Sample records for marker-controlled watershed algorithm

  1. Smart markers for watershed-based cell segmentation.

    PubMed

    Koyuncu, Can Fahrettin; Arslan, Salim; Durmaz, Irem; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2012-01-01

    Automated cell imaging systems facilitate fast and reliable analysis of biological events at the cellular level. In these systems, the first step is usually cell segmentation that greatly affects the success of the subsequent system steps. On the other hand, similar to other image segmentation problems, cell segmentation is an ill-posed problem that typically necessitates the use of domain-specific knowledge to obtain successful segmentations even by human subjects. The approaches that can incorporate this knowledge into their segmentation algorithms have potential to greatly improve segmentation results. In this work, we propose a new approach for the effective segmentation of live cells from phase contrast microscopy. This approach introduces a new set of "smart markers" for a marker-controlled watershed algorithm, for which the identification of its markers is critical. The proposed approach relies on using domain-specific knowledge, in the form of visual characteristics of the cells, to define the markers. We evaluate our approach on a total of 1,954 cells. The experimental results demonstrate that this approach, which uses the proposed definition of smart markers, is quite effective in identifying better markers compared to its counterparts. This will, in turn, be effective in improving the segmentation performance of a marker-controlled watershed algorithm.

  2. Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation.

    PubMed

    Koyuncu, Can Fahrettin; Akhan, Ece; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2016-04-01

    Automated microscopy imaging systems facilitate high-throughput screening in molecular cellular biology research. The first step of these systems is cell nucleus segmentation, which has a great impact on the success of the overall system. The marker-controlled watershed is a technique commonly used by the previous studies for nucleus segmentation. These studies define their markers finding regional minima on the intensity/gradient and/or distance transform maps. They typically use the h-minima transform beforehand to suppress noise on these maps. The selection of the h value is critical; unnecessarily small values do not sufficiently suppress the noise, resulting in false and oversegmented markers, and unnecessarily large ones suppress too many pixels, causing missing and undersegmented markers. Because cell nuclei show different characteristics within an image, the same h value may not work to define correct markers for all the nuclei. To address this issue, in this work, we propose a new watershed algorithm that iteratively identifies its markers, considering a set of different h values. In each iteration, the proposed algorithm defines a set of candidates using a particular h value and selects the markers from those candidates provided that they fulfill the size requirement. Working with widefield fluorescence microscopy images, our experiments reveal that the use of multiple h values in our iterative algorithm leads to better segmentation results, compared to its counterparts. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  3. Automated red blood cells extraction from holographic images using fully convolutional neural networks.

    PubMed

    Yi, Faliu; Moon, Inkyu; Javidi, Bahram

    2017-10-01

    In this paper, we present two models for automatically extracting red blood cells (RBCs) from RBCs holographic images based on a deep learning fully convolutional neural network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN approach with the marker-controlled watershed transform segmentation scheme to achieve RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second model has much better performance in terms of cell separation than traditional segmentation methods. In the proposed methods, the RBCs phase images are first numerically reconstructed from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some RBCs phase images are manually segmented and used as training data to fine-tune the FCN. Finally, each pixel in new input RBCs phase images is predicted into either foreground or background using the trained FCN models. The RBCs prediction result from the first model is the final segmentation result, whereas the result from the second model is used as the internal markers of the marker-controlled transform algorithm for further segmentation. Experimental results show that the given schemes can automatically extract RBCs from RBCs phase images and much better RBCs separation results are obtained when the FCN technique is combined with the marker-controlled watershed segmentation algorithm.

  4. Automated red blood cells extraction from holographic images using fully convolutional neural networks

    PubMed Central

    Yi, Faliu; Moon, Inkyu; Javidi, Bahram

    2017-01-01

    In this paper, we present two models for automatically extracting red blood cells (RBCs) from RBCs holographic images based on a deep learning fully convolutional neural network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN approach with the marker-controlled watershed transform segmentation scheme to achieve RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second model has much better performance in terms of cell separation than traditional segmentation methods. In the proposed methods, the RBCs phase images are first numerically reconstructed from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some RBCs phase images are manually segmented and used as training data to fine-tune the FCN. Finally, each pixel in new input RBCs phase images is predicted into either foreground or background using the trained FCN models. The RBCs prediction result from the first model is the final segmentation result, whereas the result from the second model is used as the internal markers of the marker-controlled transform algorithm for further segmentation. Experimental results show that the given schemes can automatically extract RBCs from RBCs phase images and much better RBCs separation results are obtained when the FCN technique is combined with the marker-controlled watershed segmentation algorithm. PMID:29082078

  5. Adaptive striping watershed segmentation method for processing microscopic images of overlapping irregular-shaped and multicentre particles.

    PubMed

    Xiao, X; Bai, B; Xu, N; Wu, K

    2015-04-01

    Oversegmentation is a major drawback of the morphological watershed algorithm. Here, we study and reveal that the oversegmentation is not only because of the irregular shapes of the particle images, which people are familiar with, but also because of some particles, such as ellipses, with more than one centre. A new parameter, the striping level, is introduced and the criterion for striping parameter is built to help find the right markers prior to segmentation. An adaptive striping watershed algorithm is established by applying a procedure, called the marker searching algorithm, to find the markers, which can effectively suppress the oversegmentation. The effectiveness of the proposed method is validated by analysing some typical particle images including the images of gold nanorod ensembles. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  6. 3D Clumped Cell Segmentation Using Curvature Based Seeded Watershed.

    PubMed

    Atta-Fosu, Thomas; Guo, Weihong; Jeter, Dana; Mizutani, Claudia M; Stopczynski, Nathan; Sousa-Neves, Rui

    2016-12-01

    Image segmentation is an important process that separates objects from the background and also from each other. Applied to cells, the results can be used for cell counting which is very important in medical diagnosis and treatment, and biological research that is often used by scientists and medical practitioners. Segmenting 3D confocal microscopy images containing cells of different shapes and sizes is still challenging as the nuclei are closely packed. The watershed transform provides an efficient tool in segmenting such nuclei provided a reasonable set of markers can be found in the image. In the presence of low-contrast variation or excessive noise in the given image, the watershed transform leads to over-segmentation (a single object is overly split into multiple objects). The traditional watershed uses the local minima of the input image and will characteristically find multiple minima in one object unless they are specified (marker-controlled watershed). An alternative to using the local minima is by a supervised technique called seeded watershed, which supplies single seeds to replace the minima for the objects. Consequently, the accuracy of a seeded watershed algorithm relies on the accuracy of the predefined seeds. In this paper, we present a segmentation approach based on the geometric morphological properties of the 'landscape' using curvatures. The curvatures are computed as the eigenvalues of the Shape matrix, producing accurate seeds that also inherit the original shape of their respective cells. We compare with some popular approaches and show the advantage of the proposed method.

  7. 3D marker-controlled watershed for kidney segmentation in clinical CT exams.

    PubMed

    Wieclawek, Wojciech

    2018-02-27

    Image segmentation is an essential and non trivial task in computer vision and medical image analysis. Computed tomography (CT) is one of the most accessible medical examination techniques to visualize the interior of a patient's body. Among different computer-aided diagnostic systems, the applications dedicated to kidney segmentation represent a relatively small group. In addition, literature solutions are verified on relatively small databases. The goal of this research is to develop a novel algorithm for fully automated kidney segmentation. This approach is designed for large database analysis including both physiological and pathological cases. This study presents a 3D marker-controlled watershed transform developed and employed for fully automated CT kidney segmentation. The original and the most complex step in the current proposition is an automatic generation of 3D marker images. The final kidney segmentation step is an analysis of the labelled image obtained from marker-controlled watershed transform. It consists of morphological operations and shape analysis. The implementation is conducted in a MATLAB environment, Version 2017a, using i.a. Image Processing Toolbox. 170 clinical CT abdominal studies have been subjected to the analysis. The dataset includes normal as well as various pathological cases (agenesis, renal cysts, tumors, renal cell carcinoma, kidney cirrhosis, partial or radical nephrectomy, hematoma and nephrolithiasis). Manual and semi-automated delineations have been used as a gold standard. Wieclawek Among 67 delineated medical cases, 62 cases are 'Very good', whereas only 5 are 'Good' according to Cohen's Kappa interpretation. The segmentation results show that mean values of Sensitivity, Specificity, Dice, Jaccard, Cohen's Kappa and Accuracy are 90.29, 99.96, 91.68, 85.04, 91.62 and 99.89% respectively. All 170 medical cases (with and without outlines) have been classified by three independent medical experts as 'Very good' in 143-148 cases, as 'Good' in 15-21 cases and as 'Moderate' in 6-8 cases. An automatic kidney segmentation approach for CT studies to compete with commonly known solutions was developed. The algorithm gives promising results, that were confirmed during validation procedure done on a relatively large database, including 170 CTs with both physiological and pathological cases.

  8. Long-Term Monitoring of Waterborne Pathogens and Microbial Source Tracking Markers in Paired Agricultural Watersheds under Controlled and Conventional Tile Drainage Management

    PubMed Central

    Wilkes, Graham; Brassard, Julie; Edge, Thomas A.; Gannon, Victor; Gottschall, Natalie; Jokinen, Cassandra C.; Jones, Tineke H.; Khan, Izhar U. H.; Marti, Romain; Sunohara, Mark D.; Topp, Edward

    2014-01-01

    Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization. PMID:24727274

  9. Long-term monitoring of waterborne pathogens and microbial source tracking markers in paired agricultural watersheds under controlled and conventional tile drainage management.

    PubMed

    Wilkes, Graham; Brassard, Julie; Edge, Thomas A; Gannon, Victor; Gottschall, Natalie; Jokinen, Cassandra C; Jones, Tineke H; Khan, Izhar U H; Marti, Romain; Sunohara, Mark D; Topp, Edward; Lapen, David R

    2014-06-01

    Surface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp. and Arcobacter spp. in the CTD watershed. There were no instances where there were significantly higher quantitative loadings of any microbial target in the CTD watershed, except for F-specific DNA (F-DNA) and F-RNA coliphages, perhaps as a result of fecal inputs from a hobby farm independent of the drainage practice treatments. There was lower loading of the ruminant marker in the CTD watershed in relation to the UCTD system, and results were significant at the level P = 0.06. The odds of Salmonella spp. occurring increased when a ruminant marker was present relative to when the ruminant marker was absent, yet for Arcobacter spp., the odds of this pathogen occurring significantly decreased when a ruminant marker was present relative to when the ruminant marker was absent (but increased when a wildlife marker was present relative to when the wildlife marker was absent). Interestingly, the odds of norovirus GII (associated with human and swine) occurring in water increased significantly when a ruminant marker was present relative to when a ruminant marker was absent. Overall, this study suggests that fecal pollution from tile-drained fields to stream could be reduced by CTD utilization. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. An automated approach to the segmentation of HEp-2 cells for the indirect immunofluorescence ANA test.

    PubMed

    Tonti, Simone; Di Cataldo, Santa; Bottino, Andrea; Ficarra, Elisa

    2015-03-01

    The automatization of the analysis of Indirect Immunofluorescence (IIF) images is of paramount importance for the diagnosis of autoimmune diseases. This paper proposes a solution to one of the most challenging steps of this process, the segmentation of HEp-2 cells, through an adaptive marker-controlled watershed approach. Our algorithm automatically conforms the marker selection pipeline to the peculiar characteristics of the input image, hence it is able to cope with different fluorescent intensities and staining patterns without any a priori knowledge. Furthermore, it shows a reduced sensitivity to over-segmentation errors and uneven illumination, that are typical issues of IIF imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. An Extended Spectral-Spatial Classification Approach for Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Akbari, D.

    2017-11-01

    In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.

  12. Microscopic image analysis for reticulocyte based on watershed algorithm

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Liu, G. F.; Liu, J. G.; Wang, G.

    2007-12-01

    We present a watershed-based algorithm in the analysis of light microscopic image for reticulocyte (RET), which will be used in an automated recognition system for RET in peripheral blood. The original images, obtained by micrography, are segmented by modified watershed algorithm and are recognized in term of gray entropy and area of connective area. In the process of watershed algorithm, judgment conditions are controlled according to character of the image, besides, the segmentation is performed by morphological subtraction. The algorithm was simulated with MATLAB software. It is similar for automated and manual scoring and there is good correlation(r=0.956) between the methods, which is resulted from 50 pieces of RET images. The result indicates that the algorithm for peripheral blood RETs is comparable to conventional manual scoring, and it is superior in objectivity. This algorithm avoids time-consuming calculation such as ultra-erosion and region-growth, which will speed up the computation consequentially.

  13. A New Cluster Analysis-Marker-Controlled Watershed Method for Separating Particles of Granular Soils.

    PubMed

    Alam, Md Ferdous; Haque, Asadul

    2017-10-18

    An accurate determination of particle-level fabric of granular soils from tomography data requires a maximum correct separation of particles. The popular marker-controlled watershed separation method is widely used to separate particles. However, the watershed method alone is not capable of producing the maximum separation of particles when subjected to boundary stresses leading to crushing of particles. In this paper, a new separation method, named as Monash Particle Separation Method (MPSM), has been introduced. The new method automatically determines the optimal contrast coefficient based on cluster evaluation framework to produce the maximum accurate separation outcomes. Finally, the particles which could not be separated by the optimal contrast coefficient were separated by integrating cuboid markers generated from the clustering by Gaussian mixture models into the routine watershed method. The MPSM was validated on a uniformly graded sand volume subjected to one-dimensional compression loading up to 32 MPa. It was demonstrated that the MPSM is capable of producing the best possible separation of particles required for the fabric analysis.

  14. An auto-adaptive optimization approach for targeting nonpoint source pollution control practices.

    PubMed

    Chen, Lei; Wei, Guoyuan; Shen, Zhenyao

    2015-10-21

    To solve computationally intensive and technically complex control of nonpoint source pollution, the traditional genetic algorithm was modified into an auto-adaptive pattern, and a new framework was proposed by integrating this new algorithm with a watershed model and an economic module. Although conceptually simple and comprehensive, the proposed algorithm would search automatically for those Pareto-optimality solutions without a complex calibration of optimization parameters. The model was applied in a case study in a typical watershed of the Three Gorges Reservoir area, China. The results indicated that the evolutionary process of optimization was improved due to the incorporation of auto-adaptive parameters. In addition, the proposed algorithm outperformed the state-of-the-art existing algorithms in terms of convergence ability and computational efficiency. At the same cost level, solutions with greater pollutant reductions could be identified. From a scientific viewpoint, the proposed algorithm could be extended to other watersheds to provide cost-effective configurations of BMPs.

  15. A New Cluster Analysis-Marker-Controlled Watershed Method for Separating Particles of Granular Soils

    PubMed Central

    Alam, Md Ferdous

    2017-01-01

    An accurate determination of particle-level fabric of granular soils from tomography data requires a maximum correct separation of particles. The popular marker-controlled watershed separation method is widely used to separate particles. However, the watershed method alone is not capable of producing the maximum separation of particles when subjected to boundary stresses leading to crushing of particles. In this paper, a new separation method, named as Monash Particle Separation Method (MPSM), has been introduced. The new method automatically determines the optimal contrast coefficient based on cluster evaluation framework to produce the maximum accurate separation outcomes. Finally, the particles which could not be separated by the optimal contrast coefficient were separated by integrating cuboid markers generated from the clustering by Gaussian mixture models into the routine watershed method. The MPSM was validated on a uniformly graded sand volume subjected to one-dimensional compression loading up to 32 MPa. It was demonstrated that the MPSM is capable of producing the best possible separation of particles required for the fabric analysis. PMID:29057823

  16. Baseline and storm event monitoring of Bacteroidales marker concentrations and enteric pathogen presence in a rural Canadian watershed.

    PubMed

    Ridley, C M; Jamieson, R C; Truelstrup Hansen, L; Yost, C K; Bezanson, G S

    2014-09-01

    Bacteroidales 16S rRNA gene markers were evaluated for their use as a microbial source tracking tool in a well characterized 750 ha agricultural watershed in Nova Scotia, Canada. Water quality monitoring was conducted following the validation of host-specific and universal Bacteroidales (AllBac) markers for their proficiency in this particular geographic region, which provided further evidence that these markers are geographically stable. Increasing Escherichia coli concentrations were positively correlated (p < 0.01) with concentrations of the AllBac marker in water samples, suggesting that this universal marker is more suited as a positive DNA control rather than as an indicator of recent fecal contamination. Ruminant (BacR) and bovine (CowM2) specific marker detection was associated with increased runoff due to precipitation in sub-watersheds putatively impacted by cattle farming, demonstrating that the BacR and CowM2 markers can be used to detect the recent introduction of fecal matter from cattle farming activities during rainfall events. However, the human associated marker (BacH) was only detected once in spite of numerous on-site residential wastewater treatment systems in the watershed, suggesting that this assay is not sensitive enough to detect this type of human sewage source. E. coli O157:H7 and Salmonella spp. DNA was not detected in any of the 149 watershed samples; however, 114 (76.5%) of those samples tested positive for Campylobacter spp. No significant correlation (p > 0.05) was found between Campylobacter spp. presence and either E. coli or AllBac marker levels. Further studies should be conducted to assess the origins of Campylobacter spp. in these types of watersheds, and to quantify pathogen cell numbers to allow for a human health risk assessment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A hierarchical network-based algorithm for multi-scale watershed delineation

    NASA Astrophysics Data System (ADS)

    Castronova, Anthony M.; Goodall, Jonathan L.

    2014-11-01

    Watershed delineation is a process for defining a land area that contributes surface water flow to a single outlet point. It is a commonly used in water resources analysis to define the domain in which hydrologic process calculations are applied. There has been a growing effort over the past decade to improve surface elevation measurements in the U.S., which has had a significant impact on the accuracy of hydrologic calculations. Traditional watershed processing on these elevation rasters, however, becomes more burdensome as data resolution increases. As a result, processing of these datasets can be troublesome on standard desktop computers. This challenge has resulted in numerous works that aim to provide high performance computing solutions to large data, high resolution data, or both. This work proposes an efficient watershed delineation algorithm for use in desktop computing environments that leverages existing data, U.S. Geological Survey (USGS) National Hydrography Dataset Plus (NHD+), and open source software tools to construct watershed boundaries. This approach makes use of U.S. national-level hydrography data that has been precomputed using raster processing algorithms coupled with quality control routines. Our approach uses carefully arranged data and mathematical graph theory to traverse river networks and identify catchment boundaries. We demonstrate this new watershed delineation technique, compare its accuracy with traditional algorithms that derive watershed solely from digital elevation models, and then extend our approach to address subwatershed delineation. Our findings suggest that the open-source hierarchical network-based delineation procedure presented in the work is a promising approach to watershed delineation that can be used summarize publicly available datasets for hydrologic model input pre-processing. Through our analysis, we explore the benefits of reusing the NHD+ datasets for watershed delineation, and find that the our technique offers greater flexibility and extendability than traditional raster algorithms.

  18. Automated system for characterization and classification of malaria-infected stages using light microscopic images of thin blood smears.

    PubMed

    Das, D K; Maiti, A K; Chakraborty, C

    2015-03-01

    In this paper, we propose a comprehensive image characterization cum classification framework for malaria-infected stage detection using microscopic images of thin blood smears. The methodology mainly includes microscopic imaging of Leishman stained blood slides, noise reduction and illumination correction, erythrocyte segmentation, feature selection followed by machine classification. Amongst three-image segmentation algorithms (namely, rule-based, Chan-Vese-based and marker-controlled watershed methods), marker-controlled watershed technique provides better boundary detection of erythrocytes specially in overlapping situations. Microscopic features at intensity, texture and morphology levels are extracted to discriminate infected and noninfected erythrocytes. In order to achieve subgroup of potential features, feature selection techniques, namely, F-statistic and information gain criteria are considered here for ranking. Finally, five different classifiers, namely, Naive Bayes, multilayer perceptron neural network, logistic regression, classification and regression tree (CART), RBF neural network have been trained and tested by 888 erythrocytes (infected and noninfected) for each features' subset. Performance evaluation of the proposed methodology shows that multilayer perceptron network provides higher accuracy for malaria-infected erythrocytes recognition and infected stage classification. Results show that top 90 features ranked by F-statistic (specificity: 98.64%, sensitivity: 100%, PPV: 99.73% and overall accuracy: 96.84%) and top 60 features ranked by information gain provides better results (specificity: 97.29%, sensitivity: 100%, PPV: 99.46% and overall accuracy: 96.73%) for malaria-infected stage classification. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  19. Implementation of a watershed algorithm on FPGAs

    NASA Astrophysics Data System (ADS)

    Zahirazami, Shahram; Akil, Mohamed

    1998-10-01

    In this article we present an implementation of a watershed algorithm on a multi-FPGA architecture. This implementation is based on an hierarchical FIFO. A separate FIFO for each gray level. The gray scale value of a pixel is taken for the altitude of the point. In this way we look at the image as a relief. We proceed by a flooding step. It's like as we immerse the relief in a lake. The water begins to come up and when the water of two different catchment basins reach each other, we will construct a separator or a `Watershed'. This approach is data dependent, hence the process time is different for different images. The H-FIFO is used to guarantee the nature of immersion, it means that we need two types of priority. All the points of an altitude `n' are processed before any point of altitude `n + 1'. And inside an altitude water propagates with a constant velocity in all directions from the source. This operator needs two images as input. An original image or it's gradient and the marker image. A classic way to construct the marker image is to build an image of minimal regions. Each minimal region has it's unique label. This label is the color of the water and will be used to see whether two different water touch each other. The algorithm at first fill the hierarchy FIFO with neighbors of all the regions who are not colored. Next it fetches the first pixel from the first non-empty FIFO and treats this pixel. This pixel will take the color of its neighbor, and all the neighbors who are not already in the H-FIFO are put in their correspondent FIFO. The process is over when the H-FIFO is empty. The result is a segmented and labeled image.

  20. Semiautomatic segmentation of liver metastases on volumetric CT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jiayong; Schwartz, Lawrence H.; Zhao, Binsheng, E-mail: bz2166@cumc.columbia.edu

    2015-11-15

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accuratelymore » delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation method.« less

  1. Detection of Manure-Derived Organic Compounds in Rivers Draining Agricultural Areas of Intensive Manure Spreading

    NASA Astrophysics Data System (ADS)

    Jardé, E.; Gruau, G.

    2006-12-01

    This study presents the potentiality of organic markers to trace the impact of animal manure in soils and rivers draining agricultural watersheds. As described by Gruau et al. (in this session), the analysis of long term records of dissolved organic matter (DOM) in five watersheds in Brittany (western of France) shows divergent trends which can not be explained solely by global changes. One alternative explanation could be that long- term records of DOM in rivers are controlled by human activities, and notably by agricultural practices. In Brittany, the agricultural intensification led to an over-application of animal manures to soils. This practice can strongly increase the amount of soil-water extractable organic matter, thereby leading to an increase of organic matter fluxes in agricultural landscapes and then to a contamination of river waters. Such an hypothesis deserves consideration in view of the massive manure fluxes that are disposed on agricultural land in many parts of the world. In this goal, our study aimed at determining potential sources of organic matter and molecular markers or specific distributions in rivers draining agricultural watersheds. In this study we focused on the analysis of pig slurries because of the importance of pig production in Brittany. The analysis of pig slurry evidenced the presence of coprostanol (5β) as a specific marker, originating from the bio- hydrogenation of cholesterol by anaerobic bacteria. The difference with other animal or human wastes has been evidenced by two ratios: 5β/C27 and C29/C27. After the validation of the ability of coprostanol to be a molecular marker of pig slurry, our analysis has been focused on the OM of watersheds in Brittany showing divergent evolutions. The results show a systematic relation between the C29/C27 and 5β/C27 ratios and the type of animal breeding in each watershed. This study allows us to evidence the impact of animal breeding activities in the analysed rivers. Such a study supports the view that OM export by rivers is not solely under the control of global, climatic parameters, but also under the control of local land-use factors.

  2. Geomorphology controls the trophic base of stream food webs in a boreal watershed .

    PubMed

    Smits, Adrianne P; Schindler, Daniel E; Brett, Michael T

    2015-07-01

    Abstract. Physical attributes of rivers control the quantity and quality of energy sources available to consumers, but it remains untested whether geomorphic conditions of whole watersheds affect the assimilation of different resources by stream organisms. We compared the fatty acid (FA) compositions of two invertebrate taxa (caddisflies, mayflies) collected from 16 streams in southwest Alaska, USA, to assess how assimilation of terrestrial organic matter (OM) and algae varied across a landscape gradient in watershed features. We found relatively higher assimilation of algae in high-gradient streams compared with low-gradient streams, and the opposite pattern for assimilation of terrestrial OM and microbes. The strength of these patterns was more pronounced for caddisflies than mayflies. Invertebrates from low-gradient watersheds had FA markers unique to methane-oxidizing bacteria and sulfate-reducing microbes, indicating a contribution of anaerobic pathways to primary consumers. Diversity of FA composition was highest in watersheds of intermediate slopes that contain both significant terrestrial inputs as well as high algal biomass. By controlling the accumulation rate and processing of terrestrial OM, watershed features influence the energetic base of food webs in boreal streams.

  3. Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography.

    PubMed

    Latha, Indu; Reichenbach, Stephen E; Tao, Qingping

    2011-09-23

    Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Comparison of parameter-adapted segmentation methods for fluorescence micrographs.

    PubMed

    Held, Christian; Palmisano, Ralf; Häberle, Lothar; Hensel, Michael; Wittenberg, Thomas

    2011-11-01

    Interpreting images from fluorescence microscopy is often a time-consuming task with poor reproducibility. Various image processing routines that can help investigators evaluate the images are therefore useful. The critical aspect for a reliable automatic image analysis system is a robust segmentation algorithm that can perform accurate segmentation for different cell types. In this study, several image segmentation methods were therefore compared and evaluated in order to identify the most appropriate segmentation schemes that are usable with little new parameterization and robustly with different types of fluorescence-stained cells for various biological and biomedical tasks. The study investigated, compared, and enhanced four different methods for segmentation of cultured epithelial cells. The maximum-intensity linking (MIL) method, an improved MIL, a watershed method, and an improved watershed method based on morphological reconstruction were used. Three manually annotated datasets consisting of 261, 817, and 1,333 HeLa or L929 cells were used to compare the different algorithms. The comparisons and evaluations showed that the segmentation performance of methods based on the watershed transform was significantly superior to the performance of the MIL method. The results also indicate that using morphological opening by reconstruction can improve the segmentation of cells stained with a marker that exhibits the dotted surface of cells. Copyright © 2011 International Society for Advancement of Cytometry.

  5. A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure

    NASA Astrophysics Data System (ADS)

    Choi, Yosoon; Yi, Huiuk; Park, Hyeong-Dong

    2011-08-01

    We developed a new algorithm, the Adaptive Stormwater Infrastructure (ASI) algorithm, to incorporate ancillary data sets related to stormwater infrastructure into the grid-based hydrologic analysis. The algorithm simultaneously considers the effects of the surface stormwater collector network (e.g., diversions, roadside ditches, and canals) and underground stormwater conveyance systems (e.g., waterway tunnels, collector pipes, and culverts). The surface drainage flows controlled by the surface runoff collector network are superimposed onto the flow directions derived from a DEM. After examining the connections between inlets and outfalls in the underground stormwater conveyance system, the flow accumulation and delineation of watersheds are calculated based on recursive computations. Application of the algorithm to the Sangdong tailings dam in Korea revealed superior performance to that of a conventional D8 single-flow algorithm in terms of providing reasonable hydrologic information on watersheds with stormwater infrastructure.

  6. Image segmentation for uranium isotopic analysis by SIMS: Combined adaptive thresholding and marker controlled watershed approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willingham, David G.; Naes, Benjamin E.; Heasler, Patrick G.

    A novel approach to particle identification and particle isotope ratio determination has been developed for nuclear safeguard applications. This particle search approach combines an adaptive thresholding algorithm and marker-controlled watershed segmentation (MCWS) transform, which improves the secondary ion mass spectrometry (SIMS) isotopic analysis of uranium containing particle populations for nuclear safeguards applications. The Niblack assisted MCWS approach (a.k.a. SEEKER) developed for this work has improved the identification of isotopically unique uranium particles under conditions that have historically presented significant challenges for SIMS image data processing techniques. Particles obtained from five NIST uranium certified reference materials (CRM U129A, U015, U150, U500more » and U850) were successfully identified in regions of SIMS image data 1) where a high variability in image intensity existed, 2) where particles were touching or were in close proximity to one another and/or 3) where the magnitude of ion signal for a given region was count limited. Analysis of the isotopic distributions of uranium containing particles identified by SEEKER showed four distinct, accurately identified 235U enrichment distributions, corresponding to the NIST certified 235U/238U isotope ratios for CRM U129A/U015 (not statistically differentiated), U150, U500 and U850. Additionally, comparison of the minor uranium isotope (234U, 235U and 236U) atom percent values verified that, even in the absence of high precision isotope ratio measurements, SEEKER could be used to segment isotopically unique uranium particles from SIMS image data. Although demonstrated specifically for SIMS analysis of uranium containing particles for nuclear safeguards, SEEKER has application in addressing a broad set of image processing challenges.« less

  7. Assessing hog lagoon waste contamination in the Cape Fear Watershed using Bacteroidetes 16S rRNA gene pyrosequencing.

    PubMed

    Arfken, Ann M; Song, Bongkeun; Mallin, Michael A

    2015-09-01

    Hog lagoons can be major sources of waste and nutrient contamination to watersheds adjacent to pig farms. Fecal source tracking methods targeting Bacteroidetes 16S rRNA genes in pig fecal matter may underestimate or fail to detect hog lagoon contamination in riverine environments. In order to detect hog lagoon wastewater contamination in the Cape Fear Watershed, where a large number of hog farms are present, we conducted pyrosequencing analyses of Bacteroidetes 16S rRNA genes in hog lagoon waste and identified new hog lagoon-specific marker sequences. Additional pyrosequencing analyses of Bacteroidetes 16S rRNA genes were conducted with surface water samples collected at 4 sites during 5 months in the Cape Fear Watershed. Using an operational taxonomic unit (OTU) identity cutoff value of 97 %, these newly identified hog lagoon markers were found in 3 of the river samples, while only 1 sample contained the pig fecal marker. In the sample containing the pig fecal marker, there was a relatively high percentage (14.1 %) of the hog lagoon markers and a low pig fecal marker relative abundance of 0.4 % in the Bacteroidetes 16S rRNA gene sequences. This suggests that hog lagoon contamination must be somewhat significant in order for pig fecal markers to be detected, and low levels of hog lagoon contamination cannot be detected targeting only pig-specific fecal markers. Thus, new hog lagoon markers have a better detection capacity for lagoon waste contamination, and in conjunction with a pig fecal marker, provide a more comprehensive and accurate detection of hog lagoon waste contamination in susceptible watersheds.

  8. Using Automatic Control Approach In Detention Storages For Storm Water Management In An Urban Watershed

    NASA Astrophysics Data System (ADS)

    Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Increased imperviousness due to rapid urbanization have changed the urban hydrological cycle. As watersheds are urbanized, infiltration and groundwater recharge have decreased, surface runoff hydrograph shows higher peak indicating large volumes of surface runoff in lesser time durations. The ultimate panacea is to reduce the peak of hydrograph or increase the retention time of surface flow. SWMM is widely used hydrologic and hydraulic software which helps to simulate the urban storm water management with the provision to apply different techniques to prevent flooding. A model was setup to simulate the surface runoff and channel flow in a small urban catchment. It provides the temporal and spatial information of flooding in a catchment. Incorporating the detention storages in the drainage network helps achieve reduced flooding. Detention storages provided with predefined algorithms were for controlling the pluvial flooding in urban watersheds. The algorithm based on control theory, automated the functioning of detention storages ensuring that the storages become active on occurrence of flood in the storm water drains and shuts down when flooding is over. Detention storages can be implemented either at source or at several downstream control points. The proposed piece of work helps to mitigate the wastage of rainfall water, achieve desirable groundwater and attain a controlled urban storm water management system.

  9. Utility of Microbial Source-Tracking Markers for Assessing Fecal Contamination in the Portage River Watershed, Northwestern Ohio, 2008

    USGS Publications Warehouse

    Kephart, Christopher M.; Bushon, Rebecca N.

    2010-01-01

    An influx of concentrated animal feeding operations in northwest Ohio has prompted local agencies to examine the effects of these industrial farms on water quality in the upper Portage River watershed. The utility of microbial source-tracking (MST) tools as a means of characterizing sources of fecal contamination in the watershed was evaluated. From 2007 to 2008, scientists with the U.S. Geological Survey, Bowling Green State University, and the Wood County Health Department collected and analyzed 17 environmental samples and 13 fecal source samples for Bacteroides-based host-associated DNA markers. At many of the environmental sites tested, MST marker results corroborated the presumptive fecal contamination sources. Results from this demonstration study support the utility of using MST with host-specific molecular markers to characterize the sources of fecal contamination in the Portage River watershed.

  10. Automatic segmentation of vessels in in-vivo ultrasound scans

    NASA Astrophysics Data System (ADS)

    Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin; Arendt Jensen, Jørgen

    2017-03-01

    Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers "8L2 Linear" and "10L2w Wide Linear" (BK Ultrasound, Herlev, Denmark). The algorithm was evaluated empirically and applied to a dataset of in-vivo 1770 images recorded from 8 healthy subjects. The segmentation results were compared to manual delineation performed by two experienced users. The results showed a sensitivity and specificity of 90.41+/-11.2 % and 97.93+/-5.7% (mean+/-standard deviation), respectively. The amount of overlap of segmentation and manual segmentation, was measured by the Dice similarity coefficient, which was 91.25+/-11.6%. The empirical results demonstrated the feasibility of segmenting the vessel lumen in ultrasound scans using a fully automatic algorithm.

  11. A marker-based watershed method for X-ray image segmentation.

    PubMed

    Zhang, Xiaodong; Jia, Fucang; Luo, Suhuai; Liu, Guiying; Hu, Qingmao

    2014-03-01

    Digital X-ray images are the most frequent modality for both screening and diagnosis in hospitals. To facilitate subsequent analysis such as quantification and computer aided diagnosis (CAD), it is desirable to exclude image background. A marker-based watershed segmentation method was proposed to segment background of X-ray images. The method consisted of six modules: image preprocessing, gradient computation, marker extraction, watershed segmentation from markers, region merging and background extraction. One hundred clinical direct radiograph X-ray images were used to validate the method. Manual thresholding and multiscale gradient based watershed method were implemented for comparison. The proposed method yielded a dice coefficient of 0.964±0.069, which was better than that of the manual thresholding (0.937±0.119) and that of multiscale gradient based watershed method (0.942±0.098). Special means were adopted to decrease the computational cost, including getting rid of few pixels with highest grayscale via percentile, calculation of gradient magnitude through simple operations, decreasing the number of markers by appropriate thresholding, and merging regions based on simple grayscale statistics. As a result, the processing time was at most 6s even for a 3072×3072 image on a Pentium 4 PC with 2.4GHz CPU (4 cores) and 2G RAM, which was more than one time faster than that of the multiscale gradient based watershed method. The proposed method could be a potential tool for diagnosis and quantification of X-ray images. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Enhanced nonlinearity interval mapping scheme for high-performance simulation-optimization of watershed-scale BMP placement

    NASA Astrophysics Data System (ADS)

    Zou, Rui; Riverson, John; Liu, Yong; Murphy, Ryan; Sim, Youn

    2015-03-01

    Integrated continuous simulation-optimization models can be effective predictors of a process-based responses for cost-benefit optimization of best management practices (BMPs) selection and placement. However, practical application of simulation-optimization model is computationally prohibitive for large-scale systems. This study proposes an enhanced Nonlinearity Interval Mapping Scheme (NIMS) to solve large-scale watershed simulation-optimization problems several orders of magnitude faster than other commonly used algorithms. An efficient interval response coefficient (IRC) derivation method was incorporated into the NIMS framework to overcome a computational bottleneck. The proposed algorithm was evaluated using a case study watershed in the Los Angeles County Flood Control District. Using a continuous simulation watershed/stream-transport model, Loading Simulation Program in C++ (LSPC), three nested in-stream compliance points (CP)—each with multiple Total Maximum Daily Loads (TMDL) targets—were selected to derive optimal treatment levels for each of the 28 subwatersheds, so that the TMDL targets at all the CP were met with the lowest possible BMP implementation cost. Genetic Algorithm (GA) and NIMS were both applied and compared. The results showed that the NIMS took 11 iterations (about 11 min) to complete with the resulting optimal solution having a total cost of 67.2 million, while each of the multiple GA executions took 21-38 days to reach near optimal solutions. The best solution obtained among all the GA executions compared had a minimized cost of 67.7 million—marginally higher, but approximately equal to that of the NIMS solution. The results highlight the utility for decision making in large-scale watershed simulation-optimization formulations.

  13. A modified approach combining FNEA and watershed algorithms for segmenting remotely-sensed optical images

    NASA Astrophysics Data System (ADS)

    Liu, Likun

    2018-01-01

    In the field of remote sensing image processing, remote sensing image segmentation is a preliminary step for later analysis of remote sensing image processing and semi-auto human interpretation, fully-automatic machine recognition and learning. Since 2000, a technique of object-oriented remote sensing image processing method and its basic thought prevails. The core of the approach is Fractal Net Evolution Approach (FNEA) multi-scale segmentation algorithm. The paper is intent on the research and improvement of the algorithm, which analyzes present segmentation algorithms and selects optimum watershed algorithm as an initialization. Meanwhile, the algorithm is modified by modifying an area parameter, and then combining area parameter with a heterogeneous parameter further. After that, several experiments is carried on to prove the modified FNEA algorithm, compared with traditional pixel-based method (FCM algorithm based on neighborhood information) and combination of FNEA and watershed, has a better segmentation result.

  14. Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control

    NASA Astrophysics Data System (ADS)

    Maringanti, Chetan; Chaubey, Indrajeet; Popp, Jennie

    2009-06-01

    Best management practices (BMPs) are effective in reducing the transport of agricultural nonpoint source pollutants to receiving water bodies. However, selection of BMPs for placement in a watershed requires optimization of the available resources to obtain maximum possible pollution reduction. In this study, an optimization methodology is developed to select and place BMPs in a watershed to provide solutions that are both economically and ecologically effective. This novel approach develops and utilizes a BMP tool, a database that stores the pollution reduction and cost information of different BMPs under consideration. The BMP tool replaces the dynamic linkage of the distributed parameter watershed model during optimization and therefore reduces the computation time considerably. Total pollutant load from the watershed, and net cost increase from the baseline, were the two objective functions minimized during the optimization process. The optimization model, consisting of a multiobjective genetic algorithm (NSGA-II) in combination with a watershed simulation tool (Soil Water and Assessment Tool (SWAT)), was developed and tested for nonpoint source pollution control in the L'Anguille River watershed located in eastern Arkansas. The optimized solutions provided a trade-off between the two objective functions for sediment, phosphorus, and nitrogen reduction. The results indicated that buffer strips were very effective in controlling the nonpoint source pollutants from leaving the croplands. The optimized BMP plans resulted in potential reductions of 33%, 32%, and 13% in sediment, phosphorus, and nitrogen loads, respectively, from the watershed.

  15. An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform

    DTIC Science & Technology

    2018-01-01

    ARL-TR-8270 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter...Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform by Kwok F Tom Sensors and Electron...1 October 2016–30 September 2017 4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a

  16. A micro-hydrology computation ordering algorithm

    NASA Astrophysics Data System (ADS)

    Croley, Thomas E.

    1980-11-01

    Discrete-distributed-parameter models are essential for watershed modelling where practical consideration of spatial variations in watershed properties and inputs is desired. Such modelling is necessary for analysis of detailed hydrologic impacts from management strategies and land-use effects. Trade-offs between model validity and model complexity exist in resolution of the watershed. Once these are determined, the watershed is then broken into sub-areas which each have essentially spatially-uniform properties. Lumped-parameter (micro-hydrology) models are applied to these sub-areas and their outputs are combined through the use of a computation ordering technique, as illustrated by many discrete-distributed-parameter hydrology models. Manual ordering of these computations requires fore-thought, and is tedious, error prone, sometimes storage intensive and least adaptable to changes in watershed resolution. A programmable algorithm for ordering micro-hydrology computations is presented that enables automatic ordering of computations within the computer via an easily understood and easily implemented "node" definition, numbering and coding scheme. This scheme and the algorithm are detailed in logic flow-charts and an example application is presented. Extensions and modifications of the algorithm are easily made for complex geometries or differing microhydrology models. The algorithm is shown to be superior to manual ordering techniques and has potential use in high-resolution studies.

  17. The development of a 3D mesoscopic model of metallic foam based on an improved watershed algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Jinhua; Zhang, Yadong; Wang, Guikun; Fang, Qin

    2018-06-01

    The watershed algorithm has been used widely in the x-ray computed tomography (XCT) image segmentation. It provides a transformation defined on a grayscale image and finds the lines that separate adjacent images. However, distortion occurs in developing a mesoscopic model of metallic foam based on XCT image data. The cells are oversegmented at some events when the traditional watershed algorithm is used. The improved watershed algorithm presented in this paper can avoid oversegmentation and is composed of three steps. Firstly, it finds all of the connected cells and identifies the junctions of the corresponding cell walls. Secondly, the image segmentation is conducted to separate the adjacent cells. It generates the lost cell walls between the adjacent cells. Optimization is then performed on the segmentation image. Thirdly, this improved algorithm is validated when it is compared with the image of the metallic foam, which shows that it can avoid the image segmentation distortion. A mesoscopic model of metallic foam is thus formed based on the improved algorithm, and the mesoscopic characteristics of the metallic foam, such as cell size, volume and shape, are identified and analyzed.

  18. Versatile and efficient pore network extraction method using marker-based watershed segmentation

    NASA Astrophysics Data System (ADS)

    Gostick, Jeff T.

    2017-08-01

    Obtaining structural information from tomographic images of porous materials is a critical component of porous media research. Extracting pore networks is particularly valuable since it enables pore network modeling simulations which can be useful for a host of tasks from predicting transport properties to simulating performance of entire devices. This work reports an efficient algorithm for extracting networks using only standard image analysis techniques. The algorithm was applied to several standard porous materials ranging from sandstone to fibrous mats, and in all cases agreed very well with established or known values for pore and throat sizes, capillary pressure curves, and permeability. In the case of sandstone, the present algorithm was compared to the network obtained using the current state-of-the-art algorithm, and very good agreement was achieved. Most importantly, the network extracted from an image of fibrous media correctly predicted the anisotropic permeability tensor, demonstrating the critical ability to detect key structural features. The highly efficient algorithm allows extraction on fairly large images of 5003 voxels in just over 200 s. The ability for one algorithm to match materials as varied as sandstone with 20% porosity and fibrous media with 75% porosity is a significant advancement. The source code for this algorithm is provided.

  19. A Bayesian Uncertainty Framework for Conceptual Snowmelt and Hydrologic Models Applied to the Tenderfoot Creek Experimental Forest

    NASA Astrophysics Data System (ADS)

    Smith, T.; Marshall, L.

    2007-12-01

    In many mountainous regions, the single most important parameter in forecasting the controls on regional water resources is snowpack (Williams et al., 1999). In an effort to bridge the gap between theoretical understanding and functional modeling of snow-driven watersheds, a flexible hydrologic modeling framework is being developed. The aim is to create a suite of models that move from parsimonious structures, concentrated on aggregated watershed response, to those focused on representing finer scale processes and distributed response. This framework will operate as a tool to investigate the link between hydrologic model predictive performance, uncertainty, model complexity, and observable hydrologic processes. Bayesian methods, and particularly Markov chain Monte Carlo (MCMC) techniques, are extremely useful in uncertainty assessment and parameter estimation of hydrologic models. However, these methods have some difficulties in implementation. In a traditional Bayesian setting, it can be difficult to reconcile multiple data types, particularly those offering different spatial and temporal coverage, depending on the model type. These difficulties are also exacerbated by sensitivity of MCMC algorithms to model initialization and complex parameter interdependencies. As a way of circumnavigating some of the computational complications, adaptive MCMC algorithms have been developed to take advantage of the information gained from each successive iteration. Two adaptive algorithms are compared is this study, the Adaptive Metropolis (AM) algorithm, developed by Haario et al (2001), and the Delayed Rejection Adaptive Metropolis (DRAM) algorithm, developed by Haario et al (2006). While neither algorithm is truly Markovian, it has been proven that each satisfies the desired ergodicity and stationarity properties of Markov chains. Both algorithms were implemented as the uncertainty and parameter estimation framework for a conceptual rainfall-runoff model based on the Probability Distributed Model (PDM), developed by Moore (1985). We implement the modeling framework in Stringer Creek watershed in the Tenderfoot Creek Experimental Forest (TCEF), Montana. The snowmelt-driven watershed offers that additional challenge of modeling snow accumulation and melt and current efforts are aimed at developing a temperature- and radiation-index snowmelt model. Auxiliary data available from within TCEF's watersheds are used to support in the understanding of information value as it relates to predictive performance. Because the model is based on lumped parameters, auxiliary data are hard to incorporate directly. However, these additional data offer benefits through the ability to inform prior distributions of the lumped, model parameters. By incorporating data offering different information into the uncertainty assessment process, a cross-validation technique is engaged to better ensure that modeled results reflect real process complexity.

  20. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers.

    PubMed

    Wognum, S; Heethuis, S E; Rosario, T; Hoogeman, M S; Bel, A

    2014-07-01

    The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images of ex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Five excised porcine bladders with a grid of 30-40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100-400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. The authors found good structure accuracy without dependency on bladder volume difference for all but one algorithm, and with the best result for the structure-based algorithm. Spatial accuracy as assessed from marker errors was disappointing for all algorithms, especially for large volume differences, implying that the deformations described by the registration did not represent anatomically correct deformations. The structure-based algorithm performed the best in terms of marker error for the large volume difference (100-400 ml). In general, for the small volume difference (100-150 ml) the algorithms performed relatively similarly. The structure-based algorithm exhibited the best balance in performance between small and large volume differences, and among the intensity-based algorithms, the algorithm implemented in VelocityAI exhibited the best balance. Validation of multiple DIR algorithms on a novel physiological bladder phantom revealed that the structure accuracy was good for most algorithms, but that the spatial accuracy as assessed from markers was low for all algorithms, especially for large deformations. Hence, many of the available algorithms exhibit sufficient accuracy for contour propagation purposes, but possibly not for accurate dose accumulation.

  1. Aortic annulus sizing using watershed transform and morphological approach for CT images

    NASA Astrophysics Data System (ADS)

    Mohammad, Norhasmira; Omar, Zaid; Sahrim, Mus'ab

    2018-02-01

    Aortic valve disease occurs due to calcification deposits on the area of leaflets within the human heart. It is progressive over time where it can affect the mechanism of the heart valve. To avoid the risk of surgery for vulnerable patients especially senior citizens, a new method has been introduced: Transcatheter Aortic Valve Implantation (TAVI), which places a synthetic catheter within the patient's valve. This entails a procedure of aortic annulus sizing, which requires manual measurement of the scanned images acquired from Computed Tomographic (CT) by experts. The step requires intensive efforts, though human error may still eventually lead to false measurement. In this research, image processing techniques are implemented onto cardiac CT images to achieve an automated and accurate measurement of the heart annulus. The image is first put through pre-processing for noise filtration and image enhancement. Then, a marker image is computed using the combination of opening and closing operations where the foreground image is marked as a feature while the background image is set to zero. Marker image is used to control the watershed transformation and also to prevent oversegmentation. This transformation has the advantage of fast computational and oversegmentation problems, which usually appear with the watershed transform can be solved with the introduction of marker image. Finally, the measurement of aortic annulus from the image data is obtained through morphological operations. Results affirm the approach's ability to achieve accurate annulus measurements compared to conventional techniques.

  2. Presumptive Sources of Fecal Contamination in Four Tributaries to the New River Gorge National River, West Virginia, 2004

    USGS Publications Warehouse

    Mathes, Melvin V.; O'Brien, Tara L.; Strickler, Kriston M.; Hardy, Joshua J.; Schill, William B.; Lukasik, Jerzy; Scott, Troy M.; Bailey, David E.; Fenger, Terry L.

    2007-01-01

    Several methods were used to determine the sources of fecal contamination in water samples collected during September and October 2004 from four tributaries to the New River Gorge National River -- Arbuckle Creek, Dunloup Creek, Keeney Creek, and Wolf Creek. All four tributaries historically have had elevated levels of fecal coliform bacteria. The source-tracking methods used yielded various results, possibly because one or more methods failed. Sourcing methods used in this study included the detection of several human-specific and animal-specific biological or molecular markers, and library-dependent pulsed-field gel electrophoresis analysis that attempted to associate Escherichia coli bacteria obtained from water samples with animal sources by matching DNA-fragment banding patterns. Evaluation of the results of quality-control analysis indicated that pulsed-field gel electrophoresis analysis was unable to identify known-source bacteria isolates. Increasing the size of the known-source library did not improve the results for quality-control samples. A number of emerging methods, using markers in Enterococcus, human urine, Bacteroidetes, and host mitochondrial DNA, demonstrated some potential in associating fecal contamination with human or animal sources in a limited analysis of quality-control samples. All four of the human-specific markers were detected in water samples from Keeney Creek, a watershed with no centralized municipal wastewater-treatment facilities, thus indicating human sources of fecal contamination. The human-specific Bacteroidetes and host mitochondrial DNA markers were detected in water samples from Dunloup Creek, Wolf Creek, and to a lesser degree Arbuckle Creek. Results of analysis for wastewater compounds indicate that the September 27 sample from Arbuckle Creek contained numerous human tracer compounds likely from sewage. Dog, horse, chicken, and pig host mitochondrial DNA were detected in some of the water samples with the exception of the October 5 sample from Dunloup Creek. Cow, white-tailed deer, and Canada goose DNA were not detected in any of the samples collected from the four tributaries, despite the presence of these animals in the watersheds. Future studies with more rigorous quality-control analyses are needed to investigate the potential applicability and use of these emerging methods. Because many of the detections for the various methods could vary over time and with flow conditions, repeated sampling during both base flow and storm events would be necessary to more definitively determine the sources of fecal contamination for each watershed.

  3. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT

    NASA Astrophysics Data System (ADS)

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Guo, Lijia

    2018-05-01

    The genetic algorithm (GA) was combined with the Conversion of Land Use and its Effect at Small regional extent (CLUE-S) model to obtain an optimized land use pattern for controlling non-point source (NPS) pollution. The performance of the combination was evaluated. The effect of the optimized land use pattern on the NPS pollution control was estimated by the Soil and Water Assessment Tool (SWAT) model and an assistant map was drawn to support the land use plan for the future. The Xiangxi River watershed was selected as the study area. Two scenarios were used to simulate the land use change. Under the historical trend scenario (Markov chain prediction), the forest area decreased by 2035.06 ha, and was mainly converted into paddy and dryland area. In contrast, under the optimized scenario (genetic algorithm (GA) prediction), up to 3370 ha of dryland area was converted into forest area. Spatially, the conversion of paddy and dryland into forest occurred mainly in the northwest and southeast of the watershed, where the slope land occupied a large proportion. The organic and inorganic phosphorus loads decreased by 3.6% and 3.7%, respectively, in the optimized scenario compared to those in the historical trend scenario. GA showed a better performance in optimized land use prediction. A comparison of the land use patterns in 2010 under the real situation and in 2020 under the optimized situation showed that Shennongjia and Shuiyuesi should convert 1201.76 ha and 1115.33 ha of dryland into forest areas, respectively, which represented the greatest changes in all regions in the watershed. The results of this study indicated that GA and the CLUE-S model can be used to optimize the land use patterns in the future and that SWAT can be used to evaluate the effect of land use optimization on non-point source pollution control. These methods may provide support for land use plan of an area.

  4. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wognum, S., E-mail: s.wognum@gmail.com; Heethuis, S. E.; Bel, A.

    2014-07-15

    Purpose: The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images ofex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Methods: Fivemore » excised porcine bladders with a grid of 30–40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100–400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. Results: The authors found good structure accuracy without dependency on bladder volume difference for all but one algorithm, and with the best result for the structure-based algorithm. Spatial accuracy as assessed from marker errors was disappointing for all algorithms, especially for large volume differences, implying that the deformations described by the registration did not represent anatomically correct deformations. The structure-based algorithm performed the best in terms of marker error for the large volume difference (100–400 ml). In general, for the small volume difference (100–150 ml) the algorithms performed relatively similarly. The structure-based algorithm exhibited the best balance in performance between small and large volume differences, and among the intensity-based algorithms, the algorithm implemented in VelocityAI exhibited the best balance. Conclusions: Validation of multiple DIR algorithms on a novel physiological bladder phantom revealed that the structure accuracy was good for most algorithms, but that the spatial accuracy as assessed from markers was low for all algorithms, especially for large deformations. Hence, many of the available algorithms exhibit sufficient accuracy for contour propagation purposes, but possibly not for accurate dose accumulation.« less

  5. [GIS and scenario analysis aid to water pollution control planning of river basin].

    PubMed

    Wang, Shao-ping; Cheng, Sheng-tong; Jia, Hai-feng; Ou, Zhi-dan; Tan, Bin

    2004-07-01

    The forward and backward algorithms for watershed water pollution control planning were summarized in this paper as well as their advantages and shortages. The spatial databases of water environmental function region, pollution sources, monitoring sections and sewer outlets were built with ARCGIS8.1 as the platform in the case study of Ganjiang valley, Jiangxi province. Based on the principles of the forward algorithm, four scenarios were designed for the watershed pollution control. Under these scenarios, ten sets of planning schemes were generated to implement cascade pollution source control. The investment costs of sewage treatment for these schemes were estimated by means of a series of cost-effective functions; with pollution source prediction, the water quality was modeled with CSTR model for each planning scheme. The modeled results of different planning schemes were visualized through GIS to aid decision-making. With the results of investment cost and water quality attainment as decision-making accords and based on the analysis of the economic endurable capacity for water pollution control in Ganjiang river basin, two optimized schemes were proposed. The research shows that GIS technology and scenario analysis can provide a good guidance to the synthesis, integrity and sustainability aspects for river basin water quality planning.

  6. Logistic regression trees for initial selection of interesting loci in case-control studies

    PubMed Central

    Nickolov, Radoslav Z; Milanov, Valentin B

    2007-01-01

    Modern genetic epidemiology faces the challenge of dealing with hundreds of thousands of genetic markers. The selection of a small initial subset of interesting markers for further investigation can greatly facilitate genetic studies. In this contribution we suggest the use of a logistic regression tree algorithm known as logistic tree with unbiased selection. Using the simulated data provided for Genetic Analysis Workshop 15, we show how this algorithm, with incorporation of multifactor dimensionality reduction method, can reduce an initial large pool of markers to a small set that includes the interesting markers with high probability. PMID:18466557

  7. COST-EFFECTIVE ALLOCATION OF WATERSHED MANAGEMENT PRACTICES USING A GENETIC ALGORITHM

    EPA Science Inventory

    Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from non-point source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Here-...

  8. Real-time implementations of image segmentation algorithms on shared memory multicore architecture: a survey (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Akil, Mohamed

    2017-05-01

    The real-time processing is getting more and more important in many image processing applications. Image segmentation is one of the most fundamental tasks image analysis. As a consequence, many different approaches for image segmentation have been proposed. The watershed transform is a well-known image segmentation tool. The watershed transform is a very data intensive task. To achieve acceleration and obtain real-time processing of watershed algorithms, parallel architectures and programming models for multicore computing have been developed. This paper focuses on the survey of the approaches for parallel implementation of sequential watershed algorithms on multicore general purpose CPUs: homogeneous multicore processor with shared memory. To achieve an efficient parallel implementation, it's necessary to explore different strategies (parallelization/distribution/distributed scheduling) combined with different acceleration and optimization techniques to enhance parallelism. In this paper, we give a comparison of various parallelization of sequential watershed algorithms on shared memory multicore architecture. We analyze the performance measurements of each parallel implementation and the impact of the different sources of overhead on the performance of the parallel implementations. In this comparison study, we also discuss the advantages and disadvantages of the parallel programming models. Thus, we compare the OpenMP (an application programming interface for multi-Processing) with Ptheads (POSIX Threads) to illustrate the impact of each parallel programming model on the performance of the parallel implementations.

  9. Automatic extraction of planetary image features

    NASA Technical Reports Server (NTRS)

    LeMoigne-Stewart, Jacqueline J. (Inventor); Troglio, Giulia (Inventor); Benediktsson, Jon A. (Inventor); Serpico, Sebastiano B. (Inventor); Moser, Gabriele (Inventor)

    2013-01-01

    A method for the extraction of Lunar data and/or planetary features is provided. The feature extraction method can include one or more image processing techniques, including, but not limited to, a watershed segmentation and/or the generalized Hough Transform. According to some embodiments, the feature extraction method can include extracting features, such as, small rocks. According to some embodiments, small rocks can be extracted by applying a watershed segmentation algorithm to the Canny gradient. According to some embodiments, applying a watershed segmentation algorithm to the Canny gradient can allow regions that appear as close contours in the gradient to be segmented.

  10. Isolating the impact of septic systems on fecal pollution in streams of suburban watersheds in Georgia, United States.

    PubMed

    Sowah, Robert A; Habteselassie, Mussie Y; Radcliffe, David E; Bauske, Ellen; Risse, Mark

    2017-01-01

    The presence of multiple sources of fecal pollution at the watershed level presents challenges to efforts aimed at identifying the influence of septic systems. In this study multiple approaches including targeted sampling and monitoring of host-specific Bacteroidales markers were used to identify the impact of septic systems on microbial water quality. Twenty four watersheds with septic density ranging from 8 to 373 septic units/km 2 were monitored for water quality under baseflow conditions over a 3-year period. The levels of the human-associated HF183 marker, as well as total and ruminant Bacteroidales, were quantified using quantitative polymerase chain reaction. Human-associated Bacteroidales yield was significantly higher in high density watersheds compared to low density areas and was negatively correlated (r = -0.64) with the average distance of septic systems to streams in the spring season. The human marker was also positively correlated with the total Bacteroidales marker, suggesting that the human source input was a significant contributor to total fecal pollution in the study area. Multivariable regression analysis indicates that septic systems, along with forest cover, impervious area and specific conductance could explain up to 74% of the variation in human fecal pollution in the spring season. The results suggest septic system impact through contributions to groundwater recharge during baseflow or failing septic system input, especially in areas with >87 septic units/km 2 . This study supports the use of microbial source tracking approaches along with traditional fecal indicator bacteria monitoring and land use characterization in a tiered approach to isolate the influence of septic systems on water quality in mixed-use watersheds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles.

    PubMed

    Xing, Boyang; Zhu, Quanmin; Pan, Feng; Feng, Xiaoxue

    2018-05-25

    A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland). Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB) beacon and lidar) to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV) visual localization and robotics control.

  12. Model-based morphological segmentation and labeling of coronary angiograms.

    PubMed

    Haris, K; Efstratiadis, S N; Maglaveras, N; Pappas, C; Gourassas, J; Louridas, G

    1999-10-01

    A method for extraction and labeling of the coronary arterial tree (CAT) using minimal user supervision in single-view angiograms is proposed. The CAT structural description (skeleton and borders) is produced, along with quantitative information for the artery dimensions and assignment of coded labels, based on a given coronary artery model represented by a graph. The stages of the method are: 1) CAT tracking and detection; 2) artery skeleton and border estimation; 3) feature graph creation; and iv) artery labeling by graph matching. The approximate CAT centerline and borders are extracted by recursive tracking based on circular template analysis. The accurate skeleton and borders of each CAT segment are computed, based on morphological homotopy modification and watershed transform. The approximate centerline and borders are used for constructing the artery segment enclosing area (ASEA), where the defined skeleton and border curves are considered as markers. Using the marked ASEA, an artery gradient image is constructed where all the ASEA pixels (except the skeleton ones) are assigned the gradient magnitude of the original image. The artery gradient image markers are imposed as its unique regional minima by the homotopy modification method, the watershed transform is used for extracting the artery segment borders, and the feature graph is updated. Finally, given the created feature graph and the known model graph, a graph matching algorithm assigns the appropriate labels to the extracted CAT using weighted maximal cliques on the association graph corresponding to the two given graphs. Experimental results using clinical digitized coronary angiograms are presented.

  13. Selection and placement of best management practices used to reduce water quality degradation in Lincoln Lake watershed

    NASA Astrophysics Data System (ADS)

    Rodriguez, Hector German; Popp, Jennie; Maringanti, Chetan; Chaubey, Indrajeet

    2011-01-01

    An increased loss of agricultural nutrients is a growing concern for water quality in Arkansas. Several studies have shown that best management practices (BMPs) are effective in controlling water pollution. However, those affected with water quality issues need water management plans that take into consideration BMPs selection, placement, and affordability. This study used a nondominated sorting genetic algorithm (NSGA-II). This multiobjective algorithm selects and locates BMPs that minimize nutrients pollution cost-effectively by providing trade-off curves (optimal fronts) between pollutant reduction and total net cost increase. The usefulness of this optimization framework was evaluated in the Lincoln Lake watershed. The final NSGA-II optimization model generated a number of near-optimal solutions by selecting from 35 BMPs (combinations of pasture management, buffer zones, and poultry litter application practices). Selection and placement of BMPs were analyzed under various cost solutions. The NSGA-II provides multiple solutions that could fit the water management plan for the watershed. For instance, by implementing all the BMP combinations recommended in the lowest-cost solution, total phosphorous (TP) could be reduced by at least 76% while increasing cost by less than 2% in the entire watershed. This value represents an increase in cost of 5.49 ha-1 when compared to the baseline. Implementing all the BMP combinations proposed with the medium- and the highest-cost solutions could decrease TP drastically but will increase cost by 24,282 (7%) and $82,306 (25%), respectively.

  14. Bladder segmentation in MR images with watershed segmentation and graph cut algorithm

    NASA Astrophysics Data System (ADS)

    Blaffert, Thomas; Renisch, Steffen; Schadewaldt, Nicole; Schulz, Heinrich; Wiemker, Rafael

    2014-03-01

    Prostate and cervix cancer diagnosis and treatment planning that is based on MR images benefit from superior soft tissue contrast compared to CT images. For these images an automatic delineation of the prostate or cervix and the organs at risk such as the bladder is highly desirable. This paper describes a method for bladder segmentation that is based on a watershed transform on high image gradient values and gray value valleys together with the classification of watershed regions into bladder contents and tissue by a graph cut algorithm. The obtained results are superior if compared to a simple region-after-region classification.

  15. Three-dimensional reconstruction of teeth and jaws based on segmentation of CT images using watershed transformation.

    PubMed

    Naumovich, S S; Naumovich, S A; Goncharenko, V G

    2015-01-01

    The objective of the present study was the development and clinical testing of a three-dimensional (3D) reconstruction method of teeth and a bone tissue of the jaw on the basis of CT images of the maxillofacial region. 3D reconstruction was performed using the specially designed original software based on watershed transformation. Computed tomograms in digital imaging and communications in medicine format obtained on multispiral CT and CBCT scanners were used for creation of 3D models of teeth and the jaws. The processing algorithm is realized in the stepwise threshold image segmentation with the placement of markers in the mode of a multiplanar projection in areas relating to the teeth and a bone tissue. The developed software initially creates coarse 3D models of the entire dentition and the jaw. Then, certain procedures specify the model of the jaw and cut the dentition into separate teeth. The proper selection of the segmentation threshold is very important for CBCT images having a low contrast and high noise level. The developed semi-automatic algorithm of multispiral and cone beam computed tomogram processing allows 3D models of teeth to be created separating them from a bone tissue of the jaws. The software is easy to install in a dentist's workplace, has an intuitive interface and takes little time in processing. The obtained 3D models can be used for solving a wide range of scientific and clinical tasks.

  16. A proto-type design of a real-tissue phantom for the validation of deformation algorithms and 4D dose calculations

    NASA Astrophysics Data System (ADS)

    Szegedi, M.; Rassiah-Szegedi, P.; Fullerton, G.; Wang, B.; Salter, B.

    2010-07-01

    The purpose of this study is to design a real-tissue phantom for use in the validation of deformation algorithms. A phantom motion controller that runs sinusoidal and non-regular patient-based breathing pattern, via a piston, was applied to porcine liver tissue. It was regulated to simulate movement ranges similar to recorded implanted liver markers from patients. 4D CT was applied to analyze deformation. The suitability of various markers in the liver and the position reproducibility of markers and of reference points were studied. The similarity of marker motion pattern in the liver phantom and in real patients was evaluated. The viability of the phantom over time and its use with electro-magnetic tracking devices were also assessed. High contrast markers, such as carbon markers, implanted in the porcine liver produced less image artifacts on CT and were well visualized compared to metallic ones. The repositionability of markers was within a measurement accuracy of ±2 mm. Similar anatomical patient motions were reproducible up to elongations of 3 cm for a time period of at least 90 min. The phantom is compatible with electro-magnetic tracking devices and 4D CT. The phantom motion is reproducible and simulates realistic patient motion and deformation. The ability to carry out voxel-based tracking allows for the evaluation of deformation algorithms in a controlled environment with recorded patient traces. The phantom is compatible with all therapy devices clinically encountered in our department.

  17. Temporal Assessment of the Impact of Exposure to Cow Feces in Two Watersheds by Multiple Host-Specific PCR Assays

    EPA Science Inventory

    Exposure to feces in two watersheds with different management histories was assessed by tracking cattle feces bacterial populations using multiple host-specific PCR assays. In addition, environmental factors affecting the occurrence of these markers were identified. Each assay wa...

  18. Temporal Assessment of the Impact of Exposure to Cow Feces inTwo Watersheds by Multiple Host-Specific PCR Assays

    EPA Science Inventory

    Fecal exposure in two watersheds with different management histories was assessed by tracking cattle fecal bacterial populations using multiple host-specific PCR assays. In addition, environmental factors affecting the occurrence of these markers were identified. Each assay was t...

  19. Evaluating water management strategies in watersheds by new hybrid Fuzzy Analytical Network Process (FANP) methods

    NASA Astrophysics Data System (ADS)

    RazaviToosi, S. L.; Samani, J. M. V.

    2016-03-01

    Watersheds are considered as hydrological units. Their other important aspects such as economic, social and environmental functions play crucial roles in sustainable development. The objective of this work is to develop methodologies to prioritize watersheds by considering different development strategies in environmental, social and economic sectors. This ranking could play a significant role in management to assign the most critical watersheds where by employing water management strategies, best condition changes are expected to be accomplished. Due to complex relations among different criteria, two new hybrid fuzzy ANP (Analytical Network Process) algorithms, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and fuzzy max-min set methods are used to provide more flexible and accurate decision model. Five watersheds in Iran named Oroomeyeh, Atrak, Sefidrood, Namak and Zayandehrood are considered as alternatives. Based on long term development goals, 38 water management strategies are defined as subcriteria in 10 clusters. The main advantage of the proposed methods is its ability to overcome uncertainty. This task is accomplished by using fuzzy numbers in all steps of the algorithms. To validate the proposed method, the final results were compared with those obtained from the ANP algorithm and the Spearman rank correlation coefficient is applied to find the similarity in the different ranking methods. Finally, the sensitivity analysis was conducted to investigate the influence of cluster weights on the final ranking.

  20. Mapping Mountain Front Recharge Areas in Arid Watersheds Based on a Digital Elevation Model and Land Cover Types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowen, Esther E.; Hamada, Yuki; O’Connor, Ben L.

    Here, a recent assessment that quantified potential impacts of solar energy development on water resources in the southwestern United States necessitated the development of a methodology to identify locations of mountain front recharge (MFR) in order to guide land development decisions. A spatially explicit, slope-based algorithm was created to delineate MFR zones in 17 arid, mountainous watersheds using elevation and land cover data. Slopes were calculated from elevation data and grouped into 100 classes using iterative self-organizing classification. Candidate MFR zones were identified based on slope classes that were consistent with MFR. Land cover types that were inconsistent with groundwatermore » recharge were excluded from the candidate areas to determine the final MFR zones. No MFR reference maps exist for comparison with the study’s results, so the reliability of the resulting MFR zone maps was evaluated qualitatively using slope, surficial geology, soil, and land cover datasets. MFR zones ranged from 74 km2 to 1,547 km2 and accounted for 40% of the total watershed area studied. Slopes and surficial geologic materials that were present in the MFR zones were consistent with conditions at the mountain front, while soils and land cover that were present would generally promote groundwater recharge. Visual inspection of the MFR zone maps also confirmed the presence of well-recognized alluvial fan features in several study watersheds. While qualitative evaluation suggested that the algorithm reliably delineated MFR zones in most watersheds overall, the algorithm was better suited for application in watersheds that had characteristic Basin and Range topography and relatively flat basin floors than areas without these characteristics. Because the algorithm performed well to reliably delineate the spatial distribution of MFR, it would allow researchers to quantify aspects of the hydrologic processes associated with MFR and help local land resource managers to consider protection of critical groundwater recharge regions in their development decisions.« less

  1. Mapping Mountain Front Recharge Areas in Arid Watersheds Based on a Digital Elevation Model and Land Cover Types

    DOE PAGES

    Bowen, Esther E.; Hamada, Yuki; O’Connor, Ben L.

    2014-06-01

    Here, a recent assessment that quantified potential impacts of solar energy development on water resources in the southwestern United States necessitated the development of a methodology to identify locations of mountain front recharge (MFR) in order to guide land development decisions. A spatially explicit, slope-based algorithm was created to delineate MFR zones in 17 arid, mountainous watersheds using elevation and land cover data. Slopes were calculated from elevation data and grouped into 100 classes using iterative self-organizing classification. Candidate MFR zones were identified based on slope classes that were consistent with MFR. Land cover types that were inconsistent with groundwatermore » recharge were excluded from the candidate areas to determine the final MFR zones. No MFR reference maps exist for comparison with the study’s results, so the reliability of the resulting MFR zone maps was evaluated qualitatively using slope, surficial geology, soil, and land cover datasets. MFR zones ranged from 74 km2 to 1,547 km2 and accounted for 40% of the total watershed area studied. Slopes and surficial geologic materials that were present in the MFR zones were consistent with conditions at the mountain front, while soils and land cover that were present would generally promote groundwater recharge. Visual inspection of the MFR zone maps also confirmed the presence of well-recognized alluvial fan features in several study watersheds. While qualitative evaluation suggested that the algorithm reliably delineated MFR zones in most watersheds overall, the algorithm was better suited for application in watersheds that had characteristic Basin and Range topography and relatively flat basin floors than areas without these characteristics. Because the algorithm performed well to reliably delineate the spatial distribution of MFR, it would allow researchers to quantify aspects of the hydrologic processes associated with MFR and help local land resource managers to consider protection of critical groundwater recharge regions in their development decisions.« less

  2. Towards a robust framework for catchment classification

    NASA Astrophysics Data System (ADS)

    Deshmukh, A.; Samal, A.; Singh, R.

    2017-12-01

    Classification of catchments based on various measures of similarity has emerged as an important technique to understand regional scale hydrologic behavior. Classification of catchment characteristics and/or streamflow response has been used reveal which characteristics are more likely to explain the observed variability of hydrologic response. However, numerous algorithms for supervised or unsupervised classification are available, making it hard to identify the algorithm most suitable for the dataset at hand. Consequently, existing catchment classification studies vary significantly in the classification algorithms employed with no previous attempt at understanding the degree of uncertainty in classification due to this algorithmic choice. This hinders the generalizability of interpretations related to hydrologic behavior. Our goal is to develop a protocol that can be followed while classifying hydrologic datasets. We focus on a classification framework for unsupervised classification and provide a step-by-step classification procedure. The steps include testing the clusterabiltiy of original dataset prior to classification, feature selection, validation of clustered data, and quantification of similarity of two clusterings. We test several commonly available methods within this framework to understand the level of similarity of classification results across algorithms. We apply the proposed framework on recently developed datasets for India to analyze to what extent catchment properties can explain observed catchment response. Our testing dataset includes watershed characteristics for over 200 watersheds which comprise of both natural (physio-climatic) characteristics and socio-economic characteristics. This framework allows us to understand the controls on observed hydrologic variability across India.

  3. Spatial multiobjective optimization of agricultural conservation practices using a SWAT model and an evolutionary algorithm.

    PubMed

    Rabotyagov, Sergey; Campbell, Todd; Valcu, Adriana; Gassman, Philip; Jha, Manoj; Schilling, Keith; Wolter, Calvin; Kling, Catherine

    2012-12-09

    Finding the cost-efficient (i.e., lowest-cost) ways of targeting conservation practice investments for the achievement of specific water quality goals across the landscape is of primary importance in watershed management. Traditional economics methods of finding the lowest-cost solution in the watershed context (e.g.,(5,12,20)) assume that off-site impacts can be accurately described as a proportion of on-site pollution generated. Such approaches are unlikely to be representative of the actual pollution process in a watershed, where the impacts of polluting sources are often determined by complex biophysical processes. The use of modern physically-based, spatially distributed hydrologic simulation models allows for a greater degree of realism in terms of process representation but requires a development of a simulation-optimization framework where the model becomes an integral part of optimization. Evolutionary algorithms appear to be a particularly useful optimization tool, able to deal with the combinatorial nature of a watershed simulation-optimization problem and allowing the use of the full water quality model. Evolutionary algorithms treat a particular spatial allocation of conservation practices in a watershed as a candidate solution and utilize sets (populations) of candidate solutions iteratively applying stochastic operators of selection, recombination, and mutation to find improvements with respect to the optimization objectives. The optimization objectives in this case are to minimize nonpoint-source pollution in the watershed, simultaneously minimizing the cost of conservation practices. A recent and expanding set of research is attempting to use similar methods and integrates water quality models with broadly defined evolutionary optimization methods(3,4,9,10,13-15,17-19,22,23,25). In this application, we demonstrate a program which follows Rabotyagov et al.'s approach and integrates a modern and commonly used SWAT water quality model(7) with a multiobjective evolutionary algorithm SPEA2(26), and user-specified set of conservation practices and their costs to search for the complete tradeoff frontiers between costs of conservation practices and user-specified water quality objectives. The frontiers quantify the tradeoffs faced by the watershed managers by presenting the full range of costs associated with various water quality improvement goals. The program allows for a selection of watershed configurations achieving specified water quality improvement goals and a production of maps of optimized placement of conservation practices.

  4. Assessment of fecal pollution sources in a small northern-plains watershed using PCR and phylogenetic analyses of Bacteroidetes 16S rRNA gene

    USGS Publications Warehouse

    Lamendella, R.; Domingo, J.W.S.; Oerther, D.B.; Vogel, J.R.; Stoeckel, D.M.

    2007-01-01

    We evaluated the efficacy, sensitivity, host-specificity, and spatial/temporal dynamics of human- and ruminant-specific 16S rRNA gene Bacteroidetes markers used to assess the sources of fecal pollution in a fecally impacted watershed. Phylogenetic analyses of 1271 fecal and environmental 16S rRNA gene clones were also performed to study the diversity of Bacteroidetes in this watershed. The host-specific assays indicated that ruminant feces were present in 28-54% of the water samples and in all sampling seasons, with increasing frequency in downstream sites. The human-targeted assays indicated that only 3-5% of the water samples were positive for human fecal signals, although a higher percentage of human-associated signals (19-24%) were detected in sediment samples. Phylogenetic analysis indicated that 57% of all water clones clustered with yet-to-be-cultured Bacteroidetes species associated with sequences obtained from ruminant feces, further supporting the prevalence of ruminant contamination in this watershed. However, since several clusters contained sequences from multiple sources, future studies need to consider the potential cosmopolitan nature of these bacterial populations when assessing fecal pollution sources using Bacteroidetes markers. Moreover, additional data is needed in order to understand the distribution of Bacteroidetes host-specific markers and their relationship to water quality regulatory standards. ?? 2006 Federation of European Microbiological Societies.

  5. Image processing based detection of lung cancer on CT scan images

    NASA Astrophysics Data System (ADS)

    Abdillah, Bariqi; Bustamam, Alhadi; Sarwinda, Devvi

    2017-10-01

    In this paper, we implement and analyze the image processing method for detection of lung cancer. Image processing techniques are widely used in several medical problems for picture enhancement in the detection phase to support the early medical treatment. In this research we proposed a detection method of lung cancer based on image segmentation. Image segmentation is one of intermediate level in image processing. Marker control watershed and region growing approach are used to segment of CT scan image. Detection phases are followed by image enhancement using Gabor filter, image segmentation, and features extraction. From the experimental results, we found the effectiveness of our approach. The results show that the best approach for main features detection is watershed with masking method which has high accuracy and robust.

  6. Improving cervical region of interest by eliminating vaginal walls and cotton-swabs for automated image analysis

    NASA Astrophysics Data System (ADS)

    Venkataraman, Sankar; Li, Wenjing

    2008-03-01

    Image analysis for automated diagnosis of cervical cancer has attained high prominence in the last decade. Automated image analysis at all levels requires a basic segmentation of the region of interest (ROI) within a given image. The precision of the diagnosis is often reflected by the precision in detecting the initial region of interest, especially when some features outside the ROI mimic the ones within the same. Work described here discusses algorithms that are used to improve the cervical region of interest as a part of automated cervical image diagnosis. A vital visual aid in diagnosing cervical cancer is the aceto-whitening of the cervix after the application of acetic acid. Color and texture are used to segment acetowhite regions within the cervical ROI. Vaginal walls along with cottonswabs sometimes mimic these essential features leading to several false positives. Work presented here is focused towards detecting in-focus vaginal wall boundaries and then extrapolating them to exclude vaginal walls from the cervical ROI. In addition, discussed here is a marker-controlled watershed segmentation that is used to detect cottonswabs from the cervical ROI. A dataset comprising 50 high resolution images of the cervix acquired after 60 seconds of acetic acid application were used to test the algorithm. Out of the 50 images, 27 benefited from a new cervical ROI. Significant improvement in overall diagnosis was observed in these images as false positives caused by features outside the actual ROI mimicking acetowhite region were eliminated.

  7. Spatio-Temporal Process Variability in Watershed Scale Wetland Restoration Planning

    NASA Astrophysics Data System (ADS)

    Evenson, G. R.

    2012-12-01

    Watershed scale restoration decision making processes are increasingly informed by quantitative methodologies providing site-specific restoration recommendations - sometimes referred to as "systematic planning." The more advanced of these methodologies are characterized by a coupling of search algorithms and ecological models to discover restoration plans that optimize environmental outcomes. Yet while these methods have exhibited clear utility as decision support toolsets, they may be critiqued for flawed evaluations of spatio-temporally variable processes fundamental to watershed scale restoration. Hydrologic and non-hydrologic mediated process connectivity along with post-restoration habitat dynamics, for example, are commonly ignored yet known to appreciably affect restoration outcomes. This talk will present a methodology to evaluate such spatio-temporally complex processes in the production of watershed scale wetland restoration plans. Using the Tuscarawas Watershed in Eastern Ohio as a case study, a genetic algorithm will be coupled with the Soil and Water Assessment Tool (SWAT) to reveal optimal wetland restoration plans as measured by their capacity to maximize nutrient reductions. Then, a so-called "graphical" representation of the optimization problem will be implemented in-parallel to promote hydrologic and non-hydrologic mediated connectivity amongst existing wetlands and sites selected for restoration. Further, various search algorithm mechanisms will be discussed as a means of accounting for temporal complexities such as post-restoration habitat dynamics. Finally, generalized patterns of restoration plan optimality will be discussed as an alternative and possibly superior decision support toolset given the complexity and stochastic nature of spatio-temporal process variability.

  8. Dynamics of aerial and terrestrial populations of Phytophthora ramorum in a California watershed under different climatic conditions

    Treesearch

    Catherine A. Eyre; Melina Kozanitas; Matteo Garbelotto

    2013-01-01

    We present a study of the epidemiology of sudden oak death (SOD) in California within a watershed based on temporally and spatially replicated surveys of symptoms, viability of the pathogen from symptomatic leaves, and genetic analyses using polymorphic SSR markers.Phytophthora ramorum is sensitive to climate; its...

  9. Detection of bone disease by hybrid SST-watershed x-ray image segmentation

    NASA Astrophysics Data System (ADS)

    Sanei, Saeid; Azron, Mohammad; Heng, Ong Sim

    2001-07-01

    Detection of diagnostic features from X-ray images is favorable due to the low cost of these images. Accurate detection of the bone metastasis region greatly assists physicians to monitor the treatment and to remove the cancerous tissue by surgery. A hybrid SST-watershed algorithm, here, efficiently detects the boundary of the diseased regions. Shortest Spanning Tree (SST), based on graph theory, is one of the most powerful tools in grey level image segmentation. The method converts the images into arbitrary-shape closed segments of distinct grey levels. To do that, the image is initially mapped to a tree. Then using RSST algorithm the image is segmented to a certain number of arbitrary-shaped regions. However, in fine segmentation, over-segmentation causes loss of objects of interest. In coarse segmentation, on the other hand, SST-based method suffers from merging the regions belonged to different objects. By applying watershed algorithm, the large segments are divided into the smaller regions based on the number of catchment's basins for each segment. The process exploits bi-level watershed concept to separate each multi-lobe region into a number of areas each corresponding to an object (in our case a cancerous region of the bone,) disregarding their homogeneity in grey level.

  10. Optic disc detection and boundary extraction in retinal images.

    PubMed

    Basit, A; Fraz, Muhammad Moazam

    2015-04-10

    With the development of digital image processing, analysis and modeling techniques, automatic retinal image analysis is emerging as an important screening tool for early detection of ophthalmologic disorders such as diabetic retinopathy and glaucoma. In this paper, a robust method for optic disc detection and extraction of the optic disc boundary is proposed to help in the development of computer-assisted diagnosis and treatment of such ophthalmic disease. The proposed method is based on morphological operations, smoothing filters, and the marker controlled watershed transform. Internal and external markers are used to first modify the gradient magnitude image and then the watershed transformation is applied on this modified gradient magnitude image for boundary extraction. This method has shown significant improvement over existing methods in terms of detection and boundary extraction of the optic disc. The proposed method has optic disc detection success rate of 100%, 100%, 100% and 98.9% for the DRIVE, Shifa, CHASE_DB1, and DIARETDB1 databases, respectively. The optic disc boundary detection achieved an average spatial overlap of 61.88%, 70.96%, 45.61%, and 54.69% for these databases, respectively, which are higher than currents methods.

  11. NONPOINT SOURCE MODEL CALIBRATION IN HONEY CREEK WATERSHED

    EPA Science Inventory

    The U.S. EPA Non-Point Source Model has been applied and calibrated to a fairly large (187 sq. mi.) agricultural watershed in the Lake Erie Drainage basin of north central Ohio. Hydrologic and chemical routing algorithms have been developed. The model is evaluated for suitability...

  12. A novel multiphoton microscopy images segmentation method based on superpixel and watershed.

    PubMed

    Wu, Weilin; Lin, Jinyong; Wang, Shu; Li, Yan; Liu, Mingyu; Liu, Gaoqiang; Cai, Jianyong; Chen, Guannan; Chen, Rong

    2017-04-01

    Multiphoton microscopy (MPM) imaging technique based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) shows fantastic performance for biological imaging. The automatic segmentation of cellular architectural properties for biomedical diagnosis based on MPM images is still a challenging issue. A novel multiphoton microscopy images segmentation method based on superpixels and watershed (MSW) is presented here to provide good segmentation results for MPM images. The proposed method uses SLIC superpixels instead of pixels to analyze MPM images for the first time. The superpixels segmentation based on a new distance metric combined with spatial, CIE Lab color space and phase congruency features, divides the images into patches which keep the details of the cell boundaries. Then the superpixels are used to reconstruct new images by defining an average value of superpixels as image pixels intensity level. Finally, the marker-controlled watershed is utilized to segment the cell boundaries from the reconstructed images. Experimental results show that cellular boundaries can be extracted from MPM images by MSW with higher accuracy and robustness. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A novel algorithm for delineating wetland depressions and mapping surface hydrologic flow pathways using LiDAR data

    EPA Science Inventory

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In re...

  14. Exploring the correlation between annual precipitation and potential evaporation

    NASA Astrophysics Data System (ADS)

    Chen, X.; Buchberger, S. G.

    2017-12-01

    The interdependence between precipitation and potential evaporation is closely related to the classic Budyko framework. In this study, a systematic investigation of the correlation between precipitation and potential evaporation at the annual time step is conducted at both point scale and watershed scale. The point scale precipitation and potential evaporation data over the period of 1984-2015 are collected from 259 weather stations across the United States. The watershed scale precipitation data of 203 watersheds across the United States are obtained from the Model Parameter Estimation Experiment (MOPEX) dataset from 1983 to 2002; and potential evaporation data of these 203 watersheds in the same period are obtained from a remote-sensing algorithm. The results show that majority of the weather stations (77%) and watersheds (79%) exhibit a statistically significant negative correlation between annual precipitation and annual potential evaporation. The aggregated data cloud of precipitation versus potential evaporation follows a curve based on the combination of the Budyko-type equation and Bouchet's complementary relationship. Our result suggests that annual precipitation and potential evaporation are not independent when both Budyko's hypothesis and Bouchet's hypothesis are valid. Furthermore, we find that the wet surface evaporation, which is controlled primarily by short wave radiation as defined in Bouchet's hypothesis, exhibits less dependence on precipitation than the potential evaporation. As a result, we suggest that wet surface evaporation is a better representation of energy supply than potential evaporation in the Budyko framework.

  15. A case study characterizing animal fecal sources in surface water using a mitochondrial DNA marker.

    PubMed

    Bucci, John P; Shattuck, Michelle D; Aytur, Semra A; Carey, Richard; McDowell, William H

    2017-08-01

    Water quality impairment by fecal waste in coastal watersheds is a public health issue. The present study provided evidence for the use of a mitochondrial (mtDNA) marker to detect animal fecal sources in surface water. The accurate identification of fecal pollution is based on the notion that fecal microorganisms preferentially inhabit a host animal's gut environment. In contrast, mtDNA host-specific markers are inherent to eukaryotic host cells, which offers the advantage by detecting DNA from the host rather than its fecal bacteria. The present study focused on sampling water presumably from non-point sources (NPS), which can increase bacterial and nitrogen concentrations to receiving water bodies. Stream sampling sites located within the Piscataqua River Watershed (PRW), New Hampshire, USA, were sampled from a range of sites that experienced nitrogen inputs such as sewer and septic systems and suburban runoff. Three mitochondrial (mtDNA) gene marker assays (human, bovine, and canine) were tested from surface water. Nineteen sites were sampled during an 18-month period. Analyses of the combined single and multiplex assay results showed that the proportion of occurrence was highest for bovine (15.6%; n = 77) compared to canine (5.6%; n = 70) and human (5.7%; n = 107) mtDNA gene markers. For the human mtDNA marker, there was a statistically significant relationship between presence vs. absence and land use (Fisher's test p = 0.0031). This result was evident particularly for rural suburban septic, which showed the highest proportion of presence (19.2%) compared to the urban sewered (3.3%), suburban sewered (0%), and agricultural (0%) as well as forested septic (0%) sites. Although further testing across varied land use is needed, our study provides evidence for using the mtDNA marker in large watersheds.

  16. Modeling urbanized watershed flood response changes with distributed hydrological model: key hydrological processes, parameterization and case studies

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2017-12-01

    Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to urbanization, and the results show urbanization has big impact on the watershed flood responses. The peak flow increased a few times after urbanization which is much higher than previous reports.

  17. Automatic Marker-free Longitudinal Infrared Image Registration by Shape Context Based Matching and Competitive Winner-guided Optimal Corresponding

    PubMed Central

    Lee, Chia-Yen; Wang, Hao-Jen; Lai, Jhih-Hao; Chang, Yeun-Chung; Huang, Chiun-Sheng

    2017-01-01

    Long-term comparisons of infrared image can facilitate the assessment of breast cancer tissue growth and early tumor detection, in which longitudinal infrared image registration is a necessary step. However, it is hard to keep markers attached on a body surface for weeks, and rather difficult to detect anatomic fiducial markers and match them in the infrared image during registration process. The proposed study, automatic longitudinal infrared registration algorithm, develops an automatic vascular intersection detection method and establishes feature descriptors by shape context to achieve robust matching, as well as to obtain control points for the deformation model. In addition, competitive winner-guided mechanism is developed for optimal corresponding. The proposed algorithm is evaluated in two ways. Results show that the algorithm can quickly lead to accurate image registration and that the effectiveness is superior to manual registration with a mean error being 0.91 pixels. These findings demonstrate that the proposed registration algorithm is reasonably accurate and provide a novel method of extracting a greater amount of useful data from infrared images. PMID:28145474

  18. The practical evaluation of DNA barcode efficacy.

    PubMed

    Spouge, John L; Mariño-Ramírez, Leonardo

    2012-01-01

    This chapter describes a workflow for measuring the efficacy of a barcode in identifying species. First, assemble individual sequence databases corresponding to each barcode marker. A controlled collection of taxonomic data is preferable to GenBank data, because GenBank data can be problematic, particularly when comparing barcodes based on more than one marker. To ensure proper controls when evaluating species identification, specimens not having a sequence in every marker database should be discarded. Second, select a computer algorithm for assigning species to barcode sequences. No algorithm has yet improved notably on assigning a specimen to the species of its nearest neighbor within a barcode database. Because global sequence alignments (e.g., with the Needleman-Wunsch algorithm, or some related algorithm) examine entire barcode sequences, they generally produce better species assignments than local sequence alignments (e.g., with BLAST). No neighboring method (e.g., global sequence similarity, global sequence distance, or evolutionary distance based on a global alignment) has yet shown a notable superiority in identifying species. Finally, "the probability of correct identification" (PCI) provides an appropriate measurement of barcode efficacy. The overall PCI for a data set is the average of the species PCIs, taken over all species in the data set. This chapter states explicitly how to calculate PCI, how to estimate its statistical sampling error, and how to use data on PCR failure to set limits on how much improvements in PCR technology can improve species identification.

  19. Correlation of quantitative PCR for a poultry-specific brevibacterium marker gene with bacterial and chemical indicators of water pollution in a watershed impacted by land application of poultry litter.

    PubMed

    Weidhaas, Jennifer L; Macbeth, Tamzen W; Olsen, Roger L; Harwood, Valerie J

    2011-03-01

    The impact of fecal contamination from human and agricultural animal waste on water quality is a major public health concern. Identification of the dominant source(s) of fecal pollution in a watershed is necessary for assessing the safety of recreational water and protecting water resources. A field study was conducted using quantitative PCR (qPCR) for the 16S rRNA gene of Brevibacterium sp. LA35 to track feces-contaminated poultry litter in environmental samples. Based on sensitivity and specificity characteristics of the qPCR method, the Bayesian conditional probability that detection of the LA35 marker gene in a water sample represented a true-positive result was 93%. The marker's covariance with fecal indicator bacteria (FIB) and metals associated with poultry litter was also assessed in litter, runoff, surface water, and groundwater samples. LA35 was detected in water and soil samples collected throughout the watershed, and its concentration covaried with concentrations of Escherichia coli, enterococci, As, Cu, P, and Zn. Significantly greater concentrations of FIB, As, Cu, P, and Zn were observed in edge-of-field runoff samples in which LA35 was detected, compared to samples in which it was not detected. Furthermore, As, Cu, P, and Zn concentrations covaried in environmental samples in which LA35 was detected and typically did not in samples in which the marker gene was not detected. The covariance of the poultry-specific LA35 marker gene with these known contaminants from poultry feces provides further evidence that it is a useful tool for assessing the impact of poultry-derived fecal pollution in environmental waters.

  20. Managing Watersheds as Couple Human-Natural Systems: A Review of Research Opportunities

    NASA Astrophysics Data System (ADS)

    Cai, X.

    2011-12-01

    Many watersheds around the world are impaired with severe social and environmental problems due to heavy anthropogenic stresses. Humans have transformed hydrological and biochemical processes in watersheds from a stationary to non-stationary status through direct (e.g., water withdrawals) and indirect (e.g., altering vegetation and land cover) interferences. It has been found that in many watersheds that socio-economic drivers, which have caused increasingly intensive alteration of natural processes, have even overcome natural variability to become the dominant factor affecting the behavior of watershed systems. Reversing this trend requires an understanding of the drivers of this intensification trajectory, and needs tremendous policy reform and investment. As stressed by several recent National Research Council (NRC) reports, watershed management will pose an enormous challenge in the coming decades. Correspondingly, the focus of research has started an evolution from the management of reservoir, stormwater and aquifer systems to the management of integrated watershed systems, to which policy instruments designed to make more rational economic use of water resources are likely to be applied. To provide a few examples: reservoir operation studies have moved from a local to a watershed scale in order to consider upstream best management practices in soil conservation and erosion control and downstream ecological flow requirements and water rights; watersheds have been modeled as integrated hydrologic-economic systems with multidisciplinary modeling efforts, instead of traditional isolated physical systems. Today's watershed management calls for a re-definition of watersheds from isolated natural systems to coupled human-natural systems (CHNS), which are characterized by the interactions between human activities and natural processes, crossing various spatial and temporal scales within the context of a watershed. The importance of the conceptual innovation has been evidenced by 1) institutional innovation for integrated watershed management; 2) real-world management practices involving multidisciplinary expertise; 3) growing role of economics in systems analysis; 4) enhanced research programs such as the CHNS program and Water, Sustainability and Climate (WSC) program at the US National Science Foundation (NSF). Furthermore, recent scientific and technological developments are expected to accommodate integrated watershed system analysis approaches, such as: 1) increasing availability of distributed digital datasets especially from remote sensing products (e.g. digital watersheds); 2) distributed and semi-distributed watershed hydrologic modeling; 3) enhanced hydroclimatic monitoring and forecast; 4) identified evidences of vulnerability and threshold behavior of watersheds; and 5) continuing improvements in computational and optimization algorithms. Managing watersheds as CHNS will be critical for watershed sustainability, which ensures that human societies will benefit forever from the watershed through development of harmonious relationships between human and natural systems. This presentation will provide a review of the research opportunities that take advantage of the concept of CHNS and associated scientific, technological and institutional innovations/developments.

  1. Interactive genetic algorithm for user-centered design of distributed conservation practices in a watershed: An examination of user preferences in objective space and user behavior

    NASA Astrophysics Data System (ADS)

    Piemonti, Adriana Debora; Babbar-Sebens, Meghna; Mukhopadhyay, Snehasis; Kleinberg, Austin

    2017-05-01

    Interactive Genetic Algorithms (IGA) are advanced human-in-the-loop optimization methods that enable humans to give feedback, based on their subjective and unquantified preferences and knowledge, during the algorithm's search process. While these methods are gaining popularity in multiple fields, there is a critical lack of data and analyses on (a) the nature of interactions of different humans with interfaces of decision support systems (DSS) that employ IGA in water resources planning problems and on (b) the effect of human feedback on the algorithm's ability to search for design alternatives desirable to end-users. In this paper, we present results and analyses of observational experiments in which different human participants (surrogates and stakeholders) interacted with an IGA-based, watershed DSS called WRESTORE to identify plans of conservation practices in a watershed. The main goal of this paper is to evaluate how the IGA adapts its search process in the objective space to a user's feedback, and identify whether any similarities exist in the objective space of plans found by different participants. Some participants focused on the entire watershed, while others focused only on specific local subbasins. Additionally, two different hydrology models were used to identify any potential differences in interactive search outcomes that could arise from differences in the numerical values of benefits displayed to participants. Results indicate that stakeholders, in comparison to their surrogates, were more likely to use multiple features of the DSS interface to collect information before giving feedback, and dissimilarities existed among participants in the objective space of design alternatives.

  2. An improved approach for the segmentation of starch granules in microscopic images

    PubMed Central

    2010-01-01

    Background Starches are the main storage polysaccharides in plants and are distributed widely throughout plants including seeds, roots, tubers, leaves, stems and so on. Currently, microscopic observation is one of the most important ways to investigate and analyze the structure of starches. The position, shape, and size of the starch granules are the main measurements for quantitative analysis. In order to obtain these measurements, segmentation of starch granules from the background is very important. However, automatic segmentation of starch granules is still a challenging task because of the limitation of imaging condition and the complex scenarios of overlapping granules. Results We propose a novel method to segment starch granules in microscopic images. In the proposed method, we first separate starch granules from background using automatic thresholding and then roughly segment the image using watershed algorithm. In order to reduce the oversegmentation in watershed algorithm, we use the roundness of each segment, and analyze the gradient vector field to find the critical points so as to identify oversegments. After oversegments are found, we extract the features, such as the position and intensity of the oversegments, and use fuzzy c-means clustering to merge the oversegments to the objects with similar features. Experimental results demonstrate that the proposed method can alleviate oversegmentation of watershed segmentation algorithm successfully. Conclusions We present a new scheme for starch granules segmentation. The proposed scheme aims to alleviate the oversegmentation in watershed algorithm. We use the shape information and critical points of gradient vector flow (GVF) of starch granules to identify oversegments, and use fuzzy c-mean clustering based on prior knowledge to merge these oversegments to the objects. Experimental results on twenty microscopic starch images demonstrate the effectiveness of the proposed scheme. PMID:21047380

  3. A serum protein-based algorithm for the detection of Alzheimer disease.

    PubMed

    O'Bryant, Sid E; Xiao, Guanghua; Barber, Robert; Reisch, Joan; Doody, Rachelle; Fairchild, Thomas; Adams, Perrie; Waring, Steven; Diaz-Arrastia, Ramon

    2010-09-01

    To develop an algorithm that separates patients with Alzheimer disease (AD) from controls. Longitudinal case-control study. The Texas Alzheimer's Research Consortium project. Patients  We analyzed serum protein-based multiplex biomarker data from 197 patients diagnosed with AD and 203 controls. Main Outcome Measure  The total sample was randomized equally into training and test sets and random forest methods were applied to the training set to create a biomarker risk score. The biomarker risk score had a sensitivity and specificity of 0.80 and 0.91, respectively, and an area under the curve of 0.91 in detecting AD. When age, sex, education, and APOE status were added to the algorithm, the sensitivity, specificity, and area under the curve were 0.94, 0.84, and 0.95, respectively. These initial data suggest that serum protein-based biomarkers can be combined with clinical information to accurately classify AD. A disproportionate number of inflammatory and vascular markers were weighted most heavily in the analyses. Additionally, these markers consistently distinguished cases from controls in significant analysis of microarray, logistic regression, and Wilcoxon analyses, suggesting the existence of an inflammatory-related endophenotype of AD that may provide targeted therapeutic opportunities for this subset of patients.

  4. Convergence and non-convergence in ecological, phenotypic, and genetic divergence across replicate population pairs of lake and stream stickleback

    PubMed Central

    Kaeuffer, Renaud; Peichel, Catherine L.; Bolnick, Daniel I.; Hendry, Andrew P.

    2015-01-01

    Convergent (or parallel) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some non-convergent evolution is present. It is therefore important to explicitly quantify the convergent and non-convergent aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in independent watersheds. Morphological traits differed in the degree to which lake-stream divergence was convergent across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lake-stream divergence in genetic markers was associated within some of the lake-stream divergence in morphological traits. Our results suggest that convergent evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respect to the dichotomous habitat classifications frequently used in such studies. PMID:22276537

  5. Molecular Investigations of Bacteroides as Microbial Source Tracking Tools in Southeast Louisiana Watersheds

    NASA Astrophysics Data System (ADS)

    Schulz, C. J.; Childers, G. W.; Engel, A. S.

    2006-12-01

    Microbial Source Tracking (MST) is a developing field that is gaining increased attention. MST refers to a host of techniques that discriminates among the origins of fecal material found in natural waters from different sources (e.g. human, livestock, and wildlife) by using microbial indicator species with specificity to only certain host organisms. The development of species-specific molecular markers would allow for better evaluation of public health risks and tracking of nutrient sources impacting a watershed. Although several MST methods have been reported with varying levels of success, few offer general applicability for natural waters due to spatial and temporal constraints associated with these methods. One group of molecular MST markers that show promise for broad environmental applications are molecular 16S rDNA probes for Bacteroides. This method is based on 16S rDNA detection directly from environmental samples without the need for a preliminary cultivation step. In this study we have expanded previous sampling efforts to compile a database of over 1000 partial 16S rRNA Bacteroides genes retrieved from the fecal material of 15 different host species (human, cat, dog, pig, kangaroo). To characterize survival of Bacteroides outside of the host, survival time of the Bacteroides marker was compared to that of E.coli under varying natural environmental conditions (temperature and salinity). Bacteroides displayed a survival curve with shouldering and tailing similar to that of E.coli, but log reduction times differed with treatment. In summary, MST marker stability was identified within host species and the overall Bacteroides community structure correlated to host diet, suggesting that detection of a Bacteroides community could confidently identify fecal contamination point sources. Natural water samples from southeast Louisiana were collected for MST including the Tangipahoa River watershed where the source of fecal contamination has been hotly debated. The Bacteroides tool repeatedly demonstrated the presence of cattle related Bacteroides markers and the absence of human markers.This study is now being expanded to include the entire Lake Pontchartrain Basin.

  6. Understanding controls of hydrologic processes across two headwater monolithological catchments using model-data synthesis

    NASA Astrophysics Data System (ADS)

    Xiao, D.; Shi, Y.; Hoagland, B.; Del Vecchio, J.; Russo, T. A.; DiBiase, R. A.; Li, L.

    2017-12-01

    How do watershed hydrologic processes differ in catchments derived from different lithology? This study compares two first order, deciduous forest watersheds in Pennsylvania, a sandstone watershed, Garner Run (GR, 1.34 km2), and a shale-derived watershed, Shale Hills (SH, 0.08 km2). Both watersheds are simulated using a combination of national datasets and field measurements, and a physics-based land surface hydrologic model, Flux-PIHM. We aim to evaluate the effects of lithology on watershed hydrology and assess if we can simulate a new watershed without intensive measurements, i.e., directly use calibration information from one watershed (SH) to reproduce hydrologic dynamics of another watershed (GR). Without any calibration, the model at GR based on national datasets and calibration inforamtion from SH cannot capture some discharge peaks or the baseflow during dry periods. The model prediction agrees well with the GR field discharge and soil moisture after calibrating the soil hydraulic parameters using the uncertainty based Hornberger-Spear-Young algorithm and the Latin Hypercube Sampling method. Agreeing with the field observation and national datasets, the difference in parameter values shows that the sandstone watershed has a larger averaged soil pore diameter, greater water storage created by porosity, lower water retention ability, and greater preferential flow. The water budget calculation shows that the riparian zone and the colluvial valley serves as buffer zones that stores water at GR. Using the same procedure, we compared Flux-PIHM simulations with and without a field measured surface boulder map at GR. When the boulder map is used, the prediction of areal averaged soil moisture is improved, without performing extra calibration. When calibrated separately, the cases with or without boulder map yield different calibration values, but their hydrologic predictions are similar, showing equifinality. The calibrated soil hydraulic parameter values in the with boulder map case is more physically plausible than the without boulder map case. We switched the topography and soil properties between GR and SH, and results indicate that the hydrologic processes are more sensitive to changes in domain topography than to changes in the soil properties.

  7. Microsatellite markers for the endangered Roanoke logperch, Percina rex (Percidae) and their potential utility for other darter species

    USGS Publications Warehouse

    Dutton, D.J.; Roberts, J.H.; Angermeier, P.L.; Hallerman, E.M.

    2008-01-01

    The Roanoke logperch (Percina rex Jordan and Evermann), an endangered fish, occurs in only six watersheds in the Roanoke and Chowan river drainages of Virginia, USA. The species' population genetic structure is poorly known. We developed 16 microsatellite markers that were reliably scorable and polymorphic P. rex. Markers were also screened in seven other darter species of the genus Percina. Most markers exhibited successful amplification and polymorphism in several species. These markers may therefore prove useful for population genetic studies in other darters, a diverse but highly imperiled group. ?? 2008 The Authors.

  8. Five-minute, 1/2°, and 1° data sets of continental watersheds and river networks for use in regional and global hydrologic and climate system modeling studies

    NASA Astrophysics Data System (ADS)

    Graham, S. T.; Famiglietti, J. S.; Maidment, D. R.

    1999-02-01

    A major shortcoming of the land surface component in climate models is the absence of a river transport algorithm. This issue becomes particularly important in fully coupled climate system models (CSMs), where river transport is required to close and realistically represent the global water cycle. The development of a river transport algorithm requires knowledge of watersheds and river networks at a scale that is appropriate for use in CSMs. These data must be derived largely from global digital topographic information. The purpose of this paper is to describe a new data set of watersheds and river networks, which is derived primarily from the TerrainBase 5' Global DTM (digital terrain model) and the CIA World Data Bank II. These data serve as a base map for routing continental runoff to the appropriate coast and therefore into the appropriate ocean or inland sea. Using this data set, the runoff produced in any grid cell, when coupled with a routing algorithm, can easily be transported to the appropriate water body and distributed across that water body as desired. The data set includes watershed and flow direction information, as well as supporting hydrologic data at 5', 1/2°, and 1° resolutions globally. It will be useful in fully coupled land-ocean-atmosphere models, in terrestrial ecosystem models, or in stand-alone macroscale hydrologic-modeling studies.

  9. Development of sub-daily erosion and sediment transport algorithms in SWAT

    USDA-ARS?s Scientific Manuscript database

    New Soil and Water Assessment Tool (SWAT) algorithms for simulation of stormwater best management practices (BMPs) such as detention basins, wet ponds, sedimentation filtration ponds, and retention irrigation systems are under development for modeling small/urban watersheds. Modeling stormwater BMPs...

  10. Effect of freshwater sediment characteristics on the persistence of fecal indicator bacteria and genetic markers within a Southern California Watershed.

    EPA Science Inventory

    In this study, the relative aging of FIB and genetic markers for Enterococcus spp. (ENT1A), general Bacteroides (GenBac3), and human-associated Bacteroides (HF183) in varying freshwater sediments was evaluated. Freshwater sediment was collected from four different sites within th...

  11. Benchmark of Client and Server-Side Catchment Delineation Approaches on Web-Based Systems

    NASA Astrophysics Data System (ADS)

    Demir, I.; Sermet, M. Y.; Sit, M. A.

    2016-12-01

    Recent advances in internet and cyberinfrastructure technologies have provided the capability to acquire large scale spatial data from various gauges and sensor networks. The collection of environmental data increased demand for applications which are capable of managing and processing large-scale and high-resolution data sets. With the amount and resolution of data sets provided, one of the challenging tasks for organizing and customizing hydrological data sets is delineation of watersheds on demand. Watershed delineation is a process for creating a boundary that represents the contributing area for a specific control point or water outlet, with intent of characterization and analysis of portions of a study area. Although many GIS tools and software for watershed analysis are available on desktop systems, there is a need for web-based and client-side techniques for creating a dynamic and interactive environment for exploring hydrological data. In this project, we demonstrated several watershed delineation techniques on the web with various techniques implemented on the client-side using JavaScript and WebGL, and on the server-side using Python and C++. We also developed a client-side GPGPU (General Purpose Graphical Processing Unit) algorithm to analyze high-resolution terrain data for watershed delineation which allows parallelization using GPU. The web-based real-time analysis of watershed segmentation can be helpful for decision-makers and interested stakeholders while eliminating the need of installing complex software packages and dealing with large-scale data sets. Utilization of the client-side hardware resources also eliminates the need of servers due its crowdsourcing nature. Our goal for future work is to improve other hydrologic analysis methods such as rain flow tracking by adapting presented approaches.

  12. Simulation of semi-arid hydrological processes at different spatial resolutions using the AgroEcoSystem-Watershed (AgES-W) model

    NASA Astrophysics Data System (ADS)

    Green, T. R.; Erksine, R. H.; David, O.; Ascough, J. C., II; Kipka, H.; Lloyd, W. J.; McMaster, G. S.

    2015-12-01

    Water movement and storage within a watershed may be simulated at different spatial resolutions of land areas or hydrological response units (HRUs). Here, effects of HRU size on simulated soil water and surface runoff are tested using the AgroEcoSystem-Watershed (AgES-W) model with three different resolutions of HRUs. We studied a 56-ha agricultural watershed in northern Colorado, USA farmed primarily under a wheat-fallow rotation. The delineation algorithm was based upon topography (surface flow paths), land use (crop management strips and native grass), and mapped soil units (three types), which produced HRUs that follow the land use and soil boundaries. AgES-W model parameters that control surface and subsurface hydrology were calibrated using simulated daily soil moisture at different landscape positions and depths where soil moisture was measured hourly and averaged up to daily values. Parameter sets were both uniform and spatially variable with depth and across the watershed (5 different calibration approaches). Although forward simulations were computationally efficient (less than 1 minute each), each calibration required thousands of model runs. Execution of such large jobs was facilitated by using the Object Modeling System with the Cloud Services Innovation Platform to manage four virtual machines on a commercial web service configured with a total of 64 computational cores and 120 GB of memory. Results show how spatially distributed and averaged soil moisture and runoff at the outlet vary with different HRU delineations. The results will help guide HRU delineation, spatial resolution and parameter estimation methods for improved hydrological simulations in this and other semi-arid agricultural watersheds.

  13. Regional Assessment of Human Fecal Contamination in Southern California Coastal Drainages

    PubMed Central

    Cao, Yiping; Raith, Meredith R.; Smith, Paul D.; Griffith, John F.; Weisberg, Stephen B.; Schriewer, Alexander; Sheldon, Andrew; Crompton, Chris; Gregory, Jason; Guzman, Joe; Othman, Laila; Manasjan, Mayela; Choi, Samuel; Rapoport, Shana; Steele, Syreeta; Nguyen, Tommy; Yu, Xueyuan

    2017-01-01

    Host-associated genetic markers that allow for fecal source identification have been used extensively as a diagnostic tool to determine fecal sources within watersheds, but have not been used in routine monitoring to prioritize remediation actions among watersheds. Here, we present a regional assessment of human marker prevalence among drainages that discharge to the U.S. southern California coast. Approximately 50 samples were analyzed for the HF183 human marker from each of 22 southern California coastal drainages under summer dry weather conditions, and another 50 samples were targeted from each of 23 drainages during wet weather. The HF183 marker was ubiquitous, detected in all but two sites in dry weather and at all sites during wet weather. However, there was considerable difference in the extent of human fecal contamination among sites. Similar site ranking was produced regardless of whether the assessment was based on frequency of HF183 detection or site average HF183 concentration. However, site ranking differed greatly between dry and wet weather. Site ranking also differed greatly when based on enterococci, which do not distinguish between pollution sources, vs. HF183, which distinguishes higher risk human fecal sources from other sources, indicating the additional value of the human-associated marker as a routine monitoring tool. PMID:28777324

  14. Regional Assessment of Human Fecal Contamination in Southern California Coastal Drainages.

    PubMed

    Cao, Yiping; Raith, Meredith R; Smith, Paul D; Griffith, John F; Weisberg, Stephen B; Schriewer, Alexander; Sheldon, Andrew; Crompton, Chris; Amenu, Geremew G; Gregory, Jason; Guzman, Joe; Goodwin, Kelly D; Othman, Laila; Manasjan, Mayela; Choi, Samuel; Rapoport, Shana; Steele, Syreeta; Nguyen, Tommy; Yu, Xueyuan

    2017-08-04

    Host-associated genetic markers that allow for fecal source identification have been used extensively as a diagnostic tool to determine fecal sources within watersheds, but have not been used in routine monitoring to prioritize remediation actions among watersheds. Here, we present a regional assessment of human marker prevalence among drainages that discharge to the U.S. southern California coast. Approximately 50 samples were analyzed for the HF183 human marker from each of 22 southern California coastal drainages under summer dry weather conditions, and another 50 samples were targeted from each of 23 drainages during wet weather. The HF183 marker was ubiquitous, detected in all but two sites in dry weather and at all sites during wet weather. However, there was considerable difference in the extent of human fecal contamination among sites. Similar site ranking was produced regardless of whether the assessment was based on frequency of HF183 detection or site average HF183 concentration. However, site ranking differed greatly between dry and wet weather. Site ranking also differed greatly when based on enterococci, which do not distinguish between pollution sources, vs. HF183, which distinguishes higher risk human fecal sources from other sources, indicating the additional value of the human-associated marker as a routine monitoring tool.

  15. Algorithms for selecting informative marker panels for population assignment.

    PubMed

    Rosenberg, Noah A

    2005-11-01

    Given a set of potential source populations, genotypes of an individual of unknown origin at a collection of markers can be used to predict the correct source population of the individual. For improved efficiency, informative markers can be chosen from a larger set of markers to maximize the accuracy of this prediction. However, selecting the loci that are individually most informative does not necessarily produce the optimal panel. Here, using genotypes from eight species--carp, cat, chicken, dog, fly, grayling, human, and maize--this univariate accumulation procedure is compared to new multivariate "greedy" and "maximin" algorithms for choosing marker panels. The procedures generally suggest similar panels, although the greedy method often recommends inclusion of loci that are not chosen by the other algorithms. In seven of the eight species, when applied to five or more markers, all methods achieve at least 94% assignment accuracy on simulated individuals, with one species--dog--producing this level of accuracy with only three markers, and the eighth species--human--requiring approximately 13-16 markers. The new algorithms produce substantial improvements over use of randomly selected markers; where differences among the methods are noticeable, the greedy algorithm leads to slightly higher probabilities of correct assignment. Although none of the approaches necessarily chooses the panel with optimal performance, the algorithms all likely select panels with performance near enough to the maximum that they all are suitable for practical use.

  16. 3D kinematic measurement of human movement using low cost fish-eye cameras

    NASA Astrophysics Data System (ADS)

    Islam, Atiqul; Asikuzzaman, Md.; Garratt, Matthew A.; Pickering, Mark R.

    2017-02-01

    3D motion capture is difficult when the capturing is performed in an outdoor environment without controlled surroundings. In this paper, we propose a new approach of using two ordinary cameras arranged in a special stereoscopic configuration and passive markers on a subject's body to reconstruct the motion of the subject. Firstly for each frame of the video, an adaptive thresholding algorithm is applied for extracting the markers on the subject's body. Once the markers are extracted, an algorithm for matching corresponding markers in each frame is applied. Zhang's planar calibration method is used to calibrate the two cameras. As the cameras use the fisheye lens, they cannot be well estimated using a pinhole camera model which makes it difficult to estimate the depth information. In this work, to restore the 3D coordinates we use a unique calibration method for fisheye lenses. The accuracy of the 3D coordinate reconstruction is evaluated by comparing with results from a commercially available Vicon motion capture system.

  17. Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions

    PubMed Central

    Maruthapillai, Vasanthan; Murugappan, Murugappan

    2016-01-01

    In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject’s face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject’s face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network. PMID:26859884

  18. Optimal Geometrical Set for Automated Marker Placement to Virtualized Real-Time Facial Emotions.

    PubMed

    Maruthapillai, Vasanthan; Murugappan, Murugappan

    2016-01-01

    In recent years, real-time face recognition has been a major topic of interest in developing intelligent human-machine interaction systems. Over the past several decades, researchers have proposed different algorithms for facial expression recognition, but there has been little focus on detection in real-time scenarios. The present work proposes a new algorithmic method of automated marker placement used to classify six facial expressions: happiness, sadness, anger, fear, disgust, and surprise. Emotional facial expressions were captured using a webcam, while the proposed algorithm placed a set of eight virtual markers on each subject's face. Facial feature extraction methods, including marker distance (distance between each marker to the center of the face) and change in marker distance (change in distance between the original and new marker positions), were used to extract three statistical features (mean, variance, and root mean square) from the real-time video sequence. The initial position of each marker was subjected to the optical flow algorithm for marker tracking with each emotional facial expression. Finally, the extracted statistical features were mapped into corresponding emotional facial expressions using two simple non-linear classifiers, K-nearest neighbor and probabilistic neural network. The results indicate that the proposed automated marker placement algorithm effectively placed eight virtual markers on each subject's face and gave a maximum mean emotion classification rate of 96.94% using the probabilistic neural network.

  19. Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use watershed

    USDA-ARS?s Scientific Manuscript database

    Bed sediments of streams and rivers may store high concentrations of fecal indicator bacteria (FIB) and pathogens. These contaminants can be mobilized into the water column due to resuspension events, thus affecting overall water quality. Along with the contaminants, other markers such as microbia...

  20. Empirical evaluation demonstrated importance of validating biomarkers for early detection of cancer in screening settings to limit the number of false-positive findings.

    PubMed

    Chen, Hongda; Knebel, Phillip; Brenner, Hermann

    2016-07-01

    Search for biomarkers for early detection of cancer is a very active area of research, but most studies are done in clinical rather than screening settings. We aimed to empirically evaluate the role of study setting for early detection marker identification and validation. A panel of 92 candidate cancer protein markers was measured in 35 clinically identified colorectal cancer patients and 35 colorectal cancer patients identified at screening colonoscopy. For each case group, we selected 38 controls without colorectal neoplasms at screening colonoscopy. Single-, two- and three-marker combinations discriminating cases and controls were identified in each setting and subsequently validated in the alternative setting. In all scenarios, a higher number of predictive biomarkers were initially detected in the clinical setting, but a substantially lower proportion of identified biomarkers could subsequently be confirmed in the screening setting. Confirmation rates were 50.0%, 84.5%, and 74.2% for one-, two-, and three-marker algorithms identified in the screening setting and were 42.9%, 18.6%, and 25.7% for algorithms identified in the clinical setting. Validation of early detection markers of cancer in a true screening setting is important to limit the number of false-positive findings. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Microsatellite markers for the endangered Roanoke logperch, Percina rex (Percidae) and their potential utility for other darter species.

    PubMed

    Dutton, Daniel J; Roberts, James H; Angermeier, Paul L; Hallerman, Eric M

    2008-07-01

    The Roanoke logperch (Percina rex Jordan and Evermann), an endangered fish, occurs in only six watersheds in the Roanoke and Chowan river drainages of Virginia, USA. The species' population genetic structure is poorly known. We developed 16 microsatellite markers that were reliably scorable and polymorphic P. rex. Markers were also screened in seven other darter species of the genus Percina. Most markers exhibited successful amplification and polymorphism in several species. These markers may therefore prove useful for population genetic studies in other darters, a diverse but highly imperiled group. © 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd.

  2. Optimum location of external markers using feature selection algorithms for real‐time tumor tracking in external‐beam radiotherapy: a virtual phantom study

    PubMed Central

    Nankali, Saber; Miandoab, Payam Samadi; Baghizadeh, Amin

    2016-01-01

    In external‐beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation‐based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two “Genetic” and “Ranker” searching procedures. The performance of these algorithms has been evaluated using four‐dimensional extended cardiac‐torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro‐fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F‐test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation‐based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers. PACS numbers: 87.55.km, 87.56.Fc PMID:26894358

  3. Optimum location of external markers using feature selection algorithms for real-time tumor tracking in external-beam radiotherapy: a virtual phantom study.

    PubMed

    Nankali, Saber; Torshabi, Ahmad Esmaili; Miandoab, Payam Samadi; Baghizadeh, Amin

    2016-01-08

    In external-beam radiotherapy, using external markers is one of the most reliable tools to predict tumor position, in clinical applications. The main challenge in this approach is tumor motion tracking with highest accuracy that depends heavily on external markers location, and this issue is the objective of this study. Four commercially available feature selection algorithms entitled 1) Correlation-based Feature Selection, 2) Classifier, 3) Principal Components, and 4) Relief were proposed to find optimum location of external markers in combination with two "Genetic" and "Ranker" searching procedures. The performance of these algorithms has been evaluated using four-dimensional extended cardiac-torso anthropomorphic phantom. Six tumors in lung, three tumors in liver, and 49 points on the thorax surface were taken into account to simulate internal and external motions, respectively. The root mean square error of an adaptive neuro-fuzzy inference system (ANFIS) as prediction model was considered as metric for quantitatively evaluating the performance of proposed feature selection algorithms. To do this, the thorax surface region was divided into nine smaller segments and predefined tumors motion was predicted by ANFIS using external motion data of given markers at each small segment, separately. Our comparative results showed that all feature selection algorithms can reasonably select specific external markers from those segments where the root mean square error of the ANFIS model is minimum. Moreover, the performance accuracy of proposed feature selection algorithms was compared, separately. For this, each tumor motion was predicted using motion data of those external markers selected by each feature selection algorithm. Duncan statistical test, followed by F-test, on final results reflected that all proposed feature selection algorithms have the same performance accuracy for lung tumors. But for liver tumors, a correlation-based feature selection algorithm, in combination with a genetic search algorithm, proved to yield best performance accuracy for selecting optimum markers.

  4. Hydrologic Modeling and Parameter Estimation under Data Scarcity for Java Island, Indonesia

    NASA Astrophysics Data System (ADS)

    Yanto, M.; Livneh, B.; Rajagopalan, B.; Kasprzyk, J. R.

    2015-12-01

    The Indonesian island of Java is routinely subjected to intense flooding, drought and related natural hazards, resulting in severe social and economic impacts. Although an improved understanding of the island's hydrology would help mitigate these risks, data scarcity issues make the modeling challenging. To this end, we developed a hydrological representation of Java using the Variable Infiltration Capacity (VIC) model, to simulate the hydrologic processes of several watersheds across the island. We measured the model performance using Nash-Sutcliffe Efficiency (NSE) at monthly time step. Data scarcity and quality issues for precipitation and streamflow warranted the application of a quality control procedure to data ensure consistency among watersheds resulting in 7 watersheds. To optimize the model performance, the calibration parameters were estimated using Borg Multi Objective Evolutionary Algorithm (Borg MOEA), which offers efficient searching of the parameter space, adaptive population sizing and local optima escape facility. The result shows that calibration performance is best (NSE ~ 0.6 - 0.9) in the eastern part of the domain and moderate (NSE ~ 0.3 - 0.5) in the western part of the island. The validation results are lower (NSE ~ 0.1 - 0.5) and (NSE ~ 0.1 - 0.4) in the east and west, respectively. We surmise that the presence of outliers and stark differences in the climate between calibration and validation periods in the western watersheds are responsible for low NSE in this region. In addition, we found that approximately 70% of total errors were contributed by less than 20% of total data. The spatial variability of model performance suggests the influence of both topographical and hydroclimatic controls on the hydrological processes. Most watersheds in eastern part perform better in wet season and vice versa for the western part. This modeling framework is one of the first attempts at comprehensively simulating the hydrology in this maritime, tropical continent and, offers insights for skillful hydrologic projections crucial for natural hazard mitigation.

  5. Exploring storage and runoff generation processes for urban flooding through a physically based watershed model

    NASA Astrophysics Data System (ADS)

    Smith, B. K.; Smith, J. A.; Baeck, M. L.; Miller, A. J.

    2015-03-01

    A physically based model of the 14 km2 Dead Run watershed in Baltimore County, MD was created to test the impacts of detention basin storage and soil storage on the hydrologic response of a small urban watershed during flood events. The Dead Run model was created using the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) algorithms and validated using U.S. Geological Survey stream gaging observations for the Dead Run watershed and 5 subbasins over the largest 21 warm season flood events during 2008-2012. Removal of the model detention basins resulted in a median peak discharge increase of 11% and a detention efficiency of 0.5, which was defined as the percent decrease in peak discharge divided by percent detention controlled area. Detention efficiencies generally decreased with increasing basin size. We tested the efficiency of detention basin networks by focusing on the "drainage network order," akin to the stream order but including storm drains, streams, and culverts. The detention efficiency increased dramatically between first-order detention and second-order detention but was similar for second and third-order detention scenarios. Removal of the soil compacted layer, a common feature in urban soils, resulted in a 7% decrease in flood peak discharges. This decrease was statistically similar to the flood peak decrease caused by existing detention. Current soil storage within the Dead Run watershed decreased flood peak discharges by a median of 60%. Numerical experiment results suggested that detention basin storage and increased soil storage have the potential to substantially decrease flood peak discharges.

  6. How do Watershed Characteristics and Precipitation Influence Post-Wildfire Valley Sediment Storage and Delivery Over Time?

    NASA Astrophysics Data System (ADS)

    Brogan, D. J.; Nelson, P. A.; MacDonald, L. H.

    2016-12-01

    Considerable advances have been made in understanding post-wildfire runoff, erosion, and mass wasting at the hillslope and small watershed scale, but the larger-scale effects on flooding, water quality, and sedimentation are often the most significant impacts. The problem is that we have virtually no watershed-specific tools to quantify the proportion of eroded sediment that is stored or delivered from watersheds larger than about 2-5 km2. In this study we are quantifying how channel and valley bottom characteristics affect post-wildfire sediment storage and delivery. Our research is based on intensive monitoring of sediment storage over time in two 15 km2 watersheds (Skin Gulch and Hill Gulch) burned in the 2012 High Park Fire using repeated cross section and longitudinal surveys from fall 2012 through summer 2016, five airborne laser scanning (ALS) datasets from fall 2012 through summer 2015, and both radar and ground-based precipitation measurements. We have computed changes in sediment storage by differencing successive cross sections, and computed spatially explicit changes in successive ALS point clouds using the multiscale model to model cloud comparison (M3C2) algorithm. These channel changes are being related to potential morphometric controls, including valley width, valley slope, confinement, contributing area, valley expansion or contraction, topographic curvature (planform and profile), and estimated sediment inputs. We hypothesize that maximum rainfall intensity and lateral confinement will be the primary independent variables that describe observed patterns of erosion and deposition, and that the results can help predict post-wildfire sediment delivery and identify high priority areas for restoration.

  7. Effect of forest harvesting best management practices on coarse woody debris distribution in stream and riparian zones in three Appalachian watersheds

    Treesearch

    J. M. McClure; R. K. Kolka; A. White

    2004-01-01

    The distribution of coarse woody debris (CWD) was analyzed in three Appalachian watersheds in eastern Kentucky, eighteen years after harvest. The three watersheds included an unharvested control (Control), a second watershed with best management practices (BMPs) applied that included a 15.2 m unharvested zone near the stream (BMP watershed), and a third watershed that...

  8. A novel teaching system for industrial robots.

    PubMed

    Lin, Hsien-I; Lin, Yu-Hsiang

    2014-03-27

    The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles.

  9. A Novel Teaching System for Industrial Robots

    PubMed Central

    Lin, Hsien-I; Lin, Yu-Hsiang

    2014-01-01

    The most important tool for controlling an industrial robotic arm is a teach pendant, which controls the robotic arm movement in work spaces and accomplishes teaching tasks. A good teaching tool should be easy to operate and can complete teaching tasks rapidly and effortlessly. In this study, a new teaching system is proposed for enabling users to operate robotic arms and accomplish teaching tasks easily. The proposed teaching system consists of the teach pen, optical markers on the pen, a motion capture system, and the pen tip estimation algorithm. With the marker positions captured by the motion capture system, the pose of the teach pen is accurately calculated by the pen tip algorithm and used to control the robot tool frame. In addition, Fitts' Law is adopted to verify the usefulness of this new system, and the results show that the system provides high accuracy, excellent operation performance, and a stable error rate. In addition, the system maintains superior performance, even when users work on platforms with different inclination angles. PMID:24681669

  10. Evaluating the Effectiveness of Flood Control Strategies in Contrasting Urban Watersheds and Implications for Houston's Future Flood Vulnerability

    NASA Astrophysics Data System (ADS)

    Ganguly, S.; Kumar, U.; Nemani, R. R.; Kalia, S.; Michaelis, A.

    2016-12-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS - national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91% was achieved, which is a 6% improvement in unmixing based classification relative to per-pixel based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  11. SNPs selection using support vector regression and genetic algorithms in GWAS

    PubMed Central

    2014-01-01

    Introduction This paper proposes a new methodology to simultaneously select the most relevant SNPs markers for the characterization of any measurable phenotype described by a continuous variable using Support Vector Regression with Pearson Universal kernel as fitness function of a binary genetic algorithm. The proposed methodology is multi-attribute towards considering several markers simultaneously to explain the phenotype and is based jointly on statistical tools, machine learning and computational intelligence. Results The suggested method has shown potential in the simulated database 1, with additive effects only, and real database. In this simulated database, with a total of 1,000 markers, and 7 with major effect on the phenotype and the other 993 SNPs representing the noise, the method identified 21 markers. Of this total, 5 are relevant SNPs between the 7 but 16 are false positives. In real database, initially with 50,752 SNPs, we have reduced to 3,073 markers, increasing the accuracy of the model. In the simulated database 2, with additive effects and interactions (epistasis), the proposed method matched to the methodology most commonly used in GWAS. Conclusions The method suggested in this paper demonstrates the effectiveness in explaining the real phenotype (PTA for milk), because with the application of the wrapper based on genetic algorithm and Support Vector Regression with Pearson Universal, many redundant markers were eliminated, increasing the prediction and accuracy of the model on the real database without quality control filters. The PUK demonstrated that it can replicate the performance of linear and RBF kernels. PMID:25573332

  12. Problems with the dating of sediment core using excess (210)Pb in a freshwater system impacted by large scale watershed changes.

    PubMed

    Baskaran, Mark; Nix, Joe; Kuyper, Clark; Karunakara, N

    2014-12-01

    Pb-210 dating of freshwater and coastal sediments have been extensively conducted over the past 40 years for historical pollution reconstruction studies, sediment focusing, sediment accumulation and mixing rate determination. In areas where there is large scale disturbance of sediments and the watershed, the vertical profiles of excess (210)Pb ((210)Pbxs) could provide erroneous or less reliable information on sediment accumulation rates. We analyzed one sediment core from Hendrix Lake in southwestern Arkansas for excess (210)Pb and (137)Cs. There is no decrease in excess (210)Pb activity with depth while the (137)Cs profile indicates sharp peak corresponding to 1963 and the (137)Cs penetration depth of (137)Cs corresponds to 1952. The historical data on the accelerated mercury mining during 1931-1944 resulted in large-scale Hg input to this watershed. Using the peak Hg activity as a time marker, the obtained sediment accumulation rates agree well with the (137)Cs-based rates. Four independent evidences (two-marker events based on (137)Cs and two marker events based on Hg mining activity) result in about the same sedimentation rates and thus, we endorse earlier suggestion that (210)Pb profile always needs to be validated with at least one another independent method. We also present a concise discussion on what important factors that can affect the vertical profiles of (210)Pbxs in relatively smaller lakes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Watershed modeling at the Savannah River Site.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vache, Kellie

    2015-04-29

    The overall goal of the work was the development of a watershed scale model of hydrological function for application to the US Department of Energy’s (DOE) Savannah River Site (SRS). The primary outcomes is a grid based hydrological modeling system that captures near surface runoff as well as groundwater recharge and contributions of groundwater to streams. The model includes a physically-based algorithm to capture both evaporation and transpiration from forestland.

  14. Evaluation of algorithms used to order markers on genetic maps.

    PubMed

    Mollinari, M; Margarido, G R A; Vencovsky, R; Garcia, A A F

    2009-12-01

    When building genetic maps, it is necessary to choose from several marker ordering algorithms and criteria, and the choice is not always simple. In this study, we evaluate the efficiency of algorithms try (TRY), seriation (SER), rapid chain delineation (RCD), recombination counting and ordering (RECORD) and unidirectional growth (UG), as well as the criteria PARF (product of adjacent recombination fractions), SARF (sum of adjacent recombination fractions), SALOD (sum of adjacent LOD scores) and LHMC (likelihood through hidden Markov chains), used with the RIPPLE algorithm for error verification, in the construction of genetic linkage maps. A linkage map of a hypothetical diploid and monoecious plant species was simulated containing one linkage group and 21 markers with fixed distance of 3 cM between them. In all, 700 F(2) populations were randomly simulated with 100 and 400 individuals with different combinations of dominant and co-dominant markers, as well as 10 and 20% of missing data. The simulations showed that, in the presence of co-dominant markers only, any combination of algorithm and criteria may be used, even for a reduced population size. In the case of a smaller proportion of dominant markers, any of the algorithms and criteria (except SALOD) investigated may be used. In the presence of high proportions of dominant markers and smaller samples (around 100), the probability of repulsion linkage increases between them and, in this case, use of the algorithms TRY and SER associated to RIPPLE with criterion LHMC would provide better results.

  15. A study on software-based sensing technology for multiple object control in AR video.

    PubMed

    Jung, Sungmo; Song, Jae-Gu; Hwang, Dae-Joon; Ahn, Jae Young; Kim, Seoksoo

    2010-01-01

    Researches on Augmented Reality (AR) have recently received attention. With these, the Machine-to-Machine (M2M) market has started to be active and there are numerous efforts to apply this to real life in all sectors of society. To date, the M2M market has applied the existing marker-based AR technology in entertainment, business and other industries. With the existing marker-based AR technology, a designated object can only be loaded on the screen from one marker and a marker has to be added to load on the screen the same object again. This situation creates a problem where the relevant marker'should be extracted and printed in screen so that loading of the multiple objects is enabled. However, since the distance between markers will not be measured in the process of detecting and copying markers, the markers can be overlapped and thus the objects would not be augmented. To solve this problem, a circle having the longest radius needs to be created from a focal point of a marker to be copied, so that no object is copied within the confines of the circle. In this paper, software-based sensing technology for multiple object detection and loading using PPHT has been developed and overlapping marker control according to multiple object control has been studied using the Bresenham and Mean Shift algorithms.

  16. A comparison between two algorithms for the retrieval of soil moisture using AMSR-E data

    USDA-ARS?s Scientific Manuscript database

    A comparison between two algorithms for estimating soil moisture with microwave satellite data was carried out by using the datasets collected on the four Agricultural Research Service (ARS) watershed sites in the US from 2002 to 2009. These sites collectively represent a wide range of ground condit...

  17. Genetic algorithm optimized rainfall-runoff fuzzy inference system for row crop watersheds with claypan soils

    USDA-ARS?s Scientific Manuscript database

    The fuzzy logic algorithm has the ability to describe knowledge in a descriptive human-like manner in the form of simple rules using linguistic variables, and provides a new way of modeling uncertain or naturally fuzzy hydrological processes like non-linear rainfall-runoff relationships. Fuzzy infe...

  18. Feature detection on 3D images of dental imprints

    NASA Astrophysics Data System (ADS)

    Mokhtari, Marielle; Laurendeau, Denis

    1994-09-01

    A computer vision approach for the extraction of feature points on 3D images of dental imprints is presented. The position of feature points are needed for the measurement of a set of parameters for automatic diagnosis of malocclusion problems in orthodontics. The system for the acquisition of the 3D profile of the imprint, the procedure for the detection of the interstices between teeth, and the approach for the identification of the type of tooth are described, as well as the algorithm for the reconstruction of the surface of each type of tooth. A new approach for the detection of feature points, called the watershed algorithm, is described in detail. The algorithm is a two-stage procedure which tracks the position of local minima at four different scales and produces a final map of the position of the minima. Experimental results of the application of the watershed algorithm on actual 3D images of dental imprints are presented for molars, premolars and canines. The segmentation approach for the analysis of the shape of incisors is also described in detail.

  19. Flood predictions using the parallel version of distributed numerical physical rainfall-runoff model TOPKAPI

    NASA Astrophysics Data System (ADS)

    Boyko, Oleksiy; Zheleznyak, Mark

    2015-04-01

    The original numerical code TOPKAPI-IMMS of the distributed rainfall-runoff model TOPKAPI ( Todini et al, 1996-2014) is developed and implemented in Ukraine. The parallel version of the code has been developed recently to be used on multiprocessors systems - multicore/processors PC and clusters. Algorithm is based on binary-tree decomposition of the watershed for the balancing of the amount of computation for all processors/cores. Message passing interface (MPI) protocol is used as a parallel computing framework. The numerical efficiency of the parallelization algorithms is demonstrated for the case studies for the flood predictions of the mountain watersheds of the Ukrainian Carpathian regions. The modeling results is compared with the predictions based on the lumped parameters models.

  20. Automated identification of the lung contours in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Nery, F.; Silvestre Silva, J.; Ferreira, N. C.; Caramelo, F. J.; Faustino, R.

    2013-03-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging technique that permits to analyze, in three dimensions, the physiological processes in vivo. One of the areas where PET has demonstrated its advantages is in the staging of lung cancer, where it offers better sensitivity and specificity than other techniques such as CT. On the other hand, accurate segmentation, an important procedure for Computer Aided Diagnostics (CAD) and automated image analysis, is a challenging task given the low spatial resolution and the high noise that are intrinsic characteristics of PET images. This work presents an algorithm for the segmentation of lungs in PET images, to be used in CAD and group analysis in a large patient database. The lung boundaries are automatically extracted from a PET volume through the application of a marker-driven watershed segmentation procedure which is robust to the noise. In order to test the effectiveness of the proposed method, we compared the segmentation results in several slices using our approach with the results obtained from manual delineation. The manual delineation was performed by nuclear medicine physicians that used a software routine that we developed specifically for this task. To quantify the similarity between the contours obtained from the two methods, we used figures of merit based on region and also on contour definitions. Results show that the performance of the algorithm was similar to the performance of human physicians. Additionally, we found that the algorithm-physician agreement is similar (statistically significant) to the inter-physician agreement.

  1. 7Be and hydrological model for more efficient implementation of erosion control measure

    NASA Astrophysics Data System (ADS)

    Al-Barri, Bashar; Bode, Samuel; Blake, William; Ryken, Nick; Cornelis, Wim; Boeckx, Pascal

    2014-05-01

    Increased concern about the on-site and off-site impacts of soil erosion in agricultural and forested areas has endorsed interest in innovative methods to assess in an unbiased way spatial and temporal soil erosion rates and redistribution patterns. Hence, interest in precisely estimating the magnitude of the problem and therefore applying erosion control measures (ECM) more efficiently. The latest generation of physically-based hydrological models, which fully couple overland flow and subsurface flow in three dimensions, permit implementing ECM in small and large scales more effectively if coupled with a sediment transport algorithm. While many studies focused on integrating empirical or numerical models based on traditional erosion budget measurements into 3D hydrological models, few studies evaluated the efficiency of ECM on watershed scale and very little attention is given to the potentials of environmental Fallout Radio-Nuclides (FRNs) in such applications. The use of FRN tracer 7Be in soil erosion/deposition research proved to overcome many (if not all) of the problems associated with the conventional approaches providing reliable data for efficient land use management. This poster will underline the pros and cones of using conventional methods and 7Be tracers to evaluate the efficiency of coconuts dams installed as ECM in experimental field in Belgium. It will also outline the potentials of 7Be in providing valuable inputs for evolving the numerical sediment transport algorithm needed for the hydrological model on field scale leading to assess the possibility of using this short-lived tracer as a validation tool for the upgraded hydrological model on watershed scale in further steps. Keywords: FRN, erosion control measures, hydrological modes

  2. LOADING SIMULATION PROGRAM C

    EPA Pesticide Factsheets

    LSPC is the Loading Simulation Program in C++, a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for simulating hydrology, sediment, and general water quality

  3. Using the cloud to speed-up calibration of watershed-scale hydrologic models (Invited)

    NASA Astrophysics Data System (ADS)

    Goodall, J. L.; Ercan, M. B.; Castronova, A. M.; Humphrey, M.; Beekwilder, N.; Steele, J.; Kim, I.

    2013-12-01

    This research focuses on using the cloud to address computational challenges associated with hydrologic modeling. One example is calibration of a watershed-scale hydrologic model, which can take days of execution time on typical computers. While parallel algorithms for model calibration exist and some researchers have used multi-core computers or clusters to run these algorithms, these solutions do not fully address the challenge because (i) calibration can still be too time consuming even on multicore personal computers and (ii) few in the community have the time and expertise needed to manage a compute cluster. Given this, another option for addressing this challenge that we are exploring through this work is the use of the cloud for speeding-up calibration of watershed-scale hydrologic models. The cloud used in this capacity provides a means for renting a specific number and type of machines for only the time needed to perform a calibration model run. The cloud allows one to precisely balance the duration of the calibration with the financial costs so that, if the budget allows, the calibration can be performed more quickly by renting more machines. Focusing specifically on the SWAT hydrologic model and a parallel version of the DDS calibration algorithm, we show significant speed-up time across a range of watershed sizes using up to 256 cores to perform a model calibration. The tool provides a simple web-based user interface and the ability to monitor the calibration job submission process during the calibration process. Finally this talk concludes with initial work to leverage the cloud for other tasks associated with hydrologic modeling including tasks related to preparing inputs for constructing place-based hydrologic models.

  4. Applicability of Hydrologic Landscapes for Model Calibration ...

    EPA Pesticide Factsheets

    The Pacific Northwest Hydrologic Landscapes (PNW HL) at the assessment unit scale has provided a solid conceptual classification framework to relate and transfer hydrologically meaningful information between watersheds without access to streamflow time series. A collection of techniques were applied to the HL assessment unit composition in watersheds across the Pacific Northwest to aggregate the hydrologic behavior of the Hydrologic Landscapes from the assessment unit scale to the watershed scale. This non-trivial solution both emphasizes HL classifications within the watershed that provide that majority of moisture surplus/deficit and considers the relative position (upstream vs. downstream) of these HL classifications. A clustering algorithm was applied to the HL-based characterization of assessment units within 185 watersheds to help organize watersheds into nine classes hypothesized to have similar hydrologic behavior. The HL-based classes were used to organize and describe hydrologic behavior information about watershed classes and both predictions and validations were independently performed with regard to the general magnitude of six hydroclimatic signature values. A second cluster analysis was then performed using the independently calculated signature values as similarity metrics, and it was found that the six signature clusters showed substantial overlap in watershed class membership to those in the HL-based classes. One hypothesis set forward from thi

  5. Watershed reliability, resilience and vulnerability analysis under uncertainty using water quality data.

    PubMed

    Hoque, Yamen M; Tripathi, Shivam; Hantush, Mohamed M; Govindaraju, Rao S

    2012-10-30

    A method for assessment of watershed health is developed by employing measures of reliability, resilience and vulnerability (R-R-V) using stream water quality data. Observed water quality data are usually sparse, so that a water quality time-series is often reconstructed using surrogate variables (streamflow). A Bayesian algorithm based on relevance vector machine (RVM) was employed to quantify the error in the reconstructed series, and a probabilistic assessment of watershed status was conducted based on established thresholds for various constituents. As an application example, observed water quality data for several constituents at different monitoring points within the Cedar Creek watershed in north-east Indiana (USA) were utilized. Considering uncertainty in the data for the period 2002-2007, the R-R-V analysis revealed that the Cedar Creek watershed tends to be in compliance with respect to selected pesticides, ammonia and total phosphorus. However, the watershed was found to be prone to violations of sediment standards. Ignoring uncertainty in the water quality time-series led to misleading results especially in the case of sediments. Results indicate that the methods presented in this study may be used for assessing the effects of different stressors over a watershed. The method shows promise as a management tool for assessing watershed health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Guanghua, E-mail: yan@ufl.edu; Li, Jonathan; Huang, Yin

    Purpose: To propose a simple model to explain the origin of ghost markers in marker-based optical tracking systems (OTS) and to develop retrospective strategies to detect and eliminate ghost markers. Methods: In marker-based OTS, ghost markers are virtual markers created due to the cross-talk between the two camera sensors, which can lead to system execution failure or inaccuracy in patient tracking. As a result, the users have to limit the number of markers and avoid certain marker configurations to reduce the chances of ghost markers. In this work, the authors propose retrospective strategies to detect and eliminate ghost markers. Themore » two camera sensors were treated as mathematical points in space. The authors identified the coplanar within limit (CWL) condition as the necessary condition for ghost marker occurrence. A simple ghost marker detection method was proposed based on the model. Ghost marker elimination was achieved through pattern matching: a ghost marker-free reference set was matched with the optical marker set observed by the OTS; unmatched optical markers were eliminated as either ghost markers or misplaced markers. The pattern matching problem was formulated as a constraint satisfaction problem (using pairwise distances as constraints) and solved with an iterative backtracking algorithm. Wildcard markers were introduced to address missing or misplaced markers. An experiment was designed to measure the sensor positions and the limit for the CWL condition. The ghost marker detection and elimination algorithms were verified with samples collected from a five-marker jig and a nine-marker anthropomorphic phantom, rotated with the treatment couch from −60° to +60°. The accuracy of the pattern matching algorithm was further validated with marker patterns from 40 patients who underwent stereotactic body radiotherapy (SBRT). For this purpose, a synthetic optical marker pattern was created for each patient by introducing ghost markers, marker position uncertainties, and marker displacement. Results: The sensor positions and the limit for the CWL condition were measured with excellent reproducibility (standard deviation ≤ 0.39 mm). The ghost marker detection algorithm had perfect detection accuracy for both the jig (1544 samples) and the anthropomorphic phantom (2045 samples). Pattern matching was successful for all samples from both phantoms as well as the 40 patient marker patterns. Conclusions: The authors proposed a simple model to explain the origin of ghost markers and identified the CWL condition as the necessary condition for ghost marker occurrence. The retrospective ghost marker detection and elimination algorithms guarantee complete ghost marker elimination while providing the users with maximum flexibility in selecting the number of markers and their configuration to meet their clinic needs.« less

  7. New breast cancer prognostic factors identified by computer-aided image analysis of HE stained histopathology images

    PubMed Central

    Chen, Jia-Mei; Qu, Ai-Ping; Wang, Lin-Wei; Yuan, Jing-Ping; Yang, Fang; Xiang, Qing-Ming; Maskey, Ninu; Yang, Gui-Fang; Liu, Juan; Li, Yan

    2015-01-01

    Computer-aided image analysis (CAI) can help objectively quantify morphologic features of hematoxylin-eosin (HE) histopathology images and provide potentially useful prognostic information on breast cancer. We performed a CAI workflow on 1,150 HE images from 230 patients with invasive ductal carcinoma (IDC) of the breast. We used a pixel-wise support vector machine classifier for tumor nests (TNs)-stroma segmentation, and a marker-controlled watershed algorithm for nuclei segmentation. 730 morphologic parameters were extracted after segmentation, and 12 parameters identified by Kaplan-Meier analysis were significantly associated with 8-year disease free survival (P < 0.05 for all). Moreover, four image features including TNs feature (HR 1.327, 95%CI [1.001 - 1.759], P = 0.049), TNs cell nuclei feature (HR 0.729, 95%CI [0.537 - 0.989], P = 0.042), TNs cell density (HR 1.625, 95%CI [1.177 - 2.244], P = 0.003), and stromal cell structure feature (HR 1.596, 95%CI [1.142 - 2.229], P = 0.006) were identified by multivariate Cox proportional hazards model to be new independent prognostic factors. The results indicated that CAI can assist the pathologist in extracting prognostic information from HE histopathology images for IDC. The TNs feature, TNs cell nuclei feature, TNs cell density, and stromal cell structure feature could be new prognostic factors. PMID:26022540

  8. Development of Genetic Markers for Environmental DNA (eDNA) Monitoring of Sturgeon

    DTIC Science & Technology

    2014-09-01

    sturgeon markers were tested for specificity against a battery of 32 non-target fish species common to the Mississippi and Illinois River watersheds...techniques. Such methods, including fishing , netting, seining, and electrofishing, can often be logistically complex and require considerable outlays of... fish and amphibian community composition (Minamoto et al. 2012, Thomsen et al. 2012) and biomass estimation (Takahara et al. 2012). Sturgeon are taxa

  9. SAR image change detection using watershed and spectral clustering

    NASA Astrophysics Data System (ADS)

    Niu, Ruican; Jiao, L. C.; Wang, Guiting; Feng, Jie

    2011-12-01

    A new method of change detection in SAR images based on spectral clustering is presented in this paper. Spectral clustering is employed to extract change information from a pair images acquired on the same geographical area at different time. Watershed transform is applied to initially segment the big image into non-overlapped local regions, leading to reduce the complexity. Experiments results and system analysis confirm the effectiveness of the proposed algorithm.

  10. A Study on Software-based Sensing Technology for Multiple Object Control in AR Video

    PubMed Central

    Jung, Sungmo; Song, Jae-gu; Hwang, Dae-Joon; Ahn, Jae Young; Kim, Seoksoo

    2010-01-01

    Researches on Augmented Reality (AR) have recently received attention. With these, the Machine-to-Machine (M2M) market has started to be active and there are numerous efforts to apply this to real life in all sectors of society. To date, the M2M market has applied the existing marker-based AR technology in entertainment, business and other industries. With the existing marker-based AR technology, a designated object can only be loaded on the screen from one marker and a marker has to be added to load on the screen the same object again. This situation creates a problem where the relevant marker’should be extracted and printed in screen so that loading of the multiple objects is enabled. However, since the distance between markers will not be measured in the process of detecting and copying markers, the markers can be overlapped and thus the objects would not be augmented. To solve this problem, a circle having the longest radius needs to be created from a focal point of a marker to be copied, so that no object is copied within the confines of the circle. In this paper, software-based sensing technology for multiple object detection and loading using PPHT has been developed and overlapping marker control according to multiple object control has been studied using the Bresenham and Mean Shift algorithms. PMID:22163444

  11. Targeting the Sources of Fecal Contamination using Dog-, Human-, and Ruminant- Specific Markers in the Lake Herrick Watershed, Georgia.

    NASA Astrophysics Data System (ADS)

    Saintil, T.; Radcliffe, D. E.; Rasmussen, T. C.; Habteselassie, M.; Sowah, R.; Kannan, A.

    2016-12-01

    The Lake Herrick Watershed is about 1.5 km2 and covers portions of the University of Georgia's East campus, the Oconee Forest, residential and commercial landuse. Lake Herrick, a recreational site on the University of Georgia campus, was closed in 2002 due to fecal contamination. Subsequent monitoring confirmed persistent contamination, which led to a permanent closure to swimming, boating, and fishing. While fecal coliform abundance is a standard metric for determining human health risks, Geldreich (1970) showed that fecal abundance does not necessarily correlate with the presence of pathogens. Nor does it identify pollution sources, which are needed to mitigate health risks. Two inflow tributaries and the outlet stream were monitored for discharge, fecal coliform, forms of nitrogen and phosphorus and other water-quality data to quantify lake influent and effluent bacteria loads. Fecal sources were identified using the human HF183 genetic marker (Seurinck et al., 2005), the ruminant BacR marker (Reischer et al., 2006), and the dog mitochondrial DNA (mtDNA) marker (Tambalo et al., 2012). Preliminary results confirm high concentrations of E. coli and Enterococci, above the State's limit of 124 MPN/100 mL, in both baseflows and stormflows. The findings also suggest that the E. coli and Enterococci loads from the inlet tributaries are on average higher compared to the bacteria loads coming out of the outlet stream. The human markers were detectable at all three sites but most of the samples were not quantifiable. The ruminant markers were quantifiable at both inlets but no ruminant markers were found at the outlet. The dog markers were detectable but not quantifiable at both inlets and no dog markers were detected at the outlet. Statistical analyses will be used to establish relationships between the nutrients data, the fecal concentrations, and the gene-specific markers.

  12. How to Compute a Slot Marker - Calculation of Controller Managed Spacing Tools for Efficient Descents with Precision Scheduling

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas

    2012-01-01

    This paper describes the underlying principles and algorithms for computing the primary controller managed spacing (CMS) tools developed at NASA for precisely spacing aircraft along efficient descent paths. The trajectory-based CMS tools include slot markers, delay indications and speed advisories. These tools are one of three core NASA technologies integrated in NASAs ATM technology demonstration-1 (ATD-1) that will operationally demonstrate the feasibility of fuel-efficient, high throughput arrival operations using Automatic Dependent Surveillance Broadcast (ADS-B) and ground-based and airborne NASA technologies for precision scheduling and spacing.

  13. SFA 2.0- Watershed Structure and Controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Ken

    2015-01-23

    Berkeley Lab Earth Scientist Ken Williams explains the watershed research within the Sustainable Systems SFA 2.0 project—including identification and monitoring of primary factors that control watershed biogeochemical functioning.

  14. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China

    USDA-ARS?s Scientific Manuscript database

    In this paper we proposed: (1) an algorithm of glacier melt, sublimation/evaporation, accumulation, mass balance and retreat; (2) a dynamic Hydrological Response Unit approach for incorporating the algorithm into the Soil and Water Assessment Tool (SWAT) model; and (3) simulated the transient glacie...

  15. Shape classification of malignant lymphomas and leukemia by morphological watersheds and ARMA modeling

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet; Song, Yinglei; Ma, Limin; Zhou, Min

    2003-05-01

    A new algorithm that can be used to automatically recognize and classify malignant lymphomas and lukemia is proposed in this paper. The algorithm utilizes the morphological watershed to extract boundaries of cells from their grey-level images. It generates a sequence of Euclidean distances by selecting pixels in clockwise direction on the boundary of the cell and calculating the Euclidean distances of the selected pixels from the centroid of the cell. A feature vector associated with each cell is then obtained by applying the auto-regressive moving-average (ARMA) model to the generated sequence of Euclidean distances. The clustering measure J3=trace{inverse(Sw-1)Sm} involving the within (Sw) and mixed (Sm) class-scattering matrices is computed for both cell classes to provide an insight into the extent to which different cell classes in the training data are separated. Our test results suggest that the algorithm is highly accurate for the development of an interactive, computer-assisted diagnosis (CAD) tool.

  16. 40 CFR 141.716 - Source toolbox components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Microbial Toolbox Components § 141.716 Source toolbox components. (a) Watershed control program. Systems receive 0.5-log Cryptosporidium treatment credit for implementing a watershed control program that meets the requirements of this section. (1) Systems that intend to apply for the watershed control...

  17. 40 CFR 141.716 - Source toolbox components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Microbial Toolbox Components § 141.716 Source toolbox components. (a) Watershed control program. Systems receive 0.5-log Cryptosporidium treatment credit for implementing a watershed control program that meets the requirements of this section. (1) Systems that intend to apply for the watershed control...

  18. 40 CFR 141.716 - Source toolbox components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Microbial Toolbox Components § 141.716 Source toolbox components. (a) Watershed control program. Systems receive 0.5-log Cryptosporidium treatment credit for implementing a watershed control program that meets the requirements of this section. (1) Systems that intend to apply for the watershed control...

  19. SFA 2.0- Watershed Structure and Controls

    ScienceCinema

    Williams, Ken

    2018-05-23

    Berkeley Lab Earth Scientist Ken Williams explains the watershed research within the Sustainable Systems SFA 2.0 project—including identification and monitoring of primary factors that control watershed biogeochemical functioning.

  20. A Comparison of Soil Moisture Retrieval Models Using SIR-C Measurements over the Little Washita River Watershed

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Hsu, A.; Shi, J. C.; ONeill, P. E.; Engman, E. T.

    1997-01-01

    Six SIR-C L-band measurements over the Little Washita River watershed in Chickasha, Oklahoma during 11-17 April 1994 have been analyzed for studying the change of soil moisture in the region. Two algorithms developed recently for estimation of moisture content in bare soil were applied to these measurements and the results were compared with those sampled on the ground. There is a good agreement between the values of soil moisture estimated by either one of the algorithms and those measured from ground sampling for bare or sparsely vegetated fields. The standard error from this comparison is on the order of 0.05-0.06 cu cm/cu cm, which is comparable to that expected from a regression between backscattering coefficients and measured soil moisture. Both algorithms provide a poor estimation of soil moisture or fail to give solutions to areas covered with moderate or dense vegetation. Even for bare soils the number of pixels that bear no numerical solution from the application of either one of the two algorithms to the data is not negligible. Results from using one of these algorithms indicate that the fraction of these pixels becomes larger as the bare soils become drier. The other algorithm generally gives a larger fraction of these pixels when the fields are vegetation-covered. The implication and impact of these features are discussed in this article.

  1. Seasonal trends in eDNA detection and occupancy of bigheaded carps

    USGS Publications Warehouse

    Erickson, Richard A.; Merkes, Christopher; Jackson, Craig; Goforth, Reuben; Amberg, Jon J.

    2017-01-01

    Bigheaded carps, which include silver and bighead carp, are threatening to invade the Great Lakes. These species vary seasonally in distribution and abundance due to environmental conditions such as precipitation and temperature. Monitoring this seasonal movement is important for management to control the population size and spread of the species. We examined if environmental DNA (eDNA) approaches could detect seasonal changes of these species. To do this, we developed a novel genetic marker that was able to both detect and differentiate bighead and silver carp DNA. We used the marker, combined with a novel occupancy model, to study the occurrence of bigheaded carps at 3 sites on the Wabash River over the course of a year. We studied the Wabash River because of concerns that carps may be able to use the system to invade the Great Lakes via a now closed (ca. 2017) connection at Eagle Marsh between the Wabash River's watershed and the Great Lakes' watershed. We found seasonal trends in the probability of detection and occupancy that varied across sites. These findings demonstrate that eDNA methods can detect seasonal changes in bigheaded carps densities and suggest that the amount of eDNA present changes seasonally. The site that was farthest upstream and had the lowest carp densities exhibited the strongest seasonal trends for both detection probabilities and sample occupancy probabilities. Furthermore, other observations suggest that carps seasonally leave this site, and we were able to detect this with our eDNA approach.

  2. Using the SWAT model to improve process descriptions and define hydrologic partitioning in South Korea

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Maharjan, G. R.; Tenhunen, J.; Seo, B.; Kim, K.; Riley, J.; Arnhold, S.; Koellner, T.; Ok, Y. S.; Peiffer, S.; Kim, B.; Park, J.-H.; Huwe, B.

    2014-02-01

    Watershed-scale modeling can be a valuable tool to aid in quantification of water quality and yield; however, several challenges remain. In many watersheds, it is difficult to adequately quantify hydrologic partitioning. Data scarcity is prevalent, accuracy of spatially distributed meteorology is difficult to quantify, forest encroachment and land use issues are common, and surface water and groundwater abstractions substantially modify watershed-based processes. Our objective is to assess the capability of the Soil and Water Assessment Tool (SWAT) model to capture event-based and long-term monsoonal rainfall-runoff processes in complex mountainous terrain. To accomplish this, we developed a unique quality-control, gap-filling algorithm for interpolation of high-frequency meteorological data. We used a novel multi-location, multi-optimization calibration technique to improve estimations of catchment-wide hydrologic partitioning. The interdisciplinary model was calibrated to a unique combination of statistical, hydrologic, and plant growth metrics. Our results indicate scale-dependent sensitivity of hydrologic partitioning and substantial influence of engineered features. The addition of hydrologic and plant growth objective functions identified the importance of culverts in catchment-wide flow distribution. While this study shows the challenges of applying the SWAT model to complex terrain and extreme environments; by incorporating anthropogenic features into modeling scenarios, we can enhance our understanding of the hydroecological impact.

  3. The Use of a Geomorphometric Classification to Estimate Subsurface Heterogeneity in the Unconsolidated Sediments of Mountain Watersheds

    NASA Astrophysics Data System (ADS)

    Cairns, D.; Byrne, J. M.; Jiskoot, H.; McKenzie, J. M.; Johnson, D. L.

    2013-12-01

    Groundwater controls many aspects of water quantity and quality in mountain watersheds. Groundwater recharge and flow originating in mountain watersheds are often difficult to quantify due to challenges in the characterization of the local geology, as subsurface data are sparse and difficult to collect. Remote sensing data are more readily available and are beneficial for the characterization of watershed hydrodynamics. We present an automated geomorphometric model to identify the approximate spatial distribution of geomorphic features, and to segment each of these features based on relative hydrostratigraphic differences. A digital elevation model (DEM) dataset and predefined indices are used as inputs in a mountain watershed. The model uses periglacial, glacial, fluvial, slope evolution and lacustrine processes to identify regions that are subsequently delineated using morphometric principles. A 10 m cell size DEM from the headwaters of the St. Mary River watershed in Glacier National Park, Montana, was considered sufficient for this research. Morphometric parameters extracted from the DEM that were found to be useful for the calibration of the model were elevation, slope, flow direction, flow accumulation, and surface roughness. Algorithms were developed to utilize these parameters and delineate the distributions of bedrock outcrops, periglacial landscapes, alluvial channels, fans and outwash plains, glacial depositional features, talus slopes, and other mass wasted material. Theoretical differences in sedimentation and hydrofacies associated with each of the geomorphic features were used to segment the watershed into units reflecting similar hydrogeologic properties such as hydraulic conductivity and thickness. The results of the model were verified by comparing the distribution of geomorphic features with published geomorphic maps. Although agreement in semantics between datasets caused difficulties, a consensus yielded a comparison Dice Coefficient of 0.65. The results can be used to assist in groundwater model calibration, or to estimate spatial differences in near-surface groundwater behaviour. Verification of the geomorphometric model would be augmented by evaluating its success after use in the calibration of the groundwater simulation. These results may also be used directly in momentum-based equations to create a stochastic routing routine beneath the soil interface for a hydrometeorological model.

  4. A multi-characteristic based algorithm for classifying vegetation in a plateau area: Qinghai Lake watershed, northwestern China

    NASA Astrophysics Data System (ADS)

    Ma, Weiwei; Gong, Cailan; Hu, Yong; Li, Long; Meng, Peng

    2015-10-01

    Remote sensing technology has been broadly recognized for its convenience and efficiency in mapping vegetation, particularly in high-altitude and inaccessible areas where there are lack of in-situ observations. In this study, Landsat Thematic Mapper (TM) images and Chinese environmental mitigation satellite CCD sensor (HJ-1 CCD) images, both of which are at 30m spatial resolution were employed for identifying and monitoring of vegetation types in a area of Western China——Qinghai Lake Watershed(QHLW). A decision classification tree (DCT) algorithm using multi-characteristic including seasonal TM/HJ-1 CCD time series data combined with digital elevation models (DEMs) dataset, and a supervised maximum likelihood classification (MLC) algorithm with single-data TM image were applied vegetation classification. Accuracy of the two algorithms was assessed using field observation data. Based on produced vegetation classification maps, it was found that the DCT using multi-season data and geomorphologic parameters was superior to the MLC algorithm using single-data image, improving the overall accuracy by 11.86% at second class level and significantly reducing the "salt and pepper" noise. The DCT algorithm applied to TM /HJ-1 CCD time series data geomorphologic parameters appeared as a valuable and reliable tool for monitoring vegetation at first class level (5 vegetation classes) and second class level(8 vegetation subclasses). The DCT algorithm using multi-characteristic might provide a theoretical basis and general approach to automatic extraction of vegetation types from remote sensing imagery over plateau areas.

  5. Linking fecal bacteria in rivers to landscape, geochemical, and hydrologic factors and sources at the basin scale

    PubMed Central

    Verhougstraete, Marc P.; Martin, Sherry L.; Kendall, Anthony D.; Hyndman, David W.; Rose, Joan B.

    2015-01-01

    Linking fecal indicator bacteria concentrations in large mixed-use watersheds back to diffuse human sources, such as septic systems, has met limited success. In this study, 64 rivers that drain 84% of Michigan’s Lower Peninsula were sampled under baseflow conditions for Escherichia coli, Bacteroides thetaiotaomicron (a human source-tracking marker), landscape characteristics, and geochemical and hydrologic variables. E. coli and B. thetaiotaomicron were routinely detected in sampled rivers and an E. coli reference level was defined (1.4 log10 most probable number⋅100 mL−1). Using classification and regression tree analysis and demographic estimates of wastewater treatments per watershed, septic systems seem to be the primary driver of fecal bacteria levels. In particular, watersheds with more than 1,621 septic systems exhibited significantly higher concentrations of B. thetaiotaomicron. This information is vital for evaluating water quality and health implications, determining the impacts of septic systems on watersheds, and improving management decisions for locating, constructing, and maintaining on-site wastewater treatment systems. PMID:26240328

  6. A study of water balances over the Tigris-Euphrates watershed

    NASA Astrophysics Data System (ADS)

    Kavvas, M. L.; Chen, Z. Q.; Anderson, M. L.; Ohara, N.; Yoon, J. Y.; Xiang, Fu

    Tigris-Euphrates watershed was considered as one hydrologic unit, and a scientific assessment of its water resources was performed. Accordingly, (a) an inventory of land use/land cover, vegetation, soils, and existing hydraulic structures in the watershed was performed; (b) a regional hydroclimate model, RegHCM-TE, of the watershed was developed, and used to reconstruct historical precipitation data, to perform land hydrologic water balance computations for infiltration, soil water storage, actual evapotranspiration, direct runoff as input for streamflow computations, and to estimate irrigation water demands; and (c) a hydrologic model was developed to route streamflows within the river network of the watershed. Also, an algorithm for operating the reservoirs within the watershed was developed, and utilized to perform dynamic water balance studies under various water supply/demand scenarios to establish efficient utilization of the watershed’s water resources to meet the water demands of the riparian countries in the basin. Within this dynamic water balance framework, it is possible to assess and quantify the effect of sequential river flows on the chronologically sequential water balances over the watershed. The water balance study for the natural flow conditions prior to the development of large dams within TE basin, during the 1957-1969 critical period is presented.

  7. Long-Term Evaluation of the AMSR-E Soil Moisture Product Over the Walnut Gulch Watershed, AZ

    NASA Astrophysics Data System (ADS)

    Bolten, J. D.; Jackson, T. J.; Lakshmi, V.; Cosh, M. H.; Drusch, M.

    2005-12-01

    The Advanced Microwave Scanning Radiometer -Earth Observing System (AMSR-E) was launched aboard NASA's Aqua satellite on May 4th, 2002. Quantitative estimates of soil moisture using the AMSR-E provided data have required routine radiometric data calibration and validation using comparisons of satellite observations, extended targets and field campaigns. The currently applied NASA EOS Aqua ASMR-E soil moisture algorithm is based on a change detection approach using polarization ratios (PR) of the calibrated AMSR-E channel brightness temperatures. To date, the accuracy of the soil moisture algorithm has been investigated on short time scales during field campaigns such as the Soil Moisture Experiments in 2004 (SMEX04). Results have indicated self-consistency and calibration stability of the observed brightness temperatures; however the performance of the moisture retrieval algorithm has been poor. The primary objective of this study is to evaluate the quality of the current version of the AMSR-E soil moisture product for a three year period over the Walnut Gulch Experimental Watershed (150 km2) near Tombstone, AZ; the northern study area of SMEX04. This watershed is equipped with hourly and daily recording of precipitation, soil moisture and temperature via a network of raingages and a USDA-NRCS Soil Climate Analysis Network (SCAN) site. Surface wetting and drying are easily distinguished in this area due to the moderately-vegetated terrain and seasonally intense precipitation events. Validation of AMSR-E derived soil moisture is performed from June 2002 to June 2005 using watershed averages of precipitation, and soil moisture and temperature data from the SCAN site supported by a surface soil moisture network. Long-term assessment of soil moisture algorithm performance is investigated by comparing temporal variations of moisture estimates with seasonal changes and precipitation events. Further comparisons are made with a standard soil dataset from the European Centre for Medium-Range Weather Forecasts. The results of this research will contribute to a better characterization of the low biases and discrepancies currently observed in the AMSR-E soil moisture product.

  8. Recognition of road information using magnetic polarity for intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Kim, Young-Min; Kim, Tae-Gon; Lim, Young-Cheol; Kim, Kwang-Heon; Baek, Seung-Hun; Kim, Eui-Sun

    2005-12-01

    For an intelligent vehicle driving which uses magnetic markers and magnetic sensors, it can get every kind of road information while moving the vehicle if we use the code that is encoded with N, S pole direction of makers. If there make it an only aim to move the vehicle, it becomes easy to control the vehicle the more we put markers close. By the way, to recognize the direction of a marker pole it is much better that the markers have no interference each other. To get road information and move the vehicle autonomously, the method of arranging magnetic sensors and algorithm of recognizing the position of the vehicle with those sensors was proposed. The effectiveness of the methods was verified with computer simulation.

  9. Genetic evolutionary taboo search for optimal marker placement in infrared patient setup

    NASA Astrophysics Data System (ADS)

    Riboldi, M.; Baroni, G.; Spadea, M. F.; Tagaste, B.; Garibaldi, C.; Cambria, R.; Orecchia, R.; Pedotti, A.

    2007-09-01

    In infrared patient setup adequate selection of the external fiducial configuration is required for compensating inner target displacements (target registration error, TRE). Genetic algorithms (GA) and taboo search (TS) were applied in a newly designed approach to optimal marker placement: the genetic evolutionary taboo search (GETS) algorithm. In the GETS paradigm, multiple solutions are simultaneously tested in a stochastic evolutionary scheme, where taboo-based decision making and adaptive memory guide the optimization process. The GETS algorithm was tested on a group of ten prostate patients, to be compared to standard optimization and to randomly selected configurations. The changes in the optimal marker configuration, when TRE is minimized for OARs, were specifically examined. Optimal GETS configurations ensured a 26.5% mean decrease in the TRE value, versus 19.4% for conventional quasi-Newton optimization. Common features in GETS marker configurations were highlighted in the dataset of ten patients, even when multiple runs of the stochastic algorithm were performed. Including OARs in TRE minimization did not considerably affect the spatial distribution of GETS marker configurations. In conclusion, the GETS algorithm proved to be highly effective in solving the optimal marker placement problem. Further work is needed to embed site-specific deformation models in the optimization process.

  10. Coupled Effects of Natural and Anthropogenic Controls on Seasonal and Spatial Variations of River Water Quality during Baseflow in a Coastal Watershed of Southeast China

    PubMed Central

    Huang, Jinliang; Huang, Yaling; Zhang, Zhenyu

    2014-01-01

    Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural) in the flood, dry and transition seasons during three consecutive years (2010–2012) within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH4 +-N, SRP, K+, CODMn, and Cl− were generally highest in urban watersheds. NO3 –N Concentration was generally highest in agricultural watersheds. Mg2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research demonstrates that the coupled effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities. PMID:24618771

  11. Impact of Watershed Development on Sediment Transport and Seasonal Flooding in the Main Stream of the Mekong River

    NASA Astrophysics Data System (ADS)

    Kameyama, S.; Nohara, S.; Sato, T.; Fujii, Y.; Kudo, K.

    2009-12-01

    The Mekong River watershed is undergoing rapid economic progress and population growth, raising conflicts between watershed development and environmental conservation. A typical conflict is between the benefits of dam construction versus the benefits of watershed ecological services. In developed countries, this conflict is changing to a coordinated search for outcomes that are mutually acceptable to all stakeholders. In the Mekong River, however, government policy gives priority to watershed development for ensuring steady energy supplies. Since the 1990s, a series of dams called “the Mekong Cascade” have been under construction. Dam construction has multiple economic values as electric power supply, irrigation water, flood control, etc. On the other hand, the artificial flow discharge controls of dam moderate seasonal hydrologic patterns of the Asian monsoon region. Dam operations can change the sediment transport regime and river structure. Furthermore, their impacts on watershed ecosystems and traditional economic activities of fisheries and agriculture in downstream areas may be severe. We focus on dam impacts on spatio-temporal patterns of sediment transport and seasonal flood in riparian areas downstream from Mekong River dams. Our study river section is located on 100 km down stream from the Golden Triangle region of Myanmar, Laos, and Thailand. We selected a 10-km section in this main channel to simulate seasonal flooding. We modeled the river hydrology in the years 1991 and 2002, before and after the Manwan dam construction (1986-1993). For this simulation, we adapted three models (distributed runoff model, 1-D hydrological model, and 2-D flood simulation with sediment movement algorithm.) Input data on river structure, water velocity, and flow volume were acquired from field survey data in November 2007 and 2008. In the step of parameter decision, we adopted the shuffled complex evolution method. To validate hydrologic parameters, we used annual water level data observed in Chiang Sean and Luang Prabang. To calculate sediment flux volume, we employed a Load-Quantity equation using total suspended solids data from monthly water sampling and flow discharge volumes over 13 months. To evaluate the impact of dam construction and watershed development, we inputted the same year of precipitation data using two watershed conditions with different parameters. Our results from the 1-D model displayed a seasonal delay of water flooding time after summer rainy season and an increase in sediment transport volume from September to October. In the flood simulation by the 2-D model, most of the annual sediment transport was concentrated from July to October. The spatial pattern of sediment dynamics was dependent largely on river structure including river meander shape, river bottom elevation, and geometry of the riparian zone. Our study approaches and simulation results show promise for beginning a quantitative assessment approach to cross-boundary environmental issues in the Mekong River watershed.

  12. Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin

    NASA Astrophysics Data System (ADS)

    Schefuß, Enno; Eglinton, Timothy I.; Spencer-Jones, Charlotte L.; Rullkötter, Jürgen; de Pol-Holz, Ricardo; Talbot, Helen M.; Grootes, Pieter M.; Schneider, Ralph R.

    2016-09-01

    The age of organic material discharged by rivers provides information about its sources and carbon cycling processes within watersheds. Although elevated ages in fluvially transported organic matter are usually explained by erosion of soils and sedimentary deposits, it is commonly assumed that mainly young organic material is discharged from flat tropical watersheds due to their extensive plant cover and rapid carbon turnover. Here we present compound-specific radiocarbon data of terrigenous organic fractions from a sedimentary archive offshore the Congo River, in conjunction with molecular markers for methane-producing land cover reflecting wetland extent. We find that the Congo River has been discharging aged organic matter for several thousand years, with apparently increasing ages from the mid- to the Late Holocene. This suggests that aged organic matter in modern samples is concealed by radiocarbon from atmospheric nuclear weapons testing. By comparison to indicators for past rainfall changes we detect a systematic control of organic matter sequestration and release by continental hydrology, mediating temporary carbon storage in wetlands. As aridification also leads to exposure and rapid remineralization of large amounts of previously stored labile organic matter, we infer that this process may cause a profound direct climate feedback that is at present underestimated in carbon cycle assessments.

  13. Long-term monitoring of molecular markers can distinguish different seasonal patterns of fecal indicating bacteria sources.

    PubMed

    Riedel, Timothy E; Thulsiraj, Vanessa; Zimmer-Faust, Amity G; Dagit, Rosi; Krug, Jenna; Hanley, Kaitlyn T; Adamek, Krista; Ebentier, Darcy L; Torres, Robert; Cobian, Uriel; Peterson, Sophie; Jay, Jennifer A

    2015-03-15

    Elevated levels of fecal indicator bacteria (FIB) have been observed at Topanga Beach, CA, USA. To identify the FIB sources, a microbial source tracking study using a dog-, a gull- and two human-associated molecular markers was conducted at 10 sites over 21 months. Historical data suggest that episodic discharge from the lagoon at the mouth of Topanga Creek is the main source of bacteria to the beach. A decline in creek FIB/markers downstream from upper watershed development and a sharp increase in FIB/markers at the lagoon sites suggest sources are local to the lagoon. At the lagoon and beach, human markers are detected sporadically, dog marker peaks in abundance mid-winter, and gull marker is chronically elevated. Varied seasonal patterns of FIB and source markers were identified showing the importance of applying a suite of markers over long-term spatial and temporal sampling to identify a complex combination of sources of contamination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Algorithms of Crescent Structure Detection in Human Biological Fluid Facies

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, V. R.; Malenova, O. E.; Yashina, A. S.

    2017-05-01

    One of the effective methods of early medical diagnosis is based on the image analysis of human biological fluids. In the process of fluid crystallization there appear characteristic patterns (markers) in the resulting layer (facies). Each marker is a highly probable sign of some pathology even at an early stage of a disease development. When mass health examination is carried out, it is necessary to analyze a large number of images. That is why, the problem of algorithm and software development for automated processing of images is rather urgent nowadays. This paper presents algorithms to detect a crescent structures in images of blood serum and cervical mucus facies. Such a marker indicates the symptoms of ischemic disease. The algorithm presented detects this marker with high probability when the probability of false alarm is low.

  15. Microbial Source Tracking in Adjacent Karst Springs.

    PubMed

    Ohad, Shoshanit; Vaizel-Ohayon, Dalit; Rom, Meir; Guttman, Joseph; Berger, Diego; Kravitz, Valeria; Pilo, Shlomo; Huberman, Zohar; Kashi, Yechezkel; Rorman, Efrat

    2015-08-01

    Modern man-made environments, including urban, agricultural, and industrial environments, have complex ecological interactions among themselves and with the natural surroundings. Microbial source tracking (MST) offers advanced tools to resolve the host source of fecal contamination beyond indicator monitoring. This study was intended to assess karst spring susceptibilities to different fecal sources using MST quantitative PCR (qPCR) assays targeting human, bovine, and swine markers. It involved a dual-time monitoring frame: (i) monthly throughout the calendar year and (ii) daily during a rainfall event. Data integration was taken from both monthly and daily MST profile monitoring and improved identification of spring susceptibility to host fecal contamination; three springs located in close geographic proximity revealed different MST profiles. The Giach spring showed moderate fluctuations of MST marker quantities amid wet and dry samplings, while the Zuf spring had the highest rise of the GenBac3 marker during the wet event, which was mirrored in other markers as well. The revelation of human fecal contamination during the dry season not connected to incidents of raining leachates suggests a continuous and direct exposure to septic systems. Pigpens were identified in the watersheds of Zuf, Shefa, and Giach springs and on the border of the Gaaton spring watershed. Their impact was correlated with partial detection of the Pig-2-Bac marker in Gaaton spring, which was lower than detection levels in all three of the other springs. Ruminant and swine markers were detected intermittently, and their contamination potential during the wet samplings was exposed. These results emphasized the importance of sampling design to utilize the MST approach to delineate subtleties of fecal contamination in the environment. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Image segmentation for biomedical applications based on alternating sequential filtering and watershed transformation

    NASA Astrophysics Data System (ADS)

    Gorpas, D.; Yova, D.

    2009-07-01

    One of the major challenges in biomedical imaging is the extraction of quantified information from the acquired images. Light and tissue interaction leads to the acquisition of images that present inconsistent intensity profiles and thus the accurate identification of the regions of interest is a rather complicated process. On the other hand, the complex geometries and the tangent objects that very often are present in the acquired images, lead to either false detections or to the merging, shrinkage or expansion of the regions of interest. In this paper an algorithm, which is based on alternating sequential filtering and watershed transformation, is proposed for the segmentation of biomedical images. This algorithm has been tested over two applications, each one based on different acquisition system, and the results illustrate its accuracy in segmenting the regions of interest.

  17. Combining watershed and graph cuts methods to segment organs at risk in radiotherapy

    NASA Astrophysics Data System (ADS)

    Dolz, Jose; Kirisli, Hortense A.; Viard, Romain; Massoptier, Laurent

    2014-03-01

    Computer-aided segmentation of anatomical structures in medical images is a valuable tool for efficient radiation therapy planning (RTP). As delineation errors highly affect the radiation oncology treatment, it is crucial to delineate geometric structures accurately. In this paper, a semi-automatic segmentation approach for computed tomography (CT) images, based on watershed and graph-cuts methods, is presented. The watershed pre-segmentation groups small areas of similar intensities in homogeneous labels, which are subsequently used as input for the graph-cuts algorithm. This methodology does not require of prior knowledge of the structure to be segmented; even so, it performs well with complex shapes and low intensity. The presented method also allows the user to add foreground and background strokes in any of the three standard orthogonal views - axial, sagittal or coronal - making the interaction with the algorithm easy and fast. Hence, the segmentation information is propagated within the whole volume, providing a spatially coherent result. The proposed algorithm has been evaluated using 9 CT volumes, by comparing its segmentation performance over several organs - lungs, liver, spleen, heart and aorta - to those of manual delineation from experts. A Dicés coefficient higher than 0.89 was achieved in every case. That demonstrates that the proposed approach works well for all the anatomical structures analyzed. Due to the quality of the results, the introduction of the proposed approach in the RTP process will be a helpful tool for organs at risk (OARs) segmentation.

  18. AN ACTIVE-PASSIVE COMBINED ALGORITHM FOR HIGH SPATIAL RESOLUTION RETRIEVAL OF SOIL MOISTURE FROM SATELLITE SENSORS (Invited)

    NASA Astrophysics Data System (ADS)

    Lakshmi, V.; Mladenova, I. E.; Narayan, U.

    2009-12-01

    Soil moisture is known to be an essential factor in controlling the partitioning of rainfall into surface runoff and infiltration and solar energy into latent and sensible heat fluxes. Remote sensing has long proven its capability to obtain soil moisture in near real-time. However, at the present time we have the Advanced Scanning Microwave Radiometer (AMSR-E) on board NASA’s AQUA platform is the only satellite sensor that supplies a soil moisture product. AMSR-E coarse spatial resolution (~ 50 km at 6.9 GHz) strongly limits its applicability for small scale studies. A very promising technique for spatial disaggregation by combining radar and radiometer observations has been demonstrated by the authors using a methodology is based on the assumption that any change in measured brightness temperature and backscatter from one to the next time step is due primarily to change in soil wetness. The approach uses radiometric estimates of soil moisture at a lower resolution to compute the sensitivity of radar to soil moisture at the lower resolution. This estimate of sensitivity is then disaggregated using vegetation water content, vegetation type and soil texture information, which are the variables on which determine the radar sensitivity to soil moisture and are generally available at a scale of radar observation. This change detection algorithm is applied to several locations. We have used aircraft observed active and passive data over Walnut Creek watershed in Central Iowa in 2002; the Little Washita Watershed in Oklahoma in 2003 and the Murrumbidgee Catchment in southeastern Australia for 2006. All of these locations have different soils and land cover conditions which leads to a rigorous test of the disaggregation algorithm. Furthermore, we compare the derived high spatial resolution soil moisture to in-situ sampling and ground observation networks

  19. Incorporating Green Infrastructure into Water Resources Management Plans to Address Water Quality Impairments

    NASA Astrophysics Data System (ADS)

    Piscopo, A. N.; Detenbeck, N. E.

    2017-12-01

    Managers of urban watersheds with excessive nutrient loads are more frequently turning to green infrastructure (GI) to manage their water quality impairments. The effectiveness of GI is dependent on a number of factors, including (1) the type and placement of GI within the watershed, (2) the specific nutrients to be treated, and (3) the uncertainty in future climates. Although many studies have investigated the effectiveness of individual GI units for different types of nutrients, relatively few have considered the effectiveness of GI on a watershed scale, the scale most relevant to management plans. At the watershed scale, endless combinations of GI type and location are possible, each with different effectiveness in reducing nutrient loads, minimizing costs, and maximizing co-benefits such as reducing runoff. To efficiently generate management plan options that balance the tradeoffs between these objectives, we simulate candidate options using EPA's Stormwater Management Model for multiple future climates and determine the Pareto optimal set of solution options using a multi-objective evolutionary algorithm. Our approach is demonstrated for an urban watershed in Rockville, Maryland.

  20. Fast and Accurate Construction of Ultra-Dense Consensus Genetic Maps Using Evolution Strategy Optimization

    PubMed Central

    Mester, David; Ronin, Yefim; Schnable, Patrick; Aluru, Srinivas; Korol, Abraham

    2015-01-01

    Our aim was to develop a fast and accurate algorithm for constructing consensus genetic maps for chip-based SNP genotyping data with a high proportion of shared markers between mapping populations. Chip-based genotyping of SNP markers allows producing high-density genetic maps with a relatively standardized set of marker loci for different mapping populations. The availability of a standard high-throughput mapping platform simplifies consensus analysis by ignoring unique markers at the stage of consensus mapping thereby reducing mathematical complicity of the problem and in turn analyzing bigger size mapping data using global optimization criteria instead of local ones. Our three-phase analytical scheme includes automatic selection of ~100-300 of the most informative (resolvable by recombination) markers per linkage group, building a stable skeletal marker order for each data set and its verification using jackknife re-sampling, and consensus mapping analysis based on global optimization criterion. A novel Evolution Strategy optimization algorithm with a global optimization criterion presented in this paper is able to generate high quality, ultra-dense consensus maps, with many thousands of markers per genome. This algorithm utilizes "potentially good orders" in the initial solution and in the new mutation procedures that generate trial solutions, enabling to obtain a consensus order in reasonable time. The developed algorithm, tested on a wide range of simulated data and real world data (Arabidopsis), outperformed two tested state-of-the-art algorithms by mapping accuracy and computation time. PMID:25867943

  1. Investigation of the optimum location of external markers for patient setup accuracy enhancement at external beam radiotherapy

    PubMed Central

    Torshabi, Ahmad Esmaili; Nankali, Saber

    2016-01-01

    In external beam radiotherapy, one of the most common and reliable methods for patient geometrical setup and/or predicting the tumor location is use of external markers. In this study, the main challenging issue is increasing the accuracy of patient setup by investigating external markers location. Since the location of each external marker may yield different patient setup accuracy, it is important to assess different locations of external markers using appropriate selective algorithms. To do this, two commercially available algorithms entitled a) canonical correlation analysis (CCA) and b) principal component analysis (PCA) were proposed as input selection algorithms. They work on the basis of maximum correlation coefficient and minimum variance between given datasets. The proposed input selection algorithms work in combination with an adaptive neuro‐fuzzy inference system (ANFIS) as a correlation model to give patient positioning information as output. Our proposed algorithms provide input file of ANFIS correlation model accurately. The required dataset for this study was prepared by means of a NURBS‐based 4D XCAT anthropomorphic phantom that can model the shape and structure of complex organs in human body along with motion information of dynamic organs. Moreover, a database of four real patients undergoing radiation therapy for lung cancers was utilized in this study for validation of proposed strategy. Final analyzed results demonstrate that input selection algorithms can reasonably select specific external markers from those areas of the thorax region where root mean square error (RMSE) of ANFIS model has minimum values at that given area. It is also found that the selected marker locations lie closely in those areas where surface point motion has a large amplitude and a high correlation. PACS number(s): 87.55.km, 87.55.N PMID:27929479

  2. Characterization of sources and loadings of fecal pollutants using microbial source tracking assays in urban and rural areas of the Grand River Watershed, Southwestern Ontario.

    PubMed

    Lee, Dae-Young; Lee, Hung; Trevors, Jack T; Weir, Susan C; Thomas, Janis L; Habash, Marc

    2014-04-15

    Sources of fecal water pollution were assessed in the Grand River and two of its tributaries (Ontario, Canada) using total and host-specific (human and bovine) Bacteroidales genetic markers in conjunction with reference information, such as land use and weather. In-stream levels of the markers and culturable Escherichia coli were also monitored during multiple rain events to gain information on fecal loadings to catchment from diffuse sources. Elevated human-specific marker levels were accurately identified in river water impacted by a municipal wastewater treatment plant (WWTP) effluent and at a downstream site in the Grand River. In contrast, the bovine-specific marker showed high levels of cattle fecal pollution in two tributaries, both of which are characterized as intensely farmed areas. The bovine-specific Bacteroidales marker increased with rainfall in the agricultural tributaries, indicating enhanced loading of cattle-derived fecal pollutants to river from non-point sources following rain events. However, rain-triggered fecal loading was not substantiated in urban settings, indicating continuous inputs of human-originated fecal pollutants from point sources, such as WWTP effluent. This study demonstrated that the Bacteroidales source tracking assays, in combination with land use information and hydrological data, may provide additional insight into the spatial and temporal distribution of source-specific fecal contamination in streams impacted by varying land uses. Using the approach described in this study may help to characterize impacted water sources and to design targeted land use management plans in other watersheds in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Evaluation of Topographic wetness index and catchment characteristics on spatially and temporally variable streams across an elevation gradient

    NASA Astrophysics Data System (ADS)

    Martin, C.

    2017-12-01

    Topography can be used to delineate streams and quantify the topographic control on hydrological processes of a watershed because geomorphologic processes have shaped the topography and streams of a catchment over time. Topographic Wetness index (TWI) is a common index used for delineating stream networks by predicting location of saturation excess overland flow, but is also used for other physical attributes of a watershed such as soil moisture, groundwater level, and vegetation patterns. This study evaluates how well TWI works across an elevation gradient and the relationships between the active drainage network of four headwater watersheds at various elevations in the Colorado Front Range to topography, geology, climate, soils, elevation, and vegetation in attempt to determine the controls on streamflow location and duration. The results suggest that streams prefer to flow along a path of least resistance which including faults and permeable lithology. Permeable lithologies created more connectivity of stream networks during higher flows but during lower flows dried up. Streams flowing over impermeable lithologies had longer flow duration. Upslope soil hydraulic conductivity played a role on stream location, where soils with low hydraulic conductivity had longer flow duration than soils with higher hydraulic conductivity.Finally TWI thresholds ranged from 5.95 - 10.3 due to changes in stream length and to factors such as geology and soil. TWI had low accuracy for the lowest elevation site due to the greatest change of stream length. In conclusion, structural geology, upslope soil texture, and the permeability of the underlying lithology influenced where the stream was flowing and for how long. Elevation determines climate which influences the hydrologic processes occurring at the watersheds and therefore affects the duration and timing of streams at different elevations. TWI is an adequate tool for delineating streams because results suggest topography has a primary control on the stream locations, but because intermittent streams change throughout the year a algorithm needs to be created to correspond to snow melt and rain events. Also geology indices and soil indices need be considered in addition to topography to have the most accurate derived stream network.

  4. Fast internal marker tracking algorithm for onboard MV and kV imaging systems

    PubMed Central

    Mao, W.; Wiersma, R. D.; Xing, L.

    2008-01-01

    Intrafraction organ motion can limit the advantage of highly conformal dose techniques such as intensity modulated radiation therapy (IMRT) due to target position uncertainty. To ensure high accuracy in beam targeting, real-time knowledge of the target location is highly desired throughout the beam delivery process. This knowledge can be gained through imaging of internally implanted radio-opaque markers with fluoroscopic or electronic portal imaging devices (EPID). In the case of MV based images, marker detection can be problematic due to the significantly lower contrast between different materials in comparison to their kV-based counterparts. This work presents a fully automated algorithm capable of detecting implanted metallic markers in both kV and MV images with high consistency. Using prior CT information, the algorithm predefines the volumetric search space without manual region-of-interest (ROI) selection by the user. Depending on the template selected, both spherical and cylindrical markers can be detected. Multiple markers can be simultaneously tracked without indexing confusion. Phantom studies show detection success rates of 100% for both kV and MV image data. In addition, application of the algorithm to real patient image data results in successful detection of all implanted markers for MV images. Near real-time operational speeds of ∼10 frames∕sec for the detection of five markers in a 1024×768 image are accomplished using an ordinary PC workstation. PMID:18561670

  5. Optimal implementation of best management practices to improve agricultural hydrology and water quality

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Engel, B.; Collingsworth, P.; Pijanowski, B. C.

    2017-12-01

    Nutrient loading from the Maumee River watershed is a significant reason for the harmful algal blooms (HABs) problem in Lake Erie. Strategies to reduce nutrient loading from agricultural areas in the Maumee River watershed need to be explored. Best management practices (BMPs) are popular approaches for improving hydrology and water quality. Various scenarios of BMP implementation were simulated in the AXL watershed (an agricultural watershed in Maumee River watershed) using Soil and Water Assessment Tool (SWAT) and a new BMP cost tool to explore the cost-effectiveness of the practices. BMPs of interest included vegetative filter strips, grassed waterways, blind inlets, grade stabilization structures, wetlands, no-till, nutrient management, residue management, and cover crops. The following environmental concerns were considered: streamflow, Total Phosphorous (TP), Dissolved Reactive Phosphorus (DRP), Total Kjeldahl Nitrogen (TKN), and Nitrate+Nitrite (NOx). To obtain maximum hydrological and water quality benefits with minimum cost, an optimization tool was developed to optimally select and place BMPs by connecting SWAT, the BMP cost tool, and optimization algorithms. The optimization tool was then applied in AXL watershed to explore optimization focusing on critical areas (top 25% of areas with highest runoff volume/pollutant loads per area) vs. all areas of the watershed, optimization using weather data for spring (March to July, due to the goal of reducing spring phosphorus in watershed management plan) vs. full year, and optimization results of implementing BMPs to achieve the watershed management plan goal (reducing 2008 TP levels by 40%). The optimization tool and BMP optimization results can be used by watershed groups and communities to solve hydrology and water quality problems.

  6. Using Microbial Source Tracking Markers to Predict Occurrence of Waterborne Pathogens in Urban and Agricultural Watershed

    EPA Science Inventory

    Runoff from agricultural fields and urban landscapes may carry a variety of microbial contaminants that compromises water quality and increases the possibility of human exposure to pathogenic microorganisms. Establishing the relationship between microbial source tracking (MST) ma...

  7. Joint graph cut and relative fuzzy connectedness image segmentation algorithm.

    PubMed

    Ciesielski, Krzysztof Chris; Miranda, Paulo A V; Falcão, Alexandre X; Udupa, Jayaram K

    2013-12-01

    We introduce an image segmentation algorithm, called GC(sum)(max), which combines, in novel manner, the strengths of two popular algorithms: Relative Fuzzy Connectedness (RFC) and (standard) Graph Cut (GC). We show, both theoretically and experimentally, that GC(sum)(max) preserves robustness of RFC with respect to the seed choice (thus, avoiding "shrinking problem" of GC), while keeping GC's stronger control over the problem of "leaking though poorly defined boundary segments." The analysis of GC(sum)(max) is greatly facilitated by our recent theoretical results that RFC can be described within the framework of Generalized GC (GGC) segmentation algorithms. In our implementation of GC(sum)(max) we use, as a subroutine, a version of RFC algorithm (based on Image Forest Transform) that runs (provably) in linear time with respect to the image size. This results in GC(sum)(max) running in a time close to linear. Experimental comparison of GC(sum)(max) to GC, an iterative version of RFC (IRFC), and power watershed (PW), based on a variety medical and non-medical images, indicates superior accuracy performance of GC(sum)(max) over these other methods, resulting in a rank ordering of GC(sum)(max)>PW∼IRFC>GC. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Optimal marker placement in hadrontherapy: intelligent optimization strategies with augmented Lagrangian pattern search.

    PubMed

    Altomare, Cristina; Guglielmann, Raffaella; Riboldi, Marco; Bellazzi, Riccardo; Baroni, Guido

    2015-02-01

    In high precision photon radiotherapy and in hadrontherapy, it is crucial to minimize the occurrence of geometrical deviations with respect to the treatment plan in each treatment session. To this end, point-based infrared (IR) optical tracking for patient set-up quality assessment is performed. Such tracking depends on external fiducial points placement. The main purpose of our work is to propose a new algorithm based on simulated annealing and augmented Lagrangian pattern search (SAPS), which is able to take into account prior knowledge, such as spatial constraints, during the optimization process. The SAPS algorithm was tested on data related to head and neck and pelvic cancer patients, and that were fitted with external surface markers for IR optical tracking applied for patient set-up preliminary correction. The integrated algorithm was tested considering optimality measures obtained with Computed Tomography (CT) images (i.e. the ratio between the so-called target registration error and fiducial registration error, TRE/FRE) and assessing the marker spatial distribution. Comparison has been performed with randomly selected marker configuration and with the GETS algorithm (Genetic Evolutionary Taboo Search), also taking into account the presence of organs at risk. The results obtained with SAPS highlight improvements with respect to the other approaches: (i) TRE/FRE ratio decreases; (ii) marker distribution satisfies both marker visibility and spatial constraints. We have also investigated how the TRE/FRE ratio is influenced by the number of markers, obtaining significant TRE/FRE reduction with respect to the random configurations, when a high number of markers is used. The SAPS algorithm is a valuable strategy for fiducial configuration optimization in IR optical tracking applied for patient set-up error detection and correction in radiation therapy, showing that taking into account prior knowledge is valuable in this optimization process. Further work will be focused on the computational optimization of the SAPS algorithm toward fast point-of-care applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Impact of water management interventions on hydrology and ecosystem services in Garhkundar-Dabar watershed of Bundelkhand region, Central India

    NASA Astrophysics Data System (ADS)

    Singh, Ramesh; Garg, Kaushal K.; Wani, Suhas P.; Tewari, R. K.; Dhyani, S. K.

    2014-02-01

    Bundelkhand region of Central India is a hot spot of water scarcity, land degradation, poverty and poor socio-economic status. Impacts of integrated watershed development (IWD) interventions on water balance and different ecosystem services are analyzed in one of the selected watershed of 850 ha in Bundelkhand region. Improved soil, water and crop management interventions in Garhkundar-Dabar (GKD) watershed of Bundelkhand region in India enhanced ET to 64% as compared to 58% in untreated (control) watershed receiving 815 mm annual average rainfall. Reduced storm flow (21% vs. 34%) along with increased base flow (4.5% vs. 1.2%) and groundwater recharge (11% vs. 7%) of total rainfall received were recorded in treated watershed as compared to untreated control watershed. Economic Water productivity and total income increased from 2.5 to 5.0 INR m-3 and 11,500 to 27,500 INR ha-1 yr-1 after implementing integrated watershed development interventions in GKD watershed, respectively. Moreover IWD interventions helped in reducing soil loss more than 50% compared to control watershed. The results demonstrated that integrated watershed management practices addressed issues of poverty in GKD watershed. Benefit to cost ratio of project interventions was found three and pay back period within four years suggest economic feasibility to scale-up IWD interventions in Bundelkhend region. Scaling-up of integrated watershed management in drought prone rainfed areas with enabling policy and institutional support is expected to promote equity and livelihood along with strengthening various ecosystem services, however, region-specific analysis is needed to assess trade-offs for downstream areas along with onsite impact.

  10. Input-output budgets of selected nutrients on an experimental watershed near Parsons, West Virginia

    Treesearch

    J. D. Helvey; Samuel H. Kunkle; Samuel H. Kunkle

    1986-01-01

    A control watershed at the Fernow Experimental Watershed effectively neutralizes acids received in precipitation. However, sulfate input by precipitation greatly exceeds sulfate losses as streamflow and watershed acidification is a real concern.

  11. iLOCi: a SNP interaction prioritization technique for detecting epistasis in genome-wide association studies

    PubMed Central

    2012-01-01

    Background Genome-wide association studies (GWAS) do not provide a full account of the heritability of genetic diseases since gene-gene interactions, also known as epistasis are not considered in single locus GWAS. To address this problem, a considerable number of methods have been developed for identifying disease-associated gene-gene interactions. However, these methods typically fail to identify interacting markers explaining more of the disease heritability over single locus GWAS, since many of the interactions significant for disease are obscured by uninformative marker interactions e.g., linkage disequilibrium (LD). Results In this study, we present a novel SNP interaction prioritization algorithm, named iLOCi (Interacting Loci). This algorithm accounts for marker dependencies separately in case and control groups. Disease-associated interactions are then prioritized according to a novel ranking score calculated from the difference in marker dependencies for every possible pair between case and control groups. The analysis of a typical GWAS dataset can be completed in less than a day on a standard workstation with parallel processing capability. The proposed framework was validated using simulated data and applied to real GWAS datasets using the Wellcome Trust Case Control Consortium (WTCCC) data. The results from simulated data showed the ability of iLOCi to identify various types of gene-gene interactions, especially for high-order interaction. From the WTCCC data, we found that among the top ranked interacting SNP pairs, several mapped to genes previously known to be associated with disease, and interestingly, other previously unreported genes with biologically related roles. Conclusion iLOCi is a powerful tool for uncovering true disease interacting markers and thus can provide a more complete understanding of the genetic basis underlying complex disease. The program is available for download at http://www4a.biotec.or.th/GI/tools/iloci. PMID:23281813

  12. Watershed model calibration framework developed using an influence coefficient algorithm and a genetic algorithm and analysis of pollutant discharge characteristics and load reduction in a TMDL planning area.

    PubMed

    Cho, Jae Heon; Lee, Jong Ho

    2015-11-01

    Manual calibration is common in rainfall-runoff model applications. However, rainfall-runoff models include several complicated parameters; thus, significant time and effort are required to manually calibrate the parameters individually and repeatedly. Automatic calibration has relative merit regarding time efficiency and objectivity but shortcomings regarding understanding indigenous processes in the basin. In this study, a watershed model calibration framework was developed using an influence coefficient algorithm and genetic algorithm (WMCIG) to automatically calibrate the distributed models. The optimization problem used to minimize the sum of squares of the normalized residuals of the observed and predicted values was solved using a genetic algorithm (GA). The final model parameters were determined from the iteration with the smallest sum of squares of the normalized residuals of all iterations. The WMCIG was applied to a Gomakwoncheon watershed located in an area that presents a total maximum daily load (TMDL) in Korea. The proportion of urbanized area in this watershed is low, and the diffuse pollution loads of nutrients such as phosphorus are greater than the point-source pollution loads because of the concentration of rainfall that occurs during the summer. The pollution discharges from the watershed were estimated for each land-use type, and the seasonal variations of the pollution loads were analyzed. Consecutive flow measurement gauges have not been installed in this area, and it is difficult to survey the flow and water quality in this area during the frequent heavy rainfall that occurs during the wet season. The Hydrological Simulation Program-Fortran (HSPF) model was used to calculate the runoff flow and water quality in this basin. Using the water quality results, a load duration curve was constructed for the basin, the exceedance frequency of the water quality standard was calculated for each hydrologic condition class, and the percent reduction required to achieve the water quality standard was estimated. The R(2) value for the calibrated BOD5 was 0.60, which is a moderate result, and the R(2) value for the TP was 0.86, which is a good result. The percent differences obtained for the calibrated BOD5 and TP were very good; therefore, the calibration results using WMCIG were satisfactory. From the load duration curve analysis, the WQS exceedance frequencies of the BOD5 under dry conditions and low-flow conditions were 75.7% and 65%, respectively, and the exceedance frequencies under moist and mid-range conditions were higher than under other conditions. The exceedance frequencies of the TP for the high-flow, moist and mid-range conditions were high and the exceedance rate for the high-flow condition was particularly high. Most of the data from the high-flow conditions exceeded the WQSs. Thus, nonpoint-source pollutants from storm-water runoff substantially affected the TP concentration in the Gomakwoncheon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. [New paradigm for soil and water conservation: a method based on watershed process modeling and scenario analysis].

    PubMed

    Zhu, A-Xing; Chen, La-Jiao; Qin, Cheng-Zhi; Wang, Ping; Liu, Jun-Zhi; Li, Run-Kui; Cai, Qiang-Guo

    2012-07-01

    With the increase of severe soil erosion problem, soil and water conservation has become an urgent concern for sustainable development. Small watershed experimental observation is the traditional paradigm for soil and water control. However, the establishment of experimental watershed usually takes long time, and has the limitations of poor repeatability and high cost. Moreover, the popularization of the results from the experimental watershed is limited for other areas due to the differences in watershed conditions. Therefore, it is not sufficient to completely rely on this old paradigm for soil and water loss control. Recently, scenario analysis based on watershed modeling has been introduced into watershed management, which can provide information about the effectiveness of different management practices based on the quantitative simulation of watershed processes. Because of its merits such as low cost, short period, and high repeatability, scenario analysis shows great potential in aiding the development of watershed management strategy. This paper elaborated a new paradigm using watershed modeling and scenario analysis for soil and water conservation, illustrated this new paradigm through two cases for practical watershed management, and explored the future development of this new soil and water conservation paradigm.

  14. Using Campylobacter spp. and Escherichia coli data and Bayesian microbial risk assessment to examine public health risks in agricultural watersheds under tile drainage management.

    PubMed

    Schmidt, P J; Pintar, K D M; Fazil, A M; Flemming, C A; Lanthier, M; Laprade, N; Sunohara, M D; Simhon, A; Thomas, J L; Topp, E; Wilkes, G; Lapen, D R

    2013-06-15

    Human campylobacteriosis is the leading bacterial gastrointestinal illness in Canada; environmental transmission has been implicated in addition to transmission via consumption of contaminated food. Information about Campylobacter spp. occurrence at the watershed scale will enhance our understanding of the associated public health risks and the efficacy of source water protection strategies. The overriding purpose of this study is to provide a quantitative framework to assess and compare the relative public health significance of watershed microbial water quality associated with agricultural BMPs. A microbial monitoring program was expanded from fecal indicator analyses and Campylobacter spp. presence/absence tests to the development of a novel, 11-tube most probable number (MPN) method that targeted Campylobacter jejuni, Campylobacter coli, and Campylobacter lari. These three types of data were used to make inferences about theoretical risks in a watershed in which controlled tile drainage is widely practiced, an adjacent watershed with conventional (uncontrolled) tile drainage, and reference sites elsewhere in the same river basin. E. coli concentrations (MPN and plate count) in the controlled tile drainage watershed were statistically higher (2008-11), relative to the uncontrolled tile drainage watershed, but yearly variation was high as well. Escherichia coli loading for years 2008-11 combined were statistically higher in the controlled watershed, relative to the uncontrolled tile drainage watershed, but Campylobacter spp. loads for 2010-11 were generally higher for the uncontrolled tile drainage watershed (but not statistically significant). Using MPN data and a Bayesian modelling approach, higher mean Campylobacter spp. concentrations were found in the controlled tile drainage watershed relative to the uncontrolled tile drainage watershed (2010, 2011). A second-order quantitative microbial risk assessment (QMRA) was used, in a relative way, to identify differences in mean Campylobacter spp. infection risks among monitoring sites for a hypothetical exposure scenario. Greater relative mean risks were obtained for sites in the controlled tile drainage watershed than in the uncontrolled tile drainage watershed in each year of monitoring with pair-wise posterior probabilities exceeding 0.699, and the lowest relative mean risks were found at a downstream drinking water intake reference site. The second-order modelling approach was used to partition sources of uncertainty, which revealed that an adequate representation of the temporal variation in Campylobacter spp. concentrations for risk assessment was achieved with as few as 10 MPN data per site. This study demonstrates for the first time how QMRA can be implemented to evaluate, in a relative sense, the public health implications of controlled tile drainage on watershed-scale water quality. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. Real-Time Event Detection for Monitoring Natural and Source ...

    EPA Pesticide Factsheets

    The use of event detection systems in finished drinking water systems is increasing in order to monitor water quality in both operational and security contexts. Recent incidents involving harmful algal blooms and chemical spills into watersheds have increased interest in monitoring source water quality prior to treatment. This work highlights the use of the CANARY event detection software in detecting suspected illicit events in an actively monitored watershed in South Carolina. CANARY is an open source event detection software that was developed by USEPA and Sandia National Laboratories. The software works with any type of sensor, utilizes multiple detection algorithms and approaches, and can incorporate operational information as needed. Monitoring has been underway for several years to detect events related to intentional or unintentional dumping of materials into the monitored watershed. This work evaluates the feasibility of using CANARY to enhance the detection of events in this watershed. This presentation will describe the real-time monitoring approach used in this watershed, the selection of CANARY configuration parameters that optimize detection for this watershed and monitoring application, and the performance of CANARY during the time frame analyzed. Further, this work will highlight how rainfall events impacted analysis, and the innovative application of CANARY taken in order to effectively detect the suspected illicit events. This presentation d

  16. Effects of snowmelt on watershed transit time distributions

    NASA Astrophysics Data System (ADS)

    Fang, Z.; Carroll, R. W. H.; Harman, C. J.; Wilusz, D. C.; Schumer, R.

    2017-12-01

    Snowmelt is the principal control of the timing and magnitude of water flow through alpine watersheds, but the streamflow generated may be displaced groundwater. To quantify this effect, we use a rank StorAge Selection (rSAS) model to estimate time-dependent travel time distributions (TTDs) for the East River Catchment (ERC, 84 km2) - a headwater basin of the Colorado River, and newly designated as the Lawrence Berkeley National Laboratory's Watershed Function Science Focus Area (SFA). Through the SFA, observational networks related to precipitation and stream fluxes have been established with a focus on environmental tracers and stable isotopes. The United Stated Geological Survey Precipitation Runoff Modeling System (PRMS) was used to estimate spatially- and temporally-variable boundary fluxes of effective precipitation (snowmelt & rain), evapotranspiration, and subsurface storage. The DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm was used to calibrate the rSAS model to observed stream isotopic concentration data and quantify uncertainty. The sensitivity of the simulated TTDs to systematic changes in the boundary fluxes was explored. Different PRMS and rSAS model parameters setup were tested to explore how they affect the relationship between input precipitation, especially snowmelt, and the estimated TTDs. Wavelet Coherence Analysis (WCA) was applied to investigate the seasonality of TTD simulations. Our ultimate goal is insight into how the Colorado River headwater catchments store and route water, and how sensitive flow paths and transit times are to climatic changes.

  17. Relationships and trends of E. Coli, human-associated Bacteroides, and pathogens in the Proctor Creek Watershed

    EPA Science Inventory

    Urban surface waters can be impacted by anthropogenic sources such as impervious surfaces, sanitary and storm sewers, and failing infrastructure. Fecal indicator bacteria (FIB) and microbial source tracking (MST) markers are common gauges of stream water quality, however, little...

  18. Investigating the Sources and Dynamics of Dissolved Organic Matter in an Agricultural Watershed in California (U.S.A.)

    NASA Astrophysics Data System (ADS)

    Dyda, R. Y.; Hernes, P. J.; Spencer, R. G.; Ingrum, T. D.; Pellerin, B. A.; Bergamaschi, B. A.

    2007-12-01

    Dissolved organic matter (DOM) is ubiquitous and plays critical roles in nutrient cycling, aquatic food webs and numerous other biogeochemical processes. Furthermore, various factors control the quality and quantity of DOM, including land use, soil composition, in situ production, microbial uptake and assimilation and hydrology. As a component of DOM, dissolved organic carbon (DOC) has been recently identified as a drinking water constituent of concern due to its propensity to form EPA-regulated carcinogenic compounds when disinfected for drinking water purposes. Therefore, understanding the sources, cycling and modification of DOC across various landscapes is of direct relevance to a wide range of studies. The Willow Slough watershed is located in the Central Valley of California (U.S.A.) and is characterized by both diverse geomorphology as well as land use. The watershed drains approximately 425 km2 and is bordered by Cache and Putah Creeks to the north and south. The study area in the watershed includes the eastern portion of the foothills of the inner Coast Range and the alluvial plain and encompasses diverse land uses, including orchards, viticulture, dairy, pasture and natural grasslands. The Willow Slough watershed represents a unique opportunity to examine DOC dynamics through multiple land uses and hydrologic flow paths that are common throughout California. Preliminary data show that DOC concentrations at the watershed mouth peak during winter storms and also increase gradually throughout the summer months during the agricultural irrigation season. The increasing DOC concentrations during the summer months may result from agricultural runoff and/or primary production in channel. In addition, initial results using the chromophoric DOM (CDOM) absorption coefficient and spectral slope parameters indicate seasonal differences in the composition of the DOM. Spectral slopes decreased during both the summer irrigation season and winter storms relative to winter base flow, consistent with an increase in terrestrial signature. Biomolecular markers such as lignin phenols provide diagnostic source information on DOM as they are derived uniquely from vascular plants. Lignin can be used to differentiate angiosperm and gymnosperm tissues, but more importantly for this study, carbon-normalized yields can help to constrain the proportions of the increasing DOC during irrigation that come from vascular plants versus in situ production. In addition to supplying useful source information, dissolved lignin phenols undergo rapid photodegradation when exposed to adequate solar radiation, and this process is "imprinted" through increases in the acidic components of lignin and decreases in the syringyl phenols, thus providing insight into DOM cycling in agriculture-dominated watersheds. Data will be presented highlighting the use of a range of analytical and spectrophotometric measurements including lignin phenols, 13C of DOC and CDOM in the Willow Slough watershed for investigating sources and dynamics of DOM throughout the watershed.

  19. Restricted gene flow between resident Oncorhynchus mykiss and an admixed population of anadromous steelhead

    USGS Publications Warehouse

    Matala, Andrew P.; Allen, Brady; Narum, Shawn R.; Harvey, Elaine

    2017-01-01

    The species Oncorhynchus mykiss is characterized by a complex life history that presents a significant challenge for population monitoring and conservation management. Many factors contribute to genetic variation in O. mykiss populations, including sympatry among migratory phenotypes, habitat heterogeneity, hatchery introgression, and immigration (stray) rates. The relative influences of these and other factors are contingent on characteristics of the local environment. The Rock Creek subbasin in the middle Columbia River has no history of hatchery supplementation and no dams or artificial barriers. Limited intervention and minimal management have led to a dearth of information regarding the genetic distinctiveness of the extant O. mykiss population in Rock Creek and its tributaries. We used 192 SNP markers and collections sampled over a 5‐year period to evaluate the temporal and spatial genetic structures of O. mykissbetween upper and lower watersheds of the Rock Creek subbasin. We investigated potential limits to gene flow within the lower watershed where the stream is fragmented by seasonally dry stretches of streambed, and between upper and lower watershed regions. We found minor genetic differentiation within the lower watershed occupied by anadromous steelhead (FST = 0.004), and evidence that immigrant influences were prevalent and ubiquitous. Populations in the upper watershed above partial natural barriers were highly distinct (FST = 0.093) and minimally impacted by apparent introgression. Genetic structure between watersheds paralleled differences in local demographics (e.g., variation in size), migratory restrictions, and habitat discontinuity. The evidence of restricted gene flow between putative remnant resident populations in the upper watershed and the admixed anadromous population in the lower watershed has implications for local steelhead productivity and regional conservation.

  20. Algorithms and Complexity Results for Genome Mapping Problems.

    PubMed

    Rajaraman, Ashok; Zanetti, Joao Paulo Pereira; Manuch, Jan; Chauve, Cedric

    2017-01-01

    Genome mapping algorithms aim at computing an ordering of a set of genomic markers based on local ordering information such as adjacencies and intervals of markers. In most genome mapping models, markers are assumed to occur uniquely in the resulting map. We introduce algorithmic questions that consider repeats, i.e., markers that can have several occurrences in the resulting map. We show that, provided with an upper bound on the copy number of repeated markers and with intervals that span full repeat copies, called repeat spanning intervals, the problem of deciding if a set of adjacencies and repeat spanning intervals admits a genome representation is tractable if the target genome can contain linear and/or circular chromosomal fragments. We also show that extracting a maximum cardinality or weight subset of repeat spanning intervals given a set of adjacencies that admits a genome realization is NP-hard but fixed-parameter tractable in the maximum copy number and the number of adjacent repeats, and tractable if intervals contain a single repeated marker.

  1. Real-Time Gait Event Detection Based on Kinematic Data Coupled to a Biomechanical Model.

    PubMed

    Lambrecht, Stefan; Harutyunyan, Anna; Tanghe, Kevin; Afschrift, Maarten; De Schutter, Joris; Jonkers, Ilse

    2017-03-24

    Real-time detection of multiple stance events, more specifically initial contact (IC), foot flat (FF), heel off (HO), and toe off (TO), could greatly benefit neurorobotic (NR) and neuroprosthetic (NP) control. Three real-time threshold-based algorithms have been developed, detecting the aforementioned events based on kinematic data in combination with a biomechanical model. Data from seven subjects walking at three speeds on an instrumented treadmill were used to validate the presented algorithms, accumulating to a total of 558 steps. The reference for the gait events was obtained using marker and force plate data. All algorithms had excellent precision and no false positives were observed. Timing delays of the presented algorithms were similar to current state-of-the-art algorithms for the detection of IC and TO, whereas smaller delays were achieved for the detection of FF. Our results indicate that, based on their high precision and low delays, these algorithms can be used for the control of an NR/NP, with the exception of the HO event. Kinematic data is used in most NR/NP control schemes and is thus available at no additional cost, resulting in a minimal computational burden. The presented methods can also be applied for screening pathological gait or gait analysis in general in/outside of the laboratory.

  2. Applications of Polarimetric Radar to the Hydrometeorology of Urban Floods in St. Louis

    NASA Astrophysics Data System (ADS)

    Chaney, M. M.; Smith, J. A.; Baeck, M. L.

    2017-12-01

    Predicting and responding to flash flooding requires accurate spatial and temporal representation of rainfall rates. The polarimetric upgrade of all US radars has led to optimism about more accurate rainfall rate estimation from the NEXRAD network of WSR-88D radars in the US. Previous work has proposed different algorithms to do so, but significant uncertainties remain, especially for extreme short-term rainfall rates that control flash floods in urban settings. We will examine the relationship between radar rainfall estimates and gage rainfall rates for a catalog of 30 storms in St. Louis during the period of polarimetric radar measurements, 2012-2016. The storms are selected to provide a large sample of extreme rainfall measurements at the 15-minute to 3-hour time scale. A network of 100 rain gages and a lack of orographic or coastal effects make St. Louis an interesting location to study these relationships. A better understanding of the relationships between polarimetric radar measurements and gage rainfall rates will aid in refining polarimetric radar rainfall algorithms, in turn helping hydrometeorologists predict flash floods and other hazards associated with severe rainfall. Given the fact that St. Louis contains some of the flashiest watersheds in the United States (Smith and Smith, 2015), it is an especially important urban area in which to have accurate, real-time rainfall data. Smith, Brianne K, and James A Smith. "The Flashiest Watersheds in the Contiguous United States." American Meteorological Society (2015): 2365-2381. Web.

  3. 36 CFR 251.9 - Management of Municipal Watersheds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Watersheds. 251.9 Section 251.9 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Miscellaneous Land Uses Natural Resources Control § 251.9 Management of Municipal Watersheds. (a) The Forest Service shall manage National Forest watersheds that supply municipal water under...

  4. 36 CFR 251.9 - Management of Municipal Watersheds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Watersheds. 251.9 Section 251.9 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Miscellaneous Land Uses Natural Resources Control § 251.9 Management of Municipal Watersheds. (a) The Forest Service shall manage National Forest watersheds that supply municipal water under...

  5. 36 CFR 251.9 - Management of Municipal Watersheds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Watersheds. 251.9 Section 251.9 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Miscellaneous Land Uses Natural Resources Control § 251.9 Management of Municipal Watersheds. (a) The Forest Service shall manage National Forest watersheds that supply municipal water under...

  6. 36 CFR 251.9 - Management of Municipal Watersheds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Watersheds. 251.9 Section 251.9 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Miscellaneous Land Uses Natural Resources Control § 251.9 Management of Municipal Watersheds. (a) The Forest Service shall manage National Forest watersheds that supply municipal water under...

  7. 36 CFR 251.9 - Management of Municipal Watersheds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Watersheds. 251.9 Section 251.9 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE LAND USES Miscellaneous Land Uses Natural Resources Control § 251.9 Management of Municipal Watersheds. (a) The Forest Service shall manage National Forest watersheds that supply municipal water under...

  8. Relationships and trends of E. Coli, human-associated bacteroides, and pathogens in the Proctor Creek watershed (GWRC 2017)

    EPA Science Inventory

    Urban surface waters can be impacted by anthropogenic sources such as impervious surfaces, sani-tary and storm sewers, and failing infrastructure. Fecal indicator bacteria (FIB) and microbial source tracking (MST) markers are common gauges of stream water qual-ity, however, litt...

  9. Impacts of land management practices on stream microbial loading in Northeast GA

    EPA Science Inventory

    Identification of dominant source(s) of fecal pollution in a watershed is necessary for assessing the safety of recreational water and for protecting water resources. The objective of this study was to examine the relative abundance of molecular fecal markers from two cattle farm...

  10. The Water, Energy, and Biogeochemical Model (WEBMOD): A TOPMODEL application developed within the Modular Modeling System

    NASA Astrophysics Data System (ADS)

    Webb, R. M.; Wolock, D. M.; Linard, J. I.; Wieczorek, M. E.

    2004-12-01

    Process-based flow and transport simulation models can help increase understanding of how hydrologic flow paths affect biogeochemical mixing and reactions in watersheds. This presentation describes the Water, Energy, and Biogeochemical Model (WEBMOD), a new model designed to simulate water and chemical transport in both pristine and agricultural watersheds. WEBMOD simulates streamflow using TOPMODEL algorithms and also simulates irrigation, canopy interception, snowpack, and tile-drain flow; these are important processes for successful multi-year simulations of agricultural watersheds. In addition, the hydrologic components of the model are linked to the U.S. Geological Survey's (USGS) geochemical model PHREEQC such that solute chemistry for the hillslopes and streams also are computed. Model development, execution, and calibration take place within the USGS Modular Modeling System. WEBMOD is being validated at ten research watersheds. Five of these watersheds are nearly pristine and comprise the USGS Water, Energy, and Biogeochemical Budget (WEBB) Program field sites: Loch Vale, Colorado; Trout Lake, Wisconsin; Sleepers River, Vermont; Panola Mountain, Georgia; and the Luquillo Experimental Forest, Puerto Rico. The remaining five watersheds contain intensely cultivated fields being studied by USGS National Water Quality Assessment Program: Merced River, California; Granger Drain, Washington; Maple Creek, Nebraska; Sugar Creek, Indiana; and Morgan Creek, Delaware. Model calibration improved understanding of observed variations in soil moisture, solute concentrations, and stream discharge at the five WEBB watersheds and is now being set up to simulate the processes at the five agricultural watersheds that are now ending their first year of data collection.

  11. Storm Event Suspended Sediment-Discharge Hysteresis and Controls in Agricultural Watersheds: Implications for Watershed Scale Sediment Management.

    PubMed

    Sherriff, Sophie C; Rowan, John S; Fenton, Owen; Jordan, Philip; Melland, Alice R; Mellander, Per-Erik; hUallacháin, Daire Ó

    2016-02-16

    Within agricultural watersheds suspended sediment-discharge hysteresis during storm events is commonly used to indicate dominant sediment sources and pathways. However, availability of high-resolution data, qualitative metrics, longevity of records, and simultaneous multiwatershed analyses has limited the efficacy of hysteresis as a sediment management tool. This two year study utilizes a quantitative hysteresis index from high-resolution suspended sediment and discharge data to assess fluctuations in sediment source location, delivery mechanisms and export efficiency in three intensively farmed watersheds during events over time. Flow-weighted event sediment export was further considered using multivariate techniques to delineate rainfall, stream hydrology, and antecedent moisture controls on sediment origins. Watersheds with low permeability (moderately- or poorly drained soils) with good surface hydrological connectivity, therefore, had contrasting hysteresis due to source location (hillslope versus channel bank). The well-drained watershed with reduced connectivity exported less sediment but, when watershed connectivity was established, the largest event sediment load of all watersheds occurred. Event sediment export was elevated in arable watersheds when low groundcover was coupled with high connectivity, whereas in the grassland watershed, export was attributed to wetter weather only. Hysteresis analysis successfully indicated contrasting seasonality, connectivity and source availability and is a useful tool to identify watershed specific sediment management practices.

  12. Genome analysis of Legionella pneumophila strains using a mixed-genome microarray.

    PubMed

    Euser, Sjoerd M; Nagelkerke, Nico J; Schuren, Frank; Jansen, Ruud; Den Boer, Jeroen W

    2012-01-01

    Legionella, the causative agent for Legionnaires' disease, is ubiquitous in both natural and man-made aquatic environments. The distribution of Legionella genotypes within clinical strains is significantly different from that found in environmental strains. Developing novel genotypic methods that offer the ability to distinguish clinical from environmental strains could help to focus on more relevant (virulent) Legionella species in control efforts. Mixed-genome microarray data can be used to perform a comparative-genome analysis of strain collections, and advanced statistical approaches, such as the Random Forest algorithm are available to process these data. Microarray analysis was performed on a collection of 222 Legionella pneumophila strains, which included patient-derived strains from notified cases in The Netherlands in the period 2002-2006 and the environmental strains that were collected during the source investigation for those patients within the Dutch National Legionella Outbreak Detection Programme. The Random Forest algorithm combined with a logistic regression model was used to select predictive markers and to construct a predictive model that could discriminate between strains from different origin: clinical or environmental. Four genetic markers were selected that correctly predicted 96% of the clinical strains and 66% of the environmental strains collected within the Dutch National Legionella Outbreak Detection Programme. The Random Forest algorithm is well suited for the development of prediction models that use mixed-genome microarray data to discriminate between Legionella strains from different origin. The identification of these predictive genetic markers could offer the possibility to identify virulence factors within the Legionella genome, which in the future may be implemented in the daily practice of controlling Legionella in the public health environment.

  13. TEAM: efficient two-locus epistasis tests in human genome-wide association study.

    PubMed

    Zhang, Xiang; Huang, Shunping; Zou, Fei; Wang, Wei

    2010-06-15

    As a promising tool for identifying genetic markers underlying phenotypic differences, genome-wide association study (GWAS) has been extensively investigated in recent years. In GWAS, detecting epistasis (or gene-gene interaction) is preferable over single locus study since many diseases are known to be complex traits. A brute force search is infeasible for epistasis detection in the genome-wide scale because of the intensive computational burden. Existing epistasis detection algorithms are designed for dataset consisting of homozygous markers and small sample size. In human study, however, the genotype may be heterozygous, and number of individuals can be up to thousands. Thus, existing methods are not readily applicable to human datasets. In this article, we propose an efficient algorithm, TEAM, which significantly speeds up epistasis detection for human GWAS. Our algorithm is exhaustive, i.e. it does not ignore any epistatic interaction. Utilizing the minimum spanning tree structure, the algorithm incrementally updates the contingency tables for epistatic tests without scanning all individuals. Our algorithm has broader applicability and is more efficient than existing methods for large sample study. It supports any statistical test that is based on contingency tables, and enables both family-wise error rate and false discovery rate controlling. Extensive experiments show that our algorithm only needs to examine a small portion of the individuals to update the contingency tables, and it achieves at least an order of magnitude speed up over the brute force approach.

  14. Use of Sequent Peak Algorithm Drought Severity Index and Hydroclimatic Reconstructions from Tree-Rings to Inform Water Supply Reliability Planning

    NASA Astrophysics Data System (ADS)

    Bray, B. S.; Palhegyi, G.

    2015-12-01

    California is in the midst of a severe drought with below average runoff since WY 2012. Within this context, many water resource managers are scrutinizing water supply reliability assumptions for planning studies. Severe droughts represent a relatively rare phenomenon, occurring only a handful of times within our limited 100-year period of watershed runoff records. Furthermore, droughts may have different runoff magnitudes and durations that inherently present a challenge for direct comparisons of one drought with another. We use the sequent peak algorithm as a drought severity index (SPADSI) that accounts for both drought magnitude and duration relative to an assumed minimum release policy and fixed level-of-development (LOD) demand modeling framework. The SPADSI allows direct, quantitative evaluation of different policy options for lessening drought severity where, for example, layering a customer rationing policy onto model results reduced the SPADSI for the historical 1976-77 drought from 520 to 450 thousand acre-feet (TAF) and 1987-92 drought from 650 to 415 TAF for 2015 LOD. A strong correlation (R2 = 0.96) between Mokelumne River watershed runoff and tree-ring hydroclimate reconstructions for neighboring American and Stanislaus watersheds from Meko et al. (2014) was the basis for an extended 1100-year historical reconstruction of Mokelumne Watershed annual runoff. The reconstructed runoff timeseries is used to investigate extended historical drought durations for the Mokelumne Watershed where shorter one- to three-year droughts are most probable durations (>90%) whereas longer duration droughts lasting as long as 10 years such as occurred in 1776-85 are also possible, though much less likely. Applying the SPADSI to the reconstructed runoff timeseries showed that recent droughts e.g. 1929-34, 1976-77, and 1987-92 are all relatively severe within this millennial context, falling on the distribution tail of the extended SPADSI dataset. These findings are consistent with Meko et al. (2014) in their analysis of other watersheds in the region. These findings and other insights from the reconstructed runoff timeseries along with the SPADSI provide valuable information for water resource managers evaluating water supply reliability assumptions for future drought planning efforts.

  15. Genomecmp: computer software to detect genomic rearrangements using markers

    NASA Astrophysics Data System (ADS)

    Kulawik, Maciej; Nowak, Robert M.

    2017-08-01

    Detection of genomics rearrangements is a tough task, because of the size of data to be processed. As genome sequences may consist of hundreds of millions symbols, it is not only practically impossible to compare them by hand, but it is also complex problem for computer software. The way to significantly accelerate the process is to use rearrangement detection algorithm based on unique short sequences called markers. The algorithm described in this paper develops markers using base genome and find the markers positions on other genome. The algorithm has been extended by support for ambiguity symbols. Web application with graphical user interface has been created using three-layer architecture, where users could run the task simultaneously. The accuracy and efficiency of proposed solution has been studied using generated and real data.

  16. All Property is Riverfront Property: The Raindrop App and FLOW Project

    NASA Astrophysics Data System (ADS)

    Carter, T.; Miss, M.; Kirn, M.; Niyogi, D.; Bachta, E.; Steckel, J.

    2011-12-01

    Rivers in the United States are essential to sustain lives of both nonhuman species and of human societies. Urban areas rely heavily upon their nearby rivers and watersheds for their survival and yet citizens are often unaware of inextricable linkages between societal and river functions. One way to overcome this lack of awareness is by exploring new avenues for engagement with the general public. In this project, we use three fields for this engagement (science, art, and technology) to produce a river awareness tool that creates connections between citizens and their watersheds through visceral and technological interfaces. The target area is the White River watershed, which is entirely contained within the state of Indiana and encompasses nearly 30,000 km2 in the central and southern portions of the state including the metropolitan region of Indianapolis. We developed a mobile device application called "Raindrop" that uses geographic information systems (GIS) and mobile device GPS technology to map a raindrop's path from a user's home to the river and identifies the various flow paths and pollutant constituents transported by this water along the way. Physical markers along the White River designed by an artist on the project team allows for the virtual features of the application to be grounded in physical space. The use of Raindrop to connect users with their urban watershed is shown to have significant promise for widespread application. A number of key advantages of using this technology over traditional forms of outreach are enumerated below. First, by collaborating with a nationally renowned artist both in the design of the application and for physical markers, the audience for Raindrop is greatly expanded and interesting dynamics between the scientific and artist members of the general public are developed. Second, in urban areas the use of mobile devices and handheld Web technology are ubiquitous and thus the information can be conveyed to an audience in a form that is familiar and relevant. By pulling the mobile device users into physical spaces along the river, the experience is enhanced further. Finally, the ability to concisely display essential watershed, weather, and climate information using iconography, predefined data analysis, and dynamic programming allows for the application to run quickly and usability to be optimized. Future work will focus on end user evaluation and replicability in other urban watersheds around the country.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, W; Miften, M; Jones, B

    Purpose: Pancreatic SBRT relies on extremely accurate delivery of ablative radiation doses to the target, and intra-fractional tracking of fiducial markers can facilitate improvements in dose delivery. However, this requires algorithms that are able to find fiducial markers with high speed and accuracy. The purpose of this study was to develop a novel marker tracking algorithm that is robust against many of the common errors seen with traditional template matching techniques. Methods: Using CBCT projection images, a method was developed to create detailed template images of fiducial marker clusters without prior knowledge of the number of markers, their positions, ormore » their orientations. Briefly, the method (i) enhances markers in projection images, (ii) stabilizes the cluster’s position, (iii) reconstructs the cluster in 3D, and (iv) precomputes a set of static template images dependent on gantry angle. Furthermore, breathing data were used to produce 4D reconstructions of clusters, yielding dynamic template images dependent on gantry angle and breathing amplitude. To test these two approaches, static and dynamic templates were used to track the motion of marker clusters in more than 66,000 projection images from 75 CBCT scans of 15 pancreatic SBRT patients. Results: For both static and dynamic templates, the new technique was able to locate marker clusters present in projection images 100% of the time. The algorithm was also able to correctly locate markers in several instances where only some of the markers were visible due to insufficient field-of-view. In cases where clusters exhibited deformation and/or rotation during breathing, dynamic templates resulted in cross-correlation scores up to 70% higher than static templates. Conclusion: Patient-specific templates provided complete tracking of fiducial marker clusters in CBCT scans, and dynamic templates helped to provide higher cross-correlation scores for deforming/rotating clusters. This novel algorithm provides an extremely accurate method to detect fiducial markers during treatment. Research funding provided by Varian Medical Systems to Miften and Jones.« less

  18. An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform

    DTIC Science & Technology

    2018-01-01

    collected data. These statistical techniques are under the area of descriptive statistics, which is a methodology to condense the data in quantitative ...ARL-TR-8270 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter...report when it is no longer needed. Do not return it to the originator. ARL-TR-8270 ● JAN 2017 US Army Research Laboratory An

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Rebecca L.; Turnbull, Laura; Earl, Stevan

    Urban watersheds are often sources of nitrogen (N) to downstream systems, contributing to poor water quality. However, it is unknown which components (e.g., land cover and stormwater infrastructure type) of urban watersheds contribute to N export and which may be sites of retention. In this study we investigated which watershed characteristics control N sourcing, biogeochemical processing of nitrate (NO3–) during storms, and the amount of rainfall N that is retained within urban watersheds. We used triple isotopes of NO3– (δ15N, δ18O, and Δ17O) to identify sources and transformations of NO3– during storms from 10 nested arid urban watersheds that variedmore » in stormwater infrastructure type and drainage area. Stormwater infrastructure and land cover—retention basins, pipes, and grass cover—dictated the sourcing of NO3– in runoff. Urban watersheds can be strong sinks or sources of N to stormwater depending on the proportion of rainfall that leaves the watershed as runoff, but we found no evidence that denitrification occurred during storms. Our results suggest that watershed characteristics control the sources and transport of inorganic N in urban stormwater but that retention of inorganic N at the timescale of individual runoff events is controlled by hydrologic, rather than biogeochemical, mechanisms.« less

  20. Hillslope characterization: Identifying key controls on local-scale plant communities' distribution using remote sensing and subsurface data fusion.

    NASA Astrophysics Data System (ADS)

    Falco, N.; Wainwright, H. M.; Dafflon, B.; Leger, E.; Peterson, J.; Steltzer, H.; Wilmer, C.; Williams, K. H.; Hubbard, S. S.

    2017-12-01

    Mountainous watershed systems are characterized by extreme heterogeneity in hydrological and pedological properties that influence biotic activities, plant communities and their dynamics. To gain predictive understanding of how ecosystem and watershed system evolve under climate change, it is critical to capture such heterogeneity and to quantify the effect of key environmental variables such as topography, and soil properties. In this study, we exploit advanced geophysical and remote sensing techniques - coupled with machine learning - to better characterize and quantify the interactions between plant communities' distribution and subsurface properties. First, we have developed a remote sensing data fusion framework based on the random forest (RF) classification algorithm to estimate the spatial distribution of plant communities. The framework allows the integration of both plant spectral and structural information, which are derived from multispectral satellite images and airborne LiDAR data. We then use the RF method to evaluate the estimated plant community map, exploiting the subsurface properties (such as bedrock depth, soil moisture and other properties) and geomorphological parameters (such as slope, curvature) as predictors. Datasets include high-resolution geophysical data (electrical resistivity tomography) and LiDAR digital elevation maps. We demonstrate our approach on a mountain hillslope and meadow within the East River watershed in Colorado, which is considered to be a representative headwater catchment in the Upper Colorado Basin. The obtained results show the existence of co-evolution between above and below-ground processes; in particular, dominant shrub communities in wet and flat areas. We show that successful integration of remote sensing data with geophysical measurements allows identifying and quantifying the key environmental controls on plant communities' distribution, and provides insights into their potential changes in the future climate conditions.

  1. Sensitivity and Uncertainty Analysis for Streamflow Prediction Using Different Objective Functions and Optimization Algorithms: San Joaquin California

    NASA Astrophysics Data System (ADS)

    Paul, M.; Negahban-Azar, M.

    2017-12-01

    The hydrologic models usually need to be calibrated against observed streamflow at the outlet of a particular drainage area through a careful model calibration. However, a large number of parameters are required to fit in the model due to their unavailability of the field measurement. Therefore, it is difficult to calibrate the model for a large number of potential uncertain model parameters. This even becomes more challenging if the model is for a large watershed with multiple land uses and various geophysical characteristics. Sensitivity analysis (SA) can be used as a tool to identify most sensitive model parameters which affect the calibrated model performance. There are many different calibration and uncertainty analysis algorithms which can be performed with different objective functions. By incorporating sensitive parameters in streamflow simulation, effects of the suitable algorithm in improving model performance can be demonstrated by the Soil and Water Assessment Tool (SWAT) modeling. In this study, the SWAT was applied in the San Joaquin Watershed in California covering 19704 km2 to calibrate the daily streamflow. Recently, sever water stress escalating due to intensified climate variability, prolonged drought and depleting groundwater for agricultural irrigation in this watershed. Therefore it is important to perform a proper uncertainty analysis given the uncertainties inherent in hydrologic modeling to predict the spatial and temporal variation of the hydrologic process to evaluate the impacts of different hydrologic variables. The purpose of this study was to evaluate the sensitivity and uncertainty of the calibrated parameters for predicting streamflow. To evaluate the sensitivity of the calibrated parameters three different optimization algorithms (Sequential Uncertainty Fitting- SUFI-2, Generalized Likelihood Uncertainty Estimation- GLUE and Parameter Solution- ParaSol) were used with four different objective functions (coefficient of determination- r2, Nash-Sutcliffe efficiency- NSE, percent bias- PBIAS, and Kling-Gupta efficiency- KGE). The preliminary results showed that using the SUFI-2 algorithm with the objective function NSE and KGE has improved significantly the calibration (e.g. R2 and NSE is found 0.52 and 0.47 respectively for daily streamflow calibration).

  2. Measurement Marker Recognition In A Time Sequence Of Infrared Images For Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Fiorini, A. R.; Fumero, R.; Marchesi, R.

    1986-03-01

    In thermographic measurements, quantitative surface temperature evaluation is often uncertain. The main reason is in the lack of available reference points in transient conditions. Reflective markers were used for automatic marker recognition and pixel coordinate computations. An algorithm selects marker icons to match marker references where particular luminance conditions are satisfied. Automatic marker recognition allows luminance compensation and temperature calibration of recorded infrared images. A biomedical application is presented: the dynamic behaviour of the surface temperature distributions is investigated in order to study the performance of two different pumping systems for extracorporeal circulation. Sequences of images are compared and results are discussed. Finally, the algorithm allows to monitor the experimental environment and to alert for the presence of unusual experimental conditions.

  3. The Minnesota Center for Twin and Family Research Genome-Wide Association Study

    PubMed Central

    Miller, Michael B.; Basu, Saonli; Cunningham, Julie; Eskin, Eleazar; Malone, Steven M.; Oetting, William S.; Schork, Nicholas; Sul, Jae Hoon; Iacono, William G.; Mcgue, Matt

    2012-01-01

    As part of the Genes, Environment and Development Initiative (GEDI), the Minnesota Center for Twin and Family Research (MCTFR) undertook a genome-wide association study (GWAS), which we describe here. A total of 8405 research participants, clustered in 4-member families, have been successfully genotyped on 527,829 single nucleotide polymorphism (SNP) markers using Illumina’s Human660W-Quad array. Quality control screening of samples and markers as well as SNP imputation procedures are described. We also describe methods for ancestry control and how the familial clustering of the MCTFR sample can be accounted for in the analysis using a Rapid Feasible Generalized Least Squares algorithm. The rich longitudinal MCTFR assessments provide numerous opportunities for collaboration. PMID:23363460

  4. A novel algorithm for delineating wetland depressions and ...

    EPA Pesticide Factsheets

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features that are seldom fully filled with water. For instance, wetland depressions in the Prairie Pothole Region (PPR) are seasonally to permanently flooded wetlands characterized by nested hierarchical structures with dynamic filling- spilling-merging surface-water hydrological processes. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution LiDAR data and aerial imagery. We proposed a novel algorithm delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost path algorithm. The resulting flow network delineated putative temporary or seasonal flow paths connecting wetland depressions to each other or to the river network at scales finer than available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow modeling and hydrologic connectivity analysis. Presentation at AWRA Spring Specialty Conference in Sn

  5. Developing an algorithm of informative markers for evaluation of chimerism after allogeneic bone marrow transplantation.

    PubMed

    Sellathamby, S; Balasubramanian, P; Sivalingam, S; Shaji, R V; Mathews, V; George, B; Viswabandya, A; Srivastava, A; Chandy, M

    2006-04-01

    Analysis of chimerism by polymerase chain reaction amplification of STR or VNTR has become a routine procedure for the evaluation of engraftment after allogeneic stem cell transplantation. Knowledge of the frequency of different STR or VNTR alleles in unrelated individuals in a population is useful for forensic work. In the context of HLA identical sibling bone marrow transplantation the informativeness of these markers needs to be evaluated. We evaluated five STRs (THO1, VWA, FES, ACTBP2, and F13A1) and 1 VNTR (APOB) for informativeness in stem cell transplants from HLA identical sibling donors. All four markers used individually allowed us to discriminate 20-56% of the patient donor pairs. Using a combination of all these markers along with a polymorphic marker in the beta-globin gene and the sex chromosome specific amelogenin marker, we were able to discriminate 99% of the patient donor pairs. We have established an algorithm for evaluating chimerism following HLA identical sibling donor transplants in the Indian population using molecular markers in 310 patients. Analysis of heterozygote frequencies in different populations is similar suggesting that this algorithm can be used universally for transplant centers to evaluate chimerism following allogeneic bone marrow transplantation.

  6. Geospatial tool-based morphometric analysis using SRTM data in Sarabanga Watershed, Cauvery River, Salem district, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Arulbalaji, P.; Gurugnanam, B.

    2017-11-01

    A morphometric analysis of Sarabanga watershed in Salem district has been chosen for the present study. Geospatial tools, such as remote sensing and GIS, are utilized for the extraction of river basin and its drainage networks. The Shuttle Radar Topographic Mission (SRTM-30 m resolution) data have been used for morphometric analysis and evaluating various morphometric parameters. The morphometric parameters of Sarabanga watershed have been analyzed and evaluated by pioneer methods, such as Horton and Strahler. The dendritic type of drainage pattern is draining the Sarabanga watershed, which indicates that lithology and gentle slope category is controlling the study area. The Sarabanga watershed is covered an area of 1208 km2. The slope of the watershed is various from 10 to 40% and which is controlled by lithology of the watershed. The bifurcation ratio ranges from 3 to 4.66 indicating the influence of geological structure and suffered more structural disturbances. The form factor indicates elongated shape of the study area. The total stream length and area of watershed indicate that mean annual rainfall runoff is relatively moderate. The basin relief expressed that watershed has relatively high denudation rates. The drainage density of the watershed is low indicating that infiltration is more dominant. The ruggedness number shows the peak discharges that are likely to be relatively higher. The present study is very useful to plan the watershed management.

  7. Effects of prescribed fire on recruitment of Juniperus and Opuntia in a semiarid grassland watershed

    Treesearch

    Burton K. Pendleton; Rosemary L. Pendleton; Carleton S. White

    2008-01-01

    The Bernalillo Watershed Protection Project was begun in 1953 following catastrophic erosion and flooding of small communities below. Although erosion control features and protection from grazing successfully increased grass cover and stabilized watershed soils, the expansion of juniper woodland (Juniperus monosperma) into the grassland watershed...

  8. Effects of watershed management practices on sediment concentrations in the southwestern United States: Management implications

    Treesearch

    Vicente L. Lopes; Peter F. Ffolliott; Malchus B. Baker

    2000-01-01

    Effects of watershed management practices on suspended sediment concentrations from ponderosa pine forests and pinyon-juniper woodlands in the Southwestern United States are examined. Completely cleared and strip-cut ponderosa pine watersheds produced higher sediment concentrations than the control. Likewise, cabled and herbicide-treated pinyon-juniper watersheds...

  9. L-split marker for augmented reality in aircraft assembly

    NASA Astrophysics Data System (ADS)

    Han, Pengfei; Zhao, Gang

    2016-04-01

    In order to improve the performance of conventional square markers widely used by marker-based augmented reality systems in aircraft assembly environments, an L-split marker is proposed. Every marker consists of four separate L-shaped parts and each of them contains partial information about the marker. Geometric features of the L-shape, which are more discriminate than the symmetrical square shape adopted by conventional markers, are used to detect proposed markers from the camera images effectively. The marker is split into four separate parts in order to improve the robustness to occlusion and curvature to some extent. The registration process can be successfully completed as long as three parts are detected (up to about 80% of the area could be occluded). Moreover, when we attach the marker on nonplanar surfaces, the curvature status of the marker can be roughly analyzed with every part's normal direction, which can be obtained since their six corners have been explicitly determined in the previous detection process. And based on the marker design, new detection and recognition algorithms are proposed and detailed. The experimental results show that the marker and the algorithms are effective.

  10. Traditional and Host-Associated Fecal Indicator Bacterial Patterns in Southern California Watersheds: Field Source Identification Studies and Laboratory Microcosms Investigating Presence and Persistence in Water and Sediments

    NASA Astrophysics Data System (ADS)

    Mika, Kathryn Beth

    Overall, recreational beach water quality remains an issue of concern in Southern California and across the globe. Many factors come into play when determining water quality, including physical issues such as the myriad sources that contribute pollution to the site and financial and political issues that control the way water quality is monitored and determined. Current national regulations require the monitoring of fecal indicator bacteria in order to determine recreational water quality. However, it is also important to identify biological and geographical sources of pollution to consistently impaired locations. A commonly applied approach to meet the goals of source identification is to sample sites that have been high in FIB for further study. A tiered approach such as this, however, assumes a correlation between FIB and the sources of interest in the watershed. The research described in this dissertation tests this assumption in two Southern California watersheds, Santa Monica Canyon and Ventura Harbor. In both cases, a tiered approach to sampling using FIB as a first tier to guide sampling would have failed to identify sources of human fecal pollution (as identified by the presence of the human-associated Bacteroides marker HF183). Every watershed is a distinct environment that has different potential sources of bacteria and many factors contributing to the persistence of the bacteria. Rather than attempting to apply an indicator that has worked as a first tier in other watersheds, it would be better to have as a first tier an in-depth study of the watershed using historical data or local experts to provide information on the most likely sources of pollution in the watershed. Using this information it would be possible to design a study using FIB and one or more source-associated parameters to identify specific sources of pollution in the watershed. In addition, sampling FIB and other parameters such as HF183 allow the application of other microbial source tracking tools including indicator ratios and detection frequencies. Source identification studies do not necessarily have to be long-term to identify consistent sources of pollution. For example, within the first four months of sampling at Ventura, the increased frequency of detection of HF183 at the Marina Dock sample location was apparent, and a dry weather influx of HF183 was seen in the Keys channels. In addition to the many sources of FIB to the environment such as storm drains, leaking sewers, and wildlife, there are important environmental reservoirs such as sand and seaweed that can foster FIB growth and persistence in the environment. As such, it is important to understand the effect of different factors on the ability of bacteria to survive and persist in these reservoirs. Microcosm experiments conducted during the course of this dissertation research found that in dry beach sand (0.1% moisture), the addition of moisture was detrimental to the survival of the indicators studied (General Bacteroidales, E. coli, and enterococci). While increased moisture was not always detrimental to bacterial survival, these results point to the ability of bacteria to persist for long periods of time in beach environments under in-situ conditions (including dry sand). These findings point to the importance of understanding the behavior of indicator bacteria populations that have evolved to survive in environmental conditions so that their potential impact on overlying or adjacent water quality can be better understood. In summation, results from this research point to the importance of selecting indicators and sample locations that are most relevant to watershed concerns rather than using a first tier such as FIB to preferentially select sites for further analysis. Measuring a marker for human fecal pollution in both watershed studies provided useful information for potential human inputs that would have been missed if sites were chosen based on high FIB levels. In addition it is very important to understand the contribution of different reservoirs, such as sand, in the study area to the observed microbial pollution. Overall, these results point to the need for further examination of the ability of bacteria to survive under various environmental conditions in both water and sand, using both environmental microbial populations and populations from likely sources such as human sewage.

  11. Testing a two-scale focused conservation strategy for reducing phosphorus and sediment loads from agricultural watersheds

    USGS Publications Warehouse

    Carvin, Rebecca; Good, Laura W.; Fitzpatrick, Faith A.; Diehl, Curt; Songer, Katherine; Meyer, Kimberly J.; Panuska, John C.; Richter, Steve; Whalley, Kyle

    2018-01-01

    This study tested a focused strategy for reducing phosphorus (P) and sediment loads in agricultural streams. The strategy involved selecting small watersheds identified as likely to respond relatively quickly, and then focusing conservation practices on high-contributing fields within those watersheds. Two 5,000 ha (12,360 ac) watersheds in the Driftless Area of south central Wisconsin, previously ranked in the top 6% of similarly sized Wisconsin watersheds for expected responsiveness to conservation efforts to reduce high P and sediment loads, were chosen for the study. The stream outlets from both watersheds were monitored from October of 2006 through September of 2016 for streamflow and concentrations of sediment, total P, and, beginning in October of 2009, total dissolved P. Fields and pastures having the highest potential P delivery to the streams in each watershed were identified using the Wisconsin P Index (Good et al. 2012). After three years of baseline monitoring (2006 to 2009), farmers implemented both field- and farm-based conservation practices in one watershed (treatment) as a means to reduce sediment and P inputs to the stream from the highest contributing areas, whereas there were no out-of-the-ordinary conservation efforts in the second watershed (control). Implementation occurred primarily in 2011 and 2012. In the four years following implementation of conservation practices (2013 through 2016), there was a statistically significant reduction in storm-event suspended sediment loads in the treatment watershed compared to the control watershed when the ground was not frozen (p = 0.047). While there was an apparent reduction in year-round suspended sediment event loads, it was not statistically significant at the 95% confidence level (p = 0.15). Total P loads were significantly reduced for runoff events (p < 0.01) with a median reduction of 50%. Total P and total dissolved P concentrations for low-flow conditions were also significantly reduced (p < 0.01) compared to the control watershed. This study demonstrated that a strategy that first identifies watersheds likely to respond to conservation efforts and then focuses implementation on relatively high-contributing fields within those watersheds can be successful in reducing stream P concentrations and loads.

  12. Biogeochemical and Hydrological Controls on Mercury and Methylmercury in First Order Coastal Plain Watersheds of the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Heyes, A.; Gilmour, C. C.; Bell, J. T.; Butera, D.; McBurney, A. W.

    2015-12-01

    Over the past 7 years we made use of the long-term research site at the Smithsonian Environmental Research Center (SERC) in central Maryland to study the fluxes of mercury (Hg) and methylmercury (MeHg) in three small first-order mid-Atlantic coastal plain watersheds. One watershed is entirely forested, one watershed is primarily agriculture with a forested stream buffer, and one watershed is mixed land use but contains a beaver produced wetland pond. Our initial goals were to assess watershed Hg yields in the mid-Atlantic and to establish a baseline prior to implementation of Hg emissions controls. All three studied watersheds produced relatively high yields of Hg, with the greatest yield coming from the forested watershed. Our initial evaluation of three watersheds showed that MeHg production and flux could also be high, but varied dramatically among watersheds and across years and seasons. During each year we observed episodic MeHg production in the spring and sometimes during prolonged high-flow storm events in the fall. The observed spring maxima of MeHg release coincided with development of anoxia in riparian groundwater. MeHg accumulation in riparian groundwater began once nitrate was depleted and either iron accumulation or sulfate depletion of groundwater began. We propose the presence of nitrate was modulating MeHg production through the suppression of sulfate and iron reducers and perhaps methanogens. As sulfate is not limiting in any of the watersheds owing to the sediments marine origin, we hypothesize the depletion of nitrate allows sulfate reducing bacteria to now utilize available carbon. Although wetlands are generally thought of as the primary zones of MeHg production in watersheds, shallow riparian groundwaters very close to the stream appear to play that role in SERC Coastal Plain watersheds. We hypothesize that the balance between nitrate, sulfate and other microbial electron acceptors in watersheds is a major control on MeHg production. Land management practices that change upset this balance by changing nitrate load and carbon quality will undoubtedly impact the cycling of Hg.

  13. The ambiguity of "watershed": the politics of people and conservation in northern Thailand.

    PubMed

    Pinkaew Laungaramsri

    2000-04-01

    The current conflict over watershed management between the lowlanders and highlanders in Chomthong has unveiled various aspects of the politics of people versus nature conservation. What is important is that the conflict has exposed the shifting and inconsistent views of the Thai state towards the peripheral areas and its people. Thus, on the one hand, the official discourse on "watershed" was appropriated by the urban middle-class conservationists and lowlanders to legitimize their control of highland resources to the exclusion of the highland minorities. The two groups also used ethnic differences to justify their control over the highland resources. On the other hand, the conflict also showed that the control by the dominant power could never be absolute. Highlanders responded to the "watershed regime" by redefining watershed integrity, adapting to the state conservation pressure, and seeking and forming alliances with other groups.

  14. Validation of contour-driven thin-plate splines for tracking fraction-to-fraction changes in anatomy and radiation therapy dose mapping.

    PubMed

    Schaly, B; Bauman, G S; Battista, J J; Van Dyk, J

    2005-02-07

    The goal of this study is to validate a deformable model using contour-driven thin-plate splines for application to radiation therapy dose mapping. Our testing includes a virtual spherical phantom as well as real computed tomography (CT) data from ten prostate cancer patients with radio-opaque markers surgically implanted into the prostate and seminal vesicles. In the spherical mathematical phantom, homologous control points generated automatically given input contour data in CT slice geometry were compared to homologous control point placement using analytical geometry as the ground truth. The dose delivered to specific voxels driven by both sets of homologous control points were compared to determine the accuracy of dose tracking via the deformable model. A 3D analytical spherically symmetric dose distribution with a dose gradient of approximately 10% per mm was used for this phantom. This test showed that the uncertainty in calculating the delivered dose to a tissue element depends on slice thickness and the variation in defining homologous landmarks, where dose agreement of 3-4% in high dose gradient regions was achieved. In the patient data, radio-opaque marker positions driven by the thin-plate spline algorithm were compared to the actual marker positions as identified in the CT scans. It is demonstrated that the deformable model is accurate (approximately 2.5 mm) to within the intra-observer contouring variability. This work shows that the algorithm is appropriate for describing changes in pelvic anatomy and for the dose mapping application with dose gradients characteristic of conformal and intensity modulated radiation therapy.

  15. Analysis of facial motion patterns during speech using a matrix factorization algorithm

    PubMed Central

    Lucero, Jorge C.; Munhall, Kevin G.

    2008-01-01

    This paper presents an analysis of facial motion during speech to identify linearly independent kinematic regions. The data consists of three-dimensional displacement records of a set of markers located on a subject’s face while producing speech. A QR factorization with column pivoting algorithm selects a subset of markers with independent motion patterns. The subset is used as a basis to fit the motion of the other facial markers, which determines facial regions of influence of each of the linearly independent markers. Those regions constitute kinematic “eigenregions” whose combined motion produces the total motion of the face. Facial animations may be generated by driving the independent markers with collected displacement records. PMID:19062866

  16. Advancing computational methods for calibration of the Soil and Water Assessment Tool (SWAT): Application for modeling climate change impacts on water resources in the Upper Neuse Watershed of North Carolina

    NASA Astrophysics Data System (ADS)

    Ercan, Mehmet Bulent

    Watershed-scale hydrologic models are used for a variety of applications from flood prediction, to drought analysis, to water quality assessments. A particular challenge in applying these models is calibration of the model parameters, many of which are difficult to measure at the watershed-scale. A primary goal of this dissertation is to contribute new computational methods and tools for calibration of watershed-scale hydrologic models and the Soil and Water Assessment Tool (SWAT) model, in particular. SWAT is a physically-based, watershed-scale hydrologic model developed to predict the impact of land management practices on water quality and quantity. The dissertation follows a manuscript format meaning it is comprised of three separate but interrelated research studies. The first two research studies focus on SWAT model calibration, and the third research study presents an application of the new calibration methods and tools to study climate change impacts on water resources in the Upper Neuse Watershed of North Carolina using SWAT. The objective of the first two studies is to overcome computational challenges associated with calibration of SWAT models. The first study evaluates a parallel SWAT calibration tool built using the Windows Azure cloud environment and a parallel version of the Dynamically Dimensioned Search (DDS) calibration method modified to run in Azure. The calibration tool was tested for six model scenarios constructed using three watersheds of increasing size (the Eno, Upper Neuse, and Neuse) for both a 2 year and 10 year simulation duration. Leveraging the cloud as an on demand computing resource allowed for a significantly reduced calibration time such that calibration of the Neuse watershed went from taking 207 hours on a personal computer to only 3.4 hours using 256 cores in the Azure cloud. The second study aims at increasing SWAT model calibration efficiency by creating an open source, multi-objective calibration tool using the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). This tool was demonstrated through an application for the Upper Neuse Watershed in North Carolina, USA. The objective functions used for the calibration were Nash-Sutcliffe (E) and Percent Bias (PB), and the objective sites were the Flat, Little, and Eno watershed outlets. The results show that the use of multi-objective calibration algorithms for SWAT calibration improved model performance especially in terms of minimizing PB compared to the single objective model calibration. The third study builds upon the first two studies by leveraging the new calibration methods and tools to study future climate impacts on the Upper Neuse watershed. Statistically downscaled outputs from eight Global Circulation Models (GCMs) were used for both low and high emission scenarios to drive a well calibrated SWAT model of the Upper Neuse watershed. The objective of the study was to understand the potential hydrologic response of the watershed, which serves as a public water supply for the growing Research Triangle Park region of North Carolina, under projected climate change scenarios. The future climate change scenarios, in general, indicate an increase in precipitation and temperature for the watershed in coming decades. The SWAT simulations using the future climate scenarios, in general, suggest an increase in soil water and water yield, and a decrease in evapotranspiration within the Upper Neuse watershed. In summary, this dissertation advances the field of watershed-scale hydrologic modeling by (i) providing some of the first work to apply cloud computing for the computationally-demanding task of model calibration; (ii) providing a new, open source library that can be used by SWAT modelers to perform multi-objective calibration of their models; and (iii) advancing understanding of climate change impacts on water resources for an important watershed in the Research Triangle Park region of North Carolina. The third study leveraged the methodological advances presented in the first two studies. Therefore, the dissertation contains three independent by interrelated studies that collectively advance the field of watershed-scale hydrologic modeling and analysis.

  17. WE-E-213CD-01: Best in Physics (Joint Imaging-Therapy) - Evaluation of Deformation Algorithm Accuracy with a Two-Dimensional Anatomical Pelvic Phantom.

    PubMed

    Kirby, N; Chuang, C; Pouliot, J

    2012-06-01

    To objectively evaluate the accuracy of 11 different deformable registration techniques for bladder filling. The phantom represents an axial plane of the pelvic anatomy. Urethane plastic serves as the bony anatomy and urethane rubber with three levels of Hounsfield units (HU) is used to represent fat and organs, including the prostate. A plastic insert is placed into the phantom to simulate bladder filling. Nonradiopaque markers reside on the phantom surface. Optical camera images of these markers are used to measure the positions and determine the deformation from the bladder insert. Eleven different deformable registration techniques are applied to the full- and empty-bladder computed tomography images of the phantom to calculate the deformation. The applied algorithms include those from MIMVista Software and Velocity Medical Solutions and 9 different implementations from the Deformable Image Registration and Adaptive Radiotherapy Toolbox for Matlab. The distance to agreement between the measured and calculated deformations is used to evaluate algorithm error. Deformable registration warps one image to make it similar to another. The root-mean-square (RMS) difference between the HUs at the marker locations on the empty-bladder phantom and those at the calculated marker locations on the full-bladder phantom is used as a metric for image similarity. The percentage of the markers with an error larger than 3 mm ranges from 3.1% to 28.2% with the different registration techniques. This range is 1.1% to 3.7% for a 7 mm error. The least accurate algorithm at 3 mm is also the most accurate at 7 mm. Also, the least accurate algorithm at 7 mm produces the lowest RMS difference. Different deformation algorithms generate very different results and the outcome of any one algorithm can be misleading. Thus, these algorithms require quality assurance. The two-dimensional phantom is an objective tool for this purpose. © 2012 American Association of Physicists in Medicine.

  18. Water productivity of different land uses in watersheds assessed from satellite imagery Landsat 5 Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Franco, Renato A. M.; Hernandez, Fernando B. T.; Teixeira, Antonio H. C.

    2014-10-01

    Water productivity (WP) of various classes of soil usage from watersheds was estimated using the SAFER - Simple Algorithm For Evapotranspiration Retrieving - algorithm and the Monteith equation to estimate the parameters of biomass production (BIO). Monteith's equation is used to quantify the absorbed photosynthetically active radiation (APAR) and Actual Evapotranspiration (ET) was estimated with the SAFER algorithm. The objective of the research is to analyze the spatial-temporal water productivity in watersheds with different uses and soil occupation during the period from 1996 to 2010, in conditions of drought and using the Monteith model to estimate the production of BIO and using the SAFER model for ET. Results indicated an increase of 153.2% in ET value during the period 1997-2010, showing that the irrigated areas were responsible for this increase in ET values. In September 2000, image of day of year (DOY) 210 showed high values of BIO, with averages of 80.67 kg ha-1d-1. In the year 2010 (DOY:177), the mean value of BIO was 62.90 kg ha-1d-1, with an irrigated area with a maximum value of 227.5 kg ha-1d-1. The highest incremental values of BIO is verified from the start of irrigated areas equal to the value of ET, because there is a relationship between BIO and ET. The maximum water productivity (WP) value occurred in June/2001, with 3,08 kg m-3, the second highest value was in 2010 (DOY:177), with a value of 2,97 kg m-3. Irrigated agriculture show the highest WP value, with maximum value of 6.7 kg m-3. The lowest WP was obtained for DOY 267, because of the dry season with condition of low soil moisture.

  19. 40 CFR 141.520 - Is my system subject to the updated watershed control requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Additional Watershed Control...

  20. 40 CFR 141.520 - Is my system subject to the updated watershed control requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Additional Watershed Control...

  1. 40 CFR 141.520 - Is my system subject to the updated watershed control requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Additional Watershed Control...

  2. 40 CFR 141.520 - Is my system subject to the updated watershed control requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Additional Watershed Control...

  3. 40 CFR 141.520 - Is my system subject to the updated watershed control requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Additional Watershed Control...

  4. Enhancement of a 2D front-tracking algorithm with a non-uniform distribution of Lagrangian markers

    NASA Astrophysics Data System (ADS)

    Febres, Mijail; Legendre, Dominique

    2018-04-01

    The 2D front tracking method is enhanced to control the development of spurious velocities for non-uniform distributions of markers. The hybrid formulation of Shin et al. (2005) [7] is considered. A new tangent calculation is proposed for the calculation of the tension force at markers. A new reconstruction method is also proposed to manage non-uniform distributions of markers. We show that for both the static and the translating spherical drop test case the spurious currents are reduced to the machine precision. We also show that the ratio of the Lagrangian grid size Δs over the Eulerian grid size Δx has to satisfy Δs / Δx > 0.2 for ensuring such low level of spurious velocity. The method is found to provide very good agreement with benchmark test cases from the literature.

  5. Whole-system phosphorus balances as a practical tool for lake management

    Treesearch

    Johanna Schussler; Lawrence A. Baker; Hugh Chester-Jones

    2007-01-01

    Controlling phosphorus (P) inputs to lakes remains a priority of lake management. This study develops watershed P balances for 11 recreational lakes in Minnesota. Areal P input rates to the watersheds ranged from 0.32 to 6.0 kg Pha-1 year-1 and was linearly related to the percentage of watershed in agriculture. Watershed P...

  6. Challenges in Soft Computing: Case Study with Louisville MSD CSO Modeling

    NASA Astrophysics Data System (ADS)

    Ormsbee, L.; Tufail, M.

    2005-12-01

    The principal constituents of soft computing include fuzzy logic, neural computing, evolutionary computation, machine learning, and probabilistic reasoning. There are numerous applications of these constituents (both individually and combination of two or more) in the area of water resources and environmental systems. These range from development of data driven models to optimal control strategies to assist in more informed and intelligent decision making process. Availability of data is critical to such applications and having scarce data may lead to models that do not represent the response function over the entire domain. At the same time, too much data has a tendency to lead to over-constraining of the problem. This paper will describe the application of a subset of these soft computing techniques (neural computing and genetic algorithms) to the Beargrass Creek watershed in Louisville, Kentucky. The application include development of inductive models as substitutes for more complex process-based models to predict water quality of key constituents (such as dissolved oxygen) and use them in an optimization framework for optimal load reductions. Such a process will facilitate the development of total maximum daily loads for the impaired water bodies in the watershed. Some of the challenges faced in this application include 1) uncertainty in data sets, 2) model application, and 3) development of cause-and-effect relationships between water quality constituents and watershed parameters through use of inductive models. The paper will discuss these challenges and how they affect the desired goals of the project.

  7. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.

    PubMed

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  8. High-speed cell recognition algorithm for ultrafast flow cytometer imaging system

    NASA Astrophysics Data System (ADS)

    Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang

    2018-04-01

    An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.

  9. Hydrologic calibration of paired watersheds using a MOSUM approach

    DOE PAGES

    Ssegane, H.; Amatya, D. M.; Muwamba, A.; ...

    2015-01-09

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managedmore » loblolly pine ( Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass ( Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.« less

  10. Mining Input Data for Multivariate Probabilistic Modeling of Rainfall-Induced Landslide Hazard in the Lake ATITLÁN Watershed in Guatemala

    NASA Astrophysics Data System (ADS)

    Cobin, P. F.; Oommen, T.; Gierke, J. S.

    2013-12-01

    The Lake Atitlán watershed is home to approximately 200,000 people and is located in the western highlands of Guatemala. Steep slopes, highly susceptible to landslides during the rainy season, characterize the region. Typically these landslides occur during high-intensity precipitation events. Hurricane Stan hit Guatemala in October 2005; the resulting flooding and landslides devastated the region. Locations of landslide and non-landslide points were obtained from field observations and orthophotos taken following Hurricane Stan. Different datasets of landslide and non-landslide points across the watershed were used to compare model success at a small scale and regional scale. This study used data from multiple attributes: geology, geomorphology, distance to faults and streams, land use, slope, aspect, curvature, plan curvature, profile curvature and topographic wetness index. The open source software Weka was used for the data mining. Several attribute selection methods were applied to the data to predetermine the potential landslide causative influence. Different multivariate algorithms were then evaluated for their ability to predict landslide occurrence. The following statistical parameters were used to evaluate model accuracy: precision, recall, F measure and area under the receiver operating characteristic (ROC) curve. The attribute combinations of the most successful models were compared to the attribute evaluator results. The algorithm BayesNet yielded the most accurate model and was used to build a probability map of landslide initiation points for the regions selected in the watershed. The ultimate aim of this study is to share the methodology and results with municipal contacts from the author's time as a U.S. Peace Corps volunteer, to facilitate more effective future landslide hazard planning and mitigation.

  11. Simulation of soil loss processes based on rainfall runoff and the time factor of governance in the Jialing River Watershed, China.

    PubMed

    Wu, Lei; Long, Tian-Yu; Liu, Xia; Mmereki, Daniel

    2012-06-01

    Jialing River is the largest tributary in the catchment area of Three Gorges Reservoir, and it is also one of the important areas of sediment yield in the upper reaches of the Yangtze River. In recent years, significant changes of water and sediment characteristics have taken place. The "Long Control" Project implemented since 1989 had greatly changed the surface appearance of the Jialing River Watershed (JRW), and it had made the environments of the watershed sediment yield and sediment transport change significantly. In this research, the Revised Universal Soil Loss Equation was selected and used to predict the annual average amount of soil erosion for the special water and sediment environments in the JRW after the implementation of the "Long Control" Project, and then the rainfall-runoff modulus and the time factor of governance were both considered as dynamic factors, the dynamic sediment transport model was built for soil erosion monitoring and forecasting based on the average sediment yield model. According to the dynamic model, the spatial and temporal distribution of soil erosion amount and sediment transport amount of the JRW from 1990 to 2007 was simulated using geographic information system (GIS) technology and space-grid algorithm. Simulation results showed that the average relative error of sediment transport was less than 10% except for the extreme hydrological year. The relationship between water and sediment from 1990 to 2007 showed that sediment interception effects of the soil and water conservation projects were obvious: the annual average sediment discharge reduced from 145.3 to 35 million tons, the decrement of sediment amount was about 111 million tons, and decreasing amplitude was 76%; the sediment concentration was also decreased from 2.01 to 0.578 kg/m(3). These data are of great significance for the prediction and estimation of the future changing trends of sediment storage in the Three Gorges Reservoir and the particulate non-point source pollution load carried by sediment transport from watershed surface.

  12. Scaling Watershed Models: Modern Approaches to Science Computation with MapReduce, Parallelization, and Cloud Optimization

    EPA Science Inventory

    Environmental models are products of the computer architecture and software tools available at the time of development. Scientifically sound algorithms may persist in their original state even as system architectures and software development approaches evolve and progress. Dating...

  13. Nutrient exports from watersheds with varying septic system densities in the North Carolina Piedmont.

    PubMed

    Iverson, G; Humphrey, C P; O'Driscoll, M A; Sanderford, C; Jernigan, J; Serozi, B

    2018-04-01

    Septic systems (SSs) have been shown to be a significant source of nitrogen and phosphorus to nutrient-sensitive coastal surface and groundwaters. However, few published studies have quantified the effects of SSs on nutrient inputs to water supply watersheds in the Piedmont region of the USA. This region consists of rolling hills at the surface underlain by clayey soils. There are nearly 1 million SSs in this region, which accounts for approximately 50% of all SSs in North Carolina. The goal of this study was to determine if significant differences in nutrient concentrations and exports exist between Piedmont watersheds with different densities of SSs. Water quality was assessed in watersheds with SSs (n = 11) and a sewer and a forested watershed, which were designated as controls. Stream flow and environmental readings were recorded and water samples were collected from the watersheds from January 2015-December 2016. Additional samples were collected from sand filter watersheds in April 2015-March 2016 to compare to septic and control watersheds. Samples were analyzed for total dissolved nitrogen (TDN) and orthophosphate (PO 4 -P). Results indicated that watersheds served by a high-density (HD) of SSs (4.9 kg-N yr -1 ha -1 ; 0.2 kg-P yr -1 ha -1 ) exported more than double the median masses of TDN and PO 4 -P, respectively, relative to low-density (1.0 kg-N yr -1 ha -1 ; <0.1 kg-P yr -1 ha -1 ) and control watersheds (1.4 kg-N yr -1 ha -1 ; <0.1 kg-P yr -1 ha -1 ) during baseflow. Isotopic analysis indicated that wastewater was the most likely source of nitrate-N in HD watersheds. In all other watersheds, isotopic results suggested non-wastewater sources as the dominant nitrate-N provider. These findings indicated that SS density was a significant factor in the delivery of septic-derived nutrients to these nutrient-sensitive, water supply watersheds of the North Carolina Piedmont. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Factors controlling the long-term temporal and spatial patterns of nitrate-nitrogen export in a dairy farming watershed.

    PubMed

    Jiang, Rui; Wang, Chun-ying; Hatano, Ryusuke; Kuramochi, Kanta; Hayakawa, Atsushi; Woli, Krishna P

    2015-04-01

    It is difficult to investigate the factors that control the riverine nitrate-nitrogen (NO3--N) export in a watershed which gains or losses groundwater. To control the NO3--N contamination in these watersheds, it is necessary to investigate the factors that are related to the export of NO3--N that is only produced by the watershed itself. This study was conducted in the Shibetsu watershed located in eastern Hokkaido, Japan, which gains external groundwater contribution (EXT) and 34% of the annual NO3--N loading occurs through EXT. The riverine NO3--N exports from 1980 to 2009 were simulated by the SWAT model, and the factors controlling the temporal and spatial patterns of NO3--N exports were investigated without considering the EXT. The results show that hydrological events control NO3--N export at the seasonal scale, while the hydrological and biogeochemical processes are likely to control NO3--N export at the annual scale. There was an integrated effect among the land use, topography, and soil type related to denitrification process, that regulated the spatial patterns of NO3--N export. The spatial distribution of NO3--N export from hydrologic response units (HRUs) identified the agricultural areas with surplus N that are vulnerable to nitrate contamination. A new standard for the N fertilizer application rate including manure application should be given to control riverine NO3--N export. This study demonstrates that applying the SWAT model is an appropriate method to determine the temporal and spatial patterns of NO3--N export from the watershed which includes EXT and to identify the crucial pollution areas within a watershed in which the management practices can be improved to more effectively control NO3--N export to water bodies.

  15. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation

    PubMed Central

    2013-01-01

    The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening. PMID:23938087

  16. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation.

    PubMed

    Hodneland, Erlend; Kögel, Tanja; Frei, Dominik Michael; Gerdes, Hans-Hermann; Lundervold, Arvid

    2013-08-09

    : The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening.

  17. Spatial characteristics of topography, energy exchange, and forest cover in a central Appalachian watershed

    Treesearch

    Stanislaw J. Tajchman; Hailiang Fu; James N. Kochenderfer; Pan Chunshen

    1995-01-01

    Spatial variation of topography, net radiation, evapotranspiration, and forest stand in the central Appalachian watershed is described. The study area is the control watershed 4 (39"20'N, 79"49"W) located in the Fernow Experimental Forest at Parsons, West Virginia. The watershed encompasses an area of 39.2 ha, it has a southeast orientation, and the...

  18. Soil erosion and sediment production on watershed landscapes: Processes and control

    Treesearch

    Peter F. Ffolliott; Kenneth N. Brooks; Daniel G. Neary; Roberto Pizarro Tapia; Pablo Garcia-Chevesich

    2013-01-01

    Losses of the soil resources from otherwise productive and well functioning watersheds is often a recurring problem confronting hydrologists and watershed managers. These losses of soil have both on-site and off-site effects on the watershed impacted. In addition to the loss of inherent soil resources through erosion processes, on-site effects can include the breakdown...

  19. Artificial watershed acidification on the Fernow Experimental Forest, USA

    Treesearch

    M.B. Adams; P.J. Edwards; F. Wood; J.N. Kochenderfer

    1993-01-01

    A whole-watershed manipulation project was begun on the Fernow Experimental Forest in West Virginia, USA, in 1987, with the objective of increasing understanding of the effects of acidic deposition on forest ecosystems. Two treatment watersheds (WS9 and WS3) and one control watershed (WS4) were included. Treatments were twice-ambient N and S deposition, applied via NH...

  20. Spatially-Distributed Cost–Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution

    PubMed Central

    Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N.; Meng, Fande

    2015-01-01

    Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program–FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ‘‘best approach” depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency. The integrated model approach described that selects and places BMPs at varying levels of implementation, provides a new theoretical basis and technical guidance for diffuse pollution management in agricultural watersheds. PMID:26313561

  1. Spatially-Distributed Cost-Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution.

    PubMed

    Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N; Meng, Fande

    2015-01-01

    Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program-FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ''best approach" depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency. The integrated model approach described that selects and places BMPs at varying levels of implementation, provides a new theoretical basis and technical guidance for diffuse pollution management in agricultural watersheds.

  2. Prioritising watersheds on the basis of regional flood susceptibility and vulnerability in mountainous areas through the use of indicators

    NASA Astrophysics Data System (ADS)

    Rogelis, Carolina; Werner, Micha

    2013-04-01

    Settlements in peri-urban areas of many cities in mountainous areas such as in the Andes are susceptible to hazards such as flash floods and debris flows. Additionally these settlements are in many cases informal and thus vulnerable to such hazards, resulting in significant risk. Such watersheds are often quiet small, and generally there is little or no information from gauges to help characterise risk. To help identify watersheds in which flood management measures are to be targeted, a rapid assessment of risk is required. In this paper a novel approach is presented where indicators of susceptibility and vulnerability to flash floods were used to prioritize 106 mountain watersheds in Bogotá (Colombia). Variables recognized in literature to determine the dominant processes both in susceptibility and vulnerability to flash floods were used to construct the indicators. Susceptibility was considered to increase with flashiness and the possibility of debris flow events occurring. This was assessed through the use of an indicator composed of a morphometric indicator and a land use indicator. The former was constructed using morphological variables recognized in literature to significantly influence flashiness and occurrence of debris flows; the latter was constructed in terms of percentage of vegetation cover, urban area and bare soil. The morphometric indicator was compared with the results of a debris flow propagation algorithm to assess its capacity in indentifying the morphological conditions of a watershed that make it able to transport debris flows. Propagation was carried out through the use of the Modified Single Flow Direction algorithm, following previous identification of source areas by applying thresholds identified in the area-slope curve of the watersheds and empirical thresholds. Results show that the morphometric variables can be grouped in four categories: size, shape, hypsometry and energy, with the energy the component found to best explain the capability of the watershed to transport debris flows. The combination of the morphometric and land use indicators resulted in a susceptibility indicator that was compared with the available records of past floods in the area. This showed that the use of the land use indicator significantly improves the susceptibility assessment. Vulnerability was assessed in terms of indicators representing physical exposure, fragility of the socio-economic system and lack of resilience to cope and recover. Principal component analysis was subsequently applied to reduce variables and provide a representation of each of their facets by a component. This resulted in a composite indicator of susceptibility and vulnerability for each of the 106 watersheds. The indicator was compared with the history of flash flood damage in the watersheds. Results show that the indicator is useful in applications at regional scales for preliminary assessment to differentiate at spatial level the degree of flood susceptibility and vulnerability. This provides an initial and qualitative risk outlook in the study area and can be used for planning and prioritization of further more detailed studies.

  3. Upper Washita River experimental watersheds: Sediment Database

    USDA-ARS?s Scientific Manuscript database

    Improving the scientific understanding of the effectiveness of watershed conservation practices and floodwater-retardation structures to control floods and soil erosion is one of the primary objectives for sediment studies in the upper Washita River Experimental Watersheds. This paper summarizes se...

  4. Characterizing relationships among fecal indicator bacteria, microbial source tracking markers, and associated waterborne pathogen occurrence in stream water and sediments in a mixed land use watershed

    EPA Science Inventory

    Bed sediments of streams and rivers may store high concentrations of fecal indicator bacteria (FIB) and pathogens. Due to resuspension events, these contaminants can be mobilized into the water column and affect overall water quality. Other bacterial indicators such as microbial ...

  5. A BASIN-WIDE ANALYSIS OF THE DYNAMICS OF FECAL CONTAMINATION AND FECAL SOURCE IDENTIFICATION IN TILLAMOOK BAY, OREGON

    EPA Science Inventory

    The objectives of this study were to determine if spatial and temporal dynamics exist in source-specific Bacteroidales 16S rRNA genetic marker data across a watershed, to study these in relation to fecal indicator counts, general measurements of water quality, and climat...

  6. WE-AB-303-08: Direct Lung Tumor Tracking Using Short Imaging Arcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, C; Huang, C; Keall, P

    2015-06-15

    Purpose: Most current tumor tracking technologies rely on implanted markers, which suffer from potential toxicity of marker placement and mis-targeting due to marker migration. Several markerless tracking methods have been proposed: these are either indirect methods or have difficulties tracking lung tumors in most clinical cases due to overlapping anatomies in 2D projection images. We propose a direct lung tumor tracking algorithm robust to overlapping anatomies using short imaging arcs. Methods: The proposed algorithm tracks the tumor based on kV projections acquired within the latest six-degree imaging arc. To account for respiratory motion, an external motion surrogate is used tomore » select projections of the same phase within the latest arc. For each arc, the pre-treatment 4D cone-beam CT (CBCT) with tumor contours are used to estimate and remove the contribution to the integral attenuation from surrounding anatomies. The position of the tumor model extracted from 4D CBCT of the same phase is then optimized to match the processed projections using the conjugate gradient method. The algorithm was retrospectively validated on two kV scans of a lung cancer patient with implanted fiducial markers. This patient was selected as the tumor is attached to the mediastinum, representing a challenging case for markerless tracking methods. The tracking results were converted to expected marker positions and compared with marker trajectories obtained via direct marker segmentation (ground truth). Results: The root-mean-squared-errors of tracking were 0.8 mm and 0.9 mm in the superior-inferior direction for the two scans. Tracking error was found to be below 2 and 3 mm for 90% and 98% of the time, respectively. Conclusions: A direct lung tumor tracking algorithm robust to overlapping anatomies was proposed and validated on two scans of a lung cancer patient. Sub-millimeter tracking accuracy was observed, indicating the potential of this algorithm for real-time guidance applications.« less

  7. Performance of Geno-Fuzzy Model on rainfall-runoff predictions in claypan watersheds

    USDA-ARS?s Scientific Manuscript database

    Fuzzy logic provides a relatively simple approach to simulate complex hydrological systems while accounting for the uncertainty of environmental variables. The objective of this study was to develop a fuzzy inference system (FIS) with genetic algorithm (GA) optimization for membership functions (MF...

  8. a New Multi-Spectral Threshold Normalized Difference Water Index Mst-Ndwi Water Extraction Method - a Case Study in Yanhe Watershed

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Zhao, H.; Hao, H.; Wang, C.

    2018-05-01

    Accurate remote sensing water extraction is one of the primary tasks of watershed ecological environment study. Since the Yanhe water system has typical characteristics of a small water volume and narrow river channel, which leads to the difficulty for conventional water extraction methods such as Normalized Difference Water Index (NDWI). A new Multi-Spectral Threshold segmentation of the NDWI (MST-NDWI) water extraction method is proposed to achieve the accurate water extraction in Yanhe watershed. In the MST-NDWI method, the spectral characteristics of water bodies and typical backgrounds on the Landsat/TM images have been evaluated in Yanhe watershed. The multi-spectral thresholds (TM1, TM4, TM5) based on maximum-likelihood have been utilized before NDWI water extraction to realize segmentation for a division of built-up lands and small linear rivers. With the proposed method, a water map is extracted from the Landsat/TM images in 2010 in China. An accuracy assessment is conducted to compare the proposed method with the conventional water indexes such as NDWI, Modified NDWI (MNDWI), Enhanced Water Index (EWI), and Automated Water Extraction Index (AWEI). The result shows that the MST-NDWI method generates better water extraction accuracy in Yanhe watershed and can effectively diminish the confusing background objects compared to the conventional water indexes. The MST-NDWI method integrates NDWI and Multi-Spectral Threshold segmentation algorithms, with richer valuable information and remarkable results in accurate water extraction in Yanhe watershed.

  9. From community preferences to design: Investigation of human-centered optimization algorithms in web-based, democratic planning of watershed restoration

    NASA Astrophysics Data System (ADS)

    Babbar-Sebens, M.; Mukhopadhyay, S.

    2014-12-01

    Web 2.0 technologies are useful resources for reaching out to larger stakeholder communities and involve them in policy making and planning efforts. While these technologies have been used in the past to support education and communication endeavors, we have developed a novel, web-based, interactive planning tool that involves the community in using science-based methods for the design of potential runoff management strategies on their landscape. The tool, Watershed REstoration using Spatio-Temporal Optimization of Resources (WRESTORE), uses a democratic voting process coupled with visualization interfaces, computational simulation and optimization models, and user modeling techniques to support a human-centered design approach. The tool can be used to engage diverse watershed stakeholders and landowners via the internet, thereby improving opportunities for outreach and collaborations. Users are able to (a) design multiple types of conservation practices at their field-scale catchment and at the entire watershed scale, (b) examine impacts and limitations of their decisions on their neighboring catchments and on the entire watershed, (c) compare alternatives via a cost-benefit analysis, (d) vote on their "favorite" designs based on their preferences and constraints, and (e) propose their "favorite" alternatives to policy makers and other stakeholders. In this presentation, we will demonstrate the effectiveness of WRESTORE for designing alternatives of conservation practices to reduce peak flows in a Midwestern watershed, present results on multiple approaches for engaging with larger communities, and discuss potential for future developments.

  10. Analysis of streamflow distribution of non-point source nitrogen export from long-term urban-rural catchments to guide watershed management in the Chesapeake Bay watershed

    NASA Astrophysics Data System (ADS)

    Duncan, J. M.; Band, L. E.; Groffman, P.

    2017-12-01

    Discharge, land use, and watershed management practices (stream restoration and stormwater control measures) have been found to be important determinants of nitrogen (N) export to receiving waters. We used long-term water quality stations from the Baltimore Ecosystem Study Long-Term Ecological Research (BES LTER) Site to quantify nitrogen export across streamflow conditions at the small watershed scale. We calculated nitrate and total nitrogen fluxes using methodology that allows for changes over time; weighted regressions on time, discharge, and seasonality. Here we tested the hypotheses that a) while the largest N stream fluxes occur during storm events, there is not a clear relationship between N flux and discharge and b) N export patterns are aseasonal in developed watersheds where sources are larger and retention capacity is lower. The goal is to scale understanding from small watersheds to larger ones. Developing a better understanding of hydrologic controls on nitrogen export is essential for successful adaptive watershed management at societally meaningful spatial scales.

  11. Synergistic use of active and passive microwave in soil moisture estimation

    NASA Technical Reports Server (NTRS)

    O'Neill, P.; Chauhan, N.; Jackson, T.; Saatchi, S.

    1992-01-01

    Data gathered during the MACHYDRO experiment in central Pennsylvania in July 1990 have been utilized to study the synergistic use of active and passive microwave systems for estimating soil moisture. These data sets were obtained during an eleven-day period with NASA's Airborne Synthetic Aperture Radar (AIRSAR) and Push-Broom Microwave Radiometer (PBMR) over an instrumented watershed which included agricultural fields with a number of different crop covers. Simultaneous ground truth measurements were also made in order to characterize the state of vegetation and soil moisture under a variety of meteorological conditions. A combination algorithm is presented as applied to a representative corn field in the MACHYDRO watershed.

  12. 40 CFR 141.522 - How does the State determine whether my system's watershed control requirements are adequate?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People... has maximized land ownership and/or controlled land use within the watershed. Disinfection Profile ...

  13. 40 CFR 141.522 - How does the State determine whether my system's watershed control requirements are adequate?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People... has maximized land ownership and/or controlled land use within the watershed. Disinfection Profile ...

  14. 40 CFR 141.522 - How does the State determine whether my system's watershed control requirements are adequate?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People... has maximized land ownership and/or controlled land use within the watershed. Disinfection Profile ...

  15. 40 CFR 141.522 - How does the State determine whether my system's watershed control requirements are adequate?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People... has maximized land ownership and/or controlled land use within the watershed. Disinfection Profile ...

  16. Water balance of drained plantation watersheds in North Carolina

    Treesearch

    Johnny M. Grace; R. W. Skaggs

    2006-01-01

    A 3-year study to evaluate the effect of thinning on the hydrology of a drained loblolly pine (Pinus taeda L.) plantation was conducted in eastern North Carolina. The study utilized a paired watershed design with a 40-ha thinned watershed (WS5) and a 16-ha control watershed (WS2). Data from the field experiment conducted from 1999-2002 was used to...

  17. Long-Term Observations of Nitrogen and Phosphorus Export in Paired-Agricultural Watersheds under Controlled and Conventional Tile Drainage.

    PubMed

    Sunohara, M D; Gottschall, N; Wilkes, G; Craiovan, E; Topp, E; Que, Z; Seidou, O; Frey, S K; Lapen, D R

    2015-09-01

    Controlled tile drainage (CTD) regulates water and nutrient export from tile drainage systems. Observations of the effects of CTD imposed en masse at watershed scales are needed to determine the effect on downstream receptors. A paired-watershed approach was used to evaluate the effect of field-to-field CTD at the watershed scale on fluxes and flow-weighted mean concentrations (FWMCs) of N and P during multiple growing seasons. One watershed (467-ha catchment area) was under CTD management (treatment [CTD] watershed); the other (250-ha catchment area) had freely draining or uncontrolled tile drainage (UCTD) (reference [UCTD] watershed). The paired agricultural watersheds are located in eastern Ontario, Canada. Analysis of covariance and paired tests were used to assess daily fluxes and FWMCs during a calibration period when CTD intervention on the treatment watershed was minimal (2005-2006, when only 4-10% of the tile-drained area was under CTD) and a treatment period when the treatment (CTD) watershed had prolific CTD intervention (2007-2011 when 82% of tile drained fields were controlled, occupying >70% of catchment area). Significant linear regression slope changes assessed using ANCOVA ( ≤ 0.1) for daily fluxes from upstream and downstream monitoring sites pooled by calibration and treatment period were -0.06 and -0.20 (stream water) (negative values represent flux declines in CTD watershed), -0.59 and -0.77 (NH-N), -0.14 and -0.15 (NO-N), -1.77 and -2.10 (dissolved reactive P), and -0.28 and 0.45 (total P). Total P results for one site comparison contrasted with other findings likely due to unknown in-stream processes affecting total P loading, not efficacy of CTD. The FWMC results were mixed and inconclusive but suggest physical abatement by CTD is the means by which nutrient fluxes are predominantly reduced at these scales. Overall, our study results indicate that CTD is an effective practice for reducing watershed scale fluxes of stream water, N, and P during the growing season. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. Research on Coupling Method of Watershed Initial Water Rights Allocation in Daling River

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fengping, W.

    2016-12-01

    Water scarcity is now a common occurrence in many countries. The situation of watershed initial water rights allocation has caused many benefit conflicts among regions and regional water sectors of domestic and ecology environment and industries in China. This study aims to investigate the method of watershed initial water rights allocation in the perspective of coupling in Daling River Watershed taking provincial initial water rights and watershed-level governmental reserved water as objects. First of all, regarding the allocation subsystem of initial water rights among provinces, this research calculates initial water rights of different provinces by establishing the coupling model of water quantity and quality on the principle of "rewarding efficiency and penalizing inefficiency" based on the two control objectives of water quantity and quality. Secondly, regarding the allocation subsystem of watershed-level governmental reserved water rights, the study forecasts the demand of watershed-level governmental reserved water rights by the combination of case-based reasoning and water supply quotas. Then, the bilaterally coupled allocation model on water supply and demand is designed after supply analysis to get watershed-level governmental reserved water rights. The results of research method applied to Daling River Watershed reveal the recommended scheme of watershed initial water rights allocation based on coordinated degree criterion. It's found that the feasibility of the iteration coupling model and put forward related policies and suggestions. This study owns the advantages of complying with watershed initial water rights allocation mechanism and meeting the control requirements of water quantity, water quality and water utilization efficiency, which help to achieve the effective allocation of water resources.

  19. Optimization Tool For Allocation Of Watershed Management Practices For Sediment And Nutrient Control

    EPA Science Inventory

    Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from nonpoint source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Herein...

  20. A novel fully automatic scheme for fiducial marker-based alignment in electron tomography.

    PubMed

    Han, Renmin; Wang, Liansan; Liu, Zhiyong; Sun, Fei; Zhang, Fa

    2015-12-01

    Although the topic of fiducial marker-based alignment in electron tomography (ET) has been widely discussed for decades, alignment without human intervention remains a difficult problem. Specifically, the emergence of subtomogram averaging has increased the demand for batch processing during tomographic reconstruction; fully automatic fiducial marker-based alignment is the main technique in this process. However, the lack of an accurate method for detecting and tracking fiducial markers precludes fully automatic alignment. In this paper, we present a novel, fully automatic alignment scheme for ET. Our scheme has two main contributions: First, we present a series of algorithms to ensure a high recognition rate and precise localization during the detection of fiducial markers. Our proposed solution reduces fiducial marker detection to a sampling and classification problem and further introduces an algorithm to solve the parameter dependence of marker diameter and marker number. Second, we propose a novel algorithm to solve the tracking of fiducial markers by reducing the tracking problem to an incomplete point set registration problem. Because a global optimization of a point set registration occurs, the result of our tracking is independent of the initial image position in the tilt series, allowing for the robust tracking of fiducial markers without pre-alignment. The experimental results indicate that our method can achieve an accurate tracking, almost identical to the current best one in IMOD with half automatic scheme. Furthermore, our scheme is fully automatic, depends on fewer parameters (only requires a gross value of the marker diameter) and does not require any manual interaction, providing the possibility of automatic batch processing of electron tomographic reconstruction. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A process-based algorithm for simulating terraces in SWAT

    USDA-ARS?s Scientific Manuscript database

    Terraces in crop fields are one of the most important soil and water conservation measures that affect runoff and erosion processes in a watershed. In large hydrological programs such as the Soil and Water Assessment Tool (SWAT), terrace effects are simulated by adjusting the slope length and the US...

  2. From quality markers to data mining and intelligence assessment: A smart quality-evaluation strategy for traditional Chinese medicine based on quality markers.

    PubMed

    Bai, Gang; Zhang, Tiejun; Hou, Yuanyuan; Ding, Guoyu; Jiang, Min; Luo, Guoan

    2018-05-15

    The quality of traditional Chinese medicine (TCM) forms the foundation of its clinical efficacy. The standardization of TCM is the most important task of TCM modernization. In recent years, there has been great progress in the quality control of TCM. However, there are still many issues related to the current quality standards, and it is difficult to objectively evaluate and effectively control the quality of TCM. To face these challenge, we summarized the current quality marker (Q-marker) research based on its characteristics and benefits, and proposed a reasonable and intelligentized quality evaluation strategy for the development and application of Q-markers. Ultra-performance liquid chromatography-quadrupole/time-of-flight with partial least squares-discriminant analysis was suggested to screen the chemical markers from Chinese medicinal materials (CMM), and a bioactive-guided evaluation method was used to select the Q-markers. Near-infrared spectroscopy (NIRS), based on the distinctive wavenumber zones or points from the Q-markers, was developed for its determination. Then, artificial intelligence algorithms were used to clarify the complex relationship between the Q-markers and their integral functions. Internet and mobile communication technology helped us to perform remote analysis and determine the information feedback of test samples. The quality control research, evaluation, standard establishment and quality control of TCM must be based on the systematic analysis of Q-markers to study and describe the material basis of TCM efficacy, define the chemical markers in the plant body, and understand the process of herb drug acquisition, change and transmission laws affecting metabolism and exposure. Based on the advantages of chemometrics, new sensor technologies, including infrared spectroscopy, hyperspectral imaging, chemical imaging, electronic nose and electronic tongue, have become increasingly important in the quality evaluation of CMM. Inspired by the concept of Q-marker, the quantitation can be achieved with the help of artificial intelligence, and these subtle differences can be discovered, allowing the quantitative analysis by NIRS and providing a quick and easy detection method for CMM quality evaluations. The concept of Q-markers focused on unique CMM differences, dynamic changes and their transmission and traceability to establish an overall quality control and traceability system. Based on the basic attributes, an integration model and artificial intelligence research path was proposed, with the hope of providing new ideas and perspectives for the TCM quality management. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Hydrologic response to stormwater control measures in urban watersheds

    NASA Astrophysics Data System (ADS)

    Bell, Colin D.; McMillan, Sara K.; Clinton, Sandra M.; Jefferson, Anne J.

    2016-10-01

    Stormwater control measures (SCMs) are designed to mitigate deleterious effects of urbanization on river networks, but our ability to predict the cumulative effect of multiple SCMs at watershed scales is limited. The most widely used metric to quantify impacts of urban development, total imperviousness (TI), does not contain information about the extent of stormwater control. We analyzed the discharge records of 16 urban watersheds in Charlotte, NC spanning a range of TI (4.1-54%) and area mitigated with SCMs (1.3-89%). We then tested multiple watershed metrics that quantify the degree of urban impact and SCM mitigation to determine which best predicted hydrologic response across sites. At the event time scale, linear models showed TI to be the best predictor of both peak unit discharge and rainfall-runoff ratios across a range of storm sizes. TI was also a strong driver of both a watershed's capacity to buffer small (e.g., 1-10 mm) rain events, and the relationship between peak discharge and precipitation once that buffering capacity is exceeded. Metrics containing information about SCMs did not appear as primary predictors of event hydrologic response, suggesting that the level of SCM mitigation in many urban watersheds is insufficient to influence hydrologic response. Over annual timescales, impervious surfaces unmitigated by SCMs and tree coverage were best correlated with streamflow flashiness and water yield, respectively. The shift in controls from the event scale to the annual scale has important implications for water resource management, suggesting that overall limitation of watershed imperviousness rather than partial mitigation by SCMs may be necessary to alleviate the hydrologic impacts of urbanization.

  4. [Regulation framework of watershed landscape pattern for non-point source pollution control based on 'source-sink' theory: A case study in the watershed of Maluan Bay, Xiamen City, China].

    PubMed

    Huang, Ning; Wang, Hong Ying; Lin, Tao; Liu, Qi Ming; Huang, Yun Feng; Li, Jian Xiong

    2016-10-01

    Watershed landscape pattern regulation and optimization based on 'source-sink' theory for non-point source pollution control is a cost-effective measure and still in the exploratory stage. Taking whole watershed as the research object, on the basis of landscape ecology, related theories and existing research results, a regulation framework of watershed landscape pattern for non-point source pollution control was developed at two levels based on 'source-sink' theory in this study: 1) at watershed level: reasonable basic combination and spatial pattern of 'source-sink' landscape was analyzed, and then holistic regulation and optimization method of landscape pattern was constructed; 2) at landscape patch level: key 'source' landscape was taken as the focus of regulation and optimization. Firstly, four identification criteria of key 'source' landscape including landscape pollutant loading per unit area, landscape slope, long and narrow transfer 'source' landscape, pollutant loading per unit length of 'source' landscape along the riverbank were developed. Secondly, nine types of regulation and optimization methods for different key 'source' landscape in rural and urban areas were established, according to three regulation and optimization rules including 'sink' landscape inlay, banding 'sink' landscape supplement, pollutants capacity of original 'sink' landscape enhancement. Finally, the regulation framework was applied for the watershed of Maluan Bay in Xiamen City. Holistic regulation and optimization mode of watershed landscape pattern of Maluan Bay and key 'source' landscape regulation and optimization measures for the three zones were made, based on GIS technology, remote sensing images and DEM model.

  5. The Water Erosion Prediction Project (WEPP) model for saturation excess conditions: application to an agricultural and a forested watershed.

    NASA Astrophysics Data System (ADS)

    Crabtree, B.; Brooks, E.; Ostrowski, K.; Elliot, W. J.; Boll, J.

    2006-12-01

    We incorporated saturation excess overland flow processes in the Water Erosion Prediction Project (WEPP) model for the evaluation of human disturbances in watersheds. In this presentation, we present results of the modified WEPP model to two watersheds: an agricultural watershed with mixed land use, and a forested watershed. The agricultural watershed is Paradise Creek, an intensively monitored watershed with continuous climate, flow and sediment data collection at multiple locations. Restoration efforts in Paradise Creek watershed include changing to minimal tillage or no-tillage sytems, and implementation of structural practices. The forested watershed is the 28 km2 Mica Creek Experimental Watershed (MCEW) where disturbances include clear and partial cutting, and road building. The MCEW has a nested study design, which allows for the analysis of cumulative effects as well as the traditional comparison of treatment versus control. Mica Creek watershed is a high elevation watershed where streamflow is generated mostly by snowmelt. Treatments include road building in 1997, and clearcut and partial-cut logging in 2001. Our results include the simulation of streamflow and sediment delivery at multiple locations within each watershed, and evaluation of the human disturbances.

  6. WATERSHED LEVEL RISK ASSESSMENT OF NITROGEN AND PHOSPHOROUS EXPORT

    EPA Science Inventory



    The distribution of different types of land cover across a watershed is a principal factor in controlling the amount of nitrogen and phosphorous exported from a watershed. A well developed literature of nutrient export coefficients by land-cover class was used to model t...

  7. Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales

    EPA Science Inventory

    Precipitation is a key control on watershed hydrologic modelling output, with errors in rainfall propagating through subsequent stages of water quantity and quality analysis. Most watershed models incorporate precipitation data from rain gauges; higher-resolution data sources are...

  8. Drainage basin control of acid loadings to two Adirondack lakes

    NASA Astrophysics Data System (ADS)

    Booty, W. G.; Depinto, J. V.; Scheffe, R. D.

    1988-07-01

    Two adjacent Adirondack Park (New York) calibrated watersheds (Woods Lake and Cranberry Pond), which receive identical atmospheric inputs, generate significantly different unit area of watershed loading rates of acidity to their respective lakes. A watershed acidification model is used to evaluate the watershed parameters which are responsible for the observed differences in acid loadings to the lakes. The greater overall mean depth of overburden on Woods Lake watershed, which supplies a greater buffer capacity as well as a longer retention time of groundwater, appears to be the major factor responsible for the differences.

  9. Video shot boundary detection using region-growing-based watershed method

    NASA Astrophysics Data System (ADS)

    Wang, Jinsong; Patel, Nilesh; Grosky, William

    2004-10-01

    In this paper, a novel shot boundary detection approach is presented, based on the popular region growing segmentation method - Watershed segmentation. In image processing, gray-scale pictures could be considered as topographic reliefs, in which the numerical value of each pixel of a given image represents the elevation at that point. Watershed method segments images by filling up basins with water starting at local minima, and at points where water coming from different basins meet, dams are built. In our method, each frame in the video sequences is first transformed from the feature space into the topographic space based on a density function. Low-level features are extracted from frame to frame. Each frame is then treated as a point in the feature space. The density of each point is defined as the sum of the influence functions of all neighboring data points. The height function that is originally used in Watershed segmentation is then replaced by inverting the density at the point. Thus, all the highest density values are transformed into local minima. Subsequently, Watershed segmentation is performed in the topographic space. The intuitive idea under our method is that frames within a shot are highly agglomerative in the feature space and have higher possibilities to be merged together, while those frames between shots representing the shot changes are not, hence they have less density values and are less likely to be clustered by carefully extracting the markers and choosing the stopping criterion.

  10. Reservoir sedimentation rates in the Little Washita River experimental watershed, Oklahoma: measurement and controlling factors

    USDA-ARS?s Scientific Manuscript database

    Forty-five flood control reservoirs, authorized in the United States Flood Control Act of 1936, were installed between 1969 and 1982 in the Little Washita River Experimental Watershed (LWREW), located in central Oklahoma. Over time, these reservoirs have lost water storage capacity due to sedimentat...

  11. Pretence and Deception: One Cognitive Watershed or Two?

    ERIC Educational Resources Information Center

    Peskin, Joan

    A total of 48 Canadian, middle-class 3-year-olds participated in a study of their abilities to predict the actions of a story character with a false belief and a story character engaged in pretence. In the experimental situation, a red puppet with pen-markers for legs left an "inky trail" to the location of a hidden treasure in one of…

  12. Automated patient setup and gating using cone beam computed tomography projections

    NASA Astrophysics Data System (ADS)

    Wan, Hanlin; Bertholet, Jenny; Ge, Jiajia; Poulsen, Per; Parikh, Parag

    2016-03-01

    In radiation therapy, fiducial markers are often implanted near tumors and used for patient positioning and respiratory gating purposes. These markers are then used to manually align the patients by matching the markers in the cone beam computed tomography (CBCT) reconstruction to those in the planning CT. This step is time-intensive and user-dependent, and often results in a suboptimal patient setup. We propose a fully automated, robust method based on dynamic programming (DP) for segmenting radiopaque fiducial markers in CBCT projection images, which are then used to automatically optimize the treatment couch position and/or gating window bounds. The mean of the absolute 2D segmentation error of our DP algorithm is 1.3+/- 1.0 mm for 87 markers on 39 patients. Intrafraction images were acquired every 3 s during treatment at two different institutions. For gated patients from Institution A (8 patients, 40 fractions), the DP algorithm increased the delivery accuracy (96+/- 6% versus 91+/- 11% , p  <  0.01) compared to the manual setup using kV fluoroscopy. For non-gated patients from Institution B (6 patients, 16 fractions), the DP algorithm performed similarly (1.5+/- 0.8 mm versus 1.6+/- 0.9 mm, p  =  0.48) compared to the manual setup matching the fiducial markers in the CBCT to the mean position. Our proposed automated patient setup algorithm only takes 1-2 s to run, requires no user intervention, and performs as well as or better than the current clinical setup.

  13. Autonomous watersheds: Reducing flooding and stream erosion through real-time control

    NASA Astrophysics Data System (ADS)

    Kerkez, B.; Wong, B. P.

    2017-12-01

    We introduce an analytical toolchain, based on dynamical system theory and feedback control, to determine how many control points (valves, gates, pumps, etc.) are needed to transform urban watersheds from static to adaptive. Advances and distributed sensing and control stand to fundamentally change how we manage urban watersheds. In lieu of new and costly infrastructure, the real-time control of stormwater systems will reduce flooding, mitigate stream erosion, and improve the treatment of polluted runoff. We discuss the how open source technologies, in the form of wireless sensor nodes and remotely-controllable valves (open-storm.org), have been deployed to build "smart" stormwater systems in the Midwestern US. Unlike "static" infrastructure, which cannot readily adapt to changing inputs and land uses, these distributed control assets allow entire watersheds to be reconfigured on a storm-by-storm basis. Our results show how the control of even just a few valves within urban catchments (1-10km^2) allows for the real-time "shaping" of hydrographs, which reduces downstream erosion and flooding. We also introduce an equivalence framework that can be used by decision-makers to objectively compare investments into "smart" system to more traditional solutions, such as gray and green stormwater infrastructure.

  14. Identification of drought in Dhalai river watershed using MCDM and ANN models

    NASA Astrophysics Data System (ADS)

    Aher, Sainath; Shinde, Sambhaji; Guha, Shantamoy; Majumder, Mrinmoy

    2017-03-01

    An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.

  15. Hydrologic calibration of paired watersheds using a MOSUM approach

    Treesearch

    H. Ssegane; Devendra Amatya; A. Muwamba; G. M. Chescheir; T. Appelboom; E. W. Tollner; J. E. Nettles; M. A. Youssef; F. Birgand; R. W. Skaggs

    2015-01-01

    Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the...

  16. Metal and Nutrient Distribution and Fractionation in Managed Urban Watersheds Across the US Southwest

    NASA Astrophysics Data System (ADS)

    Papelis, C.; Williams, A. C.; Boettcher, T. M.

    2008-12-01

    Metals, metalloids, and nutrients are common contaminants of concern in arid and semi-arid watersheds in the Southwestern U.S. Because of the dramatic population growth in this part of the U.S., the potential for contamination of urban watersheds has also increased over the last few decades. Streams in urban watersheds receive storm water, urban runoff, shallow groundwater, and treated wastewater, among other sources. In addition, urban watersheds are often heavily managed to mitigate flood events and sediment- related impacts. Sediment transport can have a profound effect on the water quality of affected bodies of water. However, differences in geology, hydrogeology, and land use may have dramatic effects on the distribution of nutrients and metals in different urban watersheds. To test these effects, aqueous and sediment samples were collected above and below erosion control and other structures along two heavily managed urban watersheds, namely the Las Vegas Wash in the Las Vegas Valley Watershed, Nevada, and the Rio Salado (Salt River) in the Phoenix Metropolitan Area, Arizona. The construction of such control structures has the potential to alter the distribution of metals and metalloids in bodies of water used by wildlife. In this study, all sediments were characterized by particle size distribution, specific surface area, mineralogical composition, and scanning electron microscopy. The results of total arsenic, boron, and phosphorus extractions will be discussed, as a function of sediment characteristics. Significant differences exist between the two U.S. Southwest watersheds studied, including land use, water sources, sediment characteristics, nutrient and metal distribution, and overall system complexity. These differences lead to significant variations in metalloid and nutrient distributions in the two watersheds. Differences and similarities in the two systems will be explained as a function of sediment characteristics and watershed properties.

  17. Innovative Approaches for Urban Watershed Wet-Weather Flow Management and Control

    EPA Science Inventory

    The “Innovative Approaches for Urban Watershed Wet-Weather Flow Management and Control: State of the Technology” project investigated a range of innovative technology and management strategies emerging outside the normal realm of business within the continental United States, fo...

  18. 3D segmentations of neuronal nuclei from confocal microscope image stacks

    PubMed Central

    LaTorre, Antonio; Alonso-Nanclares, Lidia; Muelas, Santiago; Peña, José-María; DeFelipe, Javier

    2013-01-01

    In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells). We have tested our algorithm in a real scenario—the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei. PMID:24409123

  19. 3D segmentations of neuronal nuclei from confocal microscope image stacks.

    PubMed

    Latorre, Antonio; Alonso-Nanclares, Lidia; Muelas, Santiago; Peña, José-María; Defelipe, Javier

    2013-01-01

    In this paper, we present an algorithm to create 3D segmentations of neuronal cells from stacks of previously segmented 2D images. The idea behind this proposal is to provide a general method to reconstruct 3D structures from 2D stacks, regardless of how these 2D stacks have been obtained. The algorithm not only reuses the information obtained in the 2D segmentation, but also attempts to correct some typical mistakes made by the 2D segmentation algorithms (for example, under segmentation of tightly-coupled clusters of cells). We have tested our algorithm in a real scenario-the segmentation of the neuronal nuclei in different layers of the rat cerebral cortex. Several representative images from different layers of the cerebral cortex have been considered and several 2D segmentation algorithms have been compared. Furthermore, the algorithm has also been compared with the traditional 3D Watershed algorithm and the results obtained here show better performance in terms of correctly identified neuronal nuclei.

  20. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy.

    PubMed

    Wognum, S; Bondar, L; Zolnay, A G; Chai, X; Hulshof, M C C M; Hoogeman, M S; Bel, A

    2013-02-01

    Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.

  1. Marker-Based Hierarchical Segmentation and Classification Approach for Hyperspectral Imagery

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Tilton, James C.; Benediktsson, Jon Atli; Chanussot, Jocelyn

    2011-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which is a combination of hierarchical step-wise optimization and spectral clustering, has given good performances for hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. First, pixelwise classification is performed and the most reliably classified pixels are selected as markers, with the corresponding class labels. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. The experimental results show that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for hyperspectral image analysis.

  2. Variable Streamflow Contributions in Nested Subwatersheds of a US Midwestern Urban Watershed

    DOE PAGES

    Wei, Liang; Hubbart, Jason A.; Zhou, Hang

    2017-09-09

    Quantification of runoff is critical to estimate and control water pollution in urban regions, but variation in impervious area and land-use type can complicate the quantification of runoff. We quantified the streamflow contributions of subwatersheds and the historical changes in streamflow in a flood prone urbanizing watershed in US Midwest to guide the establishment of a future pollution-control plan. Streamflow data from five nested hydrological stations enabled accurate estimations of streamflow contribution from five subwatersheds with variable impervious areas (from 0.5% to 26.6%). We corrected the impact of Missouri river backwatering at the most downstream station by comparing its streamflowmore » with an upstream station using double-mass analysis combined with Bernaola-Galvan Heuristic Segmentation approach. We also compared the streamflow of the urbanizing watershed with seven surrounding rural watersheds to estimate the cumulative impact of urbanization on the streamflow regime. The two most urbanized subwatersheds contributed >365 mm streamflow in 2012 with 657 mm precipitation, which was more than fourfold greater than the two least urbanized subwatersheds. Runoff occurred almost exclusively over the most urbanized subwatersheds during the dry period. The frequent floods occurred and the same amount of precipitation produced ~100 mm more streamflow in 2008–2014 than 1967–1980 in the urbanizing watershed; such phenomena did not occur in surrounding rural watersheds. Our approaches provide comprehensive information for planning on runoff control and pollutant reduction in urban watersheds.« less

  3. Variable Streamflow Contributions in Nested Subwatersheds of a US Midwestern Urban Watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Liang; Hubbart, Jason A.; Zhou, Hang

    Quantification of runoff is critical to estimate and control water pollution in urban regions, but variation in impervious area and land-use type can complicate the quantification of runoff. We quantified the streamflow contributions of subwatersheds and the historical changes in streamflow in a flood prone urbanizing watershed in US Midwest to guide the establishment of a future pollution-control plan. Streamflow data from five nested hydrological stations enabled accurate estimations of streamflow contribution from five subwatersheds with variable impervious areas (from 0.5% to 26.6%). We corrected the impact of Missouri river backwatering at the most downstream station by comparing its streamflowmore » with an upstream station using double-mass analysis combined with Bernaola-Galvan Heuristic Segmentation approach. We also compared the streamflow of the urbanizing watershed with seven surrounding rural watersheds to estimate the cumulative impact of urbanization on the streamflow regime. The two most urbanized subwatersheds contributed >365 mm streamflow in 2012 with 657 mm precipitation, which was more than fourfold greater than the two least urbanized subwatersheds. Runoff occurred almost exclusively over the most urbanized subwatersheds during the dry period. The frequent floods occurred and the same amount of precipitation produced ~100 mm more streamflow in 2008–2014 than 1967–1980 in the urbanizing watershed; such phenomena did not occur in surrounding rural watersheds. Our approaches provide comprehensive information for planning on runoff control and pollutant reduction in urban watersheds.« less

  4. Characterization and evaluation of controls on post-fire streamflow response across western US watersheds

    NASA Astrophysics Data System (ADS)

    Saxe, Samuel; Hogue, Terri S.; Hay, Lauren

    2018-02-01

    This research investigates the impact of wildfires on watershed flow regimes, specifically focusing on evaluation of fire events within specified hydroclimatic regions in the western United States, and evaluating the impact of climate and geophysical variables on response. Eighty-two watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. Percent change in annual runoff ratio, low flows, high flows, peak flows, number of zero flow days, baseflow index, and Richards-Baker flashiness index were calculated for each watershed using pre- and post-fire periods. Independent variables were identified for each watershed and fire event, including topographic, vegetation, climate, burn severity, percent area burned, and soils data. Results show that low flows, high flows, and peak flows increase in the first 2 years following a wildfire and decrease over time. Relative response was used to scale response variables with the respective percent area of watershed burned in order to compare regional differences in watershed response. To account for variability in precipitation events, runoff ratio was used to compare runoff directly to PRISM precipitation estimates. To account for regional differences in climate patterns, watersheds were divided into nine regions, or clusters, through k-means clustering using climate data, and regression models were produced for watersheds grouped by total area burned. Watersheds in Cluster 9 (eastern California, western Nevada, Oregon) demonstrate a small negative response to observed flow regimes after fire. Cluster 8 watersheds (coastal California) display the greatest flow responses, typically within the first year following wildfire. Most other watersheds show a positive mean relative response. In addition, simple regression models show low correlation between percent watershed burned and streamflow response, implying that other watershed factors strongly influence response. Spearman correlation identified NDVI, aridity index, percent of a watershed's precipitation that falls as rain, and slope as being positively correlated with post-fire streamflow response. This metric also suggested a negative correlation between response and the soil erodibility factor, watershed area, and percent low burn severity. Regression models identified only moderate burn severity and watershed area as being consistently positively/negatively correlated, respectively, with response. The random forest model identified only slope and percent area burned as significant watershed parameters controlling response. Results will help inform post-fire runoff management decisions by helping to identify expected changes to flow regimes, as well as facilitate parameterization for model application in burned watersheds.

  5. Critical zone structure controls concentration-discharge relationships and solute generation in forested tropical montane watersheds

    NASA Astrophysics Data System (ADS)

    Wymore, Adam S.; Brereton, Richard L.; Ibarra, Daniel E.; Maher, Kate; McDowell, William H.

    2017-07-01

    Concentration-discharge (C-Q) relationships are poorly known for tropical watersheds, even though the tropics contribute a disproportionate amount of solutes to the global ocean. The Luquillo Mountains in Puerto Rico offer an ideal environment to examine C-Q relationships across a heterogeneous tropical landscape. We use 10-30 years of weekly stream chemistry data across 10 watersheds to examine C-Q relationships for weathering products (SiO2(aq), Ca2+, Mg2+, and Na+) and biologically controlled solutes (dissolved organic carbon [DOC], dissolved organic nitrogen [DON], NH4+, NO3-, PO43-, K+, and SO42-). We analyze C-Q relationships using power law equations and a solute production model and use principal component analysis to test hypotheses regarding how the structure of the critical zone controls solute generation. Volcaniclastic watersheds had higher concentrations of weathering solutes and smaller tributaries were approximately threefold more efficient at generating these solutes than larger rivers. Lithology and vegetation explained a significant amount of variation in the theoretical maximum concentrations of weathering solutes (r2 = 0.43-0.48) and in the C-Q relationships of PO43- (r2 = 0.63) and SiO2(aq) (r2 = 0.47). However, the direction and magnitude of these relationships varied. Across watersheds, various forms of N and P displayed variable C-Q relationships, while DOC was consistently enriched with increasing discharge. Results suggest that PO43- may be a useful indicator of watershed function. Relationships between C-Q and landscape characteristics indicate the extent to which the structure and function of the Critical zone controls watershed solute fluxes.

  6. Watershed analysis of the Salmon River watershed, Washington : hydrology

    USGS Publications Warehouse

    Bidlake, William R.

    2003-01-01

    The U.S. Geological Survey analyzed selected hydrologic conditions as part of a watershed analysis of the Salmon River watershed, Washington, conducted by the Quinault Indian Nation. The selected hydrologic conditions were analyzed according to a framework of hydrologic key questions that were identified for the watershed. The key questions were posed to better understand the natural, physical, and biological features of the watershed that control hydrologic responses; to better understand current streamflow characteristics, including peak and low flows; to describe any evidence that forest harvesting and road construction have altered frequency and magnitude of peak and low flows within the watershed; to describe what is currently known about the distribution and extent of wetlands and any impacts of land management activities on wetlands; and to describe how hydrologic monitoring within the watershed might help to detect future hydrologic change, to preserve critical ecosystem functions, and to protect public and private property.

  7. A paired-watershed budget study to quantify interbasin groundwater flow in a lowland rain forest, Costa Rica

    NASA Astrophysics Data System (ADS)

    Genereux, David P.; Jordan, Michael T.; Carbonell, David

    2005-04-01

    A paired-watershed budget study was used to quantify the annual water and major ion (sodium, potassium, magnesium, calcium, chloride, and sulfate) budgets of two adjacent lowland rain forest watersheds in Costa Rica. Interbasin groundwater flow (IGF) accounted for about two thirds of the water input and about 97% of the solute input (an average over the six major ions) to one watershed but little or none of the inputs to the adjacent watershed in which IGF was at most marginally distinguishable from zero. Results underscore the significance of IGF as a potential control on the hydrology and water quality of lowland watersheds, the spatial complexity of its occurrence in lowlands (where its influence may range from dominating to negligible on adjacent watersheds), and the importance of accounting for IGF in the design and execution of watershed studies and in water management.

  8. SCIENCE OF INTEGRATED WATERSHED MANAGEMENT: LINKING POLLUTANT CONTROL PRACTICES WITH WATER QUALITY

    EPA Science Inventory

    SCIENCE OF INTEGRATED WATERSHED MANAGEMENT: LINKING POLLUTANT CONTROL PRACTICES WITH WATER QUALITY M. Morrison (NRMRL), C. Nietch (NRMRL), 1. Schubauer-Berigan (NRMRL), M. Hantush (NRMRL), D. Lai (NRMRL), B. Daniel (NERL), M. Griffith (NCEA) Science Questions LTG 3. MYP Sc...

  9. Laterally constrained inversion for CSAMT data interpretation

    NASA Astrophysics Data System (ADS)

    Wang, Ruo; Yin, Changchun; Wang, Miaoyue; Di, Qingyun

    2015-10-01

    Laterally constrained inversion (LCI) has been successfully applied to the inversion of dc resistivity, TEM and airborne EM data. However, it hasn't been yet applied to the interpretation of controlled-source audio-frequency magnetotelluric (CSAMT) data. In this paper, we apply the LCI method for CSAMT data inversion by preconditioning the Jacobian matrix. We apply a weighting matrix to Jacobian to balance the sensitivity of model parameters, so that the resolution with respect to different model parameters becomes more uniform. Numerical experiments confirm that this can improve the convergence of the inversion. We first invert a synthetic dataset with and without noise to investigate the effect of LCI applications to CSAMT data, for the noise free data, the results show that the LCI method can recover the true model better compared to the traditional single-station inversion; and for the noisy data, the true model is recovered even with a noise level of 8%, indicating that LCI inversions are to some extent noise insensitive. Then, we re-invert two CSAMT datasets collected respectively in a watershed and a coal mine area in Northern China and compare our results with those from previous inversions. The comparison with the previous inversion in a coal mine shows that LCI method delivers smoother layer interfaces that well correlate to seismic data, while comparison with a global searching algorithm of simulated annealing (SA) in a watershed shows that though both methods deliver very similar good results, however, LCI algorithm presented in this paper runs much faster. The inversion results for the coal mine CSAMT survey show that a conductive water-bearing zone that was not revealed by the previous inversions has been identified by the LCI. This further demonstrates that the method presented in this paper works for CSAMT data inversion.

  10. Hybrid Multi-Objective Optimization of Folsom Reservoir Operation to Maximize Storage in Whole Watershed

    NASA Astrophysics Data System (ADS)

    Goharian, E.; Gailey, R.; Maples, S.; Azizipour, M.; Sandoval Solis, S.; Fogg, G. E.

    2017-12-01

    The drought incidents and growing water scarcity in California have a profound effect on human, agricultural, and environmental water needs. California experienced multi-year droughts, which have caused groundwater overdraft and dropping groundwater levels, and dwindling of major reservoirs. These concerns call for a stringent evaluation of future water resources sustainability and security in the state. To answer to this call, Sustainable Groundwater Management Act (SGMA) was passed in 2014 to promise a sustainable groundwater management in California by 2042. SGMA refers to managed aquifer recharge (MAR) as a key management option, especially in areas with high variation in water availability intra- and inter-annually, to secure the refill of underground water storage and return of groundwater quality to a desirable condition. The hybrid optimization of an integrated water resources system provides an opportunity to adapt surface reservoir operations for enhancement in groundwater recharge. Here, to re-operate Folsom Reservoir, objectives are maximizing the storage in the whole American-Cosumnes watershed and maximizing hydropower generation from Folsom Reservoir. While a linear programing (LP) module tends to maximize the total groundwater recharge by distributing and spreading water over suitable lands in basin, a genetic based algorithm, Non-dominated Sorting Genetic Algorithm II (NSGA-II), layer above it controls releases from the reservoir to secure the hydropower generation, carry-over storage in reservoir, available water for replenishment, and downstream water requirements. The preliminary results show additional releases from the reservoir for groundwater recharge during high flow seasons. Moreover, tradeoffs between the objectives describe that new operation performs satisfactorily to increase the storage in the basin, with nonsignificant effects on other objectives.

  11. Revealing the Role of Microbes in Controlling Contaminants

    ScienceCinema

    Williams, Kenneth Hurst

    2018-05-11

    In Rifle, Colorado, Berkeley Lab earth scientist, Kenneth Hurst Williams, highlights the role subsurface microbial communities can play in controlling the flow of contaminants in groundwater. The DOE Joint Genome Institute is a key collaborator in the research. Williams is Component Lead of Watershed Structure and Controls within Berkeley Lab's Genomes-to-Watershed Scientific Focus Area.

  12. Revealing the Role of Microbes in Controlling Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Kenneth Hurst

    2015-04-02

    In Rifle, Colorado, Berkeley Lab earth scientist, Kenneth Hurst Williams, highlights the role subsurface microbial communities can play in controlling the flow of contaminants in groundwater. The DOE Joint Genome Institute is a key collaborator in the research. Williams is Component Lead of Watershed Structure and Controls within Berkeley Lab's Genomes-to-Watershed Scientific Focus Area.

  13. Applying soil property information for watershed assessment.

    NASA Astrophysics Data System (ADS)

    Archer, V.; Mayn, C.; Brown, S. R.

    2017-12-01

    The Forest Service uses a priority watershed scheme to guide where to direct watershed restoration work. Initial assessment was done across the nation following the watershed condition framework process. This assessment method uses soils information for a three step ranking across each 12 code hydrologic unit; however, the soil information used in the assessment may not provide adequate detail to guide work on the ground. Modern remote sensing information and terrain derivatives that model the environmental gradients hold promise of showing the influence of soil forming factors on watershed processes. These small scale data products enable the disaggregation of coarse scale soils mapping to show continuous soil property information across a watershed. When this information is coupled with the geomorphic and geologic information, watershed specialists can more aptly understand the controlling influences of drainage within watersheds and focus on where watershed restoration projects can have the most success. A case study on the application of this work shows where road restoration may be most effective.

  14. Uncertainty in nutrient loads from tile drained landscapes: Effect of sampling frequency, calculation algorithm, and compositing strategies

    USDA-ARS?s Scientific Manuscript database

    Accurate estimates of annual nutrient loads are required to evaluate trends in water quality following changes in land use or management and to calibrate and validate water quality models. While much emphasis has been placed on understanding the uncertainty of watershed-scale nutrient load estimates...

  15. Using High Resolution Spatial Data and Genetic Algorithms to Optimize Riparian Zone Condition and Impervious Cover Estimates in New England Watersheds

    EPA Science Inventory

    Under EPA’s Green Infrastructure Initiative, a variety of research activities are underway to evaluate the effectiveness of green infrastructure in mitigating the effects of urbanization and stormwater impacts on stream biota and habitat. One aspect of this is evaluating th...

  16. Hydrologic processes of forested headwater watersheds across a physiographaic gradient in the southeastern United States

    Treesearch

    Ge Sun; Johnny Boggs; Steven G. McNulty; Devendra M. Amatya; Carl C. Trettin; Zhaohua Dai; James M. Vose; Ileana B. La Torre Torres; Timothy Callahan

    2008-01-01

    Understanding the hydrologic processes is the first step in making sound watershed management decisions including designing Best Management Practices for nonpoint source pollution control. Over the past fifty years, various forest experimental watersheds have been instrumented across the Carolinas through collaborative studies among federal, state, and private...

  17. MODELING PROCESSES CONTROLLING MERCURY FATE IN WATERSHEDS RECEIVING ATMOSPHERIC DEPOSITION - COMPARISON OF FIELD SCALE GLEAMS AND WATERSHED SCALE WCS-GBMM

    EPA Science Inventory

    Long-term simulations of mercury fate in watersheds are needed to support regulations such as TMDLs and to predict the effectiveness of regulatory proposals, such as the Clean Air Mercury Rule (CAMR). Scientific uncertainties in mercury fate process descriptions combined with in...

  18. Recovery of decomposition and soil microarthropod communities in an Appalachian watershed two decades after a clearcut

    Treesearch

    Liam Heneghan; Alissa Salmore; D.A. Crossley

    2004-01-01

    We examined decomposition rates of three substrates (Quercus prinus L., Acer rubrum L., and Cornus florida L.) in a watershed 21 years after it had been clearcut, and compared them to an adjacent control watershed. Previous investigations at these sites had shown that microarthropod populations, important...

  19. Differentiating impacts of land use changes from pasture management in a CEAP watershed using the SWAT model

    USDA-ARS?s Scientific Manuscript database

    Due to intensive farm practices, nonpoint-source (NPS) pollution has become one of the most challenging environmental problems in agricultural and mixed land use watersheds. Usually, various conservation practices are implemented in the watershed to control the NPS pollution problem. However, land u...

  20. A COMPREHENSIVE NONPOINT SOURCE FIELD STUDY FOR SEDIMENT, NUTRIENTS, AND PATHOGENS IN THE SOUTH FORK BROAD RIVER WATERSHED IN NORTHEAST GEORGIA

    EPA Science Inventory

    This technical report provides a description of the field project design, quality control, the sampling protocols and analysis methodology used, and standard operating procedures for the South Fork Broad River Watershed (SFBR) Total Maximum Daily Load (TMDL) project. This watersh...

  1. Consistency of Hydrologic Relationships of a Paired Watershed Approach

    Treesearch

    Herbert Ssegane; Devendra M. Amatya; George M. Chescheir; Wayne R. Skaggs; Ernest W. Tollner; Jami E. Nettles

    2013-01-01

    Paired watershed studies are used around the world to evaluate and quantify effects of forest and water management practices on hydrology and water quality. The basic concept uses two neighboring watersheds (one as a control and another as a treatment), which are concurrently monitored during calibration (pre-treatment) and post-treatment periods. A statistically...

  2. Crown-Level Tree Species Classification Using Integrated Airborne Hyperspectral and LIDAR Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Wu, J.; Wang, Y.; Kong, X.; Bao, H.; Ni, Y.; Ma, L.; Jin, J.

    2018-05-01

    Mapping tree species is essential for sustainable planning as well as to improve our understanding of the role of different trees as different ecological service. However, crown-level tree species automatic classification is a challenging task due to the spectral similarity among diversified tree species, fine-scale spatial variation, shadow, and underlying objects within a crown. Advanced remote sensing data such as airborne Light Detection and Ranging (LiDAR) and hyperspectral imagery offer a great potential opportunity to derive crown spectral, structure and canopy physiological information at the individual crown scale, which can be useful for mapping tree species. In this paper, an innovative approach was developed for tree species classification at the crown level. The method utilized LiDAR data for individual tree crown delineation and morphological structure extraction, and Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery for pure crown-scale spectral extraction. Specifically, four steps were include: 1) A weighted mean filtering method was developed to improve the accuracy of the smoothed Canopy Height Model (CHM) derived from LiDAR data; 2) The marker-controlled watershed segmentation algorithm was, therefore, also employed to delineate the tree-level canopy from the CHM image in this study, and then individual tree height and tree crown were calculated according to the delineated crown; 3) Spectral features within 3 × 3 neighborhood regions centered on the treetops detected by the treetop detection algorithm were derived from the spectrally normalized CASI imagery; 4) The shape characteristics related to their crown diameters and heights were established, and different crown-level tree species were classified using the combination of spectral and shape characteristics. Analysis of results suggests that the developed classification strategy in this paper (OA = 85.12 %, Kc = 0.90) performed better than LiDAR-metrics method (OA = 79.86 %, Kc = 0.81) and spectral-metircs method (OA = 71.26, Kc = 0.69) in terms of classification accuracy, which indicated that the advanced method of data processing and sensitive feature selection are critical for improving the accuracy of crown-level tree species classification.

  3. 40 CFR 141.71 - Criteria for avoiding filtration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.71... water. (2) The public water system must maintain a watershed control program which minimizes the... determine whether the watershed control program is adequate to meet this goal. The adequacy of a program to...

  4. Monitoring wetland inundation dynamics in response to weather variability in the Chesapeake Bay watershed

    USDA-ARS?s Scientific Manuscript database

    Wetlands provide a broad range of ecosystem services, including flood control, water purification, groundwater replenishment, and biodiversity support. The provision of these services, which are especially valued in the Chesapeake Bay Watershed, is largely controlled by varying levels of wetness. ...

  5. 40 CFR 141.522 - How does the State determine whether my system's watershed control requirements are adequate?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People... has maximized land ownership and/or controlled land use within the watershed. Disinfection Profile ...

  6. Are watershed and lacustrine controls on planktonic N2 fixation hierarchically structured?

    PubMed

    Scott, J Thad; Doyle, Robert D; Prochnow, Shane J; White, Joseph D

    2008-04-01

    N2 fixation can be an important source of N to limnetic ecosystems and can influence the structure of phytoplankton communities. However, watershed-scale conditions that favor N2 fixation in lakes and reservoirs have not been well studied. We measured N2 fixation and lacustrine variables monthly over a 19-month period in Waco Reservoir, Texas, USA, and linked these data with nutrient-loading estimates from a physically based watershed model. Readily available topographic, soil, land cover, effluent discharge, and climate data were used in the Soil and Water Assessment Tool (SWAT) to derive watershed nutrient-loading estimates. Categorical and regression tree (CART) analysis revealed that lacustrine and watershed correlates of N2 fixation were hierarchically structured. Lacustrine conditions showed greater predictive capability temporally. For instance, low NO3(-) concentration (<25 microg N/L) and high water temperatures (>27 degrees C) in the reservoir were correlated with the initiation of N2 fixation seasonally. When lacustrine conditions were favorable for N2 fixation, watershed conditions appeared to influence spatial patterns of N2 fixation within the reservoir. For example, spatially explicit patterns of N2 fixation were correlated with the ratio of N:P in nutrient loadings and the N loading rate, which were driven by anthropogenic activity in the watershed and periods of low stream flow, respectively. Although N2 fixation contributed <5% of the annual N load to the reservoir, 37% of the N load was derived from atmospheric N2 fixation during summertime when stream flow in the watershed was low. This study provides evidence that watershed anthropogenic activity can exert control on planktonic N2 fixation, but that temporality is controlled by lacustrine conditions. Furthermore, this study also supports suggestions that reduced inflows may increase the propensity of N2-fixing cyanobacterial blooms in receiving waters of anthropogenically modified landscapes.

  7. Developing a geomorphic approach for ranking watersheds for rehabilitation, Zuni Indian Reservation, New Mexico

    USGS Publications Warehouse

    Gellis, A.C.; Cheama, A.; Lalio, S.M.

    2001-01-01

    As a result of past erosion problems on the Zuni Indian Reservation in western New Mexico, the US Congress in 1990 authorized the Zuni Tribe to begin a program for watershed rehabilitation. This paper describes an approach to rank the most appropriate watersheds for rehabilitation for the Zuni Reservation. The approach was based on data collected during a 3-year study on geomorphic and anthropogenic characteristics of the Rio Nutria Watershed, including data on (i) arroyo cross-sectional changes, (ii) erosion-control structures, and (iii) sheetwash erosion. Results of this 3-year study indicated that 61 of 85 channel cross-sections aggraded and channels with lower width-to-depth ratios eroded. Results on assessment of erosion-control structures, some dating back to the 1930's, indicated that 60% of earthen dams and 22% of rock-and-brush structures were breached or flanked in the Rio Nutria Watershed. Sheetwash erosion measured on five land-cover sites (sagebrush, pasture, chained pin??on and juniper, unchained pin??on and juniper, and ponderosa pine) indicated chained pin??on and juniper sites and pasture sites had the highest volume-weighted sediment concentrations of 13,000 and 9970 ppm, respectively. Based on interpretations of the 3-year study in the Rio Nutria Watershed, a two-stage approach was developed to rank the most appropriate watersheds for rehabilitation on the Zuni Reservation. In the first stage, the reservation was divided into eight major watersheds, which were ranked according to the most potential for erosion. In the second stage, the watershed with the most potential for erosion was divided into sub-basins, which were ranked according to the most potential for erosion. Quantitative and qualitative information on physical and anthropogenic factors were used at each stage to rank the watersheds. Quantitative physical data included headcut density, percentage of bare ground, percentage of chained area, channel width-to-depth ratio, change in channel density from 1934 to 1988, and sheetwash erosion rates. Qualitative physical data included erosion rankings on the main channels, tributaries, and entire basins. Anthropogenic data included density of dirt roads and condition of erosion-control structures. A community survey and agricultural acreage were also used in the selection process. The first stage analysis resulted in the selection of the Rio Nutria Watershed as the most appropriate major watershed for rehabilitation. In the second stage, the Rio Nutria Watershed was divided into 15 sub-basins; the analysis indicated the highest priority sub-basins for rehabilitation were Benny Draw, Coal Mine Canyon Draw, and Garcia Draw.

  8. Autonomous landing and ingress of micro-air-vehicles in urban environments based on monocular vision

    NASA Astrophysics Data System (ADS)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-06-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  9. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    NASA Technical Reports Server (NTRS)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  10. 40 CFR 141.521 - What updated watershed control requirements must my unfiltered system implement to continue to...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000... oocysts in the source water. Your system's watershed control program must, for Cryptosporidium: (a...

  11. 40 CFR 141.521 - What updated watershed control requirements must my unfiltered system implement to continue to...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000... oocysts in the source water. Your system's watershed control program must, for Cryptosporidium: (a...

  12. 40 CFR 141.521 - What updated watershed control requirements must my unfiltered system implement to continue to...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000... oocysts in the source water. Your system's watershed control program must, for Cryptosporidium: (a...

  13. 40 CFR 141.521 - What updated watershed control requirements must my unfiltered system implement to continue to...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000... oocysts in the source water. Your system's watershed control program must, for Cryptosporidium: (a...

  14. Controls of event-based nutrient transport within nested headwater agricultural watersheds of the western Lake Erie basin

    USDA-ARS?s Scientific Manuscript database

    Understanding the processes controlling nutrient delivery in headwater agricultural watersheds is essential for predicting and mitigating eutrophication and harmful algal blooms in receiving surface waters. The objective of this study was to elucidate nutrient transport pathways and examine key comp...

  15. Watershed Land Use and Seasonal Variation Constrain the Influence of Riparian Canopy Cover on Stream Ecosystem Metabolism

    EPA Science Inventory

    While watershed and local scale controls on stream metabolism have been independently investigated, little is known about how controls exerted at these different scales interact to determine stream metabolic rates, or how these interactions vary across seasons. To address this ...

  16. Effect of Co-segregating Markers on High-Density Genetic Maps and Prediction of Map Expansion Using Machine Learning Algorithms.

    PubMed

    N'Diaye, Amidou; Haile, Jemanesh K; Fowler, D Brian; Ammar, Karim; Pozniak, Curtis J

    2017-01-01

    Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called 'large p, small n' problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly.

  17. Effect of Co-segregating Markers on High-Density Genetic Maps and Prediction of Map Expansion Using Machine Learning Algorithms

    PubMed Central

    N’Diaye, Amidou; Haile, Jemanesh K.; Fowler, D. Brian; Ammar, Karim; Pozniak, Curtis J.

    2017-01-01

    Advances in sequencing and genotyping methods have enable cost-effective production of high throughput single nucleotide polymorphism (SNP) markers, making them the choice for linkage mapping. As a result, many laboratories have developed high-throughput SNP assays and built high-density genetic maps. However, the number of markers may, by orders of magnitude, exceed the resolution of recombination for a given population size so that only a minority of markers can accurately be ordered. Another issue attached to the so-called ‘large p, small n’ problem is that high-density genetic maps inevitably result in many markers clustering at the same position (co-segregating markers). While there are a number of related papers, none have addressed the impact of co-segregating markers on genetic maps. In the present study, we investigated the effects of co-segregating markers on high-density genetic map length and marker order using empirical data from two populations of wheat, Mohawk × Cocorit (durum wheat) and Norstar × Cappelle Desprez (bread wheat). The maps of both populations consisted of 85% co-segregating markers. Our study clearly showed that excess of co-segregating markers can lead to map expansion, but has little effect on markers order. To estimate the inflation factor (IF), we generated a total of 24,473 linkage maps (8,203 maps for Mohawk × Cocorit and 16,270 maps for Norstar × Cappelle Desprez). Using seven machine learning algorithms, we were able to predict with an accuracy of 0.7 the map expansion due to the proportion of co-segregating markers. For example in Mohawk × Cocorit, with 10 and 80% co-segregating markers the length of the map inflated by 4.5 and 16.6%, respectively. Similarly, the map of Norstar × Cappelle Desprez expanded by 3.8 and 11.7% with 10 and 80% co-segregating markers. With the increasing number of markers on SNP-chips, the proportion of co-segregating markers in high-density maps will continue to increase making map expansion unavoidable. Therefore, we suggest developers improve linkage mapping algorithms for efficient analysis of high-throughput data. This study outlines a practical strategy to estimate the IF due to the proportion of co-segregating markers and outlines a method to scale the length of the map accordingly. PMID:28878789

  18. Development of a Multiantigen Panel for Improved Detection of Borrelia burgdorferi Infection in Early Lyme Disease

    PubMed Central

    Panas, Michael W.; Mao, Rong; Delanoy, Michelle; Flanagan, John J.; Binder, Steven R.; Rebman, Alison W.; Montoya, Jose G.; Soloski, Mark J.; Steere, Allen C.; Dattwyler, Raymond J.; Arnaboldi, Paul M.; Aucott, John N.

    2015-01-01

    The current standard for laboratory diagnosis of Lyme disease in the United States is serologic detection of antibodies against Borrelia burgdorferi. The Centers for Disease Control and Prevention recommends a two-tiered testing algorithm; however, this scheme has limited sensitivity for detecting early Lyme disease. Thus, there is a need to improve diagnostics for Lyme disease at the early stage, when antibiotic treatment is highly efficacious. We examined novel and established antigen markers to develop a multiplex panel that identifies early infection using the combined sensitivity of multiple markers while simultaneously maintaining high specificity by requiring positive results for two markers to designate a positive test. Ten markers were selected from our initial analysis of 62 B. burgdorferi surface proteins and synthetic peptides by assessing binding of IgG and IgM to each in a training set of Lyme disease patient samples and controls. In a validation set, this 10-antigen panel identified a higher proportion of early-Lyme-disease patients as positive at the baseline or posttreatment visit than two-tiered testing (87.5% and 67.5%, respectively; P < 0.05). Equivalent specificities of 100% were observed in 26 healthy controls. Upon further analysis, positivity on the novel 10-antigen panel was associated with longer illness duration and multiple erythema migrans. The improved sensitivity and comparable specificity of our 10-antigen panel compared to two-tiered testing in detecting early B. burgdorferi infection indicates that multiplex analysis, featuring the next generation of markers, could advance diagnostic technology to better aid clinicians in diagnosing and treating early Lyme disease. PMID:26447113

  19. Evaluation of spatial plan in controlling stream flow rate in Wakung Watershed, Pemalang, Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Anwar, Y.; Setyasih, I.; Setiawan, M. A.; Christanto, N.

    2018-04-01

    Evaluation study for such a regional spatial plan (RTRW) in Indonesia has not been evaluated for its effectiveness in controlling the surface run off that contributed to streamflow. This necessity can be accomplishsed by applying a modeling approach, such as Soil Water Assessment Tool (SWAT). The objectives of this research are 1) to simulate the streamflow of Wakung watershed based on actual landuse, 2) to predict streamflow of Wakung watershed based on RTRW, and 3) to evaluate the effectiveness of the RTRW of Pemalang District in controling streamflow rate at Wakung Watershed. ArcSWAT model was used to determine the erosion rate prediction. The model was then calibrated by using SWATCUP. Model performance were tested by using R2 and ENS. The calibration and validation results showed that R2 and ENS (monthly) > 0.5. The result of SWAT simulation in Wakung sub-watershed reaching 161 - 4950 m3/s/years for W-A scenario (actual landuse and weather data of 2013), for scenario W-R (RTRW and weather data of 2013), 330 - 4919 m3/s/year. The comparison between actual and spatial plan land use data for stream flow is showing that the W-A scenario is lower than the W-R scenario in 19 sub watersheds. This is because there are many plans for adding land use for urban and intensive horticulture land in areas with steep slopes (> 25%). This condition is caused by the demands of fulfilling the needs of settlement and food for people in the Wakung watershed.

  20. Active mask segmentation of fluorescence microscope images.

    PubMed

    Srinivasa, Gowri; Fickus, Matthew C; Guo, Yusong; Linstedt, Adam D; Kovacević, Jelena

    2009-08-01

    We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation. It adapts to the topology of the image through the use of multiple masks. The algorithm is almost invariant under initialization, allowing for random initialization, and uses a few easily tunable parameters. Experiments show that the active mask algorithm matches the ground truth well and outperforms the algorithm widely used in fluorescence microscopy, seeded watershed, both qualitatively, as well as quantitatively.

  1. Water-quality characteristics of six small, semiarid watersheds in the Green River coal region of Colorado

    USGS Publications Warehouse

    Turk, John T.; Parker, Randolph S.

    1982-01-01

    Analysis of major and trace constituents in streams flowing through six semiarid watersheds indicates that the stream chemistry is characterized by saturation with respect to common carbonate minerals (calcium, magnesium, iron, manganese, and lead). The solubility of the carbonate minerals may be a major control on the absolute and relative concentrations of calcium, magnesium, bicarbonate, iron, manganese, and lead; however, other mechanisms probably control the concentrations of cadmium and zinc. Statistical analyses indicate that the mean concentrations of the major ions in the two climatic areas studied are significantly (P=0.05) different from one another, with larger mean concentrations in the more arid area. Trace-metal concentrations were similar from one area to another and indistinguishable from site to site (P=0.05) for lead, cadmium, and zinc. Linear regressions of major ion concentration to specific conductance are similar in both areas for sodium, bicarbonate, sulfate, and chloride. Results of the study may be useful in providing a first approximation of stream chemistry in other watersheds with the same geologic setting, determining watersheds with similar geochemical controls, and determining future changes in stream chemistry in the watersheds studied. (USGS)

  2. A New DEM Generalization Method Based on Watershed and Tree Structure

    PubMed Central

    Chen, Yonggang; Ma, Tianwu; Chen, Xiaoyin; Chen, Zhende; Yang, Chunju; Lin, Chenzhi; Shan, Ligang

    2016-01-01

    The DEM generalization is the basis of multi-dimensional observation, the basis of expressing and analyzing the terrain. DEM is also the core of building the Multi-Scale Geographic Database. Thus, many researchers have studied both the theory and the method of DEM generalization. This paper proposed a new method of generalizing terrain, which extracts feature points based on the tree model construction which considering the nested relationship of watershed characteristics. The paper used the 5 m resolution DEM of the Jiuyuan gully watersheds in the Loess Plateau as the original data and extracted the feature points in every single watershed to reconstruct the DEM. The paper has achieved generalization from 1:10000 DEM to 1:50000 DEM by computing the best threshold. The best threshold is 0.06. In the last part of the paper, the height accuracy of the generalized DEM is analyzed by comparing it with some other classic methods, such as aggregation, resample, and VIP based on the original 1:50000 DEM. The outcome shows that the method performed well. The method can choose the best threshold according to the target generalization scale to decide the density of the feature points in the watershed. Meanwhile, this method can reserve the skeleton of the terrain, which can meet the needs of different levels of generalization. Additionally, through overlapped contour contrast, elevation statistical parameters and slope and aspect analysis, we found out that the W8D algorithm performed well and effectively in terrain representation. PMID:27517296

  3. Conservation Management of Agriculture Land using Geospatial Approach (A Case Study in the Bone Watershed, Gorontalo Province, Indonesia)

    NASA Astrophysics Data System (ADS)

    Maryati, Sri; Eraku, Sunarty; Kasim, Muh

    2018-02-01

    Bone Watershed is one of the major watersheds in Gorontalo Province. Bone watershed has a very important role for the people of Gorontalo Province. The role of Bone Watershed is mainly related to the providing clean water, producing oxygen, controlling flood, providing habitat for endemic flora fauna and other environmental functions. The role of Bone Watershed for the community's economic sector is also very important, the Bone watershed provides livelihood for surrounding communities includes fertile land resources for agriculture and plantations, forest products, and livestock feed. This research is important considering the Bone watershed has limited availability of land for agriculture and the high risk of natural disasters such as floods and landslides. Geospatial data includes topography map, landform map, soil map, integrated with field survey results and soil properties were analized to determine conservation management of agriculture land in the Bone Watershed, Gorontalo Province, Indonesia. The result of this study shows that based on soil properties and physical land characteristics, land use for agriculture should consider appropriate conservation techniques, land capability and respect to local wisdom.

  4. Watershed System Model: The Essentials to Model Complex Human-Nature System at the River Basin Scale

    NASA Astrophysics Data System (ADS)

    Li, Xin; Cheng, Guodong; Lin, Hui; Cai, Ximing; Fang, Miao; Ge, Yingchun; Hu, Xiaoli; Chen, Min; Li, Weiyue

    2018-03-01

    Watershed system models are urgently needed to understand complex watershed systems and to support integrated river basin management. Early watershed modeling efforts focused on the representation of hydrologic processes, while the next-generation watershed models should represent the coevolution of the water-land-air-plant-human nexus in a watershed and provide capability of decision-making support. We propose a new modeling framework and discuss the know-how approach to incorporate emerging knowledge into integrated models through data exchange interfaces. We argue that the modeling environment is a useful tool to enable effective model integration, as well as create domain-specific models of river basin systems. The grand challenges in developing next-generation watershed system models include but are not limited to providing an overarching framework for linking natural and social sciences, building a scientifically based decision support system, quantifying and controlling uncertainties, and taking advantage of new technologies and new findings in the various disciplines of watershed science. The eventual goal is to build transdisciplinary, scientifically sound, and scale-explicit watershed system models that are to be codesigned by multidisciplinary communities.

  5. Assessing Habitat Suitability at Multiple Scales: A Landscape-Level Approach

    Treesearch

    Kurt H. Riitters; R.V. O' Neill; K.B. Jones

    1997-01-01

    The distribution and abundance of many plants and animals are influenced by the spatial arrangement of suitable habitats across landscapes. We derived habitat maps from a digital land cover map of the ~178,000 km2 Chesapeake Bay Watershed by using a spatial filtering algorithm. The regional amounts and patterns of habitats were different for...

  6. Controlling factors of soil selenium distribution in a watershed in Se-enriched and longevity region of South China.

    PubMed

    Shao, Ya; Cai, Chongfa; Zhang, Haitao; Fu, Wei; Zhong, Xuemei; Tang, Shen

    2018-05-10

    Selenium (Se) is an essential nutritional element for human beings. Many studies have been conducted on concentration and distribution patterns of soil Se in low Se, Se-enriched, and selenosis areas; however, soil Se has not been systematically studied in a watershed, especially in Se-enriched longevity region and karst area in South China. This study is carried out to explore the controlling factors of Se-enriched soils in Baishou river tributary watershed, where soils are Se-enriched, and local people have the phenomenon of longevity. The area-weighted average rock Se concentration in the watershed is 0.054 mg/kg, and there are no significant differences in rock Se concentration between different strata and between different lithological rocks. The area-weighted average concentration of Se in soils (0-20 cm) is 0.80 mg/kg, and the soil Se concentration is of high level in the watershed. Soil Se concentration decreases from upstream to downstream in the watershed, and significantly correlated with elevation. Climate is the main factor causing high content of soil Se in the watershed which lacks black rock series. The difference of clastic and carbonate parent materials in soil forming process and the physical and chemical properties (pH, OM, etc.) are the main reasons for the spatial variation of Se distribution in the watershed. The research will be beneficial to the development and utilization of Se-enriched soil in Se-enriched area.

  7. Removal of Woody Riparian Vegetation Substantially Altered a Stream Ecosystem in an Otherwise Undisturbed Grassland Watershed

    DOE PAGES

    Larson, Danelle M.; Dodds, Walter K.; Veach, Allison M.

    2018-04-23

    Riparian zones are key interfaces between stream and terrestrial ecosystems. Yet, we know of no whole-watershed experiments that cut only woody vegetation in the riparian zone in an otherwise intact watershed to isolate the role of riparian zones on stream ecology. We removed all of the woody riparian vegetation (from 10- and 30-m-wide buffers in headwaters and main channels, respectively) for 5 km of stream in a single watershed while leaving the remainder of the grassland watershed un-impacted. We assessed water chemistry changes 3 years before and 3 years after riparian wood removal and in two neighboring control watersheds withmore » a before–after, control-impact design and analysis. Riparian woody removal caused 10–100-fold increases in mean stream water nitrate concentrations and pulses of high nitrate for 3 years thereafter. Other nutrients and total suspended solids increased 2–25 times for the 3 years of post-removal. In-stream rates of gross primary production, ecosystem respiration, and net ecosystem production had large treatment effect sizes but also high variance among samples. Past studies of whole-watershed deforestations showed similar water quality responses to our riparian deforestation. Riparian zones of grassland streams are sensitive to disturbance and likely impart relatively greater influence on stream structure and function than the upslope of the watershed. Finally, our results further emphasize the role of riparian zones in biogeochemically linking aquatic and terrestrial habitats.« less

  8. Removal of Woody Riparian Vegetation Substantially Altered a Stream Ecosystem in an Otherwise Undisturbed Grassland Watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Danelle M.; Dodds, Walter K.; Veach, Allison M.

    Riparian zones are key interfaces between stream and terrestrial ecosystems. Yet, we know of no whole-watershed experiments that cut only woody vegetation in the riparian zone in an otherwise intact watershed to isolate the role of riparian zones on stream ecology. We removed all of the woody riparian vegetation (from 10- and 30-m-wide buffers in headwaters and main channels, respectively) for 5 km of stream in a single watershed while leaving the remainder of the grassland watershed un-impacted. We assessed water chemistry changes 3 years before and 3 years after riparian wood removal and in two neighboring control watersheds withmore » a before–after, control-impact design and analysis. Riparian woody removal caused 10–100-fold increases in mean stream water nitrate concentrations and pulses of high nitrate for 3 years thereafter. Other nutrients and total suspended solids increased 2–25 times for the 3 years of post-removal. In-stream rates of gross primary production, ecosystem respiration, and net ecosystem production had large treatment effect sizes but also high variance among samples. Past studies of whole-watershed deforestations showed similar water quality responses to our riparian deforestation. Riparian zones of grassland streams are sensitive to disturbance and likely impart relatively greater influence on stream structure and function than the upslope of the watershed. Finally, our results further emphasize the role of riparian zones in biogeochemically linking aquatic and terrestrial habitats.« less

  9. On the theory of drainage area for regular and non-regular points.

    PubMed

    Bonetti, S; Bragg, A D; Porporato, A

    2018-03-01

    The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its computation. However, its theoretical analysis has lagged behind. Only recently, an analytical definition for the specific catchment area was proposed (Gallant & Hutchinson. 2011 Water Resour. Res. 47 , W05535. (doi:10.1029/2009WR008540)), with the derivation of a differential equation whose validity is limited to regular points of the watershed. Here, we show that such a differential equation can be derived from a continuity equation (Chen et al. 2014 Geomorphology 219 , 68-86. (doi:10.1016/j.geomorph.2014.04.037)) and extend the theory to critical and singular points both by applying Gauss's theorem and by means of a dynamical systems approach to define basins of attraction of local surface minima. Simple analytical examples as well as applications to more complex topographic surfaces are examined. The theoretical description of topographic features and properties, such as the drainage area, channel lines and watershed divides, can be broadly adopted to develop and test the numerical algorithms currently used in digital terrain analysis for the computation of the drainage area, as well as for the theoretical analysis of landscape evolution and stability.

  10. On the theory of drainage area for regular and non-regular points

    NASA Astrophysics Data System (ADS)

    Bonetti, S.; Bragg, A. D.; Porporato, A.

    2018-03-01

    The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its computation. However, its theoretical analysis has lagged behind. Only recently, an analytical definition for the specific catchment area was proposed (Gallant & Hutchinson. 2011 Water Resour. Res. 47, W05535. (doi:10.1029/2009WR008540)), with the derivation of a differential equation whose validity is limited to regular points of the watershed. Here, we show that such a differential equation can be derived from a continuity equation (Chen et al. 2014 Geomorphology 219, 68-86. (doi:10.1016/j.geomorph.2014.04.037)) and extend the theory to critical and singular points both by applying Gauss's theorem and by means of a dynamical systems approach to define basins of attraction of local surface minima. Simple analytical examples as well as applications to more complex topographic surfaces are examined. The theoretical description of topographic features and properties, such as the drainage area, channel lines and watershed divides, can be broadly adopted to develop and test the numerical algorithms currently used in digital terrain analysis for the computation of the drainage area, as well as for the theoretical analysis of landscape evolution and stability.

  11. A Comparison of Erosion and Water Pollution Control Strategies for an Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Prato, Tony; Shi, Hongqi

    1990-02-01

    The effectiveness and efficiency of two erosion control strategies and one water pollution control (riparian) strategy are compared for Idaho's Tom Beall watershed. Erosion control strategies maximize annualized net returns per hectare on each field and restrict field erosion rates to no more than 11.2 or 16.8 tons per hectare. The riparian strategy uses good vegetative cover on all fields adjacent to the creek and in noncropland areas and the resource management system that maximizes annualized net returns per hectare on remaining fields. The Agricultural Nonpoint Source Pollution model is used to simulate the levels and concentrations of sediment, nitrogen, phosphorus, and chemical oxygen demand at the outlet of the watershed. Erosion control strategies generate less total erosion and water pollution but are less efficient than the riparian strategy. The riparian strategy is less equitable for farmers than the erosion control strategies.

  12. Resesrvoir sedimentation rates in the Little Washita River experimental watershed, Oklahoma

    USDA-ARS?s Scientific Manuscript database

    The Washita River Basin (WRB) was one of eleven pilot watershed projects selected for construction of flood control reservoirs around the country as a result of the Flood Control Act of 1936. These reservoirs were implemented to prevent and manage soil erosion and flooding. A total of 45 reservoirs ...

  13. Invasive Species Guidebook for Department of Defense Installations in the Chesapeake Bay Watershed: Identification, Control, and Restoration

    DTIC Science & Technology

    2007-11-01

    INSTALLATIONS IN THE CHESAPEAKE BAY WATERSHED IDENTIFICATION AND CONTROL METHODS Cogongrass ( Imperata cylindrica ) Description & Biology – A large...Crown vetch Coronilla varia MD, VA 14 Leafy spurge Euphorbia esula VA 15 Ground ivy Glechoma hederacea DC, MD, PA, VA, WV 17 Cogongrass Imperata

  14. Identification of homogeneous regions for regionalization of watersheds by two-level self-organizing feature maps

    NASA Astrophysics Data System (ADS)

    Farsadnia, F.; Rostami Kamrood, M.; Moghaddam Nia, A.; Modarres, R.; Bray, M. T.; Han, D.; Sadatinejad, J.

    2014-02-01

    One of the several methods in estimating flood quantiles in ungauged or data-scarce watersheds is regional frequency analysis. Amongst the approaches to regional frequency analysis, different clustering techniques have been proposed to determine hydrologically homogeneous regions in the literature. Recently, Self-Organization feature Map (SOM), a modern hydroinformatic tool, has been applied in several studies for clustering watersheds. However, further studies are still needed with SOM on the interpretation of SOM output map for identifying hydrologically homogeneous regions. In this study, two-level SOM and three clustering methods (fuzzy c-mean, K-mean, and Ward's Agglomerative hierarchical clustering) are applied in an effort to identify hydrologically homogeneous regions in Mazandaran province watersheds in the north of Iran, and their results are compared with each other. Firstly the SOM is used to form a two-dimensional feature map. Next, the output nodes of the SOM are clustered by using unified distance matrix algorithm and three clustering methods to form regions for flood frequency analysis. The heterogeneity test indicates the four regions achieved by the two-level SOM and Ward approach after adjustments are sufficiently homogeneous. The results suggest that the combination of SOM and Ward is much better than the combination of either SOM and FCM or SOM and K-mean.

  15. Using host-associated genetic markers to investigate sources of fecal contamination in two Vermont streams

    USGS Publications Warehouse

    Medalie, Laura; Matthews, Leslie J.; Stelzer, Erin A.

    2011-01-01

    The use of host-associated Bacteroidales-based 16S ribosomal ribonucleic acid genetic markers was investigated as a tool for providing information to managers on sources of bacterial impairment in Vermont streams. The study was conducted during 2009 in two watersheds on the U.S. Environmental Protection Agency's 303(d) List of Impaired Waters, the Huntington and the Mettawee Rivers. Streamwater samples collected during high-flow and base-flow conditions were analyzed for concentrations of Escherichia coli (E. coli) and Bacteroidales genetic markers (General AllBac, Human qHF183 and BacHum, Ruminant BoBac, and Canid BacCan) to identify humans, ruminants, and canids as likely or unlikely major sources of fecal contamination. Fecal reference samples from each of the potential source groups, as well as from common species of wildlife, were collected during the same season and from the same watersheds as water samples. The results were combined with data from other states to assess marker cross reaction and to relate marker results to E. coli, the regulated water-quality parameter, with a higher degree of statistical significance. Results from samples from the Huntington River collected under different flow conditions on three dates indicated that humans were unlikely to be a major source of fecal contamination, except for a single positive result at one station that indicated the potential for human sources. Ruminants (deer, moose, cow, or sheep) were potential sources of fecal contamination at all six stations on the Huntington River during one high-flow event and at all but two stations during the other high-flow event. Canids were potential sources of fecal contamination at some stations during two high-flow events, with genetic-marker concentrations in samples from two of the six stations showing consistent positive results for canids for both storm dates. A base-flow sample showed no evidence of major fecal contamination in the Huntington River from humans, ruminants, or canids. Results from samples from the Mettawee River watershed collected during high-flow conditions (12 storm samples on 2 dates at 6 stations) indicated that there was no evidence of fecal contamination from humans in seven samples and possible evidence in five samples. Results for humans were positive for only one station during both storm events. For two of the five samples with evidence for human fecal contamination, results for two different human genetic markers agreed, but results from three samples were inconsistent. In samples from five of the six Mettawee stations, ruminants were a potential source of fecal contamination on at least one of the three sampled dates, including three positive results for the base-flow sample. Yet samples from all of the stations that showed positive results for ruminants did so for only one or two of the three sampled dates. Samples from only one of the six stations gave consistent results, which were negative for ruminants for all three dates. In the Mettawee River base-flow sample, humans were an unlikely source of major fecal contamination. Factors that may influence results and conclusions include the timing of sample collection relative to the storm event; variability of E. coli and Bacteroidales concentrations in fecal reference samples and in water; sampling and analytical errors; the potential cross reactivity of host-associated genetic markers; and different persistence and survival rates of E. coli bacteria and Bacteroidales genetic markers on land, in water, and by season. These factors interfere with the ability to directly relate Bacteroidales concentrations to E. coli concentrations in river samples. It must be recognized that while use of Bacteroidales genetic markers as a source tracking tool coupled with the interpretive approach described in this report cannot be used quantitatively to pinpoint sources, it can be used to exclude potential sources as major contributors to fecal contamination.

  16. Development of Serum Marker Models to Increase Diagnostic Accuracy of Advanced Fibrosis in Nonalcoholic Fatty Liver Disease: The New LINKI Algorithm Compared with Established Algorithms.

    PubMed

    Lykiardopoulos, Byron; Hagström, Hannes; Fredrikson, Mats; Ignatova, Simone; Stål, Per; Hultcrantz, Rolf; Ekstedt, Mattias; Kechagias, Stergios

    2016-01-01

    Detection of advanced fibrosis (F3-F4) in nonalcoholic fatty liver disease (NAFLD) is important for ascertaining prognosis. Serum markers have been proposed as alternatives to biopsy. We attempted to develop a novel algorithm for detection of advanced fibrosis based on a more efficient combination of serological markers and to compare this with established algorithms. We included 158 patients with biopsy-proven NAFLD. Of these, 38 had advanced fibrosis. The following fibrosis algorithms were calculated: NAFLD fibrosis score, BARD, NIKEI, NASH-CRN regression score, APRI, FIB-4, King´s score, GUCI, Lok index, Forns score, and ELF. Study population was randomly divided in a training and a validation group. A multiple logistic regression analysis using bootstrapping methods was applied to the training group. Among many variables analyzed age, fasting glucose, hyaluronic acid and AST were included, and a model (LINKI-1) for predicting advanced fibrosis was created. Moreover, these variables were combined with platelet count in a mathematical way exaggerating the opposing effects, and alternative models (LINKI-2) were also created. Models were compared using area under the receiver operator characteristic curves (AUROC). Of established algorithms FIB-4 and King´s score had the best diagnostic accuracy with AUROCs 0.84 and 0.83, respectively. Higher accuracy was achieved with the novel LINKI algorithms. AUROCs in the total cohort for LINKI-1 was 0.91 and for LINKI-2 models 0.89. The LINKI algorithms for detection of advanced fibrosis in NAFLD showed better accuracy than established algorithms and should be validated in further studies including larger cohorts.

  17. Timber harvest and logging plan for the South Fork of the Caspar Creek watershed

    Treesearch

    Anonymous

    1970-01-01

    The Caspar Creek Watershed Study was initiated in 1960 to study large differences between conditions of stream flow and sedimentation, fish life and fish habitat between paired watersheds, one of which will be carefully logged while the other is left undisturbed as a control. This study will not compare differences in types of logging practices.

  18. A novel variational Bayes multiple locus Z-statistic for genome-wide association studies with Bayesian model averaging

    PubMed Central

    Logsdon, Benjamin A.; Carty, Cara L.; Reiner, Alexander P.; Dai, James Y.; Kooperberg, Charles

    2012-01-01

    Motivation: For many complex traits, including height, the majority of variants identified by genome-wide association studies (GWAS) have small effects, leaving a significant proportion of the heritable variation unexplained. Although many penalized multiple regression methodologies have been proposed to increase the power to detect associations for complex genetic architectures, they generally lack mechanisms for false-positive control and diagnostics for model over-fitting. Our methodology is the first penalized multiple regression approach that explicitly controls Type I error rates and provide model over-fitting diagnostics through a novel normally distributed statistic defined for every marker within the GWAS, based on results from a variational Bayes spike regression algorithm. Results: We compare the performance of our method to the lasso and single marker analysis on simulated data and demonstrate that our approach has superior performance in terms of power and Type I error control. In addition, using the Women's Health Initiative (WHI) SNP Health Association Resource (SHARe) GWAS of African-Americans, we show that our method has power to detect additional novel associations with body height. These findings replicate by reaching a stringent cutoff of marginal association in a larger cohort. Availability: An R-package, including an implementation of our variational Bayes spike regression (vBsr) algorithm, is available at http://kooperberg.fhcrc.org/soft.html. Contact: blogsdon@fhcrc.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22563072

  19. Watershed-Scale Heterogeneity of the Biophysical Controls on Soil Respiration

    NASA Astrophysics Data System (ADS)

    Riveros, D. A.; Pacific, V. J.; McGlynn, B. L.; Welsch, D. L.; Epstein, H. E.; Muth, D. J.; Marshall, L.; Wraith, J.

    2006-12-01

    Large gaps exist in our understanding of the variability of soil respiration response to changing hydrologic conditions across spatial and temporal scales. Determining the linkages between the hydrologic cycle and the biophysical controls of soil respiration from the local point, to the plot, to the watershed scale is critical to understanding the dynamics of net ecosystem CO2 exchange (NEE). To study the biophysical controls of soil respiration, we measured soil CO2 concentration, soil CO2 flux, dissolved CO2 in stream water, soil moisture, soil temperature, groundwater dynamics, and precipitation at 20-minute intervals throughout the growing season at 4 sites and at weekly intervals at 62 sites covering the range of topographic position, slope, aspect, land cover, and upslope accumulated area conditions in a 555-ha subalpine watershed in central Montana. Our goal was to quantify watershed-scale heterogeneity in soil CO2 concentrations and surface efflux and gain understanding of the biophysical controls on soil respiration. We seek to improve our ability to evaluate and predict soil respiration responses to a dynamic hydrologic cycle across multiple temporal and spatial scales. We found that time lags between biophysical controls and soil respiration can occur from hourly to daily scales. The sensitivity of soil respiration to changes in environmental conditions is controlled by the antecedent soil moisture and by topographic position. At the watershed scale, significant differences in soil respiration exist between upland (dry) and lowland (wet) sites. However, differences in the magnitude and timing of soil respiration also exist within upland settings due to heterogeneity in soil temperature, soil moisture, and soil organic matter. Finally, we used a process-based model to simulate respiration at different times of the year across spatial locations. Our simulations highlight the importance of autotrophic and heterotrophic respiration (production) over diffusivity and soil physical properties (transport). Our work begins to address the disconnect between point, footprint, watershed scale estimates of ecosystem respiration and the role of a dynamic hydrologic cycle.

  20. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.

    2013-02-15

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumormore » and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined for the weighted S-TPS-RPM. Results: The weighted S-TPS-RPM registration algorithm with optimal parameters significantly improved the anatomical accuracy as compared to S-TPS-RPM registration of the bladder alone and reduced the range of the anatomical errors by half as compared with the simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. The weighted algorithm reduced the RDE range of lipiodol markers from 0.9-14 mm after rigid bone match to 0.9-4.0 mm, compared to a range of 1.1-9.1 mm with S-TPS-RPM of bladder alone and 0.9-9.4 mm for simultaneous nonweighted registration. All registration methods resulted in good geometric accuracy on the bladder; average error values were all below 1.2 mm. Conclusions: The weighted S-TPS-RPM registration algorithm with additional weight parameter allowed indirect control over structure-specific flexibility in multistructure registrations of bladder and bladder tumor, enabling anatomically coherent registrations. The availability of an anatomically validated deformable registration method opens up the horizon for improvements in IGART for bladder cancer.« less

  1. Hydrologic resilience of a Canadian Foothills watershed to forest harvest

    NASA Astrophysics Data System (ADS)

    Goodbrand, Amy; Anderson, Axel

    2016-04-01

    Recent investigations of long-term hydrometeorological, groundwater, and streamflow data from watersheds on the eastern slopes of the Canadian Rocky Mountains showed the streamflow regime was resilient to forest harvest. These watersheds had low levels of harvest relative to their size and a large area of sparsely vegetated alpine talus slopes and exposed bedrock; an area shown to generate the majority of runoff for streamflow. In contrast, watersheds located in the foothills of the Rocky Mountains are of lower relief and typically have harvestable timber throughout the watershed; therefore, these watersheds may be more sensitive to forest disturbance and have increased potential for streamflow response. This project assesses the hydrologic resilience of an Alberta Foothills watershed to forest harvest using a 23-year dataset from the Tri-Creeks Experimental Watershed (Tri-Creeks). Tri-Creeks has been the site of intensive streamflow, groundwater, snow accumulation, and precipitation observations from 1967 - 1990. During the early 1980s, forestry experiments were conducted to compare the effects of timber harvest and riparian buffers, and the effectiveness of timber harvesting ground rules in protecting fisheries and maintaining water resources within three sub-watersheds: Eunice (16.8 km2; control); Deerlick (15.2 km2; 36% streamside timber removal); and, Wampus (28.3 km2; 37% clear-cut). Statistical analyses were used to compare the pre-and post-harvest ratios of treatment to control sub-watershed runoff for: water year, monthly (April - October), snowmelt peak flow, and low flow (10th percentile streamflow) periods as an assessment of hydrologic resilience to forest harvest. The only significant post-harvest change was an increase in water yield during May at Wampus (Mann-Whitney (MW), p<0.05) and Deerlick (MW, p<0.1) Creeks. The lack of change in snowmelt peak flow timing or magnitude was not expected, particularly in Deerlick, which had 36% streamside timber removal. The streamflow regime of Tri-Creeks displayed remarkable resilience to forest harvest. We hypothesize on the processes and characteristics that result in this watershed to exhibit greater resilience compared to other forested watersheds.

  2. Model analysis of check dam impacts on long-term sediment and water budgets in southeast Arizona, USA

    USGS Publications Warehouse

    Norman, Laura M.; Niraula, Rewati

    2016-01-01

    The objective of this study was to evaluate the effect of check dam infrastructure on soil and water conservation at the catchment scale using the Soil and Water Assessment Tool (SWAT). This paired watershed study includes a watershed treated with over 2000 check dams and a Control watershed which has none, in the West Turkey Creek watershed, Southeast Arizona, USA. SWAT was calibrated for streamflow using discharge documented during the summer of 2013 at the Control site. Model results depict the necessity to eliminate lateral flow from SWAT models of aridland environments, the urgency to standardize geospatial soils data, and the care for which modelers must document altering parameters when presenting findings. Performance was assessed using the percent bias (PBIAS), with values of ±2.34%. The calibrated model was then used to examine the impacts of check dams at the Treated watershed. Approximately 630 tons of sediment is estimated to be stored behind check dams in the Treated watershed over the 3-year simulation, increasing water quality for fish habitat. A minimum precipitation event of 15 mm was necessary to instigate the detachment of soil, sediments, or rock from the study area, which occurred 2% of the time. The resulting watershed model is useful as a predictive framework and decision-support tool to consider long-term impacts of restoration and potential for future restoration.

  3. Multi-year microbial source tracking study characterizing fecal contamination in an urban watershed

    USGS Publications Warehouse

    Bushon, Rebecca N.; Brady, Amie M. G.; Christensen, Eric D.; Stelzer, Erin A.

    2017-01-01

    Microbiological and hydrological data were used to rank tributary stream contributions of bacteria to the Little Blue River in Independence, Missouri. Concentrations, loadings and yields of E. coli and microbial source tracking (MST) markers, were characterized during base flow and storm events in five subbasins within Independence, as well as sources entering and leaving the city through the river. The E. coli water quality threshold was exceeded in 29% of base-flow and 89% of storm-event samples. The total contribution of E. coli and MST markers from tributaries within Independence to the Little Blue River, regardless of streamflow, did not significantly increase the median concentrations leaving the city. Daily loads and yields of E. coli and MST markers were used to rank the subbasins according to their contribution of each constituent to the river. The ranking methodology used in this study may prove useful in prioritizing remediation in the different subbasins.

  4. Spreadsheet WATERSHED modeling for nonpoint-source pollution management in a Wisconsin basin

    USGS Publications Warehouse

    Walker, J.F.; Pickard, S.A.; Sonzogni, W.C.

    1989-01-01

    Although several sophisticated nonpoint pollution models exist, few are available that are easy to use, cover a variety of conditions, and integrate a wide range of information to allow managers and planners to assess different control strategies. Here, a straightforward pollutant input accounting approach is presented in the form of an existing model (WATERSHED) that has been adapted to run on modern electronic spreadsheets. As an application, WATERSHED is used to assess options to improve the quality of highly eutrophic Delavan Lake in Wisconsin. WATERSHED is flexible in that several techniques, such as the Universal Soil Loss Equation or unit-area loadings, can be used to estimate nonpoint-source inputs. Once the model parameters are determined (and calibrated, if possible), the spreadsheet features can be used to conduct a sensitivity analysis of management options. In the case of Delavan Lake, it was concluded that, although some nonpoint controls were cost-effective, the overall reduction in phosphorus would be insufficient to measurably improve water quality.A straightforward pollutant input accounting approach is presented in the form of an existing model (WATERSHED) that has been adapted to run on modern electronic spreadsheets. As an application, WATERSHED is used to assess options to improve the quality of highly eutrophic Delavan Lake in Wisconsin. WATERSHED is flexible in that several techniques, such as the Universal Soil Loss Equation or unit-area loadings, can be used to estimate nonpoint-source inputs. Once the model parameters are determined (and calibrated, if possible), the spreadsheet features can be used to conduct a sensitivity analysis of management options. In the case of Delavan Lake, it was concluded that, although some nonpoint controls were cost-effective, the overall reduction in phosphorus would be insufficient to measurably improve water quality.

  5. Stormwater management network effectiveness and implications for urban watershed function: A critical review

    USGS Publications Warehouse

    Jefferson, Anne J.; Bhaskar, Aditi S.; Hopkins, Kristina G.; Fanelli, Rosemary; Avellaneda, Pedro M.; McMillan, Sara K.

    2017-01-01

    Deleterious effects of urban stormwater are widely recognized. In several countries, regulations have been put into place to improve the conditions of receiving water bodies, but planning and engineering of stormwater control is typically carried out at smaller scales. Quantifying cumulative effectiveness of many stormwater control measures on a watershed scale is critical to understanding how small-scale practices translate to urban river health. We review 100 empirical and modelling studies of stormwater management effectiveness at the watershed scale in diverse physiographic settings. Effects of networks with stormwater control measures (SCMs) that promote infiltration and harvest have been more intensively studied than have detention-based SCM networks. Studies of peak flows and flow volumes are common, whereas baseflow, groundwater recharge, and evapotranspiration have received comparatively little attention. Export of nutrients and suspended sediments have been the primary water quality focus in the United States, whereas metals, particularly those associated with sediments, have received greater attention in Europe and Australia. Often, quantifying cumulative effects of stormwater management is complicated by needing to separate its signal from the signal of urbanization itself, innate watershed characteristics that lead to a range of hydrologic and water quality responses, and the varying functions of multiple types of SCMs. Biases in geographic distribution of study areas, and size and impervious surface cover of watersheds studied also limit our understanding of responses. We propose hysteretic trajectories for how watershed function responds to increasing imperviousness and stormwater management. Even where impervious area is treated with SCMs, watershed function may not be restored to its predevelopment condition because of the lack of treatment of all stormwater generated from impervious surfaces; non-additive effects of individual SCMs; and persistence of urban effects beyond impervious surfaces. In most cases, pollutant load decreases largely result from run-off reductions rather than lowered solute or particulate concentrations. Understanding interactions between natural and built landscapes, including stormwater management strategies, is critical for successfully managing detrimental impacts of stormwater at the watershed scale.

  6. On marker-based parentage verification via non-linear optimization.

    PubMed

    Boerner, Vinzent

    2017-06-15

    Parentage verification by molecular markers is mainly based on short tandem repeat markers. Single nucleotide polymorphisms (SNPs) as bi-allelic markers have become the markers of choice for genotyping projects. Thus, the subsequent step is to use SNP genotypes for parentage verification as well. Recent developments of algorithms such as evaluating opposing homozygous SNP genotypes have drawbacks, for example the inability of rejecting all animals of a sample of potential parents. This paper describes an algorithm for parentage verification by constrained regression which overcomes the latter limitation and proves to be very fast and accurate even when the number of SNPs is as low as 50. The algorithm was tested on a sample of 14,816 animals with 50, 100 and 500 SNP genotypes randomly selected from 40k genotypes. The samples of putative parents of these animals contained either five random animals, or four random animals and the true sire. Parentage assignment was performed by ranking of regression coefficients, or by setting a minimum threshold for regression coefficients. The assignment quality was evaluated by the power of assignment (P[Formula: see text]) and the power of exclusion (P[Formula: see text]). If the sample of putative parents contained the true sire and parentage was assigned by coefficient ranking, P[Formula: see text] and P[Formula: see text] were both higher than 0.99 for the 500 and 100 SNP genotypes, and higher than 0.98 for the 50 SNP genotypes. When parentage was assigned by a coefficient threshold, P[Formula: see text] was higher than 0.99 regardless of the number of SNPs, but P[Formula: see text] decreased from 0.99 (500 SNPs) to 0.97 (100 SNPs) and 0.92 (50 SNPs). If the sample of putative parents did not contain the true sire and parentage was rejected using a coefficient threshold, the algorithm achieved a P[Formula: see text] of 1 (500 SNPs), 0.99 (100 SNPs) and 0.97 (50 SNPs). The algorithm described here is easy to implement, fast and accurate, and is able to assign parentage using genomic marker data with a size as low as 50 SNPs.

  7. Relationship of field and LiDAR estimates of forest canopy cover with snow accumulation and melt

    Treesearch

    Mariana Dobre; William J. Elliot; Joan Q. Wu; Timothy E. Link; Brandon Glaza; Theresa B. Jain; Andrew T. Hudak

    2012-01-01

    At the Priest River Experimental Forest in northern Idaho, USA, snow water equivalent (SWE) was recorded over a period of six years on random, equally-spaced plots in ~4.5 ha small watersheds (n=10). Two watersheds were selected as controls and eight as treatments, with two watersheds randomly assigned per treatment as follows: harvest (2007) followed by mastication (...

  8. Watershed response and recovery from the Will Fire: ten years of observations

    Treesearch

    Kenneth B. Roby

    1989-01-01

    Watershed response and recovery from a wildfire which burned 95 percent of the Williams Creek watershed in 1979 were monitored. Ground cover reduced to 11 percent by the fire increased to 80 percent by 1983. Grasses seeded for erosion control provided less than 10 percent cover until 3 years following the fire, and no significant difference in ground cover was found...

  9. Effects of forest cover and environmental variables on snow accumulation and melt

    Treesearch

    Mariana Dobre; William J. Elliot; Joan Q. Wu; Timothy E. Link; Ina S. Miller

    2011-01-01

    The goal of this study was to assess the effects of topography and forest cover resulting from different treatments on snow accumulation and melt in small watersheds in the western United States. A paired-watershed study was implemented at the Priest River Experimental Forest, Idaho, where 10 small watersheds with an average area of 4.5 ha were treated by: 1) control (...

  10. Honey Creek Watershed Project Tillage Demonstration Results 1981.

    DTIC Science & Technology

    1982-01-01

    previous levels of water quality. Of these nonpoint sources, nutrient runoff from agricultural watersheds is most significant. This publication reports...return to previous levels of water quality. Of these nonpoint sources, nu- trient runoff from agricultural watersheds is most significent. How, though...was the Corps, experienced as civil engineers, to address nutrient runoff and erosion control in farm areas? Their answer to this question was to ask

  11. Physio-climatic controls on vulnerability of watersheds to climate and land use change across the U. S.

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ankit; Singh, Riddhi

    2016-11-01

    Understanding how a watershed's physio-climatic characteristics affect its vulnerability to environmental (climatic and land use) change is crucial for managing these complex systems. In this study, we combine the strengths of recently developed exploratory modeling frameworks and comparative hydrology to quantify the relationship between watershed's vulnerability and its physio-climatic characteristics. We propose a definition of vulnerability that can be used by a diverse range of water system managers and is useful in the presence of large uncertainties in drivers of environmental change. This definition is related to adverse climate change and land use thresholds that are quantified using a recently developed exploratory modeling approach. In this way, we estimate the vulnerability of 69 watersheds in the United States to climate and land use change. We explore definitions of vulnerability that describe average or extreme flow conditions, as well as others that are relevant from the point of view of instream organisms. In order to understand the dominant controls on vulnerability, we correlate these indices with watershed's characteristics describing its topography, geology, drainage, climate, and land use. We find that mean annual flow is more vulnerable to reductions in precipitation in watersheds with lower average soil permeability, lower baseflow index, lower forest cover, higher topographical wetness index, and vice-versa. Our results also indicate a potential mediation of climate change impacts by regional groundwater systems. By developing such relationships across a large range of watersheds, such information can potentially be used to assess the vulnerability of ungauged watersheds to uncertain environmental change.

  12. Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent material to riverine carbon

    USGS Publications Warehouse

    O’Donnell, Jonathan A.; Aiken, George R.; Swanson, David K.; Santosh, Panda; Butler, Kenna D.; Baltensperger, Andrew P.

    2016-01-01

    Recent climate change in the Arctic is driving permafrost thaw, which has important implications for regional hydrology and global carbon dynamics. Permafrost is an important control on groundwater dynamics and the amount and chemical composition of dissolved organic matter (DOM) transported by high-latitude rivers. The consequences of permafrost thaw for riverine DOM dynamics will likely vary across space and time, due in part to spatial variation in ecosystem properties in Arctic watersheds. Here we examined watershed controls on DOM composition in 69 streams and rivers draining heterogeneous landscapes across a broad region of Arctic Alaska. We characterized DOM using bulk dissolved organic carbon (DOC) concentration, optical properties, and chemical fractionation and classified watersheds based on permafrost characteristics (mapping of parent material and ground ice content, modeling of thermal state) and ecotypes. Parent material and ground ice content significantly affected the amount and composition of DOM. DOC concentrations were higher in watersheds underlain by fine-grained loess compared to watersheds underlain by coarse-grained sand or shallow bedrock. DOC concentration was also higher in rivers draining ice-rich landscapes compared to rivers draining ice-poor landscapes. Similarly, specific ultraviolet absorbance (SUVA254, an index of DOM aromaticity) values were highest in watersheds underlain by fine-grained deposits or ice-rich permafrost. We also observed differences in hydrophobic organic acids, hydrophilic compounds, and DOM fluorescence across watersheds. Both DOC concentration and SUVA254 were negatively correlated with watershed active layer thickness, as determined by high-resolution permafrost modeling. Together, these findings highlight how spatial variations in permafrost physical and thermal properties can influence riverine DOM.

  13. DOC Dynamics in Small Headwater Streams: the Role of Hydrology, Climate, and Land Management

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Lee, B. S.; Jones, J. A.

    2015-12-01

    Dissolved organic carbon (DOC) is a critical component of the carbon (C) cycle of both terrestrial and aquatic systems. For small headwater allochthonous streams, terrestrial C delivery fuels the metabolism of receiving waters and significantly influences biotic diversity and function. While nutrient fluxes in streams have long been used as indicators of terrestrial ecosystem processes, less attention has been given to terrestrial controls on DOC export. We used the long-term stream chemistry records from the H.J. Andrews Forest LTER to examine forest management, climatic, and hydrologic controls on both seasonal and annual DOC fluxes. Within a watershed, annual DOC flux was highly related to annual discharge (Q), although considerable variability in higher discharge years suggested a role for indices of storminess, especially early in the water year. Among watersheds, younger, previously harvested watersheds generally had significantly lower DOC fluxes for a given Q than old-growth watersheds, even 4+ decades after harvest. The exception to this pattern was a harvested watershed that had significant downed wood retained on site, and had densities of coarse woody debris (CWD) close to that of the old-growth watersheds even though live tree biomass was similar to the other harvested watersheds. Other climatic factors did not appear to have significant roles in predicting either seasonal or annual fluxes of DOC. This is in sharp contrast to fluxes of nitrate at our site, which appears to be related most significantly to the presence of alder within the watershed. Taken together, our data suggest a persistent and cascading role for CWD in old-growth forest ecosystems.

  14. Quantification of BMPs Selection and Spatial Placement Impact on Water Quality Controlling Plans in Lower Bear River Watershed, Utah

    NASA Astrophysics Data System (ADS)

    Salha, A. A.; Stevens, D. K.

    2016-12-01

    The aim of the watershed-management program in Box Elder County, Utah set by Utah Division of Water Quality (UDEQ) is to evaluate the effectiveness and spatial placement of the implemented best-management practices (BMP) for controlling nonpoint-source contamination at watershed scale. The need to evaluate the performance of BMPs would help future policy and program decisions making as desired end results. The environmental and costs benefits of BMPs in Lower Bear River watershed have seldom been measured beyond field experiments. Yet, implemented practices have rarely been evaluated at the watershed scale where the combined effects of variable soils, climatic conditions, topography and land use/covers and management conditions may significantly change anticipated results and reductions loads. Such evaluation requires distributed watershed models that are necessary for quantifying and reproducing the movement of water, sediments and nutrients. Soil and Water Assessment Tool (SWAT) model is selected as a watershed level tool to identify contaminant nonpoint sources (critical zones) and areas of high pollution risks. Water quality concerns have been documented and are primarily attributed to high phosphorus and total suspended sediment concentrations caused by agricultural and farming practices (required load is 460 kg/day of total phosphorus based on 0.075 mg/l and an average of total suspended solids of 90 mg/l). Input data such as digital elevation model (DEM), land use/Land cover (LULC), soils, and climate data for 10 years (2000-2010) is utilized along with observed water quality at the watershed outlet (USGS) and some discrete monitoring points within the watershed. Statistical and spatial analysis of scenarios of management practices (BMP's) are not implemented (before implementation), during implementation, and after BMP's have been studied to determine whether water quality of the two main water bodies has improved as required by the LBMR watershed's TMDL and if the BMPs are cost-effectively targeting the critical zones.

  15. Hydro-Geomorphic Connectivity in Arid Watershed: Anthropogenic Effects and Extreme Flash flood

    NASA Astrophysics Data System (ADS)

    Egozi, Roey

    2017-04-01

    Arid watersheds are excellent settings to study water and sediment connectivity because of spars vegetation and the possibility to make clearer links between climate parameters and topographical changes. However different flood event magnitudes may result in different degrees of connectivity. This even gets more complicated when man made modifications to the drainage system are done without considering the outcomes in terms of the potential of flood damage and risks, i.e. in the case of extreme flash floods. Herein we report on the results from two studies conducted in two different small catchments along the dead sea rift: Wadi A Dalia and Wadi Ras Moakif. The studies conducted as part of a larger project aimed at investigating the floods and damages triggered by a rare storm event occurred at the end of October 2015. This storm event covered all of Israel and characterized with rare rainfall depths and intensities as well as floods with rare pick discharges. Observations and field measurements of bed material, river cross sections and water elevation markers were done and statistical analysis has been performed to estimate the exceed probability of the different measured and estimated hydro-climatic values. In Wadi-A-Dalia the coupling of rare rainfall depths over the watershed area which itself was bare due to over grazing result in a major flood. The severe damage caused by this flood was intensified due to the increase of structural hydrologic connectivity, i.e. flood protection canal discharged higher volumes of water collected from small Wadi systems at the same time. In Wadi Ras Moakif the rainfall cells did not produced rare rainfall, but still a major flood occurred over a very short distance of the main channel transporting huge amount of bed material deposited and blocked the main road along the dead sea western coast. In this case the cause was similar - a modification to the drainage system result in increase structural hydrologic connectivity lead to runoff concentration and higher stream power value. The results suggest that in arid watersheds flood protection measures that involve modifications to the drainage system such that the structural hydrologic connectivity improves with the aim to conduit the volume of water away may fail to provide the protection planned and may cause higher damage to infrastructures. Therefore, hydrologic connectivity should become a parameter in flood control design. Moreover, studying hydrologic connectivity in natural landscapes may provide valid solutions for flood control design projects.

  16. StreamCat and LakeCat: An overview of algorithms, data, and models developed at the US EPA Western Ecology Division to facilitate and advance watershed prediction in the conterminous US.

    EPA Science Inventory

    Geospatial data and techniques have long been critical to advancing the analysis and management of freshwater ecosystems. However, these data and techniques have often been limited to specific sample sites or regional analyses because of the difficulty associated with generating ...

  17. Development of a GIS interface for WEPP Model application to Great Lakes forested watersheds

    Treesearch

    J. R. Frankenberger; S. Dun; D. C. Flanagan; J. Q. Wu; W. J. Elliot

    2011-01-01

    This presentation will highlight efforts on development of a new online WEPP GIS interface, targeted toward application in forested regions bordering the Great Lakes. The key components and algorithms of the online GIS system will be outlined. The general procedures used to provide input to the WEPP model and to display model output will be demonstrated.

  18. Multisensor fusion remote sensing technology for assessing multitemporal responses in ecohydrological systems

    NASA Astrophysics Data System (ADS)

    Makkeasorn, Ammarin

    This study aims at presenting a systematic soil moisture estimation method for the Choke Canyon Reservoir Watershed (CCRW), a semiarid watershed with an area of over 14,200 km2 in south Texas. With the aid of five corner reflectors, the RADARSAT-1 Synthetic Aperture Radar (SAR) imageries of the study area acquired in April and September 2004 were processed by both radiometric and geometric calibrations at first. New soil moisture estimation models derived by genetic programming (GP) technique were then developed and applied to support the soil moisture distribution analysis. The GP-based nonlinear function derived in the evolutionary process uniquely links a series of crucial topographic and geographic features. Included in this process are slope, aspect, vegetation cover, and soil permeability to compliment the well-calibrated SAR data. Research indicates that the novel application of GP proved useful for generating a highly nonlinear structure in regression regime, which exhibits very strong correlations statistically between the model estimates and the ground truth measurements (volumetric water content) on the basis of the unseen data sets. In an effort to produce the soil moisture distributions over seasons, it eventually leads to characterizing local- to regional-scale soil moisture variability and performing the possible estimation of water storages of the terrestrial hydrosphere. A new evolutionary computational, supervised classification scheme ( Riparian Classification Algorithm, RICAL) was developed and used to identify the change of riparian zones in a semi-arid watershed temporally and spatially. The case study uniquely demonstrates an effort to incorporating both vegetation index and soil moisture estimates based on Landsat 5 TM and RADARSAT-1 imageries while trying to improve the riparian classification in the Choke Canyon Reservoir Watershed (CCRW), South Texas. The estimation of soil moisture based on RADARSAT-1 Synthetic Aperture Radar (SAR) satellite imagery as previously developed was used. Eight commonly used vegetation indices were calculated from the reflectance obtained from Landsat 5 TM satellite images. The vegetation indices were individually used to classify vegetation cover in association with genetic programming algorithm. The soil moisture and vegetation indices were integrated into Landsat TM images based on a pre-pixel channel approach for riparian classification. Two different classification algorithms were used including genetic programming, and a combination of ISODATA and maximum likelihood supervised classification. The white box feature of genetic programming revealed the comparative advantage of all input parameters. The GP algorithm yielded more than 90% accuracy, based on unseen ground data, using vegetation index and Landsat reflectance band 1, 2, 3, and 4. The detection of changes in the buffer zone was proved to be technically feasible with high accuracy. Overall, the development of the RICAL algorithm may lead to the formulation of more effective management strategies for the handling of non-point source pollution control, bird habitat monitoring, and grazing and live stock management in the future. Geo-environmental information amassed in this study includes soil permeability, surface temperature, soil moisture, precipitation, leaf area index (LAI) and normalized difference vegetation index (NDVI). With the aid of a remote sensing-based GIP analysis, only five locations out of more than 800 candidate sites were selected by the spatial analysis, and then confirmed by a field investigation. The methodology developed in this remote sensing-based GIP analysis will significantly advance the state-of-the-art technology in optimum arrangement/distribution of water sensor platforms for maximum sensing coverage and information-extraction capacity. To more efficiently use the limited amount of water or to resourcefully provide adequate time for flood warning, the results have led us to seek advanced techniques for improving streamflow forecasting. The objective of this section of research is to incorporate sea surface temperature (SST), Next Generation Radar (NEXRAD) and meteorological characteristics with historical stream data to forecast the actual streamflow using genetic programming. This study case concerns the forecasting of stream discharge of a complex-terrain, semi-arid watershed. This study elicits microclimatological factors and the resultant stream flow rate in river system given the influence of dynamic basin features such as soil moisture, soil temperature, ambient relative humidity, air temperature, sea surface temperature, and precipitation. Evaluations of the forecasting results are expressed in terms of the percentage error (PE), the root-mean-square error (RMSE), and the square of the Pearson product moment correlation coefficient (r-squared value). The developed models can predict streamflow with very good accuracy with an r-square of 0.84 and PE of 1% for a 30-day prediction. (Abstract shortened by UMI.)

  19. Groupwise connectivity-based parcellation of the whole human cortical surface using watershed-driven dimension reduction.

    PubMed

    Lefranc, Sandrine; Roca, Pauline; Perrot, Matthieu; Poupon, Cyril; Le Bihan, Denis; Mangin, Jean-François; Rivière, Denis

    2016-05-01

    Segregating the human cortex into distinct areas based on structural connectivity criteria is of widespread interest in neuroscience. This paper presents a groupwise connectivity-based parcellation framework for the whole cortical surface using a new high quality diffusion dataset of 79 healthy subjects. Our approach performs gyrus by gyrus to parcellate the whole human cortex. The main originality of the method is to compress for each gyrus the connectivity profiles used for the clustering without any anatomical prior information. This step takes into account the interindividual cortical and connectivity variability. To this end, we consider intersubject high density connectivity areas extracted using a surface-based watershed algorithm. A wide validation study has led to a fully automatic pipeline which is robust to variations in data preprocessing (tracking type, cortical mesh characteristics and boundaries of initial gyri), data characteristics (including number of subjects), and the main algorithmic parameters. A remarkable reproducibility is achieved in parcellation results for the whole cortex, leading to clear and stable cortical patterns. This reproducibility has been tested across non-overlapping subgroups and the validation is presented mainly on the pre- and postcentral gyri. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. [Coupling SWAT and CE-QUAL-W2 models to simulate water quantity and quality in Shanmei Reservoir watershed].

    PubMed

    Liu, Mei-Bing; Chen, Dong-Ping; Chen, Xing-Wei; Chen, Ying

    2013-12-01

    A coupled watershed-reservoir modeling approach consisting of a watershed distributed model (SWAT) and a two-dimensional laterally averaged model (CE-QUAL-W2) was adopted for simulating the impact of non-point source pollution from upland watershed on water quality of Shanmei Reservoir. Using the daily serial output from Shanmei Reservoir watershed by SWAT as the input to Shanmei Reservoir by CE-QUAL-W2, the coupled modeling was calibrated for runoff and outputs of sediment and pollutant at watershed scale and for elevation, temperature, nitrate, ammonium and total nitrogen in Shanmei Reservoir. The results indicated that the simulated values agreed fairly well with the observed data, although the calculation precision of downstream model would be affected by the accumulative errors generated from the simulation of upland model. The SWAT and CE-QUAL-W2 coupled modeling could be used to assess the hydrodynamic and water quality process in complex watershed comprised of upland watershed and downstream reservoir, and might further provide scientific basis for positioning key pollution source area and controlling the reservoir eutrophication.

  1. Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine.

    PubMed

    Johnson, K B; Haines, T A; Kahl, J S; Norton, S A; Amirbahman, Aria; Sheehan, K D

    2007-03-01

    Throughfall and bulk precipitation samples were collected for two watersheds at Acadia National Park, Maine, from 3 May to 16 November 2000, to determine which landscape factors affected mercury (Hg) deposition. One of these watersheds, Cadillac Brook, burned in 1947, providing a natural experimental design to study the effects of forest type on deposition to forested watersheds. Sites that face southwest received the highest Hg deposition, which may be due to the interception of cross-continental movement of contaminated air masses. Sites covered with softwood vegetation also received higher Hg deposition than other vegetation types because of the higher scavenging efficiency of the canopy structure. Methyl mercury (MeHg) deposition was not affected by these factors. Hg deposition, as bulk precipitation and throughfall was lower in Cadillac Brook watershed (burned) than in Hadlock Brook watershed (unburned) because of vegetation type and watershed aspect. Hg and MeHg inputs were weighted by season and vegetation type because these two factors had the most influence on deposition. Hg volatilization was not determined. The total Hg deposition via throughfall and bulk precipitation was 9.4 microg/m(2)/year in Cadillac Brook watershed and 10.2 microg/m(2)/year in Hadlock Brook watershed. The total MeHg deposition via throughfall and bulk precipitation was 0.05 microg/m(2)/year in Cadillac Brook watershed and 0.10 microg/m(2)/year in Hadlock Brook watershed.

  2. The segmentation of bones in pelvic CT images based on extraction of key frames.

    PubMed

    Yu, Hui; Wang, Haijun; Shi, Yao; Xu, Ke; Yu, Xuyao; Cao, Yuzhen

    2018-05-22

    Bone segmentation is important in computed tomography (CT) imaging of the pelvis, which assists physicians in the early diagnosis of pelvic injury, in planning operations, and in evaluating the effects of surgical treatment. This study developed a new algorithm for the accurate, fast, and efficient segmentation of the pelvis. The proposed method consists of two main parts: the extraction of key frames and the segmentation of pelvic CT images. Key frames were extracted based on pixel difference, mutual information and normalized correlation coefficient. In the pelvis segmentation phase, skeleton extraction from CT images and a marker-based watershed algorithm were combined to segment the pelvis. To meet the requirements of clinical application, physician's judgment is needed. Therefore the proposed methodology is semi-automated. In this paper, 5 sets of CT data were used to test the overlapping area, and 15 CT images were used to determine the average deviation distance. The average overlapping area of the 5 sets was greater than 94%, and the minimum average deviation distance was approximately 0.58 pixels. In addition, the key frame extraction efficiency and the running time of the proposed method were evaluated on 20 sets of CT data. For each set, approximately 13% of the images were selected as key frames, and the average processing time was approximately 2 min (the time for manual marking was not included). The proposed method is able to achieve accurate, fast, and efficient segmentation of pelvic CT image sequences. Segmentation results not only provide an important reference for early diagnosis and decisions regarding surgical procedures, they also offer more accurate data for medical image registration, recognition and 3D reconstruction.

  3. A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations

    NASA Technical Reports Server (NTRS)

    Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.

    2012-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.

  4. Comparison of two automated instruments for Epstein-Barr virus serology in a large adult hospital and implementation of an Epstein-Barr virus nuclear antigen-based testing algorithm.

    PubMed

    Al Sidairi, Hilal; Binkhamis, Khalifa; Jackson, Colleen; Roberts, Catherine; Heinstein, Charles; MacDonald, Jimmy; Needle, Robert; Hatchette, Todd F; LeBlanc, Jason J

    2017-11-01

    Serology remains the mainstay for diagnosis of Epstein-Barr virus (EBV) infection. This study compared two automated platforms (BioPlex 2200 and Architect i2000SR) to test three EBV serological markers: viral capsid antigen (VCA) immunoglobulins of class M (IgM), VCA immunoglobulins of class G (IgG) and EBV nuclear antigen-1 (EBNA-1) IgG. Using sera from 65 patients at various stages of EBV disease, BioPlex demonstrated near-perfect agreement for all EBV markers compared to a consensus reference. The agreement for Architect was near-perfect for VCA IgG and EBNA-1 IgG, and substantial for VCA IgM despite five equivocal results. Since the majority of testing in our hospital was from adults with EBNA-1 IgG positive results, post-implementation analysis of an EBNA-based algorithm showed advantages over parallel testing of the three serologic markers. This small verification demonstrated that both automated systems for EBV serology had good performance for all EBV markers, and an EBNA-based testing algorithm is ideal for an adult hospital.

  5. Evaluation of flash-flood discharge forecasts in complex terrain using precipitation

    USGS Publications Warehouse

    Yates, D.; Warner, T.T.; Brandes, E.A.; Leavesley, G.H.; Sun, Jielun; Mueller, C.K.

    2001-01-01

    Operational prediction of flash floods produced by thunderstorm (convective) precipitation in mountainous areas requires accurate estimates or predictions of the precipitation distribution in space and time. The details of the spatial distribution are especially critical in complex terrain because the watersheds are generally small in size, and small position errors in the forecast or observed placement of the precipitation can distribute the rain over the wrong watershed. In addition to the need for good precipitation estimates and predictions, accurate flood prediction requires a surface-hydrologic model that is capable of predicting stream or river discharge based on the precipitation-rate input data. Different techniques for the estimation and prediction of convective precipitation will be applied to the Buffalo Creek, Colorado flash flood of July 1996, where over 75 mm of rain from a thunderstorm fell on the watershed in less than 1 h. The hydrologic impact of the precipitation was exacerbated by the fact that a significant fraction of the watershed experienced a wildfire approximately two months prior to the rain event. Precipitation estimates from the National Weather Service's operational Weather Surveillance Radar-Doppler 1988 and the National Center for Atmospheric Research S-band, research, dual-polarization radar, colocated to the east of Denver, are compared. In addition, very short range forecasts from a convection-resolving dynamic model, which is initialized variationally using the radar reflectivity and Doppler winds, are compared with forecasts from an automated-algorithmic forecast system that also employs the radar data. The radar estimates of rain rate, and the two forecasting systems that employ the radar data, have degraded accuracy by virtue of the fact that they are applied in complex terrain. Nevertheless, the radar data and forecasts from the dynamic model and the automated algorithm could be operationally useful for input to surface-hydrologic models employed for flood warning. Precipitation data provided by these various techniques at short time scales and at fine spatial resolutions are employed as detailed input to a distributed-parameter hydrologic model for flash-flood prediction and analysis. With the radar-based precipitation estimates employed as input, the simulated flood discharge was similar to that observed. The dynamic-model precipitation forecast showed the most promise in providing a significant discharge-forecast lead time. The algorithmic system's precipitation forecast did not demonstrate as much skill, but the associated discharge forecast would still have been sufficient to have provided an alert of impending flood danger.

  6. Modelling of the estimated contributions of different sub-watersheds and sources to phosphorous export and loading from the Dongting Lake watershed, China.

    PubMed

    Hou, Ying; Chen, Weiping; Liao, Yuehua; Luo, Yueping

    2017-11-03

    Considerable growth in the economy and population of the Dongting Lake watershed in Southern China has increased phosphorus loading to the lake and resulted in a growing risk of lake eutrophication. This study aimed to reveal the spatial pattern and sources of phosphorus export and loading from the watershed. We applied an export coefficient model and the Dillon-Rigler model to quantify contributions of different sub-watersheds and sources to the total phosphorus (TP) export and loading in 2010. Together, the upper and lower reaches of the Xiang River watershed and the Dongting Lake Area contributed 60.9% of the TP exported from the entire watershed. Livestock husbandry appeared to be the largest anthropogenic source of TP, contributing more than 50% of the TP exported from each secondary sub-watersheds. The actual TP loading to the lake in 2010 was 62.9% more than the permissible annual TP loading for compliance with the Class III water quality standard for lakes. Three primary sub-watersheds-the Dongting Lake Area, the Xiang River, and the Yuan River watersheds-contributed 91.2% of the total TP loading. As the largest contributor among all sources, livestock husbandry contributed nearly 50% of the TP loading from the Dongting Lake Area and more than 60% from each of the other primary sub-watersheds. This study provides a methodology to identify the key sources and locations of TP export and loading in large lake watersheds. The study can provide a reference for the decision-making for controlling P pollution in the Dongting Lake watershed.

  7. Dual nitrate isotopes clarify the role of biological processing and hydrologic flow paths on nitrogen cycling in subtropical low-gradient watersheds

    DOE PAGES

    Griffiths, Natalie A.; Jackson, C. Rhett; McDonnell, Jeffrey J.; ...

    2016-02-08

    Nitrogen (N) is an important nutrient as it often limits productivity but in excess can impair water quality. Most studies on watershed N cycling have occurred in upland forested catchments where snowmelt dominates N export; fewer studies have focused on low-relief watersheds that lack snow. We examined watershed N cycling in three adjacent, low-relief watersheds in the Upper Coastal Plain of the southeastern United States to better understand the role of hydrological flow paths and biological transformations of N at the watershed scale. Groundwater was the dominant source of nitrified N to stream water in two of the three watersheds,more » while atmospheric deposition comprised 28% of stream water nitrate in one watershed. The greater atmospheric contribution may have been due to the larger stream channel area relative to total watershed area or the dominance of shallow subsurface flow paths contributing to stream flow in this watershed. There was a positive relationship between temperature and stream water ammonium concentrations and a negative relationship between temperature and stream water nitrate concentrations in each watershed suggesting that N cycling processes (i.e., nitrification and denitrification) varied seasonally. However, there were no clear patterns in the importance of denitrification in different water pools possibly because a variety of factors (i.e., assimilatory uptake, dissimilatory uptake, and mixing) affected nitrate concentrations. In conclusion, together, these results highlight the hydrological and biological controls on N cycling in low-gradient watersheds and variability in N delivery flow paths among adjacent watersheds with similar physical characteristics.« less

  8. Sediment Management at the Watershed Level

    DTIC Science & Technology

    2012-08-01

    al. 2005). Trimble examined ten river basins (1,000 to 7,500 mi2 ) and found that the sediment yield averaged about six percent. He attributed the...importance of storage and remobilization in controlling sediment yield from the 139 mi2 Coon Creek watershed in Wisconsin. Trimble prepared sediment...Federal government in 1984, DHP activities targeted sixteen watersheds comprising 2,625 mi2 within the Yazoo River Basin in the Lower Mississippi

  9. Evaluation of five microbial and four mitochondrial DNA markers for tracking human and pig fecal pollution in freshwater

    PubMed Central

    He, Xiwei; Liu, Peng; Zheng, Guolu; Chen, Huimei; Shi, Wei; Cui, Yibin; Ren, Hongqiang; Zhang, Xu-Xiang

    2016-01-01

    This study systematically evaluated five microbial and four mitochondrial DNA (mtDNA) markers, including sensitivities and specificities under PCR method, and fecal concentrations and decay rates in water under qPCR method. The microbial DNA markers were the three human-associated (BacH, HF183 and B.adolescentis) and two pig-associated (Pig-2-Bac and L.amylovorus), while the mtDNA ones were two human- (H-ND6 and H-ND5) and two pig-associated (P-CytB and P-ND5). All the mtDNA markers showed higher sensitivity (100%) than the microbial ones (84.0–88.8%) except Pig-2-Bac (100%). Specificities of the human mtDNA markers (99.1 and 98.1%) were higher than those of the human-associated microbial ones (57.0–88.8%). But this pattern was not observed in the pig-associated markers where Pig-2-Bac had 100% specificity. The reliability of H-ND6 and H-ND5 was further evidenced to identify locations of the most polluted within the Taihu Lake watershed of China. In general, the microbial DNA markers demonstrated a higher fecal concentration than the mtDNA ones; increasing temperature and sunlight exposure accelerated significantly the decay of all the DNA markers. Results of this study suggest that DNA markers H-ND6, H-ND5, and Pig-2-Bac may be among the best for fecal source tracking in water. PMID:27734941

  10. Evaluation of five microbial and four mitochondrial DNA markers for tracking human and pig fecal pollution in freshwater

    NASA Astrophysics Data System (ADS)

    He, Xiwei; Liu, Peng; Zheng, Guolu; Chen, Huimei; Shi, Wei; Cui, Yibin; Ren, Hongqiang; Zhang, Xu-Xiang

    2016-10-01

    This study systematically evaluated five microbial and four mitochondrial DNA (mtDNA) markers, including sensitivities and specificities under PCR method, and fecal concentrations and decay rates in water under qPCR method. The microbial DNA markers were the three human-associated (BacH, HF183 and B.adolescentis) and two pig-associated (Pig-2-Bac and L.amylovorus), while the mtDNA ones were two human- (H-ND6 and H-ND5) and two pig-associated (P-CytB and P-ND5). All the mtDNA markers showed higher sensitivity (100%) than the microbial ones (84.0-88.8%) except Pig-2-Bac (100%). Specificities of the human mtDNA markers (99.1 and 98.1%) were higher than those of the human-associated microbial ones (57.0-88.8%). But this pattern was not observed in the pig-associated markers where Pig-2-Bac had 100% specificity. The reliability of H-ND6 and H-ND5 was further evidenced to identify locations of the most polluted within the Taihu Lake watershed of China. In general, the microbial DNA markers demonstrated a higher fecal concentration than the mtDNA ones; increasing temperature and sunlight exposure accelerated significantly the decay of all the DNA markers. Results of this study suggest that DNA markers H-ND6, H-ND5, and Pig-2-Bac may be among the best for fecal source tracking in water.

  11. Optimization of green infrastructure network at semi-urbanized watersheds to manage stormwater volume, peak flow and life cycle cost: Case study of Dead Run watershed in Maryland

    NASA Astrophysics Data System (ADS)

    Heidari Haratmeh, B.; Rai, A.; Minsker, B. S.

    2016-12-01

    Green Infrastructure (GI) has become widely known as a sustainable solution for stormwater management in urban environments. Despite more recognition and acknowledgment, researchers and practitioners lack clear and explicit guidelines on how GI practices should be implemented in urban settings. This study is developing a noisy-based multi-objective, multi-scaled genetic algorithm that determines optimal GI networks for environmental, economic and social objectives. The methodology accounts for uncertainty in modeling results and is designed to perform at sub-watershed as well as patch scale using two different simulation models, SWMM and RHESSys, in a Cloud-based implementation using a Web interface. As an initial case study, a semi-urbanized watershed— DeadRun 5— in Baltimore County, Maryland, is selected. The objective of the study is to minimize life cycle cost, maximize human preference for human well-being and the difference between pre-development hydrographs generated from current rainfall events and design storms, as well as those that result from proposed GI scenarios. Initial results for DeadRun5 watershed suggest that placing GI in the proximity of the watershed outlet optimizes life cycle cost, stormwater volume, and peak flow capture. The framework can easily present outcomes of GI design scenarios to both designers and local stakeholders, and future plans include receiving feedback from users on candidate designs, and interactively updating optimal GI network designs in a crowd-sourced design process. This approach can also be helpful in deriving design guidelines that better meet stakeholder needs.

  12. Design of automation tools for management of descent traffic

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Nedell, William

    1988-01-01

    The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. This paper focuses primarily on the Descent Advisor which provides automation tools for managing descent traffic. The algorithms, automation modes, and graphical interfaces incorporated in the design are described. Information generated by the Descent Advisor tools is integrated into a plan view traffic display consisting of a high-resolution color monitor. Estimated arrival times of aircraft are presented graphically on a time line, which is also used interactively in combination with a mouse input device to select and schedule arrival times. Other graphical markers indicate the location of the fuel-optimum top-of-descent point and the predicted separation distances of aircraft at a designated time-control point. Computer generated advisories provide speed and descent clearances which the controller can issue to aircraft to help them arrive at the feeder gate at the scheduled times or with specified separation distances. Two types of horizontal guidance modes, selectable by the controller, provide markers for managing the horizontal flightpaths of aircraft under various conditions. The entire system consisting of descent advisor algorithm, a library of aircraft performance models, national airspace system data bases, and interactive display software has been implemented on a workstation made by Sun Microsystems, Inc. It is planned to use this configuration in operational evaluations at an en route center.

  13. A fully automated non-external marker 4D-CT sorting algorithm using a serial cine scanning protocol.

    PubMed

    Carnes, Greg; Gaede, Stewart; Yu, Edward; Van Dyk, Jake; Battista, Jerry; Lee, Ting-Yim

    2009-04-07

    Current 4D-CT methods require external marker data to retrospectively sort image data and generate CT volumes. In this work we develop an automated 4D-CT sorting algorithm that performs without the aid of data collected from an external respiratory surrogate. The sorting algorithm requires an overlapping cine scan protocol. The overlapping protocol provides a spatial link between couch positions. Beginning with a starting scan position, images from the adjacent scan position (which spatial match the starting scan position) are selected by maximizing the normalized cross correlation (NCC) of the images at the overlapping slice position. The process was continued by 'daisy chaining' all couch positions using the selected images until an entire 3D volume was produced. The algorithm produced 16 phase volumes to complete a 4D-CT dataset. Additional 4D-CT datasets were also produced using external marker amplitude and phase angle sorting methods. The image quality of the volumes produced by the different methods was quantified by calculating the mean difference of the sorted overlapping slices from adjacent couch positions. The NCC sorted images showed a significant decrease in the mean difference (p < 0.01) for the five patients.

  14. Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy.

    PubMed

    Nouri, S; Hosseini Pooya, S M; Soltani Nabipour, J

    2017-03-01

    The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients. This study evaluates the accuracy of some artificial intelligence methods including neural network and those of combination with genetic algorithm as well as particle swarm optimization (PSO) estimating tumor positions in real-time radiotherapy. One hundred recorded signals of three external markers were used as input data. The signals from 3 markers thorough 10 breathing cycles of a patient treated via a cyber-knife for a lung tumor were used as data input. Then, neural network method and its combination with genetic or PSO algorithms were applied determining the tumor locations using MATLAB© software program. The accuracies were obtained 0.8%, 12% and 14% in neural network, genetic and particle swarm optimization algorithms, respectively. The internal target volume (ITV) should be determined based on the applied neural network algorithm on training steps.

  15. MANAGING MICROBIAL CONTAMINATION IN URBAN WATERSHEDS

    EPA Science Inventory

    This paper presents different approaches for controlling pathogen contamination in urban watersheds for contamination resulting from point and diffuse sources. Point sources of pathogens can be treated by a disinfection technology of known effectiveness, and a desired reduction ...

  16. MANAGING MICROBIAL CONTAMINATION IN URBAN WATERSHEDS

    EPA Science Inventory

    This paper presents different approaches for controlling pathogen contamination in urban watersheds for contamination resulting from point and diffuses sources. Point sources of pathogens can be treated by a disinfection technology of known effectiveness, and a desired reduction ...

  17. Watershed Characteristics and Land Management in the Nonpoint-Source Evaluation Monitoring Watersheds in Wisconsin

    USGS Publications Warehouse

    Rappold, K.F.; Wierl, J.A.; Amerson, F.U.

    1997-01-01

    In 1992, the Wisconsin Department of Natural Resources, in cooperation with the U.S. Geological Survey, began a land-use inventory to identify sources of contaminants and track the land-management changes for eight evaluation monitoring watersheds in Wisconsin. An important component of the land-use inventory has been developing descriptions and preliminary assessments for the eight watersheds. These descriptions establish a baseline for future data analysis. The watershed descriptions include sections on location, reference watersheds, climate, land use, soils and topography, and surface-water resources. The land-management descriptions include sections on objectives, sources of nonpoint contamination and goals of contaminant reduction, and implementation of best-management practices. This information was compiled primarily from the nonpoint-source control plans, county soil surveys, farm conservation plans, Federal and State agency data reports, and data collected through the land-use inventory.

  18. Increased variability of watershed areas in patients with high-grade carotid stenosis.

    PubMed

    Kaczmarz, Stephan; Griese, Vanessa; Preibisch, Christine; Kallmayer, Michael; Helle, Michael; Wustrow, Isabel; Petersen, Esben Thade; Eckstein, Hans-Henning; Zimmer, Claus; Sorg, Christian; Göttler, Jens

    2018-03-01

    Watershed areas (WSAs) of the brain are most susceptible to acute hypoperfusion due to their peripheral location between vascular territories. Additionally, chronic WSA-related vascular processes underlie cognitive decline especially in patients with cerebral hemodynamic compromise. Despite of high relevance for both clinical diagnostics and research, individual in vivo WSA definition is fairly limited to date. Thus, this study proposes a standardized segmentation approach to delineate individual WSAs by use of time-to-peak (TTP) maps and investigates spatial variability of individual WSAs. We defined individual watershed masks based on relative TTP increases in 30 healthy elderly persons and 28 patients with unilateral, high-grade carotid stenosis, being at risk for watershed-related hemodynamic impairment. Determined WSA location was confirmed by an arterial transit time atlas and individual super-selective arterial spin labeling. We compared spatial variability of WSA probability maps between groups and assessed TTP differences between hemispheres in individual and group-average watershed locations. Patients showed significantly higher spatial variability of WSAs than healthy controls. Perfusion on the side of the stenosis was delayed within individual watershed masks as compared to a watershed template derived from controls, being independent from the grade of the stenosis and collateralization status of the circle of Willis. Results demonstrate feasibility of individual WSA delineation by TTP maps in healthy elderly and carotid stenosis patients. Data indicate necessity of individual segmentation approaches especially in patients with hemodynamic compromise to detect critical regions of impaired hemodynamics.

  19. Urban base flow with low impact development

    USGS Publications Warehouse

    Bhaskar, Aditi; Hogan, Dianna M.; Archfield, Stacey A.

    2016-01-01

    A novel form of urbanization, low impact development (LID), aims to engineer systems that replicate natural hydrologic functioning, in part by infiltrating stormwater close to the impervious surfaces that generate it. We sought to statistically evaluate changes in a base flow regime because of urbanization with LID, specifically changes in base flow magnitude, seasonality, and rate of change. We used a case study watershed in Clarksburg, Maryland, in which streamflow was monitored during whole-watershed urbanization from forest and agricultural to suburban residential development using LID. The 1.11-km2 watershed contains 73 infiltration-focused stormwater facilities, including bioretention facilities, dry wells, and dry swales. We examined annual and monthly flow during and after urbanization (2004–2014) and compared alterations to nearby forested and urban control watersheds. We show that total streamflow and base flow increased in the LID watershed during urbanization as compared with control watersheds. The LID watershed had more gradual storm recessions after urbanization and attenuated seasonality in base flow. These flow regime changes may be because of a reduction in evapotranspiration because of the overall decrease in vegetative cover with urbanization and the increase in point sources of recharge. Precipitation that may once have infiltrated soil, been stored in soil moisture to be eventually transpired in a forested landscape, may now be recharged and become base flow. The transfer of evapotranspiration to base flow is an unintended consequence to the water balance of LID.

  20. GIS-based spatial regression and prediction of water quality in river networks: A case study in Iowa

    USGS Publications Warehouse

    Yang, X.; Jin, W.

    2010-01-01

    Nonpoint source pollution is the leading cause of the U.S.'s water quality problems. One important component of nonpoint source pollution control is an understanding of what and how watershed-scale conditions influence ambient water quality. This paper investigated the use of spatial regression to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration in the Cedar River Watershed, Iowa. An Arc Hydro geodatabase was constructed to organize various datasets on the watershed. Spatial regression models were developed to evaluate the impacts of watershed characteristics on stream NO3NO2-N concentration and predict NO3NO2-N concentration at unmonitored locations. Unlike the traditional ordinary least square (OLS) method, the spatial regression method incorporates the potential spatial correlation among the observations in its coefficient estimation. Study results show that NO3NO2-N observations in the Cedar River Watershed are spatially correlated, and by ignoring the spatial correlation, the OLS method tends to over-estimate the impacts of watershed characteristics on stream NO3NO2-N concentration. In conjunction with kriging, the spatial regression method not only makes better stream NO3NO2-N concentration predictions than the OLS method, but also gives estimates of the uncertainty of the predictions, which provides useful information for optimizing the design of stream monitoring network. It is a promising tool for better managing and controlling nonpoint source pollution. ?? 2010 Elsevier Ltd.

  1. Estimation of mating system parameters in plant populations using marker loci with null alleles.

    PubMed

    Ross, H A

    1986-06-01

    An Expectation-Maximization (EM)-algorithm procedure is presented that extends Cheliak et al. (1983) method of maximum-likelihood estimation of mating system parameters of mixed mating system models. The extension permits the estimation of the rate of self-fertilization (s) and allele frequencies (Pi) at loci in outcrossing pollen, at marker loci having recessive null alleles. The algorithm makes use of maternal and filial genotypic arrays obtained by the electrophoretic analysis of cohorts of progeny. The genotypes of maternal plants must be known. Explicit equations are given for cases when the genotype of the maternal gamete inherited by a seed can (gymnosperms) or cannot (angiosperms) be determined. The procedure can accommodate any number of codominant alleles, but only one recessive null allele at each locus. An example, using actual data from Pinus banksiana, is presented to illustrate the application of this EM algorithm to the estimation of mating system parameters using marker loci having both codominant and recessive alleles.

  2. State factor relationships of dissolved organic carbon and nitrogen losses from unpolluted temperate forest watersheds

    USGS Publications Warehouse

    Perakis, S.S.; Hedin, L.O.

    2007-01-01

    We sampled 100 unpolluted, old-growth forested watersheds, divided among 13 separate study areas over 5 years in temperate southern Chile and Argentina, to evaluate relationships among dominant soil-forming state factors and dissolved carbon and nitrogen concentrations in watershed streams. These watersheds provide a unique opportunity to examine broad-scale controls over carbon (C) and nitrogen (N) biogeochemistry in the absence of significant human disturbance from chronic N deposition and land use change. Variations in the ratio dissolved organic carbon (DOC) to nitrogen (DON) in watershed streams differed by underlying soil parent material, with average C:N = 29 for watersheds underlain by volcanic ash and basalt versus C:N = 73 for sedimentary and metamorphic parent materials, consistent with stronger adsorption of low C:N hydrophobic materials by amorphous clays commonly associated with volcanic ash and basalt weathering. Mean annual precipitation was related positively to variations in both DOC (range: 0.2-9.7 mg C/L) and DON (range: 0.008-0.135 mg N/L) across study areas, suggesting that variations in water volume and concentration may act synergistically to influence C and N losses across dry to wet gradients in these forest ecosystems. Dominance of vegetation by broadleaf versus coniferous trees had negligible effects on organic C and N concentrations in comparison to abiotic factors. We conclude that precipitation volume and soil parent material are important controls over chemical losses of dissolved organic C and N from unpolluted temperate forest watersheds. Our results raise the possibility that biotic imprints on watershed C and N losses may be less pronounced in naturally N-poor forests than in areas impacted by land use change and chronic N deposition. Copyright 2007 by the American Geophysical Union.

  3. Climate Change Impacts on Sediment Transport In a Lowland Watershed System: Controlling Processes and Projection

    NASA Astrophysics Data System (ADS)

    al Aamery, N. M. H.; Mahoney, D. T.; Fox, J.

    2017-12-01

    Future climate change projections suggest extreme impacts on watershed hydrologic systems for some regions of the world including pronounced increases in surface runoff and instream flows. Yet, there remains a lack of research focused on how future changes in hydrologic extremes, as well as relative hydrologic mean changes, impact sediment redistribution within a watershed and sediment flux from a watershed. The authors hypothesized that variations in mean and extreme changes in turn may impact sediments in depositional and erosional dominance in a manner that may not be obvious to the watershed manager. Therefore, the objectives of this study were to investigate the inner processes connecting the combined effect of extreme climate change projections on the vegetation, upland erosion, and instream processes to produce changes in sediment redistribution within watersheds. To do so, research methods were carried out by the authors including simulating sediment processes in forecast and hindcast periods for a lowland watershed system. Publically available climate realizations from several climate factors and the Soil Water Assessment Tool (SWAT) were used to predict hydrologic conditions for the South Elkhorn Watershed in central Kentucky, USA to 2050. The results of the simulated extreme and mean hydrological components were used in simulating upland erosion with the connectivity processes consideration and thereafter used in building and simulating the instream erosion and deposition of sediment processes with the consideration of surface fine grain lamina (SFGL) layer controlling the benthic ecosystem. Results are used to suggest the dominance of erosional and depositional redistribution of sediments under different scenarios associated with extreme and mean hydrologic forecasting. The results are discussed in reference to the benthic ecology of the stream system providing insight on how water managers might consider sediment redistribution in a changing climate.

  4. The Impact of Drainage Network Structure on Flooding in a Small Urban Watershed in Metropolitan Baltimore, MD

    NASA Astrophysics Data System (ADS)

    Meierdiercks, K. L.; Smith, J. A.; Miller, A. J.

    2006-12-01

    The impact of urban development on watershed-scale hydrology is examined in a small urban watershed in the Metropolitan Baltimore area. Analyses focus on Dead Run, a 14.3 km2 tributary of the Gwynns Falls, which is the principal study watershed of the Baltimore Ecosystem Study. Field observations of rainfall and discharge have been collected for storms occurring in the 2003, 2004, and 2005 warm seasons including the flood of record for the USGS Dead Run at Franklintown gage (7 July 2004), in which 5 inches of rain fell in less than 4 hours. Dead Run has stream gages at 6 locations with drainage areas ranging from 1.2 to 14.3 km2. Hydrologic response to storm events varies greatly in each of the subwatersheds due to the diverse development types located there. These subwatersheds range in land use from medium-density residential, with and without stormwater management control, to commercial/light industrial with large impervious lots and an extensive network of stormwater management ponds. The unique response of each subwatershed is captured using field observations in conjunction with the EPA Stormwater Management Model (SWMM), which routes storm runoff over the land surface and through the drainage network of a watershed. Of particular importance to flood response is the structure of the drainage network (both surface channels and storm drain network) and its connectivity to preferential flow paths within the watershed. The Dead Run drainage network has been delineated using geospatial data derived from aerial photography and engineering planning drawings. Model analyses are used to examine the characteristics of flow paths that control flood response in urban watersheds. These analyses aim to identify patterns in urban flow pathways and use those patterns to predict response in other urban watersheds.

  5. Remotely-Sensed Urban Wet-Landscapes AN Indicator of Coupled Effects of Human Impact and Climate Change

    NASA Astrophysics Data System (ADS)

    Ji, Wei

    2016-06-01

    This study proposes the concept of urban wet-landscapes (loosely-defined wetlands) as against dry-landscapes (mainly impervious surfaces). The study is to examine whether the dynamics of urban wet-landscapes is a sensitive indicator of the coupled effects of the two major driving forces of urban landscape change - human built-up impact and climate (precipitation) variation. Using a series of satellite images, the study was conducted in the Kansas City metropolitan area of the United States. A rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. The spatial analyses of wetland changes were implemented at the scales of metropolitan, watershed, and sub-watershed as well as based on the size of surface water bodies in order to reveal urban wetland change trends in relation to the driving forces. The study identified that wet-landscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while smaller wetlands decreased mainly due to human development activities. These findings suggest that wet-landscapes, as against the dry-landscapes, can be a more effective indicator of the coupled effects of human impact and climate change.

  6. UNCERTAINTIES IN NITROGEN MASS LOADINGS IN COASTAL WATERSHEDS

    EPA Science Inventory

    With the increasing reduction of nutrients for coastal eutrophication control, the importance of well defined nitrogen mass balance becomes paramount. imited number of attempts have been made to quantify inputs and outputs within major coastal ecosystems including its watersheds....

  7. Is Soil Development Controlling Ecohydrologic Response to Climate Change in the Southern Cascade and Sierra Nevada Watersheds, CA, USA?

    NASA Astrophysics Data System (ADS)

    Devine, S.; O'Geen, A. T.; Dahlke, H. E.

    2016-12-01

    Understanding climate change impacts on hydrology is especially relevant to areas already dealing with water scarcity, common in Mediterranean regions such as California (CA). For instance, warming is expected to drive up evapotranspiration (ET) fluxes from vegetation, which could impact runoff (Q) and water supply by up to 30% from CA's Sierra Nevadas by 2100. In this study, we hypothesize that the 1-2 oC increase during the 20th and early 21st centuries should have resulted in a trend of decreasing Q for a given amount of precipitation (P) due to increasing ET through time. We also hypothesize that any observed differences in watershed ET response to warming could be explained by soil controls, since Mediterranean biomes require soil moisture storage to endure dry summers. We analyzed unimpaired runoff from 10 major CA watersheds relative to P over a 110 year record and found trends of increasing P minus Q in the northern watersheds, supporting the hypothesis of mountain Q vulnerability to warming but not in the central and southern watersheds. This may be partly due to the faster rates of summertime warming we observed in the northern watersheds when potential ET is highest. Analysis of several soil investigations in the study area on bioclimosequences suggests that these inter-watershed differences in P minus Q may also be due to soils. Soils formed from volcanic rocks, which are more prevalent in the northern watersheds, tend to have higher clay contents and water holding capacity. Moreover, the higher elevation central and southern watersheds were more widely glaciated throughout the Pleistocene, resulting in a wider extent of scoured landscapes and soils shallow to hard bedrock. Thus, the northern watershed ET flux could have previously been temperature constrained with untapped soil moisture storage. Going forward, an analysis is planned to quantify the extent of various soil-vegetation-climate zones. For each zone, we will build simple water balance models to estimate watershed ET response sensitivity. This should help resolve whether or not soil development is regulating hydrologic response to climate change. However, from an ecological resilience point of view, the southern watersheds may be the most sensitive. Lack of hydrologic response suggests that an upward biome shift may be ongoing or imminent there.

  8. Effects of thinning on hydrology and water quality of a drained pine forest in coastal North Carolina

    Treesearch

    D.M. Amatya; R.W. Skaggs

    2008-01-01

    A study was conducted to examine the effects of commercial thinning on hydrology and water quality of a 28-year old (in 2002) drained loblolly pine (Pinus taeda L.) plantation watershed (D3) using another adjacent watershed (D1) as a control. A paired watershed approach was used with data from two periods (1988-90 and 2000-02) for calibration and data from 2002-07 as...

  9. Identifying and Classifying Pollution Hotspots to Guide Watershed Management in a Large Multiuse Watershed.

    PubMed

    Su, Fangli; Kaplan, David; Li, Lifeng; Li, Haifu; Song, Fei; Liu, Haisheng

    2017-03-03

    In many locations around the globe, large reservoir sustainability is threatened by land use change and direct pollution loading from the upstream watershed. However, the size and complexity of upstream basins makes the planning and implementation of watershed-scale pollution management a challenge. In this study, we established an evaluation system based on 17 factors, representing the potential point and non-point source pollutants and the environmental carrying capacity which are likely to affect the water quality in the Dahuofang Reservoir and watershed in northeastern China. We used entropy methods to rank 118 subwatersheds by their potential pollution threat and clustered subwatersheds according to the potential pollution type. Combining ranking and clustering analyses allowed us to suggest specific areas for prioritized watershed management (in particular, two subwatersheds with the greatest pollution potential) and to recommend the conservation of current practices in other less vulnerable locations (91 small watersheds with low pollution potential). Finally, we identified the factors most likely to influence the water quality of each of the 118 subwatersheds and suggested adaptive control measures for each location. These results provide a scientific basis for improving the watershed management and sustainability of the Dahuofang reservoir and a framework for identifying threats and prioritizing the management of watersheds of large reservoirs around the world.

  10. Identifying and Classifying Pollution Hotspots to Guide Watershed Management in a Large Multiuse Watershed

    PubMed Central

    Su, Fangli; Kaplan, David; Li, Lifeng; Li, Haifu; Song, Fei; Liu, Haisheng

    2017-01-01

    In many locations around the globe, large reservoir sustainability is threatened by land use change and direct pollution loading from the upstream watershed. However, the size and complexity of upstream basins makes the planning and implementation of watershed-scale pollution management a challenge. In this study, we established an evaluation system based on 17 factors, representing the potential point and non-point source pollutants and the environmental carrying capacity which are likely to affect the water quality in the Dahuofang Reservoir and watershed in northeastern China. We used entropy methods to rank 118 subwatersheds by their potential pollution threat and clustered subwatersheds according to the potential pollution type. Combining ranking and clustering analyses allowed us to suggest specific areas for prioritized watershed management (in particular, two subwatersheds with the greatest pollution potential) and to recommend the conservation of current practices in other less vulnerable locations (91 small watersheds with low pollution potential). Finally, we identified the factors most likely to influence the water quality of each of the 118 subwatersheds and suggested adaptive control measures for each location. These results provide a scientific basis for improving the watershed management and sustainability of the Dahuofang reservoir and a framework for identifying threats and prioritizing the management of watersheds of large reservoirs around the world. PMID:28273834

  11. Effect of subsurface drainage on runoff and sediment yield from an agricultural watershed in western Oregon, U.S.A.

    NASA Astrophysics Data System (ADS)

    Istok, J. D.; Kling, G. F.

    1983-09-01

    Rainfall, watershed runoff and suspended-sediment concentrations for three small watersheds (0.46, 1.4 and 6.0 ha in size) were measured continuously for four winter rainfall seasons. The watersheds were fall-planted to winter wheat and were located on the hilly western margins of the Willamette Valley, Oregon. Following two rainfall seasons of data collection, a subsurface drainage system (consisting of a patterned arrangement of 10-cm plastic tubing at a depth of 1.0 m and a spacing of 12 m) was installed on the 1.4-ha watershed (watershed 2). Perched water tables were lowered and seepage was reduced on watershed 2 following the installation of the drainage system. The reductions were quantified with a water-table index (cumulative integrated excess). Watershed runoff and sediment yield from watershed 2 were decreased by ˜65 and ˜55%, respectively. These reductions were estimated from double mass curves and by statistical regression on a set of hydrograph variables. Maximum flow and average flow rates were decreased and the time from the beginning of a storm to the peak flow (lag time) increased. It is concluded that subsurface drainage can be an effective management practice for erosion control in western Oregon.

  12. Development of a Model of Nitrogen Cycling in Stormwater Control Measures and Application of the Model at the Watershed Scale

    NASA Astrophysics Data System (ADS)

    Bell, C.; Tague, C.; McMillan, S. K.

    2016-12-01

    Stormwater control measures (SCMs) create ecosystems in urban watersheds that store water and promote nitrogen (N) retention and removal. This work used computer modeling at two spatial scales (the individual SCM and watershed scale) to quantify how SCMs affect runoff and nitrogen export in urban watersheds. First, routines that simulate the dynamic hydrologic and water quality processes of an individual wet pond SCM were developed and applied to quantify N processing under different environmental and design scenarios. Results showed that deeper SCMs have greater inorganic N removal efficiencies because they have more stored volume of relatively N-deplete water, and therefore have a greater capacity to dilute relatively N-rich inflow. N removal by the SCM was more sensitive to this design parameter than it was to variations in air temperature, inflow N concentrations, and inflow volume. Next, these SCM model routines were used to simulate processes of a suburban watershed in Charlotte, NC with 16 SCMs. The watershed configuration was varied to simulate runoff under different scenarios of impervious surface connectivity to SCMs with the goal of developing a simple predictive relationship between watershed condition and N loads. We used unmitigated imperviousness (UI), percent of the impervious area that is unmitigated by SCMs, to quantify watershed condition. Results showed that as SCM mitigation decreased, or as UI increased from 3% to 15%, runoff ratios and loads of nitrite and total dissolved N increased by 26% (21-32%), 14% (3-26%) and 13% (2-25%), respectively. The shape of the relationship between these response variables and UI was linear, which indicates that mitigation of any impervious surfaces will result in proportional reductions. However, the range of UI included in this study is on the low end of urban watersheds and future work will assess the behavior of this relationship at higher TI and UI levels.

  13. Hydrologic effects of large southwestern USA wildfires significantly increase regional water supply: fact or fiction?

    NASA Astrophysics Data System (ADS)

    Wine, M. L.; Cadol, D.

    2016-08-01

    In recent years climate change and historic fire suppression have increased the frequency of large wildfires in the southwestern USA, motivating study of the hydrological consequences of these wildfires at point and watershed scales, typically over short periods of time. These studies have revealed that reduced soil infiltration capacity and reduced transpiration due to tree canopy combustion increase streamflow at the watershed scale. However, the degree to which these local increases in runoff propagate to larger scales—relevant to urban and agricultural water supply—remains largely unknown, particularly in semi-arid mountainous watersheds co-dominated by winter snowmelt and the North American monsoon. To address this question, we selected three New Mexico watersheds—the Jemez (1223 km2), Mogollon (191 km2), and Gila (4807 km2)—that together have been affected by over 100 wildfires since 1982. We then applied climate-driven linear models to test for effects of fire on streamflow metrics after controlling for climatic variability. Here we show that, after controlling for climatic and snowpack variability, significantly more streamflow discharged from the Gila watershed for three to five years following wildfires, consistent with increased regional water yield due to enhanced infiltration-excess overland flow and groundwater recharge at the large watershed scale. In contrast, we observed no such increase in discharge from the Jemez watershed following wildfires. Fire regimes represent a key difference between the contrasting responses of the Jemez and Gila watersheds with the latter experiencing more frequent wildfires, many caused by lightning strikes. While hydrologic dynamics at the scale of large watersheds were previously thought to be climatically dominated, these results suggest that if one fifth or more of a large watershed has been burned in the previous three to five years, significant increases in water yield can be expected.

  14. Storm Identification and Tracking for Hydrologic Modeling Using Hourly Accumulated NEXRAD Precipitation Data

    NASA Astrophysics Data System (ADS)

    Olivera, F.; Choi, J.; Socolofsky, S.

    2006-12-01

    Watershed responses to storm events are strongly affected by the spatial and temporal patterns of rainfall; that is, the spatial distribution of the precipitation intensity and its evolution over time. Although real storms are moving entities with non-uniform intensities in both space and time, hydrological applications often synthesize these attributes by assuming storms that are uniformly distributed and have variable intensity according to a pre-defined hyetograph shape. As one considers watersheds of greater size, the non-uniformity of rainfall becomes more important, because a storm may not cover the watershed's entire area and may not stay in the watershed for its full duration. In order to incorporate parameters such as storm area, propagation velocity and direction, and intensity distribution in the definition of synthetic storms, it is necessary to determine these storm characteristics from spatially distributed precipitation data. To date, most algorithms for identifying and tracking storms have been applied to short time-step radar reflectivity data (i.e., 15 minutes or less), where storm features are captured in an effectively synoptic manner. For the entire United States, however, the most reliable distributed precipitation data are the one-hour accumulated 4 km × 4 km gridded NEXRAD data of the U.S. National Weather Service (NWS) (NWS 2005. The one-hour aggregation level of the data, though, makes it more difficult to identify and track storms than when using sequences of synoptic radar reflectivity data, because storms can traverse over a number of NEXRAD cells and change size and shape appreciably between consecutive data maps. In this paper, we present a methodology to overcome the identification and tracking difficulties and to extract the characteristics of moving storms (e.g. size, propagation velocity and direction, and intensity distribution) from one-hour accumulated distributed rainfall data. The algorithm uses Gaussian Mixture Models (GMM) for storm identification and image processing for storm tracking. The method has been successfully applied to Brazos County in Texas using the 2003 Multi-sensor Precipitation Estimator (MPE) NEXRAD rainfall data.

  15. Optimization of sequence alignment for simple sequence repeat regions.

    PubMed

    Jighly, Abdulqader; Hamwieh, Aladdin; Ogbonnaya, Francis C

    2011-07-20

    Microsatellites, or simple sequence repeats (SSRs), are tandemly repeated DNA sequences, including tandem copies of specific sequences no longer than six bases, that are distributed in the genome. SSR has been used as a molecular marker because it is easy to detect and is used in a range of applications, including genetic diversity, genome mapping, and marker assisted selection. It is also very mutable because of slipping in the DNA polymerase during DNA replication. This unique mutation increases the insertion/deletion (INDELs) mutation frequency to a high ratio - more than other types of molecular markers such as single nucleotide polymorphism (SNPs).SNPs are more frequent than INDELs. Therefore, all designed algorithms for sequence alignment fit the vast majority of the genomic sequence without considering microsatellite regions, as unique sequences that require special consideration. The old algorithm is limited in its application because there are many overlaps between different repeat units which result in false evolutionary relationships. To overcome the limitation of the aligning algorithm when dealing with SSR loci, a new algorithm was developed using PERL script with a Tk graphical interface. This program is based on aligning sequences after determining the repeated units first, and the last SSR nucleotides positions. This results in a shifting process according to the inserted repeated unit type.When studying the phylogenic relations before and after applying the new algorithm, many differences in the trees were obtained by increasing the SSR length and complexity. However, less distance between different linage had been observed after applying the new algorithm. The new algorithm produces better estimates for aligning SSR loci because it reflects more reliable evolutionary relations between different linages. It reduces overlapping during SSR alignment, which results in a more realistic phylogenic relationship.

  16. Genomic selection and complex trait prediction using a fast EM algorithm applied to genome-wide markers

    PubMed Central

    2010-01-01

    Background The information provided by dense genome-wide markers using high throughput technology is of considerable potential in human disease studies and livestock breeding programs. Genome-wide association studies relate individual single nucleotide polymorphisms (SNP) from dense SNP panels to individual measurements of complex traits, with the underlying assumption being that any association is caused by linkage disequilibrium (LD) between SNP and quantitative trait loci (QTL) affecting the trait. Often SNP are in genomic regions of no trait variation. Whole genome Bayesian models are an effective way of incorporating this and other important prior information into modelling. However a full Bayesian analysis is often not feasible due to the large computational time involved. Results This article proposes an expectation-maximization (EM) algorithm called emBayesB which allows only a proportion of SNP to be in LD with QTL and incorporates prior information about the distribution of SNP effects. The posterior probability of being in LD with at least one QTL is calculated for each SNP along with estimates of the hyperparameters for the mixture prior. A simulated example of genomic selection from an international workshop is used to demonstrate the features of the EM algorithm. The accuracy of prediction is comparable to a full Bayesian analysis but the EM algorithm is considerably faster. The EM algorithm was accurate in locating QTL which explained more than 1% of the total genetic variation. A computational algorithm for very large SNP panels is described. Conclusions emBayesB is a fast and accurate EM algorithm for implementing genomic selection and predicting complex traits by mapping QTL in genome-wide dense SNP marker data. Its accuracy is similar to Bayesian methods but it takes only a fraction of the time. PMID:20969788

  17. Urban Watershed Research Facility at Edison Environmental Center

    EPA Science Inventory

    The Urban Watershed Research Facility (UWRF) is an isolated, 20-acre open space within EPA’s 200 acre Edison facility established to develop and evaluate the performance of stormwater management practices under controlled conditions. The facility includes greenhouses that allow ...

  18. Effects of Urban Stormwater Infrastructure and Spatial Scale on Nutrient Export and Runoff from Semi-Arid Urban Catchments

    NASA Astrophysics Data System (ADS)

    Hale, R. L.; Turnbull, L.; Earl, S.; Grimm, N. B.

    2011-12-01

    There has been an abundance of literature on the effects of urbanization on downstream ecosystems, particularly due to changes in nutrient inputs as well as hydrology. Less is known, however, about nutrient transport processes and processing in urban watersheds. Engineered drainage systems are likely to play a significant role in controlling the transport of water and nutrients downstream, and variability in these systems within and between cities may lead to differences in the effects of urbanization on downstream ecosystems over time and space. We established a nested stormwater sampling network with 12 watersheds ranging in scale from 5 to 17000 ha in the Indian Bend Wash watershed in Scottsdale, AZ. Small (<200ha) watersheds had uniform land cover (medium density residential), but were drained by a variety of stormwater infrastructure including surface runoff, pipes, natural or modified washes, and retention basins. At the outlet of each of these catchments we monitored rainfall and discharge, and sampled stormwater throughout runoff events for dissolved nitrogen (N), phosphorus (P), and organic carbon (oC). Urban stormwater infrastructure is characterized by a range of hydrologic connectivity. Piped watersheds are highly connected and runoff responds linearly to rainfall events, in contrast to watersheds drained with retention basins and washes, where runoff exhibits a nonlinear threshold response to rainfall events. Nutrient loads from piped watersheds scale linearly with total storm rainfall. Because of frequent flushing, nutrient concentrations from these sites are lower than from wash and retention basin drained sites and total nutrient loads exhibit supply limitation, e.g., nutrient loads are poorly predicted by storm rainfall and are strongly controlled by factors that determine the amount of nutrients stored within the watershed, such as antecedent dry days. In contrast, wash and retention basin-drained watersheds exhibit transport limitation. These watersheds flow less frequently than pipe-drained sites and therefore stormwater has higher concentrations of nutrients, although total loads are significantly lower. Nonlinearities in cross-storm rainfall-nutrient loading relationships for the wash and retention basin watersheds suggest that these systems may become supply limited during large rain events. Results show that characteristics of the hydrologic network such as hydrologic connectivity mediate terrestrial-aquatic linkages. Specifically, we see that increased hydrologic connectivity, as in the piped watershed, actually decreases the predictive power of storm size with regard to nutrient export, whereas nutrient loads from poorly connected watersheds are strongly predicted by storm size.

  19. Upland and in-stream controls on baseflow nutrient dynamics in tile-drained agroecosystem watersheds

    NASA Astrophysics Data System (ADS)

    Ford, William I.; King, Kevin; Williams, Mark R.

    2018-01-01

    In landscapes with low residence times (e.g., rivers and reservoirs), baseflow nutrient concentration dynamics during sensitive timeframes can contribute to deleterious environmental conditions downstream. This study assessed upland and in-stream controls on baseflow nutrient concentrations in a low-gradient, tile-drained agroecosystem watershed. We conducted time-series analysis using Empirical mode decomposition of seven decade-long nutrient concentration time-series in the agricultural Upper Big Walnut Creek watershed (Ohio, USA). Four tributaries of varying drainage areas and three main-stem sites were monitored, and nutrient grab samples were collected weekly from 2006 to 2016 and analyzed for dissolved reactive phosphorus (DRP), nitrate-nitrogen (NO3-N), total nitrogen (TN), and total phosphorus (TP). Statistically significant seasonal fluctuations were compared with seasonality of baseflow, watershed characteristics (e.g., tile-drain density), and in-stream water quality parameters (pH, DO, temperature). Findings point to statistically significant seasonality of all parameters with peak P concentrations in summer and peak N in late winter-early spring. Results suggest that upland processes exert strong control on DRP concentrations in the winter and spring months, while coupled upland and in-stream conditions control watershed baseflow DRP concentrations during summer and early fall. Conversely, upland flow sources driving streamflow exert strong control on baseflow NO3-N, and in-stream attenuation through transient and permanent pathways impacts the magnitude of removal. Regarding TN and TP, we found that TN was governed by NO3-N, while TP was governed by DRP in summer and fluvial erosion of P-rich benthic sediments during higher baseflow conditions. Findings of the study highlight the importance of coupled in-stream and upland management for mitigating eutrophic conditions during environmentally sensitive timeframes.

  20. Federal Facility Agreement Annual Progress Report for Fiscal Year 1999 Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel Jacobs Company LLC

    2000-01-01

    The U.S. Department of Energy-Oak Ridge Operations (DOE-ORO) EM Program adopted a watershed approach for performing Remedial Investigations (RIs) and characterizations for ORR because it is an effective system for determining the best methods for protecting and restoring aquatic ecosystems and protecting human health. The basic concept is that water quality and ecosystem problems are best solved at the watershed level rather than at the individual water-body or discharger level. The watershed approach requires consideration of all environmental concerns, including needs to protect public health, critical habitats such as wetlands, biological integrity, and surface and ground waters. The watershed approachmore » provides an improved basis for management decisions concerning contaminant sources and containment. It allows more direct focus by stakeholders on achieving ecological goals and water quality standards rather than a measurement of program activities based on numbers of permits or samples. The watershed approach allows better management strategies for investigations, therefore maximizing the utilization of scarce resources. Feasibility studies (FSs) evaluate various alternatives in terms of environmental standards, the protection of human health and the environment, and the costs of implementation to find the optimum solution among them. Society has to decide how much it is willing to spend to meet the standards and to be protective. Conducting FSs is the process of trading off those criteria to pick that optimum point that society wants to achieve. Performing this analysis at the watershed scale allows those trade-offs to be made meaningfully. In addition, a Land Use Control Assurance Plan for the ORR was prepared to identify the strategy for assuring the long-term effectiveness of land use controls. These land use controls will be relied upon to protect human health and the environment at areas of the ORR undergoing remediation pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act and/or the Resource Conservation and Recovery Act. This plan will be implemented by means of a Memorandum of Understanding (MOU) incorporating its terms with the United States EPA and TDEC. The majority of projects described in this report are grouped into five watersheds. They are the East Tennessee Technical Park (ETTP) Watershed (formerly the K-25 Site), the Melton Valley (MV) and Bethel Valley (BV) Watersheds at the Oak Ridge National Laboratory (ORNL), and the Bear Creek Valley (BCV) and Upper East Fork Poplar Creek (UEFPC) Watersheds at the Y-12 Plant.« less

  1. A science-based, watershed strategy to support effective remediation of abandoned mine lands

    USGS Publications Warehouse

    Buxton, Herbert T.; Nimick, David A.; Von Guerard, Paul; Church, Stan E.; Frazier, Ann G.; Gray, John R.; Lipin, Bruce R.; Marsh, Sherman P.; Woodward, Daniel F.; Kimball, Briant A.; Finger, Susan E.; Ischinger, Lee S.; Fordham, John C.; Power, Martha S.; Bunch, Christine M.; Jones, John W.

    1997-01-01

    A U.S. Geological Survey Abandoned Mine Lands Initiative will develop a strategy for gathering and communicating the scientific information needed to formulate effective and cost-efficient remediation of abandoned mine lands. A watershed approach will identify, characterize, and remediate contaminated sites that have the most profound effect on water and ecosystem quality within a watershed. The Initiative will be conducted during 1997 through 2001 in two pilot watersheds, the Upper Animas River watershed in Colorado and the Boulder River watershed in Montana. Initiative efforts are being coordinated with the U.S. Forest Service, Bureau of Land Management, National Park Service, and other stakeholders which are using the resulting scientific information to design and implement remediation activities. The Initiative has the following eight objective-oriented components: estimate background (pre-mining) conditions; define baseline (current) conditions; identify target sites (major contaminant sources); characterize target sites and processes affecting contaminant dispersal; characterize ecosystem health and controlling processes at target sites; develop remediation goals and monitoring network; provide an integrated, quality-assured and accessible data network; and document lessons learned for future applications of the watershed approach.

  2. OS090. Performance of candidate clinical and biochemical markers in screening early in pregnancy to detect women at high risk to develop preeclampsia.

    PubMed

    Forest, J-C; Massé, J; Bujold, E; Rousseau, F; Charland, M; Thériault, S; Lafond, J; Giguère, Y

    2012-07-01

    The advent of early preventive measures, such as low-dose aspirin targeting women at high risk of preeclampsia (PE), emphasizes the need for better detection. Despite the emergence of promising biochemical markers linked to the pathophysiological processes, systematic reviews have shown that, until now, no single tests fulfill the criteria set by WHO for biomarkers to screen for a disease. However, recent literature reveals that by combining various clinical, biophysical and biochemical markers into multivariate algorithms, one can envisage to estimate the risk of PE with a performance that would reach clinical utility and cost-effectiveness, but this remains to be demonstrated in various environments and health care settings. To investigate, in a prospective study, the clinical utility of candidate biomarkers and clinical data to detect, early in pregnancy, women at risk to develop PE and to propose a multivariate prediction algorithm combining clinical parameters to biochemical markers. 7929 pregnant women prospectively recruited at the first prenatal visit, provided blood samples, clinical and sociodemographic information. 214 pregnant women developed hypertensive disorders of pregnancy (HDP) of which 88 had PE (1.2%), including 44 with severe PE (0.6%). A nested case-control study was performed including for each case of HDP two normal pregnancies matched for maternal age, gestational age at recruitment, ethnicity, parity, and smoking status. Based on the literature we selected the most promising markers in a multivariate logistic regression model: mean arterial pressure (MAP), BMI, placental growth factor (PlGF), soluble Flt-1, inhibin A and PAPP-A. Biomarker results measured between 10-18 weeks gestation were expressed as multiples of the median. Medians were determined for each gestational week. When combined with MAP at the time of blood sampling and BMI at the beginning of pregnancy, the four biochemical markers discriminate normal pregnancies from those with HDP. At a 5% false positive rate, 37% of the affected pregnancies would have been detected. However, considering the prevalence of HDP in our population, the positive predictive value would have been only 15%. If all the predicted positive women would have been proposed a preventive intervention, only one out 6.7 women could have potentially benefited. In the case of severe PE, performance was not improved, sensitivity was the same, but the positive predictive value decreased to 3% (lower prevalence of severe PE). In our low-risk Caucasian population, neither individual candidate markers nor multivariate risk algorithm using an a priori combination of selected markers reached a performance justifying implementation. This also emphasizes the necessity to take into consideration characteristics of the population and environment influencing prevalence before promoting wide implementation of such screening strategies. In a perspective of personalized medicine, it appears more than ever mandatory to tailor recommendations for HDP screening according not only to individual but also to population characteristics. Copyright © 2012. Published by Elsevier B.V.

  3. Estimating soil erosion risk and evaluating erosion control measures for soil conservation planning at Koga watershed in the highlands of Ethiopia

    NASA Astrophysics Data System (ADS)

    Molla, Tegegne; Sisheber, Biniam

    2017-01-01

    Soil erosion is one of the major factors affecting sustainability of agricultural production in Ethiopia. The objective of this paper is to estimate soil erosion using the universal soil loss equation (RUSLE) model and to evaluate soil conservation practices in a data-scarce watershed region. For this purpose, soil data, rainfall, erosion control practices, satellite images and topographic maps were collected to determine the RUSLE factors. In addition, measurements of randomly selected soil and water conservation structures were done at three sub-watersheds (Asanat, Debreyakob and Rim). This study was conducted in Koga watershed at upper part of the Blue Nile basin which is affected by high soil erosion rates. The area is characterized by undulating topography caused by intensive agricultural practices with poor soil conservation practices. The soil loss rates were determined and conservation strategies have been evaluated under different slope classes and land uses. The results showed that the watershed is affected by high soil erosion rates (on average 42 t ha-1 yr-1), greater than the maximum tolerable soil loss (18 t ha-1 yr-1). The highest soil loss (456 t ha-1 yr-1) estimated from the upper watershed occurred on cultivated lands of steep slopes. As a result, soil erosion is mainly aggravated by land-use conflicts and topographic factors and the rugged topographic land forms of the area. The study also demonstrated that the contribution of existing soil conservation structures to erosion control is very small due to incorrect design and poor management. About 35 % out of the existing structures can reduce soil loss significantly since they were constructed correctly. Most of the existing structures were demolished due to the sediment overload, vulnerability to livestock damage and intense rainfall. Therefore, appropriate and standardized soil and water conservation measures for different erosion-prone land uses and land forms need to be implemented in Koga watershed.

  4. Composition of water and suspended sediment in streams of urbanized subtropical watersheds in Hawaii

    USGS Publications Warehouse

    De Carlo, E. H.; Beltran, V.L.; Tomlinson, M.S.

    2004-01-01

    Urbanization on the small subtropical island of Oahu, Hawaii provides an opportunity to examine how anthropogenic activity affects the composition of material transferred from land to ocean by streams. This paper investigates the variability in concentrations of trace elements (Pb, Zn, Cu, Ba, Co, As, Ni, V and Cr) in streams of watersheds on Oahu, Hawaii. The focus is on water and suspended particulate matter collected from the Ala Wai Canal watershed in Honolulu and also the Kaneohe Stream watershed. As predicted, suspended particulate matter controls most trace element transport. Elements such as Pb, Zn, Cu, Ba and Co exhibit increased concentrations within urbanized portions of the watersheds. Particulate concentrations of these elements vary temporally during storms owing to input of road runoff containing elevated concentrations of elements associated with vehicular traffic and other anthropogenic activities. Enrichments of As in samples from predominantly conservation areas are interpreted as reflecting agricultural use of fertilizers at the boundaries of urban and conservation lands. Particulate Ni, V and Cr exhibit distributions during storm events that suggest a mineralogical control. Principal component analysis of particulate trace element concentrations establishes eigenvalues that account for nearly 80% of the total variance and separates trace elements into 3 factors. Factor 1 includes Pb, Zn, Cu, Ba and Co, interpreted to represent metals with an urban anthropogenic enrichment. Factor 2 includes Ni, V and Cr, elements whose concentrations do not appear to derive from anthropogenic activity and is interpreted to reflect mineralogical control. Another, albeit less significant, anthropogenic factor includes As, Cd and U and is thought to represent agricultural inputs. Samples collected during a storm derived from an offshore low-pressure system suggest that downstream transport of upper watershed material during tradewind-derived rains results in a 2-3-fold dilution of the particulate concentrations of Pb, Zn and Cu in the Ala Wai canal watershed. ?? 2004 Elsevier Ltd. All rights reserved.

  5. The Role of Frozen Soil in Groundwater Discharge Predictions for Warming Alpine Watersheds

    NASA Astrophysics Data System (ADS)

    Evans, Sarah G.; Ge, Shemin; Voss, Clifford I.; Molotch, Noah P.

    2018-03-01

    Climate warming may alter the quantity and timing of groundwater discharge to streams in high alpine watersheds due to changes in the timing of the duration of seasonal freezing in the subsurface and snowmelt recharge. It is imperative to understand the effects of seasonal freezing and recharge on groundwater discharge to streams in warming alpine watersheds as streamflow originating from these watersheds is a critical water resource for downstream users. This study evaluates how climate warming may alter groundwater discharge due to changes in seasonally frozen ground and snowmelt using a 2-D coupled flow and heat transport model with freeze and thaw capabilities for variably saturated media. The model is applied to a representative snowmelt-dominated watershed in the Rocky Mountains of central Colorado, USA, with snowmelt time series reconstructed from a 12 year data set of hydrometeorological records and satellite-derived snow covered area. Model analyses indicate that the duration of seasonal freezing in the subsurface controls groundwater discharge to streams, while snowmelt timing controls groundwater discharge to hillslope faces. Climate warming causes changes to subsurface ice content and duration, rerouting groundwater flow paths but not altering the total magnitude of future groundwater discharge outside of the bounds of hydrologic parameter uncertainties. These findings suggest that frozen soil routines play an important role for predicting the future location of groundwater discharge in watersheds underlain by seasonally frozen ground.

  6. Use of USLE/GIS methodology for predicting soil loss in a semiarid agricultural watershed.

    PubMed

    Erdogan, Emrah H; Erpul, Günay; Bayramin, Ilhami

    2007-08-01

    The Universal Soil Loss Equation (USLE) is an erosion model to estimate average soil loss that would generally result from splash, sheet, and rill erosion from agricultural plots. Recently, use of USLE has been extended as a useful tool predicting soil losses and planning control practices in agricultural watersheds by the effective integration of the GIS-based procedures to estimate the factor values in a grid cell basis. This study was performed in the Kazan Watershed located in the central Anatolia, Turkey, to predict soil erosion risk by the USLE/GIS methodology for planning conservation measures in the site. Rain erosivity (R), soil erodibility (K), and cover management factor (C) values of the model were calculated from erosivity map, soil map, and land use map of Turkey, respectively. R values were site-specifically corrected using DEM and climatic data. The topographical and hydrological effects on the soil loss were characterized by LS factor evaluated by the flow accumulation tool using DEM and watershed delineation techniques. From resulting soil loss map of the watershed, the magnitude of the soil erosion was estimated in terms of the different soil units and land uses and the most erosion-prone areas where irreversible soil losses occurred were reasonably located in the Kazan watershed. This could be very useful for deciding restoration practices to control the soil erosion of the sites to be severely influenced.

  7. The role of frozen soil in groundwater discharge predictions for warming alpine watersheds

    USGS Publications Warehouse

    Evans, Sarah G.; Ge, Shemin; Voss, Clifford I.; Molotch, Noah P.

    2018-01-01

    Climate warming may alter the quantity and timing of groundwater discharge to streams in high alpine watersheds due to changes in the timing of the duration of seasonal freezing in the subsurface and snowmelt recharge. It is imperative to understand the effects of seasonal freezing and recharge on groundwater discharge to streams in warming alpine watersheds as streamflow originating from these watersheds is a critical water resource for downstream users. This study evaluates how climate warming may alter groundwater discharge due to changes in seasonally frozen ground and snowmelt using a 2‐D coupled flow and heat transport model with freeze and thaw capabilities for variably saturated media. The model is applied to a representative snowmelt‐dominated watershed in the Rocky Mountains of central Colorado, USA, with snowmelt time series reconstructed from a 12 year data set of hydrometeorological records and satellite‐derived snow covered area. Model analyses indicate that the duration of seasonal freezing in the subsurface controls groundwater discharge to streams, while snowmelt timing controls groundwater discharge to hillslope faces. Climate warming causes changes to subsurface ice content and duration, rerouting groundwater flow paths but not altering the total magnitude of future groundwater discharge outside of the bounds of hydrologic parameter uncertainties. These findings suggest that frozen soil routines play an important role for predicting the future location of groundwater discharge in watersheds underlain by seasonally frozen ground.

  8. Identification of watershed priority management areas under water quality constraints: A simulation-optimization approach with ideal load reduction

    NASA Astrophysics Data System (ADS)

    Dong, Feifei; Liu, Yong; Wu, Zhen; Chen, Yihui; Guo, Huaicheng

    2018-07-01

    Targeting nonpoint source (NPS) pollution hot spots is of vital importance for placement of best management practices (BMPs). Although physically-based watershed models have been widely used to estimate nutrient emissions, connections between nutrient abatement and compliance of water quality standards have been rarely considered in NPS hotspot ranking, which may lead to ineffective decision-making. It's critical to develop a strategy to identify priority management areas (PMAs) based on water quality response to nutrient load mitigation. A water quality constrained PMA identification framework was thereby proposed in this study, based on the simulation-optimization approach with ideal load reduction (ILR-SO). It integrates the physically-based Soil and Water Assessment Tool (SWAT) model and an optimization model under constraints of site-specific water quality standards. To our knowledge, it was the first effort to identify PMAs with simulation-based optimization. The SWAT model was established to simulate temporal and spatial nutrient loading and evaluate effectiveness of pollution mitigation. A metamodel was trained to establish a quantitative relationship between sources and water quality. Ranking of priority areas is based on required nutrient load reduction in each sub-watershed targeting to satisfy water quality standards in waterbodies, which was calculated with genetic algorithm (GA). The proposed approach was used for identification of PMAs on the basis of diffuse total phosphorus (TP) in Lake Dianchi Watershed, one of the three most eutrophic large lakes in China. The modeling results demonstrated that 85% of diffuse TP came from 30% of the watershed area. Compared with the two conventional targeting strategies based on overland nutrient loss and instream nutrient loading, the ILR-SO model identified distinct PMAs and narrowed down the coverage of management areas. This study addressed the urgent need to incorporate water quality response into PMA identification and showed that the ILR-SO approach is effective to guide watershed management for aquatic ecosystem restoration.

  9. Identifying autism from neural representations of social interactions: neurocognitive markers of autism.

    PubMed

    Just, Marcel Adam; Cherkassky, Vladimir L; Buchweitz, Augusto; Keller, Timothy A; Mitchell, Tom M

    2014-01-01

    Autism is a psychiatric/neurological condition in which alterations in social interaction (among other symptoms) are diagnosed by behavioral psychiatric methods. The main goal of this study was to determine how the neural representations and meanings of social concepts (such as to insult) are altered in autism. A second goal was to determine whether these alterations can serve as neurocognitive markers of autism. The approach is based on previous advances in fMRI analysis methods that permit (a) the identification of a concept, such as the thought of a physical object, from its fMRI pattern, and (b) the ability to assess the semantic content of a concept from its fMRI pattern. These factor analysis and machine learning methods were applied to the fMRI activation patterns of 17 adults with high-functioning autism and matched controls, scanned while thinking about 16 social interactions. One prominent neural representation factor that emerged (manifested mainly in posterior midline regions) was related to self-representation, but this factor was present only for the control participants, and was near-absent in the autism group. Moreover, machine learning algorithms classified individuals as autistic or control with 97% accuracy from their fMRI neurocognitive markers. The findings suggest that psychiatric alterations of thought can begin to be biologically understood by assessing the form and content of the altered thought's underlying brain activation patterns.

  10. Identifying Autism from Neural Representations of Social Interactions: Neurocognitive Markers of Autism

    PubMed Central

    Just, Marcel Adam; Cherkassky, Vladimir L.; Buchweitz, Augusto; Keller, Timothy A.; Mitchell, Tom M.

    2014-01-01

    Autism is a psychiatric/neurological condition in which alterations in social interaction (among other symptoms) are diagnosed by behavioral psychiatric methods. The main goal of this study was to determine how the neural representations and meanings of social concepts (such as to insult) are altered in autism. A second goal was to determine whether these alterations can serve as neurocognitive markers of autism. The approach is based on previous advances in fMRI analysis methods that permit (a) the identification of a concept, such as the thought of a physical object, from its fMRI pattern, and (b) the ability to assess the semantic content of a concept from its fMRI pattern. These factor analysis and machine learning methods were applied to the fMRI activation patterns of 17 adults with high-functioning autism and matched controls, scanned while thinking about 16 social interactions. One prominent neural representation factor that emerged (manifested mainly in posterior midline regions) was related to self-representation, but this factor was present only for the control participants, and was near-absent in the autism group. Moreover, machine learning algorithms classified individuals as autistic or control with 97% accuracy from their fMRI neurocognitive markers. The findings suggest that psychiatric alterations of thought can begin to be biologically understood by assessing the form and content of the altered thought’s underlying brain activation patterns. PMID:25461818

  11. Approach and case-study of green infrastructure screening analysis for urban stormwater control.

    PubMed

    Eaton, Timothy T

    2018-03-01

    Urban stormwater control is an urgent concern in megacities where increased impervious surface has disrupted natural hydrology. Water managers are increasingly turning to more environmentally friendly ways of capturing stormwater, called Green Infrastructure (GI), to mitigate combined sewer overflow (CSO) that degrades local water quality. A rapid screening approach is described to evaluate how GI strategies can reduce the amount of stormwater runoff in a low-density residential watershed in New York City. Among multiple possible tools, the L-THIA LID online software package, using the SCS-CN method, was selected to estimate relative runoff reductions expected with different strategies in areas of different land uses in the watershed. Results are sensitive to the relative areas of different land uses, and show that bioretention and raingardens provide the maximum reduction (∼12%) in this largely residential watershed. Although commercial, industrial and high-density residential areas in the watershed are minor, larger runoff reductions from disconnection strategies and porous pavement in parking lots are also possible. Total stormwater reductions from various combinations of these strategies can reach 35-55% for individual land uses, and between 23% and 42% for the entire watershed. Copyright © 2017. Published by Elsevier Ltd.

  12. Watershed Management Tool for Selection and Spacial Allocation of Non-Point Source Pollution Control Practices

    EPA Science Inventory

    Distributed-parameter watershed models are often utilized for evaluating the effectiveness of sediment and nutrient abatement strategies through the traditional {calibrate→ validate→ predict} approach. The applicability of the method is limited due to modeling approximations. In ...

  13. High-precision measurements of cementless acetabular components using model-based RSA: an experimental study.

    PubMed

    Baad-Hansen, Thomas; Kold, Søren; Kaptein, Bart L; Søballe, Kjeld

    2007-08-01

    In RSA, tantalum markers attached to metal-backed acetabular cups are often difficult to detect on stereo radiographs due to the high density of the metal shell. This results in occlusion of the prosthesis markers and may lead to inconclusive migration results. Within the last few years, new software systems have been developed to solve this problem. We compared the precision of 3 RSA systems in migration analysis of the acetabular component. A hemispherical and a non-hemispherical acetabular component were mounted in a phantom. Both acetabular components underwent migration analyses with 3 different RSA systems: conventional RSA using tantalum markers, an RSA system using a hemispherical cup algorithm, and a novel model-based RSA system. We found narrow confidence intervals, indicating high precision of the conventional marker system and model-based RSA with regard to migration and rotation. The confidence intervals of conventional RSA and model-based RSA were narrower than those of the hemispherical cup algorithm-based system regarding cup migration and rotation. The model-based RSA software combines the precision of the conventional RSA software with the convenience of the hemispherical cup algorithm-based system. Based on our findings, we believe that these new tools offer an improvement in the measurement of acetabular component migration.

  14. Quantification of pathogens and markers of fecal contamination during storm events along popular surfing beaches in San Diego, California.

    PubMed

    Steele, Joshua A; Blackwood, A Denene; Griffith, John F; Noble, Rachel T; Schiff, Kenneth C

    2018-06-01

    Along southern California beaches, the concentrations of fecal indicator bacteria (FIB) used to quantify the potential presence of fecal contamination in coastal recreational waters have been previously documented to be higher during wet weather conditions (typically winter or spring) than those observed during summer dry weather conditions. FIB are used for management of recreational waters because measurement of the bacterial and viral pathogens that are the potential causes of illness in beachgoers exposed to stormwater can be expensive, time-consuming, and technically difficult. Here, we use droplet digital Polymerase Chain Reaction (digital PCR) and digital reverse transcriptase PCR (digital RT-PCR) assays for direct quantification of pathogenic viruses, pathogenic bacteria, and source-specific markers of fecal contamination in the stormwater discharges. We applied these assays across multiple storm events from two different watersheds that discharge to popular surfing beaches in San Diego, CA. Stormwater discharges had higher FIB concentrations as compared to proximal beaches, often by ten-fold or more during wet weather. Multiple lines of evidence indicated that the stormwater discharges contained human fecal contamination, despite the presence of separate storm sewer and sanitary sewer systems in both watersheds. Human fecal source markers (up to 100% of samples, 20-12440 HF183 copies per 100 ml) and human norovirus (up to 96% of samples, 25-495 NoV copies per 100 ml) were routinely detected in stormwater discharge samples. Potential bacterial pathogens were also detected and quantified: Campylobacter spp. (up to 100% of samples, 16-504 gene copies per 100 ml) and Salmonella (up to 25% of samples, 6-86 gene copies per 100 ml). Other viral human pathogens were also measured, but occurred at generally lower concentrations: adenovirus (detected in up to 22% of samples, 14-41 AdV copies per 100 ml); no enterovirus was detected in any stormwater discharge sample. Higher concentrations of avian source markers were noted in the stormwater discharge located immediately downstream of a large bird sanctuary along with increased Campylobacter concentrations and notably different Campylobacter species composition than the watershed that had no bird sanctuary. This study is one of the few to directly measure an array of important bacterial and viral pathogens in stormwater discharges to recreational beaches, and provides context for stormwater-based management of beaches during high risk wet-weather periods. Furthermore, the combination of culture-based and digital PCR-derived data is demonstrated to be valuable for assessing hydrographic relationships, considering delivery mechanisms, and providing foundational exposure information for risk assessment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Water quality functions of riparian forest buffers in Chesapeake bay watersheds

    USGS Publications Warehouse

    Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B.; Staver, K.W.; Lucas, W.; Todd, A.H.

    1997-01-01

    Maryland, Virginia, and Pennsylvania, USA, have agreed to reduce nutrient loadings to Chesapeake Bay by 40% by the year 2000. This requires control of nonpoint sources of nutrients much of which comes from agriculture. Riparian forest buffer systems (RFBS) provide effective control of nonpoint source (NPS) pollution in some types of agricultural watersheds. Control of NPS pollution is dependent on the type of pollutant and the hydrologic connection between pollution sources, the RFBS, and the stream. Water quality improvements are most likely in areas of where most of the excess precipitation moves across, in, or near the root zone of the RFBS. In areas such as the Inner Coastal Plain and Piedmont watersheds with thin soils RFBS should retain 50%-90% of the total loading of nitrate in shallow groundwater sediment in surface runoff and total N in born surface runoff and groundwater. Retention of phosphorus is generally much less. In regions with deeper soils and/or greater regional groundwater recharge (such as parts of the Piedmont and the Valley and Ridge), RFBS water quality improvements are probably much less. The expected levels of pollutant control by RFBS are identified for each of nine physiographic provinces of the Chesapeake Bay Watershed. Issues related to of establishment sustainability, and management are also discussed.

  16. Impacts of fertilization on water quality of a drained pine plantation: a worst case scenario.

    PubMed

    Beltran, Bray J; Amatya, Devendra M; Youssef, Mohamed; Jones, Martin; Callahan, Timothy J; Skaggs, R Wayne; Nettles, Jami E

    2010-01-01

    Intensive plantation forestry will be increasingly important in the next 50 yr to meet the high demand for domestic wood in the United States. However, forest management practices can substantially influence downstream water quality and ecology. This study analyses, the effect of fertilization on effluent water quality of a low gradient drained coastal pine plantation in Carteret County, North Carolina using a paired watershed approach. The plantation consists of three watersheds, two mature (31-yr) and one young (8-yr) (age at treatment). One of the mature watersheds was commercially thinned in 2002. The mature unthinned watershed was designated as the control. The young and mature-thinned watersheds were fertilized at different rates with Arborite (Encee Chemical Sales, Inc., Bridgeton, NC), and boron. The outflow rates and nutrient concentrations in water drained from each of the watersheds were measured. Nutrient concentrations and loadings were analyzed using general linear models (GLM). Three large storm events occurred within 47 d of fertilization, which provided a worst case scenario for nutrient export from these watersheds to the receiving surface waters. Results showed that average nutrient concentrations soon after fertilization were significantly (alpha = 0.05) higher on both treatment watersheds than during any other period during the study. This increase in nutrient export was short lived and nutrient concentrations and loadings were back to prefertilization levels as soon as 3 mo after fertilization. Additionally, the mature-thinned watershed presented higher average nutrient concentrations and loadings when compared to the young watershed, which received a reduced fertilizer rate than the mature-thinned watershed.

  17. Can warmwater streams be rehabilitated using watershed-scale standard erosion control measures alone?

    PubMed

    Shields, F Douglas; Knight, Scott S; Cooper, Charles M

    2007-07-01

    Degradation of warmwater streams in agricultural landscapes is a pervasive problem, and reports of restoration effectiveness based on monitoring data are rare. Described is the outcome of rehabilitation of two deeply incised, unstable sand-and-gravel-bed streams. Channel networks of both watersheds were treated using standard erosion control measures, and aquatic habitats within 1-km-long reaches of each stream were further treated by addition of instream structures and planting woody vegetation on banks ("habitat rehabilitation"). Fish and their habitats were sampled semiannually during 1-2 years before rehabilitation, 3-4 years after rehabilitation, and 10-11 years after rehabilitation. Reaches with only erosion control measures located upstream from the habitat measure reaches and in similar streams in adjacent watersheds were sampled concurrently. Sediment concentrations declined steeply throughout both watersheds, with means > or = 40% lower during the post-rehabilitation period than before. Physical effects of habitat rehabilitation were persistent through time, with pool habitat availability much higher in rehabilitated reaches than elsewhere. Fish community structure responded with major shifts in relative species abundance: as pool habitats increased after rehabilitation, small-bodied generalists and opportunists declined as certain piscivores and larger-bodied species such as centrarchids and catostomids increased. Reaches without habitat rehabilitation were significantly shallower, and fish populations there were similar to the rehabilitated reaches prior to treatment. These findings are applicable to incised, warmwater streams draining agricultural watersheds similar to those we studied. Rehabilitation of warmwater stream ecosystems is possible with current knowledge, but a major shift in stream corridor management strategies will be needed to reverse ongoing degradation trends. Apparently, conventional channel erosion controls without instream habitat measures are ineffective tools for ecosystem restoration in incised, warmwater streams of the Southeastern U.S., even if applied at the watershed scale and accompanied by significant reductions in suspended sediment concentration.

  18. Monte Carlo simulations on marker grouping and ordering.

    PubMed

    Wu, J; Jenkins, J; Zhu, J; McCarty, J; Watson, C

    2003-08-01

    Four global algorithms, maximum likelihood (ML), sum of adjacent LOD score (SALOD), sum of adjacent recombinant fractions (SARF) and product of adjacent recombinant fraction (PARF), and one approximation algorithm, seriation (SER), were used to compare the marker ordering efficiencies for correctly given linkage groups based on doubled haploid (DH) populations. The Monte Carlo simulation results indicated the marker ordering powers for the five methods were almost identical. High correlation coefficients were greater than 0.99 between grouping power and ordering power, indicating that all these methods for marker ordering were reliable. Therefore, the main problem for linkage analysis was how to improve the grouping power. Since the SER approach provided the advantage of speed without losing ordering power, this approach was used for detailed simulations. For more generality, multiple linkage groups were employed, and population size, linkage cutoff criterion, marker spacing pattern (even or uneven), and marker spacing distance (close or loose) were considered for obtaining acceptable grouping powers. Simulation results indicated that the grouping power was related to population size, marker spacing distance, and cutoff criterion. Generally, a large population size provided higher grouping power than small population size, and closely linked markers provided higher grouping power than loosely linked markers. The cutoff criterion range for achieving acceptable grouping power and ordering power differed for varying cases; however, combining all situations in this study, a cutoff criterion ranging from 50 cM to 60 cM was recommended for achieving acceptable grouping power and ordering power for different cases.

  19. Evaluation of Two Library-Independent Microbial Source Tracking Methods To Identify Sources of Fecal Contamination in French Estuaries▿

    PubMed Central

    Gourmelon, Michèle; Caprais, Marie Paule; Ségura, Raphaël; Le Mennec, Cécile; Lozach, Solen; Piriou, Jean Yves; Rincé, Alain

    2007-01-01

    In order to identify the origin of the fecal contamination observed in French estuaries, two library-independent microbial source tracking (MST) methods were selected: (i) Bacteroidales host-specific 16S rRNA gene markers and (ii) F-specific RNA bacteriophage genotyping. The specificity of the Bacteroidales markers was evaluated on human and animal (bovine, pig, sheep, and bird) feces. Two human-specific markers (HF183 and HF134), one ruminant-specific marker (CF193′), and one pig-specific marker (PF163) showed a high level of specificity (>90%). However, the data suggest that the proposed ruminant-specific CF128 marker would be better described as an animal marker, as it was observed in all bovine and sheep feces and 96% of pig feces. F RNA bacteriophages were detected in only 21% of individual fecal samples tested, in 60% of pig slurries, but in all sewage samples. Most detected F RNA bacteriophages were from genotypes II and III in sewage samples and from genotypes I and IV in bovine, pig, and bird feces and from pig slurries. Both MST methods were applied to 28 water samples collected from three watersheds at different times. Classification of water samples as subject to human, animal, or mixed fecal contamination was more frequent when using Bacteroidales markers (82.1% of water samples) than by bacteriophage genotyping (50%). The ability to classify a water sample increased with increasing Escherichia coli or enterococcus concentration. For the samples that could be classified by bacteriophage genotyping, 78% agreed with the classification obtained from Bacteroidales markers. PMID:17557850

  20. Modeling rock weathering in small watersheds

    NASA Astrophysics Data System (ADS)

    Pacheco, Fernando A. L.; Van der Weijden, Cornelis H.

    2014-05-01

    Many mountainous watersheds are conceived as aquifer media where multiple groundwater flow systems have developed (Tóth, 1963), and as bimodal landscapes where differential weathering of bare and soil-mantled rock has occurred (Wahrhaftig, 1965). The results of a weathering algorithm (Pacheco and Van der Weijden, 2012a, 2014), which integrates topographic, hydrologic, rock structure and chemical data to calculate weathering rates at the watershed scale, validated the conceptual models in the River Sordo basin, a small watershed located in the Marão cordillera (North of Portugal). The coupling of weathering, groundwater flow and landscape evolution analyses, as accomplished in this study, is innovative and represents a remarkable achievement towards regionalization of rock weathering at the watershed scale. The River Sordo basin occupies an area of approximately 51.2 km2 and was shaped on granite and metassediment terrains between the altitudes 185-1300 m. The groundwater flow system is composed of recharge areas located at elevations >700 m, identified on the basis of δ18O data. Discharge cells comprehend terminations of local, intermediate and regional flow systems, identified on the basis of spring density patterns, infiltration depth estimates based on 87Sr/86Sr data, and spatial distributions of groundwater pH and natural mineralization. Intermediate and regional flow systems, defined where infiltration depths >125 m, develop solely along the contact zone between granites and metassediments, because fractures in this region are profound and their density is very large. Weathering is accelerated where rocks are covered by thick soils, being five times faster relative to sectors of the basin where rocks are covered by thin soils. Differential weathering of bare and soil-mantled rock is also revealed by the spatial distribution of calculated aquifer hydraulic diffusivities and groundwater travel times.

  1. A Watershed-Scale Agent-Based Model Incorporating Agent Learning and Interaction of Farmers' Decisions Subject to Carbon and Miscanthus Prices

    NASA Astrophysics Data System (ADS)

    Ng, T.; Eheart, J.; Cai, X.; Braden, J. B.

    2010-12-01

    Agricultural watersheds are coupled human-natural systems where the land use decisions of human agents (farmers) affect surface water quality, and in turn, are affected by the weather and yields. The reliable modeling of such systems requires an approach that considers both the human and natural aspects. Agent-based modeling (ABM), representing the human aspect, coupled with hydrologic modeling, representing the natural aspect, is one such approach. ABM is a relatively new modeling paradigm that formulates the system from the perspectives of the individual agents, i.e., each agent is modeled as a discrete autonomous entity with distinct goals and actions. The primary objective of this study is to demonstrate the applicability of this approach to agricultural watershed management. This is done using a semi-hypothetical case study of farmers in the Salt Creek watershed in East-Central Illinois under the influence markets for carbon and second-generation bioenergy crop (specifically, miscanthus). An agent-based model of the system is developed and linked to a hydrologic model of the watershed. The former is based on fundamental economic and mathematical programming principles, while the latter is based on the Soil and Water Assessment Tool (SWAT). Carbon and second-generation bioenergy crop markets are of interest here due to climate change and energy independence concerns. The agent-based model is applied to fifty hypothetical heterogeneous farmers. The farmers' decisions depend on their perceptions of future conditions. Those perceptions are updated, according to a pre-defined algorithm, as the farmers make new observations of prices, costs, yields and the weather with time. The perceptions are also updated as the farmers interact with each other as they share new information on initially unfamiliar activities (e.g., carbon trading, miscanthus cultivation). The updating algorithm is set differently for different farmers such that each is unique in his processing of new information. The results provide insights on how differences in the way farmers learn and adapt affect their forecasts of the future, and hence, decisions. Farmers who are interacting, less risk averse, quick to adjust their expectations with new observations, and slow to reduce their forecast confidence when there are unexpected changes are more likely to practice conservation tillage (farmers may claim carbon credits for sale when practicing conservation tillage), and switch from conventional crops to miscanthus. The results, though empirically untested, appear plausible and consistent with general behavior by farmers. All this demonstrates the ability and potential of ABM to capture, at least partially, the complexities of human decision-making.

  2. Headwater Influences on Downstream Water Quality

    PubMed Central

    Oakes, Robert M.

    2007-01-01

    We investigated the influence of riparian and whole watershed land use as a function of stream size on surface water chemistry and assessed regional variation in these relationships. Sixty-eight watersheds in four level III U.S. EPA ecoregions in eastern Kansas were selected as study sites. Riparian land cover and watershed land use were quantified for the entire watershed, and by Strahler order. Multiple regression analyses using riparian land cover classifications as independent variables explained among-site variation in water chemistry parameters, particularly total nitrogen (41%), nitrate (61%), and total phosphorus (63%) concentrations. Whole watershed land use explained slightly less variance, but riparian and whole watershed land use were so tightly correlated that it was difficult to separate their effects. Water chemistry parameters sampled in downstream reaches were most closely correlated with riparian land cover adjacent to the smallest (first-order) streams of watersheds or land use in the entire watershed, with riparian zones immediately upstream of sampling sites offering less explanatory power as stream size increased. Interestingly, headwater effects were evident even at times when these small streams were unlikely to be flowing. Relationships were similar among ecoregions, indicating that land use characteristics were most responsible for water quality variation among watersheds. These findings suggest that nonpoint pollution control strategies should consider the influence of small upland streams and protection of downstream riparian zones alone is not sufficient to protect water quality. PMID:17999108

  3. Watershed Scale Impacts of Stormwater Green Infrastructure ...

    EPA Pesticide Factsheets

    Despite the increasing use of urban stormwater green infrastructure (SGI), including detention ponds and rain gardens, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, Baltimore County, MD, Montgomery County, MD, and Washington, DC, were selected based on the availability of data on SGI, water quality, and stream flow. The watershed scale impact of SGI was evaluated by assessing how increased spatial density of SGI correlates with stream hydrology and nitrogen exports over space and time. The most common SGI types were detention ponds (58%), followed by marshes (12%), sand filters (9%), wet ponds (7%), infiltration trenches (4%), and rain gardens (2%). When controlling for watersheds size and percent impervious surface cover, watersheds with greater amounts of SGI (>10% SGI) have 44% lower peak runoff, 26% less frequent runoff events, and 26% less variable runoff than watersheds with lower SGI. Watersheds with more SGI also show 44% less NO3− and 48% less total nitrogen exports compared to watersheds with minimal SGI. There was no significant reduction in combined sewer overflows in watersheds with greater SGI. Based on specific SGI types, infiltration trenches (R2 = 0.35) showed the strongest correlation with hydrologic metrics, likely due to their ability to attenuate flow, while bioretention (R2 = 0.19) and wet ponds (R2 = 0.12) showed stronger

  4. CONTROLS ON NUTRIENT LOSSES FROM A FORESTED BASIN IN THE OREGON COAST RANGE

    EPA Science Inventory

    Although conceptual models of watershed biogeochemistry emphasize the movement of materials from the land to the sea, important transfers occur in the reverse direction in coastal watersheds through salt spray deposition and returning anadromous fish. To understand the connectio...

  5. WATERSHED MANIPULATION PROJECT: QUALITY ASSURANCE IMPLEMENTATION PLAN FOR 1986-1989

    EPA Science Inventory

    The Watershed Manipulation Project (WMP) was implemented by EPA to: identify and quantify the relative importance of various processes in controlling surface water acidification with particular emphasis on the role of sulfate adsorption and base cation supply in the long-term wat...

  6. Seasonal streamflow forecast with machine learning and teleconnection indices in the context non-stationary climate

    NASA Astrophysics Data System (ADS)

    Haguma, D.; Leconte, R.

    2017-12-01

    Spatial and temporal water resources variability are associated with large-scale pressure and circulation anomalies known as teleconnections that influence the pattern of the atmospheric circulation. Teleconnection indices have been used successfully to forecast streamflow in short term. However, in some watersheds, classical methods cannot establish relationships between seasonal streamflow and teleconnection indices because of weak correlation. In this study, machine learning algorithms have been applied for seasonal streamflow forecast using teleconnection indices. Machine learning offers an alternative to classical methods to address the non-linear relationship between streamflow and teleconnection indices the context non-stationary climate. Two machine learning algorithms, random forest (RF) and support vector machine (SVM), with teleconnection indices associated with North American climatology, have been used to forecast inflows for one and two leading seasons for the Romaine River and Manicouagan River watersheds, located in Quebec, Canada. The indices are Pacific-North America (PNA), North Atlantic Oscillation (NAO), El Niño-Southern Oscillation (ENSO), Arctic Oscillation (AO) and Pacific Decadal Oscillation (PDO). The results showed that the machine learning algorithms have an important predictive power for seasonal streamflow for one and two leading seasons. The RF performed better for training and SVM generally have better results with high predictive capability for testing. The RF which is an ensemble method, allowed to assess the uncertainty of the forecast. The integration of teleconnection indices responds to the seasonal forecast of streamflow in the conditions of the non-stationarity the climate, although the teleconnection indices have a weak correlation with streamflow.

  7. Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections

    NASA Astrophysics Data System (ADS)

    Bertholet, J.; Wan, H.; Toftegaard, J.; Schmidt, M. L.; Chotard, F.; Parikh, P. J.; Poulsen, P. R.

    2017-02-01

    Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated. The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio. For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations.

  8. A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process

    NASA Astrophysics Data System (ADS)

    Nourani, Vahid; Komasi, Mehdi

    2013-05-01

    This paper demonstrates the potential use of Artificial Intelligence (AI) techniques for predicting daily runoff at multiple gauging stations. Uncertainty and complexity of the rainfall-runoff process due to its variability in space and time in one hand and lack of historical data on the other hand, cause difficulties in the spatiotemporal modeling of the process. In this paper, an Integrated Geomorphological Adaptive Neuro-Fuzzy Inference System (IGANFIS) model conjugated with C-means clustering algorithm was used for rainfall-runoff modeling at multiple stations of the Eel River watershed, California. The proposed model could be used for predicting runoff in the stations with lack of data or any sub-basin within the watershed because of employing the spatial and temporal variables of the sub-basins as the model inputs. This ability of the integrated model for spatiotemporal modeling of the process was examined through the cross validation technique for a station. In this way, different ANFIS structures were trained using Sugeno algorithm in order to estimate daily discharge values at different stations. In order to improve the model efficiency, the input data were then classified into some clusters by the means of fuzzy C-means (FCMs) method. The goodness-of-fit measures support the gainful use of the IGANFIS and FCM methods in spatiotemporal modeling of hydrological processes.

  9. Segmentation of White Blood Cells From Microscopic Images Using a Novel Combination of K-Means Clustering and Modified Watershed Algorithm.

    PubMed

    Ghane, Narjes; Vard, Alireza; Talebi, Ardeshir; Nematollahy, Pardis

    2017-01-01

    Recognition of white blood cells (WBCs) is the first step to diagnose some particular diseases such as acquired immune deficiency syndrome, leukemia, and other blood-related diseases that are usually done by pathologists using an optical microscope. This process is time-consuming, extremely tedious, and expensive and needs experienced experts in this field. Thus, a computer-aided diagnosis system that assists pathologists in the diagnostic process can be so effective. Segmentation of WBCs is usually a first step in developing a computer-aided diagnosis system. The main purpose of this paper is to segment WBCs from microscopic images. For this purpose, we present a novel combination of thresholding, k-means clustering, and modified watershed algorithms in three stages including (1) segmentation of WBCs from a microscopic image, (2) extraction of nuclei from cell's image, and (3) separation of overlapping cells and nuclei. The evaluation results of the proposed method show that similarity measures, precision, and sensitivity respectively were 92.07, 96.07, and 94.30% for nucleus segmentation and 92.93, 97.41, and 93.78% for cell segmentation. In addition, statistical analysis presents high similarity between manual segmentation and the results obtained by the proposed method.

  10. Synergy between optical and microwave remote sensing to derive soil and vegetation parameters from MAC Europe 1991 Experiment

    NASA Technical Reports Server (NTRS)

    Taconet, O.; Benallegue, M.; Vidal, A.; Vidal-Madjar, D.; Prevot, L.; Normand, M.

    1993-01-01

    The ability of remote sensing for monitoring vegetation density and soil moisture for agricultural applications is extensively studied. In optical bands, vegetation indices (NDVI, WDVI) in visible and near infrared reflectances are related to biophysical quantities as the leaf area index, the biomass. In active microwave bands, the quantitative assessment of crop parameters and soil moisture over agricultural areas by radar multiconfiguration algorithms remains prospective. Furthermore the main results are mostly validated on small test sites, but have still to be demonstrated in an operational way at a regional scale. In this study, a large data set of radar backscattering has been achieved at a regional scale on a French pilot watershed, the Orgeval, along two growing seasons in 1988 and 1989 (mainly wheat and corn). The radar backscattering was provided by the airborne scatterometer ERASME, designed at CRPE, (C and X bands and HH and VV polarizations). Empirical relationships to estimate water crop and soil moisture over wheat in CHH band under actual field conditions and at a watershed scale are investigated. Therefore, the algorithms developed in CHH band are applied for mapping the surface conditions over wheat fields using the AIRSAR and TMS images collected during the MAC EUROPE 1991 experiment. The synergy between optical and microwave bands is analyzed.

  11. Managing Microbial Risks from Indirect Wastewater Reuse for Irrigation in Urbanizing Watersheds.

    PubMed

    Verbyla, Matthew E; Symonds, Erin M; Kafle, Ram C; Cairns, Maryann R; Iriarte, Mercedes; Mercado Guzmán, Alvaro; Coronado, Olver; Breitbart, Mya; Ledo, Carmen; Mihelcic, James R

    2016-07-05

    Limited supply of clean water in urbanizing watersheds creates challenges for safely sustaining irrigated agriculture and global food security. On-farm interventions, such as riverbank filtration (RBF), are used in developing countries to treat irrigation water from rivers with extensive fecal contamination. Using a Bayesian approach incorporating ethnographic data and pathogen measurements, quantitative microbial risk assessment (QMRA) methods were employed to assess the impact of RBF on consumer health burdens for Giardia, Cryptosporidium, rotavirus, norovirus, and adenovirus infections resulting from indirect wastewater reuse, with lettuce irrigation in Bolivia as a model system. Concentrations of the microbial source tracking markers pepper mild mottle virus and HF183 Bacteroides were respectively 2.9 and 5.5 log10 units lower in RBF-treated water than in the river water. Consumption of lettuce irrigated with river water caused an estimated median health burden that represents 37% of Bolivia's overall diarrheal disease burden, but RBF resulted in an estimated health burden that is only 1.1% of this overall diarrheal disease burden. Variability and uncertainty associated with environmental and cultural factors affecting exposure correlated more with QMRA-predicted health outcomes than factors related to disease vulnerability. Policies governing simple on-farm interventions like RBF can be intermediary solutions for communities in urbanizing watersheds that currently lack wastewater treatment.

  12. Multiple lines of evidence to identify sewage as the cause of water quality impairment in an urbanized tropical watershed.

    PubMed

    Kirs, Marek; Kisand, Veljo; Wong, Mayee; Caffaro-Filho, Roberto A; Moravcik, Philip; Harwood, Valerie J; Yoneyama, Bunnie; Fujioka, Roger S

    2017-06-01

    Indicator bacteria, which are conventionally used to evaluate recreational water quality, can originate from various non-human enteric and extra-enteric sources, hence they may not be indicative of human health risk nor do they provide information on the sources of contamination. In this study we utilized traditional (enterococci and Escherichia coli) and alternative (Clostridium perfringens) indicator bacteria, F + -specific coliphage, molecular markers for microorganisms associated with human sewage (human-associated Bacteroides and polyomaviruses), and microbial community analysis tools (16S rRNA gene fragment amplicon sequencing), to identify and evaluate human sewage-related impact in the Manoa watershed in Honolulu, Hawaii. Elevated concentrations of enterococci (geometric mean ranging from 1604 to 2575 CFU 100 mL -1 ) and C. perfringens (45-77 CFU 100 mL -1 ) indicated impairment of the urbanized section of the stream, while indicator bacteria concentrations decreased downstream in the tidally influenced Ala Wai Canal. The threshold values triggering water quality violation notifications in Hawaii were exceeded in 33.3-75.0% of samples collected at sites in the urbanized section of Manoa Stream, but were not exceeded in any of the samples collected at an upstream site located in a forested area. Correlation between indicator bacteria concentrations and rainfall amounts was weak to moderate but significant (E. coli R = 0.251, P = 0.009; enterococci R = 0.369, P < 0.001; C. perfringens R = 0.343, P < 0.001), while concentrations of human fecal-associated molecular markers were not significantly correlated with rainfall (human-associated Bacteroides, R = 0.131, P = 0.256; human-associated polyomaviruses, R = 0.213, P = 0.464). Presence of human sewage was confirmed by detection of human-associated Bacteroides and human polyomavirus in the urbanized section of Manoa Stream (83.3-100% and 41.7-66.7% positive samples respectively). It was further confirmed by microbial community analyses which suggested that an average 2.4-3.4% of the total bacterial population in this section was associated with sewage. Microbial community profiles were significantly influenced by rainfall (R 2  = 0.4390, P < 0.001), pH (R 2  = 0.3077, P = 0.006), salinity (R 2  = 0.2614, P = 0.038), and conductivity (R 2  = 0.2676, P = 0.031). Although microbial diversity fluctuated throughout the watershed, it was lower in the impaired section. Leaking sewer systems and illegal cross-connections are implicated in the impairment of the watershed, hence both the sewer and the storm water lines should be routinely inspected. Collectively, our data suggest that information derived from the analysis of microbial communities complements current marker-based microbial source tracking techniques and environmental monitoring programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Algorithm to calculate proportional area transformation factors for digital geographic databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, R.

    1983-01-01

    A computer technique is described for determining proportionate-area factors used to transform thematic data between large geographic areal databases. The number of calculations in the algorithm increases linearly with the number of segments in the polygonal definitions of the databases, and increases with the square root of the total number of chains. Experience is presented in calculating transformation factors for two national databases, the USGS Water Cataloging Unit outlines and DOT county boundaries which consist of 2100 and 3100 polygons respectively. The technique facilitates using thematic data defined on various natural bases (watersheds, landcover units, etc.) in analyses involving economicmore » and other administrative bases (states, counties, etc.), and vice versa.« less

  14. Problems in determining the return of a watershed to pretreatment conditions: techniques applied to a study at Caspar Creek, California

    Treesearch

    Robert B. Thomas

    1990-01-01

    Using a previously treated basin as a control in subsequent paired watershed studies requires the control to be stable. Basin stability can be assessed in many ways, some of which are investigated for the South Fork of Caspar Creek in northern California. This basin is recovering from logging and road building in the early 1970s. Three storm-based discharge...

  15. Using geophysical images of a watershed subsurface to predict soil textural properties

    USDA-ARS?s Scientific Manuscript database

    Subsurface architecture, in particular changes in soil type across the landscape, is an important control on the hydrological and ecological function of a watershed. Traditional methods of mapping soils involving subjective assignment of soil boundaries are inadequate for studies requiring a quantit...

  16. IS IT NECESSARY TO CONTROL POTENTIALLY INFECTIOUS MICROORGANISMS IN ANIMAL WASTES?

    EPA Science Inventory

    This presentation will begin with a holistic view of the watershed; considering microbiological water quality needs and how they are influenced by activities in the watershed. It will look at the current indicators of microbiological water quality and their usefulness and then id...

  17. Toward understanding mechanisms controlling urea delivery in a coastal plain watershed

    USDA-ARS?s Scientific Manuscript database

    Improved understanding of nutrient mobilization and delivery to surface waters is critical to protecting water quality in agricultural watersheds. Urea, a form of organic nitrogen, is a common nutrient found in fertilizers, manures, and human waste, and is gaining recognition as an important driver ...

  18. Morphological operation based dense houses extraction from DSM

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhu, L.; Tachibana, K.; Shimamura, H.

    2014-08-01

    This paper presents a method of reshaping and extraction of markers and masks of the dense houses from the DSM based on mathematical morphology (MM). Houses in a digital surface model (DSM) are almost joined together in high-density housing areas, and most segmentation methods cannot completely separate them. We propose to label the markers of the buildings firstly and segment them into masks by watershed then. To avoid detecting more than one marker for a house or no marker at all due to its higher neighbour, the DSM is morphologically reshaped. It is carried out by a MM operation using the certain disk shape SE of the similar size to the houses. The sizes of the houses need to be estimated before reshaping. A granulometry generated by opening-by-reconstruction to the NDSM is proposed to detect the scales of the off-terrain objects. It is a histogram of the global volume of the top hats of the convex objects in the continuous scales. The obvious step change in the profile means that there are many objects of similar sizes occur at this scale. In reshaping procedure, the slices of the object are derived by morphological filtering at the detected continuous scales and reconstructed in pile as the dome. The markers are detected on the basis of the domes.

  19. The importance of the riparian zone and in-stream processes in nitrate attenuation in undisturbed and agricultural watersheds – a review of the scientific literature

    USGS Publications Warehouse

    Ranalli, Anthony J.; Macalady, Donald L.

    2010-01-01

    We reviewed published studies from primarily glaciated regions in the United States, Canada, and Europe of the (1) transport of nitrate from terrestrial ecosystems to aquatic ecosystems, (2) attenuation of nitrate in the riparian zone of undisturbed and agricultural watersheds, (3) processes contributing to nitrate attenuation in riparian zones, (4) variation in the attenuation of nitrate in the riparian zone, and (5) importance of in-stream and hyporheic processes for nitrate attenuation in the stream channel. Our objectives were to synthesize the results of these studies and suggest methodologies to (1) monitor regional trends in nitrate concentration in undisturbed 1st order watersheds and (2) reduce nitrate loads in streams draining agricultural watersheds. Our review reveals that undisturbed headwater watersheds have been shown to be very retentive of nitrogen, but the importance of biogeochemical and hydrological riparian zone processes in retaining nitrogen in these watersheds has not been demonstrated as it has for agricultural watersheds. An understanding of the role of the riparian zone in nitrate attenuation in undisturbed watersheds is crucial because these watersheds are increasingly subject to stressors, such as changes in land use and climate, wildfire, and increases in atmospheric nitrogen deposition. In general, understanding processes controlling the concentration and flux of nitrate is critical to identifying and mapping the vulnerability of watersheds to water quality changes due to a variety of stressors. In undisturbed and agricultural watersheds we propose that understanding the importance of riparian zone processes in 2nd order and larger watersheds is critical. Research is needed that addresses the relative importance of how the following sources of nitrate along any given stream reach might change as watersheds increase in size and with flow: (1) inputs upstream from the reach, (2) tributary inflow, (3) water derived from the riparian zone, (4) groundwater from outside the riparian zone (intermediate or regional sources), and (5) in-stream (hyporheic) processes.

  20. Correlation of crAssphage-based qPCR markers with culturable and molecular indicators of human fecal pollution in an impacted urban watershed.

    PubMed

    Stachler, Elyse; Akyon, Benay; Aquino de Carvalho, Nathalia; Ference, Christian; Bibby, Kyle

    2018-06-06

    Environmental waters are monitored for fecal pollution to protect public health. Many previously developed human-specific fecal pollution indicators lack adequate sensitivity to be reliably detected in environmental waters or do not correlate well with viral pathogens. Recently, two novel human sewage-associated source tracking qPCR markers were developed based on the bacteriophage crAssphage, CPQ_056 and CPQ_064. These assays are highly human specific, abundant in sewage, and are viral-based, suggesting great promise for environmental application as human fecal pollution indicators. A 30-day sampling study was conducted in an urban stream impacted by combined sewer overflows to evaluate the crAssphage markers' performance in an environmental system. The crAssphage markers were present at concentrations of 4.02-6.04 log10 copies/100 mL throughout the study period, indicating their high abundance and ease of detection in polluted environmental waters. In addition, the crAssphage assays were correlated with rain events, molecular markers for human polyomavirus and HF183, as well as culturable E. coli, enterococci, and somatic coliphage. The CPQ_064 assay correlated strongly to a greater number of biological indicators than the CPQ_056 assay. This study is the first to evaluate both crAssphage qPCR assays in an extended environmental application of crAssphage markers for monitoring of environmental waters. It is also the first study to compare crAssphage marker concentration with other viral-based indicators.

  1. Development of Semi-distributed ecohydrological model in the Rio Grande De Manati River Basin, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Setegn, S. G.; Ortiz, J.; Melendez, J.; Barreto, M.; Torres-Perez, J. L.; Guild, L. S.

    2015-12-01

    There are limited studies in Puerto Rico that shows the water resources availability and variability with respect to changing climates and land use. The main goal of the HICE-PR (Human Impacts to Coastal Ecosystems in Puerto Rico (HICE-PR): the Río Loco Watershed (southwest coast PR) project which was funded by NASA is to evaluate the impacts of land use/land cover changes on the quality and extent of coastal and marine ecosystems (CMEs) in two priority watersheds in Puerto Rico (Manatí and Guánica).The main objective of this study is to set up a physically based spatially distributed hydrological model, Soil and Water Assessment Tool (SWAT) for the analysis of hydrological processes in the Rio Grande de Manati river basin. SWAT (soil and water assessment tool) is a spatially distributed watershed model developed to predict the impact of land management practices on water, sediment and agricultural chemical yields in large complex watersheds. For efficient use of distributed models for hydrological and scenario analysis, it is important that these models pass through a careful calibration and uncertainty analysis. The model was calibrated and validated using Sequential Uncertainty Fitting (SUFI-2) calibration and uncertainty analysis algorithms. The model evaluation statistics for streamflows prediction shows that there is a good agreement between the measured and simulated flows that was verified by coefficients of determination and Nash Sutcliffe efficiency greater than 0.5. Keywords: Hydrological Modeling; SWAT; SUFI-2; Rio Grande De Manati; Puerto Rico

  2. Modeling a densely urbanized watershed with an artificial neural network, weather radar and telemetric data

    NASA Astrophysics Data System (ADS)

    Pereira Filho, Augusto José; dos Santos, Cláudia Cristina

    2006-02-01

    Artificial neural networks (ANN) are widely used in a myriad of fields of research and development, including the predictability of time series. This work is concerned with one of such applications to simulate and to forecast stage level and streamflow at the Tamanduateí river watershed, one of the main tributaries of the Alto Tietê river watershed in São Paulo State, Brazil. This heavily urbanized watershed is within the Metropolitan Area of São Paulo (MASP) where recurrent flash floods affect a population of more than 17 million inhabitants. Flash floods events between 1991 and 1995 were selected and divided up into three groups for training, verification and forecasting purposes. Weather radar rainfall estimation and telemetric stage level and streamflow data were input to a three-layer feed forward ANN trained with the Linear Least Square Simplex training algorithm (LLSSIM) by Hsu et al. [Hsu, K.L., Gupta, H.V., Sorooshian, S., 1996. A superior training strategy for three-layer feed forward artificial neural networks. Tucson, University of Arizona. (Technique report, HWR no. 96-030, Department of Hydrology and Water Resources)]. The performance of the ANN is improved by 40% when either streamflow or stage level were input together with the rainfall. The ANN simulated flood waves tend to be dominated by phase errors. The ANN showed slightly better results then a multi-parameter auto-regression model and indicates its usefulness in flash flood forecasting.

  3. Field Scale Optimization for Long-Term Sustainability of Best Management Practices in Watersheds

    NASA Astrophysics Data System (ADS)

    Samuels, A.; Babbar-Sebens, M.

    2012-12-01

    Agricultural and urban land use changes have led to disruption of natural hydrologic processes and impairment of streams and rivers. Multiple previous studies have evaluated Best Management Practices (BMPs) as means for restoring existing hydrologic conditions and reducing impairment of water resources. However, planning of these practices have relied on watershed scale hydrologic models for identifying locations and types of practices at scales much coarser than the actual field scale, where landowners have to plan, design and implement the practices. Field scale hydrologic modeling provides means for identifying relationships between BMP type, spatial location, and the interaction between BMPs at a finer farm/field scale that is usually more relevant to the decision maker (i.e. the landowner). This study focuses on development of a simulation-optimization approach for field-scale planning of BMPs in the School Branch stream system of Eagle Creek Watershed, Indiana, USA. The Agricultural Policy Environmental Extender (APEX) tool is used as the field scale hydrologic model, and a multi-objective optimization algorithm is used to search for optimal alternatives. Multiple climate scenarios downscaled to the watershed-scale are used to test the long term performance of these alternatives and under extreme weather conditions. The effectiveness of these BMPs under multiple weather conditions are included within the simulation-optimization approach as a criteria/goal to assist landowners in identifying sustainable design of practices. The results from these scenarios will further enable efficient BMP planning for current and future usage.

  4. a Empirical Modelation of Runoff in Small Watersheds Using LIDAR Data

    NASA Astrophysics Data System (ADS)

    Lopatin, J.; Hernández, J.; Galleguillos, M.; Mancilla, G.

    2013-12-01

    Hydrological models allow the simulation of water natural processes and also the quantification and prediction of the effects of human impacts in runoff behavior. However, obtaining the information that is need for applying these models can be costly in both time and resources, especially in large and difficult to access areas. The objective of this research was to integrate LiDAR data in the hydrological modeling of runoff in small watersheds, using derivated hydrologic, vegetation and topography variables. The study area includes 10 small head watersheds cover bay forest, between 2 and 16 ha, which are located in the south-central coastal range of Chile. In each of the former instantaneous rainfall and runoff flow of a total of 15 rainfall events were measured, between August 2012 and July 2013, yielding a total of 79 observations. In March 2011 a Harrier 54/G4 Dual System was used to obtain a LiDAR point cloud of discrete pulse with an average of 4.64 points per square meter. A Digital Terrain Model (DTM) of 1 meter resolution was obtained from the point cloud, and subsequently 55 topographic variables were derived, such as physical watershed parameters and morphometric features. At the same time, 30 vegetation descriptive variables were obtained directly from the point cloud and from a Digital Canopy Model (DCM). The classification and regression "Random Forest" (RF) algorithm was used to select the most important variables in predicting water height (liters), and the "Partial Least Squares Path Modeling" (PLS-PM) algorithm was used to fit a model using the selected set of variables. Four Latent variables were selected (outer model) related to: climate, topography, vegetation and runoff, where in each one was designated a group of the predictor variables selected by RF (inner model). The coefficient of determination (R2) and Goodnes-of-Fit (GoF) of the final model were obtained. The best results were found when modeling using only the upper 50th percentile of rainfall events. The best variables selected by the RF algorithm were three topographic variables and three vegetation related ones. We obtained an R2 of 0.82 and a GoF of 0.87 with a 95% of confidence interval. This study shows that it is possible to predict the water harvesting collected during a rainstorm event in forest environment using only LiDAR data. However, this type of methodology does not have good result in flow produced by low magnitude rainfall events, as these are more influenced by initial conditions of soil, vegetation and climate, which make their behavior slower and erratic.

  5. A lagged variable model for characterizing temporally dynamic export of legacy anthropogenic nitrogen from watersheds to rivers.

    PubMed

    Chen, Dingjiang; Guo, Yi; Hu, Minpeng; Dahlgren, Randy A

    2015-08-01

    Legacy nitrogen (N) sources originating from anthropogenic N inputs (NANI) may be a major cause of increasing riverine N exports in many regions, despite a significant decline in NANI. However, little quantitative knowledge exists concerning the lag effect of NANI on riverine N export. As a result, the N leaching lag effect is not well represented in most current watershed models. This study developed a lagged variable model (LVM) to address temporally dynamic export of watershed NANI to rivers. Employing a Koyck transformation approach used in economic analyses, the LVM expresses the indefinite number of lag terms from previous years' NANI with a lag term that incorporates the previous year's riverine N flux, enabling us to inversely calibrate model parameters from measurable variables using Bayesian statistics. Applying the LVM to the upper Jiaojiang watershed in eastern China for 1980-2010 indicated that ~97% of riverine export of annual NANI occurred in the current year and succeeding 10 years (~11 years lag time) and ~72% of annual riverine N flux was derived from previous years' NANI. Existing NANI over the 1993-2010 period would have required a 22% reduction to attain the target TN level (1.0 mg N L(-1)), guiding watershed N source controls considering the lag effect. The LVM was developed with parsimony of model structure and parameters (only four parameters in this study); thus, it is easy to develop and apply in other watersheds. The LVM provides a simple and effective tool for quantifying the lag effect of anthropogenic N input on riverine export in support of efficient development and evaluation of watershed N control strategies.

  6. Mapping technological and biophysical capacities of watersheds to regulate floods

    USGS Publications Warehouse

    Mogollón, Beatriz; Villamagna, Amy M.; Frimpong, Emmanuel A.; Angermeier, Paul

    2016-01-01

    Flood regulation is a widely valued and studied service provided by watersheds. Flood regulation benefits people directly by decreasing the socio-economic costs of flooding and indirectly by its positive impacts on cultural (e.g., fishing) and provisioning (e.g., water supply) ecosystem services. Like other regulating ecosystem services (e.g., pollination, water purification), flood regulation is often enhanced or replaced by technology, but the relative efficacy of natural versus technological features in controlling floods has scarcely been examined. In an effort to assess flood regulation capacity for selected urban watersheds in the southeastern United States, we: (1) used long-term flood records to assess relative influence of technological and biophysical indicators on flood magnitude and duration, (2) compared the widely used runoff curve number (RCN) approach for assessing the biophysical capacity to regulate floods to an alternative approach that acknowledges land cover and soil properties separately, and (3) mapped technological and biophysical flood regulation capacities based on indicator importance-values derived for flood magnitude and duration. We found that watersheds with high biophysical (via the alternative approach) and technological capacities lengthened the duration and lowered the peak of floods. We found the RCN approach yielded results opposite that expected, possibly because it confounds soil and land cover processes, particularly in urban landscapes, while our alternative approach coherently separates these processes. Mapping biophysical (via the alternative approach) and technological capacities revealed great differences among watersheds. Our study improves on previous mapping of flood regulation by (1) incorporating technological capacity, (2) providing high spatial resolution (i.e., 10-m pixel) maps of watershed capacities, and (3) deriving importance-values for selected landscape indicators. By accounting for technology that enhances or replaces natural flood regulation, our approach enables watershed managers to make more informed choices in their flood-control investments.

  7. Hydrology and water quality in two mountain basins of the northeastern US: Assessing baseline conditions and effects of ski area development

    USGS Publications Warehouse

    Wemple, B.; Shanley, J.; Denner, J.; Ross, D.; Mills, K.

    2007-01-01

    Mountain regions throughout the world face intense development pressures associated with recreational and tourism uses. Despite these pressures, much of the research on bio-geophysical impacts of humans in mountain regions has focused on the effects of natural resource extraction. This paper describes findings from the first 3 years of a study examining high elevation watershed processes in a region undergoing alpine resort development. Our study is designed as a paired-watershed experiment. The Ranch Brook watershed (9.6 km2) is a relatively pristine, forested watershed and serves as the undeveloped 'control' basin. West Branch (11.7 km2) encompasses an existing alpine ski resort, with approximately 17% of the basin occupied by ski trails and impervious surfaces, and an additional 7% slated for clearing and development. Here, we report results for water years 2001-2003 of streamflow and water quality dynamics for these watersheds. Precipitation increases significantly with elevation in the watersheds, and winter precipitation represents 36-46% of annual precipitation. Artificial snowmaking from water within West Branch watershed currently augments annual precipitation by only 3-4%. Water yield in the developed basin exceeded that in the control by 18-36%. Suspended sediment yield was more than two and a half times greater and fluxes of all major solutes were higher in the developed basin. Our study is the first to document the effects of existing ski area development on hydrology and water quality in the northeastern US and will serve as an important baseline for evaluating the effects of planned resort expansion activities in this area.

  8. Dam construction impacts on multiscale characterization of sediment discharge in two typical karst watersheds of southwest China

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Xu, Xianli; Xu, Chaohao; Liu, Meixian; Wang, Kelin

    2018-03-01

    Southwest China, as one of the largest continuous karst areas in the world, is a severely eroded region due to its special geological condition. Thus, soil and water conservation measures such as dam construction have been extensively implemented in this region to control sediment delivery. However, it remains unclear how dam construction affects multiscale variability of sediment discharge (SD) and its potentially influential factors in southwest China. To assess this, annual SD, water discharge (WD), precipitation (PT), potential evapotranspiration (PET), and normalized differential vegetation index (NDVI) data from 1955 to 2015 were obtained from two karst watersheds of Liujiang (no large dams) and Hongshui (dam-controlled). These sites shared the similar climatic conditions. The Mann-Kendal test, Wilcoxon rank-sum test, and continuous wavelet transform analysis was used to detect the trends and periodicity in SD, and wavelet coherence analysis were employed to detect the temporal covariance between SD and WD, PT, PET, and NDVI. Results indicated that the multiscale variability of SD was strongly influenced by dam construction. The annual SD showed significant 4-year periodic oscillation in the Liujiang watershed, while no significant cycles were found in the Hongshui watershed. Dam construction exerted substantial influence on the multiscale correlations between SD and its associated factors. The time scales that the NDVI resonated with SD were concentrated on the periodicity of 2- and 3-year in the Liujiang watershed. In contrast, no significant periodicities were observed in the Hongshu watershed. This study yields a greater understanding of SD dynamics, and is helpful for better watershed management in karst areas of southwest China.

  9. Forecasting the remaining reservoir capacity in the Laurentian Great Lakes watershed

    NASA Astrophysics Data System (ADS)

    Alighalehbabakhani, Fatemeh; Miller, Carol J.; Baskaran, Mark; Selegean, James P.; Barkach, John H.; Dahl, Travis; Abkenar, Seyed Mohsen Sadatiyan

    2017-12-01

    Sediment accumulation behind a dam is a significant factor in reservoir operation and watershed management. There are many dams located within the Laurentian Great Lakes watershed whose operations have been adversely affected by excessive reservoir sedimentation. Reservoir sedimentation effects include reduction of flood control capability and limitations to both water supply withdrawals and power generation due to reduced reservoir storage. In this research, the sediment accumulation rates of twelve reservoirs within the Great Lakes watershed were evaluated using the Soil and Water Assessment Tool (SWAT). The estimated sediment accumulation rates by SWAT were compared to estimates relying on radionuclide dating of sediment cores and bathymetric survey methods. Based on the sediment accumulation rate, the remaining reservoir capacity for each study site was estimated. Evaluation of the anthropogenic impacts including land use change and dam construction on the sediment yield were assessed in this research. The regression analysis was done on the current and pre-European settlement sediment yield for the modeled watersheds to predict the current and natural sediment yield in un-modeled watersheds. These eleven watersheds are in the state of Indiana, Michigan, Ohio, New York, and Wisconsin.

  10. Summary of the land-use inventory for the nonpoint-source evaluation monitoring watersheds in Wisconsin

    USGS Publications Warehouse

    Wierl, J.A.; Rappold, K.F.; Amerson, F.U.

    1996-01-01

    In 1992, the Wisconsin Department of Natural Resources (WDNR) in cooperation with the U.S. Geological Survey initiated a land-use inventory to identify sources of pollutants and track the land-management changes for eight evaluation monitoring watersheds established as part of the WDNR's Nonpoint Source Program. Each evaluation monitoring watershed is within a WDNR priority watershed. The U.S. Geological Survey is responsible for collection of water-quality data in the evaluation monitoring watersheds. An initial inventory was completed for each of the WDNR priority watersheds before nonpoint-source plans were developed for the control of nonpoint pollution. The land-use inventory described in this report expands upon the initial inventory by including nonpoint pollution sources that were not identified and also by updating changes in landuse and land-management practices. New sources of nonpoint pollution, not identified in the initial inventory, could prove to be important when monitored and modeled data are analyzed. This effort to inventory the evaluation monitoring watersheds will help with the interpretation of future land-use and water-quality data. This report describes landuse inventory methods, presents results of the inventory, and lists proposed future activities.

  11. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.

    PubMed

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong

    2014-08-01

    Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images. © 2014 Wiley Periodicals, Inc.

  12. A multi criteria analog model for assessing the vulnerability of rural catchments to road spills of hazardous substances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siqueira, Hygor Evangelista; Pissarra, Teresa Cristina Tarlé; Farias do Valle Junior, Renato

    Road spills of hazardous substances are common in developing countries due to increasing industrialization and traffic accidents, and represent a serious threat to soils and water in catchments. There is abundant literature on equations describing the wash-off of pollutants from roads during a storm event and there are a number of watershed models incorporating those equations in storm water quality algorithms that route runoff and pollution yields through a drainage system towards the catchment outlet. However, methods describing catchment vulnerability to contamination by road spills based solely on biophysical parameters are scarce. These methods could be particularly attractive to managersmore » because they can operate with a limited amount of easily collectable data, while still being able to provide important insights on the areas more prone to contamination within the studied watershed. The purpose of this paper was then to contribute with a new vulnerability model. To accomplish the goal, a selection of medium properties appearing in wash-off equations and routing algorithms were assembled and processed in a parametric framework based on multi criteria analysis to define the watershed vulnerability. However, parameters had to be adapted because wash-off equations and water quality models have been developed to operate primarily in the urban environment while the vulnerability model is meant to run in rural watersheds. The selected parameters were hillside slope, ground roughness (depending on land use), soil permeability (depending on soil type), distance to water courses and stream density. The vulnerability model is a spatially distributed algorithm that was prepared to run under the IDRISI Selva software, a GIS platform capable of handling spatial and alphanumeric data and execute the necessary terrain model, hydrographic and thematic analyses. For illustrative purposes, the vulnerability model was applied to the legally protected Environmental Protection Area (APA), located in the Uberaba region, state of Minas Gerais, Brazil. In this region, the risk of accidents causing chemical spills is preoccupying because large quantities of dangerous materials are transported in two important distribution highways while the APA is fundamental for the protection of water resources, the riverine ecosystems and remnants of native vegetation. In some tested scenarios, model results show 60% of vulnerable areas within the studied area. The most sensitive parameter to vulnerability is soil type. To prevent soils from contamination, specific measures were proposed involving minimization of land use conflicts that would presumably raise the soil's organic matter and in the sequel restore the soil's structural functions. Additionally, the present study proposed the preservation and reinforcement of riparian forests as one measure to protect the quality of surface water. - Highlights: • A multi criteria analog model was developed to assess rural catchment vulnerability along roads. • Model parameters were defined by analogy with urban wash-off equations and routing algorithms. • The model mixes up various biophysical and socio-economic parameters. • Model application was based on a scenario analysis. • The study is focused on the Environmental Protection Area of Uberaba River, Brazil.« less

  13. Hydrology of C-3 watershed, Seney National Wildlife Refuge, Michigan

    USGS Publications Warehouse

    Sweat, Michael J.

    2001-01-01

    Proposed changes to watershed management practices near C-3 Pool at Seney National Wildlife Refuge will affect surface-water flow patterns, ground-water levels, and possibly local plant communities. Data were collected between fall 1998 and spring 2000 to document existing conditions and to assess potential changes in hydrology that might occur as a consequence of modifications to water management practices in C-3 watershed.Minimum and maximum measured inflows and outflows for the study period are presented in light of proposed management changes to C-3 watershed. Streamflows ranged from 0 to 8.61 cubic meters per second. Low or zero flow was generally measured in late summer and early fall, and highest flows were measured during spring runoff and winter rain events. Ground-water levels varied by about a half meter, with levels closest to or above the land surface during spring runoff into the early summer, and with levels generally below land surface during late fall into early winter.A series of optional management practices that could conserve and restore habitat of the C-3 watershed is described. Modifications to the existing system of a drainage ditch and control structures are examined, as are the possibilities of reconnecting streams to their historical channels and the construction of additional or larger control structures to further manage the distribution of water in the watershed. The options considered could reduce erosion, restore presettlement streamflow conditions, and modify the ground-water gradient.

  14. Comparison of sediment and nutrient export and runoff characteristics from watersheds with centralized versus distributed stormwater management

    USGS Publications Warehouse

    Hopkins, Kristina G.; Loperfido, J.V.; Craig, Laura S.; Noe, Gregory; Hogan, Dianna

    2017-01-01

    Stormwater control measures (SCMs) are used to retain stormwater and pollutants. SCMs have traditionally been installed in a centralized manner using detention to mitigate peak flows. Recently, distributed SCM networks that treat runoff near the source have been increasingly utilized. The aim of this study was to evaluate differences among watersheds that vary in SCM arrangement by assessing differences in baseflow nutrient (NOx-N and PO4−) concentrations and fluxes, stormflow export of suspended sediments and particulate phosphorus (PP), and runoff characteristics. A paired watershed approach was used to compare export between 2004 and 2016 from one forested watershed (For-MD), one suburban watershed with centralized SCMs (Cent-MD), and one suburban watershed with distributed SCMs (Dist-MD). Results indicated baseflow nitrate (NOx-N) concentrations typically exceeded 1 mg-N/L in all watersheds and were highest in Dist-MD. Over the last 10 years in Dist-MD, nitrate concentrations in both stream baseflow and in a groundwater well declined as land use shifted from agriculture to suburban. Baseflow nitrate export temporarily increased during the construction phase of SCM development in Dist-MD. This temporary pulse of nitrate may be attributed to the conversion of sediment control facilities to SCMs and increased subsurface flushing as infiltration SCMs came on line. During storm flow, Dist-MD tended to have less runoff and lower maximum specific discharge than Cent-MD for small events (<1.3 cm), but runoff responses became increasingly similar to Cent-MD with increasing precipitation (>1.3 cm). Mass export estimated during paired storm events indicated Dist-MD exported 30% less sediment and 31% more PP than Cent-MD. For large precipitation events, export of sediment and PP was similar among all three watersheds. Results suggest that distributed SCMs can reduce runoff and sediment loads during small rain events compared to centralized SCMs, but these differences become less evident for large events when peak discharge likely leads to substantial bank erosion.

  15. Downstream cumulative effects of land use on freshwater communities

    NASA Astrophysics Data System (ADS)

    Kuglerová, L.; Kielstra, B. W.; Moore, D.; Richardson, J. S.

    2015-12-01

    Many streams and rivers are subject to disturbance from intense land use such as urbanization and agriculture, and this is especially obvious for small headwaters. Streams are spatially organized into networks where headwaters represent the tributaries and provide water, nutrients, and organic material to the main stems. Therefore perturbations within the headwaters might be cumulatively carried on downstream. Although we know that the disturbance of headwaters in urban and agricultural landscapes poses threats to downstream river reaches, the magnitude and severity of these changes for ecological communities is less known. We studied stream networks along a gradient of disturbance connected to land use intensity, from urbanized watersheds to watersheds placed in agricultural settings in the Greater Toronto Area. Further, we compared the patterns and processes found in the modified watershed to a control watershed, situated in a forested, less impacted landscape. Preliminary results suggest that hydrological modifications (flash floods), habitat loss (drainage and sewer systems), and water quality issues of small streams in urbanized and agricultural watersheds represent major disturbances and threats for aquatic and riparian biota on local as well as larger spatial scales. For example, communities of riparian plants are dominated by species typical of the land use on adjacent uplands as well as the dominant land use on the upstream contributing area, instead of riparian obligates commonly found in forested watersheds. Further, riparian communities in disturbed environments are dominated by invasive species. The changes in riparian communities are vital for various functions of riparian vegetation. Bank erosion control is suppressed, leading to severe channel transformations and sediment loadings in urbanized watersheds. Food sources for instream biota and thermal regimes are also changed, which further triggers alterations of in-stream biological communities. These findings clearly demonstrate that in watersheds which are disturbed by intensive land use, the eco-hydrological linkages between biota and fluvial processes significantly differ from those in more natural and forested landscapes.

  16. Improvement of registration accuracy in accelerated partial breast irradiation using the point-based rigid-body registration algorithm for patients with implanted fiducial markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Minoru; Yoshimura, Michio, E-mail: myossy@kuhp.kyoto-u.ac.jp; Sato, Sayaka

    2015-04-15

    Purpose: To investigate image-registration errors when using fiducial markers with a manual method and the point-based rigid-body registration (PRBR) algorithm in accelerated partial breast irradiation (APBI) patients, with accompanying fiducial deviations. Methods: Twenty-two consecutive patients were enrolled in a prospective trial examining 10-fraction APBI. Titanium clips were implanted intraoperatively around the seroma in all patients. For image-registration, the positions of the clips in daily kV x-ray images were matched to those in the planning digitally reconstructed radiographs. Fiducial and gravity registration errors (FREs and GREs, respectively), representing resulting misalignments of the edge and center of the target, respectively, were comparedmore » between the manual and algorithm-based methods. Results: In total, 218 fractions were evaluated. Although the mean FRE/GRE values for the manual and algorithm-based methods were within 3 mm (2.3/1.7 and 1.3/0.4 mm, respectively), the percentages of fractions where FRE/GRE exceeded 3 mm using the manual and algorithm-based methods were 18.8%/7.3% and 0%/0%, respectively. Manual registration resulted in 18.6% of patients with fractions of FRE/GRE exceeding 5 mm. The patients with larger clip deviation had significantly more fractions showing large FRE/GRE using manual registration. Conclusions: For image-registration using fiducial markers in APBI, the manual registration results in more fractions with considerable registration error due to loss of fiducial objectivity resulting from their deviation. The authors recommend the PRBR algorithm as a safe and effective strategy for accurate, image-guided registration and PTV margin reduction.« less

  17. Long-term ionic increases from a central Appalachian forested watershed

    Treesearch

    Pamela J. Edwards; J. David Helvey

    1991-01-01

    The electrical conductivity of stream water draining from an unmanaged and undisturbed control watershed has been increasing rather steadily, about 0.03 mS m-1 yr-1, since 1971. During this period, NO–3 and Ca2+ concentrations increased and were shown to...

  18. Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT

    USDA-ARS?s Scientific Manuscript database

    Quantitative information on pesticide loading into the Sacramento-San Joaquin Delta waterways of northern California is critical for water resource management in the region, and potentially useful for biological weed control planning. The San Joaquin watershed, an agriculturally intensive area, is a...

  19. Watershed Restoration in the Northern Sierra Nevada: A Biotechnical Approach

    Treesearch

    Donna S. Lindquist; Linton Y. Bowie

    1989-01-01

    A cooperative erosion control project was initiated in 1985 for the North Fork Feather River watershed in California's northern Sierra Nevada due to widespread accelerated erosion. Resulting sedimentation problems have impacted fish, wildlife and livestock resources, and have created operational concerns for hydroelectric facilities located downstream. In response...

  20. Regional ecological risk assessment for the introduction of Gambusia affinis (western mosquitofish) into Montana watersheds

    Treesearch

    Jerome J. Schleier; Sing Sharlene E.; Robert K. D. Peterson

    2008-01-01

    Qualitative risk assessment methodologies were used to assess the risk of establishment and consequent impacts on native minnows and species of concern (SOC) associated with the intentional or unintentional introduction of the mosquito biological control agent, Gambusia affinis, to various Montana watersheds. Gambusia affinis...

  1. Surrogate endpoints in clinical trials of chronic kidney disease progression: moving from single to multiple risk marker response scores.

    PubMed

    Schievink, Bauke; Mol, Peter G M; Lambers Heerspink, Hiddo J

    2015-11-01

    There is increased interest in developing surrogate endpoints for clinical trials of chronic kidney disease progression, as the established clinically meaningful endpoint end-stage renal disease requires large and lengthy trials to assess drug efficacy. We describe recent developments in the search for novel surrogate endpoints. Declines in estimated glomerular filtration rate (eGFR) of 30% or 40% and albuminuria have been proposed as surrogates for end-stage renal disease. However, changes in eGFR or albuminuria may not be valid under all circumstances as drugs always have effects on multiple renal risk markers. Changes in each of these other 'off-target' risk markers can alter renal risk (either beneficially or adversely), and can thereby confound the relationship between surrogates that are based on single risk markers and renal outcome. Risk algorithms that integrate the short-term drug effects on multiple risk markers to predict drug effects on hard renal outcomes may therefore be more accurate. The validity of these risk algorithms is currently investigated. Given that drugs affect multiple renal risk markers, risk scores that integrate these effects are a promising alternative to using eGFR decline or albuminuria. Proper validation is required before these risk scores can be implemented.

  2. Combined effects of climate and land management on watershed vegetation dynamics in an arid environment.

    PubMed

    Liu, Peilong; Hao, Lu; Pan, Cen; Zhou, Decheng; Liu, Yongqiang; Sun, Ge

    2017-07-01

    Leaf area index (LAI) is a key parameter to characterize vegetation dynamics and ecosystem structure that determines the ecosystem functions and services such as clean water supply and carbon sequestration in a watershed. However, linking LAI dynamics and environmental controls (i.e., coupling biosphere, atmosphere, and anthroposphere) remains challenging and such type of studies have rarely been done at a watershed scale due to data availability. The present study examined the spatial and temporal variations of LAI for five ecosystem types within a watershed with a complex topography in the Upper Heihe River Basin, a major inland river in the arid and semi-arid western China. We integrated remote sensing-based GLASS (Global Land Surface Satellite) LAI products, interpolated climate data, watershed characteristics, and land management records for the period of 2001-2012. We determined the relationships among LAI, topography, air temperature and precipitation, and grazing history by five ecosystem types using several advanced statistical methods. We show that long-term mean LAI distribution had an obvious vertical pattern as controlled by precipitation and temperature in a hilly watershed. Overall, watershed-wide mean LAI had an increasing trend overtime for all ecosystem types during 2001-2012, presumably as a result of global warming and a wetting climate. However, the fluctuations of observed LAI at a pixel scale (1km) varied greatly across the watershed. We classified the vegetation changes within the watershed as 'Improved', 'Stabilized', and 'Degraded' according their respective LAI changes. We found that climate was not the only driver for temporal vegetation changes for all land cover types. Grazing partially contributed to the decline of LAI in some areas and masked the positive climate warming effects in other areas. Extreme weathers such as cold spells and droughts could substantially affect inter-annual variability of LAI dynamics. We concluded that temporal and spatial LAI dynamics were rather complex and were affected by both climate variations and human disturbances in the study basin. Future monitoring studies should focus on the functional interactions among vegetation dynamics, climate variations, land management, and human disturbances. Published by Elsevier B.V.

  3. Retrofitting for watershed drainage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, D.B.; Heaney, J.P.

    1991-09-01

    Over the past 8 years, degradation in Florida's Indian River Lagoon has taken the form of fish kills, reduced viable recreational and commercial fisheries, and loss of seagrass beds. Stormwater drainage practices in the watershed have been identified as the primary culprit in the slow demise of the lagoon. Specific drainage problems include an increased volume of freshwater runoff to the estuarine receiving water and deposition of organic sediments, reduced water clarity because of increased discharge of suspended solids and tea colored' groundwater - a result of drainage-canal-induced land dewatering, and eutrophication caused by nutrient loadings. In addition, poor flushingmore » in lagoon segments makes runoff impacts even more damaging to the ecosystem. Recently, the lagoon has received national, regional, state, and local attention over its degradation and citizens' action and multi-agency efforts to restore it. To mitigate damage to the Indian River lagoon, agencies are considering alternatives such as retrofitting to reduce pollutant loads and implementing a more comprehensive watershed approach to stormwater management instead of individual controls on new development currently widely practiced. A comprehensive, long-term watershed control approach avoids unnecessary construction expenses, encourages cost-effective tradeoffs based on specific objectives, facilities performance monitoring, and accounts for cumulative impacts of continued growth in the watershed.« less

  4. Modeling of phosphorus fluxes produced by wild fires at watershed scales.

    NASA Astrophysics Data System (ADS)

    Matyjasik, M.; Hernandez, M.; Shaw, N.; Baker, M.; Fowles, M. T.; Cisney, T. A.; Jex, A. P.; Moisen, G.

    2017-12-01

    River runoff is one of the controlling processes in the terrestrial phosphorus cycle. Phosphorus is often a limiting factor in fresh water. One of the factors that has not been studied and modeled in detail is phosporus flux produced from forest wild fires. Phosphate released by weathering is quickly absorbed in soils. Forest wild fires expose barren soils to intensive erosion, thus releasing relatively large fluxes of phosphorus. Measurements from three control burn sites were used to correlate erosion with phosphorus fluxes. These results were used to model phosphorus fluxes from burned watersheds during a five year long period after fires occurred. Erosion in our model is simulated using a combination of two models: the WEPP (USDA Water Erosion Prediction Project) and the GeoWEPP (GIS-based Water Erosion Prediction Project). Erosion produced from forest disturbances is predicted for any watershed using hydrologic, soil, and meteorological data unique to the individual watersheds or individual slopes. The erosion results are modified for different textural soil classes and slope angles to model fluxes of phosphorus. The results of these models are calibrated using measured concentrations of phosphorus for three watersheds located in the Interior Western United States. The results will help the United States Forest Service manage phosporus fluxes in national forests.

  5. Cations and microbial indicators: strong relationships in waters of urban/mixed land use watersheds of Southwest, VA

    NASA Astrophysics Data System (ADS)

    Steele, M.; Badgley, B.

    2016-12-01

    Background The salinity and composition of salts in freshwater streams, rivers, and waterbodies varies substantially, often impacted by human urban, agricultural, and mining land uses. While extreme fluctuations in salinity have been shown to influence both microbial communities and biogeochemical cycles, the differential effects of specific ion species at low salinity levels is poorly understood. The objective of this study was to examine the relationship between water chemistry and microbial water quality indicators. We collected weekly grab samples from nine sub-watersheds in Southwest Virginia. Samples were measured for standard physical and chemical properties: dissolved oxygen, temperature, specific conductance, pH, calcium, magnesium, potassium, chloride, fluoride, sulfate, nitrogen species, phosphorus, and dissolved organic carbon. In addition, three types of microbial fecal indicators were measured: total coliforms, E. coli, and HF183 (a human specific genomic marker). Results The relationships within and between water chemistry and water quality indicators are complex and frequently co-correlated. Concentrations of traditional biogeochemical elements (N, P, C) were less strongly related to water quality indicators than were Ca, Mg, Na in watersheds. Ca and Mg were strongly correlated with total coliforms, r2 = 0.88 and r2 = 0.86 respectively. While potassium is very strongly related to E. coli (r2 = 0.96). Currently, we cannot reasonably explain these relationships by the land use composition or common sources within the landscape. The human specific fecal indicator was not well correlated with other microbial water quality indicators, and yet found ubiquitously across the developed watersheds and most strongly correlated with sodium concentrations (r2 = 0.84). The results suggest that 1) wastewater via subsurface flowpaths may more broadly impact surface water chemistry and quality than expected, and 2) that cation chemistry may influence the microbial community and serve as a mediator of watershed biogeochemical cycling.

  6. A Newly Identified Role of the Deciduous Forest Floor in the Timing of Green-Up

    NASA Astrophysics Data System (ADS)

    Lapenis, Andrei G.; Lawrence, Gregory B.; Buyantuev, Alexander; Jiang, Shiguo; Sullivan, Timothy J.; McDonnell, Todd C.; Bailey, Scott

    2017-11-01

    Plant phenology studies rarely consider controlling factors other than air temperature. We evaluate here the potential significance of physical and chemical properties of soil (edaphic factors) as additional important controls on phenology. More specifically, we investigate causal connections between satellite-observed green-up dates of small forest watersheds and soil properties in the Adirondack Mountains of New York, USA. Contrary to the findings of previous studies, where edaphic controls of spring phenology were found to be marginal, our analyses show that at least three factors manifest themselves as significant controls of seasonal patterns of variation in vegetated land surfaces observed from remote sensing: (1) thickness of the forest floor, (2) concentration of exchangeable soil potassium, and (3) soil acidity. For example, a thick forest floor appears to delay the onset of green-up. Watersheds with elevated concentrations of potassium are associated with early surface greening. We also found that trees growing in strongly acidified watersheds demonstrate delayed green-up dates. Overall, our work demonstrates that, at the scale of small forest watersheds, edaphic factors can explain a significant percentage of the observed spatial variation in land surface phenology that is comparable to the percentage that can be explained by climatic and landscape factors. We conclude that physical and chemical properties of forest soil play important roles in forest ecosystems as modulators of climatic drivers controlling the rate of spring soil warming and the transition of trees out of winter dormancy.

  7. Comparison of Microbial and Chemical Source Tracking Markers To Identify Fecal Contamination Sources in the Humber River (Toronto, Ontario, Canada) and Associated Storm Water Outfalls.

    PubMed

    Staley, Zachery R; Grabuski, Josey; Sverko, Ed; Edge, Thomas A

    2016-11-01

    Storm water runoff is a major source of pollution, and understanding the components of storm water discharge is essential to remediation efforts and proper assessment of risks to human and ecosystem health. In this study, culturable Escherichia coli and ampicillin-resistant E. coli levels were quantified and microbial source tracking (MST) markers (including markers for general Bacteroidales spp., human, ruminant/cow, gull, and dog) were detected in storm water outfalls and sites along the Humber River in Toronto, Ontario, Canada, and enumerated via endpoint PCR and quantitative PCR (qPCR). Additionally, chemical source tracking (CST) markers specific for human wastewater (caffeine, carbamazepine, codeine, cotinine, acetaminophen, and acesulfame) were quantified. Human and gull fecal sources were detected at all sites, although concentrations of the human fecal marker were higher, particularly in outfalls (mean outfall concentrations of 4.22 log 10 copies, expressed as copy numbers [CN]/100 milliliters for human and 0.46 log 10 CN/100 milliliters for gull). Higher concentrations of caffeine, acetaminophen, acesulfame, E. coli, and the human fecal marker were indicative of greater raw sewage contamination at several sites (maximum concentrations of 34,800 ng/liter, 5,120 ng/liter, 9,720 ng/liter, 5.26 log 10 CFU/100 ml, and 7.65 log 10 CN/100 ml, respectively). These results indicate pervasive sewage contamination at storm water outfalls and throughout the Humber River, with multiple lines of evidence identifying Black Creek and two storm water outfalls with prominent sewage cross-connection problems requiring remediation. Limited data are available on specific sources of pollution in storm water, though our results indicate the value of using both MST and CST methodologies to more reliably assess sewage contamination in impacted watersheds. Storm water runoff is one of the most prominent non-point sources of biological and chemical contaminants which can potentially degrade water quality and pose risks to human and ecosystem health. Therefore, identifying fecal contamination in storm water runoff and outfalls is essential for remediation efforts to reduce risks to public health. This study employed multiple methods of identifying levels and sources of fecal contamination in both river and storm water outfall sites, evaluating the efficacy of using culture-based enumeration of E. coli, molecular methods of determining the source(s) of contamination, and CST markers as indicators of fecal contamination. The results identified pervasive human sewage contamination in storm water outfalls and throughout an urban watershed and highlight the utility of using both MST and CST to identify raw sewage contamination. © Crown copyright 2016.

  8. Comparison of Microbial and Chemical Source Tracking Markers To Identify Fecal Contamination Sources in the Humber River (Toronto, Ontario, Canada) and Associated Storm Water Outfalls

    PubMed Central

    Grabuski, Josey; Sverko, Ed; Edge, Thomas A.

    2016-01-01

    ABSTRACT Storm water runoff is a major source of pollution, and understanding the components of storm water discharge is essential to remediation efforts and proper assessment of risks to human and ecosystem health. In this study, culturable Escherichia coli and ampicillin-resistant E. coli levels were quantified and microbial source tracking (MST) markers (including markers for general Bacteroidales spp., human, ruminant/cow, gull, and dog) were detected in storm water outfalls and sites along the Humber River in Toronto, Ontario, Canada, and enumerated via endpoint PCR and quantitative PCR (qPCR). Additionally, chemical source tracking (CST) markers specific for human wastewater (caffeine, carbamazepine, codeine, cotinine, acetaminophen, and acesulfame) were quantified. Human and gull fecal sources were detected at all sites, although concentrations of the human fecal marker were higher, particularly in outfalls (mean outfall concentrations of 4.22 log10 copies, expressed as copy numbers [CN]/100 milliliters for human and 0.46 log10 CN/100 milliliters for gull). Higher concentrations of caffeine, acetaminophen, acesulfame, E. coli, and the human fecal marker were indicative of greater raw sewage contamination at several sites (maximum concentrations of 34,800 ng/liter, 5,120 ng/liter, 9,720 ng/liter, 5.26 log10 CFU/100 ml, and 7.65 log10 CN/100 ml, respectively). These results indicate pervasive sewage contamination at storm water outfalls and throughout the Humber River, with multiple lines of evidence identifying Black Creek and two storm water outfalls with prominent sewage cross-connection problems requiring remediation. Limited data are available on specific sources of pollution in storm water, though our results indicate the value of using both MST and CST methodologies to more reliably assess sewage contamination in impacted watersheds. IMPORTANCE Storm water runoff is one of the most prominent non-point sources of biological and chemical contaminants which can potentially degrade water quality and pose risks to human and ecosystem health. Therefore, identifying fecal contamination in storm water runoff and outfalls is essential for remediation efforts to reduce risks to public health. This study employed multiple methods of identifying levels and sources of fecal contamination in both river and storm water outfall sites, evaluating the efficacy of using culture-based enumeration of E. coli, molecular methods of determining the source(s) of contamination, and CST markers as indicators of fecal contamination. The results identified pervasive human sewage contamination in storm water outfalls and throughout an urban watershed and highlight the utility of using both MST and CST to identify raw sewage contamination. PMID:27542934

  9. A 3D terrain reconstruction method of stereo vision based quadruped robot navigation system

    NASA Astrophysics Data System (ADS)

    Ge, Zhuo; Zhu, Ying; Liang, Guanhao

    2017-01-01

    To provide 3D environment information for the quadruped robot autonomous navigation system during walking through rough terrain, based on the stereo vision, a novel 3D terrain reconstruction method is presented. In order to solve the problem that images collected by stereo sensors have large regions with similar grayscale and the problem that image matching is poor at real-time performance, watershed algorithm and fuzzy c-means clustering algorithm are combined for contour extraction. Aiming at the problem of error matching, duel constraint with region matching and pixel matching is established for matching optimization. Using the stereo matching edge pixel pairs, the 3D coordinate algorithm is estimated according to the binocular stereo vision imaging model. Experimental results show that the proposed method can yield high stereo matching ratio and reconstruct 3D scene quickly and efficiently.

  10. Using Eco-hydrologic modeling in the Penobscot River Watershed to explore the role of climate and land use change on DOC concentration and flux

    NASA Astrophysics Data System (ADS)

    Rouhani, S. F. B. B.; Schaaf, C.; Douglas, E. M.; Huntington, T. G.; Kim, J.

    2017-12-01

    Dissolved Organic Carbon leaches from the terrestrial watersheds to serve as one of the largest sources of marine DOC. Runoff, slope, soil organic matter and land cover characteristics are the primary spatial factors controlling the variability of fluvial Dissolved Organic Carbon fluxes through the catchment. In large, more heterogeneous catchments, streamflow dissolved organic carbon dynamics are regulated by the combined effect of hydrological mechanisms and the proportion of major landscape elements, such as wetland and forested areas. A number of studies have demonstrated that the amount of wetlands, especially peatlands, controls the watershed level transport of DOC in streams.The Penobscot River Watershed is located in north-central Maine and drains into the Gulf of Maine. It is the second largest watershed in New England. The Penobscot River Watershed is primarily forested but also contains extensive bogs, marshes, and wooded swamps.Studying the spatial and temporal changes in DOC export in the Penobscot River Watershed allows us to better understand and detect carbon sinks to carbon source shifts (or vice versa) in northern forested ecosystems.The Regional Hydro-Ecological Simulation System, is a physical process based terrestrial model that has the ability to simulate both the source and transportation of DOC by combining both hydrological and ecological processes. The study is focused on simulating the DOC concentration and flux with RHESSys in the Penobscot River Watershed. The simulated results are compared with field measurements of DOC from the watershed and the model results from the LOADEST and the temporal DOC export patterns are explored. Future changes in the amount of streamflow DOC will also be investigated by using projected land cover and climate change scenarios. Incremental increases in the loss of wetland areas have been implemented to explore the sensitivity of this watershed to wetland loss and progressive changes in forested land cover have been implemented to understand the role of vegetation types to the DOC flux.The simulated daily streamflow for the period of 2004-2013 corresponded well with observed daily streamflowat USGS gauge station. in addition, the simulated DOC flux and concentration values matched well with observed data and LODEST model results.

  11. DALMATIAN: An Algorithm for Automatic Cell Detection and Counting in 3D.

    PubMed

    Shuvaev, Sergey A; Lazutkin, Alexander A; Kedrov, Alexander V; Anokhin, Konstantin V; Enikolopov, Grigori N; Koulakov, Alexei A

    2017-01-01

    Current 3D imaging methods, including optical projection tomography, light-sheet microscopy, block-face imaging, and serial two photon tomography enable visualization of large samples of biological tissue. Large volumes of data obtained at high resolution require development of automatic image processing techniques, such as algorithms for automatic cell detection or, more generally, point-like object detection. Current approaches to automated cell detection suffer from difficulties originating from detection of particular cell types, cell populations of different brightness, non-uniformly stained, and overlapping cells. In this study, we present a set of algorithms for robust automatic cell detection in 3D. Our algorithms are suitable for, but not limited to, whole brain regions and individual brain sections. We used watershed procedure to split regional maxima representing overlapping cells. We developed a bootstrap Gaussian fit procedure to evaluate the statistical significance of detected cells. We compared cell detection quality of our algorithm and other software using 42 samples, representing 6 staining and imaging techniques. The results provided by our algorithm matched manual expert quantification with signal-to-noise dependent confidence, including samples with cells of different brightness, non-uniformly stained, and overlapping cells for whole brain regions and individual tissue sections. Our algorithm provided the best cell detection quality among tested free and commercial software.

  12. Effect of androgen replacement therapy on atherosclerotic risk markers in young-to-middle-aged men with idiopathic hypogonadotropic hypogonadism.

    PubMed

    Doğan, Berçem Ayçiçek; Karakılıç, Ersen; Tuna, Mazhar Müslüm; Arduç, Ayşe; Berker, Dilek; Güler, Serdar

    2015-03-01

    Idiopathic hypogonadotropic hypogonadism is a rare disorder. This study evaluated the effect of androgen replacement therapy on atherosclerotic risk markers in young-to-middle-aged men with this disorder. Forty-three male patients aged 30 (range: 24-39 years) who were newly diagnosed with idiopathic hypogonadotropic hypogonadism and 20 age-, sex- and weight-matched controls (range: 26-39 years) were included in the study. Androgen replacement therapy was given according to the Algorithm of Testosterone Therapy in Adult Men with Androgen Deficiency Syndromes (2010; Journal of Clinical Endocrinology and Metabolism, 95, 2536). The patients were assessed at a pretreatment visit and 3 and 6 months after the treatment. Inflammatory markers and lipid parameters were evaluated. Endothelial function was assessed with brachial flow-mediated dilation of a brachial artery and high-resolution ultrasonography of the carotid intima-media thickness. The carotid intima-media thickness (P < 0·001) was higher and the brachial flow-mediated diameter (P = 0·002) was lower in patients with idiopathic hypogonadotropic hypogonadism compared to the control subjects at the pretreatment visit. There was a negative correlation between the total testosterone level and carotid intima-media thickness (r = -0·556, P = <0·001). The carotid intima-media thickness and per cent flow-mediated diameter were significantly improved in the patient group 6 months after the androgen replacement therapy (P = 0·002 and 0·026, respectively). This study indicated that low total testosterone levels can be considered a significant marker of atherosclerosis in patients with idiopathic hypogonadotropic hypogonadism and that androgen replacement therapy significantly reduces atherosclerotic risk markers in these patients after 6 months. © 2014 John Wiley & Sons Ltd.

  13. Merging Surface Reconstructions of Terrestrial and Airborne LIDAR Range Data

    DTIC Science & Technology

    2009-05-19

    Mangan and R. Whitaker. Partitioning 3D surface meshes using watershed segmentation . IEEE Trans. on Visualization and Computer Graphics, 5(4), pp...Jain, and A. Zakhor. Data Processing Algorithms for Generating Textured 3D Building Facade Meshes from Laser Scans and Camera Images. International...acquired set of overlapping range images into a single mesh [2,9,10]. However, due to the volume of data involved in large scale urban modeling, data

  14. Understanding Metal Sources and Transport Processes in Watersheds: a Hydropedologic Approach (Invited)

    NASA Astrophysics Data System (ADS)

    Bullen, T. D.; Bailey, S. W.; McGuire, K. J.; Brousseau, P.; Ross, D. S.; Bourgault, R.; Zimmer, M. A.

    2010-12-01

    Understanding the origin of metals in watersheds, as well as the transport and cycling processes that affect them is of critical importance to watershed science. Metals can be derived both from weathering of minerals in the watershed soils and bedrock and from atmospheric deposition, and can have highly variable residence times in the watershed due to cycling through plant communities and retention in secondary mineral phases prior to release to drainage waters. Although much has been learned about metal cycling and transport through watersheds using simple “box model” approaches that define unique input, output and processing terms, the fact remains that watersheds are inherently complex and variable in terms of substrate structure, hydrologic flowpaths and the influence of plants, all of which affect the chemical composition of water that ultimately passes through the watershed outlet. In an effort to unravel some of this complexity at a watershed scale, we have initiated an interdisciplinary, hydropedology-focused study of the hydrologic reference watershed (Watershed 3) at the Hubbard Brook Experimental Forest in New Hampshire, USA. This 41 hectare headwater catchment consists of a beech-birch-maple-spruce forest growing on soils developed on granitoid glacial till that mantles Paleozoic metamorphic bedrock. Soils vary from lateral spodosols downslope from bedrock exposures near the watershed crest to vertical and bi-modal spodosols along hillslopes to umbrepts at toe-slope positions and inferred hydrologic pinch points created by bedrock and till structure. Using a variety of chemical and isotope tracers (e.g., K/Na, Ca/Sr, Sr/Ba, Fe/Mn, 87Sr/86Sr, Ca-Sr-Fe stable isotopes) on water, soil and plant samples in an end-member mixing analysis approach, we are attempting to discretize the watershed according to soil types encountered along determined hydrologic flowpaths in order better constrain the various biogeochemical processes that control the delivery of metals to the watershed outlet. Our initial results reveal that along the numerous first-order streams that drain the watershed, chemical and Sr isotope compositions are highly variable from sample point to sample point on a given day and from season to season, reflecting the complex nature of hydrologic flowpaths that deliver water to the streams and hinting at the importance of groundwater seeps that appear to concentrate along the central axis of the watershed.

  15. Respiratory sinus arrhythmia in Chagas disease.

    PubMed

    Neves, Victor Ribeiro; Peltola, Mirja; Huikuri, Heikki; Rocha, Manoel Otávio da Costa; Ribeiro, Antonio Luiz

    2014-10-01

    We applied the respiratory sinus arrhythmia (RSA) quantification algorithm to 24-hour ECG recordings of Chagas disease (ChD) patients with (G1, n=148) and without left ventricular dysfunction (LVD) (G2, n=33), and in control subjects (G0, n=28). Both ChD groups displayed a reduced RSA index; G1=299 (144-812); G2=335 (162-667), p=0.011, which was correlated with vagal indexes of heart rate variability analysis. RSA index is a marker of vagal modulation in ChD patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Effectiveness of barnyard best management practices in Wisconsin

    USGS Publications Warehouse

    Stuntebeck, Todd D.; Bannerman, Roger T.

    1998-01-01

    In 1978, the Wisconsin Legislature committed to protecting water quality by enacting the Nonpoint Source Water Pollution Abatement Program. Through this program, cost-share money is provided within priority watersheds to control sources of nonpoint pollution. Most of the cost-share dollars for rural watersheds have been used to implement barnyard Best Management Practices (BMPs) because barnyards are believed to be a major source of pollutants, most notably phosphorus. Reductions in phosphorus loads of as much as 95 percent have been predicted for the barnyard BMPs recommended for priority watersheds.

  17. Watershed identification of polygonal patterns in noisy SAR images.

    PubMed

    Moreels, Pierre; Smrekar, Suzanne E

    2003-01-01

    This paper describes a new approach to pattern recognition in synthetic aperture radar (SAR) images. A visual analysis of the images provided by NASA's Magellan mission to Venus has revealed a number of zones showing polygonal-shaped faults on the surface of the planet. The goal of the paper is to provide a method to automate the identification of such zones. The high level of noise in SAR images and its multiplicative nature make automated image analysis difficult and conventional edge detectors, like those based on gradient images, inefficient. We present a scheme based on an improved watershed algorithm and a two-scale analysis. The method extracts potential edges in the SAR image, analyzes the patterns obtained, and decides whether or not the image contains a "polygon area". This scheme can also be applied to other SAR or visual images, for instance in observation of Mars and Jupiter's satellite Europa.

  18. GIS Based Distributed Runoff Predictions in Variable Source Area Watersheds Employing the SCS-Curve Number

    NASA Astrophysics Data System (ADS)

    Steenhuis, T. S.; Mendoza, G.; Lyon, S. W.; Gerard Marchant, P.; Walter, M. T.; Schneiderman, E.

    2003-04-01

    Because the traditional Soil Conservation Service Curve Number (SCS-CN) approach continues to be ubiquitously used in GIS-BASED water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed within an integrated GIS modeling environment a distributed approach for applying the traditional SCS-CN equation to watersheds where VSA hydrology is a dominant process. Spatial representation of hydrologic processes is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non-point source pollution. The methodology presented here uses the traditional SCS-CN method to predict runoff volume and spatial extent of saturated areas and uses a topographic index to distribute runoff source areas through watersheds. The resulting distributed CN-VSA method was incorporated in an existing GWLF water quality model and applied to sub-watersheds of the Delaware basin in the Catskill Mountains region of New York State. We found that the distributed CN-VSA approach provided a physically-based method that gives realistic results for watersheds with VSA hydrology.

  19. The performance of the SEPT9 gene methylation assay and a comparison with other CRC screening tests: A meta-analysis.

    PubMed

    Song, Lele; Jia, Jia; Peng, Xiumei; Xiao, Wenhua; Li, Yuemin

    2017-06-08

    The SEPT9 gene methylation assay is the first FDA-approved blood assay for colorectal cancer (CRC) screening. Fecal immunochemical test (FIT), FIT-DNA test and CEA assay are also in vitro diagnostic (IVD) tests used in CRC screening. This meta-analysis aims to review the SEPT9 assay performance and compare it with other IVD CRC screening tests. By searching the Ovid MEDLINE, EMBASE, CBMdisc and CJFD database, 25 out of 180 studies were identified to report the SEPT9 assay performance. 2613 CRC cases and 6030 controls were included, and sensitivity and specificity were used to evaluate its performance at various algorithms. 1/3 algorithm exhibited the best sensitivity while 2/3 and 1/1 algorithm exhibited the best balance between sensitivity and specificity. The performance of the blood SEPT9 assay is superior to that of the serum protein markers and the FIT test in symptomatic population, while appeared to be less potent than FIT and FIT-DNA tests in asymptomatic population. In conclusion, 1/3 algorithm is recommended for CRC screening, and 2/3 or 1/1 algorithms are suitable for early detection for diagnostic purpose. The SEPT9 assay exhibited better performance in symptomatic population than in asymptomatic population.

  20. Chloride cycling in two forested lake watersheds in the west-central Adirondack Mountains, New York, U.S.A.

    USGS Publications Warehouse

    Peters, N.E.

    1991-01-01

    The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling C1- cycling. Results indicate that C1- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived C1- through the ecosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of precipitation (56 eq ha-1), whereas the Na+ throughfall flux, in general, was similar to the precipitation flux. Concentrations of soil-water Cl- sampled from ceramic tension lysimeters at 20 cm below land surface generally exceeded the Na+ concentrations and averaged 31 ??eq L-1, the highest of any waters sampled in the watersheds, except throughfall under red spruce which averaged 34 ??eq L-1. Chloride was concentrated prior to storms and mobilized rapidly during storms as suggested by increases in streamwater Cl- concentrations with increasing flow. Major sources of Cl- in both watersheds are the forest floor and hornblende weathering in the soils and till. In the Panther Lake watershed, which contains mainly thick deposits of till( > 3 m), hornblende weathering results in a net Cl- flux 3 times greater than that in the Woods Lake watershed, which contains mainly thin deposits of till. The estimated accumulation rate of Cl- in the biomass of the two watersheds was comparable to the precipitation Cl- flux.The chemistry of precipitation, throughfall, soil water, ground water, and surface water was evaluated in two forested lake-watersheds over a 4-yr period to assess factors controlling Cl- cycling. Results indicate that Cl- cycling in these watersheds is more complex than the generally held view of the rapid transport of atmospherically derived Cl- through the excosystem. The annual throughfall Cl- flux for individual species in the northern hardwood forest was 2 to 5 times that of precipitation (56 eq ha-1), whereas the Na+ throughfall flux, in general, was similar to the precipitation flux. Concentrations of soil-water Cl- sampled from ceramic tension lysimeters at 20 cm below land surface generally exceeded the Na+ concentrations and averaged 31 ??eq L-1, the highest of any waters sampled in the watersheds, except throughfall under red spruce which averaged 34 ??eq L-1. Chloride was concentrated prior to storms and mobilized rapidly during storms as suggested by increases in streamwater Cl- concentrations with increasing flow. Major sources of Cl- in both watersheds are the forest floor and hornblende weathering in the soils and till. In the Panther Lake watershed, which contains mainly thick deposits of till (> 3 m), hornblende weathering results in a net Cl- flux 3 times greater than that in the Woods Lake watershed, which contains mainly thin deposits of till. The estimated accumulation rate of Cl- in the biomass of the two watersheds was comparable to the precipitation Cl- flux.

  1. Distribution and abundance of human-specific Bacteroides and relation to traditional indicators in an urban tropical catchment

    PubMed Central

    Nshimyimana, J P; Ekklesia, E; Shanahan, P; Chua, L H C; Thompson, J R

    2014-01-01

    Aims The study goals were to determine the relationship between faecal indicator bacteria (FIB), the HF183 marker and land use, and the phylogenetic diversity of HF183 marker sequences in a tropical urban watershed. Methods and Results Total coliforms, Escherichia coli, and HF183 were quantified in 81 samples categorized as undeveloped, residential and horticultural from the Kranji Reservoir and Catchment in Singapore. Quantitative-PCR for HF183 followed by analysis of variance indicated that horticultural areas had significantly higher geometric means for marker levels (4·3 × 104 HF183-GE 100 ml−1) than nonhorticultural areas (3·07 × 103 HF183-GE 100 ml−1). E. coli and HF183 were moderately correlated in horticultural areas (R = 0·59, P = 0·0077), but not elsewhere in the catchment. Initial upstream surveys of candidate sources revealed elevated HF183 in a wastewater treatment effluent but not in aquaculture ponds. The HF183 marker was cloned, sequenced and determined by phylogenetic analysis to match the original marker description. Conclusion We show that quantification of the HF183 marker is a useful tool for mapping the spatial distribution and potential sources of human sewage contamination in tropical environments such as Singapore. Significance and Impact A major challenge for assessment of water quality in tropical environments is the natural occurrence and nonconservative behaviour of FIB. The HF183 marker has been employed in temperate environments as an alternative indicator for human sewage contamination. Our study supports the use of the HF183 marker as an indicator for human sewage in Singapore and motivates further work to determine HF183 marker levels that correspond to public health risk in tropical environments. PMID:24460587

  2. Prognostic significance of immunohistochemistry-based markers and algorithms in immunochemotherapy-treated diffuse large B cell lymphoma patients.

    PubMed

    Culpin, Rachel E; Sieniawski, Michal; Angus, Brian; Menon, Geetha K; Proctor, Stephen J; Milne, Paul; McCabe, Kate; Mainou-Fowler, Tryfonia

    2013-12-01

    To reassess the prognostic validity of immunohistochemical markers and algorithms identified in the CHOP era in immunochemotherapy-treated diffuse large B cell lymphoma patients. The prognostic significance of immunohistochemical markers (CD10, Bcl-6, Bcl-2, MUM1, Ki-67, CD5, GCET1, FoxP1, LMO2) and algorithms (Hans, Hans*, Muris, Choi, Choi*, Nyman, Visco-Young, Tally) was assessed using clinical diagnostic blocks taken from an unselected, population-based cohort of 190 patients treated with R-CHOP. Dichotomizing expression, low CD10 (<10%), low LMO2 (<70%) or high Bcl-2 (≥80%) predicted shorter overall survival (OS; P = 0.033, P = 0.010 and P = 0.008, respectively). High Bcl-2 (≥80%), low Bcl-6 (<60%), low GCET1 (<20%) or low LMO2 (<70%) predicted shorter progression-free survival (PFS; P = 0.001, P = 0.048, P = 0.045 and P = 0.002, respectively). The Hans, Hans* and Muris classifiers predicted OS (P = 0.022, P = 0.037 and P = 0.011) and PFS (P = 0.021, P = 0.020 and P = 0.004). The Choi, Choi* and Tally were associated with PFS (P = 0.049, P = 0.009 and P = 0.023). In multivariate analysis, the International Prognostic Index (IPI) was the only independent predictor of outcome (OS; HR: 2.60, P < 0.001 and PFS; HR: 2.91, P < 0.001). Results highlight the controversy surrounding immunohistochemistry-based algorithms in the R-CHOP era. The need for more robust markers, applicable to the clinic, for incorporation into improved prognostic systems is emphasized. © 2013 John Wiley & Sons Ltd.

  3. Does anthropogenic nitrogen enrichment increase organic nitrogen concentrations in runoff from forested and human-dominated watersheds?

    USGS Publications Warehouse

    Pellerin, B.A.; Kaushal, S.S.; McDowell, W.H.

    2006-01-01

    Although the effects of anthropogenic nitrogen (N) inputs on the dynamics of inorganic N in watersheds have been studied extensively, "the influence of N enrichment on organic N loss" is not as well understood. We compiled and synthesized data on surface water N concentrations from 348 forested and human-dominated watersheds with a range of N loads (from less than 100 to 7,100 kg N km-2 y-1) to evaluate the effects of N loading via atmospheric deposition, fertilization, and wastewater on dissolved organic N (DON) concentrations. Our results indicate that, on average, DON accounts for half of the total dissolved N (TDN) concentrations from forested watersheds, but it accounts for a smaller fraction of TDN in runoff from urban and agricultural watersheds with higher N loading. A significant but weak correlation (r 2 = 0.06) suggests that N loading has little influence on DON concentrations in forested watersheds. This result contrasts with observations from some plot-scale N fertilization studies and suggests that variability in watershed characteristics and climate among forested watersheds may be a more important control on DON losses than N loading from atmospheric sources. Mean DON concentrations were positively correlated, however, with N load across the entire land-use gradient (r 2 = 0.37, P < 0.01), with the highest concentrations found in agricultural and urban watersheds. We hypothesize that both direct contributions of DON from wastewater and agricultural amendments and indirect transformations of inorganic N to organic N represent important sources of DON to surface waters in human-dominated watersheds. We conclude that DON is an important component of N loss in surface waters draining forested and human-dominated watersheds and suggest several research priorities that may be useful in elucidating the role of N enrichment in watershed DON dynamics. ?? 2006 Springer Science+Business Media, Inc.

  4. Watershed Scale Impacts of Stormwater Green Infrastructure on Hydrology, Nitrogen Fluxes, and Combined Sewer Overflows in the Baltimore, MD and Washington, DC area

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Pennino, M. J.; McDonald, R.

    2016-12-01

    Despite the increasing use of urban stormwater green infrastructure (SGI), including detention ponds and rain gardens, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, Baltimore County, MD, Montgomery County, MD, and Washington, DC, were selected based on the availability of data on SGI, water quality, and stream flow. The watershed scale impact of SGI was evaluated by assessing how increased spatial density of SGI correlates with stream hydrology and nitrogen exports over space and time. The most common SGI types were detention ponds (58%), followed by marshes (12%), sand filters (9%), wet ponds (7%), infiltration trenches (4%), and rain gardens (2%). When controlling for watersheds size and percent impervious surface cover, watersheds with greater amounts of SGI (>10% SGI) have 44% lower peak runoff, 26% less frequent runoff events, and 26% less variable runoff than watersheds with lower SGI. Watersheds with more SGI also show 44% less NO3- and 48% less total nitrogen exports compared to watersheds with minimal SGI. There was no significant reduction in combined sewer overflows in watersheds with greater SGI. Based on specific SGI types, infiltration trenches (R2 = 0.35) showed the strongest correlation with hydrologic metrics, likely due to their ability to attenuate flow, while bioretention (R2 = 0.19) and wet ponds (R2 = 0.12) showed stronger relationships with nitrogen compared to other SGI types, possibly due to greater denitrification in these sites. When comparing individual watersheds over time, increases in SGI corresponded to non-significant reductions in hydrologic flashiness and combined sewer overflows compared to watersheds with no change in SGI. This study shows that while implementation of SGI is ongoing, some regions are beginning to have enough SGI to see significant impacts on hydrology and water quality at the watershed scale.

  5. A study of dissolved organic carbon and nitrate export in Catskill Mountain watersheds

    NASA Astrophysics Data System (ADS)

    Son, K.; Moore, K. E.; Lin, L.; Schneiderman, E. M.; Band, L. E.

    2016-12-01

    Watersheds in the Catskill Mountain region of New York State have historically experienced soil and stream acidification due to deposition of acidic compounds created from atmospheric SO2 and NOx. Recent studies in this region, and elsewhere in North America and Europe, have shown increases in dissolved organic carbon (DOC) in streams and lakes. Watersheds in the Catskills are the major source of drinking water for New York City and other communities in the region. Due to use of chlorine for disinfection, there is potential for the increase in DOC to lead to increased levels of disinfection byproducts in treated drinking water. Therefore, developing an improved understanding of the sources, fate and transport mechanisms, and export patterns for nitrate and DOC is important for informing watershed and water supply management. In this study, we analyzed the relationships between watershed characteristics, nitrate, and DOC for 12 gauged streams in the Neversink River watershed. Watershed characteristics included topography (elevation, slope, topographic wetness index), vegetation (leaf area index, species composition), soil (soil hydraulic parameters, soil carbon, wetland soil), atmospheric deposition (SO2, NOx), and climate (precipitation, temperature). Our preliminary analysis showed that both watershed slope and baseflow ratio are negatively correlated with annual median DOC concentration. At Biscuit Brook in the Neversink watershed, annual precipitation explained about 25% of annual DOC median concentration. DOC concentration was highly correlated with storm runoff in spring, summer, and fall, but stream nitrate concentration was weakly correlated with storm runoff in most seasons except summer when it was highly correlated with baseflow. We also applied a process-based ecohydrologic model (Regional Hydrologic Ecologic System Simulation, RHESSys) to the Biscuit Brook watershed to explore sources of nitrate and DOC and their movement within the watershed. We expect that this study will increase our understanding of how, when, and where DOC and nitrate are stored and transported to streams, as well as give insights into the key controls on nitrate and DOC processes in Catskill Mountain watersheds.

  6. Hydrostratigraphic and structural controls on streamflow generation in the Chuska Mountains, Navajo Nation, AZ/NM

    NASA Astrophysics Data System (ADS)

    Tsinnajinnie, L.; Frisbee, M. D.; Wilson, J. L.

    2017-12-01

    A conceptual model of hydrostratigraphic and structural influences on 3D streamflow generation processes is tested in the Whiskey Creek watershed located in the Chuska Mountains of the Navajo Nation along the northern NM/AZ border. The role of hydrostratigraphy and structure in groundwater processes has been well studied. However, influences of heterogeneity due to geologic structure and stratigraphy of mountain blocks on 3D streamflow generation has received less attention. Three-dimensional flow in mountainous watersheds, such as Saguache Creek (CO) and Rio Hondo (NM), contributes significant amounts of groundwater from deep circulation to streamflow. This fully 3D conceptual model is fundamentally different than watersheds characterized as 2D, those dominated by surface and shallow subsurface runoff, because 3D watersheds can have much longer flowpaths and mean residence times (up to 1000s of years). In contrast to Saguache Creek (volcanic bedrock) and Rio Hondo (crystalline metamorphic), the bedrock geology of the watersheds draining the Chuska Mountains is primarily comprised of sedimentary bedrock capped by extrusive volcanics. We test this conceptual model using a combination of stream gauging, tritium analyses, and endmember mixing analysis (EMMA) on the general ion chemistry and stable isotope composition of water samples collected in 2013-2016. Springs that emerge from the Chuska Sandstone are tritium dead indicative of a large component of pre-bomb pulse water in discharge and deeper 3D flow. EMMA indicates that most streamflow is generated from groundwater emerging from the Chuska Sandstone. Gaining/losing conditions in Whiskey Creek are strongly related to hydrostratigraphy as evidenced by a transition from gaining conditions largely found in the Chuska Sandstone to losing conditions where the underlying Chinle Formation outcrops. Although tritium in Whiskey Creek suggests 3D interactions are present, hydrostratigraphic and structural controls may limit the occurrence of longer residence times and longer flow paths. Mountainous watersheds similar to the 3D hydrostratigraphic and structurally controlled models will exhibit different responses to perturbations, such as climate change, than watersheds that fit existing 2D and 3D conceptual models.

  7. Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection.

    PubMed

    Kotiadis, D; Hermens, H J; Veltink, P H

    2010-05-01

    An Inertial Gait Phase Detection system was developed to replace heel switches and footswitches currently being used for the triggering of drop foot stimulators. A series of four algorithms utilising accelerometers and gyroscopes individually and in combination were tested and initial results are shown. Sensors were positioned on the outside of the upper shank. Tests were performed on data gathered from a subject, sufferer of stroke, implanted with a drop foot stimulator and triggered with the current trigger, the heel switch. Data tested includes a variety of activities representing everyday life. Flat surface walking, rough terrain and carpet walking show 100% detection and the ability of the algorithms to ignore non-gait events such as weight shifts. Timing analysis is performed against the current triggering method, the heel switch. After evaluating the heel switch timing against a reference system, namely the Vicon 370 marker and force plates system. Initial results show a close correlation between the current trigger detection and the inertial sensor based triggering algorithms. Algorithms were tested for stairs up and stairs down. Best results are observed for algorithms using gyroscope data. Algorithms were designed using threshold techniques for lowest possible computational load and with least possible sensor components to minimize power requirements and to allow for potential future implantation of sensor system.

  8. A Parallel Genetic Algorithm to Discover Patterns in Genetic Markers that Indicate Predisposition to Multifactorial Disease

    PubMed Central

    Rausch, Tobias; Thomas, Alun; Camp, Nicola J.; Cannon-Albright, Lisa A.; Facelli, Julio C.

    2008-01-01

    This paper describes a novel algorithm to analyze genetic linkage data using pattern recognition techniques and genetic algorithms (GA). The method allows a search for regions of the chromosome that may contain genetic variations that jointly predispose individuals for a particular disease. The method uses correlation analysis, filtering theory and genetic algorithms (GA) to achieve this goal. Because current genome scans use from hundreds to hundreds of thousands of markers, two versions of the method have been implemented. The first is an exhaustive analysis version that can be used to visualize, explore, and analyze small genetic data sets for two marker correlations; the second is a GA version, which uses a parallel implementation allowing searches of higher-order correlations in large data sets. Results on simulated data sets indicate that the method can be informative in the identification of major disease loci and gene-gene interactions in genome-wide linkage data and that further exploration of these techniques is justified. The results presented for both variants of the method show that it can help genetic epidemiologists to identify promising combinations of genetic factors that might predispose to complex disorders. In particular, the correlation analysis of IBD expression patterns might hint to possible gene-gene interactions and the filtering might be a fruitful approach to distinguish true correlation signals from noise. PMID:18547558

  9. Advancement in Watershed Modelling Using Dynamic Lateral and Longitudinal Sediment (Dis)connectivity Prediction

    NASA Astrophysics Data System (ADS)

    Mahoney, D. T.; al Aamery, N. M. H.; Fox, J.

    2017-12-01

    The authors find that sediment (dis)connectivity has seldom taken precedence within watershed models, and the present study advances this modeling framework and applies the modeling within a bedrock-controlled system. Sediment (dis)connectivity, defined as the detachment and transport of sediment from source to sink between geomorphic zones, is a major control on sediment transport. Given the availability of high resolution geospatial data, coupling sediment connectivity concepts within sediment prediction models offers an approach to simulate sediment sources and pathways within a watershed's sediment cascade. Bedrock controlled catchments are potentially unique due to the presence of rock outcrops causing longitudinal impedance to sediment transport pathways in turn impacting the longitudinal distribution of the energy gradient responsible for conveying sediment. Therefore, the authors were motivated by the need to formulate a sediment transport model that couples sediment (dis)connectivity knowledge to predict sediment flux for bedrock controlled catchments. A watershed-scale sediment transport model was formulated that incorporates sediment (dis)connectivity knowledge collected via field reconnaissance and predicts sediment flux through coupling with the Partheniades equation and sediment continuity model. Sediment (dis)connectivity was formulated by coupling probabilistic upland lateral connectivity prediction with instream longitudinal connectivity assessments via discretization of fluid and sediment pathways. Flux predictions from the upland lateral connectivity model served as an input to the instream longitudinal connectivity model. Disconnectivity in the instream model was simulated via the discretization of stream reaches due to barriers such as bedrock outcroppings and man-made check dams. The model was tested for a bedrock controlled catchment in Kentucky, USA for which extensive historic water and sediment flux data was available. Predicted sediment flux was validated via sediment flux measurements collected by the authors. Watershed configuration and the distribution of lateral and longitudinal impedances to sediment transport were found to have significant influence on sediment connectivity and thus sediment flux.

  10. Breath biomarkers for lung cancer detection and assessment of smoking related effects--confounding variables, influence of normalization and statistical algorithms.

    PubMed

    Kischkel, Sabine; Miekisch, Wolfram; Sawacki, Annika; Straker, Eva M; Trefz, Phillip; Amann, Anton; Schubert, Jochen K

    2010-11-11

    Up to now, none of the breath biomarkers or marker sets proposed for cancer recognition has reached clinical relevance. Possible reasons are the lack of standardized methods of sampling, analysis and data processing and effects of environmental contaminants. Concentration profiles of endogenous and exogenous breath markers were determined in exhaled breath of 31 lung cancer patients, 31 smokers and 31 healthy controls by means of SPME-GC-MS. Different correcting and normalization algorithms and a principal component analysis were applied to the data. Differences of exhalation profiles in cancer and non-cancer patients did not persist if physiology and confounding variables were taken into account. Smoking history, inspired substance concentrations, age and gender were recognized as the most important confounding variables. Normalization onto PCO2 or BSA or correction for inspired concentrations only partially solved the problem. In contrast, previous smoking behaviour could be recognized unequivocally. Exhaled substance concentrations may depend on a variety of parameters other than the disease under investigation. Normalization and correcting parameters have to be chosen with care as compensating effects may be different from one substance to the other. Only well-founded biomarker identification, normalization and data processing will provide clinically relevant information from breath analysis. 2010 Elsevier B.V. All rights reserved.

  11. A Semiparametric Approach for Composite Functional Mapping of Dynamic Quantitative Traits

    PubMed Central

    Yang, Runqing; Gao, Huijiang; Wang, Xin; Zhang, Ji; Zeng, Zhao-Bang; Wu, Rongling

    2007-01-01

    Functional mapping has emerged as a powerful tool for mapping quantitative trait loci (QTL) that control developmental patterns of complex dynamic traits. Original functional mapping has been constructed within the context of simple interval mapping, without consideration of separate multiple linked QTL for a dynamic trait. In this article, we present a statistical framework for mapping QTL that affect dynamic traits by capitalizing on the strengths of functional mapping and composite interval mapping. Within this so-called composite functional-mapping framework, functional mapping models the time-dependent genetic effects of a QTL tested within a marker interval using a biologically meaningful parametric function, whereas composite interval mapping models the time-dependent genetic effects of the markers outside the test interval to control the genome background using a flexible nonparametric approach based on Legendre polynomials. Such a semiparametric framework was formulated by a maximum-likelihood model and implemented with the EM algorithm, allowing for the estimation and the test of the mathematical parameters that define the QTL effects and the regression coefficients of the Legendre polynomials that describe the marker effects. Simulation studies were performed to investigate the statistical behavior of composite functional mapping and compare its advantage in separating multiple linked QTL as compared to functional mapping. We used the new mapping approach to analyze a genetic mapping example in rice, leading to the identification of multiple QTL, some of which are linked on the same chromosome, that control the developmental trajectory of leaf age. PMID:17947431

  12. Mitochondrial Genome Sequencing and Development of Genetic Markers for the Detection of DNA of Invasive Bighead and Silver Carp (Hypophthalmichthys nobilis and H. molitrix) in Environmental Water Samples from the United States

    PubMed Central

    Farrington, Heather L.; Edwards, Christine E.; Guan, Xin; Carr, Matthew R.; Baerwaldt, Kelly; Lance, Richard F.

    2015-01-01

    Invasive Asian bighead and silver carp (Hypophthalmichthys nobilis and H. molitrix) pose a substantial threat to North American aquatic ecosystems. Recently, environmental DNA (eDNA), genetic material shed by organisms into their environment that can be detected by non-invasive sampling strategies and genetic assays, has gained recognition as a tool for tracking the invasion front of these species toward the Great Lakes. The goal of this study was to develop new species-specific conventional PCR (cPCR) and quantitative (qPCR) markers for detection of these species in North American surface waters. We first generated complete mitochondrial genome sequences from 33 bighead and 29 silver carp individuals collected throughout their introduced range. These sequences were aligned with those from other common and closely related fish species from the Illinois River watershed to identify and design new species-specific markers for the detection of bighead and silver carp DNA in environmental water samples. We then tested these genetic markers in the laboratory for species-specificity and sensitivity. Newly developed markers performed well in field trials, did not have any false positive detections, and many markers had much higher detection rates and sensitivity compared to the markers currently used in eDNA surveillance programs. We also explored the use of multiple genetic markers to determine whether it would improve detection rates, results of which showed that using multiple highly sensitive markers should maximize detection rates in environmental samples. The new markers developed in this study greatly expand the number of species-specific genetic markers available to track the invasion front of bighead and silver carp and will improve the resolution of these assays. Additionally, the use of the qPCR markers developed in this study may reduce sample processing time and cost of eDNA monitoring for these species. PMID:25706532

  13. Mitochondrial genome sequencing and development of genetic markers for the detection of DNA of invasive bighead and silver carp (Hypophthalmichthys nobilis and H. molitrix) in environmental water samples from the United States.

    PubMed

    Farrington, Heather L; Edwards, Christine E; Guan, Xin; Carr, Matthew R; Baerwaldt, Kelly; Lance, Richard F

    2015-01-01

    Invasive Asian bighead and silver carp (Hypophthalmichthys nobilis and H. molitrix) pose a substantial threat to North American aquatic ecosystems. Recently, environmental DNA (eDNA), genetic material shed by organisms into their environment that can be detected by non-invasive sampling strategies and genetic assays, has gained recognition as a tool for tracking the invasion front of these species toward the Great Lakes. The goal of this study was to develop new species-specific conventional PCR (cPCR) and quantitative (qPCR) markers for detection of these species in North American surface waters. We first generated complete mitochondrial genome sequences from 33 bighead and 29 silver carp individuals collected throughout their introduced range. These sequences were aligned with those from other common and closely related fish species from the Illinois River watershed to identify and design new species-specific markers for the detection of bighead and silver carp DNA in environmental water samples. We then tested these genetic markers in the laboratory for species-specificity and sensitivity. Newly developed markers performed well in field trials, did not have any false positive detections, and many markers had much higher detection rates and sensitivity compared to the markers currently used in eDNA surveillance programs. We also explored the use of multiple genetic markers to determine whether it would improve detection rates, results of which showed that using multiple highly sensitive markers should maximize detection rates in environmental samples. The new markers developed in this study greatly expand the number of species-specific genetic markers available to track the invasion front of bighead and silver carp and will improve the resolution of these assays. Additionally, the use of the qPCR markers developed in this study may reduce sample processing time and cost of eDNA monitoring for these species.

  14. 40 CFR 141.521 - What updated watershed control requirements must my unfiltered system implement to continue to...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Identify watershed characteristics and activities which may have an adverse effect on source water quality; and (b) Monitor the occurrence of activities which may have an adverse effect on source water quality. ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL...

  15. Ecosystem processes at the watershed scale: mapping and modeling ecohydrological controls

    Treesearch

    Lawrence E. Band; T. Hwang; T.C. Hales; James Vose; Chelcy Ford

    2012-01-01

    Mountain watersheds are sources of a set of valuable ecosystem services as well as potential hazards. The former include high quality freshwater, carbon sequestration, nutrient retention, and biodiversity, whereas the latter include flash floods, landslides and forest fires. Each of these ecosystem services and hazards represents different elements of the integrated...

  16. Spatial and temporal controls on watershed ecohydrology in the northern Rocky Mountains

    Treesearch

    Ryan E. Emanuel; Howard E. Epstein; Brian L. McGlynn; Daniel L. Welsch; Daniel J. Muth; Paulo D& #65533; fOdorico

    2010-01-01

    Vegetation water stress plays an important role in the movement of water through the soil�]plant�]atmosphere continuum. However, the effects of water stress on evapotranspiration (ET) and other hydrological processes at the watershed scale remain poorly understood due in part to spatially and temporally heterogeneous conditions within the...

  17. Evaluating mountain meadow groundwater response to pinyon-juniper and temperature in a great basin watershed

    USDA-ARS?s Scientific Manuscript database

    Expansion of deeply-rooted Pinyon-Juniper (PJ) has altered water partitioning and reduced water availability to discharging meadows. Research highlights the development and application of GSFLOW to a semi-arid, snow-dominated watershed in the Great Basin to evaluate PJ and temperature controls on mo...

  18. Thinking outside of the Lake: Can controls on nutrient inputs into Lake Erie benefit stream conservation in its watershed?

    USDA-ARS?s Scientific Manuscript database

    Investment in agricultural conservation practices (CPs) to address Lake Erie's re-eutrophication may offer benefits that extend beyond the lake, such as improved habitat conditions for fish communities throughout the watershed. If such conditions are not explicitly considered in Lake Erie nutrient ...

  19. MEETING IN PHILADELPHIA: NUTRIENT CONCENTRATIONS IN FLOWING WATERS OF THE SOUTH FORK BROAD RIVER, GEORGIA WATERSHED

    EPA Science Inventory

    The objective of this poster is by comparing nutrient and DOM concentrations in small and large streams, we hope to better understand: (1) watershed controls on stream nutrient and DOM concentrations; and (2) the variability of nutrient and DOM concentrations within a river netwo...

  20. Interactive influences of ozone and climate on streamflow of forested watersheds

    Treesearch

    Ge Sun; Samuel B. Mclaughlin; John H. Porter; Johan Uddling; Patrick J. Mulholland; Mary B. Adams; Neil Pederson

    2012-01-01

    The capacity of forests tomitigate global climate change can be negatively influenced by tropospheric ozone that impairs both photosynthesis and stomatal control of plant transpiration, thus affecting ecosystem productivity and watershed hydrology. We have evaluated individual and interactive effects of ozone and climate on late season streamflow for six forested...

Top