cranial navigation software. After surgical exposure of the spinous processes, lamina and facet joints and fixation of a reference marker array, up to 26 predefined landmarks were acquired using a pointer. All pedicle screws were implanted using image guidance alone. Following image-guided screw placement all patients underwent postoperative CT scanning. Screw positions as well as intraoperative and clinical parameters were retrospectively analyzed. Thirteen patients received 73 pedicle screws at levels C6 to Th8. Registration of spinal segments, using the cranial image-guidance succeeded in all cases. Pedicle perforations were observed in 11.0%, severe perforations of >2 mm occurred in 5.4%. One patient developed a transient C8 syndrome and had to be revised for deviation of the C7 pedicle screw. No other pedicle screw-related complications were observed. In selected patients suffering from pathologies of the cervico-thoracic region, which impair intraoperative fluoroscopy or 3D C-arm imaging, landmark based registration of image-guidance using cranial software is a feasible, radiation-saving and a safe alternative.
A 4D biomechanical lung phantom for joint segmentation/registration evaluation
NASA Astrophysics Data System (ADS)
Markel, Daniel; Levesque, Ives; Larkin, Joe; Léger, Pierre; El Naqa, Issam
2016-10-01
At present, there exists few openly available methods for evaluation of simultaneous segmentation and registration algorithms. These methods allow for a combination of both techniques to track the tumor in complex settings such as adaptive radiotherapy. We have produced a quality assurance platform for evaluating this specific subset of algorithms using a preserved porcine lung in such that it is multi-modality compatible: positron emission tomography (PET), computer tomography (CT) and magnetic resonance imaging (MRI). A computer controlled respirator was constructed to pneumatically manipulate the lungs in order to replicate human breathing traces. A registration ground truth was provided using an in-house bifurcation tracking pipeline. Segmentation ground truth was provided by synthetic multi-compartment lesions to simulate biologically active tumor, background tissue and a necrotic core. The bifurcation tracking pipeline results were compared to digital deformations and used to evaluate three registration algorithms, Diffeomorphic demons, fast-symmetric forces demons and MiMVista’s deformable registration tool. Three segmentation algorithms the Chan Vese level sets method, a Hybrid technique and the multi-valued level sets algorithm. The respirator was able to replicate three seperate breathing traces with a mean accuracy of 2-2.2%. Bifurcation tracking error was found to be sub-voxel when using human CT data for displacements up to 6.5 cm and approximately 1.5 voxel widths for displacements up to 3.5 cm for the porcine lungs. For the fast-symmetric, diffeomorphic and MiMvista registration algorithms, mean geometric errors were found to be 0.430+/- 0.001 , 0.416+/- 0.001 and 0.605+/- 0.002 voxels widths respectively using the vector field differences and 0.4+/- 0.2 , 0.4+/- 0.2 and 0.6+/- 0.2 voxel widths using the bifurcation tracking pipeline. The proposed phantom was found sufficient for accurate evaluation of registration and segmentation algorithms. The use of automatically generated anatomical landmarks proposed can eliminate the time and potential innacuracy of manual landmark selection using expert observers.
Geodesic regression for image time-series.
Niethammer, Marc; Huang, Yang; Vialard, François-Xavier
2011-01-01
Registration of image-time series has so far been accomplished (i) by concatenating registrations between image pairs, (ii) by solving a joint estimation problem resulting in piecewise geodesic paths between image pairs, (iii) by kernel based local averaging or (iv) by augmenting the joint estimation with additional temporal irregularity penalties. Here, we propose a generative model extending least squares linear regression to the space of images by using a second-order dynamic formulation for image registration. Unlike previous approaches, the formulation allows for a compact representation of an approximation to the full spatio-temporal trajectory through its initial values. The method also opens up possibilities to design image-based approximation algorithms. The resulting optimization problem is solved using an adjoint method.
Scan-based volume animation driven by locally adaptive articulated registrations.
Rhee, Taehyun; Lewis, J P; Neumann, Ulrich; Nayak, Krishna S
2011-03-01
This paper describes a complete system to create anatomically accurate example-based volume deformation and animation of articulated body regions, starting from multiple in vivo volume scans of a specific individual. In order to solve the correspondence problem across volume scans, a template volume is registered to each sample. The wide range of pose variations is first approximated by volume blend deformation (VBD), providing proper initialization of the articulated subject in different poses. A novel registration method is presented to efficiently reduce the computation cost while avoiding strong local minima inherent in complex articulated body volume registration. The algorithm highly constrains the degrees of freedom and search space involved in the nonlinear optimization, using hierarchical volume structures and locally constrained deformation based on the biharmonic clamped spline. Our registration step establishes a correspondence across scans, allowing a data-driven deformation approach in the volume domain. The results provide an occlusion-free person-specific 3D human body model, asymptotically accurate inner tissue deformations, and realistic volume animation of articulated movements driven by standard joint control estimated from the actual skeleton. Our approach also addresses the practical issues arising in using scans from living subjects. The robustness of our algorithms is tested by their applications on the hand, probably the most complex articulated region in the body, and the knee, a frequent subject area for medical imaging due to injuries. © 2011 IEEE
Multimodality localization of epileptic foci
NASA Astrophysics Data System (ADS)
Desco, Manuel; Pascau, Javier; Pozo, M. A.; Santos, Andres; Reig, Santiago; Gispert, Juan D.; Garcia-Barreno, Pedro
2001-05-01
This paper presents a multimodality approach for the localization of epileptic foci using PET, MRI and EEG combined without the need of external markers. Mutual Information algorithm is used for MRI-PET registration. Dipole coordinates (provided by BESA software) are projected onto the MRI using a specifically developed algorithm. The four anatomical references used for electrode positioning (nasion, inion and two preauricular points) are located on the MRI using a triplanar viewer combined with a surface-rendering tool. Geometric transformation using deformation of the ideal sphere used for dipole calculations is then applied to match the patient's brain size and shape. Eight treatment-refractory epileptic patients have been studied. The combination of the anatomical information from the MRI, hipoperfusion areas in PET and dipole position and orientation helped the physician in the diagnosis of epileptic focus location. Neurosurgery was not indicated for patients where PET and dipole results were inconsistent; in two cases it was clinically indicated despite the mismatch, showing a negative follow up. The multimodality approach presented does not require external markers for dipole projection onto the MRI, this being the main difference with previous methods. The proposed method may play an important role in the indication of surgery for treatment- refractory epileptic patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q; School of Nuclear Science and Technology, Hefei, Anhui; Anhui Medical University, Hefei, Anhui
Purpose: The purpose of this work was to develop a registration framework and method based on the software platform of ARTS-IGRT and implement in C++ based on ITK libraries to register CT images and CBCT images. ARTS-IGRT was a part of our self-developed accurate radiation planning system ARTS. Methods: Mutual information (MI) registration treated each voxel equally. Actually, different voxels even having same intensity should be treated differently in the registration procedure. According to their importance values calculated from self-information, a similarity measure was proposed which combined the spatial importance of a voxel with MI (S-MI). For lung registration, Firstly,more » a global alignment method was adopted to minimize the margin error and achieve the alignment of these two images on the whole. The result obtained at the low resolution level was then interpolated to become the initial conditions for the higher resolution computation. Secondly, a new similarity measurement S-MI was established to quantify how close the two input image volumes were to each other. Finally, Demons model was applied to compute the deformable map. Results: Registration tools were tested for head-neck and lung images and the average region was 128*128*49. The rigid registration took approximately 2 min and converged 10% faster than traditional MI algorithm, the accuracy reached 1mm for head-neck images. For lung images, the improved symmetric Demons registration process was completed in an average of 5 min using a 2.4GHz dual core CPU. Conclusion: A registration framework was developed to correct patient's setup according to register the planning CT volume data and the daily reconstructed 3D CBCT data. The experiments showed that the spatial MI algorithm can be adopted for head-neck images. The improved Demons deformable registration was more suitable to lung images, and rigid alignment should be applied before deformable registration to get more accurate result. Supported by National Natural Science Foundation of China (NO.81101132) and Natural Science Foundation of Anhui Province (NO.11040606Q55)« less
Mitrović, Uroš; Likar, Boštjan; Pernuš, Franjo; Špiclin, Žiga
2018-02-01
Image guidance for minimally invasive surgery is based on spatial co-registration and fusion of 3D pre-interventional images and treatment plans with the 2D live intra-interventional images. The spatial co-registration or 3D-2D registration is the key enabling technology; however, the performance of state-of-the-art automated methods is rather unclear as they have not been assessed under the same test conditions. Herein we perform a quantitative and comparative evaluation of ten state-of-the-art methods for 3D-2D registration on a public dataset of clinical angiograms. Image database consisted of 3D and 2D angiograms of 25 patients undergoing treatment for cerebral aneurysms or arteriovenous malformations. On each of the datasets, highly accurate "gold-standard" registrations of 3D and 2D images were established based on patient-attached fiducial markers. The database was used to rigorously evaluate ten state-of-the-art 3D-2D registration methods, namely two intensity-, two gradient-, three feature-based and three hybrid methods, both for registration of 3D pre-interventional image to monoplane or biplane 2D images. Intensity-based methods were most accurate in all tests (0.3 mm). One of the hybrid methods was most robust with 98.75% of successful registrations (SR) and capture range of 18 mm for registrations of 3D to biplane 2D angiograms. In general, registration accuracy was similar whether registration of 3D image was performed onto mono- or biplanar 2D images; however, the SR was substantially lower in case of 3D to monoplane 2D registration. Two feature-based and two hybrid methods had clinically feasible execution times in the order of a second. Performance of methods seems to fall below expectations in terms of robustness in case of registration of 3D to monoplane 2D images, while translation into clinical image guidance systems seems readily feasible for methods that perform registration of the 3D pre-interventional image onto biplanar intra-interventional 2D images.
Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles.
Xing, Boyang; Zhu, Quanmin; Pan, Feng; Feng, Xiaoxue
2018-05-25
A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland). Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB) beacon and lidar) to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV) visual localization and robotics control.
A novel image registration approach via combining local features and geometric invariants
Lu, Yan; Gao, Kun; Zhang, Tinghua; Xu, Tingfa
2018-01-01
Image registration is widely used in many fields, but the adaptability of the existing methods is limited. This work proposes a novel image registration method with high precision for various complex applications. In this framework, the registration problem is divided into two stages. First, we detect and describe scale-invariant feature points using modified computer vision-oriented fast and rotated brief (ORB) algorithm, and a simple method to increase the performance of feature points matching is proposed. Second, we develop a new local constraint of rough selection according to the feature distances. Evidence shows that the existing matching techniques based on image features are insufficient for the images with sparse image details. Then, we propose a novel matching algorithm via geometric constraints, and establish local feature descriptions based on geometric invariances for the selected feature points. Subsequently, a new price function is constructed to evaluate the similarities between points and obtain exact matching pairs. Finally, we employ the progressive sample consensus method to remove wrong matches and calculate the space transform parameters. Experimental results on various complex image datasets verify that the proposed method is more robust and significantly reduces the rate of false matches while retaining more high-quality feature points. PMID:29293595
On-line range images registration with GPGPU
NASA Astrophysics Data System (ADS)
Będkowski, J.; Naruniec, J.
2013-03-01
This paper concerns implementation of algorithms in the two important aspects of modern 3D data processing: data registration and segmentation. Solution proposed for the first topic is based on the 3D space decomposition, while the latter on image processing and local neighbourhood search. Data processing is implemented by using NVIDIA compute unified device architecture (NIVIDIA CUDA) parallel computation. The result of the segmentation is a coloured map where different colours correspond to different objects, such as walls, floor and stairs. The research is related to the problem of collecting 3D data with a RGB-D camera mounted on a rotated head, to be used in mobile robot applications. Performance of the data registration algorithm is aimed for on-line processing. The iterative closest point (ICP) approach is chosen as a registration method. Computations are based on the parallel fast nearest neighbour search. This procedure decomposes 3D space into cubic buckets and, therefore, the time of the matching is deterministic. First technique of the data segmentation uses accele-rometers integrated with a RGB-D sensor to obtain rotation compensation and image processing method for defining pre-requisites of the known categories. The second technique uses the adapted nearest neighbour search procedure for obtaining normal vectors for each range point.
An Adaptive MR-CT Registration Method for MRI-guided Prostate Cancer Radiotherapy
Zhong, Hualiang; Wen, Ning; Gordon, James; Elshaikh, Mohamed A; Movsas, Benjamin; Chetty, Indrin J.
2015-01-01
Magnetic Resonance images (MRI) have superior soft tissue contrast compared with CT images. Therefore, MRI might be a better imaging modality to differentiate the prostate from surrounding normal organs. Methods to accurately register MRI to simulation CT images are essential, as we transition the use of MRI into the routine clinic setting. In this study, we present a finite element method (FEM) to improve the performance of a commercially available, B-spline-based registration algorithm in the prostate region. Specifically, prostate contours were delineated independently on ten MRI and CT images using the Eclipse treatment planning system. Each pair of MRI and CT images was registered with the B-spline-based algorithm implemented in the VelocityAI system. A bounding box that contains the prostate volume in the CT image was selected and partitioned into a tetrahedral mesh. An adaptive finite element method was then developed to adjust the displacement vector fields (DVFs) of the B-spline-based registrations within the box. The B-spline and FEM-based registrations were evaluated based on the variations of prostate volume and tumor centroid, the unbalanced energy of the generated DVFs, and the clarity of the reconstructed anatomical structures. The results showed that the volumes of the prostate contours warped with the B-spline-based DVFs changed 10.2% on average, relative to the volumes of the prostate contours on the original MR images. This discrepancy was reduced to 1.5% for the FEM-based DVFs. The average unbalanced energy was 2.65 and 0.38 mJ/cm3, and the prostate centroid deviation was 0.37 and 0.28 cm, for the B-spline and FEM-based registrations, respectively. Different from the B-spline-warped MR images, the FEM-warped MR images have clear boundaries between prostates and bladders, and their internal prostatic structures are consistent with those of the original MR images. In summary, the developed adaptive FEM method preserves the prostate volume during the transformation between the MR and CT images and improves the accuracy of the B-spline registrations in the prostate region. The approach will be valuable for development of high-quality MRI-guided radiation therapy. PMID:25775937
An adaptive MR-CT registration method for MRI-guided prostate cancer radiotherapy
NASA Astrophysics Data System (ADS)
Zhong, Hualiang; Wen, Ning; Gordon, James J.; Elshaikh, Mohamed A.; Movsas, Benjamin; Chetty, Indrin J.
2015-04-01
Magnetic Resonance images (MRI) have superior soft tissue contrast compared with CT images. Therefore, MRI might be a better imaging modality to differentiate the prostate from surrounding normal organs. Methods to accurately register MRI to simulation CT images are essential, as we transition the use of MRI into the routine clinic setting. In this study, we present a finite element method (FEM) to improve the performance of a commercially available, B-spline-based registration algorithm in the prostate region. Specifically, prostate contours were delineated independently on ten MRI and CT images using the Eclipse treatment planning system. Each pair of MRI and CT images was registered with the B-spline-based algorithm implemented in the VelocityAI system. A bounding box that contains the prostate volume in the CT image was selected and partitioned into a tetrahedral mesh. An adaptive finite element method was then developed to adjust the displacement vector fields (DVFs) of the B-spline-based registrations within the box. The B-spline and FEM-based registrations were evaluated based on the variations of prostate volume and tumor centroid, the unbalanced energy of the generated DVFs, and the clarity of the reconstructed anatomical structures. The results showed that the volumes of the prostate contours warped with the B-spline-based DVFs changed 10.2% on average, relative to the volumes of the prostate contours on the original MR images. This discrepancy was reduced to 1.5% for the FEM-based DVFs. The average unbalanced energy was 2.65 and 0.38 mJ cm-3, and the prostate centroid deviation was 0.37 and 0.28 cm, for the B-spline and FEM-based registrations, respectively. Different from the B-spline-warped MR images, the FEM-warped MR images have clear boundaries between prostates and bladders, and their internal prostatic structures are consistent with those of the original MR images. In summary, the developed adaptive FEM method preserves the prostate volume during the transformation between the MR and CT images and improves the accuracy of the B-spline registrations in the prostate region. The approach will be valuable for the development of high-quality MRI-guided radiation therapy.
An optical systems analysis approach to image resampling
NASA Technical Reports Server (NTRS)
Lyon, Richard G.
1997-01-01
All types of image registration require some type of resampling, either during the registration or as a final step in the registration process. Thus the image(s) must be regridded into a spatially uniform, or angularly uniform, coordinate system with some pre-defined resolution. Frequently the ending resolution is not the resolution at which the data was observed with. The registration algorithm designer and end product user are presented with a multitude of possible resampling methods each of which modify the spatial frequency content of the data in some way. The purpose of this paper is threefold: (1) to show how an imaging system modifies the scene from an end to end optical systems analysis approach, (2) to develop a generalized resampling model, and (3) empirically apply the model to simulated radiometric scene data and tabulate the results. A Hanning windowed sinc interpolator method will be developed based upon the optical characterization of the system. It will be discussed in terms of the effects and limitations of sampling, aliasing, spectral leakage, and computational complexity. Simulated radiometric scene data will be used to demonstrate each of the algorithms. A high resolution scene will be "grown" using a fractal growth algorithm based on mid-point recursion techniques. The result scene data will be convolved with a point spread function representing the optical response. The resultant scene will be convolved with the detection systems response and subsampled to the desired resolution. The resultant data product will be subsequently resampled to the correct grid using the Hanning windowed sinc interpolator and the results and errors tabulated and discussed.
Global image registration using a symmetric block-matching approach
Modat, Marc; Cash, David M.; Daga, Pankaj; Winston, Gavin P.; Duncan, John S.; Ourselin, Sébastien
2014-01-01
Abstract. Most medical image registration algorithms suffer from a directionality bias that has been shown to largely impact subsequent analyses. Several approaches have been proposed in the literature to address this bias in the context of nonlinear registration, but little work has been done for global registration. We propose a symmetric approach based on a block-matching technique and least-trimmed square regression. The proposed method is suitable for multimodal registration and is robust to outliers in the input images. The symmetric framework is compared with the original asymmetric block-matching technique and is shown to outperform it in terms of accuracy and robustness. The methodology presented in this article has been made available to the community as part of the NiftyReg open-source package. PMID:26158035
An efficient direct method for image registration of flat objects
NASA Astrophysics Data System (ADS)
Nikolaev, Dmitry; Tihonkih, Dmitrii; Makovetskii, Artyom; Voronin, Sergei
2017-09-01
Image alignment of rigid surfaces is a rapidly developing area of research and has many practical applications. Alignment methods can be roughly divided into two types: feature-based methods and direct methods. Known SURF and SIFT algorithms are examples of the feature-based methods. Direct methods refer to those that exploit the pixel intensities without resorting to image features and image-based deformations are general direct method to align images of deformable objects in 3D space. Nevertheless, it is not good for the registration of images of 3D rigid objects since the underlying structure cannot be directly evaluated. In the article, we propose a model that is suitable for image alignment of rigid flat objects under various illumination models. The brightness consistency assumptions used for reconstruction of optimal geometrical transformation. Computer simulation results are provided to illustrate the performance of the proposed algorithm for computing of an accordance between pixels of two images.
Inhomogeneity compensation for MR brain image segmentation using a multi-stage FCM-based approach.
Szilágyi, László; Szilágyi, Sándor M; Dávid, László; Benyó, Zoltán
2008-01-01
Intensity inhomogeneity or intensity non-uniformity (INU) is an undesired phenomenon that represents the main obstacle for MR image segmentation and registration methods. Various techniques have been proposed to eliminate or compensate the INU, most of which are embedded into clustering algorithms. This paper proposes a multiple stage fuzzy c-means (FCM) based algorithm for the estimation and compensation of the slowly varying additive or multiplicative noise, supported by a pre-filtering technique for Gaussian and impulse noise elimination. The slowly varying behavior of the bias or gain field is assured by a smoothening filter that performs a context dependent averaging, based on a morphological criterion. The experiments using 2-D synthetic phantoms and real MR images show, that the proposed method provides accurate segmentation. The produced segmentation and fuzzy membership values can serve as excellent support for 3-D registration and segmentation techniques.
a Global Registration Algorithm of the Single-Closed Ring Multi-Stations Point Cloud
NASA Astrophysics Data System (ADS)
Yang, R.; Pan, L.; Xiang, Z.; Zeng, H.
2018-04-01
Aimed at the global registration problem of the single-closed ring multi-stations point cloud, a formula in order to calculate the error of rotation matrix was constructed according to the definition of error. The global registration algorithm of multi-station point cloud was derived to minimize the error of rotation matrix. And fast-computing formulas of transformation matrix with whose implementation steps and simulation experiment scheme was given. Compared three different processing schemes of multi-station point cloud, the experimental results showed that the effectiveness of the new global registration method was verified, and it could effectively complete the global registration of point cloud.
Marker-Based Hierarchical Segmentation and Classification Approach for Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Tarabalka, Yuliya; Tilton, James C.; Benediktsson, Jon Atli; Chanussot, Jocelyn
2011-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, pixelwise classification is performed and the most reliably classified pixels are selected as markers, with the corresponding class labels. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.
Preliminary results in large bone segmentation from 3D freehand ultrasound
NASA Astrophysics Data System (ADS)
Fanti, Zian; Torres, Fabian; Arámbula Cosío, Fernando
2013-11-01
Computer Assisted Orthopedic Surgery (CAOS) requires a correct registration between the patient in the operating room and the virtual models representing the patient in the computer. In order to increase the precision and accuracy of the registration a set of new techniques that eliminated the need to use fiducial markers have been developed. The majority of these newly developed registration systems are based on costly intraoperative imaging systems like Computed Tomography (CT scan) or Magnetic resonance imaging (MRI). An alternative to these methods is the use of an Ultrasound (US) imaging system for the implementation of a more cost efficient intraoperative registration solution. In order to develop the registration solution with the US imaging system, the bone surface is segmented in both preoperative and intraoperative images, and the registration is done using the acquire surface. In this paper, we present the a preliminary results of a new approach to segment bone surface from ultrasound volumes acquired by means 3D freehand ultrasound. The method is based on the enhancement of the voxels that belongs to surface and its posterior segmentation. The enhancement process is based on the information provided by eigenanalisis of the multiscale 3D Hessian matrix. The preliminary results shows that from the enhance volume the final bone surfaces can be extracted using a singular value thresholding.
Multi-sensor image registration based on algebraic projective invariants.
Li, Bin; Wang, Wei; Ye, Hao
2013-04-22
A new automatic feature-based registration algorithm is presented for multi-sensor images with projective deformation. Contours are firstly extracted from both reference and sensed images as basic features in the proposed method. Since it is difficult to design a projective-invariant descriptor from the contour information directly, a new feature named Five Sequential Corners (FSC) is constructed based on the corners detected from the extracted contours. By introducing algebraic projective invariants, we design a descriptor for each FSC that is ensured to be robust against projective deformation. Further, no gray scale related information is required in calculating the descriptor, thus it is also robust against the gray scale discrepancy between the multi-sensor image pairs. Experimental results utilizing real image pairs are presented to show the merits of the proposed registration method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stützer, Kristin; Haase, Robert; Exner, Florian
2016-09-15
Purpose: Rating both a lung segmentation algorithm and a deformable image registration (DIR) algorithm for subsequent lung computed tomography (CT) images by different evaluation techniques. Furthermore, investigating the relative performance and the correlation of the different evaluation techniques to address their potential value in a clinical setting. Methods: Two to seven subsequent CT images (69 in total) of 15 lung cancer patients were acquired prior, during, and after radiochemotherapy. Automated lung segmentations were compared to manually adapted contours. DIR between the first and all following CT images was performed with a fast algorithm specialized for lung tissue registration, requiring themore » lung segmentation as input. DIR results were evaluated based on landmark distances, lung contour metrics, and vector field inconsistencies in different subvolumes defined by eroding the lung contour. Correlations between the results from the three methods were evaluated. Results: Automated lung contour segmentation was satisfactory in 18 cases (26%), failed in 6 cases (9%), and required manual correction in 45 cases (66%). Initial and corrected contours had large overlap but showed strong local deviations. Landmark-based DIR evaluation revealed high accuracy compared to CT resolution with an average error of 2.9 mm. Contour metrics of deformed contours were largely satisfactory. The median vector length of inconsistency vector fields was 0.9 mm in the lung volume and slightly smaller for the eroded volumes. There was no clear correlation between the three evaluation approaches. Conclusions: Automatic lung segmentation remains challenging but can assist the manual delineation process. Proven by three techniques, the inspected DIR algorithm delivers reliable results for the lung CT data sets acquired at different time points. Clinical application of DIR demands a fast DIR evaluation to identify unacceptable results, for instance, by combining different automated DIR evaluation methods.« less
Mammogram registration using the Cauchy-Navier spline
NASA Astrophysics Data System (ADS)
Wirth, Michael A.; Choi, Christopher
2001-07-01
The process of comparative analysis involves inspecting mammograms for characteristic signs of potential cancer by comparing various analogous mammograms. Factors such as the deformable behavior of the breast, changes in breast positioning, and the amount/geometry of compression may contribute to spatial differences between corresponding structures in corresponding mammograms, thereby significantly complicating comparative analysis. Mammogram registration is a process whereby spatial differences between mammograms can be reduced. Presented in this paper is a nonrigid approach to matching corresponding mammograms based on a physical registration model. Many of the earliest approaches to mammogram registration used spatial transformations which were innately rigid or affine in nature. More recently algorithms have incorporated radial basis functions such as the Thin-Plate Spline to match mammograms. The approach presented here focuses on the use of the Cauchy-Navier Spline, a deformable registration model which offers approximate nonrigid registration. The utility of the Cauchy-Navier Spline is illustrated by matching both temporal and bilateral mammograms.
Algorithms of Crescent Structure Detection in Human Biological Fluid Facies
NASA Astrophysics Data System (ADS)
Krasheninnikov, V. R.; Malenova, O. E.; Yashina, A. S.
2017-05-01
One of the effective methods of early medical diagnosis is based on the image analysis of human biological fluids. In the process of fluid crystallization there appear characteristic patterns (markers) in the resulting layer (facies). Each marker is a highly probable sign of some pathology even at an early stage of a disease development. When mass health examination is carried out, it is necessary to analyze a large number of images. That is why, the problem of algorithm and software development for automated processing of images is rather urgent nowadays. This paper presents algorithms to detect a crescent structures in images of blood serum and cervical mucus facies. Such a marker indicates the symptoms of ischemic disease. The algorithm presented detects this marker with high probability when the probability of false alarm is low.
Hamy, Valentin; Dikaios, Nikolaos; Punwani, Shonit; Melbourne, Andrew; Latifoltojar, Arash; Makanyanga, Jesica; Chouhan, Manil; Helbren, Emma; Menys, Alex; Taylor, Stuart; Atkinson, David
2014-02-01
Motion correction in Dynamic Contrast Enhanced (DCE-) MRI is challenging because rapid intensity changes can compromise common (intensity based) registration algorithms. In this study we introduce a novel registration technique based on robust principal component analysis (RPCA) to decompose a given time-series into a low rank and a sparse component. This allows robust separation of motion components that can be registered, from intensity variations that are left unchanged. This Robust Data Decomposition Registration (RDDR) is demonstrated on both simulated and a wide range of clinical data. Robustness to different types of motion and breathing choices during acquisition is demonstrated for a variety of imaged organs including liver, small bowel and prostate. The analysis of clinically relevant regions of interest showed both a decrease of error (15-62% reduction following registration) in tissue time-intensity curves and improved areas under the curve (AUC60) at early enhancement. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
A street rubbish detection algorithm based on Sift and RCNN
NASA Astrophysics Data System (ADS)
Yu, XiPeng; Chen, Zhong; Zhang, Shuo; Zhang, Ting
2018-02-01
This paper presents a street rubbish detection algorithm based on image registration with Sift feature and RCNN. Firstly, obtain the rubbish region proposal on the real-time street image and set up the CNN convolution neural network trained by the rubbish samples set consists of rubbish and non-rubbish images; Secondly, for every clean street image, obtain the Sift feature and do image registration with the real-time street image to obtain the differential image, the differential image filters a lot of background information, obtain the rubbish region proposal rect where the rubbish may appear on the differential image by the selective search algorithm. Then, the CNN model is used to detect the image pixel data in each of the region proposal on the real-time street image. According to the output vector of the CNN, it is judged whether the rubbish is in the region proposal or not. If it is rubbish, the region proposal on the real-time street image is marked. This algorithm avoids the large number of false detection caused by the detection on the whole image because the CNN is used to identify the image only in the region proposal on the real-time street image that may appear rubbish. Different from the traditional object detection algorithm based on the region proposal, the region proposal is obtained on the differential image not whole real-time street image, and the number of the invalid region proposal is greatly reduced. The algorithm has the high mean average precision (mAP).
Accurate registration of temporal CT images for pulmonary nodules detection
NASA Astrophysics Data System (ADS)
Yan, Jichao; Jiang, Luan; Li, Qiang
2017-02-01
Interpretation of temporal CT images could help the radiologists to detect some subtle interval changes in the sequential examinations. The purpose of this study was to develop a fully automated scheme for accurate registration of temporal CT images for pulmonary nodule detection. Our method consisted of three major registration steps. Firstly, affine transformation was applied in the segmented lung region to obtain global coarse registration images. Secondly, B-splines based free-form deformation (FFD) was used to refine the coarse registration images. Thirdly, Demons algorithm was performed to align the feature points extracted from the registered images in the second step and the reference images. Our database consisted of 91 temporal CT cases obtained from Beijing 301 Hospital and Shanghai Changzheng Hospital. The preliminary results showed that approximately 96.7% cases could obtain accurate registration based on subjective observation. The subtraction images of the reference images and the rigid and non-rigid registered images could effectively remove the normal structures (i.e. blood vessels) and retain the abnormalities (i.e. pulmonary nodules). This would be useful for the screening of lung cancer in our future study.
Mohammadi, Amrollah; Ahmadian, Alireza; Rabbani, Shahram; Fattahi, Ehsan; Shirani, Shapour
2017-12-01
Finite element models for estimation of intraoperative brain shift suffer from huge computational cost. In these models, image registration and finite element analysis are two time-consuming processes. The proposed method is an improved version of our previously developed Finite Element Drift (FED) registration algorithm. In this work the registration process is combined with the finite element analysis. In the Combined FED (CFED), the deformation of whole brain mesh is iteratively calculated by geometrical extension of a local load vector which is computed by FED. While the processing time of the FED-based method including registration and finite element analysis was about 70 s, the computation time of the CFED was about 3.2 s. The computational cost of CFED is almost 50% less than similar state of the art brain shift estimators based on finite element models. The proposed combination of registration and structural analysis can make the calculation of brain deformation much faster. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cline, K; Narayanasamy, G; Obediat, M
Purpose: Deformable image registration (DIR) is used routinely in the clinic without a formalized quality assurance (QA) process. Using simulated deformations to digitally deform images in a known way and comparing to DIR algorithm predictions is a powerful technique for DIR QA. This technique must also simulate realistic image noise and artifacts, especially between modalities. This study developed an algorithm to create simulated daily kV cone-beam computed-tomography (CBCT) images from CT images for DIR QA between these modalities. Methods: A Catphan and physical head-and-neck phantom, with known deformations, were used. CT and kV-CBCT images of the Catphan were utilized tomore » characterize the changes in Hounsfield units, noise, and image cupping that occur between these imaging modalities. The algorithm then imprinted these changes onto a CT image of the deformed head-and-neck phantom, thereby creating a simulated-CBCT image. CT and kV-CBCT images of the undeformed and deformed head-and-neck phantom were also acquired. The Velocity and MIM DIR algorithms were applied between the undeformed CT image and each of the deformed CT, CBCT, and simulated-CBCT images to obtain predicted deformations. The error between the known and predicted deformations was used as a metric to evaluate the quality of the simulated-CBCT image. Ideally, the simulated-CBCT image registration would produce the same accuracy as the deformed CBCT image registration. Results: For Velocity, the mean error was 1.4 mm for the CT-CT registration, 1.7 mm for the CT-CBCT registration, and 1.4 mm for the CT-simulated-CBCT registration. These same numbers were 1.5, 4.5, and 5.9 mm, respectively, for MIM. Conclusion: All cases produced similar accuracy for Velocity. MIM produced similar values of accuracy for CT-CT registration, but was not as accurate for CT-CBCT registrations. The MIM simulated-CBCT registration followed this same trend, but overestimated MIM DIR errors relative to the CT-CBCT registration.« less
NASA Astrophysics Data System (ADS)
Zhang, Dongqing; Liu, Yuan; Noble, Jack H.; Dawant, Benoit M.
2016-03-01
Cochlear Implants (CIs) are electrode arrays that are surgically inserted into the cochlea. Individual contacts stimulate frequency-mapped nerve endings thus replacing the natural electro-mechanical transduction mechanism. CIs are programmed post-operatively by audiologists but this is currently done using behavioral tests without imaging information that permits relating electrode position to inner ear anatomy. We have recently developed a series of image processing steps that permit the segmentation of the inner ear anatomy and the localization of individual contacts. We have proposed a new programming strategy that uses this information and we have shown in a study with 68 participants that 78% of long term recipients preferred the programming parameters determined with this new strategy. A limiting factor to the large scale evaluation and deployment of our technique is the amount of user interaction still required in some of the steps used in our sequence of image processing algorithms. One such step is the rough registration of an atlas to target volumes prior to the use of automated intensity-based algorithms when the target volumes have very different fields of view and orientations. In this paper we propose a solution to this problem. It relies on a random forest-based approach to automatically localize a series of landmarks. Our results obtained from 83 images with 132 registration tasks show that automatic initialization of an intensity-based algorithm proves to be a reliable technique to replace the manual step.
Fabri, Daniella; Zambrano, Valentina; Bhatia, Amon; Furtado, Hugo; Bergmann, Helmar; Stock, Markus; Bloch, Christoph; Lütgendorf-Caucig, Carola; Pawiro, Supriyanto; Georg, Dietmar; Birkfellner, Wolfgang; Figl, Michael
2013-01-01
We present an evaluation of various non-rigid registration algorithms for the purpose of compensating interfractional motion of the target volume and organs at risk areas when acquiring CBCT image data prior to irradiation. Three different deformable registration (DR) methods were used: the Demons algorithm implemented in the iPlan Software (BrainLAB AG, Feldkirchen, Germany) and two custom-developed piecewise methods using either a Normalized Correlation or a Mutual Information metric (featureletNC and featureletMI). These methods were tested on data acquired using a novel purpose-built phantom for deformable registration and clinical CT/CBCT data of prostate and lung cancer patients. The Dice similarity coefficient (DSC) between manually drawn contours and the contours generated by a derived deformation field of the structures in question was compared to the result obtained with rigid registration (RR). For the phantom, the piecewise methods were slightly superior, the featureletNC for the intramodality and the featureletMI for the intermodality registrations. For the prostate cases in less than 50% of the images studied the DSC was improved over RR. Deformable registration methods improved the outcome over a rigid registration for lung cases and in the phantom study, but not in a significant way for the prostate study. A significantly superior deformation method could not be identified. PMID:23969092
Moon, Chung-Man; Shin, Il-Seon; Jeong, Gwang-Woo
2017-02-01
Background Non-invasive imaging markers can be used to diagnose Alzheimer's disease (AD) in its early stages, but an optimized quantification analysis to measure the brain integrity has been less studied. Purpose To evaluate white matter volume change and its correlation with neuropsychological scales in patients with AD using a diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL)-based voxel-based morphometry (VBM). Material and Methods The 21 participants comprised 11 patients with AD and 10 age-matched healthy controls. High-resolution magnetic resonance imaging (MRI) data were processed by VBM analysis based on DARTEL algorithm. Results The patients showed significant white matter volume reductions in the posterior limb of the internal capsule, cerebral peduncle of the midbrain, and parahippocampal gyrus compared to healthy controls. In correlation analysis, the parahippocampal volume was positively correlated with the Korean-mini mental state examination score in AD. Conclusion This study provides an evidence for localized white matter volume deficits in conjunction with cognitive dysfunction in AD. These findings would be helpful to understand the neuroanatomical mechanisms in AD and to robust the diagnostic accuracy for AD.
Splint sterilization--a potential registration hazard in computer-assisted surgery.
Figl, Michael; Weber, Christoph; Assadian, Ojan; Toma, Cyril D; Traxler, Hannes; Seemann, Rudolf; Guevara-Rojas, Godoberto; Pöschl, Wolfgang P; Ewers, Rolf; Schicho, Kurt
2012-04-01
Registration of preoperative targeting information for the intraoperative situation is a crucial step in computer-assisted surgical interventions. Point-to-point registration using acrylic splints is among the most frequently used procedures. There are, however, no generally accepted recommendations for sterilization of the splint. An appropriate method for the thermolabile splint would be hydrogen peroxide-based plasma sterilization. This study evaluated the potential deformation of the splint undergoing such sterilization. Deformation was quantified using image-processing methods applied to computed tomographic (CT) volumes before and after sterilization. An acrylic navigation splint was used as the study object. Eight metallic markers placed in the splint were used for registration. Six steel spheres in the mouthpiece were used as targets. Two CT volumes of the splint were acquired before and after 5 sterilization cycles using a hydrogen peroxide sterilizer. Point-to-point registration was applied, and fiducial and target registration errors were computed. Surfaces were extracted from CT scans and Hausdorff distances were derived. Effectiveness of sterilization was determined using Geobacillus stearothermophilus. Fiducial-based registration of CT scans before and after sterilization resulted in a mean fiducial registration error of 0.74 mm; the target registration error in the mouthpiece was 0.15 mm. The Hausdorff distance, describing the maximal deformation of the splint, was 2.51 mm. Ninety percent of point-surface distances were shorter than 0.61 mm, and 95% were shorter than 0.73 mm. No bacterial growth was found after the sterilization process. Hydrogen peroxide-based low-temperature plasma sterilization does not deform the splint, which is the base for correct computer-navigated surgery. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Registration of interferometric SAR images
NASA Technical Reports Server (NTRS)
Lin, Qian; Vesecky, John F.; Zebker, Howard A.
1992-01-01
Interferometric synthetic aperture radar (INSAR) is a new way of performing topography mapping. Among the factors critical to mapping accuracy is the registration of the complex SAR images from repeated orbits. A new algorithm for registering interferometric SAR images is presented. A new figure of merit, the average fluctuation function of the phase difference image, is proposed to evaluate the fringe pattern quality. The process of adjusting the registration parameters according to the fringe pattern quality is optimized through a downhill simplex minimization algorithm. The results of applying the proposed algorithm to register two pairs of Seasat SAR images with a short baseline (75 m) and a long baseline (500 m) are shown. It is found that the average fluctuation function is a very stable measure of fringe pattern quality allowing very accurate registration.
Towards operational multisensor registration
NASA Technical Reports Server (NTRS)
Rignot, Eric J. M.; Kwok, Ronald; Curlander, John C.
1991-01-01
To use data from a number of different remote sensors in a synergistic manner, a multidimensional analysis of the data is necessary. However, prior to this analysis, processing to correct for the systematic geometric distortion characteristic of each sensor is required. Furthermore, the registration process must be fully automated to handle a large volume of data and high data rates. A conceptual approach towards an operational multisensor registration algorithm is presented. The performance requirements of the algorithm are first formulated given the spatially, temporally, and spectrally varying factors that influence the image characteristics and the science requirements of various applications. Several registration techniques that fit within the structure of this algorithm are also presented. Their performance was evaluated using a multisensor test data set assembled from LANDSAT TM, SEASAT, SIR-B, Thermal Infrared Multispectral Scanner (TIMS), and SPOT sensors.
Peyrat, Jean-Marc; Delingette, Hervé; Sermesant, Maxime; Xu, Chenyang; Ayache, Nicholas
2010-07-01
We propose a framework for the nonlinear spatiotemporal registration of 4D time-series of images based on the Diffeomorphic Demons (DD) algorithm. In this framework, the 4D spatiotemporal registration is decoupled into a 4D temporal registration, defined as mapping physiological states, and a 4D spatial registration, defined as mapping trajectories of physical points. Our contribution focuses more specifically on the 4D spatial registration that should be consistent over time as opposed to 3D registration that solely aims at mapping homologous points at a given time-point. First, we estimate in each sequence the motion displacement field, which is a dense representation of the point trajectories we want to register. Then, we perform simultaneously 3D registrations of corresponding time-points with the constraints to map the same physical points over time called the trajectory constraints. Under these constraints, we show that the 4D spatial registration can be formulated as a multichannel registration of 3D images. To solve it, we propose a novel version of the Diffeomorphic Demons (DD) algorithm extended to vector-valued 3D images, the Multichannel Diffeomorphic Demons (MDD). For evaluation, this framework is applied to the registration of 4D cardiac computed tomography (CT) sequences and compared to other standard methods with real patient data and synthetic data simulated from a physiologically realistic electromechanical cardiac model. Results show that the trajectory constraints act as a temporal regularization consistent with motion whereas the multichannel registration acts as a spatial regularization. Finally, using these trajectory constraints with multichannel registration yields the best compromise between registration accuracy, temporal and spatial smoothness, and computation times. A prospective example of application is also presented with the spatiotemporal registration of 4D cardiac CT sequences of the same patient before and after radiofrequency ablation (RFA) in case of atrial fibrillation (AF). The intersequence spatial transformations over a cardiac cycle allow to analyze and quantify the regression of left ventricular hypertrophy and its impact on the cardiac function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Ping; Napel, Sandy; Acar, Burak
2004-10-01
Computed tomography colonography (CTC) is a minimally invasive method that allows the evaluation of the colon wall from CT sections of the abdomen/pelvis. The primary goal of CTC is to detect colonic polyps, precursors to colorectal cancer. Because imperfect cleansing and distension can cause portions of the colon wall to be collapsed, covered with water, and/or covered with retained stool, patients are scanned in both prone and supine positions. We believe that both reading efficiency and computer aided detection (CAD) of CTC images can be improved by accurate registration of data from the supine and prone positions. We developed amore » two-stage approach that first registers the colonic central paths using a heuristic and automated algorithm and then matches polyps or polyp candidates (CAD hits) by a statistical approach. We evaluated the registration algorithm on 24 patient cases. After path registration, the mean misalignment distance between prone and supine identical anatomic landmarks was reduced from 47.08 to 12.66 mm, a 73% improvement. The polyp registration algorithm was specifically evaluated using eight patient cases for which radiologists identified polyps separately for both supine and prone data sets, and then manually registered corresponding pairs. The algorithm correctly matched 78% of these pairs without user input. The algorithm was also applied to the 30 highest-scoring CAD hits in the prone and supine scans and showed a success rate of 50% in automatically registering corresponding polyp pairs. Finally, we computed the average number of CAD hits that need to be manually compared in order to find the correct matches among the top 30 CAD hits. With polyp registration, the average number of comparisons was 1.78 per polyp, as opposed to 4.28 comparisons without polyp registration.« less
MARS: a mouse atlas registration system based on a planar x-ray projector and an optical camera
NASA Astrophysics Data System (ADS)
Wang, Hongkai; Stout, David B.; Taschereau, Richard; Gu, Zheng; Vu, Nam T.; Prout, David L.; Chatziioannou, Arion F.
2012-10-01
This paper introduces a mouse atlas registration system (MARS), composed of a stationary top-view x-ray projector and a side-view optical camera, coupled to a mouse atlas registration algorithm. This system uses the x-ray and optical images to guide a fully automatic co-registration of a mouse atlas with each subject, in order to provide anatomical reference for small animal molecular imaging systems such as positron emission tomography (PET). To facilitate the registration, a statistical atlas that accounts for inter-subject anatomical variations was constructed based on 83 organ-labeled mouse micro-computed tomography (CT) images. The statistical shape model and conditional Gaussian model techniques were used to register the atlas with the x-ray image and optical photo. The accuracy of the atlas registration was evaluated by comparing the registered atlas with the organ-labeled micro-CT images of the test subjects. The results showed excellent registration accuracy of the whole-body region, and good accuracy for the brain, liver, heart, lungs and kidneys. In its implementation, the MARS was integrated with a preclinical PET scanner to deliver combined PET/MARS imaging, and to facilitate atlas-assisted analysis of the preclinical PET images.
MARS: a mouse atlas registration system based on a planar x-ray projector and an optical camera.
Wang, Hongkai; Stout, David B; Taschereau, Richard; Gu, Zheng; Vu, Nam T; Prout, David L; Chatziioannou, Arion F
2012-10-07
This paper introduces a mouse atlas registration system (MARS), composed of a stationary top-view x-ray projector and a side-view optical camera, coupled to a mouse atlas registration algorithm. This system uses the x-ray and optical images to guide a fully automatic co-registration of a mouse atlas with each subject, in order to provide anatomical reference for small animal molecular imaging systems such as positron emission tomography (PET). To facilitate the registration, a statistical atlas that accounts for inter-subject anatomical variations was constructed based on 83 organ-labeled mouse micro-computed tomography (CT) images. The statistical shape model and conditional Gaussian model techniques were used to register the atlas with the x-ray image and optical photo. The accuracy of the atlas registration was evaluated by comparing the registered atlas with the organ-labeled micro-CT images of the test subjects. The results showed excellent registration accuracy of the whole-body region, and good accuracy for the brain, liver, heart, lungs and kidneys. In its implementation, the MARS was integrated with a preclinical PET scanner to deliver combined PET/MARS imaging, and to facilitate atlas-assisted analysis of the preclinical PET images.
Lu, Chao; Chelikani, Sudhakar; Jaffray, David A.; Milosevic, Michael F.; Staib, Lawrence H.; Duncan, James S.
2013-01-01
External beam radiation therapy (EBRT) for the treatment of cancer enables accurate placement of radiation dose on the cancerous region. However, the deformation of soft tissue during the course of treatment, such as in cervical cancer, presents significant challenges for the delineation of the target volume and other structures of interest. Furthermore, the presence and regression of pathologies such as tumors may violate registration constraints and cause registration errors. In this paper, automatic segmentation, nonrigid registration and tumor detection in cervical magnetic resonance (MR) data are addressed simultaneously using a unified Bayesian framework. The proposed novel method can generate a tumor probability map while progressively identifying the boundary of an organ of interest based on the achieved nonrigid transformation. The method is able to handle the challenges of significant tumor regression and its effect on surrounding tissues. The new method was compared to various currently existing algorithms on a set of 36 MR data from six patients, each patient has six T2-weighted MR cervical images. The results show that the proposed approach achieves an accuracy comparable to manual segmentation and it significantly outperforms the existing registration algorithms. In addition, the tumor detection result generated by the proposed method has a high agreement with manual delineation by a qualified clinician. PMID:22328178
CT to Cone-beam CT Deformable Registration With Simultaneous Intensity Correction
Zhen, Xin; Gu, Xuejun; Yan, Hao; Zhou, Linghong; Jia, Xun; Jiang, Steve B.
2012-01-01
Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer graphics processing units (GPUs) in compute unified device architecture (CUDA) programming environment. The performance of DISC is evaluated on a simulated patient case and six clinical head-and-neck cancer patient data. It is found that DISC is robust against the CBCT artifacts and intensity inconsistency and significantly improves the registration accuracy when compared with the original demons. PMID:23032638
Highly accurate fast lung CT registration
NASA Astrophysics Data System (ADS)
Rühaak, Jan; Heldmann, Stefan; Kipshagen, Till; Fischer, Bernd
2013-03-01
Lung registration in thoracic CT scans has received much attention in the medical imaging community. Possible applications range from follow-up analysis, motion correction for radiation therapy, monitoring of air flow and pulmonary function to lung elasticity analysis. In a clinical environment, runtime is always a critical issue, ruling out quite a few excellent registration approaches. In this paper, a highly efficient variational lung registration method based on minimizing the normalized gradient fields distance measure with curvature regularization is presented. The method ensures diffeomorphic deformations by an additional volume regularization. Supplemental user knowledge, like a segmentation of the lungs, may be incorporated as well. The accuracy of our method was evaluated on 40 test cases from clinical routine. In the EMPIRE10 lung registration challenge, our scheme ranks third, with respect to various validation criteria, out of 28 algorithms with an average landmark distance of 0.72 mm. The average runtime is about 1:50 min on a standard PC, making it by far the fastest approach of the top-ranking algorithms. Additionally, the ten publicly available DIR-Lab inhale-exhale scan pairs were registered to subvoxel accuracy at computation times of only 20 seconds. Our method thus combines very attractive runtimes with state-of-the-art accuracy in a unique way.
Implementation and evaluation of various demons deformable image registration algorithms on a GPU.
Gu, Xuejun; Pan, Hubert; Liang, Yun; Castillo, Richard; Yang, Deshan; Choi, Dongju; Castillo, Edward; Majumdar, Amitava; Guerrero, Thomas; Jiang, Steve B
2010-01-07
Online adaptive radiation therapy (ART) promises the ability to deliver an optimal treatment in response to daily patient anatomic variation. A major technical barrier for the clinical implementation of online ART is the requirement of rapid image segmentation. Deformable image registration (DIR) has been used as an automated segmentation method to transfer tumor/organ contours from the planning image to daily images. However, the current computational time of DIR is insufficient for online ART. In this work, this issue is addressed by using computer graphics processing units (GPUs). A gray-scale-based DIR algorithm called demons and five of its variants were implemented on GPUs using the compute unified device architecture (CUDA) programming environment. The spatial accuracy of these algorithms was evaluated over five sets of pulmonary 4D CT images with an average size of 256 x 256 x 100 and more than 1100 expert-determined landmark point pairs each. For all the testing scenarios presented in this paper, the GPU-based DIR computation required around 7 to 11 s to yield an average 3D error ranging from 1.5 to 1.8 mm. It is interesting to find out that the original passive force demons algorithms outperform subsequently proposed variants based on the combination of accuracy, efficiency and ease of implementation.
Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration
Klein, Arno; Andersson, Jesper; Ardekani, Babak A.; Ashburner, John; Avants, Brian; Chiang, Ming-Chang; Christensen, Gary E.; Collins, D. Louis; Gee, James; Hellier, Pierre; Song, Joo Hyun; Jenkinson, Mark; Lepage, Claude; Rueckert, Daniel; Thompson, Paul; Vercauteren, Tom; Woods, Roger P.; Mann, J. John; Parsey, Ramin V.
2009-01-01
All fields of neuroscience that employ brain imaging need to communicate their results with reference to anatomical regions. In particular, comparative morphometry and group analysis of functional and physiological data require coregistration of brains to establish correspondences across brain structures. It is well established that linear registration of one brain to another is inadequate for aligning brain structures, so numerous algorithms have emerged to nonlinearly register brains to one another. This study is the largest evaluation of nonlinear deformation algorithms applied to brain image registration ever conducted. Fourteen algorithms from laboratories around the world are evaluated using 8 different error measures. More than 45,000 registrations between 80 manually labeled brains were performed by algorithms including: AIR, ANIMAL, ART, Diffeomorphic Demons, FNIRT, IRTK, JRD-fluid, ROMEO, SICLE, SyN, and four different SPM5 algorithms (“SPM2-type” and regular Normalization, Unified Segmentation, and the DARTEL Toolbox). All of these registrations were preceded by linear registration between the same image pairs using FLIRT. One of the most significant findings of this study is that the relative performances of the registration methods under comparison appear to be little affected by the choice of subject population, labeling protocol, and type of overlap measure. This is important because it suggests that the findings are generalizable to new subject populations that are labeled or evaluated using different labeling protocols. Furthermore, we ranked the 14 methods according to three completely independent analyses (permutation tests, one-way ANOVA tests, and indifference-zone ranking) and derived three almost identical top rankings of the methods. ART, SyN, IRTK, and SPM's DARTEL Toolbox gave the best results according to overlap and distance measures, with ART and SyN delivering the most consistently high accuracy across subjects and label sets. Updates will be published on the http://www.mindboggle.info/papers/ website. PMID:19195496
SU-C-18A-02: Image-Based Camera Tracking: Towards Registration of Endoscopic Video to CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, S; Rao, A; Wendt, R
Purpose: Endoscopic examinations are routinely performed on head and neck and esophageal cancer patients. However, these images are underutilized for radiation therapy because there is currently no way to register them to a CT of the patient. The purpose of this work is to develop a method to track the motion of an endoscope within a structure using images from standard clinical equipment. This method will be incorporated into a broader endoscopy/CT registration framework. Methods: We developed a software algorithm to track the motion of an endoscope within an arbitrary structure. We computed frame-to-frame rotation and translation of the cameramore » by tracking surface points across the video sequence and utilizing two-camera epipolar geometry. The resulting 3D camera path was used to recover the surrounding structure via triangulation methods. We tested this algorithm on a rigid cylindrical phantom with a pattern spray-painted on the inside. We did not constrain the motion of the endoscope while recording, and we did not constrain our measurements using the known structure of the phantom. Results: Our software algorithm can successfully track the general motion of the endoscope as it moves through the phantom. However, our preliminary data do not show a high degree of accuracy in the triangulation of 3D point locations. More rigorous data will be presented at the annual meeting. Conclusion: Image-based camera tracking is a promising method for endoscopy/CT image registration, and it requires only standard clinical equipment. It is one of two major components needed to achieve endoscopy/CT registration, the second of which is tying the camera path to absolute patient geometry. In addition to this second component, future work will focus on validating our camera tracking algorithm in the presence of clinical imaging features such as patient motion, erratic camera motion, and dynamic scene illumination.« less
Sun, Yue; Qiu, Wu; Yuan, Jing; Romagnoli, Cesare; Fenster, Aaron
2015-04-01
Registration of three-dimensional (3-D) magnetic resonance (MR) to 3-D transrectal ultrasound (TRUS) prostate images is an important step in the planning and guidance of 3-D TRUS guided prostate biopsy. In order to accurately and efficiently perform the registration, a nonrigid landmark-based registration method is required to account for the different deformations of the prostate when using these two modalities. We describe a nonrigid landmark-based method for registration of 3-D TRUS to MR prostate images. The landmark-based registration method first makes use of an initial rigid registration of 3-D MR to 3-D TRUS images using six manually placed approximately corresponding landmarks in each image. Following manual initialization, the two prostate surfaces are segmented from 3-D MR and TRUS images and then nonrigidly registered using the following steps: (1) rotationally reslicing corresponding segmented prostate surfaces from both 3-D MR and TRUS images around a specified axis, (2) an approach to find point correspondences on the surfaces of the segmented surfaces, and (3) deformation of the surface of the prostate in the MR image to match the surface of the prostate in the 3-D TRUS image and the interior using a thin-plate spline algorithm. The registration accuracy was evaluated using 17 patient prostate MR and 3-D TRUS images by measuring the target registration error (TRE). Experimental results showed that the proposed method yielded an overall mean TRE of [Formula: see text] for the rigid registration and [Formula: see text] for the nonrigid registration, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm. A landmark-based nonrigid 3-D MR-TRUS registration approach is proposed, which takes into account the correspondences on the prostate surface, inside the prostate, as well as the centroid of the prostate. Experimental results indicate that the proposed method yields clinically sufficient accuracy.
Feasibility of Multimodal Deformable Registration for Head and Neck Tumor Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortunati, Valerio, E-mail: v.fortunati@erasmusmc.nl; Verhaart, René F.; Angeloni, Francesco
2014-09-01
Purpose: To investigate the feasibility of using deformable registration in clinical practice to fuse MR and CT images of the head and neck for treatment planning. Method and Materials: A state-of-the-art deformable registration algorithm was optimized, evaluated, and compared with rigid registration. The evaluation was based on manually annotated anatomic landmarks and regions of interest in both modalities. We also developed a multiparametric registration approach, which simultaneously aligns T1- and T2-weighted MR sequences to CT. This was evaluated and compared with single-parametric approaches. Results: Our results show that deformable registration yielded a better accuracy than rigid registration, without introducing unrealisticmore » deformations. For deformable registration, an average landmark alignment of approximatively 1.7 mm was obtained. For all the regions of interest excluding the cerebellum and the parotids, deformable registration provided a median modified Hausdorff distance of approximatively 1 mm. Similar accuracies were obtained for the single-parameter and multiparameter approaches. Conclusions: This study demonstrates that deformable registration of head-and-neck CT and MR images is feasible, with overall a significanlty higher accuracy than for rigid registration.« less
Automatic three-dimensional registration of intravascular optical coherence tomography images
NASA Astrophysics Data System (ADS)
Ughi, Giovanni J.; Adriaenssens, Tom; Larsson, Matilda; Dubois, Christophe; Sinnaeve, Peter R.; Coosemans, Mark; Desmet, Walter; D'hooge, Jan
2012-02-01
Intravascular optical coherence tomography (IV-OCT) is a catheter-based high-resolution imaging technique able to visualize the inner wall of the coronary arteries and implanted devices in vivo with an axial resolution below 20 μm. IV-OCT is being used in several clinical trials aiming to quantify the vessel response to stent implantation over time. However, stent analysis is currently performed manually and corresponding images taken at different time points are matched through a very labor-intensive and subjective procedure. We present an automated method for the spatial registration of IV-OCT datasets. Stent struts are segmented through consecutive images and three-dimensional models of the stents are created for both datasets to be registered. The two models are initially roughly registered through an automatic initialization procedure and an iterative closest point algorithm is subsequently applied for a more precise registration. To correct for nonuniform rotational distortions (NURDs) and other potential acquisition artifacts, the registration is consecutively refined on a local level. The algorithm was first validated by using an in vitro experimental setup based on a polyvinyl-alcohol gel tubular phantom. Subsequently, an in vivo validation was obtained by exploiting stable vessel landmarks. The mean registration error in vitro was quantified to be 0.14 mm in the longitudinal axis and 7.3-deg mean rotation error. In vivo validation resulted in 0.23 mm in the longitudinal axis and 10.1-deg rotation error. These results indicate that the proposed methodology can be used for automatic registration of in vivo IV-OCT datasets. Such a tool will be indispensable for larger studies on vessel healing pathophysiology and reaction to stent implantation. As such, it will be valuable in testing the performance of new generations of intracoronary devices and new therapeutic drugs.
Evaluation of registration, compression and classification algorithms. Volume 1: Results
NASA Technical Reports Server (NTRS)
Jayroe, R.; Atkinson, R.; Callas, L.; Hodges, J.; Gaggini, B.; Peterson, J.
1979-01-01
The registration, compression, and classification algorithms were selected on the basis that such a group would include most of the different and commonly used approaches. The results of the investigation indicate clearcut, cost effective choices for registering, compressing, and classifying multispectral imagery.
Registration-based interpolation applied to cardiac MRI
NASA Astrophysics Data System (ADS)
Ólafsdóttir, Hildur; Pedersen, Henrik; Hansen, Michael S.; Lyksborg, Mark; Hansen, Mads Fogtmann; Darkner, Sune; Larsen, Rasmus
2010-03-01
Various approaches have been proposed for segmentation of cardiac MRI. An accurate segmentation of the myocardium and ventricles is essential to determine parameters of interest for the function of the heart, such as the ejection fraction. One problem with MRI is the poor resolution in one dimension. A 3D registration algorithm will typically use a trilinear interpolation of intensities to determine the intensity of a deformed template image. Due to the poor resolution across slices, such linear approximation is highly inaccurate since the assumption of smooth underlying intensities is violated. Registration-based interpolation is based on 2D registrations between adjacent slices and is independent of segmentations. Hence, rather than assuming smoothness in intensity, the assumption is that the anatomy is consistent across slices. The basis for the proposed approach is the set of 2D registrations between each pair of slices, both ways. The intensity of a new slice is then weighted by (i) the deformation functions and (ii) the intensities in the warped images. Unlike the approach by Penney et al. 2004, this approach takes into account deformation both ways, which gives more robustness where correspondence between slices is poor. We demonstrate the approach on a toy example and on a set of cardiac CINE MRI. Qualitative inspection reveals that the proposed approach provides a more convincing transition between slices than images obtained by linear interpolation. A quantitative validation reveals significantly lower reconstruction errors than both linear and registration-based interpolation based on one-way registrations.
Baad-Hansen, Thomas; Kold, Søren; Kaptein, Bart L; Søballe, Kjeld
2007-08-01
In RSA, tantalum markers attached to metal-backed acetabular cups are often difficult to detect on stereo radiographs due to the high density of the metal shell. This results in occlusion of the prosthesis markers and may lead to inconclusive migration results. Within the last few years, new software systems have been developed to solve this problem. We compared the precision of 3 RSA systems in migration analysis of the acetabular component. A hemispherical and a non-hemispherical acetabular component were mounted in a phantom. Both acetabular components underwent migration analyses with 3 different RSA systems: conventional RSA using tantalum markers, an RSA system using a hemispherical cup algorithm, and a novel model-based RSA system. We found narrow confidence intervals, indicating high precision of the conventional marker system and model-based RSA with regard to migration and rotation. The confidence intervals of conventional RSA and model-based RSA were narrower than those of the hemispherical cup algorithm-based system regarding cup migration and rotation. The model-based RSA software combines the precision of the conventional RSA software with the convenience of the hemispherical cup algorithm-based system. Based on our findings, we believe that these new tools offer an improvement in the measurement of acetabular component migration.
Target motion tracking in MRI-guided transrectal robotic prostate biopsy.
Tadayyon, Hadi; Lasso, Andras; Kaushal, Aradhana; Guion, Peter; Fichtinger, Gabor
2011-11-01
MRI-guided prostate needle biopsy requires compensation for organ motion between target planning and needle placement. Two questions are studied and answered in this paper: 1) is rigid registration sufficient in tracking the targets with an error smaller than the clinically significant size of prostate cancer and 2) what is the effect of the number of intraoperative slices on registration accuracy and speed? we propose multislice-to-volume registration algorithms for tracking the biopsy targets within the prostate. Three orthogonal plus additional transverse intraoperative slices are acquired in the approximate center of the prostate and registered with a high-resolution target planning volume. Both rigid and deformable scenarios were implemented. Both simulated and clinical MRI-guided robotic prostate biopsy data were used to assess tracking accuracy. average registration errors in clinical patient data were 2.6 mm for the rigid algorithm and 2.1 mm for the deformable algorithm. rigid tracking appears to be promising. Three tracking slices yield significantly high registration speed with an affordable error.
Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge
Litjens, Geert; Toth, Robert; van de Ven, Wendy; Hoeks, Caroline; Kerkstra, Sjoerd; van Ginneken, Bram; Vincent, Graham; Guillard, Gwenael; Birbeck, Neil; Zhang, Jindang; Strand, Robin; Malmberg, Filip; Ou, Yangming; Davatzikos, Christos; Kirschner, Matthias; Jung, Florian; Yuan, Jing; Qiu, Wu; Gao, Qinquan; Edwards, Philip “Eddie”; Maan, Bianca; van der Heijden, Ferdinand; Ghose, Soumya; Mitra, Jhimli; Dowling, Jason; Barratt, Dean; Huisman, Henkjan; Madabhushi, Anant
2014-01-01
Prostate MRI image segmentation has been an area of intense research due to the increased use of MRI as a modality for the clinical workup of prostate cancer. Segmentation is useful for various tasks, e.g. to accurately localize prostate boundaries for radiotherapy or to initialize multi-modal registration algorithms. In the past, it has been difficult for research groups to evaluate prostate segmentation algorithms on multi-center, multi-vendor and multi-protocol data. Especially because we are dealing with MR images, image appearance, resolution and the presence of artifacts are affected by differences in scanners and/or protocols, which in turn can have a large influence on algorithm accuracy. The Prostate MR Image Segmentation (PROMISE12) challenge was setup to allow a fair and meaningful comparison of segmentation methods on the basis of performance and robustness. In this work we will discuss the initial results of the online PROMISE12 challenge, and the results obtained in the live challenge workshop hosted by the MICCAI2012 conference. In the challenge, 100 prostate MR cases from 4 different centers were included, with differences in scanner manufacturer, field strength and protocol. A total of 11 teams from academic research groups and industry participated. Algorithms showed a wide variety in methods and implementation, including active appearance models, atlas registration and level sets. Evaluation was performed using boundary and volume based metrics which were combined into a single score relating the metrics to human expert performance. The winners of the challenge where the algorithms by teams Imorphics and ScrAutoProstate, with scores of 85.72 and 84.29 overall. Both algorithms where significantly better than all other algorithms in the challenge (p < 0.05) and had an efficient implementation with a run time of 8 minutes and 3 second per case respectively. Overall, active appearance model based approaches seemed to outperform other approaches like multi-atlas registration, both on accuracy and computation time. Although average algorithm performance was good to excellent and the Imorphics algorithm outperformed the second observer on average, we showed that algorithm combination might lead to further improvement, indicating that optimal performance for prostate segmentation is not yet obtained. All results are available online at http://promise12.grand-challenge.org/. PMID:24418598
TH-A-BRF-08: Deformable Registration of MRI and CT Images for MRI-Guided Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, H; Wen, N; Gordon, J
2014-06-15
Purpose: To evaluate the quality of a commercially available MRI-CT image registration algorithm and then develop a method to improve the performance of this algorithm for MRI-guided prostate radiotherapy. Methods: Prostate contours were delineated on ten pairs of MRI and CT images using Eclipse. Each pair of MRI and CT images was registered with an intensity-based B-spline algorithm implemented in Velocity. A rectangular prism that contains the prostate volume was partitioned into a tetrahedral mesh which was aligned to the CT image. A finite element method (FEM) was developed on the mesh with the boundary constraints assigned from the Velocitymore » generated displacement vector field (DVF). The resultant FEM displacements were used to adjust the Velocity DVF within the prism. Point correspondences between the CT and MR images identified within the prism could be used as additional boundary constraints to enforce the model deformation. The FEM deformation field is smooth in the interior of the prism, and equal to the Velocity displacements at the boundary of the prism. To evaluate the Velocity and FEM registration results, three criteria were used: prostate volume conservation and center consistence under contour mapping, and unbalanced energy of their deformation maps. Results: With the DVFs generated by the Velocity and FEM simulations, the prostate contours were warped from MRI to CT images. With the Velocity DVFs, the prostate volumes changed 10.2% on average, in contrast to 1.8% induced by the FEM DVFs. The average of the center deviations was 0.36 and 0.27 cm, and the unbalance energy was 2.65 and 0.38 mJ/cc3 for the Velocity and FEM registrations, respectively. Conclusion: The adaptive FEM method developed can be used to reduce the error of the MIbased registration algorithm implemented in Velocity in the prostate region, and consequently may help improve the quality of MRI-guided radiation therapy.« less
Placental fetal stem segmentation in a sequence of histology images
NASA Astrophysics Data System (ADS)
Athavale, Prashant; Vese, Luminita A.
2012-02-01
Recent research in perinatal pathology argues that analyzing properties of the placenta may reveal important information on how certain diseases progress. One important property is the structure of the placental fetal stems. Analysis of the fetal stems in a placenta could be useful in the study and diagnosis of some diseases like autism. To study the fetal stem structure effectively, we need to automatically and accurately track fetal stems through a sequence of digitized hematoxylin and eosin (H&E) stained histology slides. There are many problems in successfully achieving this goal. A few of the problems are: large size of images, misalignment of the consecutive H&E slides, unpredictable inaccuracies of manual tracing, very complicated texture patterns of various tissue types without clear characteristics, just to name a few. In this paper we propose a novel algorithm to achieve automatic tracing of the fetal stem in a sequence of H&E images, based on an inaccurate manual segmentation of a fetal stem in one of the images. This algorithm combines global affine registration, local non-affine registration and a novel 'dynamic' version of the active contours model without edges. We first use global affine image registration of all the images based on displacement, scaling and rotation. This gives us approximate location of the corresponding fetal stem in the image that needs to be traced. We then use the affine registration algorithm "locally" near this location. At this point, we use a fast non-affine registration based on L2-similarity measure and diffusion regularization to get a better location of the fetal stem. Finally, we have to take into account inaccuracies in the initial tracing. This is achieved through a novel dynamic version of the active contours model without edges where the coefficients of the fitting terms are computed iteratively to ensure that we obtain a unique stem in the segmentation. The segmentation thus obtained can then be used as an initial guess to obtain segmentation in the rest of the images in the sequence. This constitutes an important step in the extraction and understanding of the fetal stem vasculature.
NASA Technical Reports Server (NTRS)
Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.
2012-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.
Registration performance on EUV masks using high-resolution registration metrology
NASA Astrophysics Data System (ADS)
Steinert, Steffen; Solowan, Hans-Michael; Park, Jinback; Han, Hakseung; Beyer, Dirk; Scherübl, Thomas
2016-10-01
Next-generation lithography based on EUV continues to move forward to high-volume manufacturing. Given the technical challenges and the throughput concerns a hybrid approach with 193 nm immersion lithography is expected, at least in the initial state. Due to the increasing complexity at smaller nodes a multitude of different masks, both DUV (193 nm) and EUV (13.5 nm) reticles, will then be required in the lithography process-flow. The individual registration of each mask and the resulting overlay error are of crucial importance in order to ensure proper functionality of the chips. While registration and overlay metrology on DUV masks has been the standard for decades, this has yet to be demonstrated on EUV masks. Past generations of mask registration tools were not necessarily limited in their tool stability, but in their resolution capabilities. The scope of this work is an image placement investigation of high-end EUV masks together with a registration and resolution performance qualification. For this we employ a new generation registration metrology system embedded in a production environment for full-spec EUV masks. This paper presents excellent registration performance not only on standard overlay markers but also on more sophisticated e-beam calibration patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neyman, G
Purpose: To compare typical volumetric spatial distortions for 1.5 Tesla versus 3 Tesla MRI Gamma Knife radiosurgery scans in the frame marker fusion and co-registration frame-less modes. Methods: Quasar phantom by Modus Medical Devices Inc. with GRID image distortion software was used for measurements of volumetric distortions. 3D volumetric T1 weighted scans of the phantom were produced on 1.5 T Avanto and 3 T Skyra MRI Siemens scanners. The analysis was done two ways: for scans with localizer markers from the Leksell frame and relatively to the phantom only (simulated co-registration technique). The phantom grid contained a total of 2002more » vertices or control points that were used in the assessment of volumetric geometric distortion for all scans. Results: Volumetric mean absolute spatial deviations relatively to the frame localizer markers for 1.5 and 3 Tesla machine were: 1.39 ± 0.15 and 1.63 ± 0.28 mm with max errors of 1.86 and 2.65 mm correspondingly. Mean 2D errors from the Gamma Plan were 0.3 and 1.0 mm. For simulated co-registration technique the volumetric mean absolute spatial deviations relatively to the phantom for 1.5 and 3 Tesla machine were: 0.36 ± 0.08 and 0.62 ± 0.13 mm with max errors of 0.57 and 1.22 mm correspondingly. Conclusion: Volumetric spatial distortions are lower for 1.5 Tesla versus 3 Tesla MRI machines localized with markers on frames and significantly lower for co-registration techniques with no frame localization. The results show the advantage of using co-registration technique for minimizing MRI volumetric spatial distortions which can be especially important for steep dose gradient fields typically used in Gamma Knife radiosurgery. Consultant for Elekta AB.« less
Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam
2016-01-01
Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2-D models and computing single organ deformations. In this study, 3-D comprehensive patient-specific non-linear biomechanical models implemented using Meshless Total Lagrangian Explicit Dynamics (MTLED) algorithms are applied to predict a 3-D deformation field for whole-body image registration. Unlike a conventional approach which requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the Fuzzy C-Means (FCM) algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. PMID:26791945
Application of tolerance limits to the characterization of image registration performance.
Fedorov, Andriy; Wells, William M; Kikinis, Ron; Tempany, Clare M; Vangel, Mark G
2014-07-01
Deformable image registration is used increasingly in image-guided interventions and other applications. However, validation and characterization of registration performance remain areas that require further study. We propose an analysis methodology for deriving tolerance limits on the initial conditions for deformable registration that reliably lead to a successful registration. This approach results in a concise summary of the probability of registration failure, while accounting for the variability in the test data. The (β, γ) tolerance limit can be interpreted as a value of the input parameter that leads to successful registration outcome in at least 100β% of cases with the 100γ% confidence. The utility of the methodology is illustrated by summarizing the performance of a deformable registration algorithm evaluated in three different experimental setups of increasing complexity. Our examples are based on clinical data collected during MRI-guided prostate biopsy registered using publicly available deformable registration tool. The results indicate that the proposed methodology can be used to generate concise graphical summaries of the experiments, as well as a probabilistic estimate of the registration outcome for a future sample. Its use may facilitate improved objective assessment, comparison and retrospective stress-testing of deformable.
NASA Astrophysics Data System (ADS)
De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.
2016-05-01
The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99. 73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.
NASA Technical Reports Server (NTRS)
DeLuccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.
2016-01-01
The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.
NASA Technical Reports Server (NTRS)
De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.
2016-01-01
The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.
Shape-based diffeomorphic registration on hippocampal surfaces using Beltrami holomorphic flow.
Lui, Lok Ming; Wong, Tsz Wai; Thompson, Paul; Chan, Tony; Gu, Xianfeng; Yau, Shing-Tung
2010-01-01
We develop a new algorithm to automatically register hippocampal (HP) surfaces with complete geometric matching, avoiding the need to manually label landmark features. A good registration depends on a reasonable choice of shape energy that measures the dissimilarity between surfaces. In our work, we first propose a complete shape index using the Beltrami coefficient and curvatures, which measures subtle local differences. The proposed shape energy is zero if and only if two shapes are identical up to a rigid motion. We then seek the best surface registration by minimizing the shape energy. We propose a simple representation of surface diffeomorphisms using Beltrami coefficients, which simplifies the optimization process. We then iteratively minimize the shape energy using the proposed Beltrami Holomorphic flow (BHF) method. Experimental results on 212 HP of normal and diseased (Alzheimer's disease) subjects show our proposed algorithm is effective in registering HP surfaces with complete geometric matching. The proposed shape energy can also capture local shape differences between HP for disease analysis.
Visual tracking for multi-modality computer-assisted image guidance
NASA Astrophysics Data System (ADS)
Basafa, Ehsan; Foroughi, Pezhman; Hossbach, Martin; Bhanushali, Jasmine; Stolka, Philipp
2017-03-01
With optical cameras, many interventional navigation tasks previously relying on EM, optical, or mechanical guidance can be performed robustly, quickly, and conveniently. We developed a family of novel guidance systems based on wide-spectrum cameras and vision algorithms for real-time tracking of interventional instruments and multi-modality markers. These navigation systems support the localization of anatomical targets, support placement of imaging probe and instruments, and provide fusion imaging. The unique architecture - low-cost, miniature, in-hand stereo vision cameras fitted directly to imaging probes - allows for an intuitive workflow that fits a wide variety of specialties such as anesthesiology, interventional radiology, interventional oncology, emergency medicine, urology, and others, many of which see increasing pressure to utilize medical imaging and especially ultrasound, but have yet to develop the requisite skills for reliable success. We developed a modular system, consisting of hardware (the Optical Head containing the mini cameras) and software (components for visual instrument tracking with or without specialized visual features, fully automated marker segmentation from a variety of 3D imaging modalities, visual observation of meshes of widely separated markers, instant automatic registration, and target tracking and guidance on real-time multi-modality fusion views). From these components, we implemented a family of distinct clinical and pre-clinical systems (for combinations of ultrasound, CT, CBCT, and MRI), most of which have international regulatory clearance for clinical use. We present technical and clinical results on phantoms, ex- and in-vivo animals, and patients.
[Registration and 3D rendering of serial tissue section images].
Liu, Zhexing; Jiang, Guiping; Dong, Wu; Zhang, Yu; Xie, Xiaomian; Hao, Liwei; Wang, Zhiyuan; Li, Shuxiang
2002-12-01
It is an important morphological research method to reconstruct the 3D imaging from serial section tissue images. Registration of serial images is a key step to 3D reconstruction. Firstly, an introduction to the segmentation-counting registration algorithm is presented, which is based on the joint histogram. After thresholding of the two images to be registered, the criterion function is defined as counting in a specific region of the joint histogram, which greatly speeds up the alignment process. Then, the method is used to conduct the serial tissue image matching task, and lies a solid foundation for 3D rendering. Finally, preliminary surface rendering results are presented.
Explicit B-spline regularization in diffeomorphic image registration
Tustison, Nicholas J.; Avants, Brian B.
2013-01-01
Diffeomorphic mappings are central to image registration due largely to their topological properties and success in providing biologically plausible solutions to deformation and morphological estimation problems. Popular diffeomorphic image registration algorithms include those characterized by time-varying and constant velocity fields, and symmetrical considerations. Prior information in the form of regularization is used to enforce transform plausibility taking the form of physics-based constraints or through some approximation thereof, e.g., Gaussian smoothing of the vector fields [a la Thirion's Demons (Thirion, 1998)]. In the context of the original Demons' framework, the so-called directly manipulated free-form deformation (DMFFD) (Tustison et al., 2009) can be viewed as a smoothing alternative in which explicit regularization is achieved through fast B-spline approximation. This characterization can be used to provide B-spline “flavored” diffeomorphic image registration solutions with several advantages. Implementation is open source and available through the Insight Toolkit and our Advanced Normalization Tools (ANTs) repository. A thorough comparative evaluation with the well-known SyN algorithm (Avants et al., 2008), implemented within the same framework, and its B-spline analog is performed using open labeled brain data and open source evaluation tools. PMID:24409140
NASA Astrophysics Data System (ADS)
He, Qiang; Schultz, Richard R.; Chu, Chee-Hung Henry
2008-04-01
The concept surrounding super-resolution image reconstruction is to recover a highly-resolved image from a series of low-resolution images via between-frame subpixel image registration. In this paper, we propose a novel and efficient super-resolution algorithm, and then apply it to the reconstruction of real video data captured by a small Unmanned Aircraft System (UAS). Small UAS aircraft generally have a wingspan of less than four meters, so that these vehicles and their payloads can be buffeted by even light winds, resulting in potentially unstable video. This algorithm is based on a coarse-to-fine strategy, in which a coarsely super-resolved image sequence is first built from the original video data by image registration and bi-cubic interpolation between a fixed reference frame and every additional frame. It is well known that the median filter is robust to outliers. If we calculate pixel-wise medians in the coarsely super-resolved image sequence, we can restore a refined super-resolved image. The primary advantage is that this is a noniterative algorithm, unlike traditional approaches based on highly-computational iterative algorithms. Experimental results show that our coarse-to-fine super-resolution algorithm is not only robust, but also very efficient. In comparison with five well-known super-resolution algorithms, namely the robust super-resolution algorithm, bi-cubic interpolation, projection onto convex sets (POCS), the Papoulis-Gerchberg algorithm, and the iterated back projection algorithm, our proposed algorithm gives both strong efficiency and robustness, as well as good visual performance. This is particularly useful for the application of super-resolution to UAS surveillance video, where real-time processing is highly desired.
Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm
Yan, Li; Xie, Hong; Chen, Changjun
2017-01-01
Registration of point clouds is a fundamental issue in Light Detection and Ranging (LiDAR) remote sensing because point clouds scanned from multiple scan stations or by different platforms need to be transformed to a uniform coordinate reference frame. This paper proposes an efficient registration method based on genetic algorithm (GA) for automatic alignment of two terrestrial LiDAR scanning (TLS) point clouds (TLS-TLS point clouds) and alignment between TLS and mobile LiDAR scanning (MLS) point clouds (TLS-MLS point clouds). The scanning station position acquired by the TLS built-in GPS and the quasi-horizontal orientation of the LiDAR sensor in data acquisition are used as constraints to narrow the search space in GA. A new fitness function to evaluate the solutions for GA, named as Normalized Sum of Matching Scores, is proposed for accurate registration. Our method is divided into five steps: selection of matching points, initialization of population, transformation of matching points, calculation of fitness values, and genetic operation. The method is verified using a TLS-TLS data set and a TLS-MLS data set. The experimental results indicate that the RMSE of registration of TLS-TLS point clouds is 3~5 mm, and that of TLS-MLS point clouds is 2~4 cm. The registration integrating the existing well-known ICP with GA is further proposed to accelerate the optimization and its optimizing time decreases by about 50%. PMID:28850100
Automatic Registration of TLS-TLS and TLS-MLS Point Clouds Using a Genetic Algorithm.
Yan, Li; Tan, Junxiang; Liu, Hua; Xie, Hong; Chen, Changjun
2017-08-29
Registration of point clouds is a fundamental issue in Light Detection and Ranging (LiDAR) remote sensing because point clouds scanned from multiple scan stations or by different platforms need to be transformed to a uniform coordinate reference frame. This paper proposes an efficient registration method based on genetic algorithm (GA) for automatic alignment of two terrestrial LiDAR scanning (TLS) point clouds (TLS-TLS point clouds) and alignment between TLS and mobile LiDAR scanning (MLS) point clouds (TLS-MLS point clouds). The scanning station position acquired by the TLS built-in GPS and the quasi-horizontal orientation of the LiDAR sensor in data acquisition are used as constraints to narrow the search space in GA. A new fitness function to evaluate the solutions for GA, named as Normalized Sum of Matching Scores, is proposed for accurate registration. Our method is divided into five steps: selection of matching points, initialization of population, transformation of matching points, calculation of fitness values, and genetic operation. The method is verified using a TLS-TLS data set and a TLS-MLS data set. The experimental results indicate that the RMSE of registration of TLS-TLS point clouds is 3~5 mm, and that of TLS-MLS point clouds is 2~4 cm. The registration integrating the existing well-known ICP with GA is further proposed to accelerate the optimization and its optimizing time decreases by about 50%.
Research on segmentation based on multi-atlas in brain MR image
NASA Astrophysics Data System (ADS)
Qian, Yuejing
2018-03-01
Accurate segmentation of specific tissues in brain MR image can be effectively achieved with the multi-atlas-based segmentation method, and the accuracy mainly depends on the image registration accuracy and fusion scheme. This paper proposes an automatic segmentation method based on the multi-atlas for brain MR image. Firstly, to improve the registration accuracy in the area to be segmented, we employ a target-oriented image registration method for the refinement. Then In the label fusion, we proposed a new algorithm to detect the abnormal sparse patch and simultaneously abandon the corresponding abnormal sparse coefficients, this method is made based on the remaining sparse coefficients combined with the multipoint label estimator strategy. The performance of the proposed method was compared with those of the nonlocal patch-based label fusion method (Nonlocal-PBM), the sparse patch-based label fusion method (Sparse-PBM) and majority voting method (MV). Based on our experimental results, the proposed method is efficient in the brain MR images segmentation compared with MV, Nonlocal-PBM, and Sparse-PBM methods.
a Weighted Closed-Form Solution for Rgb-D Data Registration
NASA Astrophysics Data System (ADS)
Vestena, K. M.; Dos Santos, D. R.; Oilveira, E. M., Jr.; Pavan, N. L.; Khoshelham, K.
2016-06-01
Existing 3D indoor mapping of RGB-D data are prominently point-based and feature-based methods. In most cases iterative closest point (ICP) and its variants are generally used for pairwise registration process. Considering that the ICP algorithm requires an relatively accurate initial transformation and high overlap a weighted closed-form solution for RGB-D data registration is proposed. In this solution, we weighted and normalized the 3D points based on the theoretical random errors and the dual-number quaternions are used to represent the 3D rigid body motion. Basically, dual-number quaternions provide a closed-form solution by minimizing a cost function. The most important advantage of the closed-form solution is that it provides the optimal transformation in one-step, it does not need to calculate good initial estimates and expressively decreases the demand for computer resources in contrast to the iterative method. Basically, first our method exploits RGB information. We employed a scale invariant feature transformation (SIFT) for extracting, detecting, and matching features. It is able to detect and describe local features that are invariant to scaling and rotation. To detect and filter outliers, we used random sample consensus (RANSAC) algorithm, jointly with an statistical dispersion called interquartile range (IQR). After, a new RGB-D loop-closure solution is implemented based on the volumetric information between pair of point clouds and the dispersion of the random errors. The loop-closure consists to recognize when the sensor revisits some region. Finally, a globally consistent map is created to minimize the registration errors via a graph-based optimization. The effectiveness of the proposed method is demonstrated with a Kinect dataset. The experimental results show that the proposed method can properly map the indoor environment with an absolute accuracy around 1.5% of the travel of a trajectory.
On Statistical Analysis of Neuroimages with Imperfect Registration
Kim, Won Hwa; Ravi, Sathya N.; Johnson, Sterling C.; Okonkwo, Ozioma C.; Singh, Vikas
2016-01-01
A variety of studies in neuroscience/neuroimaging seek to perform statistical inference on the acquired brain image scans for diagnosis as well as understanding the pathological manifestation of diseases. To do so, an important first step is to register (or co-register) all of the image data into a common coordinate system. This permits meaningful comparison of the intensities at each voxel across groups (e.g., diseased versus healthy) to evaluate the effects of the disease and/or use machine learning algorithms in a subsequent step. But errors in the underlying registration make this problematic, they either decrease the statistical power or make the follow-up inference tasks less effective/accurate. In this paper, we derive a novel algorithm which offers immunity to local errors in the underlying deformation field obtained from registration procedures. By deriving a deformation invariant representation of the image, the downstream analysis can be made more robust as if one had access to a (hypothetical) far superior registration procedure. Our algorithm is based on recent work on scattering transform. Using this as a starting point, we show how results from harmonic analysis (especially, non-Euclidean wavelets) yields strategies for designing deformation and additive noise invariant representations of large 3-D brain image volumes. We present a set of results on synthetic and real brain images where we achieve robust statistical analysis even in the presence of substantial deformation errors; here, standard analysis procedures significantly under-perform and fail to identify the true signal. PMID:27042168
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cunliffe, A; Contee, C; White, B
Purpose: To characterize the effect of deformable registration of serial computed tomography (CT) scans on the radiation dose calculated from a treatment planning scan. Methods: Eighteen patients who received curative doses (≥60Gy, 2Gy/fraction) of photon radiation therapy for lung cancer treatment were retrospectively identified. For each patient, a diagnostic-quality pre-therapy (4–75 days) CT scan and a treatment planning scan with an associated dose map calculated in Pinnacle were collected. To establish baseline correspondence between scan pairs, a researcher manually identified anatomically corresponding landmark point pairs between the two scans. Pre-therapy scans were co-registered with planning scans (and associated dose maps)more » using the Plastimatch demons and Fraunhofer MEVIS deformable registration algorithms. Landmark points in each pretherapy scan were automatically mapped to the planning scan using the displacement vector field output from both registration algorithms. The absolute difference in planned dose (|ΔD|) between manually and automatically mapped landmark points was calculated. Using regression modeling, |ΔD| was modeled as a function of the distance between manually and automatically matched points (registration error, E), the dose standard deviation (SD-dose) in the eight-pixel neighborhood, and the registration algorithm used. Results: 52–92 landmark point pairs (median: 82) were identified in each patient's scans. Average |ΔD| across patients was 3.66Gy (range: 1.2–7.2Gy). |ΔD| was significantly reduced by 0.53Gy using Plastimatch demons compared with Fraunhofer MEVIS. |ΔD| increased significantly as a function of E (0.39Gy/mm) and SD-dose (2.23Gy/Gy). Conclusion: An average error of <4Gy in radiation dose was introduced when points were mapped between CT scan pairs using deformable registration. Dose differences following registration were significantly increased when the Fraunhofer MEVIS registration algorithm was used, spatial registration errors were larger, and dose gradient was higher (i.e., higher SD-dose). To our knowledge, this is the first study to directly compute dose errors following deformable registration of lung CT scans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Zheng; Ouyang, Bing; Principe, Jose
A multi-static serial LiDAR system prototype was developed under DE-EE0006787 to detect, classify, and record interactions of marine life with marine hydrokinetic generation equipment. This software implements a shape-matching based classifier algorithm for the underwater automated detection of marine life for that system. In addition to applying shape descriptors, the algorithm also adopts information theoretical learning based affine shape registration, improving point correspondences found by shape descriptors as well as the final similarity measure.
WHOLE BODY NONRIGID CT-PET REGISTRATION USING WEIGHTED DEMONS.
Suh, J W; Kwon, Oh-K; Scheinost, D; Sinusas, A J; Cline, Gary W; Papademetris, X
2011-03-30
We present a new registration method for whole-body rat computed tomography (CT) image and positron emission tomography (PET) images using a weighted demons algorithm. The CT and PET images are acquired in separate scanners at different times and the inherent differences in the imaging protocols produced significant nonrigid changes between the two acquisitions in addition to heterogeneous image characteristics. In this situation, we utilized both the transmission-PET and the emission-PET images in the deformable registration process emphasizing particular regions of the moving transmission-PET image using the emission-PET image. We validated our results with nine rat image sets using M-Hausdorff distance similarity measure. We demonstrate improved performance compared to standard methods such as Demons and normalized mutual information-based non-rigid FFD registration.
Algorithms and Complexity Results for Genome Mapping Problems.
Rajaraman, Ashok; Zanetti, Joao Paulo Pereira; Manuch, Jan; Chauve, Cedric
2017-01-01
Genome mapping algorithms aim at computing an ordering of a set of genomic markers based on local ordering information such as adjacencies and intervals of markers. In most genome mapping models, markers are assumed to occur uniquely in the resulting map. We introduce algorithmic questions that consider repeats, i.e., markers that can have several occurrences in the resulting map. We show that, provided with an upper bound on the copy number of repeated markers and with intervals that span full repeat copies, called repeat spanning intervals, the problem of deciding if a set of adjacencies and repeat spanning intervals admits a genome representation is tractable if the target genome can contain linear and/or circular chromosomal fragments. We also show that extracting a maximum cardinality or weight subset of repeat spanning intervals given a set of adjacencies that admits a genome realization is NP-hard but fixed-parameter tractable in the maximum copy number and the number of adjacent repeats, and tractable if intervals contain a single repeated marker.
Active edge maps for medical image registration
NASA Astrophysics Data System (ADS)
Kerwin, William; Yuan, Chun
2001-07-01
Applying edge detection prior to performing image registration yields several advantages over raw intensity- based registration. Advantages include the ability to register multicontrast or multimodality images, immunity to intensity variations, and the potential for computationally efficient algorithms. In this work, a common framework for edge-based image registration is formulated as an adaptation of snakes used in boundary detection. Called active edge maps, the new formulation finds a one-to-one transformation T(x) that maps points in a source image to corresponding locations in a target image using an energy minimization approach. The energy consists of an image component that is small when edge features are well matched in the two images, and an internal term that restricts T(x) to allowable configurations. The active edge map formulation is illustrated here with a specific example developed for affine registration of carotid artery magnetic resonance images. In this example, edges are identified using a magnitude of gradient operator, image energy is determined using a Gaussian weighted distance function, and the internal energy includes separate, adjustable components that control volume preservation and rigidity.
NASA Astrophysics Data System (ADS)
Zwart, Christine M.; Venkatesan, Ragav; Frakes, David H.
2012-10-01
Interpolation is an essential and broadly employed function of signal processing. Accordingly, considerable development has focused on advancing interpolation algorithms toward optimal accuracy. Such development has motivated a clear shift in the state-of-the art from classical interpolation to more intelligent and resourceful approaches, registration-based interpolation for example. As a natural result, many of the most accurate current algorithms are highly complex, specific, and computationally demanding. However, the diverse hardware destinations for interpolation algorithms present unique constraints that often preclude use of the most accurate available options. For example, while computationally demanding interpolators may be suitable for highly equipped image processing platforms (e.g., computer workstations and clusters), only more efficient interpolators may be practical for less well equipped platforms (e.g., smartphones and tablet computers). The latter examples of consumer electronics present a design tradeoff in this regard: high accuracy interpolation benefits the consumer experience but computing capabilities are limited. It follows that interpolators with favorable combinations of accuracy and efficiency are of great practical value to the consumer electronics industry. We address multidimensional interpolation-based image processing problems that are common to consumer electronic devices through a decomposition approach. The multidimensional problems are first broken down into multiple, independent, one-dimensional (1-D) interpolation steps that are then executed with a newly modified registration-based one-dimensional control grid interpolator. The proposed approach, decomposed multidimensional control grid interpolation (DMCGI), combines the accuracy of registration-based interpolation with the simplicity, flexibility, and computational efficiency of a 1-D interpolation framework. Results demonstrate that DMCGI provides improved interpolation accuracy (and other benefits) in image resizing, color sample demosaicing, and video deinterlacing applications, at a computational cost that is manageable or reduced in comparison to popular alternatives.
SU-E-J-29: Automatic Image Registration Performance of Three IGRT Systems for Prostate Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barber, J; University of Sydney, Sydney, NSW; Sykes, J
Purpose: To compare the performance of an automatic image registration algorithm on image sets collected on three commercial image guidance systems, and explore its relationship with imaging parameters such as dose and sharpness. Methods: Images of a CIRS Virtually Human Male Pelvis phantom (VHMP) were collected on the CBCT systems of Varian TrueBeam/OBI and Elekta Synergy/XVI linear accelerators, across a range of mAs settings; and MVCT on a Tomotherapy Hi-ART accelerator with a range of pitch. Using the 6D correlation ratio algorithm of XVI, each image was registered to a mask of the prostate volume with a 5 mm expansion.more » Registrations were repeated 100 times, with random initial offsets introduced to simulate daily matching. Residual registration errors were calculated by correcting for the initial phantom set-up error. Automatic registration was also repeated after reconstructing images with different sharpness filters. Results: All three systems showed good registration performance, with residual translations <0.5mm (1σ) for typical clinical dose and reconstruction settings. Residual rotational error had larger range, with 0.8°, 1.2° and 1.9° for 1σ in XVI, OBI and Tomotherapy respectively. The registration accuracy of XVI images showed a strong dependence on imaging dose, particularly below 4mGy. No evidence of reduced performance was observed at the lowest dose settings for OBI and Tomotherapy, but these were above 4mGy. Registration failures (maximum target registration error > 3.6 mm on the surface of a 30mm sphere) occurred in 5% to 10% of registrations. Changing the sharpness of image reconstruction had no significant effect on registration performance. Conclusions: Using the present automatic image registration algorithm, all IGRT systems tested provided satisfactory registrations for clinical use, within a normal range of acquisition settings.« less
Uniscale multi-view registration using double dog-leg method
NASA Astrophysics Data System (ADS)
Chen, Chao-I.; Sargent, Dusty; Tsai, Chang-Ming; Wang, Yuan-Fang; Koppel, Dan
2009-02-01
3D computer models of body anatomy can have many uses in medical research and clinical practices. This paper describes a robust method that uses videos of body anatomy to construct multiple, partial 3D structures and then fuse them to form a larger, more complete computer model using the structure-from-motion framework. We employ the Double Dog-Leg (DDL) method, a trust-region based nonlinear optimization method, to jointly optimize the camera motion parameters (rotation and translation) and determine a global scale that all partial 3D structures should agree upon. These optimized motion parameters are used for constructing local structures, and the global scale is essential for multi-view registration after all these partial structures are built. In order to provide a good initial guess of the camera movement parameters and outlier free 2D point correspondences for DDL, we also propose a two-stage scheme where multi-RANSAC with a normalized eight-point algorithm is first performed and then a few iterations of an over-determined five-point algorithm is used to polish the results. Our experimental results using colonoscopy video show that the proposed scheme always produces more accurate outputs than the standard RANSAC scheme. Furthermore, since we have obtained many reliable point correspondences, time-consuming and error-prone registration methods like the iterative closest points (ICP) based algorithms can be replaced by a simple rigid-body transformation solver when merging partial structures into a larger model.
Elastic registration of prostate MR images based on state estimation of dynamical systems
NASA Astrophysics Data System (ADS)
Marami, Bahram; Ghoul, Suha; Sirouspour, Shahin; Capson, David W.; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron
2014-03-01
Magnetic resonance imaging (MRI) is being increasingly used for image-guided biopsy and focal therapy of prostate cancer. A combined rigid and deformable registration technique is proposed to register pre-treatment diagnostic 3T magnetic resonance (MR) images, with the identified target tumor(s), to the intra-treatment 1.5T MR images. The pre-treatment 3T images are acquired with patients in strictly supine position using an endorectal coil, while 1.5T images are obtained intra-operatively just before insertion of the ablation needle with patients in the lithotomy position. An intensity-based registration routine rigidly aligns two images in which the transformation parameters is initialized using three pairs of manually selected approximate corresponding points. The rigid registration is followed by a deformable registration algorithm employing a generic dynamic linear elastic deformation model discretized by the finite element method (FEM). The model is used in a classical state estimation framework to estimate the deformation of the prostate based on a similarity metric between pre- and intra-treatment images. Registration results using 10 sets of prostate MR images showed that the proposed method can significantly improve registration accuracy in terms of target registration error (TRE) for all prostate substructures. The root mean square (RMS) TRE of 46 manually identified fiducial points was found to be 2.40+/-1.20 mm, 2.51+/-1.20 mm, and 2.28+/-1.22mm for the whole gland (WG), central gland (CG), and peripheral zone (PZ), respectively after deformable registration. These values are improved from 3.15+/-1.60 mm, 3.09+/-1.50 mm, and 3.20+/-1.73mm in the WG, CG and PZ, respectively resulted from rigid registration. Registration results are also evaluated based on the Dice similarity coefficient (DSC), mean absolute surface distances (MAD) and maximum absolute surface distances (MAXD) of the WG and CG in the prostate images.
EVALUATION OF REGISTRATION, COMPRESSION AND CLASSIFICATION ALGORITHMS
NASA Technical Reports Server (NTRS)
Jayroe, R. R.
1994-01-01
Several types of algorithms are generally used to process digital imagery such as Landsat data. The most commonly used algorithms perform the task of registration, compression, and classification. Because there are different techniques available for performing registration, compression, and classification, imagery data users need a rationale for selecting a particular approach to meet their particular needs. This collection of registration, compression, and classification algorithms was developed so that different approaches could be evaluated and the best approach for a particular application determined. Routines are included for six registration algorithms, six compression algorithms, and two classification algorithms. The package also includes routines for evaluating the effects of processing on the image data. This collection of routines should be useful to anyone using or developing image processing software. Registration of image data involves the geometrical alteration of the imagery. Registration routines available in the evaluation package include image magnification, mapping functions, partitioning, map overlay, and data interpolation. The compression of image data involves reducing the volume of data needed for a given image. Compression routines available in the package include adaptive differential pulse code modulation, two-dimensional transforms, clustering, vector reduction, and picture segmentation. Classification of image data involves analyzing the uncompressed or compressed image data to produce inventories and maps of areas of similar spectral properties within a scene. The classification routines available include a sequential linear technique and a maximum likelihood technique. The choice of the appropriate evaluation criteria is quite important in evaluating the image processing functions. The user is therefore given a choice of evaluation criteria with which to investigate the available image processing functions. All of the available evaluation criteria basically compare the observed results with the expected results. For the image reconstruction processes of registration and compression, the expected results are usually the original data or some selected characteristics of the original data. For classification processes the expected result is the ground truth of the scene. Thus, the comparison process consists of determining what changes occur in processing, where the changes occur, how much change occurs, and the amplitude of the change. The package includes evaluation routines for performing such comparisons as average uncertainty, average information transfer, chi-square statistics, multidimensional histograms, and computation of contingency matrices. This collection of routines is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 662K of 8 bit bytes. This collection of image processing and evaluation routines was developed in 1979.
Multiscale Anomaly Detection and Image Registration Algorithms for Airborne Landmine Detection
2008-05-01
with the sensed image. The two- dimensional correlation coefficient r for two matrices A and B both of size M ×N is given by r = ∑ m ∑ n (Amn...correlation based method by matching features in a high- dimensional feature- space . The current implementation of the SIFT algorithm uses a brute-force...by repeatedly convolving the image with a Guassian kernel. Each plane of the scale
Peroni, M; Golland, P; Sharp, G C; Baroni, G
2016-02-01
A crucial issue in deformable image registration is achieving a robust registration algorithm at a reasonable computational cost. Given the iterative nature of the optimization procedure an algorithm must automatically detect convergence, and stop the iterative process when most appropriate. This paper ranks the performances of three stopping criteria and six stopping value computation strategies for a Log-Domain Demons Deformable registration method simulating both a coarse and a fine registration. The analyzed stopping criteria are: (a) velocity field update magnitude, (b) mean squared error, and (c) harmonic energy. Each stoping condition is formulated so that the user defines a threshold ∊, which quantifies the residual error that is acceptable for the particular problem and calculation strategy. In this work, we did not aim at assigning a value to e, but to give insights in how to evaluate and to set the threshold on a given exit strategy in a very popular registration scheme. Experiments on phantom and patient data demonstrate that comparing the optimization metric minimum over the most recent three iterations with the minimum over the fourth to sixth most recent iterations can be an appropriate algorithm stopping strategy. The harmonic energy was found to provide best trade-off between robustness and speed of convergence for the analyzed registration method at coarse registration, but was outperformed by mean squared error when all the original pixel information is used. This suggests the need of developing mathematically sound new convergence criteria in which both image and vector field information could be used to detect the actual convergence, which could be especially useful when considering multi-resolution registrations. Further work should be also dedicated to study same strategies performances in other deformable registration methods and body districts. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Hernandez, Monica
2017-12-01
This paper proposes a method for primal-dual convex optimization in variational large deformation diffeomorphic metric mapping problems formulated with robust regularizers and robust image similarity metrics. The method is based on Chambolle and Pock primal-dual algorithm for solving general convex optimization problems. Diagonal preconditioning is used to ensure the convergence of the algorithm to the global minimum. We consider three robust regularizers liable to provide acceptable results in diffeomorphic registration: Huber, V-Huber and total generalized variation. The Huber norm is used in the image similarity term. The primal-dual equations are derived for the stationary and the non-stationary parameterizations of diffeomorphisms. The resulting algorithms have been implemented for running in the GPU using Cuda. For the most memory consuming methods, we have developed a multi-GPU implementation. The GPU implementations allowed us to perform an exhaustive evaluation study in NIREP and LPBA40 databases. The experiments showed that, for all the considered regularizers, the proposed method converges to diffeomorphic solutions while better preserving discontinuities at the boundaries of the objects compared to baseline diffeomorphic registration methods. In most cases, the evaluation showed a competitive performance for the robust regularizers, close to the performance of the baseline diffeomorphic registration methods.
Rusu, Mirabela; Birmanns, Stefan
2010-04-01
A structural characterization of multi-component cellular assemblies is essential to explain the mechanisms governing biological function. Macromolecular architectures may be revealed by integrating information collected from various biophysical sources - for instance, by interpreting low-resolution electron cryomicroscopy reconstructions in relation to the crystal structures of the constituent fragments. A simultaneous registration of multiple components is beneficial when building atomic models as it introduces additional spatial constraints to facilitate the native placement inside the map. The high-dimensional nature of such a search problem prevents the exhaustive exploration of all possible solutions. Here we introduce a novel method based on genetic algorithms, for the efficient exploration of the multi-body registration search space. The classic scheme of a genetic algorithm was enhanced with new genetic operations, tabu search and parallel computing strategies and validated on a benchmark of synthetic and experimental cryo-EM datasets. Even at a low level of detail, for example 35-40 A, the technique successfully registered multiple component biomolecules, measuring accuracies within one order of magnitude of the nominal resolutions of the maps. The algorithm was implemented using the Sculptor molecular modeling framework, which also provides a user-friendly graphical interface and enables an instantaneous, visual exploration of intermediate solutions. (c) 2009 Elsevier Inc. All rights reserved.
Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones
Chen, Jing; Cao, Ruochen; Wang, Yongtian
2015-01-01
Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters. PMID:26690439
Sensor-Aware Recognition and Tracking for Wide-Area Augmented Reality on Mobile Phones.
Chen, Jing; Cao, Ruochen; Wang, Yongtian
2015-12-10
Wide-area registration in outdoor environments on mobile phones is a challenging task in mobile augmented reality fields. We present a sensor-aware large-scale outdoor augmented reality system for recognition and tracking on mobile phones. GPS and gravity information is used to improve the VLAD performance for recognition. A kind of sensor-aware VLAD algorithm, which is self-adaptive to different scale scenes, is utilized to recognize complex scenes. Considering vision-based registration algorithms are too fragile and tend to drift, data coming from inertial sensors and vision are fused together by an extended Kalman filter (EKF) to achieve considerable improvements in tracking stability and robustness. Experimental results show that our method greatly enhances the recognition rate and eliminates the tracking jitters.
An automatic approach for 3D registration of CT scans
NASA Astrophysics Data System (ADS)
Hu, Yang; Saber, Eli; Dianat, Sohail; Vantaram, Sreenath Rao; Abhyankar, Vishwas
2012-03-01
CT (Computed tomography) is a widely employed imaging modality in the medical field. Normally, a volume of CT scans is prescribed by a doctor when a specific region of the body (typically neck to groin) is suspected of being abnormal. The doctors are required to make professional diagnoses based upon the obtained datasets. In this paper, we propose an automatic registration algorithm that helps healthcare personnel to automatically align corresponding scans from 'Study' to 'Atlas'. The proposed algorithm is capable of aligning both 'Atlas' and 'Study' into the same resolution through 3D interpolation. After retrieving the scanned slice volume in the 'Study' and the corresponding volume in the original 'Atlas' dataset, a 3D cross correlation method is used to identify and register various body parts.
The registration of non-cooperative moving targets laser point cloud in different view point
NASA Astrophysics Data System (ADS)
Wang, Shuai; Sun, Huayan; Guo, Huichao
2018-01-01
Non-cooperative moving target multi-view cloud registration is the key technology of 3D reconstruction of laser threedimension imaging. The main problem is that the density changes greatly and noise exists under different acquisition conditions of point cloud. In this paper, firstly, the feature descriptor is used to find the most similar point cloud, and then based on the registration algorithm of region segmentation, the geometric structure of the point is extracted by the geometric similarity between point and point, The point cloud is divided into regions based on spectral clustering, feature descriptors are created for each region, searching to find the most similar regions in the most similar point of view cloud, and then aligning the pair of point clouds by aligning their minimum bounding boxes. Repeat the above steps again until registration of all point clouds is completed. Experiments show that this method is insensitive to the density of point clouds and performs well on the noise of laser three-dimension imaging.
SU-E-J-218: Novel Validation Paradigm of MRI to CT Deformation of Prostate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padgett, K; University of Miami School of Medicine - Radiology, Miami, FL; Pirozzi, S
2015-06-15
Purpose: Deformable registration algorithms are inherently difficult to characterize in the multi-modality setting due to a significant differences in the characteristics of the different modalities (CT and MRI) as well as tissue deformations. We present a unique paradigm where this is overcome by utilizing a planning-MRI acquired within an hour of the planning-CT serving as a surrogate for quantifying MRI to CT deformation by eliminating the issues of multi-modality comparisons. Methods: For nine subjects, T2 fast-spin-echo images were acquired at two different time points, the first several weeks prior to planning (diagnostic-MRI) and the second on the same day asmore » the planning-CT (planning-MRI). Significant effort in patient positioning and bowel/bladder preparation was undertaken to minimize distortion of the prostate in all datasets. The diagnostic-MRI was rigidly and deformably aligned to the planning-CT utilizing a commercially available deformable registration algorithm synthesized from local registrations. Additionally, the quality of rigid alignment was ranked by an imaging physicist. The distances between corresponding anatomical landmarks on rigid and deformed registrations (diagnostic-MR to planning-CT) were evaluated. Results: It was discovered that in cases where the rigid registration was of acceptable quality the deformable registration didn’t improve the alignment, this was true of all metrics employed. If the analysis is separated into cases where the rigid alignment was ranked as unacceptable the deformable registration significantly improved the alignment, 4.62mm residual error in landmarks as compared to 5.72mm residual error in rigid alignments with a p-value of 0.0008. Conclusion: This paradigm provides an ideal testing ground for MR to CT deformable registration algorithms by allowing for inter-modality comparisons of multi-modality registrations. Consistent positioning, bowel and bladder preparation may Result in higher quality rigid registrations than typically achieved which limits the impact of deformable registrations. In this study cases where significant differences exist, deformable registrations provide significant value.« less
Wells, D J M; Alderson, J A; Dunne, J; Elliott, B C; Donnelly, C J
2017-01-25
To appropriately use inverse kinematic (IK) modelling for the assessment of human motion, a musculoskeletal model must be prepared 1) to match participant segment lengths (scaling) and 2) to align the model׳s virtual markers positions with known, experimentally derived kinematic marker positions (marker registration). The purpose of this study was to investigate whether prescribing joint co-ordinates during the marker registration process (within the modelling framework OpenSim) will improve IK derived elbow kinematics during an overhead sporting task. To test this, the upper limb kinematics of eight cricket bowlers were recorded during two testing sessions, with a different tester each session. The bowling trials were IK modelled twice: once with an upper limb musculoskeletal model prepared with prescribed participant specific co-ordinates during marker registration - MR PC - and once with the same model prepared without prescribed co-ordinates - MR; and by an established direct kinematic (DK) upper limb model. Whilst both skeletal model preparations had strong inter-tester repeatability (MR: Statistical Parametric Mapping (SPM1D)=0% different; MR PC : SPM1D=0% different), when compared with DK model elbow FE waveform estimates, IK estimates using the MR PC model (RMSD=5.2±2.0°, SPM1D=68% different) were in closer agreement than the estimates from the MR model (RMSD=44.5±18.5°, SPM1D=100% different). Results show that prescribing participant specific joint co-ordinates during the marker registration phase of model preparation increases the accuracy and repeatability of IK solutions when modelling overhead sporting tasks in OpenSim. Copyright © 2016 Elsevier Ltd. All rights reserved.
Direct three-dimensional ultrasound-to-video registration using photoacoustic markers
NASA Astrophysics Data System (ADS)
Cheng, Alexis; Kang, Jin U.; Taylor, Russell H.; Boctor, Emad M.
2013-06-01
Modern surgical procedures often have a fusion of video and other imaging modalities to provide the surgeon with information support. This requires interventional guidance equipment and surgical navigation systems to register different tools and devices together, such as stereoscopic endoscopes and ultrasound (US) transducers. In this work, the focus is specifically on the registration between these two devices. Electromagnetic and optical trackers are typically used to acquire this registration, but they have various drawbacks typically leading to target registration errors (TRE) of approximately 3 mm. We introduce photoacoustic markers for direct three-dimensional (3-D) US-to-video registration. The feasibility of this method was demonstrated on synthetic and ex vivo porcine liver, kidney, and fat phantoms with an air-coupled laser and a motorized 3-D US probe. The resulting TRE for each experiment ranged from 380 to 850 μm with standard deviations ranging from 150 to 450 μm. We also discuss a roadmap to bring this system into the surgical setting and possible challenges along the way.
Smart markers for watershed-based cell segmentation.
Koyuncu, Can Fahrettin; Arslan, Salim; Durmaz, Irem; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem
2012-01-01
Automated cell imaging systems facilitate fast and reliable analysis of biological events at the cellular level. In these systems, the first step is usually cell segmentation that greatly affects the success of the subsequent system steps. On the other hand, similar to other image segmentation problems, cell segmentation is an ill-posed problem that typically necessitates the use of domain-specific knowledge to obtain successful segmentations even by human subjects. The approaches that can incorporate this knowledge into their segmentation algorithms have potential to greatly improve segmentation results. In this work, we propose a new approach for the effective segmentation of live cells from phase contrast microscopy. This approach introduces a new set of "smart markers" for a marker-controlled watershed algorithm, for which the identification of its markers is critical. The proposed approach relies on using domain-specific knowledge, in the form of visual characteristics of the cells, to define the markers. We evaluate our approach on a total of 1,954 cells. The experimental results demonstrate that this approach, which uses the proposed definition of smart markers, is quite effective in identifying better markers compared to its counterparts. This will, in turn, be effective in improving the segmentation performance of a marker-controlled watershed algorithm.
A Variational Approach to Video Registration with Subspace Constraints.
Garg, Ravi; Roussos, Anastasios; Agapito, Lourdes
2013-01-01
This paper addresses the problem of non-rigid video registration, or the computation of optical flow from a reference frame to each of the subsequent images in a sequence, when the camera views deformable objects. We exploit the high correlation between 2D trajectories of different points on the same non-rigid surface by assuming that the displacement of any point throughout the sequence can be expressed in a compact way as a linear combination of a low-rank motion basis. This subspace constraint effectively acts as a trajectory regularization term leading to temporally consistent optical flow. We formulate it as a robust soft constraint within a variational framework by penalizing flow fields that lie outside the low-rank manifold. The resulting energy functional can be decoupled into the optimization of the brightness constancy and spatial regularization terms, leading to an efficient optimization scheme. Additionally, we propose a novel optimization scheme for the case of vector valued images, based on the dualization of the data term. This allows us to extend our approach to deal with colour images which results in significant improvements on the registration results. Finally, we provide a new benchmark dataset, based on motion capture data of a flag waving in the wind, with dense ground truth optical flow for evaluation of multi-frame optical flow algorithms for non-rigid surfaces. Our experiments show that our proposed approach outperforms state of the art optical flow and dense non-rigid registration algorithms.
Li, Mao; Miller, Karol; Joldes, Grand Roman; Kikinis, Ron; Wittek, Adam
2016-12-01
Patient-specific biomechanical models have been advocated as a tool for predicting deformations of soft body organs/tissue for medical image registration (aligning two sets of images) when differences between the images are large. However, complex and irregular geometry of the body organs makes generation of patient-specific biomechanical models very time-consuming. Meshless discretisation has been proposed to solve this challenge. However, applications so far have been limited to 2D models and computing single organ deformations. In this study, 3D comprehensive patient-specific nonlinear biomechanical models implemented using meshless Total Lagrangian explicit dynamics algorithms are applied to predict a 3D deformation field for whole-body image registration. Unlike a conventional approach that requires dividing (segmenting) the image into non-overlapping constituents representing different organs/tissues, the mechanical properties are assigned using the fuzzy c-means algorithm without the image segmentation. Verification indicates that the deformations predicted using the proposed meshless approach are for practical purposes the same as those obtained using the previously validated finite element models. To quantitatively evaluate the accuracy of the predicted deformations, we determined the spatial misalignment between the registered (i.e. source images warped using the predicted deformations) and target images by computing the edge-based Hausdorff distance. The Hausdorff distance-based evaluation determines that our meshless models led to successful registration of the vast majority of the image features. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Al Sidairi, Hilal; Binkhamis, Khalifa; Jackson, Colleen; Roberts, Catherine; Heinstein, Charles; MacDonald, Jimmy; Needle, Robert; Hatchette, Todd F; LeBlanc, Jason J
2017-11-01
Serology remains the mainstay for diagnosis of Epstein-Barr virus (EBV) infection. This study compared two automated platforms (BioPlex 2200 and Architect i2000SR) to test three EBV serological markers: viral capsid antigen (VCA) immunoglobulins of class M (IgM), VCA immunoglobulins of class G (IgG) and EBV nuclear antigen-1 (EBNA-1) IgG. Using sera from 65 patients at various stages of EBV disease, BioPlex demonstrated near-perfect agreement for all EBV markers compared to a consensus reference. The agreement for Architect was near-perfect for VCA IgG and EBNA-1 IgG, and substantial for VCA IgM despite five equivocal results. Since the majority of testing in our hospital was from adults with EBNA-1 IgG positive results, post-implementation analysis of an EBNA-based algorithm showed advantages over parallel testing of the three serologic markers. This small verification demonstrated that both automated systems for EBV serology had good performance for all EBV markers, and an EBNA-based testing algorithm is ideal for an adult hospital.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngjun; Li, Ruijiang; Na, Yong Hum
2014-12-15
Purpose: 3D optical surface imaging has been applied to patient positioning in radiation therapy (RT). The optical patient positioning system is advantageous over conventional method using cone-beam computed tomography (CBCT) in that it is radiation free, frameless, and is capable of real-time monitoring. While the conventional radiographic method uses volumetric registration, the optical system uses surface matching for patient alignment. The relative accuracy of these two methods has not yet been sufficiently investigated. This study aims to investigate the theoretical accuracy of the surface registration based on a simulation study using patient data. Methods: This study compares the relative accuracymore » of surface and volumetric registration in head-and-neck RT. The authors examined 26 patient data sets, each consisting of planning CT data acquired before treatment and patient setup CBCT data acquired at the time of treatment. As input data of surface registration, patient’s skin surfaces were created by contouring patient skin from planning CT and treatment CBCT. Surface registration was performed using the iterative closest points algorithm by point–plane closest, which minimizes the normal distance between source points and target surfaces. Six degrees of freedom (three translations and three rotations) were used in both surface and volumetric registrations and the results were compared. The accuracy of each method was estimated by digital phantom tests. Results: Based on the results of 26 patients, the authors found that the average and maximum root-mean-square translation deviation between the surface and volumetric registrations were 2.7 and 5.2 mm, respectively. The residual error of the surface registration was calculated to have an average of 0.9 mm and a maximum of 1.7 mm. Conclusions: Surface registration may lead to results different from those of the conventional volumetric registration. Only limited accuracy can be achieved for patient positioning with an approach based solely on surface information.« less
Onboard Image Registration from Invariant Features
NASA Technical Reports Server (NTRS)
Wang, Yi; Ng, Justin; Garay, Michael J.; Burl, Michael C
2008-01-01
This paper describes a feature-based image registration technique that is potentially well-suited for onboard deployment. The overall goal is to provide a fast, robust method for dynamically combining observations from multiple platforms into sensors webs that respond quickly to short-lived events and provide rich observations of objects that evolve in space and time. The approach, which has enjoyed considerable success in mainstream computer vision applications, uses invariant SIFT descriptors extracted at image interest points together with the RANSAC algorithm to robustly estimate transformation parameters that relate one image to another. Experimental results for two satellite image registration tasks are presented: (1) automatic registration of images from the MODIS instrument on Terra to the MODIS instrument on Aqua and (2) automatic stabilization of a multi-day sequence of GOES-West images collected during the October 2007 Southern California wildfires.
Chen, Zhe; Song, John; Chu, Wei; Soons, Johannes A; Zhao, Xuezeng
2017-11-01
The Congruent Matching Cells (CMC) method was invented at the National Institute of Standards and Technology (NIST) for accurate firearm evidence identification and error rate estimation. The CMC method is based on the principle of discretization. The toolmark image of the reference sample is divided into correlation cells. Each cell is registered to the cell-sized area of the compared image that has maximum surface topography similarity. For each resulting cell pair, one parameter quantifies the similarity of the cell surface topography and three parameters quantify the pattern congruency of the registration position and orientation. An identification (declared match) requires a significant number of CMCs, that is, cell pairs that meet both similarity and pattern congruency requirements. The use of cell correlations reduces the effects of "invalid regions" in the compared image pairs and increases the correlation accuracy. The identification accuracy of the CMC method can be further improved by considering a feature named "convergence," that is, the tendency of the x-y registration positions of the correlated cell pairs to converge at the correct registration angle when comparing same-source samples at different relative orientations. In this paper, the difference of the convergence feature between known matching (KM) and known non-matching (KNM) image pairs is characterized, based on which an improved algorithm is developed for breech face image correlations using the CMC method. Its advantage is demonstrated by comparison with three existing CMC algorithms using four datasets. The datasets address three different brands of consecutively manufactured pistol slides, with significant differences in the distribution overlap of cell pair topography similarity for KM and KNM image pairs. For the same CMC threshold values, the convergence algorithm demonstrates noticeably improved results by reducing the number of false-positive or false-negative CMCs in a comparison. Published by Elsevier B.V.
Reproducibility measurements of three methods for calculating in vivo MR-based knee kinematics.
Lansdown, Drew A; Zaid, Musa; Pedoia, Valentina; Subburaj, Karupppasamy; Souza, Richard; Benjamin, C; Li, Xiaojuan
2015-08-01
To describe three quantification methods for magnetic resonance imaging (MRI)-based knee kinematic evaluation and to report on the reproducibility of these algorithms. T2 -weighted, fast-spin echo images were obtained of the bilateral knees in six healthy volunteers. Scans were repeated for each knee after repositioning to evaluate protocol reproducibility. Semiautomatic segmentation defined regions of interest for the tibia and femur. The posterior femoral condyles and diaphyseal axes were defined using the previously defined tibia and femur. All segmentation was performed twice to evaluate segmentation reliability. Anterior tibial translation (ATT) and internal tibial rotation (ITR) were calculated using three methods: a tibial-based registration system, a combined tibiofemoral-based registration method with all manual segmentation, and a combined tibiofemoral-based registration method with automatic definition of condyles and axes. Intraclass correlation coefficients and standard deviations across multiple measures were determined. Reproducibility of segmentation was excellent (ATT = 0.98; ITR = 0.99) for both combined methods. ATT and ITR measurements were also reproducible across multiple scans in the combined registration measurements with manual (ATT = 0.94; ITR = 0.94) or automatic (ATT = 0.95; ITR = 0.94) condyles and axes. The combined tibiofemoral registration with automatic definition of the posterior femoral condyle and diaphyseal axes allows for improved knee kinematics quantification with excellent in vivo reproducibility. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei Baowei; Wang Hesheng; Muzic, Raymond F. Jr.
2006-03-15
We are investigating imaging techniques to study the tumor response to photodynamic therapy (PDT). Positron emission tomography (PET) can provide physiological and functional information. High-resolution magnetic resonance imaging (MRI) can provide anatomical and morphological changes. Image registration can combine MRI and PET images for improved tumor monitoring. In this study, we acquired high-resolution MRI and microPET {sup 18}F-fluorodeoxyglucose (FDG) images from C3H mice with RIF-1 tumors that were treated with Pc 4-based PDT. We developed two registration methods for this application. For registration of the whole mouse body, we used an automatic three-dimensional, normalized mutual information algorithm. For tumor registration,more » we developed a finite element model (FEM)-based deformable registration scheme. To assess the quality of whole body registration, we performed slice-by-slice review of both image volumes; manually segmented feature organs, such as the left and right kidneys and the bladder, in each slice; and computed the distance between corresponding centroids. Over 40 volume registration experiments were performed with MRI and microPET images. The distance between corresponding centroids of organs was 1.5{+-}0.4 mm which is about 2 pixels of microPET images. The mean volume overlap ratios for tumors were 94.7% and 86.3% for the deformable and rigid registration methods, respectively. Registration of high-resolution MRI and microPET images combines anatomical and functional information of the tumors and provides a useful tool for evaluating photodynamic therapy.« less
Nonrigid registration of carotid ultrasound and MR images using a "twisting and bending" model
NASA Astrophysics Data System (ADS)
Nanayakkara, Nuwan D.; Chiu, Bernard; Samani, Abbas; Spence, J. David; Parraga, Grace; Samarabandu, Jagath; Fenster, Aaron
2008-03-01
Atherosclerosis at the carotid bifurcation resulting in cerebral emboli is a major cause of ischemic stroke. Most strokes associated with carotid atherosclerosis can be prevented by lifestyle/dietary changes and pharmacological treatments if identified early by monitoring carotid plaque changes. Plaque composition information from magnetic resonance (MR) carotid images and dynamic characteristics information from 3D ultrasound (US) are necessary for developing and validating US imaging tools to identify vulnerable carotid plaques. Combining these images requires nonrigid registration to correct the non-linear miss-alignments caused by relative twisting and bending in the neck due to different head positions during the two image acquisitions sessions. The high degree of freedom and large number of parameters associated with existing nonrigid image registration methods causes several problems including unnatural plaque morphology alteration, computational complexity, and low reliability. Our approach was to model the normal movement of the neck using a "twisting and bending model" with only six parameters for nonrigid registration. We evaluated our registration technique using intra-subject in-vivo 3D US and 3D MR carotid images acquired on the same day. We calculated the Mean Registration Error (MRE) between the segmented vessel surfaces in the target image and the registered image using a distance-based error metric after applying our "twisting bending model" based nonrigid registration algorithm. We achieved an average registration error of 1.33+/-0.41mm using our nonrigid registration technique. Visual inspection of segmented vessel surfaces also showed a substantial improvement of alignment with our non-rigid registration technique.
Image registration based on subpixel localization and Cauchy-Schwarz divergence
NASA Astrophysics Data System (ADS)
Ge, Yongxin; Yang, Dan; Zhang, Xiaohong; Lu, Jiwen
2010-07-01
We define a new matching metric-corner Cauchy-Schwarz divergence (CCSD) and present a new approach based on the proposed CCSD and subpixel localization for image registration. First, we detect the corners in an image by a multiscale Harris operator and take them as initial interest points. And then, a subpixel localization technique is applied to determine the locations of the corners and eliminate the false and unstable corners. After that, CCSD is defined to obtain the initial matching corners. Finally, we use random sample consensus to robustly estimate the parameters based on the initial matching. The experimental results demonstrate that the proposed algorithm has a good performance in terms of both accuracy and efficiency.
Torshabi, Ahmad Esmaili; Nankali, Saber
2016-01-01
In external beam radiotherapy, one of the most common and reliable methods for patient geometrical setup and/or predicting the tumor location is use of external markers. In this study, the main challenging issue is increasing the accuracy of patient setup by investigating external markers location. Since the location of each external marker may yield different patient setup accuracy, it is important to assess different locations of external markers using appropriate selective algorithms. To do this, two commercially available algorithms entitled a) canonical correlation analysis (CCA) and b) principal component analysis (PCA) were proposed as input selection algorithms. They work on the basis of maximum correlation coefficient and minimum variance between given datasets. The proposed input selection algorithms work in combination with an adaptive neuro‐fuzzy inference system (ANFIS) as a correlation model to give patient positioning information as output. Our proposed algorithms provide input file of ANFIS correlation model accurately. The required dataset for this study was prepared by means of a NURBS‐based 4D XCAT anthropomorphic phantom that can model the shape and structure of complex organs in human body along with motion information of dynamic organs. Moreover, a database of four real patients undergoing radiation therapy for lung cancers was utilized in this study for validation of proposed strategy. Final analyzed results demonstrate that input selection algorithms can reasonably select specific external markers from those areas of the thorax region where root mean square error (RMSE) of ANFIS model has minimum values at that given area. It is also found that the selected marker locations lie closely in those areas where surface point motion has a large amplitude and a high correlation. PACS number(s): 87.55.km, 87.55.N PMID:27929479
WE-AB-BRA-12: Virtual Endoscope Tracking for Endoscopy-CT Image Registration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, W; Rao, A; Wendt, R
Purpose: The use of endoscopy in radiotherapy will remain limited until we can register endoscopic video to CT using standard clinical equipment. In this phantom study we tested a registration method using virtual endoscopy to measure CT-space positions from endoscopic video. Methods: Our phantom is a contorted clay cylinder with 2-mm-diameter markers in the luminal surface. These markers are visible on both CT and endoscopic video. Virtual endoscope images were rendered from a polygonal mesh created by segmenting the phantom’s luminal surface on CT. We tested registration accuracy by tracking the endoscope’s 6-degree-of-freedom coordinates frame-to-frame in a video recorded asmore » it moved through the phantom, and using these coordinates to measure CT-space positions of markers visible in the final frame. To track the endoscope we used the Nelder-Mead method to search for coordinates that render the virtual frame most similar to the next recorded frame. We measured the endoscope’s initial-frame coordinates using a set of visible markers, and for image similarity we used a combination of mutual information and gradient alignment. CT-space marker positions were measured by projecting their final-frame pixel addresses through the virtual endoscope to intersect with the mesh. Registration error was quantified as the distance between this intersection and the marker’s manually-selected CT-space position. Results: Tracking succeeded for 6 of 8 videos, for which the mean registration error was 4.8±3.5mm (24 measurements total). The mean error in the axial direction (3.1±3.3mm) was larger than in the sagittal or coronal directions (2.0±2.3mm, 1.7±1.6mm). In the other 2 videos, the virtual endoscope got stuck in a false minimum. Conclusion: Our method can successfully track the position and orientation of an endoscope, and it provides accurate spatial mapping from endoscopic video to CT. This method will serve as a foundation for an endoscopy-CT registration framework that is clinically valuable and requires no specialized equipment.« less
NASA Technical Reports Server (NTRS)
Mareboyana, Manohar; Le Moigne-Stewart, Jacqueline; Bennett, Jerome
2016-01-01
In this paper, we demonstrate a simple algorithm that projects low resolution (LR) images differing in subpixel shifts on a high resolution (HR) also called super resolution (SR) grid. The algorithm is very effective in accuracy as well as time efficiency. A number of spatial interpolation techniques using nearest neighbor, inverse-distance weighted averages, Radial Basis Functions (RBF) etc. used in projection yield comparable results. For best accuracy of reconstructing SR image by a factor of two requires four LR images differing in four independent subpixel shifts. The algorithm has two steps: i) registration of low resolution images and (ii) shifting the low resolution images to align with reference image and projecting them on high resolution grid based on the shifts of each low resolution image using different interpolation techniques. Experiments are conducted by simulating low resolution images by subpixel shifts and subsampling of original high resolution image and the reconstructing the high resolution images from the simulated low resolution images. The results of accuracy of reconstruction are compared by using mean squared error measure between original high resolution image and reconstructed image. The algorithm was tested on remote sensing images and found to outperform previously proposed techniques such as Iterative Back Projection algorithm (IBP), Maximum Likelihood (ML), and Maximum a posterior (MAP) algorithms. The algorithm is robust and is not overly sensitive to the registration inaccuracies.
NASA Astrophysics Data System (ADS)
Kang, Zhizhong
2013-10-01
This paper presents a new approach to automatic registration of terrestrial laser scanning (TLS) point clouds utilizing a novel robust estimation method by an efficient BaySAC (BAYes SAmpling Consensus). The proposed method directly generates reflectance images from 3D point clouds, and then using SIFT algorithm extracts keypoints to identify corresponding image points. The 3D corresponding points, from which transformation parameters between point clouds are computed, are acquired by mapping the 2D ones onto the point cloud. To remove false accepted correspondences, we implement a conditional sampling method to select the n data points with the highest inlier probabilities as a hypothesis set and update the inlier probabilities of each data point using simplified Bayes' rule for the purpose of improving the computation efficiency. The prior probability is estimated by the verification of the distance invariance between correspondences. The proposed approach is tested on four data sets acquired by three different scanners. The results show that, comparing with the performance of RANSAC, BaySAC leads to less iterations and cheaper computation cost when the hypothesis set is contaminated with more outliers. The registration results also indicate that, the proposed algorithm can achieve high registration accuracy on all experimental datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, S; Coroller, T; Niu, N
2015-06-15
Purpose: Tumor regions-of-interest (ROI) can be propagated from the pre-onto the post-treatment PET/CT images using image registration of their CT counterparts, providing an automatic way to compute texture features on longitudinal scans. This exploratory study assessed the impact of image registration algorithms on textures to predict pathological response. Methods: Forty-six esophageal cancer patients (1 tumor/patient) underwent PET/CT scans before and after chemoradiotherapy. Patients were classified into responders and non-responders after the surgery. Physician-defined tumor ROIs on pre-treatment PET were propagated onto the post-treatment PET using rigid and ten deformable registration algorithms. One co-occurrence, two run-length and size zone matrix texturesmore » were computed within all ROIs. The relative difference of each texture at different treatment time-points was used to predict the pathologic responders. Their predictive value was assessed using the area under the receiver-operating-characteristic curve (AUC). Propagated ROIs and texture quantification resulting from different algorithms were compared using overlap volume (OV) and coefficient of variation (CoV), respectively. Results: Tumor volumes were better captured by ROIs propagated by deformable rather than the rigid registration. The OV between rigidly and deformably propagated ROIs were 69%. The deformably propagated ROIs were found to be similar (OV∼80%) except for fast-demons (OV∼60%). Rigidly propagated ROIs with run-length matrix textures failed to significantly differentiate between responders and non-responders (AUC=0.65, p=0.07), while the differentiation was significant with other textures (AUC=0.69–0.72, p<0.03). Among the deformable algorithms, fast-demons was the least predictive (AUC=0.68–0.71, p<0.04). ROIs propagated by all other deformable algorithms with any texture significantly predicted pathologic responders (AUC=0.71–0.78, p<0.01) despite substantial variation in texture quantification (CoV>70%). Conclusion: Propagated ROIs using deformable registration for all textures can lead to accurate prediction of pathologic response, potentially expediting the temporal texture analysis process. However, rigid and fast-demons deformable algorithms are not recommended due to their inferior performance compared to other algorithms. The project was supported in part by a Kaye Scholar Award.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaake, Eva E.; Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam; Rossi, Maddalena M.G.
2014-11-15
Purpose/Objective: In patients with locally advanced lung cancer, planning target volume margins for mediastinal lymph nodes and tumor after a correction protocol based on bony anatomy registration typically range from 1 to 1.5 cm. Detailed information about lymph node motion variability and differential motion with the primary tumor, however, is lacking from large series. In this study, lymph node and tumor position variability were analyzed in detail and correlated to the main carina to evaluate possible margin reduction. Methods and Materials: Small gold fiducial markers (0.35 × 5 mm) were placed in the mediastinal lymph nodes of 51 patients with non-small cell lung cancermore » during routine diagnostic esophageal or bronchial endoscopic ultrasonography. Four-dimensional (4D) planning computed tomographic (CT) and daily 4D cone beam (CB) CT scans were acquired before and during radical radiation therapy (66 Gy in 24 fractions). Each CBCT was registered in 3-dimensions (bony anatomy) and 4D (tumor, marker, and carina) to the planning CT scan. Subsequently, systematic and random residual misalignments of the time-averaged lymph node and tumor position relative to the bony anatomy and carina were determined. Additionally, tumor and lymph node respiratory amplitude variability was quantified. Finally, required margins were quantified by use of a recipe for dual targets. Results: Relative to the bony anatomy, systematic and random errors ranged from 0.16 to 0.32 cm for the markers and from 0.15 to 0.33 cm for the tumor, but despite similar ranges there was limited correlation (0.17-0.71) owing to differential motion. A large variability in lymph node amplitude between patients was observed, with an average motion of 0.56 cm in the cranial-caudal direction. Margins could be reduced by 10% (left-right), 27% (cranial-caudal), and 10% (anteroposterior) for the lymph nodes and −2%, 15%, and 7% for the tumor if an online carina registration protocol replaced a protocol based on bony anatomy registration. Conclusions: Detailed analysis revealed considerable lymph node position variability, differential motion, and respiratory motion. Planning target volume margins can be reduced up to 27% in lung cancer patients when the carina registration replaces bony anatomy registration.« less
Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Furtado, Hugo; Fabri, Daniella; Bloch, Christoph; Bergmann, Helmar; Gröller, Eduard; Birkfellner, Wolfgang
2012-02-01
A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D Registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512×512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches - namely so-called wobbled splatting - to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. Copyright © 2011. Published by Elsevier GmbH.
Shi, Jie; Thompson, Paul M.; Gutman, Boris; Wang, Yalin
2013-01-01
In this paper, we develop a new automated surface registration system based on surface conformal parameterization by holomorphic 1-forms, inverse consistentsurface fluid registration, and multivariate tensor-based morphometry (mTBM). First, we conformally map a surface onto a planar rectangle space with holomorphic 1-forms. Second, we compute surface conformal representation by combining its local conformal factor and mean curvature and linearly scale the dynamic range of the conformal representation to form the feature image of the surface. Third, we align the feature image with a chosen template image via the fluid image registration algorithm, which has been extended into the curvilinear coordinates to adjust for the distortion introduced by surface parameterization. The inverse consistent image registration algorithm is also incorporated in the system to jointly estimate the forward and inverse transformations between the study and template images. This alignment induces a corresponding deformation on the surface. We tested the system on Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset to study AD symptoms on hippocampus. In our system, by modeling a hippocampus as a 3D parametric surface, we nonlinearly registered each surface with a selected template surface. Then we used mTBM to analyze the morphometrydifference between diagnostic groups. Experimental results show that the new system has better performance than two publically available subcortical surface registration tools: FIRST and SPHARM. We also analyzed the genetic influence of the Apolipoprotein E ε4 allele (ApoE4),which is considered as the most prevalent risk factor for AD.Our work successfully detected statistically significant difference between ApoE4 carriers and non-carriers in both patients of mild cognitive impairment (MCI) and healthy control subjects. The results show evidence that the ApoE genotype may be associated with accelerated brain atrophy so that our workprovides a new MRI analysis tool that may help presymptomatic AD research. PMID:23587689
Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Furtado, Hugo; Fabri, Daniella; Bloch, Christoph; Bergmann, Helmar; Gröller, Eduard; Birkfellner, Wolfgang
2012-01-01
A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512 × 512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches – namely so-called wobbled splatting – to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. PMID:21782399
Smelter, Andrey; Rouchka, Eric C; Moseley, Hunter N B
2017-08-01
Peak lists derived from nuclear magnetic resonance (NMR) spectra are commonly used as input data for a variety of computer assisted and automated analyses. These include automated protein resonance assignment and protein structure calculation software tools. Prior to these analyses, peak lists must be aligned to each other and sets of related peaks must be grouped based on common chemical shift dimensions. Even when programs can perform peak grouping, they require the user to provide uniform match tolerances or use default values. However, peak grouping is further complicated by multiple sources of variance in peak position limiting the effectiveness of grouping methods that utilize uniform match tolerances. In addition, no method currently exists for deriving peak positional variances from single peak lists for grouping peaks into spin systems, i.e. spin system grouping within a single peak list. Therefore, we developed a complementary pair of peak list registration analysis and spin system grouping algorithms designed to overcome these limitations. We have implemented these algorithms into an approach that can identify multiple dimension-specific positional variances that exist in a single peak list and group peaks from a single peak list into spin systems. The resulting software tools generate a variety of useful statistics on both a single peak list and pairwise peak list alignment, especially for quality assessment of peak list datasets. We used a range of low and high quality experimental solution NMR and solid-state NMR peak lists to assess performance of our registration analysis and grouping algorithms. Analyses show that an algorithm using a single iteration and uniform match tolerances approach is only able to recover from 50 to 80% of the spin systems due to the presence of multiple sources of variance. Our algorithm recovers additional spin systems by reevaluating match tolerances in multiple iterations. To facilitate evaluation of the algorithms, we developed a peak list simulator within our nmrstarlib package that generates user-defined assigned peak lists from a given BMRB entry or database of entries. In addition, over 100,000 simulated peak lists with one or two sources of variance were generated to evaluate the performance and robustness of these new registration analysis and peak grouping algorithms.
WE-H-202-04: Advanced Medical Image Registration Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, G.
Deformable image registration has now been commercially available for several years, with solid performance in a number of sites and for several applications including contour and dose mapping. However, more complex applications have arisen, such as assessing response to radiation therapy over time, registering images pre- and post-surgery, and auto-segmentation from atlases. These applications require innovative registration algorithms to achieve accurate alignment. The goal of this session is to highlight emerging registration technology and these new applications. The state of the art in image registration will be presented from an engineering perspective. Translational clinical applications will also be discussed tomore » tie these new registration approaches together with imaging and radiation therapy applications in specific diseases such as cervical and lung cancers. Learning Objectives: To understand developing techniques and algorithms in deformable image registration that are likely to translate into clinical tools in the near future. To understand emerging imaging and radiation therapy clinical applications that require such new registration algorithms. Research supported in part by the National Institutes of Health under award numbers P01CA059827, R01CA166119, and R01CA166703. Disclosures: Phillips Medical systems (Hugo), Roger Koch (Christensen) support, Varian Medical Systems (Brock), licensing agreements from Raysearch (Brock) and Varian (Hugo).; K. Brock, Licensing Agreement - RaySearch Laboratories. Research Funding - Varian Medical Systems; G. Hugo, Research grant from National Institutes of Health, award number R01CA166119.; G. Christensen, Research support from NIH grants CA166119 and CA166703 and a gift from Roger Koch. There are no conflicts of interest.« less
Skull registration for prone patient position using tracked ultrasound
NASA Astrophysics Data System (ADS)
Underwood, Grace; Ungi, Tamas; Baum, Zachary; Lasso, Andras; Kronreif, Gernot; Fichtinger, Gabor
2017-03-01
PURPOSE: Tracked navigation has become prevalent in neurosurgery. Problems with registration of a patient and a preoperative image arise when the patient is in a prone position. Surfaces accessible to optical tracking on the back of the head are unreliable for registration. We investigated the accuracy of surface-based registration using points accessible through tracked ultrasound. Using ultrasound allows access to bone surfaces that are not available through optical tracking. Tracked ultrasound could eliminate the need to work (i) under the table for registration and (ii) adjust the tracker between surgery and registration. In addition, tracked ultrasound could provide a non-invasive method in comparison to an alternative method of registration involving screw implantation. METHODS: A phantom study was performed to test the feasibility of tracked ultrasound for registration. An initial registration was performed to partially align the pre-operative computer tomography data and skull phantom. The initial registration was performed by an anatomical landmark registration. Surface points accessible by tracked ultrasound were collected and used to perform an Iterative Closest Point Algorithm. RESULTS: When the surface registration was compared to a ground truth landmark registration, the average TRE was found to be 1.6+/-0.1mm and the average distance of points off the skull surface was 0.6+/-0.1mm. CONCLUSION: The use of tracked ultrasound is feasible for registration of patients in prone position and eliminates the need to perform registration under the table. The translational component of error found was minimal. Therefore, the amount of TRE in registration is due to a rotational component of error.
Accuracy assessment of fluoroscopy-transesophageal echocardiography registration
NASA Astrophysics Data System (ADS)
Lang, Pencilla; Seslija, Petar; Bainbridge, Daniel; Guiraudon, Gerard M.; Jones, Doug L.; Chu, Michael W.; Holdsworth, David W.; Peters, Terry M.
2011-03-01
This study assesses the accuracy of a new transesophageal (TEE) ultrasound (US) fluoroscopy registration technique designed to guide percutaneous aortic valve replacement. In this minimally invasive procedure, a valve is inserted into the aortic annulus via a catheter. Navigation and positioning of the valve is guided primarily by intra-operative fluoroscopy. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to heart valve embolization, obstruction of the coronary ostia and acute kidney injury. The use of TEE US images to augment intra-operative fluoroscopy provides significant improvements to image-guidance. Registration is achieved using an image-based TEE probe tracking technique and US calibration. TEE probe tracking is accomplished using a single-perspective pose estimation algorithm. Pose estimation from a single image allows registration to be achieved using only images collected in standard OR workflow. Accuracy of this registration technique is assessed using three models: a point target phantom, a cadaveric porcine heart with implanted fiducials, and in-vivo porcine images. Results demonstrate that registration can be achieved with an RMS error of less than 1.5mm, which is within the clinical accuracy requirements of 5mm. US-fluoroscopy registration based on single-perspective pose estimation demonstrates promise as a method for providing guidance to percutaneous aortic valve replacement procedures. Future work will focus on real-time implementation and a visualization system that can be used in the operating room.
Robust registration of sparsely sectioned histology to ex-vivo MRI of temporal lobe resections
NASA Astrophysics Data System (ADS)
Goubran, Maged; Khan, Ali R.; Crukley, Cathie; Buchanan, Susan; Santyr, Brendan; deRibaupierre, Sandrine; Peters, Terry M.
2012-02-01
Surgical resection of epileptic foci is a typical treatment for drug-resistant epilepsy, however, accurate preoperative localization is challenging and often requires invasive sub-dural or intra-cranial electrode placement. The presence of cellular abnormalities in the resected tissue can be used to validate the effectiveness of multispectralMagnetic Resonance Imaging (MRI) in pre-operative foci localization and surgical planning. If successful, these techniques can lead to improved surgical outcomes and less invasive procedures. Towards this goal, a novel pipeline is presented here for post-operative imaging of temporal lobe specimens involving MRI and digital histology, and present and evaluate methods for bringing these images into spatial correspondence. The sparsely-sectioned histology images of resected tissue represents a challenge for 3D reconstruction which we address with a combined 3D and 2D rigid registration algorithm that alternates between slice-based and volume-based registration with the ex-vivo MRI. We also evaluate four methods for non-rigid within-plane registration using both images and fiducials, with the top performing method resulting in a target registration error of 0.87 mm. This work allows for the spatially-local comparison of histology with post-operative MRI and paves the way for eventual registration with pre-operative MRI images.
Model-based registration of multi-rigid-body for augmented reality
NASA Astrophysics Data System (ADS)
Ikeda, Sei; Hori, Hajime; Imura, Masataka; Manabe, Yoshitsugu; Chihara, Kunihiro
2009-02-01
Geometric registration between a virtual object and the real space is the most basic problem in augmented reality. Model-based tracking methods allow us to estimate three-dimensional (3-D) position and orientation of a real object by using a textured 3-D model instead of visual marker. However, it is difficult to apply existing model-based tracking methods to the objects that have movable parts such as a display of a mobile phone, because these methods suppose a single, rigid-body model. In this research, we propose a novel model-based registration method for multi rigid-body objects. For each frame, the 3-D models of each rigid part of the object are first rendered according to estimated motion and transformation from the previous frame. Second, control points are determined by detecting the edges of the rendered image and sampling pixels on these edges. Motion and transformation are then simultaneously calculated from distances between the edges and the control points. The validity of the proposed method is demonstrated through experiments using synthetic videos.
Luo, Xiongbiao
2014-06-01
Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model was designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0-10 min(-1). The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. An electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xiongbiao, E-mail: xiongbiao.luo@gmail.com
2014-06-15
Purpose: Various bronchoscopic navigation systems are developed for diagnosis, staging, and treatment of lung and bronchus cancers. To construct electromagnetically navigated bronchoscopy systems, registration of preoperative images and an electromagnetic tracker must be performed. This paper proposes a new marker-free registration method, which uses the centerlines of the bronchial tree and the center of a bronchoscope tip where an electromagnetic sensor is attached, to align preoperative images and electromagnetic tracker systems. Methods: The chest computed tomography (CT) volume (preoperative images) was segmented to extract the bronchial centerlines. An electromagnetic sensor was fixed at the bronchoscope tip surface. A model wasmore » designed and printed using a 3D printer to calibrate the relationship between the fixed sensor and the bronchoscope tip center. For each sensor measurement that includes sensor position and orientation information, its corresponding bronchoscope tip center position was calculated. By minimizing the distance between each bronchoscope tip center position and the bronchial centerlines, the spatial alignment of the electromagnetic tracker system and the CT volume was determined. After obtaining the spatial alignment, an electromagnetic navigation bronchoscopy system was established to real-timely track or locate a bronchoscope inside the bronchial tree during bronchoscopic examinations. Results: The electromagnetic navigation bronchoscopy system was validated on a dynamic bronchial phantom that can simulate respiratory motion with a breath rate range of 0–10 min{sup −1}. The fiducial and target registration errors of this navigation system were evaluated. The average fiducial registration error was reduced from 8.7 to 6.6 mm. The average target registration error, which indicates all tracked or navigated bronchoscope position accuracy, was much reduced from 6.8 to 4.5 mm compared to previous registration methods. Conclusions: An electromagnetically navigated bronchoscopy system was constructed with accurate registration of an electromagnetic tracker and the CT volume on the basis of an improved marker-free registration approach that uses the bronchial centerlines and bronchoscope tip center information. The fiducial and target registration errors of our electromagnetic navigation system were about 6.6 and 4.5 mm in dynamic bronchial phantom validation.« less
GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.
Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H
2012-09-01
Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC architecture.
Image registration for multi-exposed HDRI and motion deblurring
NASA Astrophysics Data System (ADS)
Lee, Seok; Wey, Ho-Cheon; Lee, Seong-Deok
2009-02-01
In multi-exposure based image fusion task, alignment is an essential prerequisite to prevent ghost artifact after blending. Compared to usual matching problem, registration is more difficult when each image is captured under different photographing conditions. In HDR imaging, we use long and short exposure images, which have different brightness and there exist over/under satuated regions. In motion deblurring problem, we use blurred and noisy image pair and the amount of motion blur varies from one image to another due to the different exposure times. The main difficulty is that luminance levels of the two images are not in linear relationship and we cannot perfectly equalize or normalize the brightness of each image and this leads to unstable and inaccurate alignment results. To solve this problem, we applied probabilistic measure such as mutual information to represent similarity between images after alignment. In this paper, we discribed about the characteristics of multi-exposed input images in the aspect of registration and also analyzed the magnitude of camera hand shake. By exploiting the independence of luminance of mutual information, we proposed a fast and practically useful image registration technique in multiple capturing. Our algorithm can be applied to extreme HDR scenes and motion blurred scenes with over 90% success rate and its simplicity enables to be embedded in digital camera and mobile camera phone. The effectiveness of our registration algorithm is examined by various experiments on real HDR or motion deblurring cases using hand-held camera.
SU-E-J-91: Biomechanical Deformable Image Registration of Longitudinal Lung CT Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cazoulat, G; Owen, D; Matuszak, M
2015-06-15
Purpose: Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Methods: Four lung cancer patients previously treated with conventionally fractionated radiotherapy that exhibited notable tumor shrinkage during treatment were retrospectively evaluated. Exhale breathhold CT scans were obtained at treatment planning (PCT) and following three weeks (W3CT) of treatment. For each patient, the PCT was registered to the W3CT using Morfeus, a biomechanicalmore » model-based deformable registration algorithm, consisting of boundary conditions on the lungs and incorporating a sliding interface between the lung and chest wall. To model the complex response of the lung, an extension to Morfeus has been developed: (i) The vessel tree was segmented by thresholding a vesselness image based on the Hessian matrix’s eigenvalues and the centerline was extracted; (ii) A 3D shape context method was used to find correspondences between the trees of the two images; (ii) Correspondences were used as additional boundary conditions (Morfeus+vBC). An expert independently identified corresponding landmarks well distributed in the lung to compute Target Registration Errors (TRE). Results: The TRE within 15mm of the tumor boundaries (on average 11 landmarks) is: 6.1±1.8, 4.6±1.1 and 3.8±2.3 mm after rigid registration, Morfeus and Morfeus+vBC, respectively. The TRE in the rest of the lung (on average 13 landmarks) is: 6.4±3.9, 4.7±2.2 and 3.6±1.9 mm, which is on the order of the 2mm isotropic dose grid vector (3.5mm). Conclusion: The addition of boundary conditions on the vessels improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these geometrical uncertainties will enable future plan adaptation strategies. This work was funded in part by NIH 2P01CA059827-16.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, Yan Jiang; Smith, Arthur-Allen; Mcilvena, David
Purpose: Patients’ interfractional anatomic changes can compromise the initial treatment plan quality. To overcome this issue, adaptive radiotherapy (ART) has been introduced. Deformable image registration (DIR) is an important tool for ART and several deformable phantoms have been built to evaluate the algorithms’ accuracy. However, there is a lack of deformable phantoms that can also provide dosimetric information to verify the accuracy of the whole ART process. The goal of this work is to design and construct a deformable head and neck (HN) ART quality assurance (QA) phantom with in vivo dosimetry. Methods: An axial slice of a HN patientmore » is taken as a model for the phantom construction. Six anatomic materials are considered, with HU numbers similar to a real patient. A filled balloon inside the phantom tissue is inserted to simulate tumor. Deflation of the balloon simulates tumor shrinkage. Nonradiopaque surface markers, which do not influence DIR algorithms, provide the deformation ground truth. Fixed and movable holders are built in the phantom to hold a diode for dosimetric measurements. Results: The measured deformations at the surface marker positions can be compared with deformations calculated by a DIR algorithm to evaluate its accuracy. In this study, the authors selected a Demons algorithm as a DIR algorithm example for demonstration purposes. The average error magnitude is 2.1 mm. The point dose measurements from the in vivo diode dosimeters show a good agreement with the calculated doses from the treatment planning system with a maximum difference of 3.1% of prescription dose, when the treatment plans are delivered to the phantom with original or deformed geometry. Conclusions: In this study, the authors have presented the functionality of this deformable HN phantom for testing the accuracy of DIR algorithms and verifying the ART dosimetric accuracy. The authors’ experiments demonstrate the feasibility of this phantom serving as an end-to-end ART QA phantom.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin
Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less
Van Aardt, Jan; Romanczyk, Paul; van Leeuwen, Martin; ...
2016-04-04
Terrestrial laser scanning (TLS) has emerged as an effective tool for rapid comprehensive measurement of object structure. Registration of TLS data is an important prerequisite to overcome the limitations of occlusion. However, due to the high dissimilarity of point cloud data collected from disparate viewpoints in the forest environment, adequate marker-free registration approaches have not been developed. The majority of studies instead rely on the utilization of artificial tie points (e.g., reflective tooling balls) placed within a scene to aid in coordinate transformation. We present a technique for generating view-invariant feature descriptors that are intrinsic to the point cloud datamore » and, thus, enable blind marker-free registration in forest environments. To overcome the limitation of initial pose estimation, we employ a voting method to blindly determine the optimal pairwise transformation parameters, without an a priori estimate of the initial sensor pose. To provide embedded error metrics, we developed a set theory framework in which a circular transformation is traversed between disjoint tie point subsets. This provides an upper estimate of the Root Mean Square Error (RMSE) confidence associated with each pairwise transformation. Output RMSE errors are commensurate with the RMSE of input tie points locations. Thus, while the mean output RMSE=16.3cm, improved results could be achieved with a more precise laser scanning system. This study 1) quantifies the RMSE of the proposed marker-free registration approach, 2) assesses the validity of embedded confidence metrics using receiver operator characteristic (ROC) curves, and 3) informs optimal sample spacing considerations for TLS data collection in New England forests. Furthermore, while the implications for rapid, accurate, and precise forest inventory are obvious, the conceptual framework outlined here could potentially be extended to built environments.« less
Navigation system for flexible endoscopes
NASA Astrophysics Data System (ADS)
Hummel, Johann; Figl, Michael; Birkfellner, Wolfgang; Häfner, Michael; Kollmann, Christian; Bergmann, Helmar
2003-05-01
Endoscopic Ultrasound (EUS) features flexible endoscopes equipped with a radial or linear array scanhead allowing high resolution examination of organs adjacent to the upper gastrointestinal tract. An optical system based on fibre-glass or a CCD-chip allows additional orientation. However, 3-dimensional orientation and correct identification of the various anatomical structures may be difficult. It therefore seems desirable to merge real-time US images with high resolution CT or MR images acquired prior to EUS to simplify navigation during the intervention. The additional information provided by CT or MR images might facilitate diagnosis of tumors and, ultimately, guided puncture of suspicious lesions. We built a grid with 15 plastic spheres and measured their positions relatively to five fiducial markers placed on the top of the grid. For this measurement we used an optical tracking system (OTS) (Polaris, NDI, Can). Two sensors of an electromagnetic tracking system (EMTS) (Aurora, NDI, Can) were mounted on a flexible endoscope (Pentax GG 38 UX, USA) to enable a free hand ultrasound calibration. To determine the position of the plastic spheres in the emitter coordinate system of the EMTS we applied a point-to-point registration (Horn) using the coordinates of the fiducial markers in both coordinate systems (OTS and EMTS). For the transformation between EMTS to the CT space the Horn algorithm was adopted again using the fiducial markers. Visualization was enabled by the use of the AVW-4.0 library (Biomedical Imaging Resource, Mayo Clinic, Rochester/MN, USA). To evaluate the suitability of our new navigation system we measured the Fiducial Registration Error (FRE) of the diverse registrations and the Target Registration Error (TRE) for the complete transformation from the US space to the CT space. The FRE for the ultrasound calibration amounted to 4.3 mm +/- 4.2 mm, resulting from 10 calibration procedures. For the transformation from the OTS reference system to the EMTS emitter space we found an average FRE of 0.8 mm +/- 0.2 mm. The FRE for the CT registration was 1.0 mm +/- 0.3 mm. The TRE was found to be 3.8 mm +/- 1.3 mm if we target the same spheres which where used for the calibration procedure. A movement of the phantom results in higher TREs because of the orientation sensitivity of the sensor. In that case the TRE in the area where the biopsy is supposed to be taken place was found to be 7.9 mm +/- 3.2 mm. Our system provides the interventionist with additional information about position and orientation of the used flexible instrument. Additionally, it improves the marksmanship of biopsies. The use of the miniaturized EMTS enables for the first time the navigation of flexible instruments in this way. For the successful application of navigation systems in interventional radiology, an accuracy in the range of 5 mm is desirable. The accuracy of the localization of a point in CT space are just 3 mm too high as required. One of the possibilities to overcome this difference is to mount the two sensors in such a way that the interference of their electromagnetic fields is minimized. A considerable restraint constitutes the small characteristic volume (360mm x 600mm x 600mm), which requires for most application an additional optical system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrović, Uroš; Pernuš, Franjo; Likar, Boštjan
Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3Dmore » image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and template matching and final registration involving C-arm calibration were 36%, 73%, and 93%, respectively, while registration accuracy of 0.59 mm was the best after final registration. By compensating in-plane translation errors by initial template matching, the success rates achieved after the final stage improved consistently for all methods, especially if C-arm calibration was performed simultaneously with the 3D–2D image registration. Conclusions: Because the tested methods perform simultaneous C-arm calibration and 3D–2D registration based solely on anatomical information, they have a high potential for automation and thus for an immediate integration into current interventional workflow. One of the authors’ main contributions is also comprehensive and representative validation performed under realistic conditions as encountered during cerebral EIGI.« less
Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janssens, Guillaume; Orban de Xivry, Jonathan; Fekkes, Stein
2009-09-15
Purpose: Interfraction dose accumulation is necessary to evaluate the dose distribution of an entire course of treatment by adding up multiple dose distributions of different treatment fractions. This accumulation of dose distributions is not straightforward as changes in the patient anatomy may occur during treatment. For this purpose, the accuracy of nonrigid registration methods is assessed for dose accumulation based on the calculated deformations fields. Methods: A phantom study using a deformable cubic silicon phantom with implanted markers and a cylindrical silicon phantom with MOSFET detectors has been performed. The phantoms were deformed and images were acquired using a cone-beammore » CT imager. Dose calculations were performed on these CT scans using the treatment planning system. Nonrigid CT-based registration was performed using two different methods, the Morphons and Demons. The resulting deformation field was applied on the dose distribution. For both phantoms, accuracy of the registered dose distribution was assessed. For the cylindrical phantom, also measured dose values in the deformed conditions were compared with the dose values of the registered dose distributions. Finally, interfraction dose accumulation for two treatment fractions of a patient with primary rectal cancer has been performed and evaluated using isodose lines and the dose volume histograms of the target volume and normal tissue. Results: A significant decrease in the difference in marker or MOSFET position was observed after nonrigid registration methods (p<0.001) for both phantoms and with both methods, as well as a significant decrease in the dose estimation error (p<0.01 for the cubic phantom and p<0.001 for the cylindrical) with both methods. Considering the whole data set at once, the difference between estimated and measured doses was also significantly decreased using registration (p<0.001 for both methods). The patient case showed a slightly underdosed planning target volume and an overdosed bladder volume due to anatomical deformations. Conclusions: Dose accumulation using nonrigid registration methods is possible using repeated CT imaging. This opens possibilities for interfraction dose accumulation and adaptive radiotherapy to incorporate possible differences in dose delivered to the target volume and organs at risk due to anatomical deformations.« less
NASA Astrophysics Data System (ADS)
Li, Chengqi; Ren, Zhigang; Yang, Bo; An, Qinghao; Yu, Xiangru; Li, Jinping
2017-12-01
In the process of dismounting and assembling the drop switch for the high-voltage electric power live line working (EPL2W) robot, one of the key problems is the precision of positioning for manipulators, gripper and the bolts used to fix drop switch. To solve it, we study the binocular vision system theory of the robot and the characteristic of dismounting and assembling drop switch. We propose a coarse-to-fine image registration algorithm based on image correlation, which can improve the positioning precision of manipulators and bolt significantly. The algorithm performs the following three steps: firstly, the target points are marked respectively in the right and left visions, and then the system judges whether the target point in right vision can satisfy the lowest registration accuracy by using the similarity of target points' backgrounds in right and left visions, this is a typical coarse-to-fine strategy; secondly, the system calculates the epipolar line, and then the regional sequence existing matching points is generated according to neighborhood of epipolar line, the optimal matching image is confirmed by calculating the similarity between template image in left vision and the region in regional sequence according to correlation matching; finally, the precise coordinates of target points in right and left visions are calculated according to the optimal matching image. The experiment results indicate that the positioning accuracy of image coordinate is within 2 pixels, the positioning accuracy in the world coordinate system is within 3 mm, the positioning accuracy of binocular vision satisfies the requirement dismounting and assembling the drop switch.
Accurate CT-MR image registration for deep brain stimulation: a multi-observer evaluation study
NASA Astrophysics Data System (ADS)
Rühaak, Jan; Derksen, Alexander; Heldmann, Stefan; Hallmann, Marc; Meine, Hans
2015-03-01
Since the first clinical interventions in the late 1980s, Deep Brain Stimulation (DBS) of the subthalamic nucleus has evolved into a very effective treatment option for patients with severe Parkinson's disease. DBS entails the implantation of an electrode that performs high frequency stimulations to a target area deep inside the brain. A very accurate placement of the electrode is a prerequisite for positive therapy outcome. The assessment of the intervention result is of central importance in DBS treatment and involves the registration of pre- and postinterventional scans. In this paper, we present an image processing pipeline for highly accurate registration of postoperative CT to preoperative MR. Our method consists of two steps: a fully automatic pre-alignment using a detection of the skull tip in the CT based on fuzzy connectedness, and an intensity-based rigid registration. The registration uses the Normalized Gradient Fields distance measure in a multilevel Gauss-Newton optimization framework and focuses on a region around the subthalamic nucleus in the MR. The accuracy of our method was extensively evaluated on 20 DBS datasets from clinical routine and compared with manual expert registrations. For each dataset, three independent registrations were available, thus allowing to relate algorithmic with expert performance. Our method achieved an average registration error of 0.95mm in the target region around the subthalamic nucleus as compared to an inter-observer variability of 1.12 mm. Together with the short registration time of about five seconds on average, our method forms a very attractive package that can be considered ready for clinical use.
Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease
Shamonin, Denis P.; Bron, Esther E.; Lelieveldt, Boudewijn P. F.; Smits, Marion; Klein, Stefan; Staring, Marius
2013-01-01
Nonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e., for atlas-based segmentation or template construction. Faster image registration routines would therefore be beneficial. In this paper we explore acceleration of the image registration package elastix by a combination of several techniques: (i) parallelization on the CPU, to speed up the cost function derivative calculation; (ii) parallelization on the GPU building on and extending the OpenCL framework from ITKv4, to speed up the Gaussian pyramid computation and the image resampling step; (iii) exploitation of certain properties of the B-spline transformation model; (iv) further software optimizations. The accelerated registration tool is employed in a study on diagnostic classification of Alzheimer's disease and cognitively normal controls based on T1-weighted MRI. We selected 299 participants from the publicly available Alzheimer's Disease Neuroimaging Initiative database. Classification is performed with a support vector machine based on gray matter volumes as a marker for atrophy. We evaluated two types of strategies (voxel-wise and region-wise) that heavily rely on nonrigid image registration. Parallelization and optimization resulted in an acceleration factor of 4–5x on an 8-core machine. Using OpenCL a speedup factor of 2 was realized for computation of the Gaussian pyramids, and 15–60 for the resampling step, for larger images. The voxel-wise and the region-wise classification methods had an area under the receiver operator characteristic curve of 88 and 90%, respectively, both for standard and accelerated registration. We conclude that the image registration package elastix was substantially accelerated, with nearly identical results to the non-optimized version. The new functionality will become available in the next release of elastix as open source under the BSD license. PMID:24474917
NASA Astrophysics Data System (ADS)
Szegedi, M.; Rassiah-Szegedi, P.; Fullerton, G.; Wang, B.; Salter, B.
2010-07-01
The purpose of this study is to design a real-tissue phantom for use in the validation of deformation algorithms. A phantom motion controller that runs sinusoidal and non-regular patient-based breathing pattern, via a piston, was applied to porcine liver tissue. It was regulated to simulate movement ranges similar to recorded implanted liver markers from patients. 4D CT was applied to analyze deformation. The suitability of various markers in the liver and the position reproducibility of markers and of reference points were studied. The similarity of marker motion pattern in the liver phantom and in real patients was evaluated. The viability of the phantom over time and its use with electro-magnetic tracking devices were also assessed. High contrast markers, such as carbon markers, implanted in the porcine liver produced less image artifacts on CT and were well visualized compared to metallic ones. The repositionability of markers was within a measurement accuracy of ±2 mm. Similar anatomical patient motions were reproducible up to elongations of 3 cm for a time period of at least 90 min. The phantom is compatible with electro-magnetic tracking devices and 4D CT. The phantom motion is reproducible and simulates realistic patient motion and deformation. The ability to carry out voxel-based tracking allows for the evaluation of deformation algorithms in a controlled environment with recorded patient traces. The phantom is compatible with all therapy devices clinically encountered in our department.
Optimized SIFTFlow for registration of whole-mount histology to reference optical images
Shojaii, Rushin; Martel, Anne L.
2016-01-01
Abstract. The registration of two-dimensional histology images to reference images from other modalities is an important preprocessing step in the reconstruction of three-dimensional histology volumes. This is a challenging problem because of the differences in the appearances of histology images and other modalities, and the presence of large nonrigid deformations which occur during slide preparation. This paper shows the feasibility of using densely sampled scale-invariant feature transform (SIFT) features and a SIFTFlow deformable registration algorithm for coregistering whole-mount histology images with blockface optical images. We present a method for jointly optimizing the regularization parameters used by the SIFTFlow objective function and use it to determine the most appropriate values for the registration of breast lumpectomy specimens. We demonstrate that tuning the regularization parameters results in significant improvements in accuracy and we also show that SIFTFlow outperforms a previously described edge-based registration method. The accuracy of the histology images to blockface images registration using the optimized SIFTFlow method was assessed using an independent test set of images from five different lumpectomy specimens and the mean registration error was 0.32±0.22 mm. PMID:27774494
NASA Astrophysics Data System (ADS)
Veiga, C.; McClelland, J.; Moinuddin, S.; Ricketts, K.; Modat, M.; Ourselin, S.; D'Souza, D.; Royle, G.
2014-03-01
The purpose of this work is to validate an in-house deformable image registration (DIR) algorithm for adaptive radiotherapy for head and neck patients. We aim to use the registrations to estimate the "dose of the day" and assess the need to replan. NiftyReg is an open-source implementation of the B-splines deformable registration algorithm, developed in our institution. We registered a planning CT to a CBCT acquired midway through treatment for 5 HN patients that required replanning. We investigated 16 different parameter settings that previously showed promising results. To assess the registrations, structures delineated in the CT were warped and compared with contours manually drawn by the same clinical expert on the CBCT. This structure set contained vertebral bodies and soft tissue. Dice similarity coefficient (DSC), overlap index (OI), centroid position and distance between structures' surfaces were calculated for every registration, and a set of parameters that produces good results for all datasets was found. We achieve a median value of 0.845 in DSC, 0.889 in OI, error smaller than 2 mm in centroid position and over 90% of the warped surface pixels are distanced less than 2 mm of the manually drawn ones. By using appropriate DIR parameters, we are able to register the planning geometry (pCT) to the daily geometry (CBCT).
Robust Nonrigid Multimodal Image Registration using Local Frequency Maps*
Jian, Bing; Vemuri, Baba C.; Marroquin, José L.
2008-01-01
Automatic multi-modal image registration is central to numerous tasks in medical imaging today and has a vast range of applications e.g., image guidance, atlas construction, etc. In this paper, we present a novel multi-modal 3D non-rigid registration algorithm where in 3D images to be registered are represented by their corresponding local frequency maps efficiently computed using the Riesz transform as opposed to the popularly used Gabor filters. The non-rigid registration between these local frequency maps is formulated in a statistically robust framework involving the minimization of the integral squared error a.k.a. L2E (L2 error). This error is expressed as the squared difference between the true density of the residual (which is the squared difference between the non-rigidly transformed reference and the target local frequency representations) and a Gaussian or mixture of Gaussians density approximation of the same. The non-rigid transformation is expressed in a B-spline basis to achieve the desired smoothness in the transformation as well as computational efficiency. The key contributions of this work are (i) the use of Riesz transform to achieve better efficiency in computing the local frequency representation in comparison to Gabor filter-based approaches, (ii) new mathematical model for local-frequency based non-rigid registration, (iii) analytic computation of the gradient of the robust non-rigid registration cost function to achieve efficient and accurate registration. The proposed non-rigid L2E-based registration is a significant extension of research reported in literature to date. We present experimental results for registering several real data sets with synthetic and real non-rigid misalignments. PMID:17354721
A new markerless patient-to-image registration method using a portable 3D scanner.
Fan, Yifeng; Jiang, Dongsheng; Wang, Manning; Song, Zhijian
2014-10-01
Patient-to-image registration is critical to providing surgeons with reliable guidance information in the application of image-guided neurosurgery systems. The conventional point-matching registration method, which is based on skin markers, requires expensive and time-consuming logistic support. Surface-matching registration with facial surface scans is an alternative method, but the registration accuracy is unstable and the error in the more posterior parts of the head is usually large because the scan range is limited. This study proposes a new surface-matching method using a portable 3D scanner to acquire a point cloud of the entire head to perform the patient-to-image registration. A new method for transforming the scan points from the device space into the patient space without calibration and tracking was developed. Five positioning targets were attached on a reference star, and their coordinates in the patient space were measured prior. During registration, the authors moved the scanner around the head to scan its entire surface as well as the positioning targets, and the scanner generated a unique point cloud in the device space. The coordinates of the positioning targets in the device space were automatically detected by the scanner, and a spatial transformation from the device space to the patient space could be calculated by registering them to their coordinates in the patient space that had been measured prior. A three-step registration algorithm was then used to register the patient space to the image space. The authors evaluated their method on a rigid head phantom and an elastic head phantom to verify its practicality and to calculate the target registration error (TRE) in different regions of the head phantoms. The authors also conducted an experiment with a real patient's data to test the feasibility of their method in the clinical environment. In the phantom experiments, the mean fiducial registration error between the device space and the patient space, the mean surface registration error, and the mean TRE of 15 targets on the surface of each phantom were 0.34 ± 0.01 mm and 0.33 ± 0.02 mm, 1.17 ± 0.02 mm and 1.34 ± 0.10 mm, and 1.06 ± 0.11 mm and 1.48 ± 0.21 mm, respectively. When grouping the targets according to their positions on the head, high accuracy was achieved in all parts of the head, and the TREs were similar across different regions. The authors compared their method with the current surface registration methods that use only a part of the facial surface on the elastic phantom, and the mean TRE of 15 targets was 1.48 ± 0.21 mm and 1.98 ± 0.53 mm, respectively. In a clinical experiment, the mean TRE of seven targets on the patient's head surface was 1.92 ± 0.18 mm, which was sufficient to meet clinical requirements. The proposed surface-matching registration method provides sufficient registration accuracy even in the posterior area of the head. The 3D point cloud of the entire head, including the facial surface and the back of the head, can be easily acquired using a portable 3D scanner. The scanner does not need to be calibrated prior or tracked by the optical tracking system during scanning.
Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: A comparative study.
Fast, Martin F; Eiben, Björn; Menten, Martin J; Wetscherek, Andreas; Hawkes, David J; McClelland, Jamie R; Oelfke, Uwe
2017-12-01
Radiotherapy guidance based on magnetic resonance imaging (MRI) is currently becoming a clinical reality. Fast 2d cine MRI sequences are expected to increase the precision of radiation delivery by facilitating tumour delineation during treatment. This study compares four auto-contouring algorithms for the task of delineating the primary tumour in six locally advanced (LA) lung cancer patients. Twenty-two cine MRI sequences were acquired using either a balanced steady-state free precession or a spoiled gradient echo imaging technique. Contours derived by the auto-contouring algorithms were compared against manual reference contours. A selection of eight image data sets was also used to assess the inter-observer delineation uncertainty. Algorithmically derived contours agreed well with the manual reference contours (median Dice similarity index: ⩾0.91). Multi-template matching and deformable image registration performed significantly better than feature-driven registration and the pulse-coupled neural network (PCNN). Neither MRI sequence nor image orientation was a conclusive predictor for algorithmic performance. Motion significantly degraded the performance of the PCNN. The inter-observer variability was of the same order of magnitude as the algorithmic performance. Auto-contouring of tumours on cine MRI is feasible in LA lung cancer patients. Despite large variations in implementation complexity, the different algorithms all have relatively similar performance. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
2D to 3D fusion of echocardiography and cardiac CT for TAVR and TAVI image guidance.
Khalil, Azira; Faisal, Amir; Lai, Khin Wee; Ng, Siew Cheok; Liew, Yih Miin
2017-08-01
This study proposed a registration framework to fuse 2D echocardiography images of the aortic valve with preoperative cardiac CT volume. The registration facilitates the fusion of CT and echocardiography to aid the diagnosis of aortic valve diseases and provide surgical guidance during transcatheter aortic valve replacement and implantation. The image registration framework consists of two major steps: temporal synchronization and spatial registration. Temporal synchronization allows time stamping of echocardiography time series data to identify frames that are at similar cardiac phase as the CT volume. Spatial registration is an intensity-based normalized mutual information method applied with pattern search optimization algorithm to produce an interpolated cardiac CT image that matches the echocardiography image. Our proposed registration method has been applied on the short-axis "Mercedes Benz" sign view of the aortic valve and long-axis parasternal view of echocardiography images from ten patients. The accuracy of our fully automated registration method was 0.81 ± 0.08 and 1.30 ± 0.13 mm in terms of Dice coefficient and Hausdorff distance for short-axis aortic valve view registration, whereas for long-axis parasternal view registration it was 0.79 ± 0.02 and 1.19 ± 0.11 mm, respectively. This accuracy is comparable to gold standard manual registration by expert. There was no significant difference in aortic annulus diameter measurement between the automatically and manually registered CT images. Without the use of optical tracking, we have shown the applicability of this technique for effective fusion of echocardiography with preoperative CT volume to potentially facilitate catheter-based surgery.
Deformable registration of x-ray to MRI for post-implant dosimetry in prostate brachytherapy
NASA Astrophysics Data System (ADS)
Park, Seyoun; Song, Danny Y.; Lee, Junghoon
2016-03-01
Post-implant dosimetric assessment in prostate brachytherapy is typically performed using CT as the standard imaging modality. However, poor soft tissue contrast in CT causes significant variability in target contouring, resulting in incorrect dose calculations for organs of interest. CT-MR fusion-based approach has been advocated taking advantage of the complementary capabilities of CT (seed identification) and MRI (soft tissue visibility), and has proved to provide more accurate dosimetry calculations. However, seed segmentation in CT requires manual review, and the accuracy is limited by the reconstructed voxel resolution. In addition, CT deposits considerable amount of radiation to the patient. In this paper, we propose an X-ray and MRI based post-implant dosimetry approach. Implanted seeds are localized using three X-ray images by solving a combinatorial optimization problem, and the identified seeds are registered to MR images by an intensity-based points-to-volume registration. We pre-process the MR images using geometric and Gaussian filtering. To accommodate potential soft tissue deformation, our registration is performed in two steps, an initial affine transformation and local deformable registration. An evolutionary optimizer in conjunction with a points-to-volume similarity metric is used for the affine registration. Local prostate deformation and seed migration are then adjusted by the deformable registration step with external and internal force constraints. We tested our algorithm on six patient data sets, achieving registration error of (1.2+/-0.8) mm in < 30 sec. Our proposed approach has the potential to be a fast and cost-effective solution for post-implant dosimetry with equivalent accuracy as the CT-MR fusion-based approach.
NASA Astrophysics Data System (ADS)
Dang, H.; Wang, A. S.; Sussman, Marc S.; Siewerdsen, J. H.; Stayman, J. W.
2014-09-01
Sequential imaging studies are conducted in many clinical scenarios. Prior images from previous studies contain a great deal of patient-specific anatomical information and can be used in conjunction with subsequent imaging acquisitions to maintain image quality while enabling radiation dose reduction (e.g., through sparse angular sampling, reduction in fluence, etc). However, patient motion between images in such sequences results in misregistration between the prior image and current anatomy. Existing prior-image-based approaches often include only a simple rigid registration step that can be insufficient for capturing complex anatomical motion, introducing detrimental effects in subsequent image reconstruction. In this work, we propose a joint framework that estimates the 3D deformation between an unregistered prior image and the current anatomy (based on a subsequent data acquisition) and reconstructs the current anatomical image using a model-based reconstruction approach that includes regularization based on the deformed prior image. This framework is referred to as deformable prior image registration, penalized-likelihood estimation (dPIRPLE). Central to this framework is the inclusion of a 3D B-spline-based free-form-deformation model into the joint registration-reconstruction objective function. The proposed framework is solved using a maximization strategy whereby alternating updates to the registration parameters and image estimates are applied allowing for improvements in both the registration and reconstruction throughout the optimization process. Cadaver experiments were conducted on a cone-beam CT testbench emulating a lung nodule surveillance scenario. Superior reconstruction accuracy and image quality were demonstrated using the dPIRPLE algorithm as compared to more traditional reconstruction methods including filtered backprojection, penalized-likelihood estimation (PLE), prior image penalized-likelihood estimation (PIPLE) without registration, and prior image penalized-likelihood estimation with rigid registration of a prior image (PIRPLE) over a wide range of sampling sparsity and exposure levels.
NASA Astrophysics Data System (ADS)
Fischer, Peter; Schuegraf, Philipp; Merkle, Nina; Storch, Tobias
2018-04-01
This paper presents a hybrid evolutionary algorithm for fast intensity based matching between satellite imagery from SAR and very high-resolution (VHR) optical sensor systems. The precise and accurate co-registration of image time series and images of different sensors is a key task in multi-sensor image processing scenarios. The necessary preprocessing step of image matching and tie-point detection is divided into a search problem and a similarity measurement. Within this paper we evaluate the use of an evolutionary search strategy for establishing the spatial correspondence between satellite imagery of optical and radar sensors. The aim of the proposed algorithm is to decrease the computational costs during the search process by formulating the search as an optimization problem. Based upon the canonical evolutionary algorithm, the proposed algorithm is adapted for SAR/optical imagery intensity based matching. Extensions are drawn using techniques like hybridization (e.g. local search) and others to lower the number of objective function calls and refine the result. The algorithm significantely decreases the computational costs whilst finding the optimal solution in a reliable way.
Interactive target tracking for persistent wide-area surveillance
NASA Astrophysics Data System (ADS)
Ersoy, Ilker; Palaniappan, Kannappan; Seetharaman, Guna S.; Rao, Raghuveer M.
2012-06-01
Persistent aerial surveillance is an emerging technology that can provide continuous, wide-area coverage from an aircraft-based multiple-camera system. Tracking targets in these data sets is challenging for vision algorithms due to large data (several terabytes), very low frame rate, changing viewpoint, strong parallax and other imperfections due to registration and projection. Providing an interactive system for automated target tracking also has additional challenges that require online algorithms that are seamlessly integrated with interactive visualization tools to assist the user. We developed an algorithm that overcomes these challenges and demonstrated it on data obtained from a wide-area imaging platform.
Comparison of time-series registration methods in breast dynamic infrared imaging
NASA Astrophysics Data System (ADS)
Riyahi-Alam, S.; Agostini, V.; Molinari, F.; Knaflitz, M.
2015-03-01
Automated motion reduction in dynamic infrared imaging is on demand in clinical applications, since movement disarranges time-temperature series of each pixel, thus originating thermal artifacts that might bias the clinical decision. All previously proposed registration methods are feature based algorithms requiring manual intervention. The aim of this work is to optimize the registration strategy specifically for Breast Dynamic Infrared Imaging and to make it user-independent. We implemented and evaluated 3 different 3D time-series registration methods: 1. Linear affine, 2. Non-linear Bspline, 3. Demons applied to 12 datasets of healthy breast thermal images. The results are evaluated through normalized mutual information with average values of 0.70 ±0.03, 0.74 ±0.03 and 0.81 ±0.09 (out of 1) for Affine, Bspline and Demons registration, respectively, as well as breast boundary overlap and Jacobian determinant of the deformation field. The statistical analysis of the results showed that symmetric diffeomorphic Demons' registration method outperforms also with the best breast alignment and non-negative Jacobian values which guarantee image similarity and anatomical consistency of the transformation, due to homologous forces enforcing the pixel geometric disparities to be shortened on all the frames. We propose Demons' registration as an effective technique for time-series dynamic infrared registration, to stabilize the local temperature oscillation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumarasiri, Akila, E-mail: akumara1@hfhs.org; Siddiqui, Farzan; Liu, Chang
2014-12-15
Purpose: To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H and N) adaptive radiotherapy. Methods: Ten H and N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3–4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreementmore » of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. Results: All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm{sup 3}. Organs with volumes <3 cm{sup 3} and/or those with poorly defined boundaries showed Dice coefficients of ∼0.5–0.6. For the propagation of small organs (<3 cm{sup 3}), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was “clinically acceptable with minor modification or major modification in a small number of contours.” Conclusions: Use of DIR-based contour propagation in the routine clinical setting is expected to increase the efficiency of H and N replanning, reducing the amount of time needed for manual target and organ delineations.« less
Jin, Peng; van Wieringen, Niek; Hulshof, Maarten C C M; Bel, Arjan; Alderliesten, Tanja
2018-04-01
Use of four-dimensional cone-beam CT (4D-CBCT) and fiducial markers for image guidance during radiation therapy (RT) of mobile tumors is challenging due to the trade-off among image quality, imaging dose, and scanning time. This study aimed to investigate different 4D-CBCT acquisition settings for good visibility of fiducial markers in 4D-CBCT. Using these 4D-CBCTs, the feasibility of marker-based 4D registration for RT setup verification and manual respiration-induced motion quantification was investigated. For this, we applied a dynamic phantom with three different breathing motion amplitudes and included two patients with implanted markers. Irrespective of the motion amplitude, for a medium field of view (FOV), marker visibility was improved by reducing the imaging dose per projection and increasing the number of projection images; however, the scanning time was 4 to 8 min. For a small FOV, the total imaging dose and the scanning time were reduced (62.5% of the dose using a medium FOV, 2.5 min) without losing marker visibility. However, the body contour could be missing for a small FOV, which is not preferred in RT. The marker-based 4D setup verification was feasible for both the phantom and patient data. Moreover, manual marker motion quantification can achieve a high accuracy with a mean error of [Formula: see text].
Joint T1 and brain fiber log-demons registration using currents to model geometry.
Siless, Viviana; Glaunès, Joan; Guevara, Pamela; Mangin, Jean-François; Poupon, Cyril; Le Bihan, Denis; Thirion, Bertrand; Fillard, Pierre
2012-01-01
We present an extension of the diffeomorphic Geometric Demons algorithm which combines the iconic registration with geometric constraints. Our algorithm works in the log-domain space, so that one can efficiently compute the deformation field of the geometry. We represent the shape of objects of interest in the space of currents which is sensitive to both location and geometric structure of objects. Currents provides a distance between geometric structures that can be defined without specifying explicit point-to-point correspondences. We demonstrate this framework by registering simultaneously T1 images and 65 fiber bundles consistently extracted in 12 subjects and compare it against non-linear T1, tensor, and multi-modal T1 + Fractional Anisotropy (FA) registration algorithms. Results show the superiority of the Log-domain Geometric Demons over their purely iconic counterparts.
NASA Astrophysics Data System (ADS)
Elfarnawany, Mai; Alam, S. Riyahi; Agrawal, Sumit K.; Ladak, Hanif M.
2017-02-01
Cochlear implant surgery is a hearing restoration procedure for patients with profound hearing loss. In this surgery, an electrode is inserted into the cochlea to stimulate the auditory nerve and restore the patient's hearing. Clinical computed tomography (CT) images are used for planning and evaluation of electrode placement, but their low resolution limits the visualization of internal cochlear structures. Therefore, high resolution micro-CT images are used to develop atlas-based segmentation methods to extract these nonvisible anatomical features in clinical CT images. Accurate registration of the high and low resolution CT images is a prerequisite for reliable atlas-based segmentation. In this study, we evaluate and compare different non-rigid B-spline registration parameters using micro-CT and clinical CT images of five cadaveric human cochleae. The varying registration parameters are cost function (normalized correlation (NC), mutual information and mean square error), interpolation method (linear, windowed-sinc and B-spline) and sampling percentage (1%, 10% and 100%). We compare the registration results visually and quantitatively using the Dice similarity coefficient (DSC), Hausdorff distance (HD) and absolute percentage error in cochlear volume. Using MI or MSE cost functions and linear or windowed-sinc interpolation resulted in visually undesirable deformation of internal cochlear structures. Quantitatively, the transforms using 100% sampling percentage yielded the highest DSC and smallest HD (0.828+/-0.021 and 0.25+/-0.09mm respectively). Therefore, B-spline registration with cost function: NC, interpolation: B-spline and sampling percentage: moments 100% can be the foundation of developing an optimized atlas-based segmentation algorithm of intracochlear structures in clinical CT images.
Spectral embedding-based registration (SERg) for multimodal fusion of prostate histology and MRI
NASA Astrophysics Data System (ADS)
Hwuang, Eileen; Rusu, Mirabela; Karthigeyan, Sudha; Agner, Shannon C.; Sparks, Rachel; Shih, Natalie; Tomaszewski, John E.; Rosen, Mark; Feldman, Michael; Madabhushi, Anant
2014-03-01
Multi-modal image registration is needed to align medical images collected from different protocols or imaging sources, thereby allowing the mapping of complementary information between images. One challenge of multimodal image registration is that typical similarity measures rely on statistical correlations between image intensities to determine anatomical alignment. The use of alternate image representations could allow for mapping of intensities into a space or representation such that the multimodal images appear more similar, thus facilitating their co-registration. In this work, we present a spectral embedding based registration (SERg) method that uses non-linearly embedded representations obtained from independent components of statistical texture maps of the original images to facilitate multimodal image registration. Our methodology comprises the following main steps: 1) image-derived textural representation of the original images, 2) dimensionality reduction using independent component analysis (ICA), 3) spectral embedding to generate the alternate representations, and 4) image registration. The rationale behind our approach is that SERg yields embedded representations that can allow for very different looking images to appear more similar, thereby facilitating improved co-registration. Statistical texture features are derived from the image intensities and then reduced to a smaller set by using independent component analysis to remove redundant information. Spectral embedding generates a new representation by eigendecomposition from which only the most important eigenvectors are selected. This helps to accentuate areas of salience based on modality-invariant structural information and therefore better identifies corresponding regions in both the template and target images. The spirit behind SERg is that image registration driven by these areas of salience and correspondence should improve alignment accuracy. In this work, SERg is implemented using Demons to allow the algorithm to more effectively register multimodal images. SERg is also tested within the free-form deformation framework driven by mutual information. Nine pairs of synthetic T1-weighted to T2-weighted brain MRI were registered under the following conditions: five levels of noise (0%, 1%, 3%, 5%, and 7%) and two levels of bias field (20% and 40%) each with and without noise. We demonstrate that across all of these conditions, SERg yields a mean squared error that is 81.51% lower than that of Demons driven by MRI intensity alone. We also spatially align twenty-six ex vivo histology sections and in vivo prostate MRI in order to map the spatial extent of prostate cancer onto corresponding radiologic imaging. SERg performs better than intensity registration by decreasing the root mean squared distance of annotated landmarks in the prostate gland via both Demons algorithm and mutual information-driven free-form deformation. In both synthetic and clinical experiments, the observed improvement in alignment of the template and target images suggest the utility of parametric eigenvector representations and hence SERg for multimodal image registration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Deformable image registration has now been commercially available for several years, with solid performance in a number of sites and for several applications including contour and dose mapping. However, more complex applications have arisen, such as assessing response to radiation therapy over time, registering images pre- and post-surgery, and auto-segmentation from atlases. These applications require innovative registration algorithms to achieve accurate alignment. The goal of this session is to highlight emerging registration technology and these new applications. The state of the art in image registration will be presented from an engineering perspective. Translational clinical applications will also be discussed tomore » tie these new registration approaches together with imaging and radiation therapy applications in specific diseases such as cervical and lung cancers. Learning Objectives: To understand developing techniques and algorithms in deformable image registration that are likely to translate into clinical tools in the near future. To understand emerging imaging and radiation therapy clinical applications that require such new registration algorithms. Research supported in part by the National Institutes of Health under award numbers P01CA059827, R01CA166119, and R01CA166703. Disclosures: Phillips Medical systems (Hugo), Roger Koch (Christensen) support, Varian Medical Systems (Brock), licensing agreements from Raysearch (Brock) and Varian (Hugo).; K. Brock, Licensing Agreement - RaySearch Laboratories. Research Funding - Varian Medical Systems; G. Hugo, Research grant from National Institutes of Health, award number R01CA166119.; G. Christensen, Research support from NIH grants CA166119 and CA166703 and a gift from Roger Koch. There are no conflicts of interest.« less
WE-H-202-03: Accounting for Large Geometric Changes During Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugo, G.
2016-06-15
Deformable image registration has now been commercially available for several years, with solid performance in a number of sites and for several applications including contour and dose mapping. However, more complex applications have arisen, such as assessing response to radiation therapy over time, registering images pre- and post-surgery, and auto-segmentation from atlases. These applications require innovative registration algorithms to achieve accurate alignment. The goal of this session is to highlight emerging registration technology and these new applications. The state of the art in image registration will be presented from an engineering perspective. Translational clinical applications will also be discussed tomore » tie these new registration approaches together with imaging and radiation therapy applications in specific diseases such as cervical and lung cancers. Learning Objectives: To understand developing techniques and algorithms in deformable image registration that are likely to translate into clinical tools in the near future. To understand emerging imaging and radiation therapy clinical applications that require such new registration algorithms. Research supported in part by the National Institutes of Health under award numbers P01CA059827, R01CA166119, and R01CA166703. Disclosures: Phillips Medical systems (Hugo), Roger Koch (Christensen) support, Varian Medical Systems (Brock), licensing agreements from Raysearch (Brock) and Varian (Hugo).; K. Brock, Licensing Agreement - RaySearch Laboratories. Research Funding - Varian Medical Systems; G. Hugo, Research grant from National Institutes of Health, award number R01CA166119.; G. Christensen, Research support from NIH grants CA166119 and CA166703 and a gift from Roger Koch. There are no conflicts of interest.« less
WE-H-202-02: Biomechanical Modeling of Anatomical Response Over the Course of Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brock, K.
2016-06-15
Deformable image registration has now been commercially available for several years, with solid performance in a number of sites and for several applications including contour and dose mapping. However, more complex applications have arisen, such as assessing response to radiation therapy over time, registering images pre- and post-surgery, and auto-segmentation from atlases. These applications require innovative registration algorithms to achieve accurate alignment. The goal of this session is to highlight emerging registration technology and these new applications. The state of the art in image registration will be presented from an engineering perspective. Translational clinical applications will also be discussed tomore » tie these new registration approaches together with imaging and radiation therapy applications in specific diseases such as cervical and lung cancers. Learning Objectives: To understand developing techniques and algorithms in deformable image registration that are likely to translate into clinical tools in the near future. To understand emerging imaging and radiation therapy clinical applications that require such new registration algorithms. Research supported in part by the National Institutes of Health under award numbers P01CA059827, R01CA166119, and R01CA166703. Disclosures: Phillips Medical systems (Hugo), Roger Koch (Christensen) support, Varian Medical Systems (Brock), licensing agreements from Raysearch (Brock) and Varian (Hugo).; K. Brock, Licensing Agreement - RaySearch Laboratories. Research Funding - Varian Medical Systems; G. Hugo, Research grant from National Institutes of Health, award number R01CA166119.; G. Christensen, Research support from NIH grants CA166119 and CA166703 and a gift from Roger Koch. There are no conflicts of interest.« less
WE-H-202-01: Memorial Introduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirby, N.
2016-06-15
Deformable image registration has now been commercially available for several years, with solid performance in a number of sites and for several applications including contour and dose mapping. However, more complex applications have arisen, such as assessing response to radiation therapy over time, registering images pre- and post-surgery, and auto-segmentation from atlases. These applications require innovative registration algorithms to achieve accurate alignment. The goal of this session is to highlight emerging registration technology and these new applications. The state of the art in image registration will be presented from an engineering perspective. Translational clinical applications will also be discussed tomore » tie these new registration approaches together with imaging and radiation therapy applications in specific diseases such as cervical and lung cancers. Learning Objectives: To understand developing techniques and algorithms in deformable image registration that are likely to translate into clinical tools in the near future. To understand emerging imaging and radiation therapy clinical applications that require such new registration algorithms. Research supported in part by the National Institutes of Health under award numbers P01CA059827, R01CA166119, and R01CA166703. Disclosures: Phillips Medical systems (Hugo), Roger Koch (Christensen) support, Varian Medical Systems (Brock), licensing agreements from Raysearch (Brock) and Varian (Hugo).; K. Brock, Licensing Agreement - RaySearch Laboratories. Research Funding - Varian Medical Systems; G. Hugo, Research grant from National Institutes of Health, award number R01CA166119.; G. Christensen, Research support from NIH grants CA166119 and CA166703 and a gift from Roger Koch. There are no conflicts of interest.« less
Fu, Zhenrong; Lin, Lan; Tian, Miao; Wang, Jingxuan; Zhang, Baiwen; Chu, Pingping; Li, Shaowu; Pathan, Muhammad Mohsin; Deng, Yulin; Wu, Shuicai
2017-11-01
The development of genetically engineered mouse models for neuronal diseases and behavioural disorders have generated a growing need for small animal imaging. High-resolution magnetic resonance microscopy (MRM) provides powerful capabilities for noninvasive studies of mouse brains, while avoiding some limits associated with the histological procedures. Quantitative comparison of structural images is a critical step in brain imaging analysis, which highly relies on the performance of image registration techniques. Nowadays, there is a mushrooming growth of human brain registration algorithms, while fine-tuning of those algorithms for mouse brain MRMs is rarely addressed. Because of their topology preservation property and outstanding performance in human studies, diffeomorphic transformations have become popular in computational anatomy. In this study, we specially tuned five diffeomorphic image registration algorithms [DARTEL, geodesic shooting, diffeo-demons, SyN (Greedy-SyN and geodesic-SyN)] for mouse brain MRMs and evaluated their performance using three measures [volume overlap percentage (VOP), residual intensity error (RIE) and surface concordance ratio (SCR)]. Geodesic-SyN performed significantly better than the other methods according to all three different measures. These findings are important for the studies on structural brain changes that may occur in wild-type and transgenic mouse brains. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
SU-G-IeP2-06: Evaluation of Registration Accuracy for Cone-Beam CT Reconstruction Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J; Wang, P; Zhang, H
2016-06-15
Purpose: Cone-beam (CB) computed tomography (CT) is used for image guidance during radiotherapy treatment delivery. Conventional Feldkamp and compressed sensing (CS) based CBCT recon-struction techniques are compared for image registration. This study is to evaluate the image registration accuracy of conventional and CS CBCT for head-and-neck (HN) patients. Methods: Ten HN patients with oropharyngeal tumors were retrospectively selected. Each HN patient had one planning CT (CTP) and three CBCTs were acquired during an adaptive radiotherapy proto-col. Each CBCT was reconstructed by both the conventional (CBCTCON) and compressed sens-ing (CBCTCS) methods. Two oncologists manually labeled 23 landmarks of normal tissue andmore » implanted gold markers on both the CTP and CBCTCON. Subsequently, landmarks on CTp were propagated to CBCTs, using a b-spline-based deformable image registration (DIR) and rigid registration (RR). The errors of these registration methods between two CBCT methods were calcu-lated. Results: For DIR, the mean distance between the propagated and the labeled landmarks was 2.8 mm ± 0.52 for CBCTCS, and 3.5 mm ± 0.75 for CBCTCON. For RR, the mean distance between the propagated and the labeled landmarks was 6.8 mm ± 0.92 for CBCTCS, and 8.7 mm ± 0.95 CBCTCON. Conclusion: This study has demonstrated that CS CBCT is more accurate than conventional CBCT in image registration by both rigid and non-rigid methods. It is potentially suggested that CS CBCT is an improved image modality for image guided adaptive applications.« less
Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J.; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng
2017-01-01
Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the “integrated image” on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications. PMID:28198442
Zhu, Ming; Liu, Fei; Chai, Gang; Pan, Jun J; Jiang, Taoran; Lin, Li; Xin, Yu; Zhang, Yan; Li, Qingfeng
2017-02-15
Augmented reality systems can combine virtual images with a real environment to ensure accurate surgery with lower risk. This study aimed to develop a novel registration and tracking technique to establish a navigation system based on augmented reality for maxillofacial surgery. Specifically, a virtual image is reconstructed from CT data using 3D software. The real environment is tracked by the augmented reality (AR) software. The novel registration strategy that we created uses an occlusal splint compounded with a fiducial marker (OSM) to establish a relationship between the virtual image and the real object. After the fiducial marker is recognized, the virtual image is superimposed onto the real environment, forming the "integrated image" on semi-transparent glass. Via the registration process, the integral image, which combines the virtual image with the real scene, is successfully presented on the semi-transparent helmet. The position error of this navigation system is 0.96 ± 0.51 mm. This augmented reality system was applied in the clinic and good surgical outcomes were obtained. The augmented reality system that we established for maxillofacial surgery has the advantages of easy manipulation and high accuracy, which can improve surgical outcomes. Thus, this system exhibits significant potential in clinical applications.
NASA Astrophysics Data System (ADS)
Chiu, L.; Vongsaard, J.; El-Ghazawi, T.; Weinman, J.; Yang, R.; Kafatos, M.
U Due to the poor temporal sampling by satellites, data gaps exist in satellite derived time series of precipitation. This poses a challenge for assimilating rain- fall data into forecast models. To yield a continuous time series, the classic image processing technique of digital image morphing has been used. However, the digital morphing technique was applied manually and that is time consuming. In order to avoid human intervention in the process, an automatic procedure for image morphing is needed for real-time operations. For this purpose, Genetic Algorithm Based Image Registration Automatic Morphing (GRAM) model was developed and tested in this paper. Specifically, automatic morphing technique was integrated with Genetic Algo- rithm and Feature Based Image Metamorphosis technique to fill in data gaps between satellite coverage. The technique was tested using NOWRAD data which are gener- ated from the network of NEXRAD radars. Time series of NOWRAD data from storm Floyd that occurred at the US eastern region on September 16, 1999 for 00:00, 01:00, 02:00,03:00, and 04:00am were used. The GRAM technique was applied to data col- lected at 00:00 and 04:00am. These images were also manually morphed. Images at 01:00, 02:00 and 03:00am were interpolated from the GRAM and manual morphing and compared with the original NOWRAD rainrates. The results show that the GRAM technique outperforms manual morphing. The correlation coefficients between the im- ages generated using manual morphing are 0.905, 0.900, and 0.905 for the images at 01:00, 02:00,and 03:00 am, while the corresponding correlation coefficients are 0.946, 0.911, and 0.913, respectively, based on the GRAM technique. Index terms Remote Sensing, Image Registration, Hydrology, Genetic Algorithm, Morphing, NEXRAD
Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H
2016-01-01
The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms. © 2016 American College of Veterinary Radiology.
Yoo, Terry S; Ackerman, Michael J; Lorensen, William E; Schroeder, Will; Chalana, Vikram; Aylward, Stephen; Metaxas, Dimitris; Whitaker, Ross
2002-01-01
We present the detailed planning and execution of the Insight Toolkit (ITK), an application programmers interface (API) for the segmentation and registration of medical image data. This public resource has been developed through the NLM Visible Human Project, and is in beta test as an open-source software offering under cost-free licensing. The toolkit concentrates on 3D medical data segmentation and registration algorithms, multimodal and multiresolution capabilities, and portable platform independent support for Windows, Linux/Unix systems. This toolkit was built using current practices in software engineering. Specifically, we embraced the concept of generic programming during the development of these tools, working extensively with C++ templates and the freedom and flexibility they allow. Software development tools for distributed consortium-based code development have been created and are also publicly available. We discuss our assumptions, design decisions, and some lessons learned.
Ogier, Augustin; Sdika, Michael; Foure, Alexandre; Le Troter, Arnaud; Bendahan, David
2017-07-01
Manual and automated segmentation of individual muscles in magnetic resonance images have been recognized as challenging given the high variability of shapes between muscles and subjects and the discontinuity or lack of visible boundaries between muscles. In the present study, we proposed an original algorithm allowing a semi-automatic transversal propagation of manually-drawn masks. Our strategy was based on several ascending and descending non-linear registration approaches which is similar to the estimation of a Lagrangian trajectory applied to manual masks. Using several manually-segmented slices, we have evaluated our algorithm on the four muscles of the quadriceps femoris group. We mainly showed that our 3D propagated segmentation was very accurate with an averaged Dice similarity coefficient value higher than 0.91 for the minimal manual input of only two manually-segmented slices.
Ou, Yangming; Resnick, Susan M.; Gur, Ruben C.; Gur, Raquel E.; Satterthwaite, Theodore D.; Furth, Susan; Davatzikos, Christos
2016-01-01
Atlas-based automated anatomical labeling is a fundamental tool in medical image segmentation, as it defines regions of interest for subsequent analysis of structural and functional image data. The extensive investigation of multi-atlas warping and fusion techniques over the past 5 or more years has clearly demonstrated the advantages of consensus-based segmentation. However, the common approach is to use multiple atlases with a single registration method and parameter set, which is not necessarily optimal for every individual scan, anatomical region, and problem/data-type. Different registration criteria and parameter sets yield different solutions, each providing complementary information. Herein, we present a consensus labeling framework that generates a broad ensemble of labeled atlases in target image space via the use of several warping algorithms, regularization parameters, and atlases. The label fusion integrates two complementary sources of information: a local similarity ranking to select locally optimal atlases and a boundary modulation term to refine the segmentation consistently with the target image's intensity profile. The ensemble approach consistently outperforms segmentations using individual warping methods alone, achieving high accuracy on several benchmark datasets. The MUSE methodology has been used for processing thousands of scans from various datasets, producing robust and consistent results. MUSE is publicly available both as a downloadable software package, and as an application that can be run on the CBICA Image Processing Portal (https://ipp.cbica.upenn.edu), a web based platform for remote processing of medical images. PMID:26679328
Alternative face models for 3D face registration
NASA Astrophysics Data System (ADS)
Salah, Albert Ali; Alyüz, Neşe; Akarun, Lale
2007-01-01
3D has become an important modality for face biometrics. The accuracy of a 3D face recognition system depends on a correct registration that aligns the facial surfaces and makes a comparison possible. The best results obtained so far use a one-to-all registration approach, which means each new facial surface is registered to all faces in the gallery, at a great computational cost. We explore the approach of registering the new facial surface to an average face model (AFM), which automatically establishes correspondence to the pre-registered gallery faces. Going one step further, we propose that using a couple of well-selected AFMs can trade-off computation time with accuracy. Drawing on cognitive justifications, we propose to employ category-specific alternative average face models for registration, which is shown to increase the accuracy of the subsequent recognition. We inspect thin-plate spline (TPS) and iterative closest point (ICP) based registration schemes under realistic assumptions on manual or automatic landmark detection prior to registration. We evaluate several approaches for the coarse initialization of ICP. We propose a new algorithm for constructing an AFM, and show that it works better than a recent approach. Finally, we perform simulations with multiple AFMs that correspond to different clusters in the face shape space and compare these with gender and morphology based groupings. We report our results on the FRGC 3D face database.